MASSPRODUCING SIMPLY SUPTORTED PRESTRESSED CONCRETE BEAMS By Gun Aydin Caldiran A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Civil Engineering 1953 INTRODUCTION . . . . . 1. Introductory Sta 2. Procedure . . 3. Acknowledgment NOTATIONS . . . . . . CONSTANTS . . . . DETERE'INING BEAM DEPTH FOR MOMENT . . DETERMINING BEAM DEPTH DESIGN........ CABLE POSITIONS . . . CHECKING FOR SHEAR . . BLOCK DIMENSIONS . . . THREADED CABLE SOCKETS SUMMARY....... FOR FOR te TABLE ment 0 o 0 OF CONTENTS VARIOUS SHEAR FLANGE AND WEB THICKNESSES APPENDIX A: DETERMINING BEAM DEPTH FOR VARIOUS FLANGE AND WEB THICKNESSES FOR MOMENT . . . . . . APPENDIX B: DETERMINING BEAM DEPTH FOR SHEAR . APPENDIX 0: DESIGN . . . . . . APPENDIX D: CABLE POSITIONS . . APPENDIX E: CHECKING FOR SHEAR APPENDIX F: BLOCK DINENSIONS . BIBLIOGRAPHY.......... 300082 PME ON «t: WHHH 15 19 27 32 39 1+3 95 101 , 120 1M1 197 INTRODUCTION 1. Introductory Statement This study describes a graphical procedure for designing blocks for post tensioned, simply supported prestressed concrete beams. The blocks designed are I-shaped and can be used for beams with span lengths from 20 feet to 125 feet. The widths, flange and web thicknesses of the blocks are expressed in terms of the depth of the blocks. For different thicknesses of web and flanges the required depths for moment are cal- culated. After checking for shear the block sizes are determined. Design tables are derived for post tensioned, simply supported pre- stressed concrete beams from 20 feet to 125 feet for H20-Sl6-HH loading of the "American Association of State Highway Officials". The use of these tables reduces to a minimum the enormous amount of labor necessary in the design of such beams. 2. Procedure In this study the beams are placed adjacent to each other as it is shown in the following figure: L 1 i J 2 The moments are first determined at various points of the beams. Since there is no tie between the beams it is assumed that the wheels on one side of the truck are directly on the beam. The difference be- tween the absolute maximum moment and the moment at the center of the beam is very small. Therefore, with the assumed conservative loads, the moment at the center is considered as the maximum moment. After moments are determined curves are plotted for the depth of the beams as well as cross sectional areas for various flange and web thicknesses and various flange widths. By inspecting the above curves the number of blocks to be used, from span length 20 feet to 125 feet inclusive, and the flange widths are decided. Next, the required depths for shear with various flange and web thicknesses for the beam are determined. It is found that for a certain value of web and flange thickness the required depths for both bending moment and shear are the same. As a final value for the depths of the beams these values are selected. The next step in this study is to determine the cable sizes and positions. To make it practical one cable size and position are used for a certain kind of block. Then shear is checked. After making a summary of the properties of the blocks, the blocks for the bending points of the cables are designed to give required dis- tance between the center of gravity of the beam and the center of the cable. Finally the and blocks are determined. Here only the practical aspects of the design are considered. 3. Acknowledgment The author wishes to express his indebtedness to Prof. W. A. Bradley for his valuable advice and suggestions and also to acknowb ledge his thanks to Dr. R. H. J. Pian who read the study. NOTATIONS The symbols in this study, defined below conform essentially to letter symbols for "The Principles and Practice of Prestressed Concrete" by P. I. Abeles. 020__] .1. L 810 e = Distance between the center of gravity of the beam and the center of the cable. 010 = Distance between the center of gravity of the beam and the bottom fibers of the beam. Distance between the center of gravity of the beam and the top fibers of the beam. f' = 28 day compressive strength of concrete. c Q = Constant fct = Compressive stress at transfer. fcw = Compressive stress at working loads. ftt = Tensile stress at transfer. f“, = Tensile stress at working loads. fsh = Shear stress. I = Impact load. t = Web and flange thicknesses. D Depth of beam. B = Width of beam. An = Cross-sectional area of beam. Io Moment of inertia of the cross-section of the beam about its neutral axis. = Moment of the dead load of the beam. “LL = Moment of live load. M. = Moment of working load. Pt = Total tension in cables. r = Radius of gyration of the cross-section. V = Vertical resultant force. H = Moment of half of the section about the neutral axis of the entire cross-section. sle = Section modulus of cross sectional area related to bottom fibre. $20 = Section modulus of cross sectional area related to top fibre. L = Span length. c‘= 12 Io EST- 5= °10 W I’U’ctfi'tw _—'-'-*6’-—— CONSTANTS In this study “The American Association of State Highway Officials" specifications (l9h9) are followed. Loading = s20-516-uu 6000 1b/1n2 ’2 u H = 0.85 2 tot = fc' = 1/3 f3 = 2000 lb/in 1,, = ft' = 0.03 f; = 180 1b/1n2 2 rah = 0.03 :3 = 180 lb/in = .131.. I L+125 (not over 30% for moment) For shear adjacent to the support use I = 100% Since the cross sectional areas of the beams are symmetrical, the center of gravity of the cross section is on the center line of the cross sectional area. Therefore: e10 = e20 Consequently 51° = $29 Since 51, = IO and 52¢ = .41.. 6lo °20 DETERMINING BEAM DEPTH FOR VARIOUS FLANGE AND WEB THICKNESSES FOR MOMENT 20 foot span Moment, using equivalent uniformly distributed load and one con- centrated load: Movable Concentrated Load = 18000 pounds for Moment = 26000 pounds for Shear. Uniformly Distributed Load = 6H0 pounds per linear foot of Load Lane. Impact Load = {562%6——4 = 3H.5§ Use 30%. 18000 x 1.3 = 23N00 pounds 6h0 x 1.3 = 832 pounds. Influence Line for moment at 1/8 point of span. For l/h point of span: 3-75 5' . 15I For 3/8 point of span: 7.5' 12.5' For 1/2 point of span: 10’ 10' Maximum Moments: For Lane Load: For 1/8 Point: E§:5 I 2-13.+ l1;§_§_2;l2% 532 + 23u00 x 2.19 = 18250 + 21250 2 39500 ft-lbs. For I/M Point: Elia—«3.5+ ' 2 x 1 ) 532 + 23100 x 3.75 = 31200 + 87700 118900 ft-lbs. For 3/8 Point: EE;69 2 7.§_+ n.63 ; 12.5%832 + 23u00 x “.69 3900 + 110000 1h9000 ft-lbs. For 1/2 Point: 50 x 832 + 23h00 x 5 = M1600 + 117000 = 158600 ft-lbs. Maximum Moments: For Truck Load: “000 x 1.3 = 5200 lb. 16000 x 1.3 = 20800 lb. For 1/8 Point: 2.19 x 20800 + 0.u38 x 20800 = 50625 ft-lb. For l/M Point: 3.75 x 20800 = 78000 ft-lb. For 3/8 Point: 0.69 x 20800 = 97750 ft-lb. .For 1/2 Point: 5 x 20800 = 10h000 ft-lb. So use truck load. 1 2 H q. 1.. ., O I v . 1 t . .. . ---. n.11 1 - 1. 1 .1 . -.. ... . . 27.... “wifi Saw“ 1. ....1:..1....uw......6 . 1 1. .. . .- .. . .1... .. .._ . 1 1.. A. A. . . - . . 1 .. .. 4 4 .Iii 1 .1 . . i .1 1.1. 1....- .- 11 v 1 . . 1.1. 1 1 ..1.11 ..v_ _.1 1 .. . ...- .1 1 . «T0. ...1 11.0. L.ovt¢.v . 1 d1 1. 1 . _ i 5 .. . - .- . .. . ,.. . 1 . 1 . . .. .,. 1 . , .. .1 . A ..1 . .+. . l. . . n.1- -1. . . 1. .7 1 n. .. 1a.: .. o .11. . . lilo! l. 7.53...- < 1 _.. _ .4 ..,f .. . 1. 1 . . . ...11. ..¢ 0 ... . . 1 .. 1.4 .,._. .. 1 . N.n. . _ .. 1. .. . 7 1 .0 it n 14‘ LPP 1. 1o .- .1.. c . . a 1 . - ... 1 . . I. 2 . . .1 H.. N.... .axp 1H,HH 1 ”U“. . 1- ”a. ,- . . . . 2+1 .. . . . .n, 1%!!! 1111.07.14 ..m. H... . ..-..- . .. M 1 1. n .11 ‘fu; 26.1... 1‘. ..e > E 1 . 1. .1 .. 1 .1 11. . . .1 . . 1 .1 -.11 3-. 1 .1 1.. A. 1- 1. -. r1. 1 .. - -.. -. . 1? 1.- . 4-. 1 . 4.10... -v T Y - a .io. v .. . .1 t1. . 1- . . v . 1. 1. . . . .+-. 1. ..1.1 1.... - .1 .1... 1. -. 1 n 1 ..1. ...- .1 . 1..14¢v...o. . 1.. 1. .. 1.. 1 1.. a 1 1.1 1-.. . .( .G 1: Z. '01, 1.02 1 OD lacuna :7?va _ zun Exo— kua . 1.. T r;:1.. J .... _ Uo:3A.. . w A . . 5.14... . ..11_ .. ...QAV... A... _ i Pr. . ... . U. .1. A 111.1-1.1.A . -- .I: .3.a - .1. A .M ...-8AA .a... A. ...“..A . c...p..... 5 .lrll. ..”.1.4..t.. .A. V ..O.. .“A. . 1o A A... ”1.1... H11..- 11. - . A .. .u.,DA.1 1 11-1 .....3; . .... .73.. .-..A nu..m1A- 11A. .A... . ....A. .. .r .A.. - - . 1 7 I A, ... A (1 <14): A , A (A W. ..fi. A ......- . --. ....A A. a. - . . A, .A. A . A ... ._ ... . .fl . -. H14. 9 1} ..v . A .. . s - A I-l‘! P A... ...... . n. .. . . . .. 1. . -.. .n 1 .A. .... A 11..- ..A- . . .A...n .. 1 r n .. .. . ..A 1. . In.-- -..-. Am .A T . -..-H. i-.. -. . ... -. 11-. . . . V4100 4 , AfioV 11014 . .- 14111. 1.1..- A 1 1 11. .1 . 7A 1A 1114119 .1 1. . A 14 . ... . . 1.1.11.1.1 .11. .. .1. .49. ..l . - .. ...--1. .A 1A1 .1 virlA A-.Iv 1» A , . 4A. ”1.1.1H1 ... A . . I A....1.- 1(1. 7 1 ...-141.881.-.- .. 1- . . 1 ... 1... I.-. . r... ..- 1. . ...-.1. .... 1. 1 7+..AT . . . 1.- . 11712.1. .A.LL.1- 1.1.4-.. It... . . ...-w .1. . ..11 . A A . . Al . A 1. ..141A r142lH-J . . . A 0081‘ ‘ D161A A V 1» AL . ... A 1.- 1; TA .--.. 1A-: .1L1H TALL .YIA 1 A.ITT-I I Ala-Inf. 1113A. 1.. +1.... 41A. .... . ...-1.1.. «1.1.11 ...... . ,. it: - I I .l. ... A. -71-. 11.11-1111,... .1. .A .-A 7 FL 1 .. 1. _-._,A1A,.1.1.-..... .. . Thwéflra .... - LAT... . 1. . . 1.111.. ....-..-._-,.. - f. . . _. 414.. A.“ +. ITAHAWA ..1 --LTA111HAIATrA -411er 1.111.-. 11?...8 .w-LATT... A..!T. .A1. .A a. 4 A . . ._ .. -. .- .. Jr . . .... AVMJJT Ari A..-r? - ..r 1111111 T141. .- .TAJA. a H17a1- . . A. «14L...- 1 4 . 1 1..A..1A 11. .- . A.. ..A . -A .. ..A . ..A. . - - -. A 1 A... 1117 . . 1 .. .- A... .... A . . .1 A- - mix-fl. 1 - - . - -.A.. . . .. - A fl T A1 1 .A vvvvv W..1 1.1 1AA . 1 - A 1 101 .1A .. v 11 11111 1T1 ... . 1 1 . .1 1 11K.“ 1 .1- 1 1. .. . 1. 1A- 9.... _-. - -, 1 - ..A . .. - . . A-A l. .A A. . 4 _ .. . -. A. For B;1ékf#i .- .....1..-. age. . - 7‘1. ltq 5‘ - . 1 . ‘7 1 . '1 . 1 . n lfor‘ *AAK . . for.3....r.1. .14. \>;ri-—-4— . \ ‘ O ‘V A V .11 1 A 1‘ uuu caTU cvwvuo ..~1+4—_..A._4_ A. A A .AA.AA,, -.., AAA. 1 . 1 A.- H .- .A. H ....... I» - .- 1 A. M - - .A _ m.» \..1-. ... -. - 1? AJ. . 11.4. M. A -.. A. A _. 1111111111111 ‘ 1 Y ... 1 .0 a 1 “AL. AWK' A._1. 1 1 .H1H ..WH U IUFI 1 1 1 . . ...1 .7. A.. mammwtbma 1 1 A. .n ........ 1 H.- .11.. -- A M .A. .nm. - . .1 . . ..A . A. . . . . . .A - A.. A mm 1 n A . - . ...A ..... r. . 1 1 - +711 1 ...... A.. flyifl.. A «A A A 1.1A. 11...#v. 1A-1 A1 1 11 A - . ... 1. 1 .1 11 -- - . 1 - A . .V. 1- 1.1 . - 1 W 1 .1A1 . 1 .1 1H1 1 1 w. ...: .1.IT - - +.f-v:- . :: .i-1 1H1.- r-AAAL -AA. ...-r.A.A.A1-r-.-11-1-..- 1 A A A A .111- . ,. AAAA , 11-1.- 1.1 - I1 1/ . 1 .1. .... «mu-V11 1- - :1.-.11.1111111111.-z1...FAA_.\ ..l’ o 2M As it is shown on page 23 the four curves for both 20 foot span and 30 foot span are plotted. The two areas have a common part, meaning that one cable strength could be used for all the span lengths from 20 feet to 30 feet inclusive. From the table given on page 26 we can select standard cable sizes. These cables are manufactured by the John A. Roebling's Sons Company of Trenton, New Jersey. Use eso = 4 inches Pt M A09“ + .db.) (868 Page 23) ... Equation 1 for 20 foot span: ( §1§) 8so 010 1 + 7"“ o 2 000 = 378E2000 + 2190 = 138000 = u71000 lbs. 1 4- %li 1.69 Equation 3 for 30 foot span: Pt (14 > MET? f“) Y e o ) r1<1 '* £13,510 (2106000 ) ' £81 2190 + O) - “53000 = 325000 lbs. 0.85 ((1 + @371 - 1.Ei Use N - l 1]“ inch cables with Pt = 392000 lb. 325000 < 392000 < M71000 0k. 990 = N inches. a: ’l "41’ If these blocks meet the specifications at their longest and short- 33 est designated span lengths with a certain value of "es " then with the 0 I. same value of eso fications. ' the intermediate span lengths must meet the speci- For the same calculations for the other spans see Appendix. In the following table the selected blocks and their properties are given: .7: t Q ”I 4_ [gs—J Block Span D B t 10 Cable Diem. Pt No. Length in. in. in. in2 and No. 1b. ft. 1 20-30 30 15 9 378 u - 1 1/u' 392000 2 3o—uo 32 16 8 1/2 #00 u - 1 3/8” M70000 3 40.55 no 20 6 1/2 H36 u - 1 7/16" M76000 k 55-75 #9 2n 1/2 7 588 b - 1 5/16' 657000 5 75-100 60 3o 8 832 6 - 1 1/2' 858000 6 100-125 72 36 10 12uo 8 - 1 5.8'' 1250000 ROEBLING PRESTRESSED CONCRETE STRAND 26 Minimum Design Tensioning Diameter Area Ultimate Load Load Strength 0.6 in. 0.215 162 #6000 lb 22500 lb 27000 lb 0.835 in. 0.h09 163 86000 16 R2500 16 51000 lb 0.885 in. 0.u60 in? 97000 16 #8000 16 57000 16 1.0 in. 0.577 1n2 122000 16 60500 16 72000 16 1 1/16 in. 0.663 in? 138000 16 69500 16 8&800 16 1 1/8 in. 0.751 in? 156000 16 79000 16 9 00 16 1 3/16 in. 0.8u3 in 172000 16 88500 16 105000 16 1 1/6 in. 0.931 in? 192000 16 98000 16 116000 16 1 5/16 in. 1.0M in2 212000 16 109500 16 1 0000 16 1 3/8 in. 1.12 in? 232000 16 117500 16 1 000 16 1 7/16 in. 1.2M 162 252000 16 130500 16 155000 16 1 1/2 in. 1.36 in2 276000 16 1u3000 16 170000 16 1 9/16 in. 1.u8 in? 300000 16 155500 16 185000 16 1 5/8 in. 1.60 in? 32u000 16 168000 16 200000 16 .4 I :1" (I) CABLE POSITIONS After determining the cable sizes the positions of the cables in the beams should be determined. The dimension “080" is known for each block, but the position at the ends of the beams is important. The and positions of the cables are controlled by the shear. The shear will be checked after the cable positions are determined. In order to simplify the procedure of assembling the beams the bending of the cables will be at the same point of the span length for the same size of block. e.g. For 20 foot beam if the cable is bent at the l/u point of the span length, it should be bent at the 1/4 points of the span lengths up to 30 feet, since we use the same size of blocks from 20 foot to 30 foot span lengths inclusive. In order to determine the positions of the cables we have to de- termine the top and bottom fiber stresses of the beams at transfer and working conditions at 1/2, 3/8, l/M and 1/8 points of the beams as follows: Block #1 Twenty foot span, top and bottom fibers at the 1/2 point of the span length: Mbd _ 233000 _ _ = 2 $18 2190 1038 lb/in = 106.5 16/1112 it = 392000 110 378 11L_ 11182000 _ 2 n? _ 510 -———2190 678 lb/in "—110 0.85 1 392000 2 = 882 lb in 378 / .,. ’1 -. A: 1/1 [,3 ‘t 1/5’ ‘ 37 ..m 28 I r 6 e 392000 x u x 15 Hit—1Q: ——72-g8—7——— = 716 113/1112 P e e 0.85 x 392000 x h x 15 n t 3° 1° = = 609 16/1n2 Io 32887 At 3/8 point of the span length: M 221000 P 392000 db - __ 2 t . 2 _._ .. _ O, b _ = = 51° 2190 10 6 1 /1n 0 378 1038 lb/in M, 1396000 2 r\P 0.85 x 392000 2 51° 2190 37 / n 10 378 P s s 392000 x h x 15 . t so 10 = = 2 10 32887 716 lb/in “Pt °so e10 0.85 I 392000 x it x 15 - — 2 I0 = 32887 — 609 lb/in At 1/h point of the span length: P 392000 2 M 176500 2 J. = = ...db = = . A0 378 1038 lb/in 81° 2190 80 8 lb/in r\Pt 0.85 x 392000 2 Mw _ 1111500 _ 2 A0 —T-882 1b/in S—1:-—?1§6—- 508 lb/in P e s 392000 J: 1+ x 15 . ...—mt 8° = —————————= 716 16/162 Io 32887 - P . u Y1 t eso e1Q = 0 85 3: 392000 J: x 15 = 609 lb/ina 10 32887 At l/S point of the span: F 392000 M 72500 i _ _ 2 .82 _ = 2 AD - 378 — 1038 lb/in $19 - 2190 33 lb/in “1 the s 29 Y\Pt 0.85 x 392000 ”w 728500 .1;:— ""‘T§fl?""' 882 lb/in Sle 2190 331 1b/1n P e 8 392000 x u x 15 1.3.2.351- .—. 716 115/1112 I ’ 32887 nPt e80 e10 0.85 1: 392000 J: 1+ x 15 Io 32887 = 609 16/1n2 Thirty foot span, top and bottom fibers at the 1/2 point of the span: Pt 392 M 531000 —- = = 2 fl = = ' 2 o 378 1038 lb/in $10 2190 2M2 lb/in P 0.8 2000 2601000 H t = 5 x 39 = 882 1b/in2 ML: _..._—_= 1190 lb/in2 AD 378 51° 2190 P e 9 392000 x u x 15 2 1: so ]Q = = 16 32887 716 lb/in r}? e e 0.85 x‘392000 x u x 15 t so ]Q = . = 2 10 32887 609 lb/in At the 3/8 point of the span: P 392000 Mdb #99000 i: = 2 — = —_—.-= 2 10 378 1038 lb/in 51° 2190 227 lb/in nPt 0.85 1 392000 _ 2 M' _ 269M000 _ 2 —Ao—-— T—— 882 lb/in :-— -2-1-9-O-—- 1225 lb/in P e ‘ 2000 1|» l 2.22.112: iii—:2: 716 16/1n2 10 32887 YIPt 8so 810 = 0-85 x 392000 x u x 15 = 009 1b/in2 I 32887 it til inclusi length special ‘ '111 be F0 30 At the 1]“ pnint of the span: Pt _ 392000 _ 2 Mdb _ 399000 _ 2 I;'- 378 - 1038 lb/in 5;; 2190 182 lb/in 1.1.31 = W: 882 1b/1n2 L4!— = 3163302: 1080 113/1112 378 51° 2190 P e s 392000 x 1+- x 15 t 30 10 = .... = 2 16 32887 716 lb/in nPt e3o 610 0.85 3: 392000 J: M x 15 2 = m = b 1 10 32887 009 l / 11 At the 1/8 point of the span: 51.: 392000 = 1038 lb/in2 Ens = 232000 = 106 16/1n2 A0 378 $1, 2190 NP 0.85 1: 392000 2 M 1162000 ———t=——-——-———-—=8821b1n —'—=——-—-—=6 1111112 10 378 l 516 2190 53 / P e e 392000 J: )4 x 15 t so 10 _ = 2 -——-i;—-——---—-si§§?7--——- 716 1b/in VIP e e 0.85 x 392000 J: 1+ x 15 Io 35537 When block 41 is used for span lengths from 20 feet to 30 feet inclusive, the cable will be bent once at the 1/8 points of the span length as it is shown on page 31. At the bending points of the cables, special blocks will be used as support to the cables. These blocks will be designed after shear is checked for all the span lengths. For the same calculations for other spans see Appendix. I) CHECKING FOR SHEAR In a prestressed concrete beam maximum shear is composed of three elementary shears: 1) 3) 1) Shear due to dead load. 2) Shear due to live load. 3) Shear due to the vertical component of the tension in the cable. Shear due to the dead load is maximum at the ends of the beam and is equal to zero at the middle of the beam. Shear due to the live load is also maximum at the ends of the beam but it is not equal to zero at the middle of the beam due to the fact the live load is movable. Shear due to the vertical component of the tension in the cable is in the opposite direction to the directions of the shears due to dead load and live load and occurs only where the cable is not horizontal. Because of this difference in direction the maximum shear does not necessarily occur at the ends of the beam as in ordinary reinforced concrete beams. I For a certain size of block the shear will be checked only for the sliortest and the longest span lengths for which that particular block 1 8 ‘used. If the shortest and the longest span lengths are safe, natuxa ally the span lengths in between will also be safe. Dead Dead Live 33 Block #1 20 foot span length Ab = 378 in2 (see page 21) Dead load shear at the 1/2 point of the beam: V = 0 Dead load shear at the support: _ 8 x 10 x 1 0 = v _ 1751?"; 3910 lb. Live load shear at the 1]? point of the beam: 21600 10' L - 10' Influence Line ( 0 = - . 16000(1 + 2,75%- 16000 x 1.315 _ 211200 v = 0.5 x 21600 = 10800 lb. 3h Live load shear at the 3/8 point of the beam: 21600 L\ J 7.5' 12.5' Influence Line V = 0.625 x 21600 = 13500 1b. Live load shear at the 1/4 point of the beam: 21600 21500 nu .05.\\_ Influence Line V = 21600( 0.75 + 0.05) = 17250 1b. .~ a . 1‘30! 35 Live load shear at the 1/8 point of the beam: 21600 21600 A lu' V .875 .1 “X 125 2.5' 17.5' Influence Line v = 21600 (0.875 + 0.175) = 22700 lb. 7 Live load shear at the support: 320 21600 luv 20' .1 ' Influence Line V = 32000 + 21600 x 0.3 = 32000 + 6500 = 38500 1b. 1'4- 36 The vertical component of the tension in the cables between the support and the 1/8 point of the beam: Jill Taxi 9 = 1% = 7,5 9: 82° 21+. 1910 Cos e = 0.13216 Cos e x Pt = 392000 x 0.13216 = 51900 lb. For checking shear we use the following formula: 1‘ sh § I where fsh = Allowable shear stress = 180 lb/ine. Vmax = Maximum shear. H = Moment of the half section of the beam on the neutral axis. . Io = Moment of inertia of entire section. t = Thickness of web. Vm; 26250 lb (see page 37) s=9x6x3+9x15x10.5=162+1u20=1532 in}. I0 = 32887 inn (see page 21) t=91n (see pagela) , .Il‘l‘lv“ 71 . 1", .I III: 1 1 1+ 1. 1 *1 1 e I 1 l I I . I l .....r..._ I 1 I I 1 . .——~—_.-._I .4 I I I w I O a I I 9 w I I . ' I Y . 1 .. I I I q I ‘1 I r I v. 1 .1 I 1V . v 4 I I O 14 I. 3. A1 4 ..e 4. I . I 41 ......fi v 16. 1. I I v I V . L . V 1 . . 1J1 0|} ’ 14 I .1l'|.1¢|l_ ‘I‘Iil Ylv ,.0'I11+|1'"I11-Lr1|91101l' 1'11! It'Lwll’l 0'11- '| 1,141 10"."0'11111 iii . _ . . .01 v I 10 I. I AW 11V- I I v I 91 o . .. I D I I 0 . fl I I I I #1 1 e 10 I O. b 1 I I I . ¢ I. I 1 .I .e I v. I .14 01 1‘ . . .9 I .1 v1 1 1 I _ 1 e 1.5 I e V I I I Q o .l I v Q I 19 o I . 7 4 I I . I I AT 0 I I I I 01 I 11 I . i 1 d 1 I ’v. 1 Lv . 1V 5.11 1 f I I . I I 14 Y I I . . _ 1 _ 1 I1w... e I W v 010 < v .1010 O. 6 e I. .I. e . 1 I I e I 4 I o I I. I I O I e A In. .4 e .01 + '1. I 1 . e I I A 9 . _ . . 1 * 1 A Q I e . . I I o I a I 1 I I .-.-aII-——~-4 .>‘0--—Q—-. jl—g ' . ‘v 1 0 0 I —.¢——o'—..YI— 9 .1w.‘ 7 . I e I 4 w . . . I .J ? I .I 1 1H. v t O I? 9 e I I I 1. ... a I .I I . I _ . . . H _ . H .. III"... 4 v 14111} 0 11111 1*. 1+ .IiAIIOlL fitti 6.11 e r } +111“.!'IIIL~.D+I§|II ’1 — I I t a . I . I 11+ I I1..lv . I . 1 I .1 . I r I. . . . A . I . M I I . . 1 I M I . Af14 1 I a . v . Av . I . . I. . . 1 Y I I I I . . A I v I I I I I I I I ~ I v11 I I . . I I . W. . e, ".I A .1 I I: alw 1. 1 I ¢ I .I I .H _ _ _ _ I . o 9 e I III 14 e I e I I I v . Y 11 I 1w I a I W I I I I * 1 f I I . I I Av I 011 I .0 . 1 r I L 1 + . . . . I 0 t I O 011‘ I I I I I '1 I e I v I v 6 1 I I f. Q I I. 15 . I . I . A t 1'. 1 I. M . I v 1 .4 I I a. 1 1 1 . 1 11, 11 1 4 1 a 4 1 1 01. 1 I 101 411 1 11-31.111.1r1111- ... .11. , 1 1 _ a . . w #1 2'11? 1I 0 A. J I II I 1‘1 I V I I I + I E1 r e11 v I I I. 1v A . I1 e 4 1 I 1‘ I w 1? . I1 I v I I .I V I91 141 I 19 1 I. r . . I“ I I 1 . . _ 1 1 _ _ .. v f t- 6 I v1 .1 I . . I e . e . Aw I1 e .1 I 1l+. I11"? 0 1.1101 f .1 I e I if e I . * . 1 I . D I i I I e . V I o I o I I . I . . v. . . 1 . _ _ _ _ 1' f I . .v I I I . 1 I . . e. 1A I I O1 v I 1. 0 1A T. o. 19 . . I 1. b . s T. I e . A e A . I1 Y +1 I 1o I o I . w . 1 I m I . . A v... . I I a 1 . 1T I I I I1 It ‘-I.1 I Ar 4 141. I I1. I I 1 I v . . . I +111 I . Av . I . V I 1 . O . . * . 1 . A . I I . ‘ LL 1n 1 1 . 111 L LI T TIIQI. 4‘ r {I r|b1l|1 A1 I... 1" .1’11';14H‘?11.1lr141141.jull'l1.$+IIDII 111A} IVIII I! . I A 1 1 1 . 011-1 4 I I I e I 9111?. 1". 7110 I I v 1 V I I . V v . e I a . V I I I I . p 1 I I I , 6 I 1a.. I Q1 1 _ v I a . 1 _ A . _ r114 01 1r I v . IOI «1 .9 T r-.. O. f 0 II 1o ' ATJ I I .0 .. v I . w I 11% k . I IS 1.. I o u e I 4 . . 1 I I 1 I1 Afi I e . a I . 1 _ . 1 _ . 'T‘l.?.1f L14 0 v. e A 01.0 I .01 '1’L1r1AY‘I . v I L1 . . I I f 1’ I e I 4 I1I19 11‘ e 10 * 019 I 1 I 0 a 111* 0 I 4 M I . I _ . . _ _ . . 1 . v o . Y.+1e 1” V1 .01 I. a 9 *1 .911I v1.1?11I I . I I I I. H o I 6 I I Afi I . . . w . . Y t 1 1 t .I r _ .. O r- I . v I 4 e I r v I . . _ . . 1 11 A L. 1. 1 0 1|? I L1 [ 1 I r 1 4 4 a . 4 1 41 1 114' .1 4 T 4 4 1 4 . . . . a. . . o a 1 A fi & e I V e. 0111. I I I I I 0 v 1 v I I . o H I II . r o e . . q I 6 I1F1Ar1 . + I I v I I I . 1 I o I 1 + I 15 I . I a I I ,. _ . _ , . 9|... '1‘ O I .o I » e I I 6 Q-I O A t I 1 9 O I I 10 I I I 4 1 O . Q 1 1 4 I 4 0 I1 I l.‘ I I e o 7 . e I I _ _ _ + 1 1 1 1 1 _ 1 1 T r11 1. .. I I . 1.: VIII I- _.-|. I .. a I . . .429.-. . t A. I r 1 . . . r ., . ..#. v1~ . . . . .Afi . . 1I .. 1 . . . . . . I . . A 1 . . _ . a ‘1 1.0 e ” I1. I I b I1 v v w t e1 t a1 w I1v1 I .9. v. I 1911‘ t I I 4 * 01.4 I. I1. I e 1’ . . I I . . .4. .e I .I l _ _ A 17 . 1 . 1 1 _ 1 L _ . v1.01. 1 L 1 1 1 1 1 1 141+ [11 r [4 b 1111.11. Ir111 01.9.1 Il'Ilillellll'f 11+ 1 1‘ "FOIITLI A 1 r _ , . , I... t . I 1'1? 11 I 1 I v V O 1b . e1 v I I u w.I I I I 1 01 I II I 1.1.600 . I I I 1. I .I. e I I I I I I I . _ 1 ofi O. = r1 A . . a I. . . I fl . e T. 11. III .. I O . I . I II . 0 .14 I I 1 1o. . f4 f1 1 101 1 61 I . V1 111 1, . v. . I I I . I . . _ , 11 1 v 0 o 9 4 .1 . .y o v 1 v. e 0 0 Ar 5 v 0 0 AT 0 .e I w . Y1: 0 e d .0. 9 a e I . 199 v 1 l B O C I e I O O * I II I Aw . I . I w . 19 I . .1 e1 '1 I I w I I .I . A I v I I. .Y I I I v I . . a e . a I I 1 d I .14 9 k1 II I I 41 I I . Q . . . A 1 V O 1 v . I .V 1 - I 1 1 r .1 a 1 1 1.1 J 111 1 11‘ 11 a 4 fl .1 41 14 III 1.4 4 11 I v1 C. I .w e I .I e f I Y I e I O I v e I e. I g 0 o I I f. 1I v I I o I A11 . hT1 e .m I I I e I t . O a. v.1 11 A I lj ! I I I ‘ I e . 1 . A II I 1'1. 1I. 0 I I I. 01 I Av 1 I 0 I f 0 a L I I I O I 1A 01I I 10 I I .9 I .I 1t 1 .1- f I I t Lv I I O I? I I I I I I . 1 w _. _1 . C 1 _ . _ 1 #1 I. I I..A1.+ . 6 e I fi I I t I1? I It I v Ar I e I wl 9 I I I I I I 11 .1 1 1 J 9 1. I 1. 9 e A I .1 I. I a I .0 .e i W 1» 1 1.0 m I v I . I I .I. a e I 1 I .T . e . 1 e . 1 1 . 1 . 1 _ 1 1 _ e I I. 0 w I A 0. It I 0 * Aw I I e I 4 I I .11 iv . N “V? T 0 I e. I I I o 1. V 0 e h I V . I1 I1‘ I 1.. v I. 1 'TT >11I I 1. . I I .1|I e A e P I I . I . I . o 1 r _ 1 Ti‘i‘flli' 11 1 r 1» 1 >[1 hafi}0‘*1l§.41'l .1 Av1.‘1|+l+q|.e|19..l'l'o'1471‘.I1.I*'-1I.41‘1|A 1 1 . . . v . 1v . I a O . I 1I1Aw. V O I I 1v I 01 I I 11 t r . I. 9 I 0 ~10 I 1 B.~ .10.. I I 1+ 4 I .. . . . I u . I . I ,. . I I H . 1 . _ o I I t .A 41 I 0 IA A w. I II '11:! I Av I v To a . I I. * . I I.&A .‘1 0'0 1 + I 1. I . . I .0 .1 . I I . A I . I1 I. I . I 1 . 1 711 I I 1 e V v e I I I Y I. 6 I I v 7 .6 911’ v V1 I V I a I 9 I -9 Y 1. v e + I I f I I I I I a I w I I .* I . I . .. 1 . v t . v 11 I e e 1: t v 1o b I1 V r 6 I e1 0 T I 1 I . I I e .I v I I Q 1. a I t I I I I. I I I I I I . . , A a . r p 4 11 4 141 4 4 i 11 1 .1 4 4 1 1.1 1 1 . f 1. _ o 1 I I 1 e I I I 1 to. Q I 1'1 I I I I I O 4 e e .9 v 14 lo I .A I e I I & 4 I 4 I I I I I ~ 0 . I I A I . I I a _ m 1 e . I . Y I . I I I I I I I I I O v. v .. w 0 .6I . I e . 4 a . o 014 a I A v t u e .I V a V b I I AV 9 O 1'1 I I . I O . o file: OI.I lo '1 I1” I. Q . .4 . I I . r10. I v I v C 6 I I .. 1. . _ 1 1.1111101 .1 4’ 1 1 a 11. I I 51 v I e . A I I I1 I W I I . I 1. . 1. e .10 I I . . . V11. Ael.e v .I.I I A. I e e I #1 I I I I I . I 11 a V 4 g Y 0" I I l I I. u .‘lw '13 Q 4 To 0 v .e v I 1 o 191? v1 0111‘ > e w _ 1 l . o I A r W 1I 0 .111? AV I I! 111% 101'? I O1 I e 71’... I I . . 1 , . } Ir b ' r F 0 F 4 1 1 4 . J1 i 4 I i 4 14 1 41M]. ...... I I fiel 1'. I Av 5,1I L u T... e 1‘ F114 1 1 \ 1 . .1 11* . . 1 11.41.1911A11111A . 1 t 1+ I .11. F ..v 4 11.7111 411 #11 III 1rI 1+1}. oil 9... 1. 1011+. . . ... . I. I L. 11.11 T . — a A L . _ 1 1 - I. .T. 0 Av .1 1e. v I I I e 1. - 111+. J v w 41 I y .1 . 41 4. 1 >1 r . 1 1 1 1 11 I. ... J _ 1 . WIIP ’1. e 1.1 I e T I A 0 VI I v I I I A I O 611 . .1 1“ 1 T 011 V L .11. I I 1 A 9 I I -I I v I Q I TI 1? .1 .1l _ 1 Incl! >1 I b e «IIL. w . I 01A‘ I I I 0 I I Q I I c 71 _ d I k _ . 1 Y|I1\f.1.01 I I O 1 ‘1 I *1 I 1.IIA I II 4 v r a I I 01 e . _ 1 1 11. I e 1 1 1 I02. ...-HI. 0. IO. .( F 2 Z.IO(3 38 fan = gig—Egg = 1111 111/1112 0.1:. For the same calculations for the other spans see Appendix. len mak BLOCK DIMENSIONS Intermediate Block Until this point the block sizes are determined and checked. The lengths of these blocks are not governed by anything. Therefore, to make it practical we will use a length of 1.5 feet. Block #1 ‘2 M6 —r‘uZT 'T-us ..oi For the other blocks see Appendix. Blocks for the Bending Points of the Gables The cables for span lengths from 20 feet to 30 feet with block #1 are bent once at the 1/8 point of the span. The rest of the span lengths, that is, from 30 feet to 125 feet using five different kinds of blocks have cables bent twice. Therefore, we have to have eleven different kinds of special blocks to be placed at the bending points of the cables: For block #1 from 20 feet to 30 feet: ”61 I! 9" I L»! C; Round to Prevent Chipping T TA +—1/8 point of beam length Block #7 The lengths of these blocks will be made one foot three inches only, to provide possibility to build beams at different lengths within 20 feet and 30 feet. For the blocks for the bending points of the cables of the other span lengths see Appendix. END BLOCKS 16 1/2" 13 1 " 2 1/4" Z; l 7&3 For the other End Blocks see Appendix. Block #18 Ml To be used with Block #1 uz In designing the end blocks and the blocks to be used at the bend- ing points of the cables the following items had to be considered. The design of end blocks is still in experimental stage. That is, there is no particular procedure to design these blocks. The end blocks are determined from experience. This conclusion is arrived after read- ing articles about this matter and a talk with Dr. P. Abeles of England. The design of the blocks to be used at the bending points of the cables is very simple. These blocks should have the required dimensions to give the required “ego” value for the beams these blocks are designed for. On the following page the details and the dimensions of the threaded sockets for bridge strands by John A. Roebling's Sons Co. are given. 1+3 THREADED SOCKETS FOR BRIDGE STRANDS £3. \J ! III ”in m i I 1". SOCKETS HAY BE OBTAINED WITH EXTERNAL THREAD, INTERNAL THREAD OR EXTERNAL AND INTERNAL THREADS 1+1!- Somaoh .82 5020.5. .ueoapacnon omgnm ..oo meow uhfigeom .4 snobs :\m H :\H w :\m n- m :\m m w\m m m\H m w\~ H m mH\m :\n mH mH\H oH .mH\HH H mH\HH H w :\m m- m w\m m :\H m :\m m wH\MH H :\m N mH\m w\H HH mH\HH m .w\m H mH\HH H w\H H w\m mnw\~ N N\H m w\H m w\m m \m H w\m N mH\m mH\MH NH N\H m gmH\m H mH\HH H w\m a w\m H.:\m N :\H m w\~ : m\m m mH HH H N\H N mH\m mH\m NH m .N\H H oH\m H w\H a :\H m-m\m N m m\m : w\H m w\m H N\H N mH\m NH :\H w .mH\N H mH\m H w\~ w m.N\H N :\H : w\m : w\H : mH\m H N\H N wH\m mH\HH HH N\H w =m\m H mH\m H mH\HH o :\m N.N\H N mH\m : mH\m : mH\HH : N\H H :\H N mH\m :\H HH :\H w .mH\m H N\H H w\m o w\m N.:\H N w\H : :\m m w\m : ©H\~ H mH\H N mH\m :\m OH :\H w .:\H H N\H H ”\H m w\m Num\H N m\H : :\m m :\H : m\m H mH\m N mH\m HH :\H w .oH\m H m\m H w\~ m w\m N-w\H N w\~ m N\H m : mH\m H :\m H mH\m :\m OH :\H w =m\H H w\m H wH\HH m :\H N- N :\m m w\m m w\H m :\H H :\m H QH\m :\m OH :\H w .mH\H H mH\m H mH\m m w\H H.:\m H w\m m m N\H m QH\H H w\~ H mH\m wxa oH :\H w =H nz I! u I = 25 (3.uv - 10.8Y2 + 15.213 - 81“) °<= 12152 = 3.uY - 10.8Y2 + 15.213 - 81“ so} o;h e.= °20 = 1 SJ i‘: s 55 Q = 53325.31= 313.33 2 C< A M = D __ ssume QB 11 185000 x 12 = 313.33 x 0,1153 EL”? - lo-gYi + 15.2173 - 8T 3 (Y - 3.17512 + 11.14715 - 2.335513) Y D A, 0.05 36.5 113.2 0.1 30.5 1h8.8 0.15 28.2 179.0 0.2 27.1 205.5 0.25 26.5 228.5 0.3 26.2 2u7 0.h 26.0 266 0.5 25.9 268 Assume: t=YDmm3=06D A.) 21320: - Y2) I u D . 0 f5 (hr - 1212 + 16Y5 - 81“) _ 1216 _ MY - 12?2 + 1613 - 81“ x' W” 0.5 D3=___;110—_.____? Y - 312 + uy5 - 2 Y D A0 0.05 3u.5 113.2 0.1 28.8 15h.5 0.15 26.5 179.0 0.2 25.h 206.5 0.25 2u.7 229.0 0.3 eu.u 250.0 0.4 2u.2 281.0 0.5 2h.1 290.0 '3.- Assume: t = YD and B = 0.6D 1)” 2 3 l: Io = ifigu.6v _ 13.2Y + 16.8Y - SY ) g, = l1.61 - 13.2?2 + 16.8Y3 - 81!“ D3 _ 1551 ’ Y - 2.865Y2 + 3.65Y3 - 1.7ui“ 10 = 2D2(1.1Y - 12) Y D A0 0.05 32.8 113 0.1 27.u 150 0.15 2501 179.5 0.2 2u.0 207.5 0.25 23.3 231 0.3 23.0 25h 0.u 22.8 291 0.5 22.7 309 56 57 Thirty-five Foot Span = ___59___.= Impact Load 125 + 35 30% Influence line for moment at 1/8 point of span: 3»83 /\ . I .0... | For 1/h point of span: 6.56 1‘ 8.75' 26.25' ;J [i For 3/8 point of span: 8.2 L/\j If V 58 For 1/2 point of span: Maximum moments: “000 x 1.3 = 5200 lb. 16000 x 1.3 = 20800 1b. 3.83 x 20800 + 2.08 x 20800 + 0.328 x 5200 = 79500 + #3200 + 1705 = 12h405 6.56 x 20800 + 3.06 x 20800 = 63600 + 136500 = 200100 8.2 x 20800 + 2.86 x 20800 = 59u00 + 170800 = 230200 8.75 x 20800 1,1.75 x 20800 + 1.75 x 5200 = 36u00 + 9100 + 182000 = 227500 Use a moment of 231000 ft-lb. 1. Assume: t=YDandB=O.uD ‘6 = D?(l.8Y - 2Y2) u , I ¥§(3.ur — 10.8Y2 + 15.2?5 - 81“) O = 1210 _ 3.nY - 10.8!2 + 15.213 - 81“ 803 ‘ 0;u o< "Iv “a?“ «fi—u—L‘ "'1. 1'.) ...I L e20 E: = D72 Y‘f + f _ Q= ct tw - 313.33 __:‘___..__ _ 2 cx “w-“hn-Q“ 7? 2 1x Assume Mw=QBD ..é. 2 3 _ 231000 x 12 = 313.33 x 0,1,93E3AY - 10.31.11; + 15.2? 81“; 260 D3 = L o (Y - 3.175?‘ + 11.11713 - 2.3551”) Y D A0 0.05 39.)4 132 0.1 33.0 1714.2 0-15 30.“ 208 0.2 29.1 237 0.25 28.5 261+ 0'} 2802 286.5 0.14 28.0 308. 0-5 27.9 311 Assume : t=YDandB=0.5D A, = 211%? - v2) 11 Io = £12411! - 121?2 + 16373 - 311*) o, = 1210 = MY - 121'2 + 161:3 - 81“ 1303 0.5 3 _ 2210 D..——-—-————-—-—-—-— Y - 312+ 1:13- 211+ ...—i}. -_‘_ — fl. “' - .- '.-“ y,..-w “...-aw '5_Hm. - ._—-—w._w _ _...-_, "3' _. 3. Y n 10 0.05 37.1 130.8 0.1 31.0 173 0.15 28.5 207 0.2 27.2 236.5 0.25 26.6 265.5 0.3 26.3 290 0.8 26.1 327 0.5 26.0 338 Assume: t = YD and B = 0.6D 6 IO = ¥5(u.6v - 13.2!2 + 16.813 - 8!”) cp = &;_g - 13.2?2 + 16.8Y3 - 8v” .6 113 = 193—2 - Y - 2.865Y2 + 3.65Y5 — 1.7m?E Ab = 2D2(1.1Y - 12) Y n 10 0.05 35.u 131.5 0.1 29.5 17% 0.15 27.1 209 0.2 25.8 239.5 0.25 25.1 268 0.3 2u.8 295 0.fl 2n.5 338.5 0.5 25.5 360 61 Forty Foot Span - 0 = Impact Load — i2§§;—EO 30% Influence line for moment at 1/8 point of span: h.37 aJ , For l/N point of span: For 3/8 point of span: 15' 25' ,J 62 For 1/2 POint of span; 10 1L_'_ Maximum moments: N000 x 1.3 5200 lb. 1600 x 1-3 20800 1b. n.37 x 20800-+ 2.62 x 20800 + 0.87M x 5200 = 91000 + 5u500 + #530 = 150030 7.5 x 20800 + u x 20800 + 0.5 x 5200 = 83200 + 156000 + 2600 = 2&1800 9.35 x 20800 + n.11 x 20800 + 0.622 x 5200 = 85500 + 195500 + 3235 = 283235 10 x 20800 + 3 x 5200 + 20800 = 20800 + 62u00 + 15600 = 286000 Use a moment of 286000 ft-lb. 1. Assume: ‘ = YD and B 0.uD ‘6 = D2(1.8Y - 212) I0 = ggl3-“Y - 10.8Y2 + 15,gy3 _ 8Yu) CX: 8.19. = 3°uY - 10.8Y2 + 15,2!3 _ SYN» BD3 0.h L..‘..._,I -. 53 W2— Q = r\fc‘t + ft! = 313.33 2 Mw-\M/I,,=QBD % L‘— 6 Assume M' = QBDe 3 _ I. 286000 x 12 = 313.33 x 0.1193E3-W - 108:2 + 15.21 8‘! g 3 = 1.220 D (Y - 3.1751231- u.u7f5 - 2.3551'”) *4 \11 U1 0 Wrwmwwwo m 00000000 I. . oooor-‘rumm u 00.0 OHmmmmzm m N m 0 .n \JJWWWMWW 42’ 2. Assume: t = YD and B = 0.5D A, 2020! - '12) I6 f—Eflr _ 121:2 + 1613 - 8!“) q: 121, = u? - 1212 + 16Y3 — 811’ Bfi 06 D3= 2160 Y — 3! + hr} _ 2y .4 U U1 sees. a U'IU'I OOOOOOOO L11:\JJNNHHO Owko I NNN WWW 0100061008 . I I I . ot—uumu mwxo t = YD and B = 0.6D I, = ¥g(u.6r - 13.2?2 + 16.813 - 81“) c. = “.6! - 13.2226: 16.8Y3 - 88“ o , = 2380 - Y - 2.865127+ 3.65Y3 - 1.71:3 '4 U1 noose \J'IU" c><3<3<3 c>k3<3<3 U1JrUJflJhJP‘hMO 38.3 31.6 29.0 27.8 27.0 26.7 26.5 26.h Forty-five Foot Span Impact Load = I§%9;rfi5-= 29.h% Influence line for moment at 1/8 point of span: 11.92 / For l/M point of span: 7 11.2 ' 7— For 3/8 point of span: 39-375' 33-75' 10.55 \\ 1 JL____ L369 28.1' "- ‘4‘" ' —~.ne- — 66 For 1/2 point of span: 11.25 /\ . ...... I Maximum moments: 16000 x 1.29M = 20700 4.92 x 20700 + 3.56 x 20700 + 1.621 x 5175 = 73600 + 105500 + 6u70 = 185570 8.u2 x 20700 + “.93 x 20700 + 1.h35 x 5175 = 102000 + 176100 + 7&20 = 283520 10.55 x 20700 + 5.29 x 20700 + 1.81 x 5175 = 109200 + 218000 + 9370 = 336570 11.25 x 20700 + n.25 x 20700 + u.25 x 5175 = 233000 + 88000 1 22000 = 343000 Use a moment of 343000 ft-lb. 1. Assume: t=YDandB=0J+D A0 = 02(1.8Y - 2Y2)- I, = ¥;(3.AY - 10.8Y2 + 15.2?3 - SYM) 0,: 1210 = 3.61 _ 10.8Y2 + 15.2!3 — 81'1+ BD3 0.h 67 8,: 620 = 1 572 Q = fléliu = 313.33 M1v - Rudb = Q1392 5. 8 Assume “w = QBD2 :- 6 3.111 - 10.81: + 15.2Y3 - 815) 311.3000 x 12 = 313.33 x 0.1m3 E D3 = 3860 (Y - 3.175172 + 11.1.1713 - 2.3559”) Y D A, 0.05 115 172.2 0.1 37.7 227.5 0.15 35.1 277 0.2 33.1: 312.5 0.25 32.6 316-5 003 3203 375-5 0.1: 32.1 1109 0.5 32.0 1:10 Assume: t = YD and s = 0.5D 1 = 202(1 .. 12) 1 = 11.32461 .. 121:2 + 16Y3 .81“) 121, = 111' - 121'2 + 1633- 8?" DD3 0.5 3: 3280 D Y-3Y2+1+Y3-2Y cg: L___.. .1...1_ Y._ D A, 0.05 h2.5 171.5 0.1 35.5 227 0.15 32.7 272.5 0.2 31.2 311.5 0.25 30.u 3M6 0.3 30.1 380 o.u 29.9 u28 0.5 29.8 nun 3. Assume: t = YD and B = 0.6D I, = 22(u.6r - 13.2?2 + 16.8Y3 - 8v“) ax: 14.6Y - 13.212 + 16.813 .. 818* 0.6' Y - 2.865Y2‘+ 3.65!3 - 1.7uiE A, = 2D9(1.1Y - 12) Y D 1b 0.05 60.5 172.5 0.1 33.5 22h.5 0.15 30.9 262 0.2 29.5 313 0025 28'? 350 0.3 28.“ 387 0. 28.2 0.5 28.1 3?3 68 69 Fifty Foot Span 1 1:1. d=—5_°__=28.5 mpac oa 125+50 .% Influence line for moment at 1/8 point of span: For 1/1+ point of span: 1; L12» - 37.5' For 3/8 point of spam 70 For 1].? point of span: Maximum moments: 8000 x 1.285 = 51h0 1b. 16000 x 1.285 = 20550 1b. 5.u7 x 20550 + 3.72 x 20550 + 1.97 x 51h0 = 76uoo + 112h00 + 10120 = 198920 9.38 x 20550 + 5.88 x 20550 + 2.375 x 51u0 = 120900 + 192800 4 12200 = 325900 11.71 x 20550 + 6.87 x 20550 + 2.97 x 51u0 = 290500 + 133000 + 15270 = 388770 12.5 x 20550 + 5.5 x 20550 + 5.5 x 51ho = 256500 + 113000 + 28300 = 397800 Use a moment of 398000 ft-lb. 1 . Assume: t = YD and B = o.hn 10 = 02(1. SY - 2??) 0:25 (3. u! - 10. 8Y2 + 15. 2Y3 - 8!“) c< g 1210 = 3.ur - 10.822 + 15.223 - 81“ BD o.h 71 5 = 620 :1 575 Q = nfct + ftw = 313.33 M, - vwdb = Q3112 3%.. Assume M. = QBDZ 3(5— _ . (my - 10.8Y2 + 15.213 -43) 2 - 313.33 x 0~”D3 ( 0.9 ) 398000 J: 1 (Y - 3.175?2 + 9.97Y3 _ 2.3551”) Y n 10 0.05 97.1 188.5 0.1 39.9 298.5 0.15 36.9 298 0.2 39.8 339 0.25 39.1 378 0.3 33.8 911 0. 33.6 996 0-5 33. ‘ 999 Assume: t = YD and B = 0.50 A0 = 202(1 — Ya) 1; IO = ¥§(9Y - 1272 f 1673 - 8?“) = 1210 = 9? - 12!2 + 16Y3 _ 88“ 303 0-5 810 D3 - Y - 3Y2 + 973 - 2;E OK 3- 72 Y D 10 0.05 99.5 188.5 0.1 37.2 299 0.15 39.2 ‘ 298 0.2 32.7 .392 0.25 31-8 379.5 0.3 31-5 417 0.9 31.3 970 0.5 31.2 986 Assume: t = YD and B = 0.6D 9 IO = ¥E(9.6Y - 13.2Y2 + 16.8Y3 - 8Y“) °‘_ 9.6Y - 13.2Y2 + 16.8Y3 - 8Y“ — .6 83 = ————713——-——--:' 2° Y - 2.865Y + 3.65Y3 — 1.79Y A0 = 2D?(1.1Y - Y2) Y D 10 0.05 92.5 189.5 0.1 35.9 251 0.15 32.9 299 0.2 31.0 396 0.25 30.1 385 0.3 29.8 926 0.9 29.6 991 0.5 29.5 522 73 Fifty-five Foot Span Impact Load = = 27.8% JXL____ 125+55 Influence line for moment at 1/8 point of span: Ch I 31 6.875' I - - 98.125' _J For 1/9 point of span: For 3/8 point of span: 12.9 L: 20.6' 3 39.9' 79 For 1/2 point of span: 13-75 L 27.5' 27.5' J Maximum moments: "-000 x 1.278 = 5110 113. 16000 x 1.278 = 2011.50 11). 6.01 x 20950 + 9.26 x 20950 + 2.515 x 5110 = 87000 + 123000 + 12850 = 222850 10.3 x 20950 + 6.8 x 20950 + 3.305 x 5110 = 210500 + 139000 + 16900 = 366900 12.9 x 20950 + 7.69 x 20950 + 9.13 x 5110 = 263500 -+ 156000 + 21150 = 990650 13.75 x 20950 + 6.75 x 20950 + 6.75 x 5110 = 281000 + 138000 + 34500 = 453500 Use a moment of 959000 ft-lb. 1- - Assume: t=YDendD=0.9D 10 = D2(1.8Y - 212) 1; I0 = ¥§(3.9Y - 10.8Y2 + 15.2Y3 - 81'“) 7x = 1210 = 3.9Y - 10.8Y2 + 15.213 - 81'“ 75 53” ll E: H I 0,: V1fcté+ ft! = 313.33 Mr -'W.Mdb = QBD2.%%— 2 04 A M = ...—... ssume , QED E: 959000 x 12 = 313.33 x 0.9DBE3LuY -19685? + 15-2Y3 - BY“; 3= _ 5100 D (Y - 3.175?“ 9.975 - 2355?“) Y D 10 0.05 99.2 205.5 0.1 91.3 266 0.15 38 325 0.2 36.5 372.5 0-25 35.7 919 0.3 35.9 951 0. 35.2 990 0.5 35.1 993 2 - Assume: t=YDandB=0.5D A0 = 2D2(Y — Y2) u = D _ 2 — 3 _ 9 o i§(9Y 12Y + 16Y 8Y ) (X: 121., = (9r .. 12Y2 + 16Y3 - 81'“) BS3 ( 0.5 3 9300 D3 = u Y - 3Y2 + 9Y3 - 2? 3o Y D .10 0.05 96.5 205.5 0.1 38.8 271 0.15 35.6 323 0.2 39.1 376 0.25 33.1 911 0.3 32.8 452 0.9 32.6 511 0-5 32.5 532 Assume: *- = YD and B = 0.61) 10 = £_:(9.6Y - 13.2Y2 + 16.8Y3 - 8Y”) Q( = 9. Y - 13.212 + 16.8Y3 - 81V" 0.6 D3 = 3180 Y - 2.865Y2 + 3.65Y3 - 1.79Y“ Y D 10 0.05 99.9 207 0.1 37.0 279 0.15 33-9 327.5 0-2 333-3 375-5 0.25 31.9 919 0.3 31.1 969 0. 30.9 539 0.5 30.8 569 76 Sixty-five Foot Span - O _ ' Impact Load 125 + 65 - 26.3% Influence line for moment at 1/8 point of span: 8.125' I 56.875' _1 For 1/9 point of span: V7 16.2 ' 1+8. ' For 3/8 point of span: 14.0.6 ' 77 78 For 1/2 point of span: .25 Maximum Moment: 4000 x 1.263 = 50501b. 16000 x 1.263 = 202001b. 7.1 x 20200 + 5.35 x 20200 + 3.61 x 5050 = 108000 + 193500 + 18250 = 209750 12.2 x 20200 + 8.68 x 20200 + 5.18 x 5050 = 246500 + 175500 + 26200 = “#8200 15.2 x 20200 + 9.98 x 20200 + 6.96 x 5050 = 307000 + 201500 + 32650 = 591150 16.25 x 20200 + 9.25 x 20200 + 9.25 x 5050 = 328000 + 187000 + 96750 = 561750 Use a moment of 562000 ft-lb. 1 . Assume: t = YD and B = 0.4D 1° = 02(1.8Y - 212) I0 = 12;!3.9Y — 10.8Y2 + 15.2Y3 _ 8Y”) 07: 1210 = 3.9Y - 10.8Y2 + 15.2Y3 - 817“ BD3 0.9 79 - 920 = EL- 575' 1 Q = 3%1121 = 313.33 MI ' Y1 “db = Q3132 35" 2 ax Assume I": QED :- : 3(339Y - 10.8Y2 + 15.2Y3 - 8Y“) 562000 J: 12 313.33 x 0.11-D ( '1‘ j D3 = 6310 (Y - 3.175Y2 + 9.97Y3 - 2.355Y“) Y D Ab 0-05 53 239 0.1 99.9 315 0.15 90.8 379.5 0.2 39.2 930 0.25 38.3 976 0.3 38.0 520 0.9 37.8 566 0.5 37.7 569 Assume: t = YD and B = 0.5D A0 = 2D2(Y - Y2) H II 25(9Y - 12Y2 + 16Y3 - BY“) _ 1§gg_= (9Y - 12Y2 + 16Y5 _ 8Y“) BD3 ( 0.5 —) 93 = .......Jifi¥l..._ Y - 3Y2 + 9Y3 -758: 80 Y D Ab 0.05 50 237 0.1 91.6 311 0.15 38.2 372 0.2 36.6 928 0.25 35.6 975 0.3 35.3 529 0.9 35-1 591 0.5 35.0 612 3. Assume: t = YD and B = 0.6D Io = ¥;(9.6Y - 13.2Y2 + 16.8Y3 - 8Y“) = 9.6Y — 1 .2Y2 + 16.8Y3 - 8Y“ 6" m%“""m‘ 3 ___V_ 9680 _ D ’ Y - 2.865Y2 + 3.65Y3 - 1.79Yu 10 = 2D2(1.1Y - Y2) Y D 10 ‘1 0.05 97.7 239 0 1 39.7 315 0.15 36.9 378 0.2 35.0 991 0.25 33.8 986 0.3 33.5 539 0.9 33.3 621 0.5 33.2 661 81 Seventy-five Foot Span =l~= Impact Load 125 + 75 25% Influence line for moment at 1/8 point of span: 8.2 /\ _J 1 For 1]“ point of span: 19.08 -L____ L8.75' A 56.25' For 3/8 point of span: . |l| liIlrJIIIil For 1/2 point of span: 1 8.75 82 /\ L 37.5' Maximum moment: L1000 x 1.25 = 5000 111. 16000 x 1.25 = 20000 111. 37.5' J 8.2 x 20000 + 6.05 x 20000 + “.7 x 5000 = 160000 + 129000 + 23500 = 316500 19.08 x 20000 + 10.58 x 20000 + 7.05 x 5000 = 281500 + 211500 + 35300 = 528300 17.58 x 20000 + 12.31 x 20000 + 8.81 x 5000 = 351500 + 296500 + 99100 = 632100 18.75 x 20000 + 11.75 x 20000 + 11.75 x 5000 = 375000 + 235000 Use a moment of 669000 ft-lb. 1 . Assume: t = YD and D = 0.9D .10 = D2(1.8Y - 2Y2) + 53750 = 603750 IO = ¥g(3th - 10.8Y2 + 15.2?3 _ SYM) I 2 3 9 o<= 1216 = 3.91? - 10.8Y + 15.2Y - 811 BD3 0.9 33 _°20_ 6-175—1 Q = flgtgiia= 313.33 ”I ' nfldb = QBD2 i. 8 Assume M" = QED? % 669000 x 12 = 313.33 x 0.9D3E319Y - 10.?2 + 15.2Y3 - 8Y“; D3 = 7500 (Y - 3-175Y2 + 9.97173 - 2.35517”) Y D A0 0-05 56 266.5 0.1 97 353.5 0.15 93.2 920 0.2 91.9 981 0.3 90.3 589 005 140.0 6% 2. Assume: t=YDandB=o.5D ‘o = 2D3(Y - Y?) 11 {la-(91! - 121!2 + 1623 . 3y“) I0 0‘: 1210 = (9r - 121‘2 + 16?} -57”) BD3 ( 0.5 “) _ 60 D3‘Y-3?+9Y3-2?3 *4 A U1 oeeoee mu: OOOOOOOO WFWIUNHHO 269.5 3N9 918 ”79 533 669 689 t = YD and B = 0.6D 10 = $9.6Y - 13.2Y2 + 16.8Y3 - 81:") (x: 9.6Y - 13.2Y2 + 16.8Y3 .. 817" 0 6 3 = 5560 D Y - 2.865Y’2-4- 3.65Y3 - 1.791174 10 = 2D2(1.1Y - Y *4 U1 U1 \J'l .OPOOOOOO U1.t:‘\N|\)l\)l—'HO I NWKJ’IQMO‘J—‘kfi WWWWWM 35 One Hundred Foot Span =_fl.—=2 I Impact Load 125 + 100 2 a Influence line for moment at 1/8 point of span: 10.93 /\ For 1]”: point of span: 1L.— 18.75 / L29 ‘ 75' IV / L For 3/8 point of span: 23.95 / L/ 86 For 1 [2 point of span: 25 / l 50' 50. l ‘ V Maximum moment: 9000 x 1.222 = 9890 lb. 16000 x 1.222 = 19550 1b. 10.93 x 19550 + 9.18 x 19550 + 7.93 x 9890 = 219000 + 179500 + 36300 = 929800 18.75 x 19550 + 15.25 x 19550 + 11.75 x 9890 = 366000 + 298000 + 57500 = 721500 23.95 x 19550 + 18.2 x 19550 + 19.7 x 9890 = 959000 + 355500 + 71900 = 886900 25 x 19550 + 18 x 19550 + 18 x 9890 = 988000 + 352000 + 88100 = 928100 Use a moment of 928000 ft-lb. 1‘ Assume: t = YD and B = 0.9D 10 = 02(1.8Y - 2Y2) Io = ¥;(3.9Y - 10.8Y2 + 15.2Y2 — 8Y“) 0.: 1210 = 3.9Y - 10.8Y2 + 15.2Y3 - SY“ BD3 0.9 2. _. 620 _ £51 -—-— D 2 1 Q = r”Lfct + ftw = 313, 33 2 MW — “Mm, = QBD (DIR 048 A3 stuns M. = QED2 928000 J: 12 = 313.33 x 0,1.D3E3.9Y _ 10.832; 15,213 - 3Y3; 10900 3 _ D — (Y _ 3.175172 + 9.9723 - 2.35m“) . Y D A6 0.05 62.5 3}?- OJ 52.3 937 0.15 48.2 52” 0,2 96.3 600 0.25 95.2 66“ 0.1+ 1419.7 7% 0.5 11111.6 796 Jlssmmme: t=YDandB=0.5D A0 = 2D?-(Y .. Y2) I = 9.091! - 12Y2 + 16Y3 - SYH) 0 12 121a = (9Y - 12Y2 + 16Y3 - SY“) 393 ( 0-5 3 8780 D =Y-3Y2+9Y3-2Y’* 57 Y D 10 0.05 58.8 328 0.1 99.2 936 0.15 95.1 519 0.2 93.1 599 0.25 92 661 0.3 91.7 731 0.9 91.5 827 0.5 91.9 857 3. As sums: 1: =YDandB=0.6D I0 = $19.6? - 13.2Y2 + 16.8Y3 — 8Y”) d: 9.6Y - 13.2Y2 + 16.8Y3 .. 817“ 3 = 7720 D Y - 2.86512 + 3.65Y3 - 1.791!” 2 A0 = 2D (1.1Y - Y2) Y D 10 0.05 56.3 332.5 0.1 96.8 938 0.2 91.1 608 0.25 39.8 679 0.3 39-5 799 o. 39.3 865 88 39 One Hundred Twenty-five Foot Span 20% = _50_..._.= Impact Load 125 + 125 Influence line for moment at 1/8 point of span: 11 7. 1.6' 7 * 109.9! J; For 1 /1+ point of span: 23.95 L31.25' 1 93.75' 7! F01- 3/8 point of span: 29.3 / For 1 [2 point of span: 31.25 L 62.5' 62.5' A w—— '1 Maximum Moment: 9000 x 1.2 = 9800 lb. 16000 x 1.2 - 19200 1b. 13.68 x 19200 + 11.9 x 19200 + 10.15 x 9800 = 262000 + 228500 + 98700 = 539200 23.95 x 19200 + 22.95 x 19200 + 18.95 x 9800 = 950000 + 931000 + 91000 = 972000 29.3 x 19200 + 29.05 x 19200 + 20.6 x 9800 = 562000 + 961000 + 98900 = 1121900 31.25 x 19200 + 29.25 x 19200 + 29.25 x 9800 = 600000 + 965000 + 116500 = 1181500 Use a moment of 1180000 ft-lb. 1 - Assume: t = YD and B = 0.9D A0 = D2(1.8Y — 2Y2) H 0 II ¥;(3.9Y - 10.8Y2 + 15.2Y3 - SY“) O<= 1219 = 3.9y - 10.8Y2 + 15.2Y3 - 8Y“ 31) 3 0.1+ 2. Q = M: 313.33 “w - nude = Q3132 €- Assume M' = Q302 28‘.— 91 1180000 1: 12 = 313.33 x 0.99ng ' 10'8Y2 “" 15:27} ' 8i) 0.9 ) D3 ___ 13210 (Y - 3.1751?- + 9.9716 — 2.35590 Y D A0 0.05 67.5 387 0.1 56.75 515 0.15 52.25 619 0.2 50 700 0.25 99.1 783 0.3 98.8 856 0.9 98.6 938 0.5 1#85 9 1 Assume: t=YD andB=O.5D A0 = 202(Y - Y2) IO = 13.2491! - 121:2 + 16Y3 - 81:“) o< D3 = 11180 Y--3Y‘;-'+1+Y3-2Y1+ = 1210 = (9Y - 1211'2 + 16Y3 -8Y“) DD3 ( 0.5 ) . . INN 11‘7“: I .- .ln. 2.». . r i hunlfi‘qfio‘: . . . III": 18" ‘11: 1:7,. .171 IO. . Y D A0 0.05 63.8 386 0.1 53.3 511 0.15 99 612 0.2 96.8 700 0.25 95.7 789 0.3 95.9 865 0.9 95.2 980 0.5 95.1 1017 = YD and B = 0.6D = ¥g(9.6Y - 13.21:2 + 16.8Y3 - 8Y”) 9.6Y - 13.2Y2 + 16.8Y3 - SY“ 190 = 2D2(1.1Y — Y2) - Y - 2.865Y2 + 3.65Y3 - 1.7917)‘L Y D 10 0.05 61 391 0.1 50.9 517 0.15 96.6 618 0.2 99.5 713 0.25 93.2 799 0.3 92.9 889 0.9 92.7 1020 0.5 92.6 1089 APPENDIX B DETERMINING BEAM DEPTH FOR SHEAR at ..VHI(D\. I It. ...‘1117 . I - . . n . .9171, 1: ...o . i. . 11111071171111!” 991.31.11.09 7 Ir... . u 4.41 - . I .. -..... a 4 11---: 11.91.19 .... 1.1 v ...v a. 4. v. 1 f . ...I.Illlr.l!1l 96 3For block #2, “0 foot span at 1/8 point of beam: 208 0 208 0 52%} __ 119! ____l__._.1 Influence Line ( 0 = 16000(1 + + 125 20850 1b. ( 0 _ 9000 (1 + $5437E33 — 5213 lb. Maximum shear = 20850(0.875 + 0.525) + 5213 x 0.175 = 29200 + 912 = 30112 1b. In order to allow for dead load say Vhax = 33000 1b. Y D A0 0.10 51.1 968 0.15 39.8 909 0.20 35.2 396 0.25 32.6 386 0.27 31.0 380 0.30 29.7 370 ‘dlere 10 = 2D2(Y - Y2) APPENDIX C DESIGN 1..-. 9) Crossing crossing For 100 foot span 1) Crossing crossing 2) Crossing crossing 3) Crossing crossing 9) Crossing crossing 119 the P 3‘15 ' (Mw n; ) = ' —"7€§§%EBES""_') A0(3’11; ‘ few) 832( 12790 ' 200°) = .000001118 the sac axis = Eg_.= 15.36. 810 length: 1 1 1 "h" P ”‘1‘ ‘ 07.“ . 93.3; ' .3252... . 11333300, = .0000003985 the °so axis = - ___.= - 15.36. the 1"; axis = -W—~T= -m6m ' ftt) 832( ‘12790 ' °) = - .000001185 the eso axis = E§6-= 15.36. 1 0.8 the 1°: axis — ‘09;th + ftw)=53—2E.§ETL117W)BT;; = .000000591 the eso axis = - E§_.= - 15.36. 10 the If, axis = - Wwv-T: .. fir...) 0(516 _ few w) 832(-T§?§6~—-- 2000) = .00000929 the 0,0 axis = EQ..= 15.36. 810 116 Use eso = 19 in. (See page 115). Equation 1 for 75 foot span: (Hdb ) (22.... 0000 + 2000) A + f t 832 Pt = 67"“516 c ) = ( 12790 ) = 2050000 = 917000 lb. 1 0 2.235 19:35:30.. b.3521}— Equation 3 for 100 foot span: (M ) (29190000 ) “(51"; + f“) = 8327 12790 ”0): 1 0 ) 515000 n$1 + 7W: ° ) 0.85((l + 1355—1-31 1395 P = = 830000 1b. Use 6 - 1 1/2 in. cables Pt = 858000 11>. 830000 <858000 <917000 0.8. The known factors for block #6 are as follows: f5 = 6000 psi fct and fa, = 1/3 1’}, = 2000 psi ftt and f" = 0 (Assumed) n = 0.85 D = 72 in. B = 0.5D = 36 in. 010 = e20 = 36 in. Aomin = 598 in2. 1: = YD = 10 in. Actua1A0=2x10x36+10x52=1290ina. I =72x72x72xl6__52x52x52xgé 12 12 1120000 - 305000 = 815000 in”. 31.: = $2.. = :—:6 = 813000 = 22650 163. 117 The intersection points of the four curves with the two axes: For 100 foot span length: 1) 2) 3) 9) Crossing crossing Crossing crossing Crossing crossing Crossing crossing For 125 foot span 1) Crossing crossing the %? “‘13 = (' 1 9.51 = ( 1 1 0000 1°(fct + 31°) 1290(2000 + 22650 ) = .000000283 2 the ego axis = - £2_.= - 63 = - 18.25. 810 1 l the -- axis = - _ P M 0000 t ‘Ogsf—Z - 99112221“): 0; = - .000000995 the °so axis = EI6.= 18.25. 1 0.85 the -- axis= p 0 00000 t %sa_-+ f“0=12uoé 22 50 980; = .000000509 the so axis — - £2_.= - 18.25. , e 10 1 O. 85 the — axis - - Pt (M. (3o50000_ A0(31e ’ fcwo 12“(N 22650 2000) = .000001099 _ re the eso axis — o - 18.25. e 10 length: l l l the —' axis = = P M 02 0000 t (fct + 322% 129022000 + 22650 = .000000292 1.2 the °so axis = _ _°_= - 18.25. e 10 119 2) Crossing the 1—- axis = - 1 = - .1. r (M b ) (2250000 ) = - .000000605 crossing the e 1.2 so axis = _°_= 18.25. °1 0.8 3) Crossing the %: axis = 969517;: ftp) = 1mg9§12§g§00 + 0; = .00000035 crossing the ego axis = - g. = - 18.25. 9) Crossing the 1%,: axis = - (u n 3 = ‘ 121.029_mio_,___0000 - 2000) “(sfi- few) ( 22650 ) = .00001712 r2 creasing the °so axis = _°— = 18.25. e 10 Use eso = 29 in. (See page 118) Equation 1 for 100 foot span: (8 ) (193%0000 1 2000) P. -.- ELM: 1290 23 ° = M: 1530000 11.. 1 I To 657 Equation 3 for 125 foot span: 1: 99900000 ) A°ES'1";+ “a: _ law‘T‘ae o + °>= 285C100. Pt= ( e s )' ( 2 x 6 1.975 =123000°1b' ”(1*‘1‘2’1'3 0-85<1+'65‘7‘li Use 8 - 1 5/8 in. cables 1°t = 1250000 1b. 1230000 < 1250000 < 1530000 0.K. APPENDIX D CABLE POSITIONS Tnirf ‘31 in L3 Block #2 Thirty foot span, top and bottom fibers at 1/2 point of the span: P l+70000 M 561000 _£_= = 2 _22_= _______= 2 2 r] P: = 0.85 x 1470000 = 2 u = 2631000 = 2 10 W" 999 lb/in s—Lle “2600 1010 lb/in P I 93‘; e10 = 1#70000 x 5 x 16 = 905 1b/in2 o 1‘3 nPt e30 910 =0.85 x M70000 1: 5 x 16: 0 1b 1 2 Ie 65110 77 / n At the 3/8 point of the span: Ii __ 970000 _ 2 nab _ 528000 _ 2 ‘0 — uoo — 1175 113/in 51° 2600 203 1b/in 331: 0'85 x “70000 = 999 1b/1n2 EL: M= 1050 lb/ina $0 $1, 2600 P e e 470000x5x16 ~ 1'. so 10 = = 2 I 705140 905 1b/in r1Pt eso e10 0.85 x M70000 x 5 x 16 _ 2 “—17,—— _ 4173—11? - 770 113/in At the 1/H point of the span: Pt ”70000 2 “db _ “21000 _ 2 '1 Pt _ 0.85 x 1170000 2 M, 2386000 2 T _ T- 999 1b/in fiz- W— 918 I‘D/in Pt 630 910 _ “70000 x 5 x 16 _ 2 “1.0—“ .. 15% — - 905 lb/in V\Pt °so 810 = 0.85 x “70000 x 5 x 16 = 770 1b/in2 I0 915% 122 At the 1/8 point of the span: if = 51%? = 1175 1b/1n2 lsiff= 222280 = 911.3 lb/in2 n71}: 0.85 x0970000 = 999 1b“112 LL:= 1:206:00 = 556 1b/in2 Pt esgoem = h7ooogélc3) x 16 = 5,43 1b/in2 W = 0'85 3:330 I 3 x 16 = 962 1b/in2 Forty foot span, top and bottom fibers at 1/2 point of the span: Pt _ l+7oooo _ 2 {4111 = L90” = 2 E - W - 1175 “/1“ 51° 2600 372 “/1“ n Pt _ 0.85 x 1470000 _ 2 ML _ 11399000 _ 2 To_ - T - 999 1b/in 519 - $070—- 1690 lb/in Pt eso e10 = M70000 x 5 x 16 = 905 1b/in2 10 415116 VlPt ego em = 0.85 x M70000 x 5 x 16 = 2 ____Io M15110 770 1b/in At the 3/8 point of the span: p 970000 M<11: 937000 . _t.= = 2 .__.= _____.= 2 A0 ‘17077 1175 lb/in 519 2600 360 lblin npt _ 0.85 x 1470000 - 2 M. = 14337000 = 2 Pt ego e10 = #70000 x 5 x 16 = 905 1b/in2 Io I+151+0 nPt eso em = 0.85 x 1470000 x 5 x 16 I0 415% = 770 1b/in2 . ..1 m, 0 t 1. . At the 1/4 point of the span: §§-= Elgg%9-= 1175 1b/in2 2%E-= Zgggg9-= 288 lb/in2 r1:‘ = BLEEEE‘EZEBQE = 999 1b/in2 :52": zgggg99.= 1h05 ib/in2 Ps esgoelo = 9700005:05 x 16 = 905 1b/in2 CL§£_;§2_219.= 0.85 31212000 x 5 x 16 = 770 1b/1n2 At the 1/8 point of the span: £fi-= Elfigg9-= 1175 lb/in2 §f3-= Eggg%9-= 168 113/in2 Bil = W9: 999 lb/in2 :16: gag-32 = 860 1b/in‘2 Pt °so e10 = l+7003: x 3 x 16 = 51+} 1b/in2 nPt °so e10 = 0.85 x 1470000 x 3 x 16 I ”h15ho O = 962 1b/in2 When block #2 is used for span lengths from 30 feet to ’40 feet, 1 nclusive, the cables will be bent twice. 330 = 5 inches between 1/14 Points of the beams and 080 = 3 inches at the 1/8 points of the beams as shown on page 123. The cables will reach the middle of the beams at the support. At the bending points of the cables, rectangular blocks will be used as support to the cables. These blocks will be designed after 311ear is checked for all the span lengths. Block #3 125 Forty foot span, top and bottom fibers at 1/2 point of the span: _ 1476000 _ 2 _ .133. — 1092 1b/in nPI = 0.85 x 976000 10 93 81;? = 928 1b/in2 Mdb _ 1090000 51s 9228 M, _ 9520000 31, 9228 Pt e20 em = 976000 x 10 x 20 = 1126 1b/in2 1o 8 550 nPl e50 e10 = 0.85 x l+76000 x 10 x 20 = 956 1b/in2 §5§§6 I0 11: the 3/8 point of the span: Pt _ 976000 _ 2 m ___ 1020000 To — W— 1092 1b/in $19 228 r11: _ 0.85 x 976000 _ 2 14!— : 9920000 To“ T’ 928 1““ sis T272?- Pt 680 610 _ ”76000 x 10 X 20 _ 2 rip, :30 elo = 0.85 x 9:602: x 10 x 20 = 95b 1b/in2 O 5 At the 1/9 point of the span: Pt _ 976000 _ 2 Mdb = 816000 V1 r, _0.85 x 976000 _ 2 1‘1. = 3716000 ‘0 - '7—36 _ 928 lb/in $1. T—eas Pt °so em = 1176000 x 10 x 20 = 1126 1b/in2 Io 89550 “Pt eso em = 0.85 x 976000 1 10 x 20 = 956 lb/ina 10 89350 = 258 1b/in2 = 1070 1b/ 1112 = 291 lb/ina = 1095 1b/ is‘2 = 193 1b/in2 = 877 1b/in2 128 At the 1/9 point of the span: 1», _ 1476000 _ 2 9st _ 1035500 _' 2 To _ .735— - 1092 1b/in E; - “9'22?— - 2% lb/in 'M 5935500 P 0.85 x 976000 2 BJ- = = 2 _W- = = L} ———-—7(——— 928 1b/in $16 T—228 128 lb/in A0 93 IO 8 550 “P1; 830 610 = 0.85 X l476000 I 10 X 20 = 95° 1b/in2 Io 89550 At the 1/8 point of the span: P 976000 M 603900 2 _t = = 2 _dh = = 1} 10 .736— 1092 lb/in 519 “228 1 3 1b/in n?, = 0.85 x 976000 = 2 M = 3278900 = 2 928 lb/in .1. T2'2—8— 775 lb/in A0 936 $1 a P, 8 em = 976000 x 6 x 20 = 672 1b/in2 ID 89550 r113, e,3° e10 _ 0.85 1: 976000 x 6 x 20 _ 2 I 813557 - 570 lb/in o When‘block #3 is used for span lengths from 14-0 feet to 55 feet, inclusive, the cable will be bent twice. At the 1/8 and 1/# points of the beams as it is shown on page 127. The cables will reach the middle of the beam at the end of the beam. At the bending points of the cables, rectangular blocks will be used as support to the cables. These blocks will be designed after shear is checked for all the span lengths. 132 At the 1/4 point of the span: P, 657000 2 N 3878000 _ 2 — = ' = 1120 lb/in 4111: = 535 lb/1n 10 588 S1e 72 ' 3.31 = W = 950 1b/1n2 1‘1. = 10218000 = 1912 lb/in2 A0 588 $16 72 Pt eso e10 = 657000 x 1225 x 29.5 = 1135 1b/in2 10 177500 rth eso 610 = 0.85 x 657000 x 12.5 x 29.5 = 965 1b/in2 I, 177500 At the 1/8 point of the span: P 657000 2 Md-b 2262500 _ 2 _l = = —— = —— - 1 b 1 A0 588 1120 lb/in $18 7290 3 3 1 / 11 01:? 0.85 x 657000 M 6062500 2 ___I.= ___________..= 2 _!_.= = P e e 657000 x 7.5 x 24.5 _ t so 10 _ = 2 Io - 177500 680 lb/in Y\Pt eso e10 = 0.85 x 657000 x 7.5 x 29.5 = 578 1b/in2 Io 177500 When block #9 is used for span lengths from 55 feet to 75 feet, inclusive, the cable will be bent twice. At the 1/8 and 1/9 points of the beam as it is shown on page 131. The cables will reach the middle of the beam at the end of the beam. At the bending points of the cables, rectangular blocks will be used as support to the cables. These blocks will be designed after shear is checked for all the span lengths. - 2.54 ‘2‘ ~~, 133 Block #5 Seventy—five foot span, top and bottom fibers at the 1/2 point of the span: Pt _ 858000 _ 2 udb _ 7320000 _ 2 z;-— 832 - 1025 lb/in $16 - 12790 - 573 1b/in r\P = 0.85 x 858000 = 2 §!_.= 15390000 = 2 -I;1 ‘———§3§—————- 872 lb/in 51e ‘IEfiii” 1200 lb/in P e 0 858000 x 19 x 30 1: so 10 _ = 2 --————IO — ——————————383500 1275 lb/in nPt e30 010 = 0.85 x 858000 x 19 x 30 = 1082 lb/inz I 38 3500 0 At the ‘3/8 point of the span: . 0 , I: 8 658000 = 1025 mm? Lay: “—50 0° = 530 lb/ina lo 332 516 12790 F 0.85 x 858000 2 M' 1u550000 2 IL_1.= _____________.= 2 __—.= .———————-= 1 b 1 ‘0 832 87 lb/in 51° 12790 1N0 1 / n Pt 630 010 858000 x 19 x 30 2 ________._.= _______________.= 2 b 1 Io 383500 1 75 1 I n rlpt eg9 019 = 0.85 x 858000 x 19 x 30 = 1082 1b“1&2 IO 383500 At the 1/u point of the span: P 8 000 M usoooo _t= 58 g 1025 115/1112 _dl= L.— = 1429 lb/in2 lo 832 318 12790 . 2 YlPt = 0 85 x 858000 = 372 1b/in2 ¥:_,= 11?.9999.= 925 1b/1n2 ‘o 832 816 12790 Pt eso e10 858000 x 19 x 30 Io - _-'"7fiii§i3""’ = 1275 1b/in2 th 930 010 0.85 at 858000 x 19 x 30 I0 333500 = 1082 1b/1n2 136 At the l/h point of the span: P 858000 M 9750000 . —3.= = 2 b 1 2 ~92-= .~__.._= ' lb 1 2 10 832 10 5 1 / n 519 12790 703 / n P . '14 = 932.15.515.83‘19 = 872 lb/in2 I5!.— = 1.939902 = 11% 113/1:12 no 832 516 12790 Pt ego 810 = 858000 x 19 x 30 Io 383500 = 1275 lb/ 1:12 r\Pt eso e10 = 0.85 x 858000 x 19 x 30 .. = 1082 lb/in2 I 383500 0 At the 1/8 point of the span: 2. = 82:?" = 1025 lb/in2 21% = Egg-g9 = ln+5 Un/im2 I§Et.= 9:§§§§§§§§999 = 872 lb/in? Ef;-= lg;g;%39-= 8“8 lblin2 31.153219: = @OWOBESOX 3° = 801+ lb/inz h Pt °so e10 = 0.85 x 858000 x 12 x 30 = 68M lb/ina IO 383500 When block #5 is used for span lengths from 75 feet to 100 feet, inclusive, the cable will be bent twice. At the 1/8 and l/N points of the beams as it is shown on page 135. The cables will reach the middle of the beam at the end of the beam. At the bending points of the cables, rectangular blocks will be used as support to the cables. These blocks will be designed after shear is checked for all the span lengths. 137 Block #6 One hundred foot span, top and bottom fibers at the 1/2 point of the span: P 1250000 2 M 19350000 J»: =10081b1 .4-‘l= , =81+b 2 Ab 12KB / n 51° 22650 5 1 /1n r1P 0.85 x 1250000 _ M, 30u90000 —l= w- = ' 2 -—-—=—— = ' 2 ‘6 12h0 856 lb/in $16 2§3§5N~’ 13h5 1b/1n P e 0 1250000 x 2M x 36 .1 9° l9_= .. = 1 lb 1 2 _ 10 815000 325 / n P 0.8 1 0000 2a 6 r‘ t °3° °19 = 5 x 25 ‘22. x 3 = 1128 1b/1n2 ID 815000 At the 3/8 point of the span: Pt 1250000 2 Mdb 18150000 2 _= =1008 lb in _—=———g———-=SOO 1b in . 7 M 8 0 £131.: 9_§§.x {329999.= 856 1b/1n2 —!L.= §§.?OO O = 1270 lb/in2 A0 12E6' 818 22050 P e e 12 0000 x 2M x 6 t so 10 = 5 3 = 1325 1b/1n2 10 815000 . 2“ Ilfl_fsslfln.= 9155 ‘ 1250000_§_ x §§.= 1128 1b/in? 10 815000 At the 1]“ point of the span: Pt 1250000 2 “db _ IMSZOOOO - - 2 ... = .... = 1008 1b in .... — ”-..... — 681 lb/in . - M 2 l 0000 £3.11: 0 85 x 135.9999: 850 ”/1132 ...L: 21,“: 1020 lb/in2 A0 1250 lo 22650 P! eso elQ = 1250000 x 2M x 3§_= 1325 1b/in2 10 815000 VIPs eso 610 0.85 x 1250000 x 2M x 36 Io "‘ 815000 ‘ "" .v. I r. . "L ,v..l 7.. y _. xvi . l 1.10 1 .1. 1.91.0.1. J artist‘s! At the 1/8 point of the span: E. = 1.3—$03 = 1008 113/1112 24:1: {Egg-g?— {1: 28%:01250000 = 856 1b/in2 2L = 12:22:00 0 1e Pt 8:: 910 : 1250;026:015 x'36 = 827 lb/in2 “\Pt eso e10 = 0.85 x 1250000 x 15 x 36 = 703 lb/ine ID '815000’ 138 =~373 lb/in2 = 600 lb/in2 One hundred twenty-five foot span, top and bottom fibers at the 1/2 point of the span: = 1333 lb/in2 = 1955 lb/in2 P 1250000 M 30200000 t 2 db - —-= = 1008 lb/in —- ......— A0 1256 318 22650 P 0.8 x 12 0000 , an 0000 LE" "—6110"; = 85° lb/in2 :‘L‘ 23'2“?" P e e 1250000 x 20 x 36 t 3°."19.= _121 — = 1325 lb/in2 IO 815000 . - ’ 2% ' V1§:_eso 210»: O 85 x l?50000 x x 36 = 1128 1b/in2 I ‘“"”'815000 0 At the 3/8 point of the span: P 1250000 2 u 28200000 .1: ._= OOSlbi —dh=__....—_. A0 12E6 1 / n 516 22650 n , 0P, = 0.85 3: 1250000 = 856 lb/in2 1‘11. = 1690000 ‘0 12ho 816 22050 Pt 690 910‘: 1250000 X 2’4 X 36 = 1325 113/1:12 Io 815000 P e e 0.8 x 1- 0000 x an x 6 W: 5 P5 3 = 1128 1b/1n2 I 815000 0 1205 1b/1n2 = 18u0 1b/1n2 7 ..‘18147. -__;,.__r_-._._+.4 1,1 1"; i A ...A . 1 . g 1 d‘ s 1" .... A l ' '44 35224955 ' 11 1, ’IT 11v 1;. T I .1 .. I . b I . i t . 2’»: I ; I|/P"“ ,2 2. 177773173.”— zeiz'f 1 T Cable Stress ‘ v Y :73”)? IT! ‘10 1 ........ 3 Bottom Fibers I ......... ......... ..... luo At the 1/u point of the span: P 1250000 M 22h00000 2 .11: --=10081b'2 43-h.=———-——-—-= 8 lb' A0 12u0 /1n 51¢ 22650 9 7 lln 11 P 0.85 x 1250000 , 3&080000 t = -- = 856 lb/in2 M—L= --—--,—----- = 1505 lb/in2 Ab 12E0 816 22650 P e e 1250000 x 2M x 36 t 99 10 = - __.._= 2 10 815000 1325 lb/in YIPt eso e10 _ 0.85 x 1250000 x 2M x 36 Io ‘“‘ "' 815000 = 1128 lb/1n2 At the 1/8 point of the span: P 1250000 M 13211000 t _ _ 2 db _ _ 2 -----—-;—-—-—-10081bin - - 8 lbi A0 1240 / 519 22650 5 3 / n P 0.85 x 1250000 5 2 M 19671000 . 11.1.: = , .n_. ._2_,._..== , 2 Ab 12h0 85o lb/in $16 = 22650 866 lb/in Pt eso 610 = 1250000 x 15 x‘36-= 827 lb/in2 Io 815000 P e e 0.8 x l 0000 x 15 x 6 7‘ t. 8° 10 = 5 25 3 = 703 lb/in2 10 815000 When block #6 is used for span lengths from 100 feet to 125 feet, inclusive, the cable will be bent twice. At the 1/8 and l/M points of the beam as it is shown on page 139. The cables will reach the middle of the beam at the end of the beam. At the bending points of the cables, rectangular blocks will be used as support to the cables. These blocks will be designed after shear is checked for all the span lengths. CHECKING FOR SHEAR 1M2 Thirty Foot Span Length B10 cl: #1 Dead load shear at the 1/2 point of the beam: Dead load shear at the support: V: 8x11 XIO=59001b. Live load shear at the 1/2 point of the beam: 21200 21200 1 .5 _ '053 EL 15! .4 15' tq—u—~— 30' Influence Line 1600 ( + 0 = ’ . 2 = 2 . 0(1 155; 1e000 x 1 3 5 21 00 1b v = 21200(0.5‘t 0.033) = 11350 lb. 1%} Live load shear at the 3/8 point of the beam: 21330 21200 1m 0625 \ e 375 11.25' _L‘ 18.15' v-I—v 30' Influence Line v = 21200(o.625 + 0.158) = 16600 lb. Live load shear at the 1/M point of the beam: 21200 21200 lu' ~75 .283L\\\\\\\\> 7.5'111 2?.5' 30' Influence Line v = 21200(0.75 + 0.283) = 21900 lb. 111 Live load shear at the 1/8 point of the beam: 21200 21200 .875 .u09 Influence Line v = 21200(o.875 + o.h09) = 27300 lb. Live load shear at the support: 32000 21 00 53 0 1M' 4 1uv 4-3 1 \\ ~53} ,, .0005 N V 30' J Influence Line ( 0 = = hooo(1 + 155 hooo x 1.325 5300 lb. V = 32000 + 21200 x 0.533 + 5300 x 0.0668 = 32000 + 11350 + 35“ = #370“ 1b. O. . , I l. in... . I . . é . be! .15. y A: , 1 iv!) 0.1.1.0. 1,..I.-.w)ul... ,. t .1, [1.1 , ..l...‘llm.i .0. V;l.!.fl6“..no‘l'l,l.lxvuullm‘n , .1 .1. ul’i (lily R 1M6 The vertical component of the tension in the cables between the support and the 1/8 point of the beam: j." e 1 e 3.75' 22.5' . 3.15' Tan 9 = 33: 11.25 9 = su° 55"13" Cos 9 = 0.08851; Cos 9 x Pt = 0.0885“ x 392000 = 31+700 lb. = vm H 8h 10 t vmx = 31730 lb. (See page 1%) H = 1582 in3 (See page 36) 11 IO = 32887 in (See page 21) t = 9 in (See page 18) - 31730 x 1582 - 2 fsh - 32887 1 9 — 170 1b/in 0.x. 1M7 Block #2 Thirty foot span Length lb = ”00 in2 (See page‘OZ) Dead load shear at the 1/2 point of the beam: V = 0 Dead load shear at the support: _ Moo x 1 x 1 0 _ v- _E‘EII'L’ 6250 lb. Live load shear at the 1/2 point of the beam: 21200 91200 11“ ‘k\\ .5 \ .033§J \IS Influence Line V = 21200(O.5 + 0.033) = 11350 1b. r ‘ l‘g‘ ~— .. 1. . ”....._««» 7.. .... 151 The vertical components of the tension in the cables between the support and the l/M point of the beams: ea 9' f 4/225: 9. [3.75' 3.75' 15' _.75' .zslj Tan 9, = 5%: 22.5 e, = 87° 27' 19" Cos 9, = 0.011010 Cos 6% x Pt = 0.0uuu x M70000 = 20900 lb. Tan 9. = 321 = 15 9,: 86° 11' 9" Cos a; = 0.06651 Cos 55 x Pt = 0.06651 x #70000 = 31250 lb. fsh = vatH Vmax = 25025 lb. (See page 150) I, = 1115110 in“ (See page m) t = 8.5 in (See page 18 ) H = 8.5 x 7.5 x 3.75 + 16 x 8.5 x 11.75 = 239 + 1600 = 1839 1:13 _ 25025 x 1832 = 2 .Io'l‘, ,, 1.13.11: , ) t 7 : let; 41:16:33.151. . 152 Forty Foot Span Length Block #2 Dead load shear at the 1/2 point of the beam: Dead load shear at the support: = #00 x 20 x 150 = V Inn. 8330 lb. Live load shear at the 1/2 point of the beam: 20850 20850 110 V .5 K\\‘\\\\T154L\\\\ 20' 20' Influence Line 16000(1 + 16%; = 16000 x 1.303 20850 lb. ( V'= 20850(0.5 + 0.15) 13580 1b. 153 Live load shear at the 3/8 point of the beam: 20850 20850 11.» e625 \ 0275'\ , \ .375 V 15! Jr: 25! no: Influence Line v = 20850(0.625 + 0.275) = 18800 lb. Live load shear at the l/h point of the beam: 20850 20850 5212.5 - 1h' .1, 1n. ‘\ .75 \‘ .h .05 N \ .25 10‘ .1: 30' 110' Influence Line ( JED = — uooo(1 + 165) uooo x 1.303 — 5212.5 lb. v = 5212.5 x 0.05 + 20850(0.75 + 0.4) = 2h261 1b. 15h Live load shear at the 1/8 point of the beam: 20853 20850 5212.5 1u| 1n. 1 .875 R \l .,25 .125 L\\\\\ “‘\~.125 _ju__., . 35' 40' Influence Line V = 20850(0.875 + 0.525) + 5212.5 x 0.175 = 30113 1b. Live load shear at the support: 320 20850 52125 18' 18' 1L\\\\\\\\\4 1 '65 \fi #1 Influence Line V = 20850(0.65) + 5212.5 x 0.3 + 32000 = “7115.1b. 1 111 . 1 11. 1 .11 11.1 11 141 ‘ 1 11.1 1 ‘I V _ . ._ _ , a , _ __ fl .. h 1 a!“ . II 11116. LT -01.. o o o. I e F o1 v . 1 I I . e I 1 w o v II t 1 v .1 91a 1 I e1 . . . 1 m . . a .1 H 0.1. 101 1 10151141 A II ... o . “.1: 1 e o O 4 w I . o A 118 .I 0 14 4 a 1.4 7 1V 1 '1 o v _ o I _ 1 1 1 . . 1 .‘, I 4 o 1 0. 911.1.“ 1 1o w . . A10 0 I1 I.h e 11 I I . .01 O 1-... *1 ol1r '1‘ r 11.? . e I. . 1 1 ‘1- m u I v v 0 v u . . . v A e e _ I o . v.1. I c 411* e i 1 IlJfi . b 0 . o . . 1 1 14— 1111 1 1 111411. +1 4.1 ‘ 11,11,11Lr‘l'l I I1CY.L 11 L1 [ItiJ'TrO 1'1 1 1 . 1 _ . 4 V 1 I o .- 1 I 1 '1 v e. . + t + t . . 0:. .6111 H e 1 . . '1 r o O. . o e I . . . _ o. n r . 1 6 o. o . .0 M . o .o k I. . o .n v I 1 1A 4 1 s v .10 4 n o I 1 I 0 1 W . v 1 . . F - . . . Y 1 1 . . .1? . . v . . 0 +1 1. c . t :1.- 1 o. e . 1... . . ¢ 1, .1 . . _ e e o o . u . 1 1 v .1... k . e . 1 . «1‘ . I '1. 4v. 8 0 v . 1 r e . v1 0 e1 . u a . . . . P 1. 1r 1- ».1 r . 1.1 1 4 1 m 4 I 4 11 4 4 1J1 l. e 1 s 4 f I e e 1P e . | _ t o 0 1I “ O 8 1+1; f 01. e I u . O . e . . .4 I .1 I 1 . . * ... v . . r L .— a e V 1 A . a.. 1 ”H1 -§_-< . , 1 . n 1 b 1 O . ' . o —o-—‘- --.1 4 . . I v 1 a v 1 1 l e s I - n I A T w - J 1 _ o 0 P 4 —’ cs...» . , 1 I‘~'-+O‘—-.-_L—M-" ‘- 1 1 " 1 ' 1 1 O t . o 11L 1 b A 0 ‘7 +9-‘-‘--1F--0- ¢r--' 4-, -—1+— C —? 1 l - e ._ .- +.._.... .1». o—a-.—..——._.+—.. 0 . V o 9 -. .‘-.-—.——§-—A“‘ ...... -..... . v 1 . I ' 1r 0 . D . w I V 1 0 A . I C e , . fl . I - t 0 ' 1 . l . . T 0 C e 1 M a L l—L— 0-. .- o 0 I 1 § I u 1 1 . I A I o 1 f I I . . . O . . 1L 1 . 14 1 _ 4 ..1 1 1 .4 1 1 11 1 1 . 1 1 1 M _ 1 141 . fil a! e 1.01 19.11 .01 1 L f 1’ 11‘. e_ 4f T o O o T ‘ 1.1 e o. 1k e e 1L f f I O . I . I I1 1o O1 o 1‘ 1 II v w. 1 1110111 I 1 14. 0 I01 In . Y 01 Q . 1 e .11” I1% ‘11 v 1 4 I 191 I f Y1 i 0 1 e W A _ I o . o . . A? . 1 _ , _ 1 H _ . _ _ . _ 11.4 . . 1 _ fl 10 .0. 1+1 11 II J ~1 1* «I #11 I :1 . 9 91 . 1 .9 I 1a p 0 I 0 .1 1| 4 .0 c n 1 .6 c . v I . 1 o . 11> 1- 1 v 1.1 h I f v n .v e 1 e I t. I . 1&1 ~ 0; o 01 1 a 01 o a 1 I. I 1‘1. ‘1 . . . . L17 1 1v u. . s . A 1 _ _ , 1 _ _ _ _ . . . . _ 1 T o 1 IT 11? 1* r1119 .6. v Lt o 141 r 14. r . Hr 1- . I c . . * e 1” 4 e . 1 . w . 6 1 I e I . a 9 7 I A . '1171 e 1? u o .1 I . e. e . I“ e I lo 9 5 b e v O . o . o 1 w . 1. e I + 1 r v v 0110. 0 .AV 011+ 1. 6 If 111- 0 L . 0 10 .1 01 T 1011* I I 4 I I 9 1.61 a C I . * e I v . r I . e r . O A! e e e e. . .1111 {1 mil 0 1o I 1 r V I . Y .01 . . . o e v 11 I 1 O _. I v ‘1 . a *1 e . . 1 . fl . 1 . . — 41 1 11 1 . 4 ..1 14 11W” .11 1 1 011.111.0110 11AT+10 1'11 11111 1.,0'11'1 A 1t 01 ’1...” 11.1 l.'1l'.l+110l I. 4 1 1110 r r 1t]..hl1lIII.ela‘llLr’19.l.l. 14111 +1 .11 .11 Oll- Jfil‘lj 191’ a. . c .111, .11 _ _ 1 1 . 1 .1 e1 I 11 . 1v 1.1 .v 110 r 1. *1? I V 0 e 1 u l I e . I A . v . . . . + . A I a . e I _o I u I e I I. . u . c 1 o e . o I e A h o 0k h 14 e O . II 1 v r. u I . .6 v 1.0 . 1 u ‘ . . _ . - VI '1 Y1 o +.fll.b1.o P1AT o o 1.4 .19 01v II Ar, o . . Q + 1b .. . v . t w a: o u 1o ‘7 i 1. I . _. I u. .I. 1 H I . ¢ . . . r p 1 . e 1 I A o 1 re % I 1.. f - ... .0 +1 0 . . .V V . .Y #1. . _ 1 . 1 1 _ , — 1 . _ . _ 11.. 1e O H Y 01.1.9 6 0 a. .e a 0 .11 v 1. . I19 IF 14 O F I I v .1 I. a 1 e + . A la 1.1 T 0.10 o v.11. II n 1. M I p 1 1 l v 01w 0 I 16 e O I o o J— o I e 10 4w 0 fl . a .I 1k e I A r — 4. e 1 1 . . . . . . , h 8 1 e1 . . I1 19 .. I o. 91.». e . I 1 ll f a L v 10 v1.8. * #1 1. ..T . o . .- *1' ‘11.. . LT. . Iv . 4 + o . . 1. I . . p o . I . . . V 1 . . . H a 1 a - . 09.1. —m m a . v . o m o .v 1.. 1 o . a. . I o . _ _ . 1 1 1 1 . 1 1 11 p 1 1 1 11 - M _ _ - . b p a L L 1 1 1 1 1 Aw 4 1 1 4 1 111 1 1 1 1 11 fifi 1, 1 1.1 . q 1 1 1.11 4 4 1 . 1H _ .1 . . w 1 .171w11t 1 1‘ 1910 0 117,4- .111 w .0. . o 11 0 10-1.1 ,9. 1.1. I o « 1 . .I e .41 a . o I . . O1 a e c g o 1+ I f . I . +1 0 0r * I1. 1 14 1+ 0 . a u v 1 . v. . I; 1r 1 1.1. 1 u 1 u ‘1 4v 14 01 6 o v1 I 1 c a. w 41 . all 1: l 1 e b . 1 . 1 e . 0.. a p u 1 4 o ,v. 1 4 I 4 10 . . 19 I 0 c + . I I I r I . + v o u . 1 1 . , . . e . 11 o . h % A . - .I 01 A 10 .1; I1: I 11 v 71L 1 .11. .419 a e . IT I #1 . ...+ .1. e v t v . 1. e1 . H I I T . 1 . l 1* o .10 b o . I e v . 1 v . 1.1 . . k. If + 1 v . f e . . u . . r 1. . A w v '11.. 1911+ v .. J. n .1. o .910. O .o 14119 v I I c . w . . . . 1 . . .4 . v o a * I .1. l. . H e . v . . . . w . o q . v . . .. . e w . . v . 1 . . . _ 14 1 11 P v 1 1 111011.01 1.11.01 ‘1Lv11‘9101 -1111; .7111?! 111L111. 1c «1 1t 1101 J..1 1111.71 I 1 11 I. T . 1 L I. a lfillll .le. «It'll .. . 11 0| . 110 a . 1 . _ l .1. o . Q I '10- s u .I 1 v1. 0 v . .1117 6 . 1. fl . w . O 1 . *10 . 1w 0 . + I u a r . . a p v . . n . . . I ...-1. . o- I v . I. . o e c . . . . . u q . . 1 . _ , . 1 . e . a o o 19. I .1 . .9. In 0 _ I 0.... . v1 . . I q . . v . . 1 o . o I e 1e . I L 1 ¢ 0 a I1 .1 A . 1 e . , k t 9 _ _ e . Y I I . _ o I .1. e r b . o ‘ . 6 o v . I * v . C .I f I _ . 0 $ 1. . e M 1 I o f I 0 n . .1“. . 1 _ 1 . 01.. o 1 I . I . V o . I . . . . o . A 1 I f . I e w l o e we I 1 e r Y n 1. 1 1 . .v . 91 I . 1. >— _ F 11 . i 1 F 11‘ 3 4 1" 1 . 111 14 i 1 11 4 1 1. .1 0 - . r1 10 I. v e O p I c . v r .... c I o 1 . I . u 01 e O I v . v e .1 1 a 1 e Y1 1 I . . I I r 10 . o . — o . . . _ 1 _ A 9 Av ' e v——-o— ... +-1r-'-9’70— &——o———.Fv -—~ . . , . V e? e 9 “—0- 9—+—Q- w ‘11- 0 0 T—ws I 1' A , 4 fl 1 w v I . k. 6 .115 v H 1 W *1 1 1'11.I,IIIL ill 1'11 111114 . _ . o . I . V 1 ..e . O Y . e 0 I w o v I o . . 41 e I P I e . .1 r v 1 e c t A 1 v I t u . c . I . . I 1. .I I 6 e i no a 1. . 1O o 0 A o v . I .v . O 1. v t t b 4 + b o . 1.? I e 1 I I i. l e 1. . b . 4 1 5 I h . . 011.4 I v Q I o 1'1. O b e . I b 9 p 1'1, v . * 0 I1 I 9 1:. a e 6 1Q. a I I u a e I I v I I I v e o f 9 O I 5.0 . 1 M 119111. e 1+1 8 1. v 7 Y - I e o I v. .011. 1 e. 1. a o I l . .01 I 0 a . 1o . . 1v 1 I . 0.1 v . I 4 O 6 Av . I 1 w . . 1 . 1 1F » v 1 111 1 1 1| 1 J. 4 1 1 I1 11 . 1 111 111.41 1.: 11 d 1 1 — _ 1 e 1.1. v 1’ I v fi .01 t . 1 9 .11M .11 . 1 A . I 4 O 10 n 1.. 1w . . e . O. . . . .1 1 pM1. am I *6 0714 I . a I . n I 1‘ v .Y 10 I . 0 o 0 e . O1 . I e O A I. e 1. o I e . I _ a w 3 . e b 0111+ v 11 a 1o .4 I I . I t V e a 1 I e I e 1+ t a ,1 r 4 c I . LT I . Y1 e w e. 1 1 9 11. 16 r; 6. Q 1. v I .0 I o o .11. e .A w e O. F. r 1‘1 e. . .I o . o . .6 .I1 0 o w b A _ Q 5 Q U 5. I Q v *1- A .— 1__4‘ L I ‘1 17' 1' 'V O 8 1 6 . 0 e 1 " .L e 1 . 1r ‘ O 10 e 11 L . 4 “M f 1 . i .4 1 1 1 1 o y 11 A 1 r v 1 I f- . 1 ’ O a V I I “‘1 1 O 1 ”r1 1 I . . I 4 o p | D . I . 1 1 e . 1 o . 1 . e e I1 7.. 9! f V 11 I1 '10 e .... 1* 1+1. . $110 01... r. 4 —. I o . I .1. . . . 1 , . _ 1 e . I rtL .. .TI.‘ .7? 7 I v I v 11o n +1 11f will? .1111; 01*110 e . I I I r . 5.1. . 1 H 1 1 1 a1 1 1 r 41 H111 .1 <1 4 1 1 w 1i 1 1 0 1. 1‘ fl . 1‘1 . . e . . 1 -11 . o a . ... . 1 111. 1 1. 1 - ..1 :1: -1111. 1011011 111F111...‘q . . o b 1 ‘ I e A O 0 e I g 191' 1 o H . C O1 I O .9 r 1L o 14 O .0 ..4 u 1 1 . q o v .a a u n o . u . I A . a e I. e .. t e a .-. _,. .1. o t e o I 1. . 1 9 fit I . . 1. e ..1. . u . . . p . b .8 e . e * . . . I . . 8 e v . p e +11. . O I. . ~ . I d c ..A e . w . . 1 o e o . . o .1. A o 511‘ 9 o .11 9 J . e 9 a . o o . O I I . I o . .. o L o. e e o w . A 19. . o I .1; r g a . _ .I . p f . A e .01.? .41.?1fi118 1‘ r e 1. . .F t u o . _ o I? a 1L 1- I a o o o 1 _ II 111" _ F V 11 [F | I .vllll J1. .3111. 1.11 11 1 .i . . c0\.- \ . lull! 1 .Illll :1 . 1 1 1 O.‘..1.I.- I 411- ..1?1..11!.34 .1 156 The vertical component of the tension in the cables between the support and the l/N point of the beam: e V 91 z e, l T 9- 5! 5' V 20' 5' 5' Jl Tan 9' =§%=30 ' e,=ss° 5°27" Cos e, = 0.0333 0.0333 x 1+7OOOO = 15650 1b. Cos a x Pt Tan 67- = £03. = 20 97.: 87° 8' 15" Co: 91 = 0.01&991+ Cos 6:. 1 Pt = 0.01991; 1: l+70000 = 23500 11:. fsh = vTTtH Vm = 31916 (See page 155) H = 1839 in3 (See page 151) I0 = 1«#15140 in1+ (See page I02) = 8.5 in. (See page 18 ) _ 1 1+ x 18 _ « 2 fsh — 15% x 8.5 - 16b.u 1b/1n 0.x. I .1 ll . I 0r- IV V . .' (I .- - - 2.2.03). (L. Low... N’3.i§.§3 x. .-.-t I7 I 157 Block #3 Forty Foot Span Length ‘0 = u36 in2 (See page106) Dead load shear at the 1/2 point of the beam: Dead load shear at the support: V = u 6 x $041 1 O = 9070 lb. Live load shear at the 1/2 point of the beam: 20850 20250 114' ‘ .5 015\ .5 20. L 20. T I no' Influence Line V = 20850(0.5 + 0.15) = 13580 lb. 158 Live load shear at the 3/8 point of the beam: 20850 20850 11;- .625 \ L\\\\‘\\\o 15' \0375 25' uo' Influence Line v = 20850(0.625 + 0.275) = 13300 lb. Live load shear at the 1/4 point of the beam: 20850 52l2.5 20850 <4 Ly' 1h' {\q .u .0 30' no: Influence Line v = 20850(0.75 + o.u) + 5212.5 1 0.05 = euooo + 201 = 2u261 lb. 32000 159 Live load shear at the 1/8 point of the beam: 20850 20550 5212.5 1h' 1M' 7 V .875 .525 ~175 “*\\ .125 '7T—_— Influence Line Live load shear at the support: 114' 20850 A V = 20850(0.875 + 0.525) f 5212.5 x 0.175 = 29200 + 913 = 30113 1b. 5212.5 \ .65 L\\\\\“‘\\, J. Influence Line V = 32000 + 20850 x 0.b5 + 5212.5 x 0.3 = 32000 + 13580 + 1568 = h71u8 1b. 161 The vertical components of the tension in the cables between the support and the 1]“ point of the beams: 16" 1°" S 6 I. 9. I f . 9' a. l 5‘ 5' A 20‘ 5' S'J F‘ ‘ '1 Tan 6. =§%=15 e.=86°11' 9.. Cos a. = 0.06651 Cos e. x Pt = 0.06651 1: 1176000 = 31650 Tan 9:. = b—g- = 10 = SW 17' 21" Cos 9:. 0.09951 C03 91 1 Pt = 0.09951 1: 1476000 = M7400 1b. f g vum H ' sh 10 t v,1m = 28796 1b. (See page 160) I0 = 811550 in” (See page 106) t = 6.5 in. (See page 18 ) H = 6.5 x 13.5 x 6.75 + 20 x 6.5 x 16.75 = 592 + 2180 = 2772 in}. _ 28 6 x 2 2 _ 2 £311 - M— 1145.2 lb/in 0.x. '11.,“ ll) 162 Fifty—five Foot Span Length Block #3 Dead load shear at the 1/2 point of the beam: Dead load shear at the support: v = u 6 112 ' I 1 — 12500 lb. Live load shear at the 1/2 point of the beam: 20150 20h50 1h' .5L\\\:;;EE4L\\\\\\\> 27-5' 27.8' 55' Influence Line 1600051 + 188 = 16000 x 1.278.= 20u50 lb. v = 20u50(0.5 + 0.2u55) = 15280 1b. 5...”. :1 . ' I. 1 1 ' l l I", I ‘ . V I "i 5..“ _. _-——..."..__ ————"— '=-- '—-—- ' “4 . 163 Live load shear at the 3/8 point of the beam: 20u50 1m 20h50 5112.5 1h' J .625 3 ’1 .37N 20.635' \. 375 3h.3]5' 55' Influence Line ( 0) #000(1 + 180 = #000 x 1.278 = 5112.5 1b. V'= 20u50(0.625 + 0.37) + 5112.5 x 0.116 = 2u000 + 53k = 2u53u lb. Live load shear at the l/h point of the beam: 20u50 20u50 5112.5 1h' 55' Influence Line V’= 20u50(0.75 + 0.u95) + 5112.5 x 0.2u1 = 25u50 + 1232 = 26682 1b. {aviatfli‘uitll‘ it‘ll]... . . . 1P ,.I,|. _ _ w ‘s Vets—L ‘ 16“ Live load shear at the 1/8 point of the beam: 20u50 20u5o 5112.5 h' 1\‘" 1 1m .875 .62 .3652 “‘~4 .125 6.815' 7 1+8.125' 55' Influence Line V = 20u50(0.875 + 0.62) + 5112.5 x 0.3655 = 30600 + 1870 = 32U70 1b. Live load shear at the support: 32000 IN 20350 I 11.1. 5112.5 \ .756 4 Influence Line ‘7 = 32000 + 20u5o x 0.7u6 + 5112.5 x 0.u91 = 32000 + 15280 + 2515 _. .--—..{v—y—M -H.H' _a- ,4 fivm_h'om~:‘a—5r'tfir‘ 5;;1‘b—g~\—.—- '. ...-y v.7 . ;_ ..--1 — .. ......» ruR- .... . 1| Ii... 41.I. full ,1. 7 ,1. . . . » 4 . _ ..... n t. 9 . . . , h. T0. 141111 (61+. 11 TI. 1 IL 11.1119 v . .1 +. 1 . I [:2 #3.. A.. 1: I. ‘. I’ 1 1 ' ‘ ’for Block The vertical component of the tension in the cables between the support and the 1/14 point of the beam: 6 92 9. I T l 9. L 2 .875: W667i P7.5' J: 875' 6875' Tan 9, = 8125i = 20.625 9, = 87° 13' 27' Cos 9‘ = 0.0118112 Cos e, 1: Pt = 0.011812 1: M76000 = 23000 lb. Tan 92. = $6.21: 13.75 6‘ = 85° 50' 25!! Cos 6,, = 0.07253 Cos 92. 1: Pt = 0.07253 1: l+76000 = 35800 1b. H = 2772 11:3 IO = 811550 in“ t = 6.5 in. .vmaxH fSh ‘ I t 0 (See page 165) (See page 161) (See page 106) (See page 18) -18932x2772_ -' 2 rah — 81550 x 6.5 - 166.3 lb/in 0.x. 167 Block #H Fifty—five Foot Span Length 2 A0 = 588 in (See page 109) Dead load shear at the 1/2 point of the beam: Dead load shear at the support: .75 v = 88 x f x 1 0 = 16880 1b. Live load shear at the 1/2 point of the beam: 20u5o 20u50 15' \.s 27-‘1’ .1. 27.51 I 55 Influence Line v = 20u50(0.5 + 0.2h55) = 15280 1b. 168 Live load shear at the 3/8 point of the beam: 20u50 20M50 5112.5 1),“ 1k! .625 '37 .11 L\\\\ \ .375 ‘ 20.625' pJ 38.375' '1 55' Influence Line V = 20N50( 0.625 + 0.37) + 5112.5 x 0.116 = 25000 + 534 = 2N53H lb. Live load shear at the l/U point of the beam: 20u50 20u50 5112.5 1u- 1h' '75 u ° 9 .2u1 \.25 13.75' _1_ h1.25' 'T‘ 55' Influence Line V = 20N50(0.75 + 0.h95) + 5112.5 1 0.2Hl = 25N50 + 1232 = 26682 1b. ‘ 169 Live load shear at the 1/8 point of the beam: 20u50 20u5o 5112.5 lh' - 1n. .875 -3655 6.875' ”8.125' 55' Influence Line v = 20u50(0.875 + 0.62) + 5112.5 x 0.3655 = 30600 + 1870 = 32k70 Live load shear at the support: 32000 20u5o 5112.5 2 1h' iu' IL\\\\q .7u6 'u91 L\\\\\\\‘\\\\\\\\> " J 55' Influence Line V = 32000 + 20k50 x 0.7H6 + 5112.5 x 0.u9l = 32000 + 15280 + 2515 = 119795 lb. :02. cut 0:0. 4 a : 2, use: 171 The vertical component of the tension in the cables between the support and the l/N point of the beam: 9?. 9. 1 9. 6375' 6.815; 27 . 5' 6.875 6.870“ Tan 9‘ = 87%; 16.5 Cos e, = 0.0605 9. = 86° 31' 55" Cos 9. x Pt = 0.0605 1: 657000 = 39750 1b. Tan 9,, = 87$;- = 11 9‘: 814° 18 2o" Cos a; = 0.09053 0o. 9. 1: Pt = 0.09053 1: 657000 = 59500 lb. v s f = flai— Sh Io t vm = 35122 11). (See page 170) I0 = 177500 in)4 (See page109 ) t = 7 in. (See page 18 ) H = 7 x 17.5 x 8.75 + 7 x 2u.5 x 21 = 1071 + 3600 = 11671 1x13 _ 35122 1: 1+6 [1 2 fsh - 177500 x 7 = 132.1 lb/in O.K. 172 Seventy-five Foot Span Length Block #M Dead load shear at the 1/2 point of the beam: Dead load shear at the support: _ 8 x .5 x l 0 _ v — 5§_"'%%E"-__5"" 22950 lb. Live load shear at the 1/2 point of the beam: 20000 20000 50C0 lu' 1n. \\ '5 '3135 .12 \5 Influence Line ’ ( O) = = 16000(l + 265) 16000 x 1.25 20000 1b. ( 50; _ = u000(1 + 200 - #000 x 1.25 500 lb. V = 20000(0.5 + 0.3135) + 5000 x 0.127 = 16270 + 635 = 16905 1b. - ~_-1 7.2-”? v—- ill .1: nil . 11116111,.-.1.’ Q "a“ f .L "J‘ ”‘0‘ 7. I. 3‘ , ‘ - A '- ‘ ~ 41 .0 Live load shear at the 3/8 point of the beam: 20000 20000 5000 11' V 11+! .2515 -<<\\\\\\\\\\\V .375 § 28.125‘ 46.875' 75‘ Influence Line V = 20000(0.b25 + 0.439) + 5000 x 0.2515 = 21300 + 1258 = 22558 lb. Live load shear at the l/N point of the beam: 20000 20000 5000 A luv 1n: 1L\\\~\1L\\\\\J .75 .56h 177 L\\\\\\\\\\\\‘ 8.75' 56°25' 75' Influence Line v = 20000(0.75 + 0.564) + 5000 x 0.377 = 26300 + 1885 = 28185 lb. 179 Live load shear at the 1/8 point of the beam: 9.375' 20000 20000 5000 1).“ 11+! 1 L\\\\4L~ \‘r .875 .689 .502 \ .125 65.625‘ 75' Influence Line v = 20000(0.875 + 0.689) + 5000 x 0.502 = 31250 + 2510 = 33760 1b. Live load shear at the support: 32000 20000 1h' 10' .627 5000 75' Influence Line v = 32000 + 20000 x 0.815 + 5000 x 0.627 = 32000 + 16280 + 3135 = 51u15 1b. 4 4111 4 4 i 4 4'4 A14 4 141 4 4 11 4 4 4.41 4 4| --‘ll1 W a 4 H 2 2 2 . 2 4 . . _ 2 O I '1 4110|I 0. .AV . 10 I 01. I .1. 4 I. . . 4 . . . k . . . . b I : . o e u o 4 Arlf. YI. . a . .0 o o I f .4 I e . O V.. 9! I . H . e u 2 . _ . . _ r. I'llfi. 1 o I vl It a .9. .0 I 1* 41 I I . Q s o a e1 I o. 4 I 1 o i o . . . e .I r I . I . h v v s I e . A“ o . o 4 o o I w. a o I * . _ _ 2 . A c o A. | r. . 1b v 00.1 '1 .el 0.1 I c I . V Y I I + I I . b . 1 I I * . 4 _ v I O A v I! .9. I <. n W I I O . 4 0 .e . . gfi I e a M I . a 2 . 2 H911fl o A e 4 1.? +2 .o A 1 I . o 0 v ... I a o I. 0 I. . . I . I w . o v v p . I . . . I d . I . I I . . . I .9 . fi 5 0 . b I m .p o I . . _ . , n _ , > 0| 5% 4 11.1 141 .“4 4 illit.l4€ -1115 1'16. 0111-111T. 11011114.} 11 Ill'qlvt'l T7 +414?! 011 TI. . 'l . L . 2 . 2 I . I $1.1 Y. 1. 1+ e I. 1. O 9 7 I I .0 o . . .e. o I . . i I I. I e . I . I .10 7 u . . . ’1 1 I I. .0 ~ 1.0 . . 2 .20 . . 1a — u _ . , _ fir...‘ 1fi I I. vllo w w o .v .0 . 6 II a . 91. e I e s I . e .4110 r-®4 . 1 4 e . o . o . . o . I c w o e I .A I I * .0 I7. . r . . v w I a _ — . .. . 2 . . _ 2 2 . «.1 I Q1. 7 Q 1.. I 1 e 2. e I 1.0 v 14 I I ..e A I; .I . 4 I o o. 10 v .9110! 1 a I O I a . o I I e. I . o 1 . 10 V 1 I I .9 4 I e 01 AV 1 . . . m a . 2 — . 4 I a! 4. . . . 1 . v. . T A . v o . I r . . . o T v 6.. +1 ~ . . . . h . I —. .. - I . A . n 1 fl 2 . . I o . . m . . 2 2 1 . .1 .» 2 2 . 1 4 4 4 414 4 4 2 2 fi 2 d. . .v. .v 2 +1. . e1 v I. . . .. .1- .o . . . . w . .16 . -2 . e. o I 1a . . 1 e e- . . .0 . I o . g y . . A o 4 1. 9.“ . . . . A o _2 ~ . . 2 . _ _ . +1.4 1 ...] O .I1 e. O. 1V 0 9.1 v .4 I .0 I 1|. 0 v 1.0 .o A o 1‘ iv- 1. ’14 + o .1.A e I e c f V. O o 4 4. 4 III. r 41.11 1+ e I- I .Q s v ’ o I s 2 . 2 p 2 .0. .I I .0. e I I T c. I lo 4 a . I I . 1 . v o v . e 1: 4.! 41 o *1 e 4 o O I 1o 4. +1 9 o 1+ . . to .+ q o o. + I v . o . . .4 . o . a 9 v . 2 1. +1 o .e v .0. 011.0 1. 4 o, .4 . 1A 9 o. .o. + . . 10.1 v1 c 1. a . . ... e . 1.1 ”v 1.. i .1 I o 11...? o I. . I I r 4 .1 I . 2 . I . — . I o 2 . . _ R 2 . w w'4'1ello 4|1 4.7 4 JII‘I2 r '47llliILIIOIIAYI’ 1'14 101161111 11141 71+: 4 2 Ik 4 141'.“ 1O|1t1 101 I o 1 . . . _ 2 . 2 . . . u . O V. o.d1’1 O o 10 ¢ 01 VI 4 0. .¢ 7 o . e o ~ I v e :4 I I . . + '1 I .41 v A ‘11. I .o o . v o I 1 k I I . 1 o . 9 . . , . _ . _ . o o -4- . e . I A. o a e. . w .1 2. . I . b . . I. . . . . o . I . .o . 0‘. . A -4 . I . v . 1 . 1 .. u . . . . — w . , . _ . _ _ . I 4.1 4 I I. I Q C e o 0 fi1 0 v e c. A .1 . o . I 1111‘ I I . I w v e. I _ . _ Av 11 I o e O 1. I . . o o . v I I u I a _ I I a . .1 el . 0.110 . #1} O I. v v1 o o .I o u I . . 1 v . o . — o . I d e o 0 +1 I . p _ 1 A . I . o. . a . . a a. v I 2 2 . . b 2 — 41 4 4. 4 4 >1 4 4 1L4 4 i4 « 14 I 4 4 2 4 r ”4 ‘jlnfiuu‘ill‘ It‘ll . 0A , _ _ 2 . 01 1 d o e .I y 2. o o 1‘. I .p‘ .I . 4 . . I .0 o e: . 1 I III. . i 9 1 oh Ik Iv -I o d O. .1 o I Y 101. u . r 2. . . . . _ _ O . o o . e . .0 I a I II I I I I .9 1 . 0. .0 P7 9 . e I . 1 I A 1 ~ I I I w o e A . o I O . A M I o 2 _ A 2 . *2 e a o o .0 I 0.. v. 0 . I v I1 I o 0 u '15 a fi 0 . O s I I I I ' .. . I o A II .o 2 0 . r 2 . . _ 4 a I. q . v o A t.. < . d . .11‘ .. o v 11. F Av % v e . I, . Ql . . v - .1 I 4 f 1 . . . . . . .2 . . . 2 r. r ’10'01 lTitlTi‘t 11.11 V! 0.1-If I L; ‘ I0 -1LTII'I. -01... lul1 1.0. .'|Ol LT’IPI I I 2 0 ..I | I A _ 4 . o o +1 . . . o. v t- . . . I . o 1. — . . 4 4+1 .k. v . 7 . . .. . v r v . > . 1 . o . . . .2 2 . 0 6 fl. . I I I . v < I I I * I e . A . we 9) ‘1 I. O c O 6 . 14 v . 1 . o 4 e 1 1 o A . . * . * . _ A _ 2 . .9. o . . I .I. I o: I I I +... o 1 I . I + ... V -rl I .v o 7. A 4 14 . . .0 .q a I e #1 .1 . o . u 2 _ . v1 e k v f I e e ‘1 H . ... D I 1t I 91 I ~ I 4 v f '1 I .07 01 61 7 . I I. r u 1. I .. I v + I 1 + . . . * P L . E LB 1 _ w 1. >1 IV 1 41 41 4.| 4 41 4|4 1 4 4 1 l. 4 I11 .4 1 _ . . . o . v.4 . o .1 I Y Y . o I . .. I . . . I: o . . o . V I I. I . w I I. . . . L I1 Y . e I. e . \ I .. I o . . _ ¢ a K . r .2 w . 1'11 I O1 . .11 4 I o a o . . I A I . 4 :9 a I I O I . I A . 01+ .0 . I... I .9 29 10¢ 2. OI I .. o v I b I * .2 . I o + y . . a . . . . .|.~ . . . . I . . . . . I .0 . . I . e . . o v I . . . o w . #1 I . . . 0 o . I . I . . I1 . u a . . . o . . . . 2 2 . 2 e f _ 2 2 2 . 9 v o . . . . o . . I 2 . . . I . . . . . I v . I I o . v . . . . . _ . m1 _ L 7 4| 1 014-10 4 r III’IIA I 0110.19- .0 1-110LT .1. -.I! .1* I11- I .... 21 . . 4 1 1 _ e . I T e I o I I .v I . a I 1 I . o I I o v . I . or o .l I . r I. 6 I v I . 9 .1 I v I. I I . .v . . ¢ . . . 2 I1 o I r I I I1 I e lo I .. . I 11 I . e V e 1 O n o e. v e 0 Y O. I I ~ . e 1 . I . o h I .0 e I AY I < o O k b . w _ _ 2 2 . 2 2 o 10. a . I . I 0 Av e v I e * . V I a I 4 V . . I O f v I b I o . V I I . I I .a 19 e V o 1 . I ~ . m 2 _. U . o I I + Y . e 9 o 1 ~ . 1 . e o a I .. v I a v I. . . I . I 1. . ... A I A I . v . . . . a . . 2 . _ . 1P 4 >4 4 4 fl 4.1 4 4| .1 4 4 t'l‘.‘ . 22 . 2 2 2 0 IT .I . o e 6 If. V. .T n 1e . 4 V I . . o .. I . I . e o .0 . I + . I I o o . I I r . I . . 4 o 1 I I . . I D . a o . . 2 I e . H. .fi . 1e. A 9 O I . e . 1o I p . . o .0 v 0.. r . I . e . I I . P1 . . 0. . I I .II +. . .1 e g 9. I I I h . o A . e .0 6| .9 .e e O a. L ..§. 9 . e I e + 2 I o L. r 4 VI. 6 o 0 Q. I I I I ..I A. I .t I e I e o + e I I W o o . . 4 A I . _ 2 . . 2 Y 01 0 O1 o I Y e I. 1 I o e I 9 .7 k v I r f I I . a 0 II.’ v O 1n I .v .. . .1 . . v . I o4 I 0 V 1.1 Q I .- . . v . I a . .r [0 1.1 1 2 . 2 2 L112? H1 1 1 . 4 14 ; III,- l.10ll.l+11Y|‘111 '17.! 710.141.17-11 JT'I‘T.‘ .0 .4110" .I '17 7‘1 0 7.. o F I I v I A 1 0 . 0 fl 6. I 4 . 2‘ . I I . o 9 I o o I .. A r o I. I a . o . . v ..1 . . o . A .1 . g . I . . . . I . I e o. h d I . I . a I I I V14 I . .o e o I I I . . 4 6 I .I + . I I g. u. a . I 4 a 91 . I . I 1L e M I . 4 0 O. P 4 fi . I w o. . I e I I e e o I I e lo 4 v I I61 0.. . I F . I I I o a e I o . I n . . . 2 _ n _ e O I H I r . I I I w e . e I . I I e v e I. . I . - . . . . A o I I . _ I o I. I 7 L o 91 . b . . _ A _ . 14.1 1 4 4 2i 4 4 14.1 4 4 f 7 ' 1‘ 11 Q a o 71 e I I I .+ o 1 I. I. . I . I I + . e . 9 +1 . I . * Q. I. I . 9 2- . + 4 o v .o . u A . . I. I .I W ~ . 4 e e I o *. I I I I I . e I . ,0 I o . .1 I . I G V o I p 0 e I u * . . . A 1 O I h V + . I . v o 4 I . 2? I . . I I o o. #1 I I . fl 0 .0 . .I Q 6 0 v r I Y. o. . I . A . e 1 .7, + F 7 v . I . 2r . . .1 . A . .. o o o. u .. o I I ~ . . O . o . . I 1 1 I . o .1 . o . I . 2 . 2 . Ill-01-1116! O 4 4 r 4 1411911191l01|114 1‘11]qu .0. 41.1117. 4 III‘ 4 4 1 10" I I1- -.II I A . 2 G e I h . O . + I. . I e e I v I I I 1 .I U I .o lo. I. I . e O V I 1 I . I 0 O a A k V . u o 2 a 2 2 2 . I 9 a 1I 1'1 d I .0 a 0 11+ 01% a 1c h .I I a . -1 v I Ar 4 o A . o a e o n H e 19 a n V I o 2 . . 2 81.? 4. A + I . I e v o .e I e 4 . b. e I I Ice 0 . . I III I ‘1. w . . o . t . - I u q v10 f . . v . o . . 2 . _ . 016 a 9 1'0 . .1. v .i . 2 .2 +1. I .1. o 9 +1 o . e. .11 v v a . I I 1 I . . _2 . I1. . I . ..4 _ o 4 L_ 2 P b L 11 11.1 .. .l 1 .2. . d 4 4 4 4. 4 4 1 11 4‘ 14! men . . . . . . 1 . 2 . . . 2 . . . . . 0|1 0 Y e1 V i A e I. v 9| .0 o 011 e 1 e v. I a II 0 Q1 I I v1 . . 0 I a 9m . r .. w: .. .. 1.14.. 0 a. . .n .. . o1. Oi .4 . . 141a ”0.. o ..A a l f I o . e. 0 4|. A I . ... o. o of» fl¢ ... . 1e .0 v: . o . I 9 I 9 .1. t . o . . . I1 . + 0.1.. .. . o a I I 2 X 2 _ . 2 2 . 1. T. e r1 o 911. V 1 e 0 v . Will II + e e e Af I V L1 I no I a w r1 W 0 I V v I 9.1rl. V o o . :1 I 9| 9 *1 1 e I o . . o a w . I . II _ 1 e I v I. I V O I V I O eIJ o v . O o I a v I I e .2 e a A 4 I I v I 0 91 a N o . o. O o I O 2 O v e ..I o t a I o I .91 . . 1e o I e I Y 2 l u . . 1’ .1110llr 4 ‘3 L 44 11 ll? 1.1Tt‘. .ll1I. 4 4 F r 11:. I ..I" ’iolillYl‘ II..I1.'..1I +1911. 1'7; 2 2 2 2 . o e . o A I o I I I .01 . I o 9 O . . . I Q o I I o T A V a 0 I v.1 0 v 1w. I O 4 I . fl1o. V 4 o e I . o o v. .1 f . I _ 9 .. I I +1... 0 I 19 I e. 1 o 19 I . b . . . . . A . v . o ‘ . I 16 . 1. . . 1+ I u A e I . 1 . .v. o .. v1.0 2' . II . . I I . A o . .. N . e 9. . 2 o .10 v A I 6 I . 2 . 2 . _ _ . 911. e .a u I e . o1 O I O o I I 4 A o 1.. I I . I I a M I I . V o J a . I I I . I o I a. o 1 I o 0 0 . e 1 2 . . e f 0 .I I1 I. d e o v V. Fllb o I . I u . 2 . 2 . I I .. . . . . » .1 ..I. . . . . . . . .QV . . . . . . e1 a . o . a o I h o . . . . . . 9. . o I I . + I o o a . - 0.. o . . . o _ 2 2 1 -- . 2- 111 . 1 F 1 [J'hl III. ’I c )I 181 The vertical component of the tension in the cables between the support and the 1/11 point of the beam: 12» 19" 9; ¢ 9' f a. 9: 9375' 3315' 37 é 1 1 49.315: 49.315' Tan 9. = £1.35. = 119.075 9, = 86° 21:1 25" Cos 9, = 0.06209 Cos 9, 1: Pt = 0.06209 3: 858000 = 531400 lb. Tan 91 = 12%}. = 9.37 9‘: 83° 511' 30" Cos 9; = 0.10612 Cos 65 x Pt = 0.10602 I 858000 = 91000 lb. fSh - V?axtH o Vfiax = h4fl35 1b. (See page 178) I0 = 383,500 in“ (See page 113) t = 8 in. (See page 18) H = 3 x 22 x 11 + s x 30 x 26 = 1936 + 62uo = 8176 1n3 1‘ Q 111414 ‘ sh = 3853023? = 118.3 1b/1n2 0.x. One Hundred Foot Span Length Block #5 Dead load shear at the 1/2 point of the beam: Dead load shear at the support: _ 532 x 50 x 150 _ v - 1hh - hjhoo 1b. Live load shear at the 1/2 point of the beam: 19550 lgiio h§88 1M' 1M1 ‘ w W .skbx \.5 V ! i 50' 50' w W 100’ Influence Line 1600021 + 22? = 16000 x 1.222 = 19550 1b. < o)== = uooo(1 +-§g§) #000 x 1.222 #888 1b. 182 v = 1955o(o.5 + 0.36) + #888 x 0.22 = 15810 + 107M = 1788” lb. -1155" " . .' s..11;118at111c Live load shear at the 3/8 point of the bemm: 19550 19550 4888 14' 1u" '625 .u85[.3h5 <\\\\\\\\\\\\.375 ‘ i 37-R' 09-5' J Influence Line v = 19550(0.625 + 0.485) + M888 x 0.3h5 = 21700 + 1688 = 23388 1b. Live load shear at the 1/4 point of the beam: 19550 19550 #38 11+" 11+. ‘NN, '75 .61 h7\\\\\\\\\\\\\\\\\ 35‘ _L. 75‘ 100' 1 ..LJL 1._ Influence Line ..u'4:.' "a f - I if! I . 1!.11- . I 1 v = 19550(0.75 + 0.61) + h888 x 0.47 = 26600 + 2300 = 28900 lb. ~ ”Wifgffi “. i- .‘ -.. J 18% Live load shear at the 1/8 point of the beam: 19550 19550 “.888 1n. #1MLJ 1N ! .878 \ .125 , ‘ 12.5' x 87.5: 100' Influence Line V = 19550(O.875 + 0.735) + #888 x 0.595 = 29500 + 2910 = 32Nl0 lb. Live load shear at the support: 2000 0 “888 3 30958. "\‘N .86 .72 100' J Influence Line v = 32000 + 19550 x 0.86 + #888 x 0.72 = 32000 + 16800 + 3520 = 52320 1b. 14 00"... I4 .I4 7 I «I.1 u _ w I I 4 I d7 4 4 w fl 7 .77. . 7. 1 . o o . . I1 I_7 4 JLI h . . . . 7 . . o . . . 97 r * 7 If 0 . 717 7 L 0 .. .7 L _ . 7 I 4 fi 4 J7 ‘7 . . a v . . . fl _ I . 7 . . 4 7 . I. v . _ . . I . . r . a . a L v! I I 7 7 LI . 74 7 7 . . 7 I OI .7 7 . a .. w o . luvIv I” 7T17 «.II I 7T v 7+ 70 IO. 5LI 0 v w 4 . L , o . I + a 7M 4 I I . 7 0L to 7. 7 o . o 0 u 7 . 4 t 7 . o P. 0 - L V . _ H7_ 7 . . .7. LV 7 .7. q 7+.-. ._ .77 . II . L .L 7 7 . . . I7. L. . . 7L . . .v I 747 .0 .I7 a. Y7I. « L . . V » 1 . v 79 . _ o . t . . . v 7 4. I . . L . . L 7 o. I u o v7 . w . . . O 7 . . . o . . . WII . V 7 . 797 7.7 . LT o I a .7 r. I 7 It . T & I I4 I T . 7. o. . I . fl . . *7 _ . I . v 4 . .r o . 797+..0I76III: II *IOI‘IO .7 IlIII7 I & L . . L L Iv7707 I Y7 f| . Ii|7h7¢ 7:. U 10:. 5 7* 0 0 . . II _ .I I TI? OII‘III ll! _ . u 77o7l . . .Ir707I9 4 .rIQ .Q. I #fi I‘ r VI! 4 VII I M . I. o I. I . § . I a 0 O O. l4 * — . . , I III 77.7, III . . 7 . . . . I 7 . I I. I? 4 v o . 7 0 ~ I Q7 I I . I I o . r4 I 4I _ I I 4 . 4 I4. 5 b I. o 7e a _ I v 4 6 Q . k AV 0 r c *.. 7. OI‘ + 1 . o 7. *7 9 r L O a a . o .7 I II7| L I I I I 0 . 5 V c . . v7 0 1071717 w I 4 .. . v Q I I . . o . w I ~ . . I . w . . . _ . 1 I07 I77 07 .. o I . . .7 L V L7 .77 7. 7.7+: . . +7. . ..I. 7. 7. .77 7 . . . L ¢IQIV7¢ 7|» ‘7‘. . ..1 V o I 7. o I . 4. . . I79 . I 7 v o 4 w . . ¢ 1 . 7 W O L _ a < .7 74 7 . .7. . . _ . 7 . 7|? . . 77.. 7 . I .776 _ V 4 . L O C I A I T7... 0 o I . I .I! . U ‘7I6 Ar. I I IL 7. 0 9 . 1 t . .. 7. 71 7 I 77.7. I“ _m.» . 77- 7.777. .7. L . r 7.7“ . .77... r. . . . .77.-. . . I I 7 .L. 7 ._ L . 7 t . . O 0 d .7 Q . IL I I4 4 1 4 I1 4 L L . o 1 v . v 9 b u . t .Y . I. . v.77 . o o . H «7 INTI 4. 4 .I4. . IAHI _J n .o 9. e I 1 M I I 7 n V. II c fl » . 7 v . I7 4 I J o 7 7 o O 7. I I . I _ L I _ . 1 I 11 I f . I. + + u 0 . 0| I7. 9.. I h— . . 6 0 . . . - d r O . 7f 9 . I L. I |. .4 _ . . . . . O . o A . 4 I fi . w 9707 I. I 74! In I I . _ _ V I o v 7 _ 7 . 4 b 77 77v . 7 . 7 . AYI. w . 7 . I v e 4 . v 7n I . . 4 o d o. 0 . o .A _ $ . . I . i v o % ... _ T + o . I.b . F I O. I 417' I . . Tll. .L o A . . I 7 n a . I u o . . u I 9 O b . v s o 7.1 I. O I . 7 _ L L . I97 0 e o o '7 I . v u 7‘ . #Y I I a I 0 ol H 4 7 U u 1 f v .7 . O. I v w . o I F I 77 70 9 L Y 4 . V 47 b. 7' . . . . _ _ I. . a I. o .- . . . c 7 u 6. 74 .07: . a A 707 .7. . . . 7.7 . ~77 I .7 9 7w I 7 I. . . . . a . . g 0 .q . I . . . . o . V. '7 fl! _ fl 7% 7 I 47 Ir .47LIIII. I0 I. ..III 7 .7 . . 7T4I‘IIIIIII . . I I A 7 1 . 7 .0 A . II I7 IIIL li7I'I9I 7, OIIOIIOIIA _ I 70. o v a I A .0 v. I 7 0| 0 I . v L 1’ (7117' II 7IIIIIL r- ’ I4 <7 L . II I . r F o. 4‘ . c I a 7 I o 7 . . o 0»! III I II ..IIIOI I 7Ar'llvl .I' I 7 . p . . 07 O . . 7 p 0 fl . 7 . . . VIOIIIOIII. .7 I' ‘II’IIATIIIII‘II‘IOII '17 ‘I J t 0.. fl . I 0 v I o f . o . i I u o 70 v 07 I o f. V I 4 7 a . A u I . 7 I v . 7 7 . . o 7 Q .70 0 o o . p I I . o I. I v v u I o . 0 o _ . . L w u v o d #7. 74 e I II. I a I 0 9 a . _ . . I I o . I . n 0 7a w7v O I v . P .7 7. ~ 0 A a . L . . — . n I — ‘7. a I. It _ _ L r m r I I . o II 0 . o f I 7 O o I I o . - y o . . 7 . . 7 . L . fr I JV 9 I . . ‘ c I . . f 0 . a r a . 7 ..7 I 7 a .7. I . . o u f .. V 4 .... 7 I I» 7 . I .. . ._ L .Yls L Iv. III..77II. .IOIIVI It: I I“ L _ I b I . _ L 7 7 . . . . Ir 1 ? I I4 1 . 7 _ I Y7- . . r I O! Y. . o . . v o o I f o . >L 4 {I A d4 I . _- . 7 I 7' 7 _ . L . v . . . 77 . . 7 . . . . L 77 7 7 7 7 I V _ . 7 o . .- . . . V . ..L . . L . . d L . _ _ IL 7 . 4 . . . 4 . r 07.0 . .... . . I. V . . .7. cI 0 0| 1 7 f I TI. 9 v o 0 7O ‘7 n Y o 4. I I L . . I o 0 7b . _ 7w . u v 07 I I 79 O I? _L 7‘7 L . . . _ w I v r n . . .7 b a 7 v . . . VI . . 7 I If 0 b :7 7 . I . .o .797 .7. <7 0 Q7: 4 . I .0. ,9 . ‘7¥I . . . . . . . «I v o P 7. 1 I I o 7'7. .. . _ . _ _ , . 7.77 a . v 6.7 .. . . 7 . . .. I . . L L . . a . . I 07 7O 7 77. . L . I u I IV 47 OI O o I T h I II I Li C I 7 0‘1 0 0 V b. e v c ..I: ‘ 7 III-.41 r ‘67 a I .1! A v 7‘ .07 O I. u . 4 i L .. Irvc‘IIé‘IIOA‘II I leols774 IO _. ’7' (I'll L _ . I o .7 o. I. I1 7 I _ 7. I741 .9II+. *I‘-’ _7 . . 7 77 .17.. ~77 .74 . L; . 77. . 7.7 L 4 7.7.... l. w W . .77. . . 7 . . . L . a . V L . . III I L v7. . . . . I 7 _ . L I IIII1|1|I1 . 7 . ‘ L . [III L I . V I 1 7 v - * . . I“ . F . I . . .7. o a a .977 . I . IIIII v .4 <7 . . Iv . I L — w . . .7 7. o 9 7 V. v .. q i . 7 7 . 7 . QIIO I I o v . k L II. . O I 9 0 n I 0 f 747 . 7 1 a o. 4 7’ 7.. v . o 17|1 T . 7. . I ,7 W7. . o A v . f 0. . . o .71. r O L I I . _ . . I . 6. b O W fl L . I ~ I u . 790 I 7 01: IL'. — u 7 II I V7 a 7 _ 47 . o . Y . . I T7479 0 o .797 .770 v7 . l v . o . . 7 I7 7 u 7 . _ . II_ V In. 7 . L a 7 fl . I rI _III I L m ¢ f‘l Q 4 ¢ fl 1707'. I . .7. . ' _ 47 F.“ “III 4. 31‘7” L 4 - 1 w I .. 7 . + v. 7! L ‘7 . 7 . I. . . . . . I . . V fl L I- I W a 4 I 07 . 4 . . . LI1 0 Y a v n 0 II- . 4 k I 0 4 .1 J 4 . _ . . . 7 . . . . . k . L. . a 7 . v I . 7 7 * . . w . _ L .7 -..... ..L. .017. .. .. L 7...... fl. I. I.» w w .7 I. . . 97. I4 a L . . . . . . A . . k f «I . . 4 c I . o a . . I . . o 07 I u a. u . . n I . l o 57‘ 7#|9 t. OI . .0 Q o I W .I _ I . *.0 II 7 u . L o f A I I C u . . . n I c 7 o _ . u u . o I A III: . . L I .P I .‘7. .. I t W I I 0 w h 7+- I {It-IPII I7-‘OII l v I . if! I ‘ 0 70 I I 1v 7 o . . v o . II. 7 I 0 vIll .I II'1 III '177ka . 7 .. . 7.- 7 17-777 .hYIIII- 7 77 7 I V . . .70 97. .7 . I o v I o O I n I I _ v 7 . I I . . + 1 . H I 4 II, IYI’I _ . 4 I 0 I ’ L p I IvIIII77III' I? M I . . 7 7 . . 7 . . . 4 WI. . m 7 7 . . 7 . 7. . L TI.- I I 7 . n 7 . o L _ I. .9 o . u + 7 . . c . I I . b O. . 4I8 I IA 0 I w . fl . . h v . .7. 7 I o . .. . . 7 .. . . . . v .o . H _v . . . I . . L 7 o . _ . q o A a 7. o .7 . ‘7 o . O . I n I L ‘ v . A I 0 . . v I . t o I I _7- .Ii o . ‘ p . * r a v I . r . - .7 L _ L _ 7 . . . . . . . 7L . 7 0 v I I I . I . .77. I r. . 7 .h I? Iii 6 h 0. 0 . IO . f I D I v . . I I 4 17 I17 4 w v * L . L. . VI I 5 I 4 . 7777.. v v . 7|. I I I 4 . . . . o . a . r . . . 7. .. . . 4 7 . , L L . . . . L , 7 . . . . I It . . 7. v . 7 . I . Y n . . _ o 0 VI 4 4 u o . . . . A I J. d 7 7 w . . . . o . I. u o A 7 r _P I . I I7 I V . . 0 o 7 . . I _ 7 . I # 0| 0:7 I v 7 IO IIW70 v 9 |’.... O ¢ 6 o w A . I . I I v o /u f 0 fl 1 O . I . V . . —. . _ . . . _ . 1' I7 f 4 c .1 o . 70 4 I fl . 9 I .I 7* .t I . v f '7 u v p 9 o . . 4 III.» Fl I 7.3. Ito‘sila- 0 0 J _ I . L . w t V . I 0 III‘ I 7 9 O I7 I v 7 0|. A# 0 w 0! I: all: IIIVI .I‘I-..I9IH' Y A Q I I .. . O I In 4 II . 7 I. 7 I » r I II . . 7 . . . ,. - 7 . . . . . . . I . . . . L o 7. 7? ”I. Y I . f . 9 fl 0 . $7 . a 4 u . 7 . . . . I .o . u I . . *1 4 II . a 9 7 . L. a 970 . . O I v v . I I . *7I O . I v o v . . II . . v . o I I . 7 . 0 v I 4 7 . p . . I II II ’4 . b o .I7é76 . r O ‘7 9| .97 0 II N 6 .0 6 1 I. r 0 I I o . a . . f . . o .h . b 4 . . . a I 7 I o . I v . 0|. 7. o v . . hr 7 1.1 o + . . . v 7 o . d . . . _ . . II a I I . . . . . . . . L - . . .7 7 . . 7 7 . 7 . . i ‘ fl . .7 ..t f OI _ L . . 9 C 1 v . I o a I o 07 I o 4 7' ¢ .7. I O a a e W I . 7| I . . 07 . I T I o . L . b 97 I o n v o . . v I . D L ‘ a o I o A I w 7 I u . . 0 . o ‘ . o 6 o u h 7. I7- I . 4 . I I 7‘. . I r OI I I4 * 0 I0 v . r 6 . o k . o n 7 o I . .0 O 0 . ’I ..I7I ILTI OI IIIIIHI II. IA I I . ’II . O o . 07 o O o . a o 70 . 6 ~ 0 l'ItIIIWI 4 I HI 0 a O I . L O I . I T7IIIII+. - v. v I 7 . * n o . I l n I H I H. v . . T I . . . . . a v 7 L . 7 . . 7 a v 9 7 . V . . . I a e, 7. . AY I 0 I a ..7+ . o a . . I . I L I fl I b I I F . o I 'I 7;? V “I? o #770 1 o 0 I7 I . & . a O . v V o 707 ~77 I“ J. (I .I4. v v 9 . . Ifi 07 77.7. v 0. . IL I F0 L 0 I . b III» . * .I. n I V . I I .— 0 . . ¢ _ I 7 77 7 I 7 . I 7 7 . . . . . . . 4 7 . . ,7. 7 . . . . 7 _ V II 7r . AU. n . . . e 7 . 7 ......i..& am .7, 7.7.777. . . . . e o v n I! J .71Lwl v t o ”9 n.— I o J o o o . . . . a p . 7 u . 0 7 . . a . e _ L 7 7777 t o _ V I .77l.|ll.‘l 0 I fi 0 .7 o o a L, OI.‘ #77” OII‘I‘I I 9 g “I I7. 6 . ..I . 9 2 .+, o 64 _ ATILIOIW II. h '6 .. . I t L.. .- . a . 7.. . .774 7.. . r. I 7H III- a .. .. L. I I {I 4 I 7. v OI . I + L . I I * 1 .7 I t o. I I I _ u I . 7‘le .r o . I L . ~ I I7 07 o A I 7 e O . v I DI. . v ml II. I I. b m o 0 I o 7 1 e 1 M . . O o . .0 . . o v 07 . I u . . . o .7 o . . . r v . . fl I I L o . . . L . F o 7 o o 4 I c . O . I . . .7 . L7 I u . 7. 0. .7 .7. I” I— 186 The vertical component of the tension in the cables between the support and the l/M point of the beam: Tan 67 = 1?: 21.12857 Cos a, = 0.01I667 Cos 97 x P Tan 6. =l§% = 125 vmax = 50600 11). H = 8176 177:3 )4. IO = 383500 in t = 8 1n fsh I12" I?" 9 7 9 7 7 e. I /eF ‘ 12.5' 12.5' 25' 12.5' 12.5' f e. = 87° 19' 31+- 070u667 x 858000 = ”0100 1b. 6. = 85° 25' 31+" — 0.07976 1 858000 = 68500 1b. (See page 185) (See page 181) (See page 113) (See page 18) = w_ 2 383500 I g - IBM-9 1b/1n 0.x. 187 Block #6 One Hundred Foot Span Length ‘0 = 12h0 in2 (See page 116) Dead load shear at the 1]? point of the beam: Dead load shear at the support: v = £259.5igg_£—159 = 6u600 1b. Live load shear at the 1/2 point of the beam: 19550 19550 Mess ~1m 11+- Influence Line V = 19580(0.5 + 0.36) + NSSS x 0.22 = 16810 + 107” = 1788“ lb. -. M ... 188 Live load shear at the 3/8 point of the beam: 19550 19550 #888 1M' 1M' 1\' .h85 .3u 37-5' .1. 62.5' 'T‘ .625 100' -JL ,._!L-..fi__.-___ Influence Line V = 19550(O.625 + O.H85) + #888 x 0.3M5 = 21700 + 1688 = 23388 lb. Live load shear at the 1/N point of the beam: 19550 19 50 uses 1u{ lui, V 25' 75'. 100' Influence Line V = 19550(O.75 + 0.61) + “888 x 0.“? = 26600 * 2300 = 28900 1b. 189 Live load shear at the 1/8 point of the beam: 19550 19550 h888 Alh' ‘lu' .875 .735 .59? \10125 . E 12 2. . .4._ 87.53 i 100‘ Influence Line v = 19550(0.875 + 0.735) + #888 x 0.595 = 29500 + 2910 = 32h10 1b. Live load shear at the support: 52000 19550 uses Alu' filu' RN e i .86 .72 100' ..“JL.__ Influence Line v = 32000 + 19550 x 0.86 + #888 x 0.72 = 32000 + 10800 + 3520 = = 52320 lb. v, . 1... 1. ,1 .1 1.- 1-4.. 1-1. ._ I -1 _ . ,11 .1..- .-.. ...-1-. 1. v.0 .9 0 f 0 I0 0 o 7 I o . H10 I. v v _ 0 . 0 . 0 . . . 0 . 1 0 ~ I o . Y . o . Ir .H I I .0 .~. . I .V 0 0 0 o V . 0 c + 9 . . 0 LL». 0 0 o . L p 10.0. . 0 O-I I *1 I . . o V 0 . L .0 0 . M v 1*! w 0..“ 0 .9110 01 .0 a . o o - 1. A I 0 L .0.1 .T 0 0 0 . . 0 o . 0 O 0 0 a . . . 0 . a I .0 0 4 . 0 .6 0 0 a 0 0 . o - .0 . + v . A.. Q . 0. .0 I .9 ' A 01 0 I v .4 0 .1 , 4 r. 0 .o I 1 v a H .- e .. V o * 14- 0 0 . . . u I I ..0 L 0. 4 0 d w 0 u . 0 0 0 101 a I 10 I u :- r 0 0 0 + . 0 . 0 W 0 0 . . . 0 - 0 A . . 0 . W. . I v. 0 0 . . + T . 0 . AT - . Y * . - 0 * r . .I 0 . fi.0 . 0 . . 0 .14 L . I -T e . I. 0 o s I I . . . I v 0 . 0 0 I. 0 . . . 41.0 . . u .0 -. 0 . . .- 0 . . H . . I . v . _ .0- 0 . j. 0 . w. I I? . .0 1.1 . .I . . o - . LII??- 4|< 11 v 1 10110.11 _ 0.1-1.110 LI 11110141'10-Io1101 14110110111111T1011L1 0- 1.11.01 '11-?1014110'0111111‘1-91. IL.- IQIILTIII'OII-I 4...!10-l.l-1 2-14 9 v . o. I 0. T- a. .0 . ‘- v o 0. . I I o . 4 0 0 o ..0 0 - 0. fie . . Ln 0 I u < 0 0 .o - n I .0. _fl ..0 a . . O- 0 . .- . . Q o I v 0 . . h . I _ I 0 0 . 0. w . 0. v 0 v 0 w 0 . . .. 01114 I' l- 0 . . V v . - . .0 A . .0. . II 0. 0 0 . H + 0 0 . .0 . 0 #- .Lfg 1 I 4 w . 0 0 V. 0 .5 ~ . 0 . O Y I1 - . . p a o . . ,V . u u 0 8 .V 01 . n 0 .1 v. . - I I v I ‘ . . 0 w 0 0 v... \r.v...o o . o 01. v v v 1 . 1o 0 0 0 l 14 4 1- . e 0. + I . 0 0 v71; 1 4 * I 0 . -4 A 0 A 0 . _— q . . o v . n . .. . I I .. + I I I Y. 0 u u o. . . 0 0 .I 7 I 0 0 n . . u v o 0. . - .. u b 10 I L. I n .- 0 v. o . A v . . .. .I I I 0 . .... n u. 0 0 v 0. 0 10 1.0 v1 01$ * .0 n u p 01.? 0 01 I * - n 0 I! L . . .H . . .0 I . w I o u. v v . .0 ‘ I- o o . II .. o L . . . . 1 fl.11.4 H- I 1_ . 1 -11. .H-.11!1 I u% _. I -0“, u I «1 11 1 «11.1 ..I __ .1 111 ..0-0 0 .. . <10 . <- 0.r.01 .. L 9. ...v - o . A . 0.0 0 1101010 «1% 0 0.17%.L o 1-1; .0 0.-0 w .10 0 ”.0- . . . [I . I . H T . v . r .-. . _. 0 0.. r. . 0 . 0 0 o . . ... . n T-+1- 01.01“. 0 P 4 V v 01+ «.10. 0 o 0. r510. 0 o 0 9.“ u rIé 0I+II o 4 h%10- 0 0 0-.. W 0.10 0 ..L II. ...J 010 A .91. . I + . . . o + k u h . . n 0 w 0 . 01. h L . . . . w 0 a . - a 0. .0. . .L .r ...-941.! r 4.-.. I . .0 . w V . v . . _I o 0.. v 1.. 1.. o b . f b. 1- r L 14 . . 0 0 4 n . I. 0 M. . .I a v1 r 0 0. . a 0 w a L . 0. 0 . 4 . .0 0 10 r » -.. I o «-.I , . 0 L. 0 o L . . . h . . _ .10 I 41., . +1.05 Y . 10 . 0 — ,. 0 I 101.0 0 . . I . .1 v 0 A . 0 . . I I - o 11.0“ I . . 0. . . F . .I . I v. . I . . P . u 0 .0 0.1. .-. .o . . .01. .... .011. c .0 . 0v Lr I- o _. ... 1 4 111 11.1 I1 ,1 4 119' 4 I 11 .1 11111411141171! .110 01111 1011 101017.011 1011:1110! .101.+1101.tl.i-111Lr|4|¢|-I1L1 1 141 1 a. J 11 Lil-LI4III III-1L 1I010_ 141- .1 0 .11 IL I 7.9 0 0 v 0 n. o ..0 f 1 0 0:4- v 9. . o. - 0 Y1 . .0 0 0 o . v .0 0 0 4 T .0 . o 1 I . a I v . r 0 a _' .1 0 v v 0 0- . fl 9 . V. v i I 0| 0 n _o . 0. .0. . u u . I w 0 0 .I 1r c 0 0 y . . n J .0. v 0 u c 0 I v .. “.10 4 r c . I Lw . .0 I. 0. I .o . . 0 I o. 0 o . o . a I . L I . L 0 0 w J . o w I I . . w u n . i. .. m . .1 0 ”.0 _ . 0 a _ c 0 . .0 l o 1 . .p I I 0 _ 0 I-.. 0 . . . A o . . 0 I . I . L- 0f; L 0,. I . . LT .0 I .1 1H .- .0. 0 0. L ,0 010 u . . . L1 . . 0 v p a . _ m . . L- . . . . L . . . . . . + . . . a .. . . .. . . L. . . .3 . - + . . ., . . ... . . . L h _ . . . 4 1 L4 J 1 w 1 W III 1J1 I 4 L4 T 111 fi- ... '11-.” I 411.1,...I‘.‘ -. 00" h o w I o n . v 0. 0 . . .+ 4 0 0 . 0 0 0 o 4 y .- . a . $ 0 o 0 r a. 0 . M. e A 1.. .. .--: .-0 L a ..9 w . . . f m 0 q 4 . . . a 0 . ..0110. I LT 9 . . . .4. .... 01.0 I .0. a ..Y a w I . 0-. w o o I I L 0.- --... e *Ifl I 0.10 ... . ...- L .1. I 0. o. n H ., V 0, . . o .01 . . 0 0 . . II 0 +0 0 . a v 0 .0 0 .w. 0 o 0 . m . o 4 v . 01.1“? I. . h I? f 0 I . I ...71 .. .u 1% + o 0 « . . . h 0 10 >.. . . I 0 r c .0 H 0 Yb k L 0 0 u 8 + 0 I I u . I h o 0 ..0 . + 0 LI 0 LT 0 I 1 . w . .0 . m . . L - L - .-- M _. . 1 .11- 11- .11-1.111.... -..-1. L . v .w a 0?“. V .4 . . . 0 o. 0 .0 0. 0 o F . . 0. 0..1 w u u c . o . . . . 0 .9 .VI. 0 n .0 0 0 . v.11 0 0 01 f I o 0-‘ . .... A .L .4- . .0 «1.10 . . fl I . n v v 0 A. u o . 0. 0 f . ..0 9 . F . I. 0 r 0 I .10 a . o I fi- .0110 4 r 110.0 f » v .. .0 . . I . . L . 0 . v I .h 1* . u 0 . . 10 . I w I 0 . 1. . . a w . 110 . -1 4° “10 M V -0. .o o .0 n a . I- I . _ . . . _ . r 1 .fl ... 1 .1 a I .I .1 o . ,1 I 1*. $1 . . - .10- I y I . 0 0 . « 0% I I . L 10 o < . 0 0 - 0 . I a - I L I 01.4 0 L- 0 0 . .V .a . I I: . TekI‘ .4 Ifil-IIW’... 0 . p * . 4 -.I 0 Lf -0 4 A. ..f H O I a H b. 0 0 0 fine... . 0 v + 0 . n H 4. 0 0 TLW-Iw u 0 . I c T .0 0 Q L 1 % .4 . u 0 0 0 o GIG-#144114. 0 0. L. H A. n . C. I .1 . ... .. n 9 0 I . « hm I0 I 0 v 0 o I . u g o r- . T1 . L. 1.“: o H :0 4 . . W 011 0 u 1., L . 9- - 0 f It 4 1 0 G Y {I 0 L7 L 1101 10 - P 0 I. If 1 0 .L . l. L. I. M 0. . a Q- .91 . .0 n. . v o I g 0. L . . . . ..--0 . o + 0 0- 0 0 a 0 I - . o f n9 0 o 4 .0- . 1% f . 0 1*. 0 1.0 LT .1 0 0| . .W 0 I4 . . Ir- 4- 0 e 0. 1. q . v o . IL—r 1 I L1 14 I I I.—1 I 4 _ .11 I . 1 1.1 1 L14 q 1111.10.11 4 1.1101110. .4 0 0-. . 4N. . . I . u . . h 0-. . . .f r . - — . I . I. 0 . - . A . I .. 0 . 0.’ 0..-. .4. P 0 . 0.71” I 0- .0. 1,4 ..I I. . L 0 I - . T . 0 n a o 0 l v w . 0 0 10 0 0 a * .I 0 v .0 0 I d W II 0 0I u f {Il'-§ 3L . 01 . I L1 4. < v 0 0 0 I 0 0 A I. a w 0 I . . . . c u 0 o n v I 0 10 n . 0 . * . v . I r-I a .0 c . 0 . u 31. I 10 o 6L .0 .0I0 0. w 01 . .-+ 0 w . 0.1+ . 0 0 . . u . I. v . I c . I . u . W . . . . L . 0 a . o 1 8 n . 0. 0 n w u . . + 0h II 71 0 I 0 0. a. a - 1f. . f I . .0 r1 p 0 I o _ .. _ ... 1. . .- . - _. . _. I ¢ 0 . . . V 0 . a I 0 .4 Id 0 .? w. . 101 0 . 0 I I . L . . . . . . . I . + 4. . -.- . . I . . L. . . . . e . I . v L . . . + I _ + I _ F 4 . I . .. o . o. I . n I . u d n v 0 n o 0 L . + 0 0 . L - I v 0 w . -0. I . Y 1 1.111'1101-"1¢_ - #1 II 0‘111101I4I-‘I‘IIL v 0 c 4. I .v . I w 0 0. . u L 0 H e p 9 .0 v v 0. . 0 a 0 I y . . . H I CIA! 4H t O 0 V - f 0 fl 1 H 0 0 l0 9. I 0 . 0 u a u . . a o . 0 . o .0 0 e y 0 I o 0 0 v u o u 0 t a . r 0 I I - I H n 0 I I 0 ... .- n I .r .1 L 4111 H .14 4 4 J 4 . . . . . P . H .. . I- . .. . - . ..fi . - . . a I . e I + W 0 I 0. a 0 . . w . I l O I O * I * 0 l‘ ¢ ¢ . ‘ 0 I L .0 0. .10 .H I O I a . . . + . L . I . . L. L . . . . i U ._ . . . . L VII-011011.11! W. I 0 .I‘OIILVI‘I *1! 101 01 L 1110.1" 4 -0 1110.11.11.11- A - L _. .. «.... .......L ...T -....L I . I . o . I . . . L . o . . I . .. « 0 . . L . . . . . . . . . . . . L . . . . . . . . . - . . . I . . ... I I . . - .. I . I . . .. . . . . . 0 . o I ' I W o .0 0 I r 0 0 -0 . 0 0. Q 1 o 0 . - LY . 0 0 w I . I A «k . 4 IF J 1. J1 1‘1 11 J. 4 1.1 I.“ r _ 4.] . o 0 . 0 . 0 i 0 0 0.]. o .9 . 0. 01 .0 0 10 h 0 I I. . a. . . 0 ~ % I . 0 ,0 l . .0 I. 1h 0 0110 0.1 0 ..- 0 W .9 f 0 n w... 0 .014 Lm 1' fiI 0 .0 o . .W. . . - 0 . 0 I 0 .v 0 a 9 0 #10. 0-, m0 T1011. w 011% I 0 .0 . 0 . o 0 .4 . .fl '- .0 . . 101.0 7 .4. 4 0 V. 14 0.! g ‘I 01 0 Q. - V 0 k w- 0 L0 0 . .I. 0 o I 0 a o o o 0 .1111 1 W1 P 0 1. I» I .1 - 111+ I1 III II.1011.|10|.110101L . 0 V 0 1. .7 ¢ ¢ 0 a 0 0 0 IL 10 0 v1 f 0 01.0 0 u 0 .- 0 0 . e . 0 1H . 0 o . .0 - .. q .0 . 0 . . I -0 L7 0 .0 0 . + . 0 a -.. L .I . I o i . . k . .- - . - 0.0 . 0 I . o 0 o . a 0 0 . 0 4 . 0 0 0 w o . f . 0 . . 0 0 . I 0 0. . Lv - I I ... . 0 0 0 0 a c o w . . . o L I r1 . 0 0 o . a . v . e L. r r 191 The vertical component of the tension in the cables between the support and the 1/4 point of the beam: . I 15" I2)“! . - 1__......._ el\‘ ‘ 7:%:;f;I I e. e; . I ’ I}2.51‘12.5 50' 12.R' 12-‘LI Tan 9. = L39= 16.6b7 9. = 86° 31.1 Cos e. = 0.05989 003 e. x Pt = 0.05989 3: 1250000 = 71900 11). R Tan 62 = li%= 10 ez= 814° 17' 21" C03 at = 0.09951 Cos 6% x Pt = 0.09951 x 1250000 = 12N500 1b. _ vmax H fSh - I t O vm = 61200 1b. (See page 190) u Io = 815000 in (See page 116) t = 10 in. (See page 18 ) H=10x26x13+10x36x31=33so+111so=1115601n3 = > _ 815000 J: 10 0"" 192 One Hundred Twenty-five Foot Span Length Block #6 Dead load shear at the 1/2 point of the beam: Dead load shear at the support: Live load shear at the 1/2 point of the beam: 19200 19200 hsoo 11v 11v L\\\L\\4 -5 o388 276 Influence Line ( 0 = =: 16000(1 + 5%6; 16000 x 1.2 19200 1b. ( O = : u000(1 + 526; N000 x 1.2 hsoo 1b. V = 19200(0.5 + 0.388) + 4800 x 0.276 = 17080 + 1325 = 18905 lb. 19h Live load shear at the 1/8 point of the beam: 19200 13:00 usoo 1 ' 1hfl \ 1 -875 .73 -58 .125 15-625" sh.375' 7F_—_— 125' Influence Line v = 19200(o.875 + 0.73) + usoo x 0.58% = 30800 + 2800 = 33000 1b. Live load shear at the support: 32000 19200 usoo 1M' 1M' \\ 1 .888.77é L; 125' reef _J Influence Line V = 32000 + 19200 x 0.888 + “800 x 0.776 = 32000 + 17070 + 3725 = 53795 1b- . -.. ._.. ,. . . 9 A ... - 1 w e. 0 .7. ......1 .19.--.”1W12. 1.9.9 4 .. . . . . I v u n . . e t . . .. V a 4 e A . v.” e, ..A . .. 1. 4 . . . . v v . 9. . . l . . ... . .- .... . IWV . v . 1w.e . A 9 .. ... .11 t A . . . . . . . .. . . w . ¢-. . . . .. ... W. . . . . . . 4 . . . V. W . A _IT . A . w. . W A T . -. . v . .-. . . . . A A . 7v . . W. . . e r .. . .. #1.. A.. . _ v . u. . . . 411i. W I”. le 11121.9.[Ll11911l11f1‘1941v11 v . .m . .Viv llxn . .. . n 1. v. e. v ... e or .. e. ... we. Vr .. ~ ... .. . ..8... -.. ...: A. . . .W A ... W .. . _ .3 . W W ..A- .-..i... ..- .. .o v. . 4 . o x . . . .. . ........... .......-.L. .- . r. ..... .-.. . .T ._ . e. A 4 . . ... Y . . . 1 . . .k . . . . .-. . . 1. ”..I . ..AT IT... . . . e. W . . .... .... ..A.+. . V r. .... ..T ...V .....- ... . .A. .. . ..1.Av..v. .....4. .. ... .. v.7.“ . ..p. ..-r . v _ Ile‘lw 1 $011 . x v .. r. . «Y... . . .-.” ..- ...v.._. .. ..-. . .o _. o. . .. 4 1.v\¢ v . 4 . y . . . .. r A. I. . . . .... “ -.--.. -- . ..I. wA....AY.. , . .. ... . ..| . Ac...° ...... v. ..m l 1 . .. . A...w... . . . ..oA. .+... o. n . . ..v. .. . . ...... V .. . . ..F......m .. .. 4 ....c .... . -11-..1. .V p. 1.... .... . . v. .. . .-..1 .k.._ .A . .. .. .. . 1 ... A. . . .c. .... 4 x _ . . . . -.. . ..r..0.... .9. 9 . . .... l-.. . .. . . . . .0 . .. A... h. .. . - ... m . .. . . .. -.. . . . . - . .K r... .... W. . .... . . .. . . .. ..c .0. . . H ... ..r -.. .. .. . . %Y.f.« . . e . . . ..r . . . ..a. . . v .m .<.. ..s. J. . . . w... . .7 .. H . A . -P._.eW_. , . . . l V W . ‘,‘;\y mvuwxfl .w. Hummwwfl. ..H...m. .mWJ 9.... . .. .v.. ....n -ox..Mv..... . ..n . . T. . . v... ..- VA . v w; .-. ‘l v .. 7' 1 vA . .. . .. ... .....t... .. VH.. .... ... .v. . . .. o. . . . e. .4. .... ... ...¢. . . o. . L...Y a 196 The vertical component of the tension in the cables between the support and the I/H point of the beam: 1.. 12“" 9 .' L 9| 1 f 9' 9; 15.62.5' 1555' 52.5' 1562.5” «5.1.25' - "1 Tan 9. = €741: 20.833 e. = 87° 15' 7“ C03 9| = 0.0‘+79o Cos a, x Pt = 0.014796 1: 1250000 = 60000 lb. Tan 62 = gig—‘5- = 12.5 6.: 85° 25' 31+" 003 5; = 0.07976 C03 92 x Pt = 0.0797e 1: 1250000 = 99600 1b. f = vmax H “h Io t Vm = 68330 lb. (See page 195) H = lMSbO in3 (See page 191) I o = 815000 in“ (See page 116) t = 10 in. (See page 18 ) f =68510x11+560= 2 .. 311 515000 I 10 122 lb/in 0 K APPENDIX F .1311 S IONS 1 BLOCK DI 1" 10 Block #2 3 Vb." ‘ 1 .. 0) $5 SI Mai A 18“ 01 A”; Block #3 Ch 20" P‘ r*__;u2L_.1 \ l i '3 '—-—"__—W 6%: 672." 6% 4: ' V O ru : “i ‘ uZ/I 9 19a 2” 1 2' Block #14 18" . l I 7 . ’ ‘4 1 A gig/1+" 7n 8 3L" '51 135' Block #5 l 30“ l 18" L J ' °§ L 11 ‘8" 11" E 199 200 Block #6 36" 18" 3.. Ho: mm: Hos L13" 10" 13' 201 Blocks for the bending points of the cables: For Block #2 from 30 feet to “0 feet: 16" F——‘| H \D 5 H14“ '8 llf' 3 3/‘4 \rs _— u3;T 3 Block“ I 16" . £2 3 32“" 8 1/2m 33M = _- \N N Block #9 15* f‘fl Bound to u27114 ___- +— prevent chipping 1/8 point of beam fly—*1 Round to prevent chipping 1]“ point of beam Block #10 Block #Ll _J____ Round to Prevent - Chipping E. - m 3 1/8 Point of the beam 15" Round to "Prevent : Chipping l/h point of the beam 202 203 For Block #M from 55 feet to 75 feet: an 172" | ’ 15" _ KN n1 8 8%; r9836 35 L Round to ‘———1 Prevent w Chipping O. --%r ‘1 3 1/8 point of the beam Block #12 2h 172" 1 15" _ I I MM u6h Chipping w I I! eyzg_7 __8§a \2 '{ [ L Round to -——-J . ti Prevent l/h point of the beam Block # '3 For Black #5 from 75 feet to 100 feet: 20h r___3‘i"___.‘ r._15_"__l 4 t A) 8 S 11"J 8"JA 11" a Bound to ...—4% .4494 Prevent. H Chipping __103 3 Block #1u " 30" | lan‘ 8"}: ll" :06?! 8. Block #15 ll _1 Wing. 1/8 point of the beam r—‘ifl Round to Prevent Chipping l/H point of the beam For Block #0 from 100 feet to 125 feet: .9 35" 205 _. 15" I A an H I N 13' .1410. L 13" “3 Round to ‘ Prevent H Chipping H I i A H ‘2 1/8 point of beam Block #16 36" _l 15" g. 3 N n1 3 1 ".4: 10“! 13" "3’ :1 c—JL g” 5:: Round to Prevent Block #17 Chipping 1/h point of beam For Block #0 from 100 feet to 125 feet: 205 .9 36" n 15" l A \J'l ..I 8 u n N 13" _L10 1} r3 Round to ____ir_ \ Prevent H Chipping ...: I H o 8 1/8 point of beam Block #16 .9 36" A [.991 g. N m 3 l ”9 10"L 1'5" m a .:l 1:9r. E}; Round to Prevent Chipping l/H point of beam Block #17 we Meoflm gee: eeee en es 206 maa aooam 15 ilk" END BLOCKS ..Lb ‘5/’+" 1. 21 111+" __10" u -5 how 20 u 20" 5 1116" holes 20" 10",:.10" w _ l ...—“W.___ C: ‘ + '/' l . 6+4. N L‘ 10014 ‘L‘W F GHQ —5, -+— Block #20 207 To be used with Block #3 :* Moon gawk comm on 08 Hm.‘ 03on 1+ 5/8" holes 2n 1/2' _ 19 r. . 2n 1/2" W 7...... ...... 209 mi Mooam A»: cows 09 on. mm... 988 28 3/‘4- 9 31 If“ ._ 37 1/h" . 31+ 1W - I I 973'; 972; eye" 4%” 414' ("II II 1' I II], 7M ELM/.17, I: I. l' 112" Block #23 To‘be used with Block #6 BIBLIOGRAPHY Abeles, P.W.T11e Irincip_le_s and Pragtiva g: {gesggessed Concrete, ‘flew York: Frederick.Ungar Publishing C0., 112 pages. John A. Roebling' 3 Sons Co. Rgehllnf gtrgnd and Eittings §9_r Pre stressed Concngtg, Catalog No. T-9lb. ”agnel, G. Pr “est'_e eased Concrete, London: Publications Limited, 1050. 300 page ”Proceedings of the First United States Conference on Prestressed Concrete", Hassachusetts Institute of Technology, Cambridge, Mass., Aug. 1“ to 10, 1951. \l .I 11111)} . J.Il\l.l’\|l/\Il|l\|j||l \ll \‘ A "TITI'ITrflflILflMLuTufillinjfyififlilflfliflfijmfl'“