A sTUDY OF DROUCHT RECUHCIES POR
TTI LOWR PNNISULA OF MICHIGAN
Whasis fer the Degres of M. §. Fhsodere W. Cahow 1952

This is to certify that the
thesis entitled

"A Study of Drought Frequencies for the

 Lower Peninsula of Michipan"
presented by

Theodore Walter Cahow
has been accepted towards fulfillment of the requirements for

Master of Science degree in Agricultural Engineering

Major professor

Date March 10, 1952
 PEi: INSUA CT VIITIGAN

by

Theodore W. Chow

An Abstract

Submitted to the school of Graduate Studies of vichigen State College of Agriculture and applied Science in partial fulfillment of the requirements for the degree of
Master of science

```
3+%%
```

Tre study of drought frecuencies, while not a new subject, has not been undertaken on any large scale. A knowledme of how often drournts of a damasing duration misht occur, however, would be of great value to the growers 'of many of our cash crops. It is the purpose of this project, then, to determine the frequency and intensity of droughts over the lower peninsula of richican. To do this, the precipitation data for the months of lay through September at each of 37 stations vies tabulated and carefully analyzed for both the frequency and duretion of drought periods. Close study of these drou:ht periods show that no definite pattern exists over the lover peninsula of the state. The data does clearly show, however, thet the montrs of July and August are more likely to have tie long severe drountts while the months of May ard September will have more frequent droughts.

A STUDY CT DRCUGHT RREGURNCIES ECR TEX LCAER prainguth om rICHIGAN
by
Theodore 7. Cahow

A Thesis

Submitted to the School of Graduate Studies of Michigan State Collere of Agriculture end Applied Science in partial fulfillment of the requirements for the degree of

Master of Science

The author wishes to express his appreciation to the following:

Professor x. H. Ridder of tre Agricultural Lngineering Departmert for his suggestions and guidance in this project.

Nr. A. H. Eichmeier, director of the East Lansing office of the United States Weather Bureau for making available the necessary weather data.

Professor W. D. Raten of the "ethemetics Department for ris suggestions in the anslysis of the collected data.

-
Acknowledgements 1
Table of Contents i1
Introduction 2
Review of Ifterature
Procedure of Work 4
Discussion of Results 7
Analysis of Data Conclusion $\begin{array}{r}15 \\ 5 \\ \hline\end{array}$
Fig. 1 1 to 2 week droughts in May)
$\left.\begin{array}{l}\text { Fig. } 3 \\ \text { Fig. } 4 \\ \text { Fig. } \\ \text { Fig. }\end{array}\right\} \begin{aligned} & 1 \\ & 1\end{aligned}$ to 2 to 2 week droughts 2 week droughts 16 16 17
1 to 2 week droughts in September) 18 19
19 20$\left\{\begin{array}{l}2 \text { to } 3 \text { week droughts in August) } \\ 2 \text { to } 3 \text { week droughts in September) }\end{array}\right.$Fig. 10
Fig
3 to 4 week droughts in May)
3 to 4 week droughts in June)
Fig. I4 3 to 4 week droughts in July)
Fig. 15 (3 to 4 week droughts in August) 22 2221
Fig. 16 (3 to 4 week droughts in September) 23
Fig. 17 4 to 5 week droughts in May)
Fig. 18 (4 to 5 week droughts in June) 24
Fig. 19
Fig. 20 24
(4 to 5 week droughts in August)
(4 to 5 week droughts in August)
Fig. 21 25Fig. 22
(5 week droughts or longer in May) 26
Fig
Fig. 24
(5 week droughts or longer in June) 26
Fig
(5 week droughts or longer in July) 27
(5 week droughts or longer in August)
Fig. 26
F1g. 27
(Adrian droughts) 28 29
Fig. 28 Allegan droughts) 29
Fig. 29 Alma droughts) 30
Fig. 30 Alpena droughts) 30
Fig. 31 Ann Arbor droughts) 31
Fig. 32 (Battle Creek droughts) 31
Fig. 33 (Bay City droughts) 32
Fig. 34 (Benzonia droughts) 32
Pig. 35 (Big Rapids droughts) 33
Fig. 36 Cadillac droughts) 33
Fig. 37 Coldwater droughts) 34
Fig. 38 (Detroit droughts) 34
Fig. 39 East Tawas droughts) 35
Fig. 40 Flint droughts) 35
Fig. 41 (Franikfort droughts) 36
Fig. 42 Grand Haven droughts) 36
Fig. 43 (Grand Rapids droughts) 37

```
TABIT CT CCMmrinmS
    (CCNT'D)
```

Fig. 44 (Grayling droughts) 37
Fig. 45 (Herbor Deach droughts) 38
Fig. 46 (サillsdale drouphts) 38
Fig. 47 (Jackson droughts) 39
Fig. 48 (Kalamezoo droughts) 39
Fif. 43 (Iansing, Fast, droughts) 40
Fig. 50 (Ludington droushts) 40
Fig. 51 (rackinaw City drouchts) 41
Fig. 52 (ranistee droughts) 41
Fig. 53 (rirakeson drourhts) 42
Fig. 54 Cnavay drouchts) 42
Pig. 55 Fetockey droughts) 43
Fig. 56 Port Iruron drourshts) 43
FiE. 57 Saginaw drourhts) 44
Fig. 58 (St. Joseph drougrts) 44
Tig. 59 (Soutr Haven drourhts) 45
Tig. 60 Traverse City droughts) 45
Fig. 61 (Fest Branch drourhts) 46
Fig. 62 (Ypsilanti droughts) 46
Fig. 63 (Soutr Bend, Inliana droughts) 47
Bibliography 48 48

IMTRODUC:ICN

One of the major problems that has confronted the farmer almost since the beginning of civilization has been that of obtaining adequate moisture for plant growth. Some of these farmers rave depended entirely on the netural supply in the form of precipitation and heve found it adequate. Others, in drier climates, have endegvored to furnish the needed moisture b:r artificial means and have met $\nabla_{i} i t h$ varying degrees of success. It has been shown by many people, hovever, that irrigation, as this artificial application is call, d, can be profitable to the farmer if it i: hanaled intellisently. Jany books heve been wirten on the subject and men interested in the science rave developed many different metiois in virich to carry on the practice. Each of these methods is designed to meet a different set of conditions. lany of these same men elso pointed out thet in certein parts of the country, continuous irrigation ves needed; hile in others, it vold only be needed to supnlement the natural supply. In these areas, then, Where nature furnishea part of the recuired moisture, another problem erose. it concerned itself rith reatiser ird its unoredjotable rature. wien would the farmer receive a ratural sunaly and when rould be rave to apply the reter timeelf? Pris is the problem that is taken up in this research poper.

As supplementel irricetion is of primary irterest throurhout this region, it is important that tre meaning ke clearly understood. Staebner(l) defines it as "the artificial watering of crons in regions where rainfall is ordinarily depended on for moisture." Israelsen(2) looks upon it as the artificial application of water by man with which he attempts to supplement the natural supply. Both of these men look upon the subject from the same point of view. That is, a plent requires a certair amount of water during the groving period. If rature supplies only part of this moisture, then man must furnish the rest. This brirss up the question as to when or how often it is necessary to supplement the natural supply. The answer to this depends upon many factors. dmone these are the type of crop and its stage of maturity. Anoifer would be the tempera+ure and rumidity of the otmosphere. There would also be the factor of the prysical properties of the soil. It is common knovledge that plants receive most of their water supply from the soil. Soils men have termed this sipply, available moisture, in that it can be used by the plants. Villar and Turk(3) state trat the more important factors influencing the quantity of available moisture in tre soil are texture, structure, orcanic matter content, aeration, ard position of tre water table. In resards to texture, these same authors poirt out that fine soils,
such as clay, will hold between 4 and 5 times as much available moisture as will the lighter soils, such as sand. The effect of organic matter content on the amount of available moisture is much the same as for texture. In general, the more organic matter present in a soil, the more water the soil will hold. It is logical to assume, then, that a heavy soil or soil of high organic matter content, will be able to hold more water from a given rain than will a light soil or a soil of low organic matter content. This being the case, it can be expected that a sandy soil would require more artificially applied water than would a heavy soil, the crop being the same in both cases. The aforementioned factors are only a few of the manr that should be considered in the study of drought effects or the control of droughts. Nevertheless. they serve to point out that a drought of a given severity might be damaging in one instance and not in another. However, if it could be determined with a reasonable degree of certainty when and how of ten droughts of varying intensity were to occur in any given locality, then we could better judge the need and value of supplemental irrigation. The best way to do this would be to analyze past weather records. A few analyses of this type have been undertaken by other men, but on a rather linited scale. Carreker and Liddell(4) used 6 locations in Georgia and studied
the rainfall records for trepast 25 years. Similar work was undertaken by Staebner(5) over the upper and lower peninsula of richigan. In the work of Carreker end Liddell, 0.25 inches of rain in 24 hours was set as the minimum requirement for plant grovith in a two reek period. Staebner chose to use .l inch per day. While this value has its good points, it ras not been widely accepted.

PROCIDURE OF WORT

As was pointed out earlier, the amount of water necesaary to mairtain plant growth varies not only with the plant, but also with the soil and with other climatic conditions. To use Staebner's value of .l inch per day would be satisfactory under some conditions and not under others. It could very well be, for example, that .l inch of rain falling each day on a heavy soil micht evaporate before it ever reached the root zone. Unfortunately, the use of any set value could well prove erroneous under certain conditions. Ievertheless, it offers the only practical solution in a problem of this kind. The use of a number of velues, each established for a differert set of variables, vould be much more accurate, but would develop into an elmost endless tesk. It remains then, for the research worker to choose a value that he feels best suits the conditions and needs of tre problem re ras undertaken. In this paper, then, e drouert is defined as "a period constituting 7 days or more in which less than 0.25 inches of
-
precioitation has occurred in 24 hours." It has been
 the root zone, while greater amounts usually have a beneficial effect on plant growth. It should be kent in wind, however, that under certain instancec, amcunts of 0.20 or even 0.15 of an inch can be bereficial to the plant. Sucin a case might resvilt when one of these rains cocurred á day or tro aft ra heavy airi. Analysis of the data collected, hovever, r dverls thiet these cases rarely occur.

Now that the $\dot{\text { Gefinition of }}$ a ciroueht hes been established, any future predictions sholilei be basca or an anelysis of past long term records. The data from 37 stations in the lower peninsula of liichigan wis tabulated for this projsct. These etitiuns ure chosen bcth for their location aro their lath of reorr. It Wes desired to have a complete as well as accurate coverage of the state. With cne sxeption, they all heve from 36 to 51 years of rainfall data vith s7 of the stations having over 46 years of recorcis. The locetion of each station is shown in Figure 1.

The daily rainfall records for each of tiafse stations we"e taken from the published "Climatolcgical rata" of the Weather Bureau of the United Etates Department of Comerce, and tabulated in sequence order of the ciay, month, and year of its occurrence. Only the months of $\begin{aligned} & \text { mey through }\end{aligned}$ September were included as this analysis is intonded to cover only the growing secson. The data were then
-
studied fur the occurrence of droughts of varying length and frequency.

These droughts were then tabulated in groups according to the month in which they occurred and their duration. For example, all droughts lasting from 7 to 14 days in the month of May were placed in one group, while those lasting for the same period in the month of June were pioced in another. The reason for tabulating according to month is that the degree of drought resistance in many plants varies with their stage of maturity. May and June droughts may be of concern to small fruit growers, while July and August droughts could be serious to producers of later maturing crops, such as tcmatoes.

The groups were set up in 7 day increments from 7 days up to 35 days. Proughts lasting 35 days or longer were all placed in one group. It is felt that a complete analysis of droughts liasting over 5 weeks is not of primary importance in this instance. FeN crops in Michigan can withstand droughts of 35 days without damage unless some supplemental irrigation is applied.

In analyzing the dicta in this way, there were many times when one period would evtand from one month into the next. When this occurred, the pericd was cherged to the month which had the most days in the particular period. For example, if a 21 day drought occurred, with 11 days in may and 10 in June, then liey would be creaited with the entire drought. If each month had the same number of deys in a cirought perica, then it would
\square ;
-
\therefore !
-
\qquad
be charsed to the month in vhich it orieinated. There rould, hovever, he one exception in this case. Assume that a drount strert on tre 56 th of ray and continued on throu h Jure and for 30 days into July. This vould mean trat the period lated 6 days in lar, 00 derys in June end 30 days in July, for a total of 66 days. The drought in this cese, vould be charged to the month of Jure. June is the criticil month in that the drought Will heve hid a mejor effect before July began.

In order to bert show the results of this study, a series of meps and chorts rere made to illustrete the pertinent findinss.

Pieures ? throu,h 26 ere dravin on the kasis of number of droughts occurring in the average 10 year period. Tisure 2, pare 16, for example, shovs the freouencr fith which 1 to a week drourhts occur in the month of Pr . A line labeled vith the number 9 pesses troou h ell pointa $י$ eving on the average of 9 droughts lasting from 1 to 2 weeks in a 10 year period. T'e line 3 indicetes that 8 droughts occur in 10 years.

One would naturelly expect the more severe droushts to occur less frequently than droughts of less duration. This is trought out clearly in the meps. The lines on Ficsure 21, pace 25, for instance, ere labeled vith numbers of less than one. This means that these droughts will occur less tran once every 10 years. A line marked
0.5 indicates 1 arcught in 20 years mile $0 . \varepsilon$ indicates one in every 50 years.

Higures 27 through 63 show the cumuletive frequency of the droughts. the charts are drawn for each station and each of the 5 months under study. Figure 27, page 29, for example, covers the 5 months far the station at Adrian, Wichigan. This chart contains five separate groups of bar graphs. Each group covers one of the 5 months under study. Looking at the graphs for may, it cen be seen thet there were 74 droughts lasting 7 days or longer. In other words, there were a total of 74 May droughts during the 50 year record of the station. The graphs further show that there were 28 droughts lasting 14 days or longer. To deternine the exact number of 1 to 2 week droughts, we have only to subtract 26 from 74, which shows that 46 of these droughts occurred.

These charts, if studied closely, will give more detailed information at the various stations than will the maps. For exarple, let us assume that a farmer wishes to grow strawberries near Traverse City. The soil in this particulár area is a light sandy loam and is not capable of retaining moisture for any period of time. The strawberries which will be grown here can be expected to mature around the latter part of May and the early part of June. During this fruiting period, they require an abundance of water if they are to produce a berry of a marketable nature. The moisture requirement of the fruit then, along with the nature of the soil, indicates that short droughts lasting 7 or 8 days can be damaging. By looking
at Figure 60, page 45, for the month of May, it can be seen that 71 droughts lasting 7 days or longer have occurred in the past 47 years. This is an average of 1.5 droughts in the month of May each year. In June, 70 droughts occurred in 48 years. Here again the average is 1.5 each year. This would indicate thet supplemental irrigation would be advisable to this farmer, especially if the success or failure of the crop wculd have a pronounced effect on his econowic stability.

analycis of data

When we are confronted with a problem or phenomenon over which we have no control, we study to see if it follows any set routine or pattern. Weather, unfortunately, rarely follows a pattern in any given locality. In analyzing the data, however, some interesting pcints have been found that should be brought out. These are as follows:

1. Droughts of 1 to 2 weeks during hay, Figure 2 , page 16, appear to be fairly uniform throughout the state. The average in this month is 10 droughts in 10 years. A slight increase to 12 in 10 years can be seen around Ludington and Muskegon, while the southeastern and southwestern area shows a decrease to 9 in 10 years.

The June average, Figure 3, page 16, drops to 8 droughts in 10 years with the southeastern area at 10 in 10 years being above the average. The
-
*
\square
-
rest of the state remains fairly uniform.
In July, Figure 4, page 17, the cverage rises again to almost 9 in 10 yeurs with the abcve average areas of 10 in 10 years centering around Port Huron and East Tawas. The western shoreline and the area around East Lansing, Flint and Detroit are slightly below average with 8 in 10 years.

In August, Figure 5, page 17, the average a. gain drops to 8 in 10 years with the southern counties and the Port Huron area having 9 in 10 years and the East Tawes area having 6 in 10 years.

In September, Figure 6, page 18, the average is 9 in 10 years with the extreme southwestern area having 11 droughts in 10 years and the Rast Lansing, Nlma, Bay City area being low or below average with 8 in 10 years.
2. Droughts of 2 to 3 weeks occur much less frequently than those of 1 to 2 weeks. The average for the month of May, Figure 7, page 18, is slightly less than 4 in 10 years. The lower peninsula is fairly uniform with a high of 5 in 10 years centered around Harbor Beach.

In June, Figure 8, page 19, the average drojs to a little better than 3 droughts in 10 years. Here the high areas are wiciely scattered. The southeast end southrest, the area around ludington, and the area around Mackinaw City, average
over 4 while the area around Grayling averages less than 2 droughts in 10 years.

In July, Figure 9, page 19, the average rises slightly to between 3 and 4 droughts in 10 years. The only area varying appreciably from the average is between Traverse City and Grayling. Here the average drops to 2 in 10 years.

In August, Figure 10, page 20, the average again drops to the June level of 3 droughts in 10 years and is fairly uniform throughout the state.

In September, Figure 11, page 20 , the average continues to be 3 droughts in 10 years with the areas around Ludington, Manistee, Mackinaw City, and Alma rising to 4 in 10 years. The remainder of the state is quite uniform.
3. Droughts of 3 to 4 weeks in May, Figure 12, page 21, averaged slightly over 1 in 10 years throughout the state. Areas around Petoskey and between Bay City and East Tawas were higher than the average with 2 in 10 years, while the extreme southwest was low with 1 drought in 20 years.

In June, Figure 13, page 21, the average increased to slightly under 2 droughts in 10 years with the area around west Branch having 3 in 10 years and the area around Hillsdale, Jackson, and Adrian having 1 in 10 years.
-

The July average, Figure 14 , page 22 , was very similar to June with slightly under 2 droughts in 10 years. The only extreme variance was centered around Petcskey where no droughts of this duration have been recorded. The month of August, Figure 15, page 22, revealed an average of slightly greater than 2 in 10 years. Above average areas of 3 droughts in 10 years are centered around Cadillac and Saginaw while the East Lansing area is low :oith 1 drought in 10 years.

In September, Figure 16, page 23, the average dropped to less than 1 drought in 10 years. The high area this month is around Ann Arbor with 2 droughts in 10 years and the low around Cadillac with no droughts occurring.
4. In the 4 to 5 week droughts, the average for May, Figure 17, page 23, is 1 drought every 33 years. The above average area extends across the northern part of the state between Petoskey and Alpena. The average here is 1 in 15 years. Directly north of this area, around Mackinaw City and a strip running southeast from Manistee to Flint, no droughts of 28 to 35 days duration occurred.

In June, Figure 18, page 24, the average for the state increased to 1 in 14 years. The areas between Cadillac and trackinaw and around saginaw

Flint and Bay City should expect about 1 each 10 years, while Letroit had none in 51 years. In July, Figure 19, page 24, the state average was 1 in 15 years with highs of 1 in 10 years around Grand Haven, Manisteo, Alpená, and Hillsdale. Areas around Saginaw and Ann Arbor have never experienced these ciroughts.

In August, Figure 20, page 25, the droughts have occurred on the average of 1 each $12 \frac{1}{2}$ years over the state. The central area of Michigan between Alma and Grayling has had these periods about once in 8 years, while in the Hillsdale area, it has been closer to once in 25 years.

The September average, Figure 21, page 25 , drops down again to 1 in 33 years. Isclated high areas of 1 in 20 years are found around Past Lansing, Port Huron and West Branch. An extrewe high of 1 in $12 \frac{1}{2}$ years is found southeast of Traverse City. The areas around Alma, Allegan and Battle Creek, however, have experienced none of these droughts.
5. The state average for ciroughts lasting 5 weeks or longer during May is 1 in 50 years. The average was uniform throughout the central area from Manistee and Ludington across the state to Bay City and Saginaw. The south central area up to East Lansing was entirely free of these droughts
as was the area between Onaway and Alpena. The region between Petoskey and East Tawas, on the other hand, has experienced these severe periods about once every 20 to 25 years as shown in Figure 22, page 26.

The average for June, Figure 23 , page 26 , rises slightly to once in 25 years. The drought free areas during this month are located around coldwater and Onawiy, while frequencies of once in 12 years are found around Port Huron and Grand Haven.

In July, Figure 24 , page 27, the average rises again to 1 in 17 years. Higher frequencies of once in 10 years have occurred along a strip running south from Petoskey down to Grand Haven. The area around Onaway hàs had none of these droughts.

In August, Figure 25 , page 27 , the droughts occur most frequently averaging once every 12 ? years. Higher frequencies of 1 in 10 years are found along the west side between ludington and St. Joseph. Lower frequencies of 1 in 20 years are located in a narrow strip running diagonally across the state from Traverse City down to Detroit.

In Ceptember, Figure 26, page 28, the frequency drops again to 1 drought in 33 years. Iuring this month, the eastern half of the state averages slightly higher or about once every 20 to 25 years. The west side of the state is lower and averages

about 1 drought every 50 years. No droughts have occurred around Ministee ard "est Branch.

CCNCLUSION

In locking over the data it would appear that no definite pattern exists over the entire state. Thet is, it cannot be said thet droughts ore more prevalent in the southern half than in the northern half. Nor can it be said that the severe droughts will affect the eastern half more than the western. The maps do clearly show us, however, that short droughts occur more frequently in hay and September than in the other three months. They also show that August is the most dangerous month for droughts lasting three weeks or longer.

Fig. 1 Map of weather stations
used in this project.

cossmess,

∞
v

\approx
SOUTH GEND. IND.

(1) Staebner, F. ., "Supplemental Irriazation,"

(3) Fillar, C. F., and Turk, I. N., Fundamentals $\frac{o f}{p p .} \frac{\text { Soil }}{397}$. Science, John تiley \& Sons, $: E W$ York,
(4) Cerreker, J. R., and Liddell, W. J., "Results of Irricetion Research in Georyia, Pert I," $\frac{\text { Asricultural }}{243} \frac{\text { norineering, } V o l .29,1948, ~}{244}$ pp. 243-244.
(5) Staebner, T., "Determinire an Index of Supplemental Irrigation and Its Application," Ari$\frac{\text { culthrel }}{\text { pp. } 215-2} \frac{\text { naineerine, Vol. } 21, ~ I O . ~ 6, ~ 19 ~}{170}$

ADIMIOML ROTNODOS

Duffie, '. Z. Jr., "Supplemental Irrisetion in South Carolina," Clemson foricultural College

Wnited States Jepertment of Commerce, ClimatoloGical Deti, 1700 Trrourh 1350.

ROQU USE ONLE

$$
\begin{aligned}
& \text { Jan } 6 \text { 验 } \\
& \text { IUN } 23 \quad 58
\end{aligned}
$$

