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ABSTRACT

QUANTIFICATION OF THE CEPHALOPOD

SUTURE PATTERN

By

Douglas John Canfield

The Fourier series exactly describes the shape of ceph-

alopod suture patterns in the subclasses Nautiloidea, Bac-

tritoidea, and in four of the eight orders of the Ammonoidea,

but can not presently describe complex ammonitoid sutures.

The Fourier method allows the calculation and graphical dis-

play of the mean sutural patterns of the subclasses and

orders studied, and exactly quantifies the morphological dif-

ferences between groups. Discriminant analysis provides sig-

nificant differentiation of the four ammonoid orders using

only the Fourier harmonic amplitudes of the sutures. Discrim-

inant analysis also reveals significant and otherwise undect-

able differences between the two symmetric halves of sutures

in Acanthoclymenia neapolitana, and thereby measures the non-
 

genetic norm of recation in that species. Specific harmonic

amplitudes increase monotonically in the ontobeny of Koenenites
 

cooperi as well as in the phylogeny of four genera of the

family Gephuroceratidae, with the result that the ontogenetic

and phylogenetic scaling factors are statistically identical,

confirming on a quantitative basis the assumption of recapi-

tulatory evolution in this lineage.
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INTRODUCTION

The importance of cephalopods in stratigraphy has long

been recognized. The suture has been a primary character

for the classification of these molluscs. In paleontology,

cephalopod sutures have provided some of the classic examples

of evolution by recapitulation and paedomorphosis (Tasch,

p. 389, 1973).

This study provides a preliminary evaluation of the use-

fulness of Fourier analysis of suture patterns with respect

to the higher taxonomy of the shelled cephalopods, their non-

genetic norm of reaction, and their growth, development and

phylogenesis.

In his discussion of leaf outlines, D'Arcy Thompson

(1917) used the metaphor of a Fourier series to explain var-

iations in form as the superposition of sinusoidal closed

form waves of varying period and amplitude upon one another.

He implied that plant morphogenesis and phylogeny took place

as Fourier analogs. The same point could possibley be made

for the ammonoid suture in paleontology, which could represent

the morphogenetic superposition of sinusoidal wave forms of

different amplitude and harmonic order. Because biological

growth and development commonly reflect natural periodic

functions, the optimal curve-fitting and filtering of many

biological forms will very likely be based on the Fourier

series.



Vicencio (1973) in an unpublished study attempted to use

Fourier shape analysis to describe sutures. This was only a

small aspect of a much larger study, and was incompletely

developed. Fourier analysis has been successfully used to

study the human face (Lu, 1965), the shapes of ostracodes

(Younker, 1971; Kaesler and Waters, 1972; Ewald, 1975),

pelecypods (Gevirtz, 1976), bryozoans (Delmet and Anstey,

1974; Anstey, Pachut and Prezbindowski, 1976), trilobites

(Tuckey, 1975), blastoids (Waters, 1977), miospores (Chris-

topher and Waters, 1974), and viruses (Crowther and Amos,

1971). The optimality of the Fourier basis of plane closed

curve description has been demonstrated by Zahn and Roskies

(1972).

All of the above studies, with the exception of Vicencio,

were based on nonsinusoidal closed forms (i.e. complete closed

curves in polar coordinates). Ammonoid sutures are natural

sinusoidal curves to which the application of the Fourier

series should be particulary effective.

Coefficients of variation (standard deviations divided

by their means) are routinely used in biometry to compare

the relative ariability of different measurements. Examina-

tion of suture patterns from the widest possible taxonomic

range makes it possible to calculate coefficients of variation

of Fourier harmonic amplitudes at several heirarchical levels.

It is then possible to compare quantitatively the degree of

taxonomic variation in all of the Fourier wave forms filtered

from the actual sutures. The Fourier series has the unique



property of allowing the calculation of an exact mean suture

pattern for any taxonomic group, or the construction of an

exact intermediate suture pattern between any two "end mem-

bers".

The norm of reaction is a measure of the nongenetic, or

ecophenotypic aspects of morphology. Because cephalopod

sutures are bilaterally symmetrical about the mid-dorsum,

available complete suture patterns provide estimations of the

norm of reaction. The filtering capabilities of the Fourier

series allow the subtraction of the asymmetry from the ob-

served suture pattern, and the residual series can be used to

reconstruct a more ”ideal" suture pattern than that actually

produced by nature.

Heterochrony implies that phylogenetic differentiation

took place by extension or reduction of the development path-

ways followed in ontogeny. The study of heterochrony in

suture patterns has previously been graphic rather than quan-

titative, and direct measurement of scaling factors has not

been possible. The amplitudes of some Fourier wave forms

vary monotonically in both ontogenetic and phylogenetic se-

quences. These amplitudes can be used to calculate scaling

factors directly and to test the assumptions of heterochrony

in the taxa studied.



METHODS

Suture shape can be estimated as Y being a fuction of X

by a Fourier series. The general form of the Fourier equation

is co co

f(x) = C0 + Z CNCOSZnNX/T + 2: SNsinZnNX/T (1)

N=1 N=1

where T equals the range of the approximation, or the period

of f(x).

CO can be found by integrating both sides of (l) to

obtain: t + T

c - UT 05 f d (2)0- to (x) x

Multiplying (l) by cosZnNX/T or sinZan/T and integrat-

ing finds CN and SN respectively.

to + T

CN = 2/T t5 f(x) c032nNX/T dx (3)

O

to + T

SN = 2/T 6; f(x) sinZnNX/T dx (4)

O

A set of data points (Xi, Yi) is approximated by a

Fourier series by determing f(x) by linear interpolation over

the data and solving for the Fourier coefficients in the for-

mulas (2), (3), and (4).

Thus, if the n data points are ordered such that X1<X2<

..<Xn, let f(x) = fi(x), xingXi+1 where

Y.-

E 1 Y
1“) " )‘q-x
  

i + 1 )x+ "(1+1+ Y1 + XiYi + 1

1 + 1 Xi‘xi + 1



XiEXEXi + 1 (5)

or E1 (X) = a1 X + b1 (6)

When fi(x) is substituted into (2)

x2 x

_ 1 ‘
cO — 21—11—371 5 fl(x)dx +5 f2(x)dx+...+

X1 2

Xn
(7)

‘5 fn—l (X)dx

X

n-l

Integrating the functions fl"'fn yields

n-l
a.

- 2
C =l/(X-X) E ——1-(x. _ 2 _
o n 1 L=1 2 1+1 xi) + bi(xi+l x ) (8)

Similarily, for CN and SN

 

 

2 2 NXd
CN = x -x1 2: I (ai x + bi) cos J—T—l,N=1,2,3... (9)

n j=1 Ki

n-l X +1

3 == 2 ' j
N Xn-X1 (a. X + bi) sin ZnNde’N=l,2,3...(lO)

i=1 xi 1 _"T—

Integrating, these become

 

 

b ZnNX ZnNX

+.—£ sin +1 - s1n ——T——

nN

a.T ZnNX. ZnNX
1 1+1 _ . 1

+ 3:2gz- cos ——T———— cos T (11)



n

SN =

 

6

a. ZnNX . ZHNX.
_1 1+1 _ 1

b. ZuNX.+1 ZHNXi
1 1.

-— cos -—«———— - 05
"N T C T

a. ‘ 2nNX. 2nNX.
1 . 1+1 . 1

+ 2:7—7- Sln ———T_—_ - Sln T (12)

-1

i=1

 

 

Equations (8), (11) and (12) were coded into program

FOURIER (Appendix A) and used to compute Fourier approxi-

mations of suture shape. Harmonic amplitudes (AN) and phase

angles (Th!) are calculated by the formulae:

AN = CN + N

= 4:311@N TAN CN

Published suture diagrams were the source of all data

(Apendix B). Diagrams were photographically enlarged and then

digitized on a set of cartesian coordinates. Each suture

pattern was situated to have the venter lie along the abcissa

The origin was at the point at which the suture pattern and

venter cross. Forty to one hundred X, Y coordinates of points

on the suture pattern were recorded, starting at the origin

and finishing with the point at which the suture intersected

the mid—dorsum. Points were selected at regular intervals,

with exceptions for inclusion of finer details which would



otherwise have been smoothed over by linear interpolation

over the sampling interval. Two methods of treating this

data were then compared.

The first or "half suture" method shifted the orienta-

tion of the suture pattern with respect to the coordinate

system so that both the first and last data points had a

Y-values were multiplied by the same normalization constant in

order to maintain scale relationships. The Fourier series

approximation was then computed over the 0.0 to Zn interval.

The second method takes advantage of the bilateral sym-

metry of the suture patterns by constructing a mirror image

from the mid-dorsum on around to the venter. This "complete

suture" is then normalized, as before, to range from 0.0 to

217 fromventer to venter. The Fourier series approximation is

then calculated over this interval.

A data set consisting of 126 suture patterns was used for

comparative evaluation of the two methods. For each method,

twenty harmonic amplitudes and twenty phase angles were com-

puted from each suture pattern. Data sets of less than forty

one data points were eliminated from analysis because of the

Nyquist frequency limitations (Davis, 1973, p. 266). Because

each harmonic amplitude was computed from the residual signal

(that not accounted for by the previous harmonics), all har-

monics are orthogonal. The contribution of each harmonic to

the approximation of the original data by the Fourier series

was first delineated by computing its root mean square error,

as defined by the formula:



8

 

N

RMS 21 (Yj Yj) IN 1

J=

where N is the number of data points, Yj is the Y—value of the

jth data point and int the approximation of the Y—value of

the jth data point.

A

Yj is computed by the formula:

F

{Y} = A0 + 8 (Ai sin (i Xj +§i)

i=1

where A0 is the value of the zeroth harmonic amplitude, Ai is

the vaule of the ith harmonic amplitude, and fig is the phase

angle of the ith harmonic, and F is the highest harmonic

frequency calculated.

Significance testing was carried out using an analysis of

variance design associated with Snedecor's F-test (Mendenhall,

1968, p. 174-181). Although data points were not necessarily

spaced at equal intervals, which is necessary for .a rigorous

test of significance, their close approximation to equal in-

tervals still allows the use of the significance test as an

accurate estimate of true significance (Gevirtz, 1976).

Subroutine FTEST (Appendix A) was used to compute both

the root mean square error and the F-statistics. It was found

with both methods that all twenty harmonics contributed sign-

ificant (o = .05) shape information.

It was also found that with the computation of twenty

harmonic amplitudes, the complete suture method was able to



reduce root mean square error to less than an arbitrary value

of 0.05 in 80% of the cases (101 out of 126); whereas the

half suture method could achieve this level of accuracy in

only 75% of the cases (95 out of 126).

The complete suture method also concentrates more in-

formation in the harmonic amplitudes. Because a suture pat-

tern is bilaterally symmetrical, the coefficients of the sine

terms in the Fourier equation take on a value of zero (Lu,

1965). Consequently, the Fourier series becomes a cosine

series and the phase angles only have values of plus or minus

ninety degrees.

A further advantage of the full suture method over the

half suture method lies in the assumption of a repeating signal

inherent in a Fourier series approximation (Davis, p. 256-272).

A suture pattern repeats itself by virtue of its continuity

around the conch from the venter to the mid-dorsum and back

to the original point, the venter. The half suture method

ignores the assumption of a repeating signal. It also changes

the function by rotating the orientation of the sutures on the

coordinate system, so it can not lend itself to representation

of the morphogenesis of the sutures as well as the complete

suture method. Therfore, only the results of the complete

suture method have been presented in this paper.

It should be also be noted that the results obtained from

the complete suture method agree with those reported by Vicencio

(1973). This includes his observation that Schindewolf's

phylogenetic scheem (1954) of trilobate, quadrilobate and qui-

nquilobate primary sutures correspond with large contributions



10

to the fit of the Fourier series approximation by the fourth,

sixth and eighth harmonics, respectively.

The sutures of the ammonitoid ammonites are too complex

to be studied directly by Fourier analysis. The lobules and

folioles which create the intricate nature of the suture pat-

terns cause the functions describing them to be multivalued.

The Fourier series cannot deal with this problem (Ehrlich and

Weinberg, 1970). Many of the ceratitic and goniatitic sutures

also exhibit this degree of complexity. A possible solution

to this problem, not examined in this study, would be the use

of an iterative curve smoothing algorithm. Vicincio (1973)

attempted such analysis, but found it not particulary useful

for extremely complex sutures. However, for sutures such as

those in Schistoceras missouriense, which only have a few
 

multivalued points along the ordinate, such a procedure could

be used. The number of iterations required to make the curve

suitable for Fourier analysis should be retained as an addi-

tional variable measuring complexity. A table of ammonoid

taxa which have been studied is included in Appendix C.

In order to evaluate the reproducibility of results by

this method, multiple data sets were generated form two suture

drawings, one of Koenenites cooperi and one of Goniatites
 

 

choctawensis. The data sets were processed, and results were
 

compared by graphical display (Figures 1 and 2) and by compu-

ting the coefficients of variation:

CVn = 100.0 (on/um)



FIGURE 1:

11

Variation in results, due to methods

in six replications on the suture of

Koenenites cogperi.
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FIGURE 2: Variation in results, due to methods,

in seven replications on the suture

of Goniatites choctawensis.
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where n is the harmonic frequency number, 0 is the standard

deviation and u is the mean.

The graphs of the harmonic amplitudes vs. the harmonic

frequency number (power spectra) of the six repitions of E;

cooperi (Figure 1) show a large variation of the harmonic

amplitudes at harmonic frequencies eleven and fourteen, The

coefficient of variation has maxima of 66.64 and 69.83 at

these respective frequencies (Table 1). The seven replica-

tions of g. choctawnsis (Figure 2) and E. cooper (Figure l)
 

is that relative variations increases greatly as the harmonic

amplitude drops below 10-2. This threshold level can be

lowered by reducing random noise due to methods. More accur-

ate digitizing equipment (accuracy greater than .025 in.) or

greater enlargment of suture patterns (larger than 8 X 10

photographs) can increase the signal strength with respect to

noise.

RESULTS

A data set of 140 sutures was analyzed and the mean harm-

onic amplitudes were calculated for the portion of the tax-

onomic hierarchy sampled (Appendix D). In order to compare

the degree of taxonomic variation in the Fourier was forms,

the coefficients of variation (CVn) was also computed for

taxonomically hiearchical levels (Appendix E). Table 2 gives

the mean coefficients of variability within hierarchical

levels. Harmonic frequency four shows a relatively constant

CV, with a minimum of 38.21 and a maximum of 45.19. The second



TABLE 1: Values of the Coefficient of Variation (CV) for

six replications of Koenenites cgpperi and seven

replications of Goniatites choctawensis.

 

 

HARMONIC FREQUENCY COEFFICIENT 0F VARIATION

K. cooperi g. choctawensis

l 2.46 4.51

2 2.78 4.53

3 3.26 7.60

4 2.61 21.28

5 1.99 70.09

6 3.15 1.15

7 6.42 3.90

8 1.33 46.07

9 4.17 20.92

10 4.54 4.04

11 66.64 1.99

12 16.36 4.42

13 4.30 15.78

14 69.83 5.82

15 13.77 13.69

16 8.68 124.66

17 16.09 4.88

18 8.04 15.26

19 37.38 8.03

20 32.87 20.31

14



TABLE 2: Mean values for the Coefficient of Variability

computed for the taxonomic hierarchy.

gégggglg GENERA FAMILIES SUPERFAMILIES ORDERS
 

l 46.74 45.79 31.23 20.30

2 41.30 42.94 35.86 35.57

3 42.19 60.73 52.01 41.08

4 39.70 44.26 38.21 45.19

5 57.37 56.35 37.21 55.11

6 32.02 32.84 48.83 50.60

7 44.85 38.33 47.61 52.76

8 28.70 65.84 43.29 53.92

9 36.27 40.94 45.49 63.33

10 43.40 46.78 54.75 48.26

11 35.74 67.27 46.55 53.96

12 48.37 61.85 27.53 55.59

13 51.81 59.39 45.42 65.94

14 56.64 49.45 47.19 59.01

15 42.29 54.16 35.04 62.79

16 43.04 47.64 51.07 58.16

17 44.21 35.02 64.74 72.05

18 40.30 45.76 52.90 59.58

19 42.61 38.42 44.35 52.93

20 54.93 44.49 36.39 59.91

15
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harmonic also has a constant CV, ranging from 35.57 to 42 94.

Table 2 shows that all harmonic frequencies (1-20) contribute

shape information at all levels in the taxonomic hierarchy.

The complexity of a suture pattern can be roughly quan—

tified as the number of harmonic frequencies required to reduce

root mean square error to 0.05 or less. The average number to

reduce RMS to 0.05 or less is seven for the nautiloids and

eleven for the ammonoids. Those ammonoid approximations which

could not reduce RMS to 0.05 were not included in the computa-

tion of this average.

Sixteen harmonics were the maximum number required to

reduce RMS to 0.05 or less in the nautiloids. The ammonoids

differ form the nautiloids primarily in the increased signal

of the higher order harmonics (Figures 3 and 4). This is an

expected result of the ammonoids' increase in sutural complex-

ity by the addition of lateral lobes, which are not found in

the nautiloids.

The mean power spectrum of the Subclass Ammonoidea was

computed from the four power spectra shown in Figure 5. These

are the mean harmonic amplitudes of the Orders Anarcestida,

Clymeniida, Goniatitida and Cerititida. The mean suture pat-

terns which these power spectra represent were redrawn by

FORTRAN program FILTER (Appendix F) and are presented in

Figures 6 and 7). Discrimminant analysis (Nie, et al., 1975,

p. 434-467) was performed using these four Orders as the clas—

sification categories. Only nine individuals out of 129 were



17

FIGURE 3: Mean power spectra of Subclass Ammonoidea

(A) and Subclass Nautiloidea (N).
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FIGURE 4: Mean sutures of Subclasses Nautiloidea

(A) and Ammonoidea (B) and a graphic

display of the difference between them

(C).
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FIGURE 5: Power spectra of the mean suture patterns

of Ammonoid Orders Anarcestida, Clymen—

iida, Goniatitida, and Cerititida.
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FIGURE 6: Mean sutures of Orders Anarcestinda (A)

and Clymeniida (B) and a graphic display

of the difference between them (C).
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FIGURE 7: Mean sutures of Orders Goniatitida (A)

and Cerititida (B) and a graphic display

of the difference between them (C).
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misclassified (Table 3). This result is significant at a =

.01 withX2 = 318.35. The sensitivity of Fourier shape anal—

ysis to genetic differences at high taxonomic levels is dem-

onstrated by the above results.

The ability to filter nongenetic effects from the mor-

phologic information, leaving only genetically regulated

shape information, is of great importance to the studies of

taxonomy, ontogeny, and phylogeny. The data set included only

two complete suture patterns suitable for examing both halves.

Both suture patterns were of Acanthoclymenia neapolitana, at

2% volutions of the conch and at maturity.

Each suture half was processed eight to ten times.

Discriminant analysis was perfomred upon the harmonic ampli-

tudes and 100% correct classification (1:2 = 105.00) was achie-

ved (Table 4). The significant differences between left and

right suture halves are summarized in the mean power spectra

of these sutures (Figure 8) These differences are not dis—

cernible in visual inspection of the suture patterns.

The ontogenetic sequences of sutre patterns of Adrianites
 

dunbari, Agatherisis uralicum and Koenenites cooperi (taken
  

from Arkell, et al., 1957) were studied. Suture patterns

which were too complex for analysis i.e., those which requre

a double valued function) were omitted. Sutural complexity,

as measured by the number of harmonics required to reduce RMS

to 0.05 or less, increased with age in each of the three

sequences. Because of the elimination of the complex mature

sutures of A. dunbari and A. Uralicum, further study of

ontogeny was limited to E. cooperi.
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FIGURE 8: Mean power spectra of left and right

juvenile and adult sutures of

Acanthoclymenia neapolitana.
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Figure 9 is the power spectra of the harmonic amplitudes

of the six sutures in the ontogenetic series of M. cooperi as

reported by Miller (1938). Growth and development is re-

flected in the power spectra as a slow broadening and migra—

tion of the first peak of the series to higher order harmonic

frequencies. Each successive approximation (i.e., suture)

tends to be of a higher overall power spectrum than the pre-

vious one. This visual observation is supported by ranking

the approximation at each frequency and summing the ranks

over the approximations (Table 5). The above observation

fit Miller's description of the ontogeny as proceeding by

the subdivision of lobes and increase in size.

A phylogenetic sequence of sutures proposed by Miller

(Arkell, et al. p. 134, 1957) for the Family Gephuroceratidae

was studied in the same manner as the ontogeny of sutures in

M. cooperi. The sequence consisted of Ponticeras aequabilis.
 

Manticoceras simulator, Manticoceras sinuosum, Koenenenites
   

cooperi and Timanites keyserlingi. The complete sutures
 

of M. simulator was not available in the literature and could
 

not be included. The same problem forced substitution of

Ponticeras stainbrooki for E. aequabilis.
  

P. stainbrooki, which has the most simple suture, forming

only four distinct lobes (Arkell et al., p. 135, 1957), has

a peak in its power spectrum (Figure 10) at the fourth harm-

onic frequency and then drops for the higher order frequencies.

 

M. sinuosum, M. cooperi and T. keyserlingi should then be ex-

pected to have peaks at frequencies six, eight and ten,
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FIGURE 9: Power spectra of the ontogenetic series

of sutures in Koenenites cooperi.
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TABLE 5: Rankings of the harmonic amplitudes within each

harmonic frequency for six suture patterns in the

ontogenetic series of Koenenites cooperi. The

increase in rank sums with age is a response to a

general increase in signal with age.

 

VOLUTION OF CONCH

0.5 1.5 2.5 3.5 4.5 5.5

HARMONIC NUMBER RANKINGS OF HARMONIC AMPLITUDES

l 5 4 l 2 3 6

2 3 l 2 5 6 4

3 2 l 3 5 6 4

4 1 3 6 4 5 2

5 3 4 2 5 l 6

6 2 l 3 4 6 5

7 1 3 2 4 5 6

8 1 2 4 5 3 6

9 3 2 l 4 6 r

10 l 2 3 4 5 6

11 2 3 4 5 6 l

12 l 3 2 4 6 5

l3 2 3 1 4 5 6

l4 2 4 l 6 5 3

15 1 3 2 5 6 4

l6 1 2 3 4 5 6

17 1 3 4 5 2 6

l8 1 2 4 3 5 6

19 l 2 4 3 5 6

20 .1__ _2_ _4_ .1 a... _5__

Ranking Sums 35 50 56 87 95 97

28



FIGURE 10:

29

Power sectra of the four sutures in the

phylogenetic series in the Family

Gephuroceratidae. SEQl = P.

SEQ3

SEQ5

U-

:.

sinuosum, SEQ4 =_M.

keyserlingi

stainbrooki

9.992221.
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corresponding to their respective number of lobes (Arkell et

al., p. 135, 1957). M. sinuosum and M. cooperi do have high

values where expected, but these are not their maximua T.

keyserlingi has a relatively low value for its tenth harmonic
 

amplitude. These anomolies are considered to be the results

of combinations of lower order frequencies making good approx-

imations to the fit of the data, leaving less residual signal

to be accounted for by the higher order frequencies. The

asymmetric, non-regular (variable frequency) nature of the

lobes of I. keyserlingi can be better approximated by the
 

combination of two signals, the fourth and the seventh harm-

onic frequencies, than by the tenth frequency.

A measure of the similarity of the sutures within a group-

ing can be made by calculating the normalized roughness co-

efficient (RC) of each suture pattern.

 

fi

20

J. 25 Z (Aij/ A1)

i=1

RC

where Aij is the harmonic amplitude of the ith frequency in

the jth suture, and Xi is the mean harmonic amplitude of the

ith frequency.

A set of identical sutures should all have values of RC

equal to 10 or 3.1623. The phylogenetic sequence has value

of RC ranging from 2.9135 for I. keyserlingi to 4.7666 for M.
 

sinuosum. The ontogenetic sequence ranges from 1.6082 at the

earliest suture to 7.4351 at the adult suture. This indicates

that the sutures of the phylogenetic series are less differ-

ent from each other than those of the ontogenetic series.
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The sources of the variation can be determined by ex-

amining the coefficients of variability for the two sequences

(Table 6). The phylogenetic sequence only has two values of

CV greater than 100 (harmonics twelve, thirteen). Other

sources of variation are, in descending order, harmonics six,

fourteen, sixteen, eleven, and one. The ontogenetic sequence

has six harmonics with coefficients of variability greater

than 100. Only harmonics one, two, four, six, twelve, four-

teen and sixteen have lower values of CV in the ontogenetic

sequence than in the phylogenetic sequence. The extremely

low values of CV for harmonics two and four in the ontogenetic

series indicate that these harmonic frequencies are relatively

independent of development, and reflect a basic sutural form

that does not vary with growth.

Log transforms of the harmonic amplitudes form the suture

patterns of the ontogenetic series were submitted to prin-

cipal components factor analysis (Nye, et al., p. 468-514,

1970). The number of volutions of the conch at each suture

was included as a variable representing age. Also included

were log transforms of the size of the aperature and twenty

harmonic amplitudes computed in closed form (Ehrlich and Wein-

berh, 1970; Ewald, 1975; Anstey, Pachut and Prezbindowski,

1976) from the shape of the aperature at the respective number

of volutions.

The matrix of correlations, output as a preliminary re-

sult, shows significant (a = .05) correlations of age with

size, sutural harmonic frequencies zero, six, seven, ten,



TABLE 6: Coefficients of Variation of the harmonic

amplitudes, computed from the phylogentic series

in the Family Gephuroceratidae and the onto-

genetic series in Koenenites cooperi.
 

  

HARMONIC NUMBER COEFFICIENT OF VARIATION

Phylogeny Ontogeny

l 80.14 76.61

2 67.25 32.53

3 56.67 61.68

4 52.41 39.45

5 64.15 114.58

6 95.35 68.16

7 52.95 78.82

8 70.77 84.23

9 51.54 76.68

10 76.93 113.23

11 80.68 123.17

12 104.56 67.60

13 113.84 153.60

14 88.63 66.56

15 43.61 93.68

16 87.28 65.48

17 46.38 117.06

18 55.36 119.19

19 62.38 71.61

20 52.28 81.46

32
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twelve, sixteen, eighteen, twenty and aperatural harmonic

frequencie four (Table 7). All of these variables load

most heavily on the first principal component (Table 8) or

the general growth factor (Gould, 1966).

Principal components analysis of the phylogenetic se-

quence was performed using a dummy ”SEQ" variable coded as

the log of the suture's position in the series. As before,

log transforms of the harmonic amplitudes were used. No

aperatural shapes were available for the study. Only har-

monic frequencies seven, eighteen and twenty were signifi-

cantly (a = .05) correlated with "SEQ" (Table 9). These four

variables all loaded most highly on Factor two (Table 10).

The correlation of harmonic frequencies seven and eigh-

teen with age in both the ontogenetic and the phyloeneetic

series is an interesting point. The seventh harmonic is re-

sponsible, in part, for the presence of lateral lobes. The

eighteenth harmonic frequency is equivalent to eighteen evenly

spaces lobes. Alone, its effect can only be in small scale

sculpturing of the suture patterns. However, the high levels

of correlation imply an interaction of the two variables.

The results of this interaction is demonstrated by Figure 11,

which shows the actual contribution of harmonic frequencies

seven and eighteen to the approximation of the earliest and

adult sutures of M. cooperi.

The log transformation of the two harmonic amplitudes

were plotted against each other and regression lines were com-

puted (Figures 12 and 13) for the ontogenetic and phylogenetic

data. The slopes of the regression lines are 0.593 for the



TABLE 7: Significant Correlation Coefficients (R) of

variables from the study of ontogeny in Koenenites
 

cooperi. Significance level is a=.05 and a=.01(*)

Sutural variables are HARM l to HARM 20 and HZERO.

Aperatural variables are AHARM 1 to AHARM 20 and

SIZE.

AGE SIZE

Size .97982* HARM 6 .82005

HARM 6 .88217 HARM 7 .97274*

HARM 7 .85522 HARM 8 .89910

HARM 10 .86423* HARM 9 .98817*

HARM 12 .81744 HARM 16 .95864*

HARM 16 .99448* HARM 17 .88508

HARM 18 .95072* HARM 18 .95433*

HARM 20 .85268 AHARM 2 -.82488

AHARM 4 .87485 AHARM 4 .83539

HZERO .84909

HARM 1 HARM 2

AHARM 1 -.95539* HARM 3 .94236*

AHARM 8 -.92109*

AHARM 9 -.95587*

AHARM 12 -.94688*

AHARM 13 -.83069 HARM 3

AHARM 17 -.90256

AHARM 18 -.85346 HARM 15 .88907

HARM 4 HARM 5

AHARM 3 .92283* HARM 17 .86010

AHARM 7 .99258* AHARM 2 -.92246

AHARM 11 .95408*

AHARM 16 .91773*

HZERO .85889

HARM 6 HARM 7

HARM 7 .81684 HARM 8 .86530

HARM 10 .86140 HARM 10 .95855

HARM 12 .82726 HARM 13 .89130

HARM 16 .86628 HARM 16 .94243*

HARM 18 .86439 HARM 17 .82926

HARM 20 .81644 HARM 18 .89193

34



TABLE 7 cont.

HARM 8

HARM 10 .82804

HARM 16 .85520

HARM 17 .95015*

HARM 18 .81873

HARM 19 .82126

HZERO .83168

HARM 10

HARM 16 .93151*

HARM 17 .85613

HARM 18 .95146*

AHARM 2 -.83102

HARM 12

HARM 15 .87466

HARM 16 .84243

AHARM 16 .83725

HARM 16

HARM 18 .92970*

HARM 20 .87048

AHARM 3 .84199

AHARM 4 .88852

AHARM 16 .86241

HZERO .89209

HARM 18

HARM 20 .88226

AHARM 4 .83301

AHARM 10 -.84336

35

HARM

HARM

AHARM

AHARM

AHARM

AHARM

HARM

AHARM

HZERO

HARM

AHARM

AHARM

AHARM

AHARM

HZERO

HARM 9

13 .88184

14 .87175

HARM 11

1 .83761

5 -.90542

12 .88750

17 .87568

HARM 15

16 .83718

16 .82249

.89209

HARM 17

19 .86686

2 -.85699

HARM 20

3 .88562

4 .91223

16 .82590

.82147



TABLE 7 cont.

AHARM 1

AHARM 8 .95857*

AHARM 9 .90245

AHARM 12 .97886*

AHARM 13 .89945

AHARM 17 .96507*

AHARM 18 .95515*

AHARM 19 .87201

AHARM 4

AHARM 13 .83189

HZERO .91379

AHARM 7

AHARM 11 .91470

AHARM 16 .93642*

HZERO .90564

AHARM 9

AHARM 12 .86207

AHARM 17 .84155

AHARM 12

AHARM 13 .87988

AHARM 17 .95505*

AHARM 18 .89848

AHARM 16

HZERO .92995*

AHARM 18

AHARM 19 .95388*

36

AHARM

AHARM 4

AHARM 7

AHARM 13

AHARM l6

HZERO

AHARM

AHARM 15

AHARM

AHARM 9

AHARM 12

AHARM 13

AHARM 17

AHARM 18

AHARM 19

AHARM

AHARM 16

AHARM

AHARM 17

AHARM 18

AHARM 19

HZERO

AHARM

AHARM 18

AHARM 19

.88997

.95938

.87177

.95328*

.96608*

.88451

.93093

.88597

.81726

.88752

.93639*

.92850*

11

.81148

13

.91031

.94541*

.84781

.82988

17

.93180*

.85166
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TABLE 9: Significant Correlation Coefficients (R) of

variables from the study of phylogeny in the

Family Gephuroceratidae at u=.05 and u=.01(*).

SEQ is the log transform of the suture's

position in the phylogenetic series. HARM 1

through HARM 20 are log transforms of the

Fourier harmonic amplitudes.

HARM

HARM

HARM

HARM

HARM

HARM

HARM

HARM

HARM

HARM

HARM

HARM

HZERO

HZERO

HARM

SEQ

7

18

20

HARM

10

18

HARM

18 -

HARM

12

16

HARM

18

HARM

l9 -.

HARM

18

HARM

16

19 -

20

.99742*

.95574

.96331

1

.98079

.96335

4

.97937

6

.99829*

.96995

7

.95070

9

98345

10

.96978

12

.97012

.95463

14

.95408

.99793*

17

.96656

18

.97393



TABLE 10: Varimax rotated factor matrix after rotation with

Kaiser normalization, computed from the four

sutures representing a phylogenetic series in the

Family Gephuroceratidae. SEQ is the log of the

suture's position in the series, HARM 1 through

HARM 20 are log transforms of Fourier harmonic

amplitudes, and HARMZERO is the zeroth harmonic

amplitude.

VARIABLE FACTOR l FACTOR 2 FACTOR 3

SEQ .46889 .84657 -.25708

HARM 1 .80022 .59156 .09034

HARM 2 .01218 -.46439 .87535

HARM 3 .19196 -.87878 .42148

HARM 4 .77523 -.56903 .27186

HARM 5 .35566 - 31327 .86779

HARM 6 .96505 .21535 -.15494

HARM 7 .44470 .87560 -.19579

HARM 8 .23334 .91280 .31783

HARM 9 .96230 -.22026 -.15694

HARM 10 .66822 .73571 .10482

HARM 11 .08710 -.96333 -.23045

HARM 12 .97243 .16059 -.l7435

HARM 13 .23329 .22795 .93484

HARM 14 .51499 .01546 -.85997

HARM 15 .16449 -.97662 .09033

HARM 16 .88527 .25251 -.38537

HARM 17 .58465 .26344 .76419

HARM 18 .69944 .70027 -.l3667

HARM 19 .99434 .09952 .02443

HARM 20 .64945 .67044 -.35770

HARMZERO .56325 .01434 .82892
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FIGURE 11:

41

Contributions of harmonic frequencies

seven and eighteen to the fit of the

approximations of Koenenites cooperi

at 0.5 volutions (A), 5.5 volutions

(B) and a graphic display of the dif-

ference between them (C).
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FIGURE 12:

42

Relationship between the log transforms

of harmonic amplitudes seven and eigh-

teen in the ontogenetic series in M.

cooperi.



L NUUH ‘300111JUU N83" 001

    
L

A
l

I

T
Y

‘
I

-
2
.
4
0
0

-
2
.
M

-
1
.
o
o
o

-
1
-
2
0
0

L
0
0

N
E
H
N

R
H
P
L
I
T
U
O
E
.

M
F
R
"

1
8

 

42a



43

FIGURE 13: Relationship between the log transforms

of harmonic amplitudes seven and eigh-

teen in the phylogenetic series in the

Family Gephuroceratidae.



L HUUH '300111JNU NUBH 001

  
43a

 
4

A
A
_

 
«
M
L

.-
'
-
4
.
o
o
o

4
.
5
0
0
0

4
3
:
0
0

4
1
0
0
0

f
r
o
m

-
2
.
'
o
o
o

-
1
.
'
o
o
o

-
1
f
z
o
o

-
.
o
o
o

«
4
:
0
0

.
0
0
0

L
0
0

H
E
H
N

H
H
P
L
I
T
U
D
E
.

H
R
R
H

1
8



44

ontogentic sequence and 0.505 for the phylogenetic sequence.

This difference is slight enough to show that the two har-

monics maintain a constant relationship through the changes

of ontogeny and that this relationship is held constant across

the changes of the specific phylogenetic sequence postulated

by Miller. The constant relationship demonstrates, on a

quantitative level, the assumption of heterochrony (in this

example, recapitulation) in the cephalopods analyzed.

SUMMARY AND CONCLUSIONS

A wide taxonomic range of cephalopod suture patterns have

been studied by means of the Fourier series. Coefficients of

variation and mean suture patterns have been computed. The

filtering capability of the Fourier series allows the quanti-

tative comparison of these meansuture patterns, at any level

in the taxonomic heirarchy. This same filtering capability

permits a measure of a suture's nongenetic norm or reaction.

Measurements show that subtle differences exist between the

left and right suture halves of Acanthoclymenia negpolitana
 

at both 2% volutions of the conch and at maturity.

The relationship between harmonic frequency seven and

harmonic frequency eighteen is monotonic for both an onto-

genetic and a phylogenetic sequence in the family Gephuro-

ceratidae. The linear relationships were calculated directly

from the log transformation of the harmonic amplitudes and

found to be almost identical. Heterochrony (recapitulation)

is there fore demonstrated on a quantitative level for
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Koenenites cooperi and three other genera to which it is
 

closely related. The correlation of aperatural shape var-

iables, generaged by Fourier analysis, with those of sutural

shape through development in M. cooperi implies a functional

relationship between specific aspects of aperature and suture

morphology.

The power of Fourier analysis in the sutdy of the ceph-

alopod suture is unprecedented. Taxonomy, nongenetic norm

of reaction, heterochrony, and functional morphology of

cephalopod sutures can be studied quantitatively by means of

Fourier analysis.
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Taxonomy of Ammonoids Studied

Subclass Ammonoidea

Order Anarcestida

Superfamily Anarcestaceae

Family Mimoceratidae

Subfamily Mimoceratinae

Genus Gyroceratites

species gracilis

 

Family Agoniatitidae

Genus Agoniaties
 

species vanuxemi

species costulatus
 

Family Anarcestidae

Subfamily Anarcestinae

Genus Anarcestes
 

species lateseptatus
 

Genus Subanarcestes
 

species macrocephalus
 

Genus Werneroceras
 

species ruppanchensis
 

species plebeiforme
 

Superfamily Prolobitaceae

Family Prolobitidae

Subfamily Prolobitinae

Genus Prolobitcs
 

species delphinus
 

52



53

Superfamily Pharcicerataceae

Family Gephuroceratidae

Genus Manticoceras
 

species sinuosum

Genus Ponticeras
 

species aequabilis
 

Genus Koenenites

species cooperi

Genus Timanites

 

 

species keyserlingi
 

Order Clymeniida

Superfamily Gonioclymeniaceae

Family Acanthoclymeniidae

Genus Acanthoclymenia
 

species neopolitana
 

Superfamily Clymeniaceae

Family Clymeniidae

Genus Platyclymenia
 

species annulata

Genus species americana
 

species polypleura
 

Order Goniatitida

Superfamily Cheilocerataceae

Family Tornoceratidae

Genus Tornoceras
 

species crebriseptum
 

species delepinei
 

Family Cheiloceratidae

Subfamily Cheiloceratinae

Genus Cheiloceras

species schmidti

species ovatum

species angulatum
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species enkebergense
 

Subfamily Raymondiceratinae

Genus Raymondiceras

species simplex

 

Subfamily Speradoceratinae

Genus Sporadoceras
 

species milleri

Subfamily Imitoceratinae

Genus Imitoceras
 

species rotatorium
 

Superfamily Agathicerataceae

Family Agathiceratidae

Genus Agathiceras
 

species uralicum

Superfamily Cyclolobaceae

Family Popanoceratidae

Subfamily Marathonitinae

Genus Peritrochia
 

species dieneri

Superfamily Goniatitaceae

Family Goniatitidae

Subfamily Goniatitnae

Genus Goniatites
 

species choctawensis
 

Genus Muensteroceras
 

species parallelum
 

Subfamily Girtyoceratinae

Genus Eumorphoceras
 

species bisulcatum
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Family Neoicoceratidae

Genus Pseudoparalegoceras
 

species russiense
 

Genus Atsabites
 

species multiliratus
 

Family Schistoceratidae

Subfamily Schistoceratinae

Genus Paralegoceras
 

species iowense

Genus Diaboloceras
 

species varicostatum
 

Genus Winslowoceras
 

species henbesti

Superfamily Adrainitaceae

Family Adrianitidae

Subfamily Adrianitinae

Genus Adrianites

species dunbari

Genus Texoceras
 

species texanum

Subfamily Dunbaritinae

Genus Emilites

species inggrgus

Order Cerititida

Superfamily Otocerataceae

Family Xenodiscidae

Genus Xenodiscites

species waageni

Genus Xenaspis

species skinneri

 

species carbonaria
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Genus Paraceltites

species elegans

species ornatus

 

species hoeferi

species altudensi
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Mean Harmonic Amplitudes of the Taxonomic Hierarchy

Subclass Bactritoidea

Order Bactritida

Family Bictritidae

 

 

.02095 .32555 .02070 .01040 .04330 .01150 .02130 .00450 .01120 .00305

.00935 .00265 .00640 .00240 .00245 .00070 .00405 .00040 .00305 .00195

Genus Bactrites

.0234 .0280 .0228 .0167 .0239 .0045 .0079 .0020 .0052 .0001

.0060 .0030 .0042 .0009 .0007 .0008 .0030 .0007 .0024 .0001

Genus Lobobactrities

.0182 .3711 .0186 .0041 .0627 .0185 .0347 .0070 .0172 .0060

.0127 .0023 .0086 .0039 .0042 .0006 .0051 .0003 .0037 .0038

Subclass Nautiloidea

Order Nautilida

Superfamily Nautilaceae

.05106 .09448 .08412 .11349 .07427 .06311 .03092 .03661 .02606 .02124

.02187 .01156 .01988 .01398 .00786 .00936 .00671 .00652 .00398 .00311

Family Nautilidae

Genus Nautilus species pompilius
 

.07480

.00915

.04712

.02081

.07885

.00770

.00270

.0711

.17710

.00410

.04751

.01162

.03910

.00643

.00450

.03450

.13065

.00835

.08930 .04245 .01360 .02030

.00750 .00340 .00240 .00035

Family Hercoglossidae

.04583

.01160

.07132

.01133

.01850

.02640

.08622 .06632

.00573 .00467 .00352 .00302

.08717 .07846 .08613 .03662

.00790 .00879 .00863 .00199

Genus Hercgglossa

.14175

 

. 05500

Genus Aturoidea
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.02565 .00220

.00015 .00175

.03354 .02610

.00249 .00289

.01477 .03080

.00463 .00235

.01850

.00240

.00884

.00150

.00718

.00289

species paucifex

.15030 .14680 .07740 .04910 .09520 .03590 .01380

.01850 .02170 .02450 .00330 .00110 .00750 .00030



.03280

.00010

.07414

.00435

.06190

.00260

.08453

.00295
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Genus Cimonia

.04010

.00450

.()1510

.00330

.03520 .05430 .01890 .00890

.00500 .00320 .00000 .00280

Genus Deltoidonautilus

.07205 .06550 .07107 .02349 .01528

.00287 .00378 .00330 .00165 .00143

 

.07840

.00537

Family Aturiidae

Genus Aturia

.07588 .16400 .10190 .08960 .03583

.03970 .02655 .01138 .01705 .01778

.03125

.03565

.05883

.01895

Subclass Ammonoidea

Order Anarcerstida

.14496 .10793 .06543 .08882 .06464 .05544

.02262 .01919 .02774 .01292 .02331 .01125

.06117

.00918

Superfamily Anarcestaceae

.22808 .07480 .07541 .03812 .03812 .03677

.01206 .00986 .01067 .00861 .00786 .00670

.05883

.01432

.05065

.01693

.06138

.01687

.02476

.00685

.02018

.00152

.04988

.00730

.03219

.00658

.01534

.00538

.02220

.01087

.08849

.01334

.06580

.01874

.03740

.0067

.31423

.00800

.26273

.01602

.10728

Family Mimocertidae

Subfamily Mimoceratinae

Genus Gyroceratitites

speCIES gracilis

 

.01930 .00470 .03897 .02253 .02480 .01633 .01433

.00680 .00530 .00343 .00343 .00320 .00330 .00233

Family Agoniatitidae

.16612 .12352 .01078 .07081 .04357 .04184

.01341 .01124 .00124 .01210 .00903 .00975

.01772

.00728

Family Anarcestidae

Subfamily Anarcestinae

.03898 .09803 .04061 .02103 .04193 .01610

.01215 .00938 .01296 .01115 .00804 .00788 .00750

Superfamily Prolobitaceae

.1532

.0132

Family Prolobitidae

Subfamily Prolobitinae

Genus Prolobites
 

.01398

.00653

species délphinus
 

.0858

.0164

.0504

.0162

.1359

.0141

.1513

.0184

.0612

.0244

.0353

.0203

.0239

.0092

species vincenti

.01750

.00020

.00490

.00120

.00948

.00153

.03638

.00543

.02717

.00796

.01787

.00591

.01177

.00257

.02550

.00867

.01634

.00649

.0239

.0081
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Superfamily Pharcicerataceae

Family Gephuroceratidae

.08729 .05360 .11310 .08559 .08504 .09459 .07916 .07359 .05732 .03973

.00653 .04259 .03362 .05226 .01174 .03768 .01084 .02739 .00516 .00986

Order Clymeniida

.07519 .09789 .07040 .15919 .07853 .07986 .05960 .04834 .02938 .02461

.02366 .01073 .01171 .00773 .01410 .00979 .00953 .00704 .00435 .00439

Superfamily Gonioclymeniaceae

Family Acanthoclymeniidae

Genus Acanthoclymenia

species neopolitana

.06323 .07938 .09539 .23029 .10228 .11569 .08164 .07589 .05083 .04378

.04164 .01792 .02063 .01287 .02559 .01800 .01711 .01222 .00740 .00804

 

 

Superfamily Clymeniaceae

Family Clymeniidae

Genus Platyclymenia

.08715 .11640 .04540 .07808 .05478 .04403 .03755 .02078 .00793 .00543

.00568 .00353 .00278 .00258 .00260 .00158 .00195 .00185 .00130 .00073

 

Order Goniatitida

.03871 .04289 .02517 .92292 .03185 .05728 .05515 .06996 .05550 .04199

.03116 .32443 .03544 .02540 .02239 .02777 .01906 .01946 .02441 .02443

Superfamily Cheilocerataceae

.04573 .07560 .03598 .03916 .07009 .07606 .02257 .05186 .02674 .03236

.03139 .04706 .00692 .02240 .01880 .01704 .00968 .02347 .00524 .01548

Family Tornoceratidae

.05127 .06311 .04165 .05246 .05829 .10137 .00520 .06616 .01634 .01654

.01326 .03505 .00346 .02600 .01174 .01321 .00254 .01914 .00192 .01319

Family Cheiloceratidae

.04018 .08809 .03031 .02585 .08189 .05075 .03993 .03756 .03713 .04817

.04951 .04647 .01037 .01879 .02585 .02087 .01681 .02779 .00855 .01776

Superfamily Cyclolobaceae

Family Popanoceratidae

Subfamily Marathonitinae

Genus Peritrochia

species dieneri

.0528 .0431 .0084 .0153 .0088 .0022 .0036 .0218 .0022 .0308

.0087 .0262 .0179 .0248 .0006 .0317 .0037 .0084 .0391 .0619

 



.0259

.0582

.04260

.02411

.0538

.0073

.04980

.04030

.02690

.03338

.02429

.01585

.02950

.0509

.02602

.03966
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Superfamily Agathicerataceae

Family Agathiceratidae

Genus Agathiceras
 

species uralicum

.0415 .0331 .0055 .0079 .0773 .1007 .0666 .0507

.0039 .0346 .0212 .0142 .0257 .0013 .0170 .0163

Superfamily Goniatitaceae

.03331 .03034 .03783 .04595 .09347 .06182 .12305 .11161

.02986 .04467 .04217 .03708 .04229 .04404 .03594 .02970

Family Neoicoceratidae

.0284

.0365

.0072

.0553

.0335

.0844

.0216

.0405

.0485

.0835

.0176

.0295

.2346

.0384

.1672

.0241

Family Schitoceratidae

Subfamily Schistoceratinae

.02590 .05452 .03170 .03655 .08070 .11608 .10283 .14580

.02470 .05510 .03102 .04288 .03350 .06185 .05235 .03315

Superfamily Adrianitaceae

Family Adrianitidae

.01680 .02650 .03738 .08705 .08650

.01644 .04128 .02211 .03659 .01249

.02095 .01803

.02141 .07309

.08623

.03173

Subfamily Adrianitinae

.01189 .02035

.03582 .05197

.01090 .01630 .04715 .10529 .06959

.01947 .00735 .02012 .03957 .02237

.07425

.02475

Subfamil Dunbaritinae
y 0 O

Genus Emilites
*.

spec1es incertus

.0300

.0070

.0157

.0942

.0227

.0134

.0367

.0752

Order Cerititida

.0276

.0241

.0982

.0387

.0688

.0336

.1034

.0026

Superfamily Otocerataceae

Family Xenodiscidae

.04284 .06059 .04433 .08939 .18577 .10257 .08220 .06517

.02877 .02061 .01668 .03424 .01734 .01884 .01566 .01574

.0289

.0182

.05971

.00815

.0178

.0230

.13065

.02268

.05819

.00815

.09067

.01179

.0257

.0045

.02121

.00834
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Coefficients of Variation of the Harmonic Amplitudes for

the Taxonomic Hierarchy.

Subclass Nautiloidea

35.25

49.59

66.39

140.10

22.27

12.64

60.98

65.74

Order Nautilida

Superfamily Nautilaceae

62.03 41.74 31.48 32.92 55.52 24.30

52.46

Family Hercoglossidae

62.25 63.

114.41 77.92 78.52 84.99 106.18 65.59

28.50

70.79 63.56 42.31 64.14 117.18 113.75

63 46.00 52.77 38.55 42.74 106.42

55.83

Genus Deltoidonautilus
 

65.45 43.69 40.32 66.49 9.03 21.75

66.10 71.11 59.86 82.78 18.18 51.52

Genus Hercoglossa

56.34 26.91 68.27 23.13 26.22

81.06 115.52 54.56 124.36 64.91

 

70.60

67.88

Subclass Ammonoidea

43.80

46.48

33.40

39.56

51.04

51.48

46.76

22.95

51.81 46.52 64.81 32.87 49.46

52.26 36.67 31.49 32.10 20.56

27.98

19.08

Order Anarcestida

49.30 23.36 33.18 55.78 35.86

62.48 53.91 64.07 31.61 52.32

31.87

34.58

Superfamily Pharcicerataceae

Family Gephuroceratidae

83.29 62.64 11.39 71.01 76.08 26.57

79.27 112.68 66.87 64.14 69.10 73.17

Superfamily Anarcestaceae

38.57 86.99 67.72 45.46 60.65 23.09

27.16 27.58 35.72 42.53 45.08 37.61

61

23.08

47.37

14.42

51.27

10.46

25.19

42.96

49.67

52.11

15.26

48.80

39.02

74.69

60.13

28.88

95.71

15.24

32.37

26.69

22.98

40.42

54.79

56.27

28.19

36.58

26.90

10.99

40.49

53.71

54.06

37.22

64.20

54.62

34.43

60.85

88.12

28.49

70.46

34.74

20.31

58.54

44.64

31.95

42.70



69.

41.

25.

69.

29.

23.

14.

26.

27

86.

16.

30.

55.

74.

99.

5.

55.

25

12

62

63

3O

50

.26

70. 77

97

87

.23

51. 56

.69

.51

54

09

77

91

80

39

77

85

62

Family Anarcestidae

47.99 102.55 34.32 12.83 44.52

11.18 42.14 16.32 19.19 8.46

36.52

19.97

Family Agoniatitidae

11.46 61.97 2.34 22.77

11.24 40.36 12.36 31.30

2.91

45.17

Genus Agoniatites

12.86 80.24 3.36 19.42

18.22 16.90 33.41 33.33

 

7.26

25.74

12.87

12.27

Order Clymeniida

15.12 58.65 44.34 35.33 58.08 59.26

54.82 79.26 28.26 89.96 90.86 88.61

Superfamily Clymeniaceae

Genus Platyclymenia
 

65.68 26.54 59.08 79.46 73.42 75.92

37.59 27.93 14.56 21.15 33.33 30.77

Order Goniatitida

42.49 41.24 58.05 74.23 57.86 67.14

49.46 64.65 34.70 67.06 31.30 92.98

Superfamily Adrianitaceae

Family Adrianitidae

12.90 35.12 38.49 26.15 20.96

28.89 18.47 82.19 9.00 8.16

43.

67.

23

30

.()9

7.68

70.

79.

48

49.

19.

79.

.10

.34

33

54

.45

.70

.47

54

54

18

53.

99.

26.

16.

48.

48.

13

16

32

50

26

40

1.18

5. 76

Subfamily Adrianitinae

72.48 44.04 68.71 79.64 77.04 58.80

76.33 8.91 64.63 50.29 87.29 40.53

Superfamily Goniatitiaceae

68.30

40.38

63.71 19.66 53.61 45.89 66.04

33.35 73.39 17.76 72.57 30.44

Family Goniatitidae

92.49 78.38 55.02 7.02 95.17

29.69 90.53 2.04 69.11 12.30

73.65

30.54

Subfamily Goniatitinae

9.25 78.52 22.02 .90 70.70

7.65 .32 74.25 2.24 13.77

29.10

37.47

39.99

.51

47.48

36.08

5.83

28.28

62.62

81.09

81.07

7.69

71.10

49.51

13.89

21.99

11.38

88.69

57.41

13.45

46.64

23.84

50.65

26.32

36.

18.

10.

22.

25.

.6028

76.

81.

41.

58.

33.

78.

55.

44.

31.

10.

84

34

62.

.4131

85.

.6634

58

10

02

10

68

96

23

01

62

10

19

83

75

69

90

.46

.04

20

54



12.

57.

40.

76.

90.

72.

78.

17.

47.

25.

30.

31.

.77

.85

13

75

96

98

60

60

15

27

48

73

91

53

104.

112.

Family

9.25

7.65

1.81

5.76

2.10

37.47

Superfamily

15.76 33.98

49.96 16.10

16.

14.

52

01

Family

98.40 83.52

53.29 89.00

19.57

62

Subfamily Cheiloceratidae

41.58

49

101.77 28.91

13.82 69.16

Family

29.17 56.82

95.66 51.92

13.25

29.53

Order Cerititida

Superfamily

Family

84.48 48.15

50.71 32.95

39.61

46.23

18.66

12.70

30.53 52.95

47.35 67.24

63

Schistoceratidae

78.52 22.02 .90

.32 74.25 2.24

Cheilocerataceae

16.84 33.28 76.96

37.54 22.48 73.75

Cheiloceratinae

70.48 41.74 31.41

78.08 58.62 59.57

31.69 48.42 70.84

43.12 6.28 60.64

Tornoceratidae

42.13 32.12 63.46

39.95 57.23 35.83

Otocerataceae

Xenodiscidae

65.50 16.03 20.41

50.14 30.55 30.32

70.70

13.77

27.57

18.43

120.78

92.37

13.02

54.81

42.03

55.06

73.44

58.83

Genus Paraceltites
 

33.29 34.66 54.36

37.57 28.46 32.50

23.80

40.55

50.65

26.32

38.88

63.32

66.21

61.37

45.50

75.82

10.19

61.88

57.32

29.11

69.40

69.59

85

48

61.

90.

77.

57.

74.

.0245

36

41

.54

24. 66

.88

14. 77

19

92

44

24

.80

.12

24

.40

.36
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