QUANTIFICATION OF THE CEPHALOPOD

SUTURE PATTERN

By

Douglas John Canfield

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Geology

1977

 $\mathcal{L}^{\mathcal{L}}$, where $\mathcal{L}^{\mathcal{L}}$ is the set of the space $\mathcal{L}^{\mathcal{L}}$, and $\mathcal{L}^{\mathcal{L}}$ is the space of the space of the space $\mathcal{L}^{\mathcal{L}}$

 $\frac{1}{2}$

$\label{eq:2} \frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{$

Contract Product

of like MC of atomage as the

is particular to this in the state of \mathbb{R}^d

Communication

 $\label{eq:3.1} \mathcal{L}=\left\{ \mathcal{L}^{\mathcal{A}}_{\mathcal{A}}\left(\mathcal{H}^{\mathcal{A}}_{\mathcal{A}}\right) \mathcal{L}^{\mathcal{A}}_{\mathcal{A}}\left(\mathcal{H}^{\mathcal{A}}_{\mathcal{A}}\right) \mathcal{L}^{\mathcal{A}}_{\mathcal{A}}\left(\mathcal{H}^{\mathcal{A}}_{\mathcal{A}}\right) \right\} .$

The Book Rolding and pol

ABSTRACT

 $\Delta \sim 10^{-10}$

QUANTIFICATION OF THE CEPHALOPOD SUTURE PATTERN

By

Douglas John Canfield

The Fourier series exactly describes the shape of cephalopod suture patterns in the subclasses Nautiloidea, Bactritoidea, and in four of the eight orders of the Ammonoidea, but can not presently describe complex ammonitoid sutures. The Fourier method allows the calculation and graphical display of the mean sutural patterns of the subclasses and orders studied, and exactly quantifies the morphological differences between groups. Discriminant analysis provides significant differentiation of the four ammonoid orders using only the Fourier harmonic amplitudes of the sutures. Discriminant analysis also reveals significant and otherwise undectable differences between the two symmetric halves of sutures in Acanthoclymenia neapolitana, and thereby measures the non-By
By
Douglas John
The Fourier series exactl
pod suture patterns in the
toidea, and in four of the
can not presently describe
Fourier method allows the
y of the mean sutural patter
ers studied, and exactly qu
ences between genetic norm of recation in that species. Specific harmonic only the Fourier harmonic amplitudes of the sutures. Discrim-
inant analysis also reveals significant and otherwise undect-
able differences between the two symmetric halves of sutures
in <u>Acanthoclymenia</u> neapolitana, and cooperi as well as in the phylogeny of four genera of the family Gephuroceratidae, with the result that the ontogenetic and phylogenetic scaling factors are statistically identical, confirming on a quantitative basis the assumption of recapitulatory evolution in this lineage.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

^I wish to thank Dr. Robert L. Anstey for his advice and guidance throughout this project. The helpful criticisms of Dr. Duncan Sibley and Dr. John Wilband are also greatly appreciated. Special thanks are given to Mitch Roth and Lloyd Lerew for their assistance with understanding mathematical, computational and philosophical problems.

LIST OF TABLES

 $\sim 10^{11}$ km s $^{-1}$

PAGE

LIST OF FIGURES

Gephuroceratidae 43

INTRODUCTION

The importance of cephalopods in stratigraphy has long been recognized. The suture has been a primary character for the classification of these molluscs. In paleontology, cephalopod sutures have provided some of the classic examples of evolution by recapitulation and paedomorphosis (Tasch, p. 389, 1973).

This study provides a preliminary evaluation of the usefulness of Fourier analysis of suture patterns with respect to the higher taxonomy of the shelled cephalopods, their nongenetic norm of reaction, and their growth, development and phylogenesis.

In his discussion of leaf outlines, D'Arcy Thompson (1917) used the metaphor of a Fourier series to explain variations in form as the superposition of sinusoidal closed form waves of varying period and amplitude upon one another. He implied that plant morphogenesis and phylogeny took place as Fourier analogs. The same point could possibley be made for the ammonoid suture in paleontology, which could represent the morphogenetic superposition of sinusoidal wave forms of different amplitude and harmonic order. Because biological growth and development commonly reflect natural periodic functions, the optimal curve-fitting and filtering of many biological forms will very likely be based on the Fourier series.

 $\mathbf{1}$

Vicencio (1973) in an unpublished study attempted to use Fourier shape analysis to describe sutures. This was only a small aspect of a much larger study, and was incompletely developed. Fourier analysis has been successfully used to study the human face (Lu, 1965), the shapes of ostracodes (Younker, 1971; Kaesler and Waters, 1972; Ewald, 1975), pelecypods (Gevirtz, 1976), bryozoans (Delmet and Anstey, 1974; Anstey, Pachut and Prezbindowski, 1976), trilobites (Tuckey, 1975), blastoids (Waters, 1977), miospores (Christopher and Waters, 1974), and viruses (Crowther and Amos, 1971). The optimality of the Fourier basis of plane closed curve description has been demonstrated by Zahn and Roskies (1972).

All of the above studies, with the exception of Vicencio, were based on nonsinusoidal closed forms (i.e. complete closed curves in polar coordinates). Ammonoid sutures are natural sinusoidal curves to which the application of the Fourier series should be particulary effective.

Coefficients of variation (standard deviations divided by their means) are routinely used in biometry to compare the relative ariability of different measurements. Examination of suture patterns from the widest possible taxonomic range makes it possible to calculate coefficients of variation of Fourier harmonic amplitudes at several heirarchical levels. It is then possible to compare quantitatively the degree of taxonomic variation in all of the Fourier wave forms filtered from the actual sutures. The Fourier series has the unique

 $\overline{2}$

property of allowing the calculation of an exact mean suture pattern for any taxonomic group, or the construction of an exact intermediate suture pattern between any two "end members".

The norm of reaction is a measure of the nongenetic, or ecophenotypic aspects of morphology. Because cephalopod sutures are bilaterally symmetrical about the mid-dorsum, available complete suture patterns provide estimations of the norm of reaction. The filtering capabilities of the Fourier series allow the subtraction of the asymmetry from the observed suture pattern, and the residual series can be used to reconstruct a more "ideal" suture pattern than that actually produced by nature.

Heterochrony implies that phylogenetic differentiation took place by extension or reduction of the development pathways followed in ontogeny. The study of heterochrony in suture patterns has previously been graphic rather than quantitative, and direct measurement of scaling factors has not been possible. The amplitudes of some Fourier wave forms vary monotonically in both ontogenetic and phylogenetic sequences. These amplitudes can be used to calculate scaling factors directly and to test the assumptions of heterochrony in the taxa studied.

 $\overline{3}$

METHODS

Suture shape can be estimated as Y being a fuction of X by a Fourier series. The general form of the Fourier equation \sim contract contract \sim contract cont

$$
f(x) = C_0 + \sum_{N=1}^{\infty} C_N \cos 2\pi N X/T + \sum_{N=1}^{\infty} S_N \sin 2\pi N X/T
$$
 (1)

where T equals the range of the approximation, or the period of $f(x)$.

 C_0 can be found by integrating both sides of (1) to obtain: $\mathbf{t} + \mathbf{T}$

$$
C_0 = 1/T \int_{t_0}^{t_0} \int_{t_0}^{t_1} f(x) dx
$$
 (2)

Multiplying (1) by $cos2\pi NX/T$ or $sin2\pi Nx/T$ and integrating finds C_N and S_N respectively.

$$
C_{N} = 2/T \int_{t_{0}}^{t_{0}+T} f(x) \cos 2\pi N X/T dx
$$
 (3)
\n
$$
S_{N} = 2/T \int_{t_{0}}^{t_{0}+T} f(x) \sin 2\pi N X/T dx
$$
 (4)
\nA set of data points (X_{i}, Y_{i}) is approximated by a
\n*er series by determining f(x)* by linear interpolation over
\nlata and solving for the Fourier coefficients in the for-
\n(2), (3), and (4).
\nThus, if the n data points are ordered such that $X_{1} < X_{2} <$
\n
$$
S_{N}
$$
, let $f(x) = f_{i}(x), x_{i} \leq X \leq X_{i} + 1$ where
\n
$$
f_{i}(x) = \left(\frac{Y_{i} - Y_{i} + 1}{X_{i} - X_{i} + 1}\right)X + \frac{X_{i} + 1 + Y_{i} + X_{i}Y_{i} + 1}{X_{i} - X_{i} + 1},
$$

A set of data points (X_i, Y_i) is approximated by a Fourier series by determing f(x) by linear interpolation over the data and solving for the Fourier coefficients in the formulas (2), (3), and (4).

Thus, if the n data points are ordered such that $X_1 < X_2$...<Xn, let $f(x) = f_i(x)$, $x_i \leq X \leq X_i + 1$ where

$$
f_{i}(x) = \left(\frac{Y_{i} - Y_{i} + 1}{X_{i} - X_{i} + 1}\right)X + \frac{-X_{i+1} + Y_{i} + X_{i}Y_{i} + 1}{X_{i} - X_{i} + 1},
$$

$$
X_i \le X \le X_i + 1
$$
 or $f_i(X) = a_i X + b_i$ (5)

When $f_i(x)$ is substituted into (2)

$$
c_{0} = \frac{1}{x_{n} - x_{1}} \left[\int_{x_{1}}^{x_{2}} f_{1}(x) dx + \int_{x_{2}}^{x_{3}} f_{2}(x) dx + ... + \int_{x_{n-1}}^{x_{n}} f_{n-1}(x) dx \right]
$$
 (7)

Integrating the functions $f_1 \ldots f_n$ yields

$$
c_0 = 1/(x_n - x_1) \sum_{i=1}^{n-1} \frac{a_i}{2} (x_{i+1}^2 - x_i^2) + b_i (x_{i+1} - x_i) \tag{8}
$$

Similarily, for C_N and S_N

$$
C_{N} = \frac{2}{X_{n}-X_{1}} \sum_{j=1}^{n-1} \sum_{x_{j}}^{X_{j}+1} (a_{i} X + b_{i}) \cos \frac{2\pi N X dx}{T}, N=1, 2, 3... (9)
$$

$$
S_{N} = \frac{2}{X_{n}-X_{1}} \sum_{i=1}^{n-1} \sum_{x_{i}}^{X_{i}+1} (a_{i} X + b_{i}) \sin \frac{2\pi N X dx}{T}, N=1, 2, 3... (10)
$$

Integrating, these become

$$
C_{N} = \sum_{i=1}^{n-1} \frac{a_{i}}{\pi N} \left[X_{i+1} \sin \frac{2\pi N X_{i+1}}{T} - X_{i} \sin \frac{2\pi N X_{i}}{T} \right]
$$

+
$$
\frac{b_{1}}{\pi N} \left[\sin \frac{2\pi N X_{i+1}}{T} - \sin \frac{2\pi N X_{i}}{T} \right]
$$

+
$$
\frac{a_{1} T}{2\pi^{2} N^{2}} \left[\cos \frac{2\pi N X_{i+1}}{T} - \cos \frac{2\pi N X_{i}}{T} \right]
$$
 (11)

$$
S_{N} = \sum_{i=1}^{n-1} -\frac{a_{i}}{\pi N} \left[y_{i+1} \cos \frac{2\pi N X_{i+1}}{T} - X_{i} \cos \frac{2\pi N X_{i}}{T} \right]
$$

-
$$
\frac{b_{i}}{\pi N} \left[\cos \frac{2\pi N X_{i+1}}{T} - \cos \frac{2\pi N X_{i}}{T} \right]
$$

+
$$
\frac{a_{i}}{2\pi^{2} N^{2}} \left[\sin \frac{2\pi N X_{i+1}}{T} - \sin \frac{2\pi N X_{i}}{T} \right]
$$
 (12)

Equations (8), (11) and (12) were coded into program FOURIER (Appendix A) and used to compute Fourier approximations of suture shape. Harmonic amplitudes (A_N) and phase angles $(\vec{\phi}_N)$ are calculated by the formulae:

 $A_N = C_N^2 + N^2$ Φ_N = TAN⁻¹ $\frac{SN}{CN}$

 $\frac{1}{2}$ with exceptions for inclusion of finer details which would
 $\frac{d}{dx}$ Published suture diagrams were the source of all data (Apendix B). Diagrams were photographically enlarged and then digitized on a set of cartesian coordinates. Each suture pattern was situated to have the venter lie along the abcissa The origin was at the point at which the suture pattern and venter cross. Forty to one hundred X, Y coordinates of points on the suture pattern were recorded, starting at the origin and finishing with the point at which the suture intersected the mid-dorsum. Points were selected at regular intervals,

otherwise have been smoothed over by linear interpolation over the sampling interval. Two methods of treating this data were then compared.

The first or "half suture" method shifted the orientation of the suture pattern with respect to the coordinate system so that both the first and last data points had a Y-values were multiplied by the same normalization constant in order to maintain scale relationships. The Fourier series approximation was then computed over the 0.0 to 2π interval.

The second method takes advantage of the bilateral symmetry of the suture patterns by constructing a mirror image from the mid-dorsum on around to the venter. This "complete suture" is then normalized, as before, to range from 0.0 to 2π from venter to venter. The Fourier series approximation is then calculated over this interval.

A data set consisting of 126 suture patterns was used for comparative evaluation of the two methods. For each method, twenty harmonic amplitudes and twenty phase angles were computed from each suture pattern. Data sets of less than forty one data points were eliminated from analysis because of the Nyquist frequency limitations (Davis, 1973, p. 266). Because each harmonic amplitude was computed from the residual signal (that not accounted for by the previous harmonics), all harmonics are orthogonal. The contribution of each harmonic to the approximation of the original data by the Fourier series was first delineated by computing its root mean square error, as defined by the formula:

 $\overline{7}$

RMS =
$$
\sqrt{\sum_{j=1}^{N} (Y_j - \hat{Y}_j)^2 / N - 1}
$$

where N is the number of data points, Y_i is the Y-value of the jth data point and Y_i it the approximation of the Y-value of the jth data point.

$$
\hat{Y}_{j}
$$
 is computed by the formula:
\n $\hat{Y}_{j} = A_{0} + \sum_{i=1}^{F} (A_{i} \sin(i X_{j} + \vec{\Phi}_{i}))$

where A_0 is the value of the zeroth harmonic amplitude, A_i is the vaule of the ith harmonic amplitude, and $\boldsymbol{\Phi}_{i}$ is the phase angle of the ith harmonic, and F is the highest harmonic frequency calculated.

Significance testing was carried out using an analysis of variance design associated with Snedecor's F-test (Mendenhall, 1968, p. 174-181). Although data points were not necessarily spaced at equal intervals, which is necessary for a rigorous test of significance, their close approximation to equal intervals still allows the use of the significance test as an accurate estimate of true significance (Gevirtz, 1976).

Subroutine FTEST (Appendix A) was used to compute both the root mean square error and the F-statistics. It was found with both methods that all twenty harmonics contributed significant ($\alpha = .05$) shape information.

It was also found that with the computation of twenty harmonic amplitudes, the complete suture method was able to reduce root mean square error to less than an arbitrary value of 0.05 in 80% of the cases (101 out of 126); whereas the half suture method could achieve this level of accuracy in only 75% of the cases (95 out of 126).

The complete suture method also concentrates more information in the harmonic amplitudes. Because a suture pattern is bilaterally symmetrical, the coefficients of the sine terms in the Fourier equation take on a value of zero (Lu, 1965). Consequently, the Fourier series becomes a cosine series and the phase angles only have values of plus or minus ninety degrees.

A further advantage of the full suture method over the half suture method lies in the assumption of a repeating signal inherent in a Fourier series approximation (Davis, p. 256-272). A suture pattern repeats itself by virtue of its continuity around the conch from the venter to the mid-dorsum and back to the original point, the venter. The half suture method ignores the assumption of a repeating signal. It also changes the function by rotating the orientation of the sutures on the coordinate system, so it can not lend itself to representation of the morphogenesis of the sutures as well as the complete suture method. Therfore, only the results of the complete suture method have been presented in this paper.

It should be also be noted that the results obtained from the complete suture method agree with those reported by Vicencio (1973). This includes his observation that Schindewolf's phylogenetic scheem (1954) of trilobate, quadrilobate and quinquilobate primary sutures correspond with large contributions

9

to the fit of the Fourier series approximation by the fourth, sixth and eighth harmonics, respectively.

The sutures of the ammonitoid ammonites are too complex to be studied directly by Fourier analysis. The lobules and folioles which create the intricate nature of the suture patterns cause the functions describing them to be multivalued. The Fourier series cannot deal with this problem (Ehrlich and Weinberg, 1970). Many of the ceratitic and goniatitic sutures also exhibit this degree of complexity. A possible solution to this problem, not examined in this study, would be the use of an iterative curve smoothing algorithm. Vicincio (1973) attempted such analysis, but found it not particulary useful for extremely complex sutures. However, for sutures such as ¹⁰
to the fit of the Fourier series a
sixth and eighth harmonics, respec
The sutures of the ammonitoid
to be studied directly by Fourier
folioles which create the intricat
terns cause the functions describi
The Fourier s those in Schistoceras missouriense, which only have a few multivalued points along the ordinate, such a procedure could be used. The number of iterations required to make the curve suitable for Fourier analysis should be retained as an additional variable measuring complexity. A table of ammonoid taxa which have been studied is included in Appendix C. attempted such analysis, but found
for extremely complex sutures. How
those in <u>Schistoceras</u> missouriense,
multivalued points along the ordina
be used. The number of iterations
suitable for Fourier analysis shoul
tional v s should be retained as an ad
mplexity. A table of ammonoi
is included in Appendix C.
e reproducibility of results
ets were generated form two s
cooperi and one of Goniatites

In order to evaluate the reproducibility of results by this method, multiple data sets were generated form two suture drawings, one of Koenenites cooperi and one of Goniatites suitable for
tional varia
taxa which h
In orde
this method,
drawings, on
choctawensis choctawensis. The data sets were processed, and results were compared by graphical display (Figures 1 and 2) and by computing the coefficients of variation:

 $CV_n = 100.0 (σ_n/\mu_n)$

FIGURE 1: Variation in results, due to methods in six replications on the suture of Variation in result
in six replications
<u>Koenenites cooperi</u>.

 \blacksquare

 \mathbf{I}

FIGURE 2: Variation in results, due to methods, in seven replications on the suture of Goniatites choctawensis.

 $\bar{1}$

 \mathbf{I}

 \mathbf{I}

where n is the harmonic frequency number, σ is the standard deviation and ^u is the mean.

The graphs of the harmonic amplitudes vs. the harmonic frequency number (power spectra) of the six repitions of K. cooperi (Figure 1) show a large variation of the harmonic amplitudes at harmonic frequencies eleven and fourteen, The coefficient of variation has maxima of 66.64 and 69.83 at these respective frequencies (Table 1). The seven replica-The graphs of the
frequency number (power
cooperi (Figure 1) show
amplitudes at harmonic
coefficient of variatio
these respective freque
tions of <u>G</u>. choctawnsis tions of G. choctawnsis (Figure 2) and K. cooper (Figure 1) is that relative variations increases greatly as the harmonic amplitude drops below 10^{-2} . This threshold level can be lowered by reducing random noise due to methods. More accurate digitizing equipment (accuracy greater than .025 in.) or greater enlargment of suture patterns (larger than 8 X 10 photographs) can increase the signal strength with respect to noise.

RESULTS

A data set of 140 sutures was analyzed and the mean harmonic amplitudes were calculated for the portion of the taxonomic hierarchy sampled (Appendix D). In order to compare the degree of taxonomic variation in the Fourier was forms, the coefficients of variation (CV_n) was also computed for taxonomically hiearchical levels (Appendix E). Table 2 gives the mean coefficients of variability within hierarchical levels. Harmonic frequency four shows a relatively constant CV, with a minimum of 38.21 and a maximum of 45.19. The second TABLE 1: Values of the Coefficient of Variation (CV) for varies of the essification of variation (SV) for Values of the Coefficient of Variation (

six replications of <u>Koenenites copperi</u>

replications of Goniatites choctawensis. (CV) for
and seven
s.
ARIATION
choctawensis

HARMONIC FREQUENCY COEFFICIENT OF VARIATION

HARMONIC	GENERA	FAMILIES	SUPERFAMILIES	ORDERS
$\mathbf 1$	46.74	45.79	31.23	20.30
$\boldsymbol{2}$	41.30	42.94	35.86	35.57
$\mathbf{3}$	42.19	60.73	52.01	41.08
4	39.70	44.26	38.21	45.19
5	57.37	56.35	37.21	55.11
6	32.02	32.84	48.83	50.60
$\overline{\mathbf{z}}$	44.85	38.33	47.61	52.76
8	28.70	65.84	43.29	53.92
9	36.27	40.94	45.49	63.33
10	43.40	46.78	54.75	48.26
11	35.74	67.27	46.55	53.96
12	48.37	61.85	27.53	55.59
13	51.81	59.39	45.42	65.94
14	56.64	49.45	47.19	59.01
15	42.29	54.16	35.04	62.79
16	43.04	47.64	51.07	58.16
17	44.21	35.02	64.74	72.05
18	40.30	45.76	52.90	59.58
19	42.61	38.42	44.35	52.93
20	54.93	44.49	36.39	59.91

TABLE 2: Mean values for the Coefficient of Variability computed for the taxonomic hierarchy. TABLE 2: Mean values for the Coefficient of Va

computed for the taxonomic hierarchy.

HARMONIC GENERA FAMILIES SUPERFAMILIES

harmonic also has a constant CV, ranging from 35.57 to 42.94. Table 2 shows that all harmonic frequencies (1-20) contribute shape information at all levels in the taxonomic hierarchy.

The complexity of a suture pattern can be roughly quantified as the number of harmonic frequencies required to reduce root mean square error to 0.05 or less. The average number to reduce RMS to 0.05 or less is seven for the nautiloids and eleven for the ammonoids. Those ammonoid approximations which could not reduce RMS to 0.05 were not included in the computation of this average.

Sixteen harmonics were the maximum number required to reduce RMS to 0.05 or less in the nautiloids. The ammonoids differ form the nautiloids primarily in the increased signal of the higher order harmonics (Figures 3 and 4). This is an expected result of the ammonoids' increase in sutural complexity by the addition of lateral lobes, which are not found in the nautiloids.

The mean power spectrum of the Subclass Ammonoidea was computed from the four power spectra shown in Figure 5. These are the mean harmonic amplitudes of the Orders Anarcestida, Clymeniida, Goniatitida and Cerititida. The mean suture patterns which these power spectra represent were redrawn by FORTRAN program FILTER (Appendix F) and are presented in Figures 6 and 7). Discrimminant analysis (Nie, et al., 1975, p. 434-467) was performed using these four Orders as the clas sification categories. Only nine individuals out of 129 were

16

FIGURE 3: Mean power spectra of Subclass Ammonoidea (A) and Subclass Nautiloidea (N).

FIGURE 4: Mean sutures of Subclasses Nautiloidea (A) and Ammonoidea (B) and a graphic display of the difference between them (C).

FIGURE 5: Power spectra of the mean suture patterns of Ammonoid Orders Anarcestida, Clymen iida, Goniatitida, and Cerititida.

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}),\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

FIGURE 6: Mean sutures of Orders Anarcestinda (A) and Clymeniida (B) and a graphic display of the difference between them (C).

FIGURE 7: Mean sutures of Orders Goniatitida (A) and Cerititida (B) and a graphic display of the difference between them (C).

misclassified (Table 3). This result is significant at $\alpha =$.01 with χ^2 = 318.35. The sensitivity of Fourier shape analysis to genetic differences at high taxonomic levels is demonstrated by the above results.

The ability to filter nongenetic effects from the morphologic information, leaving only genetically regulated shape information, is of great importance to the studies of taxonomy, ontogeny, and phylogeny. The data set included only two complete suture patterns suitable for examing both halves. Both suture patterns were of Acanthoclymenia neapolitana, at 2% volutions of the conch and at maturity.

Each suture half was processed eight to ten times. Discriminant analysis was perfomred upon the harmonic amplitudes and 100% correct classification $(\chi^2 = 105.00)$ was achieved (Table 4). The significant differences between left and right suture halves are summarized in the mean power spectra of these sutures (Figure 8) These dif ved (Table 4). The significant differences between left and right suture halves are summarized in the mean power spectra of these sutures (Figure 8) These differences are not dis cernible in visual inspection of the suture patterns. two complete suture patterns
Both suture patterns were of
2¹/₂ volutions of the conch and
Each suture half was pro
Discriminant analysis was per
tudes and 100% correct classi
ved (Table 4). The significa
right suture h were of <u>Acanthoclymenia</u> neapoli
onch and at maturity.
was processed eight to ten tim
was perfomred upon the harmoni
t classification ($\chi^2 = 105.00$)
ignificant differences between
re summarized in the mean power
ure 8)

dunbari, Agatherisis uralicum and Koenenites cooperi (taken from Arkell, et al., 1957) were studied. Suture patterns which were too complex for analysis i.e., those which requre a double valued function) were omitted. Sutural complexity, as measured by the number of harmonics required to reduce RMS to 0.05 or less, increased with age in each of the three sequences. Because of the elimination of the complex mature sutures of A. dunbari and A. Uralicum, further study of ontogeny was limited to E. cooperi.

FIGURE 8: Mean power spectra of left and right juvenile and adult sutures of 25

Mean power spectra of left a

juvenile and adult sutures c

<u>Acanthoclymenia neapolitana</u>.

 $\sim 10^7$

Figure 9 is the power spectra of the harmonic amplitudes of the six sutures in the ontogenetic series of M. cooperi as reported by Miller (1938). Growth and development is reflected in the power spectra as a slow broadening and migration of the first peak of the series to higher order harmonic frequencies. Each successive approximation (i.e., suture) tends to be of a higher overall power spectrum than the previous one. This visual observation is supported by ranking the approximation at each frequency and summing the ranks over the approximations (Table 5). The above observation fit Miller's description of the ontogeny as proceeding by the subdivision of lobes and increase in size. flected in the power spectra as a slow broadening and migra-
tion of the first peak of the series to higher order harmoni
frequencies. Each successive approximation (i.e., suture)
tends to be of a higher overall power spec ²⁶
Figure 9 is the power spectra of the har
of the six sutures in the ontogenetic series
reported by Miller (1938). Growth and develo
flected in the power spectra as a slow broade
tion of the first peak of the series to frequencies. Each successive app
tends to be of a higher overall p
vious one. This visual observati
the approximation at each freque
over the approximations (Table 5)
fit Miller's description of the o
the subdivision of lo f the series to highe
ssive approximation (
overall power spectru
observation is suppor
ch frequency and summ
(Table 5). The above
of the ontogeny as p
and increase in size
ence of sutures propo
1957) for the Family
manner

A phylogenetic sequence of sutures proposed by Miller (Arkell, et al. p. 134, 1957) for the Family Gephuroceratidae was studied in the same manner as the ontogeny of sutures in K. cooperi. The sequence consisted of Ponticeras aequabilis, Timanites keyserlingi. The complete sutures simulator, Manticoceras sinuosum, ceeding by
d by Miller
phuroceratid
of sutures i
as <u>aequabili</u>
<u>Koenenenites</u> (Arkell, et al.
was studied in
<u>K. cooperi</u>. Th
<u>Manticoceras si</u>
cooperi and <u>Tim</u>
of <u>M</u>. <u>simulator</u> of M. simulator was not available in the literature and could not be included. The same problem forced substitution of the approximation at

over the approximation

fit Miller's descripti

the subdivision of lob

A phylogenetic se

(Arkell, et al. p. 134

was studied in the sam

K. cooperi. The seque

Manticoceras simulator

cooperi and Ti <u>K. cooperi</u>. The sequence consisted of <u>P</u>
Manticoceras simulator, Manticoceras sin
cooperi and <u>Timanites keyserlingi</u>. The
of <u>M. simulator</u> was not available in the
not be included. The same problem force
Ponticeras st Ponticeras stainbrooki for P. aequabilis.

P. stainbrooki, which has the most simple suture, forming only four distinct lobes (Arkell et al., p. 135, 1957), has a peak in its power spectrum (Figure 10) at the fourth harmonic frequency and then drops for the higher order frequencies. not be included. The same problem forced

<u>Ponticeras stainbrooki</u> for <u>P</u>. <u>aequabilis</u>.

P. stainbrooki, which has the most simonly four distinct lobes (Arkell et al., p

a peak in its power spectrum (Figure 10) a

onic M. sinuosum, K. cooperi and T. keyserlingi should then be expected to have peaks at frequencies six, eight and ten,

26

FIGURE 9: Power spectra of the ontogenetic series Power spectra of the ontogenetic
of sutures in <u>Koenenites cooperi</u>.

 $\mathbf{X} \in \mathbb{R}^{N \times N}$

TABLE 5: Rankings of the harmonic amplitudes within each harmonic frequency for six suture patterns in the ontogenetic series of Koenenites cooperi. The increase in rank sums with age is a response to a general increase in signal ic amplitudes with
six suture patter
Koenenites cooperi with age.

FIGURE 10: Power sectra of the four sutures in the
phylogenetic series in the Family
Gephuroceratidae. SEQ1 = P. stainbrooki
SEQ3 = M. sinuosum, SEQ4 = K. COOPETI,
SEQ5 = T. Keyserlingi

corresponding to their respective number of lobes (Arkell et al., p. 135, 1957). M. sinuosum and K. cooperi do have high values where expected, but these are not their maximua T. correspondi
al., p. 135
values wher
<u>keyserlingi</u> keyserlingi has a relatively low value for its tenth harmonic amplitude. These anomolies are considered to be the results of combinations of lower order frequencies making good approximations to the fit of the data, leaving less residual signal to be accounted for by the higher order frequencies. The asymmetric, non-regular (variable frequency) nature of the keyserlingi has a relat
amplitude. These anomo
of combinations of lowe
imations to the fit of
to be accounted for by
asymmetric, non-regular
lobes of <u>T</u>. <u>keyserlingi</u> lobes of T. keyserlingi can be better approximated by the combination of two signals, the fourth and the seventh harmonic frequencies, than by the tenth frequency. ne fit of the dependent of the dependency of the higher-regular (varian linearly
experience in the separation of two signals,
ies, than by the similar
dependent of the similar
of the similar
of each suture

A measure of the similarity of the sutures within a grouping can be made by calculating the normalized roughness coefficient (RC) of each suture pattern.

$$
RC_j = \sqrt{\frac{20}{\sum_{i=1}^{20} (A_{ij} / \overline{A}_i)}}
$$

where A.. is the harmonic amplitude of the ith frequency in the jth suture, and \overline{A}_i is the mean harmonic amplitude of the ith frequency. where A_{ij} is the harmonic amplitude of the i
the jth suture, and \overline{A}_i is the mean harmonic
ith frequency.
A set of identical sutures should all h
equal to 10 or 3.1623. The phylogenetic s
of RC ranging from 2.9135

A set of identical sutures should all have values of RC equal to 10 or 3.1623. The phylogenetic sequence has value of RC ranging from 2.9135 for T. keyserlingi to 4.7666 for M. sinuosum. The ontogenetic sequence ranges from 1.6082 at the earliest suture to 7.4351 at the adult suture. This indicates that the sutures of the phylogenetic series are less different from each other than those of the ontogenetic series.

30

The sources of the variation can be determined by examining the coefficients of variability for the two sequences (Table 6). The phylogenetic sequence only has two values of CV greater than 100 (harmonics twelve, thirteen). Other sources of variation are, in descending order, harmonics six, fourteen, sixteen, eleven, and one. The ontogenetic sequence has six harmonics with coefficients of variability greater than 100. Only harmonics one, two, four, six, twelve, fourteen and sixteen have lower values of CV in the ontogenetic sequence than in the phylogenetic sequence. The extremely low values of CV for harmonics two and four in the ontogenetic series indicate that these harmonic frequencies are relatively independent of development, and reflect a basic sutural form that does not vary with growth.

Log transforms of the harmonic amplitudes form the suture patterns of the ontogenetic series were submitted to principal components factor analysis (Nye, et al., p. 468-514, 1970). The number of volutions of the conch at each suture was included as a variable representing age. Also included were log transforms of the size of the aperature and twenty harmonic amplitudes computed in closed form (Ehrlich and Weinberh, 1970; Ewald, 1975; Anstey, Pachut and Prezbindowski, 1976) from the shape of the aperature at the respective number of volutions.

The matrix of correlations, output as a preliminary result, shows significant ($\alpha = .05$) correlations of age with size, sutural harmonic frequencies zero, six, seven, ten,

31

TABLE 6: Coefficients of Variation of the harmonic
amplitudes, computed from the phylogentic series in the Family Gephuroceratidae and the onto-Coefficients of Variation of the harm
amplitudes, computed from the phyloge
in the Family Gephuroceratidae and th
genetic series in <u>Koenenites cooperi</u>. LE 6: Coefficients of Variation of the harmon
amplitudes, computed from the phylogent
in the Family Gephuroceratidae and the
genetic series in <u>Koenenites</u> cooperi.
HARMONIC NUMBER COEFFICIENT OF VARIATION

twelve, sixteen, eighteen, twenty and aperatural harmonic frequencie four (Table 7). All of these variables load most heavily on the first principal component (Table 8) or the general growth factor (Gould, 1966).

Principal components analysis of the phylogenetic sequence was performed using a dummy "SEQ" variable coded as the log of the suture's position in the series. As before, log transforms of the harmonic amplitudes were used. No aperatural shapes were available for the study. Only harmonic frequencies seven, eighteen and twenty were significantly $(a = .05)$ correlated with "SEQ" (Table 9). These four variables all loaded most highly on Factor two (Table 10).

The correlation of harmonic frequencies seven and eighteen with age in both the ontogenetic and the phyloeneetic series is an interesting point. The seventh harmonic is responsible, in part, for the presence of lateral lobes. The eighteenth harmonic frequency is equivalent to eighteen evenly spaces lobes. Alone, its effect can only be in small scale sculpturing of the suture patterns. However, the high levels of correlation imply an interaction of the two variables. The results of this interaction is demonstrated by Figure 11, which shows the actual contribution of harmonic frequencies seven and eighteen to the approximation of the earliest and adult sutures of M. cooperi.

The log transformation of the two harmonic amplitudes were plotted against each other and regression lines were computed (Figures 12 and 13) for the ontogenetic and phylogenetic data. The slopes of the regression lines are 0.593 for the

33

TABLE 7: Significant Correlation Coefficients (R) of variables cooperi. Significance from the study level of ontogeny is α =.05 in
and of
<u>Koenenites</u> $\frac{1}{\alpha} = .01($ *) **Sutural variables are HARM 1 to HARM 20 and HZERO.** Aperatural variables are AHARM ¹ to AHARM ²⁰ and SIZE.

AGE SIZE

HARM 1 HARM 2

HARM 4 HARM 5

HARM 3 .94236*

HARM 6 HARM 7

TABLE ⁷ cont.

HARM 8

HARM 10

HARM 12

HARM 16

HARM 18

HARM 11

HARM 15

HARM 17

HARM 20

TABLE ⁷ cont.

AHARM ¹

AHARM

AHARM 4

AHARM ⁷

AHARM 15 .88451

AHARM

AHARM

 $\sim 10^7$

AHARM 9

AHARM 12

.
AHARM 13 .87988
AHARM 17 .95505* AHARM 18 .89848

AHARM 11

AHARM 16 .81148

AHARM 16

AHARM 17

AHARM 18

AHARM 19 .95388*

TABLE 8 cont.

TABLE 9: Significant Correlation Coefficients (R) of variables from the study of phylogeny in the Family Gephuroceratidae at $u=0.05$ and $u=0.01(*)$. SEQ is the log transform of the suture's position in the phylogenetic series. HARM ¹ through HARM 20 are log transforms of the Fourier harmonic amplitudes.

> HARM 7 ning:
HARM 18
HARM 20 HARM 20 HARM HARM ¹⁰ HARM 18 HARM 12 .99829* .96995 **HARM** 16 HARM 18 .95070 10 HARM
26978. HARM 18 HARM 12
2012 . HARM 16
295463 - HARM 19 HARM 19 -. 95463 HARM 17 -.95408
HZERO -.99793* HZERO HZERO 18 HARM
18 197393 HARM SEQ HARM 4 18 - .97937 HARM 6 HARM 7 karm 9
19 -.98345 HARM 10 HARM 12 .99742* .95574
96331 . HARM 1 .98079
.96335 HARM 9 **HARM 14** HARM 17
96656.

TABLE 10: Varimax rotated factor matrix after rotation with Kaiser normalization, computed from the four sutures representing a phylogenetic series in the Family Gephuroceratidae. SEQ is the log of the suture's position in the series, HARM 1 through HARM 20 are log transforms of Fourier harmonic amplitudes, and HARMZERO is the zeroth harmonic amplitude.

FIGURE 11: Contributions of harmonic frequencies seven and eighteen to the fit of the approximations of Koenenites cooperi at 0.5 volutions (A), 5.5 volutions (B) and a graphic display of the difference between them (C).

 \overline{C}

FIGURE 12: Relationship between the log transforms
of harmonic amplitudes seven and eighteen in the ontogenetic series in M. cooperi.

FIGURE 13: Relationship between the log transforms of harmonic amplitudes seven and eighteen in the phylogenetic series in the Family Gephuroceratidae.

 \mathcal{A}

ontogentic sequence and 0.505 for the phylogenetic sequence. This difference is slight enough to show that the two harmonics maintain a constant relationship through the changes of ontogeny and that this relationship is held constant across the changes of the specific phylogenetic sequence postulated by Miller. The constant relationship demonstrates, on a quantitative level, the assumption of heterochrony (in this example, recapitulation) in the cephalopods analyzed.

SUMMARY AND CONCLUSIONS

A wide taxonomic range of cephalopod suture patterns have been studied by means of the Fourier series. Coefficients of variation and mean suture patterns have been computed. The filtering capability of the Fourier series allows the quantitative comparison of these meansuture patterns, at any level in the taxonomic heirarchy. This same filtering capability permits a measure of a suture's nongenetic norm or reaction. Measurements show that subtle differences exist between the of ontogeny and that this relationship is held constant acr
the changes of the specific phylogenetic sequence postulate
by Miller. The constant relationship demonstrates, on a
quantitative level, the assumption of heteroch left and right suture halves of Acanthoclymenia neapolitana at both $2\frac{1}{2}$ volutions of the conch and at maturity.

The relationship between harmonic frequency seven and harmonic frequency eighteen is monotonic for both an ontogenetic and a phylogenetic sequence in the family Gephuroceratidae. The linear relationships were calculated directly from the log transformation of the harmonic amplitudes and found to be almost identical. Heterochrony (recapitulation) is there fore demonstrated on a quantitative level for

44

<u>.</u>
<u>Koenenites</u> cooperi Koenenites cooperi and three other genera to which it is closely related. The correlation of aperatural shape variables, generaged by Fourier analysis, with those of sutural shape through development in K. cooperi implies a functional relationship between specific aspects of aperature and suture morphology.

The power of Fourier analysis in the sutdy of the cephalopod suture is unprecedented. Taxonomy, nongenetic norm of reaction, heterochrony, and functional morphology of cephalopod sutures can be studied quantitatively by means of Fourier analysis.

LIST OF REFERENCES

- Anstey, R.L., J.F. Pachut, and D.R. Prezbindowki, Morphogenetic gradients in Paleozoic bryozoan colonies: Paleobiology, V. 2, No. 2, p. 131-146.
- Arkell, W.J., et al., 1957, Treatise on Invertebrate Paleontology: part L, Mollusca 4, University Kansas Press, ⁴⁹⁰ p.
- Christopher, R.A., and J.A. Waters, 1974, Fourier series as a quantitative descriptor of miospore shape: Jour. Paleontology. V. 48, No. 4, p. 697-709.
- Crowther, R.A., and L.A. Amos, 1971, Harmonic analysis of electron microscope images with rotation symmetry: J. Mol. Biol., V. 60, No. I, p. 123-130.
- Davis, J.C., 1973, Statistics and data analysis in geology: John Wiley and Sons, Inc., New York, 550 p.
- Delmet, D.A., and R.L. Anstey, Fourier analysis of morphological plasticity within an Ordovician bryozoan colony: Jour. Paleontology, V. 48, No. 2, p. 217-226.
- Ehrlich, R. and B Weinberg, 1970, An exact method for characterization of grain shape: J. Sed. Petrology, V. 40, No. l, p. 205-212.
- Ewald, F.C., 1975, Feasibility of completely automated microfossil identification in petroleum exploration: Mich. State University, MS Thesis, 68 p.
- Gevirtz, J.L., 1976, Fourier analysis of Bivalue Outlines:
Implications on evolution and autecology: Math. Geol., V. 8, No. 2, p. 151-163.
- Gould, S.J., 1966, Allometry and size in ontogeny and phylogeny: Biol. Rev., V. 41, No. 4, p. 587-640.
- Kaesler, R. and Waters, J.A., 1972, Fourier analysis of the Ostracode margin: Geol. Soc. Amer. Bu11., V. 83, No 4, p. 1169-1178.
- Lu, K.H., 1965, Harmonic analysis of the human face: Biometrics, V. 21, No. 2, p.¹ 491-505.
- Mendenhall, W., 1968, Introduction to linear models and the design and analysis of experiments: Wadsworth Publishing Co., Inc., Belmont, CA, 465 p.
- Miller, A.K., 1938, Devonian ammonoids of America: Geol. Soc. Amer. Spec. Paper 14, 262 p.
- Nie, N.H., C.H. Hull, J.G. Jenkins, K. Steinbrenner, and D.H. Bent, 1975, Statistical package for the social sciences: McGraw-Hill Book Co., Inc., New York, 675 p.
- Oxnard, C., 1973, Form and pattern in Human evolution: some mathematical physical, and engineering approaches: Univ. Chicago Press, 218 p.
- Schindewolf, O.H., 1954, On development, evolution and terminology of the ammonoid suture line: Harvard Univ. Mus. Comp. 2001., Bull. 112, No. 3, p.217-237.
- Tasch, P., 1973, Paleobiology of the invertibrates, data retrieval from the fossil record: John Wiley and Sons, Inc., New York, 946 p.
- Thompson, D.W., 1917, On growth and form: Cambridge University Press.
- Tuckey, M., 1975, Sexual dimorphism in the Devonian trilobite Phacops rana: Mich. State University, MS Thesis, 90 p.
- Vicencio, R., 1973, Models for the morphology and morphogensis of the ammonoid shell: McMaster Univeristy, Ph. D. Dissertation, 116 p.
- Waters, J.A., 1977, Quantification of shape by use of Fourier analysis: The Mississippian Blastoid genus Pentremites: Paleobiology, V. 3, No. 3, p. 288-299.
- Younker, J.K., 1971, Evaluation of the utility of two-dimensional Fourier shape analysis for the sutdy of ostracode carapaces: Michigan State University, MS Thesis, 62 p.
- Zahn, C.T., and R.Z.Roskies, 1972, Fourier descriptors for plane closed curves: IEEE Trans. on Computers C-21, No. 3. p. 269-282.

APPENDIX A

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))$

PROGRAM FOURTER(TAPE6), OUTPUT, PUNCH, TAPE14, TAPF61=OUTPUT,
- PATTERNS, INPUT DATA CAN BT UP TO 100 (X, Y) COOPDINATES
- PATTERNS, INPUT DATA CAN BT UP TO 100 (X, Y) COOPDINATES
- STARTING AT THE POINT X^HIN=3, Y=0,
- T C -----
 C -----
 C -----**Č-----**Č-----Č------
C-----Č----č-----
Č
č-----FILE PUNCH, The control of a sample of the same of the \check{C} \check{C} ----- $C \rightarrow \rightarrow \rightarrow \rightarrow$ 1000 15 10 20 $C \rightarrow \rightarrow \rightarrow \rightarrow$ 30 ISORT=1 4) CONTINUE
N=N-1
NPM1=NP-1
NPM1=NP-1
PPINT 7,NAME
- CONSTRUCT SECONO HALF OF SUTURE PATTEPN
20 10:1:1=X(NP+1)
X(NP+1)=X(NP+1)
Y(NP+1)=X(NP+1)
NP=NP+NPM1
NP=NP+NPM1
NP=NP+NPM1
NP=NP+NPM1 $C - - - - -$ 100 $\begin{array}{cccccc}\n\widetilde{Y}(N+1)=0&\widetilde{Y}(N+1)\\ N+1&N+1&N+1\\ N+1&N+1&N+1&N+1\\ N+1&N+1&N+1&N+1\\ N+1&N+$ 100 CO=CO/T
00 65 N=1, 2)
AMP(N)=SOPT(C(N)++2+0(N)++2)
FAZT(N)=ATAN2(C(N),C(N))

 -50.45 **LALARE ESTAL SERTIFICATIONS FISES CREATIONS TRANSPORTS ARE RESPONSED ASSOCIATE PASSOS**

 $\begin{array}{l} \text{PFLI-PH} \text{PFLI-PH} \text{PFLI} \text{PFLI$

SUBROUTINE FTEST (1,40)

COMMON/OATA/X(200),V2CO),AMP(23),FAZE(23)

DIMENSION VNEW(200),F(201),FMS(23),FAZE(23)

INTEGER OF OICE

LHITLE SE2

NPE (1,11/2

SEE THAT ALITY

SEE THAT ALITY

SEE THAT ALITY

SEE THAT ALITY

SEE $c -$ C. 10 $C -$ C Č --- GOMPUTE SUM OF SQUAPED ERPOR OF NEW APPROXIMATION

DO 30 J=11

SOM ORIGINAL DATA

SOMETHINE ROOT MEAN SOUAPE ERROP

-- COMPUTE ROOT MEAN SOUAPE ERROP

-- COMPUTE ROOT MEAN SOUAPE ERROP

-- COMPUTE ROOT MEAN SOUAPE ERRO COMPUTE SUM OF SQUARED ERPOR OF NEW APPROXIMATION č Č \bullet \bullet \bullet 36 c $c-$ 50 $\frac{1}{2}$ $\frac{4}{5}$

1190 $\begin{array}{c} 110 \\ 111 \\ 112 \\ 113 \end{array}$ $\frac{11}{11}$ $\frac{13}{13}$
 $\frac{3}{1}$
 $\frac{3}{1}$ 391414
 1414
 1413
 141
 141
 141
 141 1450 ī460 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{7}{4}$ $\frac{5}{4}$ $\frac{1}{1600}$ 113131000 נֿ≐הׄנ

APPENDIX B

APPENDIX B

Sources of Suture Diagrams

- Arkell, W.J., et al., 1957, Treatise on Invertebrate Paleontology, part L, Mollusca 4, University Kansas Press, 490 p.
- Miller, A.K., 1947, Tertiary Nautiloids of the Americas, Geol. Soc. Amer., Mem. 23, 234 p.
- Miller, A.K. and w.M., Furnish, 1940, Permian Ammonoids of the Guadalupe mountain region and adjacent areas, Geol. Soc. Amer., Spec. paper 26, 242 p.
- Petersen, M.S., 1975, Upper Devonian (Famennian) ammonoids
from the Canning Basin, western Australia, Paleontological Society, Mem. 8, 55p.
- Teichert, C., et al., 1964, Treatise on Invertebrate Paleontology, part K, Mollusca 3, University Kansas Press, 519 p.
APPENDIX C

APPENDIX C

Taxonomy of Ammonoids Studied

Subclass Ammonoidea Order Anarcestida Superfamily Anarcestaceae Family Mimoceratidae Subfamily Mimoceratinae Genus Gyroceratites species gracilis **C**
ids Studied
ceae
idae
imoceratinae
Gyroceratites ceratidae
ily Mimoce
enus <u>Gyroc</u>
specie
iatitidae
Agoniaties

Family Agoniatitidae Genus Agoniaties species vanuxemi Genus <u>Gyroceratite</u>
species <u>graci</u>
niatitidae
<u>Agoniaties</u>
species <u>vanuxemi</u>
species <u>costulatus</u> species costulatus idae
<u>aties</u>
s <u>vanuxemi</u>
s <u>costulat</u>
dae
narcestina
Anarcestes

Family Anarcestidae Subfamily Anarcestinae Genus Anarcestes species lateseptatus <u>emi</u>
latus
inae
<u>tes</u>
lateseptatus niatitidae

<u>Agoniaties</u>

species <u>vanuxemi</u>

species <u>costulatus</u>

rcestidae

mily Anarcestinae

Genus <u>Anarcestes</u>

species <u>latese</u>

Genus <u>Subanarcestes</u> Genus Subanarcestes Genus Werneroceras species macrocephalus s <u>vanuxemi</u>
s <u>costulatus</u>
dae
narcestinae
<u>Anarcestes</u>
pecies <u>lates</u>
Subanarceste
pecies <u>macro</u>
Werneroceras emi
1atus
inae
<u>tes</u>
<u>lateseptatus</u>
cestes
macrocephalus es vanuxemi

es costulatus

idae

Anarcestinae

Anarcestes

species <u>lateseptatus</u>

Subanarcestes

species <u>macrocephalus</u>

Me<u>rneroceras</u>

species <u>ruppanchensis</u> species ruppanchensis idae

Anarcestinae

<u>Anarcestes</u>

species <u>lateseptatu</u>

<u>Subanarcestes</u>

species <u>macrocephal</u>

Werneroceras

species <u>ruppanchens</u>

species <u>plebeiforme</u>

Superfamily Prolobitaceae Family Prolobitidae Subfamily Prolobitinae Species <u>rup</u>
Species ple
Dobitaceae
Nobitidae
Mily Prolobitina
Genus <u>Prolobites</u> Genus Prolobites species delphinus
species delphinus
species delphinus Superfamily Pharcicerataceae Family Gephuroceratidae Genus Manticoceras species sinuosum ataceae
ratidae
<u>Manticoceras</u> 53
rcicerataceae
huroceratidae
Genus <u>Manticocer</u>
species <u>sin</u>
Genus <u>Ponticeras</u> Genus Ponticeras rataceae
eratidae
<u>Manticoceras</u>
species <u>sinuosum</u>
species <u>aequabilis</u> species aequabilis Genus Koenenites species cooperi Genus Timanites **ataceae
ratidae
Manticocer
pecies <u>sin</u>
Ponticeras
pecies <u>aeq</u>
Koenenites** species keyserlingi Manticoce
Pecies <u>si
Ponticera</u>
Pecies <u>ae</u>
Koenenite
Pecies co
Timanites ceras
sinuosum
ras
aequabilis
tes
cooperi
es
keyserlingi pecies <u>sinuosum</u>
Ponticeras
pecies <u>aequabil</u>
Koenenites
pecies cooperi
Timanites
pecies keyserli
eniaceae
ymeniidae
Acanthoclymenia

Order Clymeniida Superfamily Gonioclymeniaceae Family Acanthoclymeniidae Genus Acanthoclymenia species neopolitana cooperi
<u>es</u>
keyserlingi
e
ae
clymenia
neopolitana spectes <u>keyser</u>
ioclymeniaceae
nthoclymeniidae
Genus <u>Acanthoclymen</u>
meniaceae
meniidae
Genus <u>Platyclymenia</u>

Superfamily Clymeniaceae Family Clymeniidae Genus Platyclymenia species annulata Species neopolitan

meniaceae

meniidae

Genus <u>Platyclymenia</u>

species <u>annulata</u>

Genus species <u>americana</u> Genus species americana species <u>neopolitan</u>
ceae
dae
<u>Platyclymenia</u>
species <u>amnulata</u>
species <u>polypleura</u>

Order Goniatitida Superfamily Cheilocerataceae Family Tornoceratidae Genus Tornoceras species crebriseptum pecies <u>ann</u>
species <u>am</u>
pecies <u>pol</u>
ataceae
tidae
Tornoceras ymenia
annulata
americana
polypleura
ras
crebriseptum rataceae
atidae
<u>Tornoceras</u>
species <u>crebrisep</u>
species <u>delepinei</u> species delepinei

Family Cheiloceratidae Subfamily Cheiloceratinae Genus Cheiloceras species schmidti species ovatum ratidae
Cheiloceratinae
Cheiloceras
species schmidti
species angulatum species angulatum

species <u>enkebergense</u>

Subfamily Raymondiceratinae Genus Raymondiceras species simplex pecies <u>enkebe</u>
aymondicerati
<u>Raymondiceras</u> species enkeb
mily Raymondicerat
Genus <u>Raymondicera</u>
species <u>simpl</u>
mily Speradocerati
Genus <u>Sporadoceras</u>

Subfamily Speradoceratinae Genus Sporadoceras species milleri species <u>sim</u>
mily Speradocera
Genus <u>Sporadocer</u>
species <u>mil</u>
mily Imitocerati
Genus <u>Imitoceras</u>

Subfamily Imitoceratinae Genus Imitoceras Speradoceratinae

Sporadoceras

species <u>milleri</u>

Imitoceratinae

<u>Imitoceras</u>

species <u>rotatorium</u> species rotatorium

Superfamily Agathicerataceae Family Agathiceratidae Genus Agathiceras species uralicum pecies <u>mill</u>
mitoceratin
<u>Imitoceras</u>
pecies <u>rota</u>
ataceae
atidae
Agathiceras

Superfamily Cyclolobaceae Family Popanoceratidae Subfamily Marathonitinae Genus Peritrochia species dieneri ataceae
atidae
Agathiceras
pecies <u>ural</u>
ceae
atidae
arathonitin
Peritrochia

Superfamily Goniatitaceae Family Goniatitidae Subfamily Goniatitnae mily Marathoniti
Genus <u>Peritrochi</u>
species <u>die</u>
iatitaceae
iatitidae
mily Goniatitnae
Genus <u>Goniatites</u> Genus Goniatites ratidae
Marathonitinae
<u>Peritrochia</u>
species <u>dieneri</u>
aceae
idae
Goniatitnae
<u>Goniatites</u>
species <u>choctawensis</u> species choctawensis Genus Muensteroceras species parallelum atidae

arathonitinae

Peritrochia

pecies <u>dieneri</u>

ceae

dae

oniatitnae

<u>Goniatites</u>

pecies choctaw

Muensteroceras nae
<u>tes</u>
choctawens
roceras
parallelum ceae
dae
Goniatites
Goniatites
pecies <u>chocta</u>
Muensterocera
pecies <u>parall</u>
irtyoceratina
Eumorphoceras tes
choctawens
roceras
parallelum
ratinae
oceras
bisulcatum

Subfamily Girtyoceratinae Genus Eumorphoceras species bisulcatum Family Neoicoceratidae 55
icoceratidae
Genus <u>Pseudoparalegoceras</u> Genus Pseudoparalegoceras ratidae
<u>Pseudoparalegoce</u>
species <u>russiense</u> Genus Atsabites species multiliratus atidae
<u>Pseudopar</u>
pecies <u>ru</u>
Atsabites aralegoceras
<u>russiense</u>
es
multiliratus atidae
Pseudoparaleg
pecies <u>russie
Atsabites</u>
pecies <u>multil</u>
ratidae
chistoceratin
Paralegoceras

Family Schistoceratidae Subfamily Schistoceratinae Genus Paralegoceras species iowense Genus <u>Pseudoparale</u>
species <u>russi</u>
Genus <u>Atsabites</u>
species <u>multi</u>
istoceratidae
mily Schistocerati
Genus <u>Paralegocera</u>
species <u>iowen</u>
Genus <u>Diaboloceras</u> Genus Diaboloceras Genus Winslowoceras species varicostatum pecies <u>russie</u>
Atsabites
pecies <u>multil</u>
ratidae
chistoceratin
Paralegoceras
pecies <u>iowens</u>
Diaboloceras
pecies <u>varico</u>
Winslowoceras russiense
es
multiliratus
eratinae
oceras
iowense
ceras
varicostatum species henbesti

Superfamily Adrainitaceae Family Adrianitidae Subfamily Adrianitinae Genus Adrianites species dunbari epossoder

ainitaceae

ianitidae

mily Adrianitin

Genus <u>Adrianite</u>

species <u>du</u>

Genus <u>Texoceras</u> Genus Texoceras species texanum Subfamily Dunbaritinae Genus Emilites species incertus **Texoceras
pecies texan
unbaritinae
Emilites
pecies incer
ceae
dae
Xenodiscites**

Order Cerititida Superfamily Otocerataceae Family Xenodiscidae Genus Xenodiscites species waageni Genus Xenaspis species skinneri aceae
idae
<u>Xenodiscites</u>
species <u>waageni</u>
species <u>skinneri</u>
species <u>carbonaria</u> species carbonaria Genus Paraceltites species elegans species ornatus Paraceltites
Paraceltites species hoeferi <u>Paraceltites</u>
species <u>elegans</u>
species <u>ornatus</u>
species <u>hoeferi</u>
species <u>altudensi</u> species altudensi APPENDIX D

APPENDIX D

Mean Harmonic Amplitudes of the Taxonomic Hierarchy

Subclass Bactritoidea Order Bactritida Family Bictritidae litudes o
ritidae
0.04330.0
0.00245.0
<u>Bactrites</u>

.02095 .32555 .02070 .01040 .04330 .01150 .02130 .00450 .01120 .00305 .00935 .00265 .00640 .00240 .00245 .00070 .00405 .00040 .00305 .00195

Genus Bactrites

Genus Lobobactrities

Subclass Nautiloidea Order Nautilida Superfamily Nautilaceae

.05106 .09448 .08412 .11349 .07427 .06311 .03092 .03661 .02606 .02124 .02187 .01156 .01988 .01398 .00786 .00936 .00671 .00652 .00398 .00311

Family Nautilidae 9 Nautilaceae
19 .07427 .06311 .03092 .03661 .02606 .02124
18 .00786 .00936 .00671 .00652 .00398 .00311
19 Nautilidae
Genus <u>Nautilus</u> species <u>pompilius</u> species pompilius y Nautilidae
Genus <u>Nautilus</u>
30 .04245 .01360
50 .00340 .00240
y Hercoglossid
17 .07846 .08613
90 .00879 .00863
Genus <u>Hercoglossa</u>

.07480 .17710 .13065 .08930 .04245 .01360 .02030 .02565 .00220 .01850 .00915 .00410 .00835 .00750 .00340 .00240 .00035 .00015 .00175 .00240

Family Hercoglossidae

.04712 .04751 .04583 .08717 .07846 .08613 .03662 .03354 .02610 .00884 .02081 .01162 .01160 .00790 .00879 .00863 .00199 .00249 .00289 .00150

.07885 .03910 .07132 .08622 .06632 .14175 . 05500 .01477 .03080 .00718 .00770 .00643 .01133 .00573 .00467 .00352 .00302 .00463 .00235 .00289 y Hercoglossida
17.07846.08613.0
90.00879.00863.0
Genus <u>Hercoglossa</u>
22.06632.14175.0
73.00467.00352.0

species paucifex

.00270 .00450 .01850 .15030 .14680 .07740 .04910 .09520 .03590 .01380 .0711 .03450 .02640 .01850 .02170 .02450 .00330 .00110 .00750 .00030 Genus Cimonia species vincenti

00490. 03280. 09800. 03520. 02500. 01000. 01510. 09160. 03280. .00010 .00260 .00450 .00330 .00500 .00320 .00000 .00280 .00020 .00120 <u>Cimonia</u>
20.05430.01890.00
20.00320.00000.00
Deltoidonautilus

Genus Deltoidonautilus

.07414 .08453 .07205 .06550 .07107 .02349 .01528 .07840 .02018 .00948 .00435 .00295 .00287 .00378 .00330 .00165 .00143 .00537 .00152 .00153

Family Aturiidae Genus Aturia

.07588 .16400 .10190 .08960 .03583 .03125 .05883 .05065 .04988 .03638 .03970 .02655 .01138 .01705 .01778 .03565 .01895 .01693 .00730 .00543

Subclass Ammonoidea Order Anarcerstida

.14496 .10793 .06543 .08882 .06464 .05544 .06117 .06138 .03219 .02717 .02262 .01919 .02774 .01292 .02331 .01125 .00918 .01687 .00658 .00796

Superfamily Anarcestaceae

.05883.22808.07480.07541.03812.03812.03677.02476.22808.05883. .01206 .00986 .01067 .00861 .00786 .00670 .01432 .00685 .00538 .00591

Family Mimocertidae Subfamily Mimoceratinae Genus Gyroceratitites <u>14</u>
3960 .03583 .05065 .
1705 .01778 .01693 .
2331 .01125 .01687 .
2331 .01125 .01687 .
aceae
3812 .03677 .02476 .
7786 .00670 .00685 .
idae
<u>Gyroceratitites</u>
Species gracilis species gracilis

.02220 .31423 .01930 .00470 .03897 .02253 .02480 .01633 .01433 .01177 .01087 .00800 .00680 .00530 .00343 .00343 .00320 .00330 .00233 .00257

Family Agoniatitidae

.08849 .26273 .16612 .12352 .01078 .07081 .04357 .04184 .01772 .02550 .01334 .01602 .01341 .01124 .00124 .01210 .00903 .00975 .00728 .00867

> Family Anarcestidae Subfamily Anarcestinae

.06580 .10728 .03898 .09803 .04061 .02103 .04193 .01610 .01398 .01634 .01874 .01215 .00938 .01296 .01115 .00804 .00788 .00750 .00653 .00649

.03740 .1532 .1359 .0353 .0067 .0132 Superfamily Prolobitaceae Family Prolobitidae Subfamily Prolobitinae 124 .01210 .00903 .0
124 .01210 .00903 .0
rcestidae
mily Anarcestina
115 .00804 .00788 .0
lobitaceae
lobitidae
mily Prolobitina
Genus <u>Prolobitina</u> idae
Anarcestinae
2103 .04193 .01610 .0
0804 .00788 .00750 .0
aceae
idae
Prolobitinae
Prolobitinae
species <u>delphinus</u> Genus Prolobites
species delphinus .0858 .0504 .0164 .0092 .0162 .0141 .0184 .0203 .1513 .0612 .0244 .0239 .0239 .0081

Superfamily Pharcicerataceae Family Gephuroceratidae

.08729 .05360 .11310 .08559 .08504 .09459 .07916 .07359 .05732 .03973 .00653 .04259 .03362 .05226 .01174 .03768 .01084 .02739 .00516 .00986

Order Clymeniida

.07519 .09789 .07040 .15919 .07853 .07986 .05960 .04834 .02938 .02461 .02366 .01073 .01171 .00773 .01410 .00979 .00953 .00704 .00435 .00439

Superfamily Gonioclymeniaceae Family Acanthoclymeniidae Genus Acanthoclymenia species neopolitana cicerataceae
uroceratidae
04 .09459 .07916 .0
74 .03768 .01084 .0
13 .07986 .05960 .0
10 .00979 .00953 .0
oclymeniaceae
thoclymenidae
Acanthoclymenia tidae
.07916 .0735
.01084 .0273
.05960 .0483
.00953 .0070
iaceae
eniidae
clymenia
neopolitana % .07986 .05960
10 .00979 .00953
oclymeniaceae
thoclymeniida
Acanthoclymen
pecies neopol
28 .11569 .08164
59 .01800 .01711
eniaceae
eniidae
Platyclymenia

.06323 .07938 .09539 .23029 .10228 .11569 .08164 .07589 .05083 .04378 .04164 .01792 .02063 .01287 .02559 .01800 .01711 .01222 .00740 .00804

> Superfamily Clymeniaceae Family Clymeniidae Genus Platyclymenia

.08715 .11640 .04540 .07808 .05478 .04403 .03755 .02078 .00793 .00543 .00568 .00353 .00278 .00258 .00260 .00158 .00195 .00185 .00130 .00073

Order Goniatitida

.03871 .04289 .02517 .92292 .03185 .05728 .05515 .06996 .05550 .04199 .03116 .32443 .03544 .02540 .02239 .02777 .01906 .01946 .02441 .02443

Superfamily Cheilocerataceae

.04573 .07560 .03598 .03916 .07009 .07606 .02257 .05186 .02674 .03236 .03139 .04706 .00692 .02240 .01880 .01704 .00968 .02347 .00524 .01548

Family Tornoceratidae

.05127 .06311 .04165 .05246 .05829 .10137 .00520 .06616 .01634 .01654 .01326 .03505 .00346 .02600 .01174 .01321 .00254 .01914 .00192 .01319

Family Cheiloceratidae

.04018 .08809 .03031 .02585 .08189 .05075 .03993 .03756 .03713 .04817 .04951 .04647 .01037 .01879 .02585 .02087 .01681 .02779 .00855 .01776

Superfamily Agathicerataceae Family Agathiceratidae Genus Agathiceras species uralicum ,
hiceratacea
hiceratidae
Agathiceras

.0259 .0582 .0415 .0331 .0055 .0079 .0773 .1007 .0666 .0507 .0039 .0346 .0212 .0142 .0257 .0013 .0170 .0163 .0289 .0170 .0163 .0182

Superfamily Goniatitaceae

.04260 .03331 .03034 .03783 .04595 .09347 .06182 .12305 .11161 .05971 .02411 .02986 .04467 .04217 .03708 .04229 .04404 .03594 .02970 .00815

Family Neoicoceratidae

.0538 .0073 .0284 .0365 .0072 .0553 .0844 .0335 .0216 .0405 .0835 .0485 .0176 .0295 .0384 .2346 .1672 .0241 .0178 .0230

Family Schitoceratidae Subfamily Schistoceratinae

.04980 .02590 .05452 .03170 .03655 .08070 .11608 .10283 .14580 .13065 .04030 .02470 .05510 .03102 .04288 .03350 .06185 .05235 .03315 .02268

Superfamily Adrianitaceae Family Adrianitidae

.02690 .01680 .02650 .03738 .08705 .08650 .02095 .01803 .08623 .05819 .03338 .01644 .04128 .02211 .03659 .01249 .02141 .07309 .03173 .00815

Subfamily Adrianitinae

.02429 .01189 .02035 .01090 .01630 .04715 .10529 .06959 .07425 .09067 .01585 .03582 .05197 .01947 .00735 .02012 .03957 .02237 .02475 .01179

Subfamily Dunbaritinae 530 .04715 .10529
735 .02012 .03957
mily Dunbaritir
Genus <u>Emilites</u> Genus Emilites spec1es incertus

.02950 .0300 .0509 .0070 .0942 .0134 .0157 .0227 .0367 .0752 .0241 .0336 .0276 .0982 .0387 .0026 .0045 .0688 .1034 .0257

Order Cerititida Superfamily Otocerataceae Family Xenodiscidae

.02602 .04284 .06059 .04433 .08939 .18577 .10257 .08220 .06517 .02121 .03966 .02877 .02061 .01668 .03424 .01734 .01884 .01566 .01574 .00834 APPENDIX E

 \sim

APPENDIX E

Coefficients of Variation of the Harmonic Amplitudes for the Taxonomic Hierarchy. tion of the Harmonic A
rchy.
y Nautilaceae
3 32.92 55.52 24.30 28.
6 42.31 64.14 117.18 113.
y Hercoglossidae
0 52.77 38.55 42.74 106.
2 84.99 106.18 65.59 55.
Genus <u>Deltoidonautilus</u>

Subclass Nautiloidea Order Nautilida Superfamily Nautilaceae

35.25 49.59 52.46 70.79 63.56 42.31 64.14 117.18 113.75 60.13 54.06 62.03 41.74 31.48 32.92 55.52 24.30 28.50 74.69 53.71 2 55.52 24.3
1 64.14 117.1
0glossidae
7 38.55 42.7
9 106.18 65.5
Deltoidonau
9 9.03 21.7
3 18.18 51.5
Hercoglossa

Family Hercoglossidae

66.39 62.25 63. 63 46.00 52.77 38.55 42.74 106.42 140.10 114.41 77.92 78.52 84.99 106.18 65.59 55.83 95.71 64.20 28.88 37.22

Genus Deltoidonautilus

22.27 65.45 43.69 40.32 66.49 9.03 21.75 12.64 66.10 71.11 59.86 82.78 18.18 51.52 47.37 23.08 15.24 32.37 34.43 54.62

Genus Hercoglossa

60.98 65.74 56.34 26.91 68.27 23.13 26.22 70.60 14.42 26.69 81.06 115.52 54.56 124.36 64.91 67.88 51.27 22.98 88.12 60.85

Subclass Ammonoidea

43.80 51.81 46.52 64.81 32.87 49.46 46.48 52.26 36.67 31.49 32.10 20.56 19.08 25.19 54.79 70.46 27.98 10.46 40.42 28.49

Order Anarcestida

33.40 49.30 23.36 33.18 55.78 35.86 39.56 62.48 53.91 64.07 31.61 52.32 34.58 49.67 28.19 20.31 31.87 42.96 56.27 34.74

Superfamily Pharcicerataceae Family Gephuroceratidae

51.04 83.29 62.64 11.39 71.01 76.08 26.57 52.11 36.58 58.54 51.48 79.27 112.68 66.87 64.14 69.10 73.17 15.26 26.90 44.64

Superfamily Anarcestaceae

46.76 22.95 27.16 27.58 35.72 42.53 45.08 37.61 38.57 86.99 67.72 45.46 60.65 23.09 48.80 10.99 39.02 40.49 42.7031.95

Family Anarcestidae

Family Schistoceratidae

Superfamily Cheilocerataceae

12. 13 15.76 33.98 16. 52 57. 75 49.96 16.10 14. 01 37.54 22.48 73.75 18.43 63.32 14. 77 16.84 33.28 76.96 27.57 38.88 48 .88

Family Cheiloceratinae

40.96 19.57 98.40 83.52 70.48 41.74 31.41 120.78 66.21 61.19 76. 98 104. 53.29 89.00 62 78.08 58.62 59.57 92.37 61.37 90. 92

Subfamily Cheiloceratidae

90. 60 41.58 101.77 28.91 31.69 48.42 70.84 13.02 45.50 77. 44 72. 60 112. 49 13.82 69.16 43.12 6.28 60.64 54.81 75.82 57. 24

Family Tornoceratidae

78. 15 17.27 29.53 95.66 51.92 39.95 57.23 35.83 55.06 61.88 76.12 29.17 56.82 42.13 32.12 63.46 42.03 10.19 13.25 12 6.28 60.64 54.8

noceratidae

13 32.12 63.46 42.0

95 57.23 35.83 55.0

cerataceae

odiscidae

50 16.03 20.41 73.4

14 30.55 30.32 58.8

Genus <u>Paraceltites</u> .80

Order Cerititida Family Xenodiscidae Superfamily Otocerataceae

47.48 39.61 84.48 48.15 65.50 16.03 20.41 73.44 57.32 74.24 25. 73 50.71 32.95 46.23 50.14 30.55 30.32 58.83 29.11 45 .02

Genus Paraceltites

30. 91 18.66 30.53 52.95 33.29 34.66 54.36 31. 53 12.70 47.35 67.24 37.57 28.46 32.50 40.55 69.59 41 .3623.80 69.40 36 .40 APPENDIX F

 \sim

 $\ddot{}$

 $\hat{\mathcal{A}}$

SUGROUTINE ARRONIX, Y)
AGONT - 01275
CALL PLOT (X, ASS, Y)
CALL PLOT (X, ASS, Y)
CALL PLOT (X, ASS, Y)
CALL PLOT (X, ASS, Y)
CROP=POTNT=01
CALL PLOT (R, AGOD, 2)
CALL PLOT (R, POTNT, 2)
CALL PLOT (X, POTNT, 2)
ENG RLOT (X,

 $\ddot{}$