QUANTIFICATION OF THE CEPHALOPOD

SUTURE PATTERN

By

Douglas John Canfield

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Geology

a shi a san a ka ƙarar a M**W**ARA. Mata ƙasar ƙasar ƙasar 9 - 2 - **3** - 5 - 5 - 5

entral fair fair severation

as everys out in the little: incorport

and the second second

in the state data the

ABSTRACT

QUANTIFICATION OF THE CEPHALOPOD SUTURE PATTERN

By

Douglas John Canfield

The Fourier series exactly describes the shape of cephalopod suture patterns in the subclasses Nautiloidea, Bactritoidea, and in four of the eight orders of the Ammonoidea, but can not presently describe complex ammonitoid sutures. The Fourier method allows the calculation and graphical display of the mean sutural patterns of the subclasses and orders studied, and exactly quantifies the morphological differences between groups. Discriminant analysis provides significant differentiation of the four ammonoid orders using only the Fourier harmonic amplitudes of the sutures. Discriminant analysis also reveals significant and otherwise undectable differences between the two symmetric halves of sutures in Acanthoclymenia neapolitana, and thereby measures the nongenetic norm of recation in that species. Specific harmonic amplitudes increase monotonically in the ontobeny of Koenenites cooperi as well as in the phylogeny of four genera of the family Gephuroceratidae, with the result that the ontogenetic and phylogenetic scaling factors are statistically identical, confirming on a quantitative basis the assumption of recapitulatory evolution in this lineage.

TABLE OF CONTENTS

																								Page
Acknowledg	gmen	ts	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	i
List of Ta	able	S .		•		•	•	•	•	•	•	•	•	•	•			•	•		•	•	•	ii
List of Fi	lgur	es		•	•		•	•	•	•	•			•	•		•	•			•		•	iv
Introducti	lon.	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Methods .		•	•	•		•		•	•		•		•		•	•	•	•	•	•	•	•	•	4
Results .	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
Summary an	nd C	ond	2 1ı	ısi	Lor	ıs	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	44
List of Re	efer	end	ces	5.	•		•		•	•	•		•	•		•	•	•	•				•	46
Appendix	Α.		•	•	•		•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	48
	в.	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	51
	С.	•	•	•	•	•	•	•	•	•	•	•	•		•		•				•	•		52
	D.	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	57
	Ε.	•	•		•	•	•			•	•	•	•	•	•	•	•	•	•		•	•	•	61
	F.	•	•	•	•	•	•	•	•	•	•	•	•				•	•		•	•	•		64

ACKNOWLEDGEMENTS

I wish to thank Dr. Robert L. Anstey for his advice and guidance throughout this project. The helpful criticisms of Dr. Duncan Sibley and Dr. John Wilband are also greatly appreciated. Special thanks are given to Mitch Roth and Lloyd Lerew for their assistance with understanding mathematical, computational and philosophical problems.

LIST OF TABLES

•

TABLE	1:	Values of the Coefficient of Variation (CV) for six replications of <u>Koenenites</u> cooperi and seven replications of <u>Goniatites</u> choctawensis	14
TABLE	2 :	Mean values for the Coefficient of Variability computed for the taxonmic hierarchy	15
TABLE	3 :	Summary of Discriminant Analysis of data from sutures in the Orders Anarcestinda, Clymeniida, Goniatitida, and Ceratitida	23
TABLE	4 :	Summary of Discriminate Analysis of data from <u>Acanthoclymenia neapolitana</u> . Perfect discrim- ination between left and right suture halves in both juvenile and adult sutures demonstrates presence of nongenetic influences on suture shape	24
TABLE	5 :	Rankings of the harmonic amplitudes within each harmonic frequency for six suture patterns in the ontogenetic series of <u>Koenenites</u> <u>cooperi</u> The increase in rank sums with age is a response to a general increase in signal with age	28
TABLE	6:	Coefficient of Variation of the harmonic amplitudes, computed from the phylogentic series in the Family Gephuroceratidae and the onto- genetic series in <u>Koenenites</u> <u>cooperi</u>	32
TABLE	7:	Significant Correlation Coefficients (R) of variables from the study of ontogeny in Koenenites cooperi. Significance level is $\alpha = .05$ and $\alpha = .01$ sutural variables are HARM 1 to HARM 20 and HZERO. Aperatural variables are AHARM1 AHARM 20 and SIZE.	
TABLE	8:	Varimax rotated factor matrix after rotation with Kaiser normalization, computed from six sutures and aperature shapes in the ontogenetic series of <u>Koenenites</u> <u>cooperi</u> . AGE is the number of volutions of the conch, SIZE is the log of the mean radius of the aperature, HARM 1 through	

TABLE	3	con't - HARM 20 are log transforms of sutural harmonic amplitudes, AHARM 1 through AHARM 20 are log transforms of aperatural Fourier harmonic amplitudes and HARMZERO is the zeroth harmonic amplitude of suture shape	37
TABLE	9:	Significant Correlation Coefficients (R) of variables from the study of phylogeny in the Family Gephuroceratidae at α =.05 and α =.01. SEQ is the log transform of the suture's position in the phylogenetic series. HARM 1 through HARM 20 are log transforms of the Fourier harmonic amplitudes	39
TABLE	10	: Varimax rotated factor matrix after rotation with Kaiser normalization, computed form the four sutures representing a phylogeneitc series in the Family Gephuroceratidae. SEQ is the log of the suture's position in the series, HARM 1 through HARM 20 are log transforms of Fourier harmonic amplitudes, and HARMZERO is the zeroth harmonic amplitude.	40

LIST OF FIGURES

DIANDE	-		
FIGURE	1:	Variation in results, due to methods in six replications on the suture of <u>Koenenites</u> <u>cooperi</u>	11
FIGURE	2 :	Variation in results, due to methods, in seven replications on the suture of <u>Goniatites</u> choctawensis	12
FIGURE	3 :	Mean power spectra of Subclass Ammonoidea (A) and Subclass Nautiloidea (N)	17
FIGURE	4 :	Mean sutures of Subclasses Nautiloidea (A) and Ammonoidea (B) and a graphic display of the difference between them (C)	18
FIGURE	5:	Power spectra of the mean suture patterns of Ammonoid Orders Anarcestida, Clymeniida, Goniatitida, and Cerititida	19
FIGURE	6:	Mean sutures of Orders Anarcestinda (A) and Clymeniida (B) and a graphic display of the difference between them (C)	20
FIGURE	7:	Mean sutures of Orders Goniatitida (A) and Cerititida (B) and a graphic display of the difference between them (C)	21
FIGURE	8:	Mean power spectra of left and right juvenile and adult sutures of <u>Acanthoclymenia</u> <u>neapolitana</u>	25
FIGURE	9:	Power spectra of the ontogenetic series of sutures in <u>Koenenites</u> <u>cooperi</u>	27
FIGURE	10:	Power spectra of the four sutres in the phylogenetic series in the Family Gephurocera- tidae. SEQ 1 = P. stainbrooki, SEQ 3 = M. sinuosum, SEQ 4 = K. cooperi, SEQ 5 = T. keyserlingi	29

FIGURE	11:	Contributions of harmonic frequencies seven and eighteen to the fit of the approximations of <u>Koenenites</u> <u>cooperi</u> at 0.5 volutions (A), 5.5 volutions (B) and a graphic display of differ- ence between them (C)
FIGURE	12:	Relationship between the log transforms of harmonic amplitudes seven and eighteen in the ontogenetic series in <u>K</u> . <u>cooperi</u>
FIGURE	13:	Relationship between the log transforms of harmonic amplitudes seven and eighteen in the phylogenetic series in the Family Gephuroceratidae

INTRODUCTION

The importance of cephalopods in stratigraphy has long been recognized. The suture has been a primary character for the classification of these molluscs. In paleontology, cephalopod sutures have provided some of the classic examples of evolution by recapitulation and paedomorphosis (Tasch, p. 389, 1973).

This study provides a preliminary evaluation of the usefulness of Fourier analysis of suture patterns with respect to the higher taxonomy of the shelled cephalopods, their nongenetic norm of reaction, and their growth, development and phylogenesis.

In his discussion of leaf outlines, D'Arcy Thompson (1917) used the metaphor of a Fourier series to explain variations in form as the superposition of sinusoidal closed form waves of varying period and amplitude upon one another. He implied that plant morphogenesis and phylogeny took place as Fourier analogs. The same point could possibley be made for the ammonoid suture in paleontology, which could represent the morphogenetic superposition of sinusoidal wave forms of different amplitude and harmonic order. Because biological growth and development commonly reflect natural periodic functions, the optimal curve-fitting and filtering of many biological forms will very likely be based on the Fourier series.

Vicencio (1973) in an unpublished study attempted to use Fourier shape analysis to describe sutures. This was only a small aspect of a much larger study, and was incompletely developed. Fourier analysis has been successfully used to study the human face (Lu, 1965), the shapes of ostracodes (Younker, 1971; Kaesler and Waters, 1972; Ewald, 1975), pelecypods (Gevirtz, 1976), bryozoans (Delmet and Anstey, 1974; Anstey, Pachut and Prezbindowski, 1976), trilobites (Tuckey, 1975), blastoids (Waters, 1977), miospores (Christopher and Waters, 1974), and viruses (Crowther and Amos, 1971). The optimality of the Fourier basis of plane closed curve description has been demonstrated by Zahn and Roskies (1972).

All of the above studies, with the exception of Vicencio, were based on nonsinusoidal closed forms (i.e. complete closed curves in polar coordinates). Ammonoid sutures are natural sinusoidal curves to which the application of the Fourier series should be particulary effective.

Coefficients of variation (standard deviations divided by their means) are routinely used in biometry to compare the relative ariability of different measurements. Examination of suture patterns from the widest possible taxonomic range makes it possible to calculate coefficients of variation of Fourier harmonic amplitudes at several heirarchical levels. It is then possible to compare quantitatively the degree of taxonomic variation in all of the Fourier wave forms filtered from the actual sutures. The Fourier series has the unique

property of allowing the calculation of an exact mean suture pattern for any taxonomic group, or the construction of an exact intermediate suture pattern between any two "end members".

The norm of reaction is a measure of the nongenetic, or ecophenotypic aspects of morphology. Because cephalopod sutures are bilaterally symmetrical about the mid-dorsum, available complete suture patterns provide estimations of the norm of reaction. The filtering capabilities of the Fourier series allow the subtraction of the asymmetry from the observed suture pattern, and the residual series can be used to reconstruct a more "ideal" suture pattern than that actually produced by nature.

Heterochrony implies that phylogenetic differentiation took place by extension or reduction of the development pathways followed in ontogeny. The study of heterochrony in suture patterns has previously been graphic rather than quantitative, and direct measurement of scaling factors has not been possible. The amplitudes of some Fourier wave forms vary monotonically in both ontogenetic and phylogenetic sequences. These amplitudes can be used to calculate scaling factors directly and to test the assumptions of heterochrony in the taxa studied.

METHODS

Suture shape can be estimated as Y being a fuction of X by a Fourier series. The general form of the Fourier equation is

$$f(x) = C_0 + \sum_{N=1}^{\infty} C_N \cos 2\pi N X / T + \sum_{N=1}^{\infty} S_N \sin 2\pi N X / T$$
(1)

where T equals the range of the approximation, or the period of f(x).

 C_0 can be found by integrating both sides of (1) to obtain:

$$C_0 = 1/T \int_{t_0}^{t_0} \int_{t_0}^{t_0} f(x) dx$$
 (2)

Multiplying (1) by $\cos 2\pi NX/T$ or $\sin 2\pi Nx/T$ and integrating finds C_N and S_N respectively.

$$C_{N} = 2/T \int_{t_{0}}^{t_{0}} f(x) \cos 2\pi NX/T dx$$
(3)
$$S_{N} = 2/T \int_{t_{0}}^{t_{0}} f(x) \sin 2\pi NX/T dx$$
(4)

A set of data points (X_i, Y_i) is approximated by a Fourier series by determing f(x) by linear interpolation over the data and solving for the Fourier coefficients in the formulas (2), (3), and (4).

Thus, if the n data points are ordered such that $X_1 < X_2 < \dots < X_n$, let $f(x) = f_i(x)$, $x_i \le X \le X_i + 1$ where

$$f_{i}(x) = \left(\frac{Y_{i} - Y_{i} + 1}{X_{i} - X_{i} + 1}\right) x + \frac{-X_{i+1} + Y_{i} + X_{i}Y_{i} + 1}{X_{i} - X_{i} + 1},$$

$$X_{i} \le X \le X_{i} + 1$$
 (5)
or f; (X) = a; X + b; (6)

When $f_i(x)$ is substituted into (2)

$$C_{0} = \frac{1}{X_{n} - X_{1}} \int_{X_{1}}^{X_{2}} f_{1}(x) dx + \int_{X_{2}}^{X_{3}} f_{2}(x) dx + \dots + \int_{X_{n-1}}^{X_{n}} f_{n-1}(x) dx$$
(7)

Integrating the functions $f_1 \dots f_n$ yields

$$C_0 = 1/(X_n - X_1) \sum_{L=1}^{n-1} \frac{a_i}{2} (X_{i+1}^2 - X_i^2) + b_i(X_{i+1} - X_i)$$
 (8)

Similarily, for \boldsymbol{C}_N and \boldsymbol{S}_N

$$C_{N} = \frac{2}{X_{n} - X_{1}} \sum_{j=1}^{n-1} \sum_{i=1}^{X_{i}+1} (a_{i} X + b_{i}) \cos \frac{2\pi N X dx}{T}, N=1,2,3...(9)$$

$$S_{N} = \frac{2}{X_{n} - X_{1}} \sum_{i=1}^{n-1} \sum_{i=1}^{X_{i}+1} (a_{i} X + b_{i}) \sin \frac{2\pi N X dx}{T}, N=1,2,3...(10)$$

Integrating, these become

$$C_{N} = \sum_{i=1}^{n-1} \frac{a_{i}}{\pi N} \left[X_{i+1} \sin \frac{2\pi N X_{i+1}}{T} - X_{i} \sin \frac{2\pi N X_{i}}{T} \right]$$

+
$$\frac{b_{i}}{\pi N} \left[\sin \frac{2\pi N X_{i+1}}{T} - \sin \frac{2\pi N X_{i}}{T} \right]$$

+
$$\frac{a_{i}T}{2\pi^{2} N^{2}} \cdot \left[\cos \frac{2\pi N X_{i+1}}{T} - \cos \frac{2\pi N X_{i}}{T} \right]$$
(11)

$$S_{N} = \sum_{i=1}^{n-1} -\frac{a_{i}}{\pi N} \left[y_{i+1} \cos \frac{2\pi NX_{i+1}}{T} - X_{i} \cos \frac{2\pi NX_{i}}{T} \right]$$

$$-\frac{b_{i}}{\pi N} \left[\cos \frac{2\pi NX_{i+1}}{T} - \cos \frac{2\pi NX_{i}}{T} \right]$$

$$+\frac{a_{i}}{2\pi^{2} N^{2}} \left[\sin \frac{2\pi NX_{i+1}}{T} - \sin \frac{2\pi NX_{i}}{T} \right]$$
(12)

Equations (8), (11) and (12) were coded into program FOURIER (Appendix A) and used to compute Fourier approximations of suture shape. Harmonic amplitudes (A_N) and phase angles $(\mathbf{\Phi}_N)$ are calculated by the formulae:

 $A_{\rm N} = C_{\rm N}^2 + {\rm N}^2$ $\Phi_{\rm N} = {\rm TAN}^{-1} \frac{{\rm SN}}{{\rm CN}}$

Published suture diagrams were the source of all data (Apendix B). Diagrams were photographically enlarged and then digitized on a set of cartesian coordinates. Each suture pattern was situated to have the venter lie along the abcissa The origin was at the point at which the suture pattern and venter cross. Forty to one hundred X, Y coordinates of points on the suture pattern were recorded, starting at the origin and finishing with the point at which the suture intersected the mid-dorsum. Points were selected at regular intervals, with exceptions for inclusion of finer details which would otherwise have been smoothed over by linear interpolation over the sampling interval. Two methods of treating this data were then compared.

The first or "half suture" method shifted the orientation of the suture pattern with respect to the coordinate system so that both the first and last data points had a Y-values were multiplied by the same normalization constant in order to maintain scale relationships. The Fourier series approximation was then computed over the 0.0 to 2π interval.

The second method takes advantage of the bilateral symmetry of the suture patterns by constructing a mirror image from the mid-dorsum on around to the venter. This "complete suture" is then normalized, as before, to range from 0.0 to 2π from venter to venter. The Fourier series approximation is then calculated over this interval.

A data set consisting of 126 suture patterns was used for comparative evaluation of the two methods. For each method, twenty harmonic amplitudes and twenty phase angles were computed from each suture pattern. Data sets of less than forty one data points were eliminated from analysis because of the Nyquist frequency limitations (Davis, 1973, p. 266). Because each harmonic amplitude was computed from the residual signal (that not accounted for by the previous harmonics), all harmonics are orthogonal. The contribution of each harmonic to the approximation of the original data by the Fourier series was first delineated by computing its root mean square error, as defined by the formula:

RMS =
$$\sqrt{\sum_{j=1}^{N} (Y_j - \hat{Y}_j)^2 / N - 1}$$

where N is the number of data points, Y_j is the Y-value of the jth data point and Y_j it the approximation of the Y-value of the jth data point.

$$\hat{Y}_{j}$$
 is computed by the formula:
 $\hat{Y}_{j} = A_{o} + \sum_{i=1}^{F} (A_{i} \sin(i X_{j} + \Phi_{i}))$

where A_0 is the value of the zeroth harmonic amplitude, A_i is the vaule of the ith harmonic amplitude, and \oint_i is the phase angle of the ith harmonic, and F is the highest harmonic frequency calculated.

Significance testing was carried out using an analysis of variance design associated with Snedecor's F-test (Mendenhall, 1968, p. 174-181). Although data points were not necessarily spaced at equal intervals, which is necessary for a rigorous test of significance, their close approximation to equal intervals still allows the use of the significance test as an accurate estimate of true significance (Gevirtz, 1976).

Subroutine FTEST (Appendix A) was used to compute both the root mean square error and the F-statistics. It was found with both methods that all twenty harmonics contributed significant ($\alpha = .05$) shape information.

It was also found that with the computation of twenty harmonic amplitudes, the complete suture method was able to reduce root mean square error to less than an arbitrary value of 0.05 in 80% of the cases (101 out of 126); whereas the half suture method could achieve this level of accuracy in only 75% of the cases (95 out of 126).

The complete suture method also concentrates more information in the harmonic amplitudes. Because a suture pattern is bilaterally symmetrical, the coefficients of the sine terms in the Fourier equation take on a value of zero (Lu, 1965). Consequently, the Fourier series becomes a cosine series and the phase angles only have values of plus or minus ninety degrees.

A further advantage of the full suture method over the half suture method lies in the assumption of a repeating signal inherent in a Fourier series approximation (Davis, p. 256-272). A suture pattern repeats itself by virtue of its continuity around the conch from the venter to the mid-dorsum and back to the original point, the venter. The half suture method ignores the assumption of a repeating signal. It also changes the function by rotating the orientation of the sutures on the coordinate system, so it can not lend itself to representation of the morphogenesis of the sutures as well as the complete suture method. Therfore, only the results of the complete suture method have been presented in this paper.

It should be also be noted that the results obtained from the complete suture method agree with those reported by Vicencio (1973). This includes his observation that Schindewolf's phylogenetic scheem (1954) of trilobate, quadrilobate and quinquilobate primary sutures correspond with large contributions

to the fit of the Fourier series approximation by the fourth, sixth and eighth harmonics, respectively.

The sutures of the ammonitoid ammonites are too complex to be studied directly by Fourier analysis. The lobules and folioles which create the intricate nature of the suture patterns cause the functions describing them to be multivalued. The Fourier series cannot deal with this problem (Ehrlich and Weinberg, 1970). Many of the ceratitic and goniatitic sutures also exhibit this degree of complexity. A possible solution to this problem, not examined in this study, would be the use of an iterative curve smoothing algorithm. Vicincio (1973) attempted such analysis, but found it not particulary useful for extremely complex sutures. However, for sutures such as those in Schistoceras missouriense, which only have a few multivalued points along the ordinate, such a procedure could be used. The number of iterations required to make the curve suitable for Fourier analysis should be retained as an additional variable measuring complexity. A table of ammonoid taxa which have been studied is included in Appendix C.

In order to evaluate the reproducibility of results by this method, multiple data sets were generated form two suture drawings, one of <u>Koenenites</u> <u>cooperi</u> and one of <u>Goniatites</u> <u>choctawensis</u>. The data sets were processed, and results were compared by graphical display (Figures 1 and 2) and by computing the coefficients of variation:

 $CV_n = 100.0 (\sigma_n/\mu_n)$

FIGURE 1: Variation in results, due to methods in six replications on the suture of Koenenites cooperi.

ι.

FIGURE 2: Variation in results, due to methods, in seven replications on the suture of <u>Goniatites</u> choctawensis.

1

where n is the harmonic frequency number, σ is the standard deviation and μ is the mean.

The graphs of the harmonic amplitudes vs. the harmonic frequency number (power spectra) of the six repitions of <u>K</u>. <u>cooperi</u> (Figure 1) show a large variation of the harmonic amplitudes at harmonic frequencies eleven and fourteen, The coefficient of variation has maxima of 66.64 and 69.83 at these respective frequencies (Table 1). The seven replications of <u>G</u>. <u>choctawnsis</u> (Figure 2) and <u>K</u>. <u>cooper</u> (Figure 1) is that relative variations increases greatly as the harmonic amplitude drops below 10^{-2} . This threshold level can be lowered by reducing random noise due to methods. More accurate digitizing equipment (accuracy greater than .025 in.) or greater enlargment of suture patterns (larger than 8 X 10 photographs) can increase the signal strength with respect to noise.

RESULTS

A data set of 140 sutures was analyzed and the mean harmonic amplitudes were calculated for the portion of the taxonomic hierarchy sampled (Appendix D). In order to compare the degree of taxonomic variation in the Fourier was forms, the coefficients of variation (CV_n) was also computed for taxonomically hiearchical levels (Appendix E). Table 2 gives the mean coefficients of variability within hierarchical levels. Harmonic frequency four shows a relatively constant CV, with a minimum of 38.21 and a maximum of 45.19. The second

TABLE 1: Values of the Coefficient of Variation (CV) for six replications of <u>Koenenites</u> <u>copperi</u> and seven replications of <u>Goniatites</u> <u>choctawensis</u>.

HARMONIC FREQUENCY COEFFICIENT OF VARIATION

	<u>K. cooperi</u>	<u>G</u> . <u>choctawensis</u>
1	2.46	4.51
2	2.78	4.53
3	3.26	7.60
4	2.61	21.28
5	1.99	70.09
6	3.15	1.15
7	6.42	3.90
8	1.33	46.07
9	4.17	20.92
10	4.54	4.04
11	66.64	1.99
12	16.36	4.42
13	4.30	15.78
14	69.83	5.82
15	13.77	13.69
16	8.68	124.66
17	16.09	4.88
18	8.04	15.26
19	37.38	8.03
20	32.87	20.31

HARMONIC	GENERA	FAMILIES	SUPERFAMILIES	ORDERS
1	46.74	45.79	31.23	20.30
2	41.30	42.94	35.86	35.57
3	42.19	60.73	52.01	41.08
4	39.70	44.26	38.21	45.19
5	57.37	56.35	37.21	55.11
6	32.02	32.84	48.83	50.60
7	44.85	38.33	47.61	52.76
8	28.70	65.84	43.29	53.92
9	36.27	40.94	45.49	63.33
10	43.40	46.78	54.75	48.26
11	35.74	67.27	46.55	53.96
12	48.37	61.85	27.53	55.59
13	51.81	59.39	45.42	65.94
14	56.64	49.45	47.19	59.01
15	42.29	54.16	35.04	62.79
16	43.04	47.64	51.07	58.16
17	44.21	35.02	64.74	72.05
18	40.30	45.76	52.90	59.58
19	42.61	38.42	44.35	52.93
20	54.93	44.49	36.39	59.91

TABLE 2: Mean values for the Coefficient of Variability computed for the taxonomic hierarchy.

harmonic also has a constant CV, ranging from 35.57 to 42.94. Table 2 shows that all harmonic frequencies (1-20) contribute shape information at all levels in the taxonomic hierarchy.

The complexity of a suture pattern can be roughly quantified as the number of harmonic frequencies required to reduce root mean square error to 0.05 or less. The average number to reduce RMS to 0.05 or less is seven for the nautiloids and eleven for the ammonoids. Those ammonoid approximations which could not reduce RMS to 0.05 were not included in the computation of this average.

Sixteen harmonics were the maximum number required to reduce RMS to 0.05 or less in the nautiloids. The ammonoids differ form the nautiloids primarily in the increased signal of the higher order harmonics (Figures 3 and 4). This is an expected result of the ammonoids' increase in sutural complexity by the addition of lateral lobes, which are not found in the nautiloids.

The mean power spectrum of the Subclass Ammonoidea was computed from the four power spectra shown in Figure 5. These are the mean harmonic amplitudes of the Orders Anarcestida, Clymeniida, Goniatitida and Cerititida. The mean suture patterns which these power spectra represent were redrawn by FORTRAN program FILTER (Appendix F) and are presented in Figures 6 and 7). Discrimminant analysis (Nie, et al., 1975, p. 434-467) was performed using these four Orders as the classification categories. Only nine individuals out of 129 were

FIGURE 3: Mean power spectra of Subclass Ammonoidea (A) and Subclass Nautiloidea (N).

FIGURE 4: Mean sutures of Subclasses Nautiloidea (A) and Ammonoidea (B) and a graphic display of the difference between them (C). FIGURE 5: Power spectra of the mean suture patterns of Ammonoid Orders Anarcestida, Clymeniida, Goniatitida, and Cerititida.

ł

FIGURE 6: Mean sutures of Orders Anarcestinda (A) and Clymeniida (B) and a graphic display of the difference between them (C). FIGURE 7: Mean sutures of Orders Goniatitida (A) and Cerititida (B) and a graphic display of the difference between them (C). misclassified (Table 3). This result is significant at α = .01 with χ^2 = 318.35. The sensitivity of Fourier shape analysis to genetic differences at high taxonomic levels is demonstrated by the above results.

The ability to filter nongenetic effects from the morphologic information, leaving only genetically regulated shape information, is of great importance to the studies of taxonomy, ontogeny, and phylogeny. The data set included only two complete suture patterns suitable for examing both halves. Both suture patterns were of <u>Acanthoclymenia neapolitana</u>, at 2½ volutions of the conch and at maturity.

Each suture half was processed eight to ten times. Discriminant analysis was performed upon the harmonic amplitudes and 100% correct classification ($\chi^2 = 105.00$) was achieved (Table 4). The significant differences between left and right suture halves are summarized in the mean power spectra of these sutures (Figure 8) These differences are not discernible in visual inspection of the suture patterns.

The ontogenetic sequences of sutre patterns of <u>Adrianites</u> <u>dunbari</u>, <u>Agatherisis uralicum</u> and <u>Koenenites cooperi</u> (taken from Arkell, et al., 1957) were studied. Suture patterns which were too complex for analysis i.e., those which requre a double valued function) were omitted. Sutural complexity, as measured by the number of harmonics required to reduce RMS to 0.05 or less, increased with age in each of the three sequences. Because of the elimination of the complex mature sutures of <u>A</u>. <u>dunbari</u> and <u>A</u>. <u>Uralicum</u>, further study of ontogeny was limited to K. cooperi.

ures in the Orders	ida.
ita from sutu	and Ceratiti
malysis of da	Goniatitida,
E Discriminant /	ıda, Clymeniida,
Summary of	Anarcestin
TABLE 3:	

ACTUAL GROUP NAME	N OF CASES	ANARCESTINDA	PREDICTED GROUP CLYMENIIDA	MEMBERSHIP GONIATIDA	CERATITIDA
Anarcestinda	77	41.0 93.2%	2.0 4.5%	1.0 2.3%	0.0 0.0%
Clymeniida	13	3.0 23.1%	10.0 76.9%	0.0 0.0%	0.0 0.0%
Goniatitida	50	2.0 4.0%	0.0%	47.0 94.0%	$\begin{array}{c}1.0\\2.0\%\end{array}$
Ceratitida	22	0.0 0.0%	0.0 0.0%	0.0 0.0%	$\begin{array}{c} 22.0\\ 100.0\% \end{array}$
Summary of Discriminate Analysis of data from Acanthoclymenia neapolitana.	Perfect discrimination between left and right suture halves in both	juvenile and adult sutures demonstrates presence of nongenetic influences	on suture shape.		
--	---	---	------------------		
TABLE 4 :					

ACTUAL GROUP NAIE	N OF CASES	PREI L-JUVENILE	DICTED GROUP R-JUVENILE	MEMBERSHIP L-ADULT	R-ADULT
L-JUVENILE	ω	3.0 100.0%	0.0 0.0%	0.0 0.0%	0.0 0.0%
R-JUVENILE	10	0.0 0.0%	$\begin{array}{c} 10.0\\ 100.0\%\end{array}$	0.0% 0.0%	0.0 0.0%
L-ADUI.T	Ø	0.0 0.0%	0.0 0.0%	3.0 100.0%	0.0 0.0%
R-ADULT	6	0.0	0.0 0.0%	0.0 0.0%	9.0 100.0%

FIGURE 8: Mean power spectra of left and right juvenile and adult sutures of <u>Acanthoclymenia</u> <u>neapolitana</u>.

Figure 9 is the power spectra of the harmonic amplitudes of the six sutures in the ontogenetic series of <u>K</u>. <u>cooperi</u> as reported by Miller (1938). Growth and development is reflected in the power spectra as a slow broadening and migration of the first peak of the series to higher order harmonic frequencies. Each successive approximation (i.e., suture) tends to be of a higher overall power spectrum than the previous one. This visual observation is supported by ranking the approximation at each frequency and summing the ranks over the approximations (Table 5). The above observation fit Miller's description of the ontogeny as proceeding by the subdivision of lobes and increase in size.

A phylogenetic sequence of sutures proposed by Miller (Arkell, et al. p. 134, 1957) for the Family Gephuroceratidae was studied in the same manner as the ontogeny of sutures in <u>K. cooperi</u>. The sequence consisted of <u>Ponticeras aequabilis</u>, <u>Manticoceras simulator</u>, <u>Manticoceras sinuosum</u>, <u>Koenenenites</u> <u>cooperi</u> and <u>Timanites keyserlingi</u>. The complete sutures of <u>M. simulator</u> was not available in the literature and could not be included. The same problem forced substitution of Ponticeras stainbrooki for P. aequabilis.

P. stainbrooki, which has the most simple suture, forming only four distinct lobes (Arkell et al., p. 135, 1957), has a peak in its power spectrum (Figure 10) at the fourth harmonic frequency and then drops for the higher order frequencies. <u>M. sinuosum, K. cooperi</u> and <u>T. keyserlingi</u> should then be expected to have peaks at frequencies six, eight and ten,

FIGURE 9: Power spectra of the ontogenetic series of sutures in <u>Koenenites</u> <u>cooperi</u>.

Υ.

TABLE 5: Rankings of the harmonic amplitudes within each harmonic frequency for six suture patterns in the ontogenetic series of <u>Koenenites cooperi</u>. The increase in rank sums with age is a response to a general increase in signal with age.

		V	OLUTION	OF CONC	CH	
HARMONIC NUMBER	0.5	1.5 RANKINGS	2.5 OF HARM	3.5 IONIC AN	4.5 IPLITUDES	5.5
1	5	4	1	2	3	6
2	3	1	2	5	6	4
3	2	1	3	5	6	4
4	1	3	6	4	5	2
5	3	4	2	5	1	6
6	2	1	3	4	6	5
7	1	3	2	4	5	6
8	1	2	4	5	3	6
9	3	2	1	4	6	5
10	1	2	3	4	5	6
11	2	3	4	5	6	1
12	1	3	2	4	6	5
13	2	3	1	4	5	6
14	2	4	1	6	5	3
15	1	3	2	5	6	4
16	1	2	3	4	5	6
17	1	3	4	5	2	6
18	1	2	4	3	5	6
19	1	2	4	3	5	6
20	_1	_2	_4	3	_6	_5
Ranking Sums	35	50	56	87	95	97

FIGURE 10: Power sectra of the four sutures in the phylogenetic series in the Family Gephuroceratidae. SEQ1 = P. stainbrooki SEQ3 = M. sinuosum, SEQ4 = K. cooperi, SEQ5 = \overline{T} . keyserlingi

corresponding to their respective number of lobes (Arkell et al., p. 135, 1957). <u>M. sinuosum</u> and <u>K. cooperi</u> do have high values where expected, but these are not their maximua <u>T</u>. <u>keyserlingi</u> has a relatively low value for its tenth harmonic amplitude. These anomolies are considered to be the results of combinations of lower order frequencies making good approximations to the fit of the data, leaving less residual signal to be accounted for by the higher order frequencies. The asymmetric, non-regular (variable frequency) nature of the lobes of <u>T</u>. <u>keyserlingi</u> can be better approximated by the combination of two signals, the fourth and the seventh harmonic frequencies, than by the tenth frequency.

A measure of the similarity of the sutures within a grouping can be made by calculating the normalized roughness coefficient (RC) of each suture pattern.

$$RC_{j} = \sqrt{\frac{20}{\sum_{i=1}^{20} (A_{ij} / \bar{A}_{i})}}$$

where A_{ij} is the harmonic amplitude of the <u>i</u>th frequency in the <u>j</u>th suture, and \overline{A}_i is the mean harmonic amplitude of the ith frequency.

A set of identical sutures should all have values of RC equal to 10 or 3.1623. The phylogenetic sequence has value of RC ranging from 2.9135 for <u>T</u>. <u>keyserlingi</u> to 4.7666 for <u>M</u>. <u>sinuosum</u>. The ontogenetic sequence ranges from 1.6082 at the earliest suture to 7.4351 at the adult suture. This indicates that the sutures of the phylogenetic series are less different from each other than those of the ontogenetic series.

The sources of the variation can be determined by examining the coefficients of variability for the two sequences (Table 6). The phylogenetic sequence only has two values of CV greater than 100 (harmonics twelve, thirteen). Other sources of variation are, in descending order, harmonics six, fourteen, sixteen, eleven, and one. The ontogenetic sequence has six harmonics with coefficients of variability greater than 100. Only harmonics one, two, four, six, twelve, fourteen and sixteen have lower values of CV in the ontogenetic sequence than in the phylogenetic sequence. The extremely low values of CV for harmonics two and four in the ontogenetic series indicate that these harmonic frequencies are relatively independent of development, and reflect a basic sutural form that does not vary with growth.

Log transforms of the harmonic amplitudes form the suture patterns of the ontogenetic series were submitted to principal components factor analysis (Nye, et al., p. 468-514, 1970). The number of volutions of the conch at each suture was included as a variable representing age. Also included were log transforms of the size of the aperature and twenty harmonic amplitudes computed in closed form (Ehrlich and Weinberh, 1970; Ewald, 1975; Anstey, Pachut and Prezbindowski, 1976) from the shape of the aperature at the respective number of volutions.

The matrix of correlations, output as a preliminary result, shows significant ($\alpha = .05$) correlations of age with size, sutural harmonic frequencies zero, six, seven, ten,

TABLE 6: Coefficients of Variation of the harmonic amplitudes, computed from the phylogentic series in the Family Gephuroceratidae and the ontogenetic series in <u>Koenenites</u> <u>cooperi</u>.

HARMONIC	NUMBER	COEFFICIENT O	F VARIATION
		Phylogeny	Ontogeny
1		80.14	76.61
2		67.25	32.53
3		56.67	61.68
4		52.41	39.45
5		64.15	114.58
6		95.35	68.16
7		52.95	78.82
8		70.77	84.23
9		51.54	76.68
10		76.93	113.23
11		30.68	123.17
12		104.56	67.60
13		113.84	153.60
14		88.63	66.56
15		43.61	93.68
16		87.28	65.48
17		46.38	117.06
18		55.36	119.19
19		62.38	71.61
20		52.28	81.46

twelve, sixteen, eighteen, twenty and aperatural harmonic frequencie four (Table 7). All of these variables load most heavily on the first principal component (Table 8) or the general growth factor (Gould, 1966).

Principal components analysis of the phylogenetic sequence was performed using a dummy "SEQ" variable coded as the log of the suture's position in the series. As before, log transforms of the harmonic amplitudes were used. No aperatural shapes were available for the study. Only harmonic frequencies seven, eighteen and twenty were significantly ($\alpha = .05$) correlated with "SEQ" (Table 9). These four variables all loaded most highly on Factor two (Table 10).

The correlation of harmonic frequencies seven and eighteen with age in both the ontogenetic and the phyloeneetic series is an interesting point. The seventh harmonic is responsible, in part, for the presence of lateral lobes. The eighteenth harmonic frequency is equivalent to eighteen evenly spaces lobes. Alone, its effect can only be in small scale sculpturing of the suture patterns. However, the high levels of correlation imply an interaction of the two variables. The results of this interaction is demonstrated by Figure 11, which shows the actual contribution of harmonic frequencies seven and eighteen to the approximation of the earliest and adult sutures of K. cooperi.

The log transformation of the two harmonic amplitudes were plotted against each other and regression lines were computed (Figures 12 and 13) for the ontogenetic and phylogenetic data. The slopes of the regression lines are 0.593 for the

TABLE 7: Significant Correlation Coefficients (R) of variables from the study of ontogeny in Koenenites <u>cooperi</u>. Significance level is $\alpha = .05$ and $\alpha = .01(*)$ Sutural variables are HARM 1 to HARM 20 and HZERO. Aperatural variables are AHARM 1 to AHARM 20 and SIZE.

AGE

SIZE

	.97982*
6	.88217
7	.85522
10	.86423*
12	.81744
16	. 99448*
18	.95072*
20	.85268
4	. 87485
	.84909
	6 7 10 12 16 18 20 4

HARM HARM HARM HARM HARM HARM HARM	6 7 9 16 17 18 2	.82005 .97274* .89910 .98817* .95864* .88508 .95433* 82488
AHARM	2	82488
AHARM	4	. 83539

H	A	RM	1	1
	-		4	-

AHARM	1	95539*
AHARM	8	92109*
AHARM	9	95587*
AHARM	12	94688*
AHARM	13	83069
AHARM	17	90256
AHARM	18	85346

HARM 4

AHARM	3	.92283*
AHARM	7	.99258*
AHARM	11	.95408*
AHARM	16	.91773*
HZERO	10	.85889

HARM 6

HARM	7	.81684	
HARM	10	. 86140	
HARM	12	. 82726	
HARM	16	. 86628	
HARM	18	. 86439	
HARM	20	. 81644	

HARM	3	.94236*	
	HARM	3	
HARM	15	. 88907	

HARM 2

HARM 5

UADM	17	96010
narui	1/	. 50010
AUADM	2	077/6
ANAKri	2	92240

HARM 7

HARM	8	.86530
HARM	10	. 95855
HARM	13	.89130
HARM	16	. 94243*
HARM	17	. 82926
HARM	18	.89193

TABLE 7 cont.

HARM 8

HARM	10	.82804
HARM	16	.85520
HARM	17	.95015*
HARM	18	.81873
HARM	19	.82126
HZERO		.83168

HARM 10

HARM	16	. 93151*	AHARM	1	. 83761
HARM	17	.85613	AHARM	5	90542
HARM	18	. 95146*	AHARM	12	.88750
AHARM	2	83102	AHARM	17	.87568

HARM 12

HARM	15	. 87466
HARM	16	. 84243
AHARM	16	.83725

HARM 16

	10	
HARM	18	.929/0*
HARM	20	.87048
AHARM	3	. 84199
AHARM	4	. 88852
AHARM	16	.86241
HZERO		. 89209

HARM 18

HARM	20	. 88226
AHARM	4	.83301
AHARM	10	84336

HARM	13	.88184
пакм	14	.0/1/5

HARM 11

HARM 15

HARM	16	.83718
AHARM	16	. 82249
HZERO		. 89209

HARM 17

HARM	19	.86686
AHARM	2	85699

HARM 20

AHARM	3	. 88562
AHARM	4	. 91223
AHARM	16	. 82590
HZERO		.82147

TABLE 7 cont.

AHARM 1

AHARM	8	.95857*	AHARM	4	.88997
AHARM	9	. 90245	AHARM	7	.95938
AHARM	12	.97886*	AHARM	13	.87177
AHARM	13	. 89945	AHARM	16	.95328*
AHARM	17	. 96507*	HZERO		.96608*
AHARM	18	.95515*			
AHARM	19	.87201			

AHARM 4

AHARM	13	. 83189
HZERO		.91379

AHARM 7

AHARM 15 .88451

AHARM 5

AHARM 8

AHARM 11	.91470	AHARM 9	.93093
AHARM 16	.93642*	AHARM 12	.88597
HZERO	. 90564	AHARM 13	.81726
		AHARM 17	.88752
		AHARM 18	.93639*
		AHARM 19	. 92850*

AHARM 9

AHARM	12	.86207	
AHARM	17	.84155	

AHARM 12

AHARM 16 .81148

AHARM 11

AHARM 13

AHARM	13	. 87988	AHARM	17	.91031
AHARM	17	.95505*	AHARM	18	.94541*
AHARM	18	. 89848	AHARM	19	.84781
			HZERO		. 82988

AHARM 16

AHARM 17

HZERO	. 92995*	AHARM 18	.93180*
		AHARM 19	.85166

AHARM 18

AHARM 19 .95388*

computed from six sutures and aperature shapes in the ontogenetic series of Koenenites cooperi. AGE is the number of volutions of the conch, SIZE is the log of the mean radius of the aperature, HARM 1 through HARM 20 are log transforms of sutural harmonic amplitudes, AHARM 1 through AHARM 20 are log transforms of aperatural Fourier harmonic amplitudes and HARMZERO is the zeroth harmonic amplitude of suture shape. Varimax rotated factor matrix after rotation with Kaiser normalization, .. ∞ TABLE

VARIABLE	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5
AGE	. 93095	.12358	.20427	.24324	.14349
SIZE	. 91106	01845	.33936	.20075	.12937
HARM 1	.04744	96428	.00810	.08370	.24400
HARM 2	.38867	. 48005	.04720	.47221	. 62443
HARM 3	.48821	.55092	.07665	.58349	.32955
HARM 4	. 63106	.56751	04265	07006	52932
HARM 5	.47613	56974	.66233	.01727	.02644
HARM 6	.81542	.10494	10269	.24554	.48296
HARM 7	.86909	03695	.26030	. 40387	.03719
HARM 8	.82918	.00204	. 45977	.12207	28927
HARM 9	. 45442	21971	02623	.83580	.15598
HARM 10	. 83008	05777	. 33333	.19589	.27659
HARM 11	.04819	.78985	.48791	.34308	08229
HARM 12	.84305	.08704	34431	.38136	02437
HARM 13	.70816	45177	.05469	.51865	.10417
HARM 14	.24374	.07420	16513	.92276	14674
HARM 15	.66461	.38480	10043	.62194	02868
HARM 16	.92899	.19943	.16573	.25684	.08233
HARM 17	.72833	13196	.65750	.05715	12109
HARM 18	.96917	02102	.15318	02433	.19091
HARM 19	. 49499	. 28506	.79095	.11655	10309
HARM 20	.88390	.39724	02638	15448	.16117

TABLE 8 cont.

VARIABLE	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5
AHARM 1	.07594	. 99248	10260	01231	.00123
AHARM 2	74069	.54285	37975	00355	06994
AHARM 3	.77361	.60047	.04071	.05069	19045
AHARM 4	.78512	. 48999	.34254	03190	.14805
AHARM 5	04403	57678	.71519	17988	.33002
AHARM 6	.29771	.10473	.23780	03688	.86090
AHARM 7	.68660	.58229	.01347	06836	43637
AHARM 8	12455	.97500	.00779	10929	.14571
AHARM 9	32268	,93259	00799	02309	15593
AHARM 10	89914	.34432	.14784	.01185	.13002
AHARM 11	.46937	.53744	26477	13152	63422
AHARM 12	.15714	.95297	21968	.01577	14083
AHARM 13	.43500	.88713	.14407	00746	.12287
AHARM 14	.17055	.54760	.71788	23370	.23000
AHARM 15	.10404	16289	. 81163	27572	.45676
AHARM 16	.84401	.38254	05828	.15272	33548
AHARM 17	.15635	.95794	05140	, 23358	01679
AHARM 18	.21100	. 94908	.03214	02827	.22837
AHARM 19	.03030	. 89695	.20024	.01361	.39233
AHARM 20	.25705	.63451	,26431	59475	20262
HARMZERO	.76763	,52393	.24738	.19344	19397

TABLE 9: Significant Correlation Coefficients (R) of variables from the study of phylogeny in the Family Gephuroceratidae at a=.05 and a=.01(*). SEQ is the log transform of the suture's position in the phylogenetic series. HARM 1 through HARM 20 are log transforms of the Fourier harmonic amplitudes.

> SEQ HARM 7 .99742* . 95574 HARM 18 HARM 20 .96331 HARM 1 HARM 10 .98079 HARM 18 .96335 HARM 4 HARM 18 -.97937 HARM 6 HARM 12 .99829* HARM 16 . 96995 HARM 7 HARM 18 .95070 HARM 9 HARM 19 -.98345 HARM 10 HARM 18 .96978 HARM 12 HARM 16 .97012 HARM 19 -.95463 HARM 14 HARM 17 -.95408 HZERO -.99793* HARM 17 .96656 HZERO HARM 18 HARM 20 .97393

TABLE 10: Varimax rotated factor matrix after rotation with Kaiser normalization, computed from the four sutures representing a phylogenetic series in the Family Gephuroceratidae. SEQ is the log of the suture's position in the series, HARM 1 through HARM 20 are log transforms of Fourier harmonic amplitudes, and HARMZERO is the zeroth harmonic amplitude.

VARIABLE	FACTOR 1	FACTOR 2	FACTOR 3
SEQ	. 46889	. 84657	25708
HARM 1	.80022	. 59156	. 09034
HARM 2	.01218	46439	. 87535
harm 3	. 19196	87878	. 42148
HARM 4	77523	56903	. 27186
HARM 5	. 35566	31327	. 86779
HARM 6	. 96505	. 21535	15494
HARM 7	. 44470	.87560	19579
HARM 8	. 23334	. 91280	. 31783
harm 9	. 96230	22026	15694
HARM 10	. 66822	.73571	. 10482
HARM 11	.08710	96333	23045
HARM 12	. 97243	.16059	17435
HARM 13	23329	. 22795	. 93484
HARM 14	. 51499	.01546	85997
HARM 15	. 16449	97662	. 09033
HARM 16	. 88527	. 25251	38537
HARM 17	58465	. 26344	. 76419
HARM 18	. 69944	. 70027	13667
HARM 19	99434	. 09952	. 02443
HARM 20	. 64945	.67044	35770
HARMZERO	56325	.01434	. 82892

FIGURE 11: Contributions of harmonic frequencies seven and eighteen to the fit of the approximations of Koenenites cooperi at 0.5 volutions (A), 5.5 volutions (B) and a graphic display of the difference between them (C).

С

FIGURE 12: Relationship between the log transforms of harmonic amplitudes seven and eighteen in the ontogenetic series in \underline{K} . cooperi.

FIGURE 13: Relationship between the log transforms of harmonic amplitudes seven and eighteen in the phylogenetic series in the Family Gephuroceratidae.

ontogentic sequence and 0.505 for the phylogenetic sequence. This difference is slight enough to show that the two harmonics maintain a constant relationship through the changes of ontogeny and that this relationship is held constant across the changes of the specific phylogenetic sequence postulated by Miller. The constant relationship demonstrates, on a quantitative level, the assumption of heterochrony (in this example, recapitulation) in the cephalopods analyzed.

SUMMARY AND CONCLUSIONS

A wide taxonomic range of cephalopod suture patterns have been studied by means of the Fourier series. Coefficients of variation and mean suture patterns have been computed. The filtering capability of the Fourier series allows the quantitative comparison of these meansuture patterns, at any level in the taxonomic heirarchy. This same filtering capability permits a measure of a suture's nongenetic norm or reaction. Measurements show that subtle differences exist between the left and right suture halves of <u>Acanthoclymenia neapolitana</u> at both 2½ volutions of the conch and at maturity.

The relationship between harmonic frequency seven and harmonic frequency eighteen is monotonic for both an ontogenetic and a phylogenetic sequence in the family Gephuroceratidae. The linear relationships were calculated directly from the log transformation of the harmonic amplitudes and found to be almost identical. Heterochrony (recapitulation) is there fore demonstrated on a quantitative level for

<u>Koenenites cooperi</u> and three other genera to which it is closely related. The correlation of aperatural shape variables, generaged by Fourier analysis, with those of sutural shape through development in <u>K</u>. <u>cooperi</u> implies a functional relationship between specific aspects of aperature and suture morphology.

The power of Fourier analysis in the sutdy of the cephalopod suture is unprecedented. Taxonomy, nongenetic norm of reaction, heterochrony, and functional morphology of cephalopod sutures can be studied quantitatively by means of Fourier analysis.

LIST OF REFERENCES

- Anstey, R.L., J.F. Pachut, and D.R. Prezbindowki, Morphogenetic gradients in Paleozoic bryozoan colonies: Paleobiology, V. 2, No. 2, p. 131-146.
- Arkell, W.J., et al., 1957, Treatise on Invertebrate Paleontology: part L, Mollusca 4, University Kansas Press, 490 p.
- Christopher, R.A., and J.A. Waters, 1974, Fourier series as a quantitative descriptor of miospore shape: Jour. Paleon-tology, V. 48, No. 4, p. 697-709.
- Crowther, R.A., and L.A. Amos, 1971, Harmonic analysis of electron microscope images with rotation symmetry: J. Mol. Biol., V. 60, No. 1, p. 123-130.
- Davis, J.C., 1973, Statistics and data analysis in geology: John Wiley and Sons, Inc., New York, 550 p.
- Delmet, D.A., and R.L. Anstey, Fourier analysis of morphological plasticity within an Ordovician bryozoan colony: Jour. Paleontology, V. 48, No. 2, p. 217-226.
- Ehrlich, R. and B Weinberg, 1970, An exact method for characterization of grain shape: J. Sed. Petrology, V. 40, No. 1, p. 205-212.
- Ewald, F.C., 1975, Feasibility of completely automated microfossil identification in petroleum exploration: Mich. State University, MS Thesis, 68 p.
- Gevirtz, J.L., 1976, Fourier analysis of Bivalue Outlines: Implications on evolution and autecology: Math. Geol., V. 8, No. 2, p. 151-163.
- Gould, S.J., 1966, Allometry and size in ontogeny and phylogeny: Biol. Rev., V. 41, No. 4, p. 587-640.
- Kaesler, R. and Waters, J.A., 1972, Fourier analysis of the Ostracode margin: Geol. Soc. Amer. Bull., V. 83, No 4, p. 1169-1178.
- Lu, K.H., 1965, Harmonic analysis of the human face: Biometrics, V. 21, No. 2, p. 491-505.

- Mendenhall, W., 1968, Introduction to linear models and the design and analysis of experiments: Wadsworth Publishing Co., Inc., Belmont, CA, 465 p.
- Miller, A.K., 1938, Devonian ammonoids of America: Geol. Soc. Amer. Spec. Paper 14, 262 p.
- Nie, N.H., C.H. Hull, J.G. Jenkins, K. Steinbrenner, and D.H. Bent, 1975, Statistical package for the social sciences: McGraw-Hill Book Co., Inc., New York, 675 p.
- Oxnard, C., 1973, Form and pattern in Human evolution: some mathematical physical, and engineering approaches: Univ. Chicago Press, 218 p.
- Schindewolf, O.H., 1954, On development, evolution and terminology of the ammonoid suture line: Harvard Univ. Mus. Comp. Zool., Bull. 112, No. 3, p.217-237.
- Tasch, P., 1973, Paleobiology of the invertibrates, data retrieval from the fossil record: John Wiley and Sons, Inc., New York, 946 p.
- Thompson, D.W., 1917, On growth and form: Cambridge University Press.
- Tuckey, M., 1975, Sexual dimorphism in the Devonian trilobite Phacops rana: Mich. State University, MS Thesis, 90 p.
- Vicencio, R., 1973, Models for the morphology and morphogensis of the ammonoid shell: McMaster University, Ph. D. Dissertation, 116 p.
- Waters, J.A., 1977, Quantification of shape by use of Fourier analysis: The Mississippian Blastoid genus Pentremites: Paleobiology, V. 3, No. 3, p. 288-299.
- Younker, J.K., 1971, Evaluation of the utility of two-dimensional Fourier shape analysis for the sutdy of ostracode carapaces: Michigan State University, MS Thesis, 62 p.
- Zahn, C.T., and R.Z.Roskies, 1972, Fourier descriptors for plane closed curves: IEEE Trans. on Computers C-21, No. 3. p. 269-282.

APPENDIX A

PROGRAM FOURIER(TAPE60,OUTPUT,PUNCH,TAPE14,TAPF61=OUTPUT) THIS PROGRAM COMPUTES THE FOURIER SERIES OF AMMONOID SUTURE PATTERNS, INPUT DATA CAN BE UP TO 100 (X,Y) COOPDINATES STARTING AT THE POINT XMIN=J, Y=0. THENTY HARMONICS APE CALCULATED AND THE OUTPUT IS IN PUNCHED CARDS AND PRINTED OUTPUT. TAPE14 IS AN ALTERNATE CUTPUT FILE WHICH HAS ONLY NAMES AND HARMONIC AMPLITURES (NO STATISTICS OF PHASE ANGLES). PHASE ANGLES ARE ONLY CUTPUT ON FILE PUNCH. C----Č----Č-----Č-----Č----Č----FILE PUNCH. FILE PUNCH. FILE PUNCH. FILE PUNCH. FILE FIRST CARC OF FACH SAMPLE MUST BF A TITLE CAPD, STARTING IN COLUMN 2. DATA FORMAT IS (F5.2,1X,F5.2) FND OF SAMPLE DATA POINT MUST BE (0.3,0.0) FND OF SAMPLE DATA IS IPDICATED BY AN FOR. COMMON/DATA/X(200,Y(200),AMP(20),FAZE(20) DATA PI,PISQ/3.14159,9.86960/ READ INPUT DATA FOOM TAFE63 NP=J READ (6J,1)NA4E IF(EOF(60)) 399,15 NP=NP+1 PEAD(6J,2) X(NP),Y(NP) IF(EOF(60)) 399,15 NP=NP+1 IF(NP.LT.41) GO TO 90J FORGER DATA FROM X=XMIN TO X=XMAX N=NP ISOPT=0 DO 46 I=2,N IF(X(I),GT.X(I-1)) GO TO 40 T=X(I) \$ Y(I)=Y(I-1) ? Y(I-1)=T ISOPT=1 CONTINUE Č-----Č----C----1000 15 10 20 C----30 CU=CU/T CU=CU/T DO 65 N=1,2] AMP(N)=SORT(C(N)**2+D(N)**2) FAZT(N)=ATAN2(C(N),C(N))

4444 -156445666466477777778433 P40 9560 970

<u>55</u>	CONTINUE
	PUNCH 1, NAME
	PUNCH R,CO
	PUNCH 6. AMP
	PUNCH 6.FAZE
	WEITE (14.3) NAME.CO
	WRITE(14,4)A4P
	CALL FTEST (NP.CA)
900	PPINT 9.NAME
993	ŠTOP
1	EORMAT(1X.7A1C)
5	FOFMAT(F5, 2, 1) $F(-2)$
7	E0944T(10X-7412-F15-5)
Ĺ	FORMAT(10X,15F7,4/10X,15F7,4)
6	E05NAT(10F7.4/10F7.4/10F7.4)
7	EORMAT/146-74161
Å	FORMATISEAC
ă	FORMATINE INCHERICIENT DATE FOR #764 CD
7	- ENG - ENG

FTHTTTTT DD DDD DDDD DF A DECLUSISIS DDD DDD DF A 24 JF JIOTS FROM AN AND TO 20 GUIDDIS

C-C 10 C-Ç COMPUTE SUM OF SQUARED ERPOR OF NEW APPROXIMATION FROM ORIGINAL DATA DO 30 J=1,L SST2=SSE2+(Y(J)-YN:W(J))**2 CONTINUE COMPUTE ROOT MEAN SQUAPE ERROP RMS(I)=SQRT(SSE2/LM1) COMPUTE F-STATISTIC F(I)=(SSF1-SSE2)/(SSE2/OFD(I)) CONTINUE PPINT 1,AS PFINT 2,AMP PRINT 3,RMS PPINT 4,OFD PFINT 5,F FORMAT(1H+,T71,10HZEROITH MARMONIC =,F1].5) FORMAT(1H+,T71,10HZEROITH MARMONIC =, COMPUTE SUM OF SQUARED ERPOR OF NEW APPROXIMATION FROM ORIGINAL DATA č č ---30 C-C-50 123 45

APPENDIX B

APPENDIX B

Sources of Suture Diagrams

- Arkell, W.J., et al., 1957, Treatise on Invertebrate Paleontology, part L, Mollusca 4, University Kansas Press, 490 p.
- Miller, A.K., 1947, Tertiary Nautiloids of the Americas, Geol. Soc. Amer., Mem. 23, 234 p.
- Miller, A.K. and W.M., Furnish, 1940, Permian Ammonoids of the Guadalupe mountain region and adjacent areas, Geol. Soc. Amer., Spec. paper 26, 242 p.
- Petersen, M.S., 1975, Upper Devonian (Famennian) ammonoids from the Canning Basin, western Australia, Paleontological Society, Mem. 8, 55p.
- Teichert, C., et al., 1964, Treatise on Invertebrate Paleontology, part K, Mollusca 3, University Kansas Press, 519 p.
APPENDIX C

APPENDIX C

Taxonomy of Ammonoids Studied

Subclass Ammonoidea Order Anarcestida Superfamily Anarcestaceae Family Mimoceratidae Subfamily Mimoceratinae Genus <u>Gyroceratites</u> species <u>gracilis</u>

> Family Agoniatitidae Genus <u>Agoniaties</u> species <u>vanuxemi</u> species <u>costulatus</u>

Family Anarcestidae Subfamily Anarcestinae Genus <u>Anarcestes</u> species <u>lateseptatus</u> Genus <u>Subanarcestes</u> species <u>macrocephalus</u> Genus <u>Werneroceras</u> species <u>ruppanchensis</u> species plebeiforme

Superfamily Prolobitaceae Family Prolobitidae Subfamily Prolobitinae Genus <u>Prolobites</u> species <u>delphinus</u> Superfamily Pharcicerataceae Family Gephuroceratidae Genus <u>Manticoceras</u> species <u>sinuosum</u> Genus <u>Ponticeras</u> species <u>aequabilis</u> Genus <u>Koenenites</u> species <u>cooperi</u> Genus <u>Timanites</u> species keyserlingi

Order Clymeniida Superfamily Gonioclymeniaceae Family Acanthoclymeniidae Genus <u>Acanthoclymenia</u> species neopolitana

> Superfamily Clymeniaceae Family Clymeniidae Genus <u>Platyclymenia</u> species <u>annulata</u> Genus species <u>americana</u> species <u>polypleura</u>

Order Goniatitida Superfamily Cheilocerataceae Family Tornoceratidae Genus <u>Tornoceras</u> species <u>crebriseptum</u> species <u>delepinei</u>

> Family Cheiloceratidae Subfamily Cheiloceratinae Genus <u>Cheiloceras</u> species <u>schmidti</u> species <u>ovatum</u> species <u>angulatum</u>

species enkebergense

Subfamily Raymondiceratinae Genus <u>Raymondiceras</u> species simplex

Subfamily Speradoceratinae Genus <u>Sporadoceras</u> species milleri

Subfamily Imitoceratinae Genus <u>Imitoceras</u> species rotatorium

Superfamily Agathicerataceae Family Agathiceratidae Genus <u>Agathiceras</u> species <u>uralicum</u>

Superfamily Cyclolobaceae Family Popanoceratidae Subfamily Marathonitinae Genus <u>Peritrochia</u> species <u>dieneri</u>

Superfamily Goniatitaceae Family Goniatitidae Subfamily Goniatitnae Genus <u>Goniatites</u> species <u>choctawensis</u> Genus <u>Muensteroceras</u> species <u>parallelum</u>

> Subfamily Girtyoceratinae Genus <u>Eumorphoceras</u> species bisulcatum

Family Neoicoceratidae Genus <u>Pseudoparalegoceras</u> species <u>russiense</u> Genus <u>Atsabites</u> species <u>multiliratus</u>

Family Schistoceratidae Subfamily Schistoceratinae Genus <u>Paralegoceras</u> species <u>iowense</u> Genus <u>Diaboloceras</u> species <u>varicostatum</u> Genus <u>Winslowoceras</u> species <u>henbesti</u>

Superfamily Adrainitaceae Family Adrianitidae Subfamily Adrianitinae Genus <u>Adrianites</u> species <u>dunbari</u> Genus <u>Texoceras</u> species <u>texanum</u> Subfamily Dunbaritinae Genus <u>Emilites</u> species <u>incertus</u>

Order Cerititida Superfamily Otocerataceae Family Xenodiscidae Genus Xenodiscites species waageni Genus Xenaspis species skinneri species carbonaria Genus <u>Paraceltites</u> species <u>elegans</u> species <u>ornatus</u> species <u>hoeferi</u> species <u>altudensi</u> APPENDIX D

APPENDIX D

Mean Harmonic Amplitudes of the Taxonomic Hierarchy

Subclass Bactritoidea Order Bactritida Family Bictritidae

.02095 .32555 .02070 .01040 .04330 .01150 .02130 .00450 .01120 .00305 .00935 .00265 .00640 .00240 .00245 .00070 .00405 .00040 .00305 .00195

Genus Bactrites

.0234	.0280	.0228	.0167	.0239	.0045	.0079	.0020	.0052	.0001
.0060	.0030	.0042	.0009	.0007	.0008	.0030	.0007	.0024	.0001

Genus Lobobactrities

.0182	.3711	.0186	.0041	.0627	.0185	.0347	.0070	.0172	.0060
.0127	.0023	.0086	.0039	.0042	.0006	.0051	.0003	.0037	.0038

Subclass Nautiloidea Order Nautilida Superfamily Nautilaceae

.05106 .09448 .08412 .11349 .07427 .06311 .03092 .03661 .02606 .02124 .02187 .01156 .01988 .01398 .00786 .00936 .00671 .00652 .00398 .00311

> Family Nautilidae Genus Nautilus species pompilius

.07480 .17710 .13065 .08930 .04245 .01360 .02030 .02565 .00220 .01850 .00915 .00410 .00835 .00750 .00340 .00240 .00035 .00015 .00175 .00240

Family Hercoglossidae

.04712 .04751 .04583 .08717 .07846 .08613 .03662 .03354 .02610 .00884 .02081 .01162 .01160 .00790 .00879 .00863 .00199 .00249 .00289 .00150

Genus Hercoglossa

.07885 .03910 .07132 .08622 .06632 .14175 .05500 .01477 .03080 .00718 .00770 .00643 .01133 .00573 .00467 .00352 .00302 .00463 .00235 .00289

Genus Aturoidea species paucifex

.00270 .00450 .01850 .15030 .14680 .07740 .04910 .09520 .03590 .01380 .0711 .03450 .02640 .01850 .02170 .02450 .00330 .00110 .00750 .00030 Genus Cimonia species vincenti

.03280 .06190 .01510 .04010 .03520 .05430 .01890 .00890 .01750 .00490 .00010 .00260 .00330 .00450 .00500 .00320 .00000 .00280 .00020 .00120

Genus Deltoidonautilus

.07414 .08453 .07840 .07205 .06550 .07107 .02349 .01528 .02018 .00948 .00435 .00295 .00537 .00287 .00378 .00330 .00165 .00143 .00152 .00153

Family Aturiidae Genus Aturia

.03125 .05883 .07588 .16400 .10190 .08960 .03583 .05065 .04988 .03638 .03565 .01895 .03970 .02655 .01138 .01705 .01778 .01693 .00730 .00543

Subclass Ammonoidea Order Anarcerstida

.06117 .14496 .10793 .06543 .08882 .06464 .05544 .06138 .03219 .02717 .00918 .02262 .01919 .02774 .01292 .02331 .01125 .01687 .00658 .00796

Superfamily Anarcestaceae

.05883 .22808 .07480 .07541 .03812 .03812 .03677 .02476 .01534 .01787 .01432 .01206 .00986 .01067 .00861 .00786 .00670 .00685 .00538 .00591

Family Mimocertidae Subfamily Minoceratinae Genus <u>Gyroceratitites</u> species gracilis

.02220 .31423 .01930 .00470 .03897 .02253 .02480 .01633 .01433 .01177 .01087 .00800 .00680 .00530 .00343 .00343 .00320 .00330 .00233 .00257

Family Agoniatitidae

.08849 .26273 .16612 .12352 .01078 .07081 .04357 .04184 .01772 .02550 .01334 .01602 .01341 .01124 .00124 .01210 .00903 .00975 .00728 .00867

Family Anarcestidae Subfamily Anarcestinae

.06580 .10728 .03898 .09803 .04061 .02103 .04193 .01610 .01398 .01634 .01874 .01215 .00938 .01296 .01115 .00804 .00788 .00750 .00653 .00649

Superfamily Prolobitaceae Family Prolobitidae Subfamily Prolobitinae Genus Prolobites species delphinus .0612 .0239 .0504 .0858 .0239 .03740 .1532 .1359 .0353 .1513 .0244 .0162 .0164 .0092 .0067 .0132 .0141 .0203 .0184 .0081

Superfamily Pharcicerataceae Family Gephuroceratidae

.08729 .05360 .11310 .08559 .08504 .09459 .07916 .07359 .05732 .03973 .00653 .04259 .03362 .05226 .01174 .03768 .01084 .02739 .00516 .00986

Order Clymeniida

.07519 .09789 .07040 .15919 .07853 .07986 .05960 .04834 .02938 .02461 .02366 .01073 .01171 .00773 .01410 .00979 .00953 .00704 .00435 .00439

> Superfamily Gonioclymeniaceae Family Acanthoclymeniidae Genus <u>Acanthoclymenia</u> species neopolitana

.06323 .07938 .09539 .23029 .10228 .11569 .08164 .07589 .05083 .04378 .04164 .01792 .02063 .01287 .02559 .01800 .01711 .01222 .00740 .00804

> Superfamily Clymeniaceae Family Clymeniidae Genus Platyclymenia

.08715 .11640 .04540 .07808 .05478 .04403 .03755 .02078 .00793 .00543 .00568 .00353 .00278 .00258 .00260 .00158 .00195 .00185 .00130 .00073

Order Goniatitida

.03871 .04289 .02517 .02292 .03185 .05728 .05515 .06996 .05550 .04199 .03116 .02443 .03544 .02540 .02239 .02777 .01906 .01946 .02441 .02443

Superfamily Cheilocerataceae

.04573 .07560 .03598 .03916 .07009 .07606 .02257 .05186 .02674 .03236 .03139 .04706 .00692 .02240 .01880 .01704 .00968 .02347 .00524 .01548

Family Tornoceratidae

.05127 .06311 .04165 .05246 .05829 .10137 .00520 .06616 .01634 .01654 .01326 .03505 .00346 .02600 .01174 .01321 .00254 .01914 .00192 .01319

Family Cheiloceratidae

.04018 .08809 .03031 .02585 .08189 .05075 .03993 .03756 .03713 .04817 .04951 .04647 .01037 .01879 .02585 .02087 .01681 .02779 .00855 .01776

		Superf	Eamily Family	Cyclo	lobace ocerat	ae idae			
		_	Sı	ubfami Gen	ly Mar nus Pe	athoni ritroc	tinae hia		
					spe	cies d	ieneri	-	
.0528	.0431	.0084	.0153	.0088	.0022	.0036	.0218	.0022	.0308
.0087	.0262	.0179	.0248	.0006	.0317	.0037	.0084	.0391	.0619

Superfamily Agathicerataceae Family Agathiceratidae Genus <u>Agathiceras</u> species <u>uralicum</u>

.0259 .0415 .0331 .0055 .0079 .0773 .1007 .0666 .0507 .0289 .0582 .0039 .0346 .0212 .0142 .0257 .0013 .0170 .0163 .0182

Superfamily Goniatitaceae

.04260 .03331 .03034 .03783 .04595 .09347 .06182 .12305 .11161 .05971 .02411 .02986 .04467 .04217 .03708 .04229 .04404 .03594 .02970 .00815

Family Neoicoceratidae

.0538 .0284 .0072 .0335 .0216 .0485 .0176 .2346 .1672 .0178 .0073 .0365 .0553 .0844 .0405 .0835 .0295 .0384 .0241 .0230

Family Schitoceratidae Subfamily Schistoceratinae

.04980 .02590 .05452 .03170 .03655 .08070 .11608 .10283 .14580 .13065 .04030 .02470 .05510 .03102 .04288 .03350 .06185 .05235 .03315 .02268

Superfamily Adrianitaceae Family Adrianitidae

.02690 .02095 .01803 .01680 .02650 .03738 .08705 .08650 .08623 .05819 .03338 .02141 .07309 .01644 .04128 .02211 .03659 .01249 .03173 .00815

Subfamily Adrianitinae

.02429 .01189 .02035 .01090 .01630 .04715 .10529 .06959 .07425 .09067 .01585 .03582 .05197 .01947 .00735 .02012 .03957 .02237 .02475 .01179

Subfamily Dunbaritinae Genus <u>Emilites</u> species incertus

.02950 .0300 .0157 .0227 .0367 .0276 .0688 .1034 .0982 .0257 .0509 .0070 .0942 .0134 .0752 .0241 .0336 .0026 .0387 .0045

Order Cerititida Superfamily Otocerataceae Family Xenodiscidae

.02602 .04284 .06059 .04433 .08939 .18577 .10257 .08220 .06517 .02121 .03966 .02877 .02061 .01668 .03424 .01734 .01884 .01566 .01574 .00834 APPENDIX E

APPENDIX E

Coefficients of Variation of the Harmonic Amplitudes for the Taxonomic Hierarchy.

Subclass Nautiloidea Order Nautilida Superfamily Nautilaceae

35.25 62.03 41.74 31.48 32.92 55.52 24.30 28.50 74.69 53,71 49.59 52.46 70.79 63.56 42.31 64.14 117.18 113.75 60.13 54.06

Family Hercoglossidae

66.3962.2563.6346.0052.7738.5542.74106.4228.8837.22140.10114.4177.9278.5284.99106.1865.5955.8395.7164.20

Genus Deltoidonautilus

22.27 65.45 43.69 40.32 66.49 9.03 21.75 23.08 15.24 54.62 12.64 66.10 71.11 59.86 82.78 18.18 51.52 47.37 32.37 34.43

Genus Hercoglossa

60.9870.6056.3426.9168.2723.1326.2214.4226.6960.8565.7467.8881.06115.5254.56124.3664.9151.2722.9888.12

Subclass Ammonoidea

43.80 51.81 46.52 64.81 32.87 49.46 27.98 10.46 40.42 28.49 46.48 52.26 36.67 31.49 32.10 20.56 19.08 25.19 54.79 70.46

Order Anarcestida

33.4049.3023.3633.1855.7835.8631.8742.9656.2734.7439.5662.4853.9164.0731.6152.3234.5849.6728.1920.31

Superfamily Pharcicerataceae Family Gephuroceratidae

51.04 83.29 62.64 11.39 71.01 76.08 26.57 52.11 36.58 58.54 51.48 79.27 112.68 66.87 64.14 69.10 73.17 15.26 26.90 44.64

Superfamily Anarcestaceae

46.7638.5786.9967.7245.4660.6523.0948.8010.9931.9522.9527.1627.5835.7242.5345.0837.6139.0240.4942.70

Family Anarcestidae

69.25 41.12	47.99 11.18	102.55 42.14	34.32 16.32	12.83 19.19	44.52 8.46	36.52 19.97	81.09 7.68	39.99 .51	36.58 18.10
		F	amily	Agonia	atitid	ae			
25.62 69.63	6.35 7.09	2.91 45.17	11.46 11.24	61.97 40.36	2.34 12.36	22.77 31.30	7.68 17.91	47.48 36.08	10.02 22.10
			Ge	enus Ag	goniat	ites			
29.30 23.50	12.87 12.27	7.26 25.74	12.86 18.22	80.24 16.90	3.36 33.41	19.42 33.33	9.10 30.34	5.83 28.28	25.68 28.60
	Order	Clyme	eniida						
.26 70.77	15.12 54.82	58.65 79.26	44.34 28.26	35.33 89.96	58.08 90.86	59.26 88.61	70.33 79.54	62.62 81.09	76.96 81.23
		Superf	amily Ge	Clymer enus <u>P</u>	niacea latycl	e ymenia	:		
14.97 26.87	65.68 37.59	26.54 27.93	59.08 14.56	79.46 21.15	73.42 33.33	75.92 30.77	75.45 2.70	81.07 7.69	41.01 58.62
	Order	: Gonia	ititida	3					
27.23 51.56	42.49 49.46	41.24 64.65	58.05 34.70	74.23 67.06	57.86 31.30	67.14 92.98	48.47 49.54	71.10 49.51	33.10 78.19
		Superf H	amily amily	Adria Adria	nitace nitida	ae e			
9.69 52.51	43.23 67.30	12.90 28.89	35.12 18.47	38.49 82.19	26.15 9.00	20.96 8.16	19.54 79.18	13.89 21.99	55.83 44.75
			Su	ubfami	ly Adr	ianiti	nae		
86.54 16.09	53.13 99.16	72.48 76.33	44.04 8.91	68.71 64.63	79.64 50.29	77.04	58.80 40.53	11.38 88.69	31.69 10 .9 0
	Superfamily				50.25	07.29	40133		
		Superf	family	Gonia	titiac	eae	40133		
30.77 55.91	26.32 16.50	Superf 63.71 33.35	family 19.66 73.39	Gonia 53.61 17.76	titiac 45.89 72.57	eae 66.04 30.44	68.30 40.38	57.41 13.45	84.46 34.04
30.77 55.91	26.32 16.50	Superf 63.71 33.35 H	family 19.66 73.39 Samily	Gonia 53.61 17.76 Gonia	titiac 45.89 72.57 titida	eae 66.04 30.44	68.30 40.38	57.41 13.45	84.46 34.04
30.77 55.91 74.80 99.39	26.32 16.50 48.26 48.40	Superf 63.71 33.35 F 92.49 29.69	Eamily 19.66 73.39 Samily 78.38 90.53	Gonia 53.61 17.76 Gonia 55.02 2.04	titiac 45.89 72.57 titida 7.02 69.11	eae 66.04 30.44 e 95.17 12.30	68.30 40.38 73.65 30.54	57.41 13.45 46.64 23.84	84.46 34.04 62.20 31.41
30.77 55.91 74.80 99.39	26.32 16.50 48.26 48.40	Superf 63.71 33.35 H 92.49 29.69	Eamily 19.66 73.39 Samily 78.38 90.53	Gonia 53.61 17.76 Gonia 55.02 2.04 ubfami	titiac 45.89 72.57 titida 7.02 69.11 ly Gon	eae 66.04 30.44 e 95.17 12.30 iatiti	68.30 40.38 73.65 30.54 nae	57.41 13.45 46.64 23.84	84.46 34.04 62.20 31.41

Family Schistoceratidae

5.77	1.81	2.10	9.25	78.52	22.02	.90	70.70	50.65	85.54
55.85	5.76	37.47	7.65	.32	74.25	2.24	13.77	26.32	24.66

Superfamily Cheilocerataceae

12.13 16.52 15.76 33.98 16.84 33.28 76.96 27.57 38.88 48.88 57.75 14.01 49.96 16.10 37.54 22.48 73.75 18.43 63.32 14.77

Family Cheiloceratinae

40.96 19.57 98.40 83.52 70.48 41.74 31.41 120.78 66.21 61.19 76.98 104.62 53.29 89.00 78.08 58.62 59.57 92.37 61.37 90.92

Subfamily Cheiloceratidae

90.60 41.58 101.77 28.91 31.69 48.42 70.84 13.02 45.50 77.44 72.60 112.49 13.82 69.16 43.12 6.28 60.64 54.81 75.82 57.24

Family Tornoceratidae

78.1513.2529.1756.8242.1332.1263.4642.0310.197.8017.2729.5395.6651.9239.9557.2335.8355.0661.8876.12

Order Cerititida Superfamily Otocerataceae Family Xenodiscidae

47.48 39.61 84.48 48.15 65.50 16.03 20.41 73.44 57.32 74.24 25.73 46.23 50.71 32.95 50.14 30.55 30.32 58.83 29.11 45.02

Genus Paraceltites

30.91 18.66 30.53 52.95 33.29 34.66 54.36 23.80 69.40 36.40 31.53 12.70 47.35 67.24 37.57 28.46 32.50 40.55 69.59 41.36 APPENDIX F

	PROGRAM FILTER (INPUT, OUTPUT, TAPE5) DIMENSION IBUF (2049) NAME (323) X(1081), LETTER (3	3)
	CONHON Y (1001), ANP (20,3), FAZE (20,3) DATA_NAME (1,3), NAME (2,3), NAME (3,3)/10H RE	:s,
•	+10HIDUAL SIGN,10HAL / DATA LETTER/1HA.1HB/1HC/	
	CALL PLOTS (IBUF, 2049, 5)	
	D0 50 N=1,2	
	READ (5,1) (NAME (1,N),1=1,3) READ (5,2) (AMP (1,N),1=1,20)	
54	READ(5,2)(FAZE(I,N),I=1,20) CONTINUE	
	X(1) = 0.0	
75	X(1) = X(1-1) + 0.00575	
C	- COMPUTE RESIDUAL CURVE DO 100 I=1,20	
	ĂŇP (Î, 3)=ÂBŜ (AMP (I, 1) - AMP (I, 2)) FA7F (Î, 3)=FA7F (I, 1)	
4.0.0	IF (AHP(I,2).GT.AMP(I,1) + FAZE(I,3) = FAZE(I,2)	
100	00 200 N=1,3	
	GALL LODER(N) GALL SYMBOL(0.051.5.0.2.LETTER(N).0.1)	
	CALL ARROW (X11), Y(1))	
150	GALL PLOT (X(1),Y(1),2) GALL ARROW (X(1001),Y(1001))	
	ČALL ARROW (X(501), Y(501)) CALL SYMBOL (0,75-1,5-0,15-NAME(1,N),0,30)	
284	CALL PLOT (0.0,-3.0,-3)	
299	PRINT 3, (NAME(1,3), I=1,3)	
	PRINT 4, (AMP(I,3),I=1,20) PRINT 4, (FAZE(1,3),I=1,20)	
	DO 300 1=1,100	
380	Ŷ(1)=Ŷ(1+10+1) * 1.092728	
1	GALL FTEST (X) Format (3A10)	
ş	FORMAT (10F7.4/10F7.4) Format(100.3410)	
4	FORNAT(1X,18F7.4/1x,10F7.4)	
	END	

	SUBROUTINE LODER (N) COMMON Y (1001), AMP (20,3), FAZE(20,3)
10	Y (1)=0.0 DO 16 K=1,20 Y (1)=Y(1) 1000 (K,N) +STN (FA7F (K,N))
Č	HULTIPLY BY THE SCALE FACTOR Y(1)=Y(1)+0.915141
	x=0.0 D0_20_I=2,1001
	Y(I)=0.0 DO 30 K=1.20
30	Y(I)=Y(I)+AMP(K,N)+SIN(K+X+FAZE(K,N)) CONTINUE
20	Y(I)=Y(I)=0.915141 CONTINUE END

SUBROUTINE ARROW(X,Y) ASS = Y-0,75 CALL PLOT (X,ASS,3) CALL PLOT (X,POINT,2) RNOTE 12 RNOTE 12 RNOTE 12 CALL PLOT (R,DEOR,2) CALL PLOT (R,OF,00,0) CALL PLOT (R,OF,00,0) CALL PLOT (X,POINT,2) ENO

777778981234

555566666666677777

SUBROUTI	NE FIEST (X)	860
COMMON Y	(1001), AMP (20, 3), FAZE (20, 3) DFD (20)	850 890
C INITAL SSE2=0.0		9 00 910
00 10 J= YNEW(J)=(1,101 9,0 7 C (14) OF SOULARED ERROR OF AR (-R A) FORM ORIGINAL OATA	920 940
	TE SUN OF SQUARED ERROR OF AN (=0.0) FORM ORIGINAL DATA	950
00 50 I=1 C COMPU	1,28 TE NEW APPROXIMATION WITH THE ADDITION OF HARMONIC I	980 990
T = 1 00 00 = 1	1,101 YNEH(J)+AHP(I,3)*SIN(I*X(J)+FAZE(I,3))	1000 1010
Company Continue Company MAKE (SSF1=SSF2	OLD #MODEL2# INTO NEW #MODEL1#	
C INITI/ SSE2=0.8	ĀLIZE SSE2	
C COMPUT DFD(I)=1(TE DEGREES OF FREEDOM FOR THE DENOMINATOR	1070
C DEGREE	ES OF FREEDOM FOR THE NUMERATOR ALWAYS = ONE	
C FROM ORIG	SUM OF SQUARED ERROR OF NEW APPROXIMATION GINAL DATA	
DO 30 J=1 SSE2=SSE2	1,101 2+ (Y(J) - YNEW(J)) ++2	114
C COMPUT RMS(I)=SC	TE ROOT NEAN SQUARE ERROR DRT(SSE2/190.)	
C COMPUT F(I)=(SSI	TE_F-STATISTIC E1-SSE2)/(SSE2/DFD(I))	119 0 120 0
PRINT 1.F	gens .	
PRINT 3,0 1 FORMAT (*	DFD ROOT MEAN_ <u>\$9uare_error=/1x10f7.3/1x10f7.3</u>)	1240 1250
Z FORMAT(* 3 FORMAT(* END	DEGREES OF FREEDON DENOMINATOR 2(/1x10(15,2x)))	1260