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ABSTRACT

The structural information that has been published on the

polydimethylsiloxane chain (mean-square end-to-end dimensions, linear-

cyclic equilibria, chain motion from nuclear magnetic resonance, temperature

coefficient of the chain dimensions, and-x-ray diffraction of the vulcanized

elastomer) and on prototype small molecules (internal rotation in hexau

dimethylsiloxane , and heats of formation of lower cyclics) is presented

and discussed in detail. The purpose of this section is to establish the

framework of information into which is fitted a model for the chain structure.

Equations are developed for the meannsquare end-tosend

dimensions (Ea/n12) of the polydimethylsiloxane chain which are valid at

all values of n, the number of links in the chain, and in which first

neighbor interactions of independent bonds and pairs of bonds can be

included. The structural variables which must be specified are the length

of the valence bond in the skeletal structure, bond angles in the skeletal

structure, and the energetics and positions of the allowed conformations

in the polymer chain. The equations are shown to be convergent for

matrix elements 5 1/3. Calculations of 58/312 as a function of n are

made for statistically independent and statistically independent pair

models. It is concluded that in order to explain both the small energy

differences that must exist between the rotational states available to

the chain (certainly less than chal. mole) and the experimental value of

Pg/nl2 = 7.25, longer range interferences must be included in the theory.

All the possible endatoaend vectors of a growing siloxane chain model

with three rotational states are generated and examined for n=6 and n=8



 

 



for the purpose of gaining insight into the distribution of cyclic

molecules in the polydimethylsiloxane equilibrium. The distribution

of

 

3

r rs is obtained for the three rotational state model for n=6 and

3

n=8 From the fraction of r '5 closing, axlequilibrium constant is

  

calculated for the formation of octamethylcyclotetrasiloxane which is

in good agreement with the experimental value.

In Appendix I, the formalism for the dimensions of an

-M-0-Nu0- chain is developed, the equations being valid for all values

of n.
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I. INTRODUCTION

Characterization of the spatial configuration of a macro-

molecular chain consisting of a succession of structural units linearly

connected to one another, is prerequisite to the theoretical inter-

pretation of the constitution and properties of polymeric materials.

Mathematical methods for treating the configuration of linear chains

have been recently greatly advanced through adaptation of the matrix

method of orthogonal transformations to the linear chain problem. This

method rests on specification of the chain configuration by assigning

the valence angles and rotational states of each chain bond. A basis

is thus accomplished for establishing a close connection between bond

structure and the main characteristics of chain configuration.l

Equations for the mean-square end-to-end dimensions of many

types of polymers have been developed using the matrix method. These

equations are applicable to a real polymer molecule only when this

molecule is in an unperturbed state.2 From the unperturbed dimensions

and nuclear magnetic resonance studies of the polymer, ;-ray

diffraction analysis and the stress-temperature coefficient of the

vulcanized elastomer, parameters are determined which can be related

to the potential difference between preferred and non-preferred

rotational states.3

Most of the equations developed to date are valid only for

high molecular weight polymer chains. These equations adequately de-

scribe the equilibrium dimensions of many hydrocarbon chains such as

polyethylene, polypropylene, and polyisobutylene because only chains of

5,155
high molecular weight are present. Small cyclic molecules have not

been found to appreciable extents during any of these polymerizations.

This is quite a different matter for inorganic polymers, however. In





2

fact, K. A. Andrianov has said that the most pressing theoretical prob-

lem in'inorganic polymers today is predicting the cyclic species that

are formed in large amounts in many inorganic polymerizations. The

most documented example of cyclic formation in an inorganic polymer system

is the case of polydimethylsiloxane, in which cyclic molecules containing

from six to eighteen atoms in their skeletal structure make up twenty

percent by weight of the equilibrated system.6 No existing theory

adequately explains this phenomenon because of approximations which

allow equations for a siloxane-type chain to be valid only for chains.

containing at least 100 links.

The major purpose of this work is to described the structure

of the polydimethylsiloxane chain and explain the chain-cyclic equilu

ibrium in terms of this structure as completely as possible within the

framework of available experimental information.*

To achieve this result, equations for the meanusquare end—to»

end dimensions ($8) have been develoPed which are valid for any number

of bonds in the siloxane chain. These equations will be the means by

which the experimental information is fitted to the best model for the

chain.

Much experimental information describing the siloxane chain

has been published and will be discussed in subsequent paragraphs.

'Models for polymer chains will then be discussed as a prelude to the

presentation of the model chosen to described the polydimethylsiloxane

 

* Stockmayer and Jacobson published in 1950 the only attempt to date

to predict the molecular size distributions of linear and cyclic molecules

for polydimethylsiloxane. This paper is discussed in Section III-D and

the results are compared with those obtained from a detailed structural

analysis of the chain.
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chain. This work is the first attempt to unify all of the available

dlta into a consistent theory for the siloxane polymeric systev.

Experimental data

1. Structural and phenomenological information about the poly-

dimethylsiloxane chain.

A. Determination of the unperturbed root-mean—square end-to-end

dimensions (3%) of the chain from light scattering, osmotic pressure,

and intrinsic viscosity measurements.

The important molecular parameter obtained from these

nn_‘_‘

measurements is ro/nla, where $0 = r -'f =i§li§lli' 11 where the end-

to-end bond vector f is expressed as the sum of the bond vectors—Ii.

n = the number of links in the polymer chain, 1 = the length of the

valence bond in the skeletal structure.

The determination of the unperturbed dimensions of polymer

molecules from dilute solution viscosity measurements depends first on

the specification of a solvent medium in which the net osmotic forces

acting on the polymer molecule are exactly zero. It is currently thought

that when this condition is fulfilled, the average configuration of the

polymer molecule in solution and its average dimensions are "unperturbed“

in the sense that these dimensions depend only on the chemical bonds

of the polymer chain and include the influences of the hindering potential

to rotation about these bonds, the so—called short-range intramolecular

effects. Since the intrinsic viscosity depends directly on the

volume occupied by the chain, its determination in a solvent at the 6

temperature or in bulkd provides a method for finding the unperturbed

dimensions of the chain.
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The first determination of the molecular dimensions of poly-

dimethylsiloxane was made by Flory, Mandelkern, Kinsinger and Schultz.7

From osmotic pressure and intrinsic viscosity data of fractions in”

methylethylketone and phenetole at 6 = 20° and 85° respectively the

authors found Ffi/nl2 = 7.23. Several authors have subsequently studied

the siloxane system and obtained similar results.

Kuwahara, 33 al.8 measured osmotic pressure and viscosities

over a wide temperature range to obtain second virial coefficients and

intrinsic viscosities for various solvents. The authors found rg/nla = 6.89.

Schultz and Haug9 made light scattering and intrinsic viscosity

measurements on six fractions of polydimethylsiloxane ranging from.

55,000 to 1.06 x 106 in molecular weight. Haug and Meyerhoff have

also determined the unperturbed chain dimensions from measurements of

10
sedimentation, diffusion and viscosity. Both results agree substantially

with those of Kuwahara, it al_.8 and Flory, at 937

For purposes of comparison, the data of chain geometry and

structure for polydimethylsiloxane is summarized along with some other

organic polymers in Table I.

B. Equilibria between linear and cyclic dimethylsiloxanes.

Hartung and Camiolo6 have studied the polymerization

to equilibrium in xylene solution of octamethylcyclo-

*'At T = 9, there exists an exact balance between the effect of mutual

excluded volume of the segments, which tends to enlarge the molecule,

and the effect of a positive energy of mixing, which encourages first

neighbor contacts between polymer segments and, hence, a more compact

configuration for the molecule. Thus the molecular dimensions are

unperturbed by intramolecular interactions.



 

 



Table I Experimental Polymer Dimensions

*

 

Chain Boga Chain Bond _ _ _ .1-

Polymer Length, A Angle, ° rg/nla (ro/nfi92 Reference

Polydimethyl- 91:109.5

siloxane 1.65 ee=1l+o 7.25 1.60 7,8,9,1o

Polyethylene 1. 51+ 110° 6 . 55 1.81 11

Isotatic Poly-

propylene 1.5h 11h° 7.55 1.95 12.

Polyisobutylene 1.5h llh° 7.h5 1.95 2

Polystyrene 2.5 15

Polymethylmeth- Detailed structural infor-

acrylate mation on these polymers is 2'0 15

Polyethylmeth-
acrylate contained in the original 1.9 13

Polybutylmeth- references listed in

acrylate Volkensteins' book. 2.1 15

Polyhexylmeth-

acrylate 2.h 15

Polyvinylacetate 2.5 15

natural rubber 1.5 15

Gutta percha 1.5 15

tetrasiloxane using KOH as a catalyst and quantitatively reported

the weight fraction of cyclic species from trimer through nonamer.

Scottlu studied cyclic formation in polydimethylsiloxane but used

large amounts of hexamethyldisiloxane and obtained low molecular

materials. A summary of Hartung and Camiolo's data is given in Table II.

C. Molecular motion in the polydimethylsiloxane chain as studied

by nuclear magnetic reSOnance.

 

* The mean-square freely’rotating dimension of a polymer chain, ng,

is the dimension calculated for a chain with fixed bond length and

valence angle(s) with no restriction on the rotational anglefil- For this

model, therefore, <cosd> = 0.
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Table II weight Fraction of Cyclic Species

in Equilibrated Polydimethylsiloxane

($392510);

.2. Weight Fraction Standard Deviation

3 .0017 .oooh

h .100 .Olh

5 .0610 .0076

6 .0185 .ooha

7 .d38 .omj

8 .0025 .oooh

9 .0017 .0005

Only broad line nuclear magnetic resonance spectroscopy has

been thus far reported for the siloxane chain. No conformation study of

this polymer by high resolution nuclear magnetic resonance spectroscopy

has been made.

15 16

Honnold, McCaffrey and Mrowca and Rochow and LeClair

published the earliest results indicating line width narrowing from

5.0 gauss at 80° to 0.1 gauss at 225°K.

l7
Kusumoto, Lawrenson, and Gutowsky studied a dimethyl-based

vulcanized silicone rubber (Silastic 80), a polydimethylsiloxane polymer

with molecular weight >106 (#00 gum), and a lower molecular weight

fluid polymer (200 fluid). They found a line width of u.5 gauss from

* The decrease in abundance of dimethylsiloxane rings was discussed earlier

by Flory2 who stated on the basis of less complete data than that of Hartung

that the trend is that expected if the decrease is due solely to the statis-

tical decrease in probability of ring closure with increasing chain length,

specific steric factors being of minor importance. He concluded that "the

greater length of the Si-O bond and the large SiOSi angle may alleviate the

repulsions between substituents (in this case -CH3), which in rings con-

sisting of -CH2- have been suggested as being responsible for both the strong

preference for five- and six-membered rings and for the severe difficulty of

forming rings of eight- to twelve-members.”



 

 

 



77° to 150°K. and a sharp narrowing to >.10 gauss over the range 150°

to 1809K. The mean values of the second moments (ABE) in the region

of 77°K. were found to be 8.h, 8.h, and 7.8 gauss for Silastic 80,

#00 gum, and 200 fluid respectively. They attribute a slight narrow-

ing of line width at about 90°K. to translational motion and the.maJor

narrowing in the region of 160°K. to the onset of rotation about the

61-0 bonds. The minimum in the spin-lattice relaxation time for #00

gum at 190°K. is explained by a torsional oscillation of large amplitude

along the Si-O-Si axis.

Huggins, St. Pierre, and Bueche18 measured the proton

magnetic resonance over the temperature range 60°-500°K. of a sample

of polydimethylsiloxane with weight average molecular weight 7.5 x 104.

The low temperature (60°~80°K.) peak to peak line width was 4.9 gauss,

in satisfactory agreement with the results of Gutowsky, st 21. The

second moment was found to be 7.0 * 0.2 gauss. It has been shown that

an isolated rigid methyl group should exhibit a 0H3 of about 21.5 gauss.

Free rotation about the C-Si bond would reduce this to about 5.h gauss.

The authors presume then that the second moments for silicone polymers

at 80°K. consist of contributions of 5.h gauss due to freely-rotating

methyl groups and an inter-group broadening of 1.6 gauss. A sharp line

narrowing to .019 gauss was recorded at approximately 190°K. The

motion causing this narrowing was assumed to be a rotation about the

chain axis made favorable by the low torsional force constant of the

Si-O-Si linkage.

 



 

 

 



The major conclusion of these studies is that the polydimethyl-

siloxane chain is very flexible with low potential barriers to rotation

about the chain axis, Gutowsky, et al., calculated an upper bound of
 

of 3.5 Kcal./mole and shallow potential wells.

D. Temperature coefficient of the siloxane chain from intrinsic

viscosity measurements and from stress-temperature measurements of the

vulcanized elastomer.

A linear polymer molecule is characterized by the large number

of conformations possible through internal rotation around the axis of

the chain bonds. For free rotation all these conformations have equal

energy and, therefore, the mean-square end-to-end dimension of the polya

mer is not a function of temperature. If different energy levels exist

in the function describing potential energy vs. rotational angle, however,

then the unperturbed dimensions of the molecule will be a function of tempera-

ture. A study of the temperature variation of the mean-square end-to-end

dimension of linear polymer molecules affords a method for studying the

nature of the intramolecular interactions in the chain which cause the

variations in the potential energy profile of the internal rotational

angle. The temperature variation of‘FE is accessible to experiment.

Ciferri has determined d lnrg/dT from the equilibrium tension~tempera-

ture coefficient at constant volume and length for a cross-linked poly:

19
dimethylsiloxane network. This result is compared with d lnEo/dT

determined by Ciferri for the free polydimethylsiloxane chain through

intrinsic viscositywtemperature measurements carried out in athermal

polydimethylsiloxane solutions.20
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These data for the polydimethylsiloxane chain are listed in

21,22 A
the table below along with similar data for polyethylene.

structural interpretation of this information follows the table.

TABLE III

Temperature Coefficients of the Dimensions of Polymer Chains

Polymer Method d ln'i'~%/<1'r,¢ieg.'1 Ref.

Polydimethylsiloxane tension-temp. 0.h6 (10.1h3 x 10"3 19

Polydimethylsiloxane intrinsic vis.-temp. 0.53 (t0.05) x 10-3 20

Polyethylene tension-temp. -l.l6 (30.10) x 10"3 21

Polyethylene intrinsic vis.-temp. -l.2 (30.2) x 10-3 22

For both polymers there is excellent agreement between the un-

related methods. This lends substantial support to the assumption that

the molecular conformation in the amorphous state is not appreciably

affected by interactions between neighboring chains.

When the rotational states in adjacent links in the polymer chain

are statistically independent (that is, the motion of the groups about

the chain axis is not a function of the position of the groups on any

following or preceeding chain bonds) and the potential function for each

given by a function of the type V03) = V°/2[x(l-cos¢) + (l-x)(l-cos3¢)]23,

where V° is the value of V03) for o = tn, and x is the probability para-

meter which determines the potential energy differences between the minima,

then the sign of d lining/am is easily predicted.
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Figure I

Interactions in a Statistically Independent

Chain-Represented by a Plot of Potential Energy vs. Rotational

Angle

1. Model for the polyethylene Chain

U(¢)

e 60' 180° 590° 560

¢i ¢2 @e

2. Model for the Polydimethylsiloxane Chain

 

c». is a

States bl and ¢3 represent gauche configurations and state ¢2

represents the trans configuration. AU = U2 — U1.

Consider now the case of the polyethylene model. Let a,b,c,

be the probability of states $1, $2, $3 respectively. The point of zero

potential energy is chosen to be U2. Then,
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e-AU/k‘l‘ e-AU/kT

a. 8 ———=——7T— = . "' C.

E eU11 k l + 2e'AUJRT

n=l '

1

b a

1 + Qe’AUIkT

-AU/kT
As T increases, e increases. Therefore, a and c increase

while b decreases. Since the all-tranS'configuration is that of maximum

extension of the polymer chain, when b decreases, the mean-square endato-

end dimensions of the chain decrease. Thus, d lnrg/dT is negative.

Since for the model of the polydimethylsiloxane chain, the trans

state occurs with lower probability than the gauche states, as T increases

b also increases while a and c decrease. Thus, the mean-square end-to-

end dimensions of the chain increase and d lnrg/dT is positive.

However, Hoeve has already shown that the dimensions of the

polyethylene chain cannot be predicted using a statistically independent

4

model.2 Later in this work a statistically independent model will

prove to be inadequate to interpret all the experimental information on

the siloxane chain. Thus, the temperature coefficient of the mean»

square endetoeend dimension is a function of more than one variable and

cannot be simply interpreted as above,

E. Crystallinity and orientation in silicone rubber studied by

x—ray diffraction.

Ohlberg, Alexander, and Warrick in 1958 studied the x-ray

diffraction pattern of a silica-filled, vulcanized polydimethylsiloxane

polymer at different temperatures and elongations.25 The crystalline

fraction of unstretched and stretched rubber samples was determined.
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From this work and a supplemental study of density data,

tension-temperature measurements, and normal stress-strain data taken

at low temperatures, Warrick26 concludes that stretched silicone rubber

seems to be able to crystallize chain segments in all orientations in

space. This contrasts markedly with the behavior of natural rubber

which forms crystallites oriented almost exclusively in the direction

of stress. He further states that this and all the other differences

in crystalline behavior between the two rubbers can be founded upon a

much greater chain segment mobility for silicone rubber than found in

natural rubber.

The latest x-ray diffraction study reported for polydimethyl-

27
siloxane-based rubber was by G. Damaschun in 1962. His study was

carried out at -90°C with an extension ratio of h. The unit cell was

reported to be monoclinic with a = 13.0A, b = 8.3;, c = 7.75;, B = 60°.

This cell contains six dimethylsiloxane groups with <SiOSi = 140 I 10°.

Fig. II is his structural model of the polymer chain. This

work gives further evidence for the existence of trans and gauche con-

formation in the polymer. The sequence of rotational conformations

contained in the helical structure above is t,gr,gl,t,gl,gr. The exact

rotational angles at which the gauche states occur cannot be obtained

from this two-dimensional diagram and are not reported in the paper.

2. Structural information about prototype small molecules.

A. Internal rotation about the siloxane linkage studied in hexa-

methyldisiloxane.

D. W. Scott and coeworkers have done low temperature calori-
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Figure 11

2

Structural Model of Crystalline Polydimethylsiloxane 7

 
metry, vapor flow calorimetry, and comparitive ebulliometry on

hexamethyldisiloxane and have studied the well established infrared

and Raman frequencies of the molecule.28

When calculated values were used for all unobserved

vibrational frequencies, and internal rotation about Si-O bonds was



 

 

 



lh

assumed to be free, both the entropy and the heat capacity were cal-

culated to be greater than the observed values. Agreement between

the calculated and observed entropy could be obtained by selection

of a suitable barrier height for the siloxane rotation, but only at

the expense of a greater discrepancy between the calculated and

observed heat capacity. 0n the other hand, agreement for both

entropy and heat capacity could be obtained by suitable adJustment

of unobserved vibrational frequencies if the siloxane rotation was

assumed to be free.

The authors assert from these observations that there is

relatively free rotation about the Si-O-Si axis. For calculating

thermodynamic functions, the siloxane rotations were taken to be

completely free, although the authors state that the thermodynamic

evidence does not rule out a modest barrier height of a few hundred

calories per mole.

B. Investigations of the molecular structure of the lower

cyclic dimethylsiloxanes.

The planarity of the six-membered ring, hexamethylcyclo-

trisiloxane, has been demonstrated by x-ray29’30 and electron51

diffraction studies. Results of these investigations are summarized

in Table IV.

One possible interpretation of the planarity of this ring

in terms of the structure of the polymer chain is postulating a cis

conformation in the chainje. This postulate will be explored later

in this work.

The structure of 0ctamethylcyclotetrasiloxane has been

studied by Steinfink, et. a1;55 and Yokoi5u. These results are

summarized in Table V.
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Yokoi has constructed several models which give theoretical

intensity curves closely approximating that of the experimental

curve. Pictured below are diagrams of these structures along with

the intensity curves.

Figure III

Conceivable Forms of Octamethylcyclotetrasiloxane5h

 

Figure 1v

Visual and Theoretical

Intensity Curves of Octamethylcyclotetrasiloxaneju

   prerimental
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Model 310:0(11) <Si-O-Si <0«-Si-C

AA . , .- _‘ 1.63 1 1w 1 110°

B 1 .63 1l+0 107

c 1.63 1ho 101+

D 1.63 135 107

E 1.63 1&5 107

F 1 . 60 1&0 107

G 1 . 65 140 107

H 1.63 MO 107

Structure B has a cradle form with four silicon atoms in a

plane, with one set of opposite oxygen atoms above this plane and the,

other set of opposite oxygens below this plane. This structure results

from the sequence of rotational states gr,gr,g1,gi,gr,gr,gl,gl.

C. Heats of formation of lower members of dimethyl» and methyl=

isopr0poxy=cyclopolysiloxanes.

Tanks has measured heats of formation of several of the lower

members of the dimethylu and methyl—isopropoxy—cyclopolysiloxanes and

of linear polydimethylsiloxanes.55956 Measurements were done at 20° and

constant volume. Heats of formation from monatomic gases for the

structural units (g§:::8i::g) and (Sg:g;:>8i::g) were derived and re-

ported°

On the basis of the assumption that the linear polysiloxanes

considered have no strain in their molecular structures, Tanks concludes

that the ring structures of the cyclic tetramer and cyclic pentamer are

free from strain and the cyclic trimer has strain energy of somewhat less

than 9 Kcal./moleo

The conclusion that strain exists in the six—membered ring

agrees with the smaller value of <SiOSi found for this molecule as com-

pared with other polysiloxanes.

Since the eight- and tensmembered rings are free from strain, it
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seems reasonable to assume that the <SiOSi present is the same as

that in the linear chain. Since the earlier reported experimental

values for both this ring and the chain agree, the choice of <SiOSi =

1M)" for the polymer appears sound.
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II° THEORETICAL MODELS FOR THE POEYDIMETHYLSILOXANE CHAIN

A. Calculations of the Dimensions of Polymers

Because of the limited free rotation about the bonds forming

the "backbone" of a polymer chain, each polymer molecule'may assume an

enormous number of different-:;;;§;::£:§;:?5 Thus the experimental mean

values of various quantities which characterize the polymeric system

must be calculated by averaging over all possible configurations of the

molecule.

In 1952 Eyring first presented a solution to the problem of

calculating the unperturbed meanasquare end-tauend dimensions (5%) of

polymers as a function of bond lengths, bond angles, and internal

rotations using matrix algebra"37 Many authors have since improved and

extended this methodo A comprehensive discussion of many of these

techniques is available in M. V. Vol'kenstein, "Configurational Statistics

of Polymer Chainsa"15 In II—B the matrix technique will be utilized in

developing equations for the polydimethylsiloxane chain.

Lifson has presented a statistical theory of chain dimensions

of linear polyethylene molecules taking into account interactions between

all first and second neighbor uCng groups.5 The equation is valid only

for a high molecular weight polymer. This model will hencefOrth be

termed a second neighbor statistically dependent model and is formally

equivalent to a one-dimensional Ising lattice. A summary of the treatment

for third and higher neighbor interactions is given. The need for con-

sidering higher ordered interactions has been indicated by Ptitsyn and

Sharonow who have shown that the interactions of hydrogens in butane are

divided between first neighbors, second neighbors, and third neighbors in
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8

the ratio of h0%, h0%, and 20% respectively.3 Lassettre and Dean

have shown an even more pronounced effect of interactions between

second neighbor hydrogens in neopentane. Here the equilibrium values

of the internal rotation angles are shifted from the position of

minimum energy of first neighbors by about 50°.39

Hoeve has recently published two papers on the unperturbed

dimensions of polymer chains. no The first work includes a derivation

of the dimensions of a chain (CRR')n with first and second neighbor intern

actions paralleling that of Lifson. The method is extended to chains

of the type (CRg-Cflgén and isotactic chains of the type (CHR-CHaén‘

Nagai has published a similar treatment for isotactic and syndyo-

tactic vinylic macromoleules.“1 Hoeve's second paper presents the

calculation of the dimensions of polyethylene. The model is a three

rotational state model with trans, gauche right, and gauche left states.

The energy difference between trans and gauche states of 500 cal./mole

corresponds to P = .252, PT = .556. This statistically inde-
G=PG‘

pendent model yields ES/nl2 = 5.54 at 160°C. In order to obtain a value

of 6.75 (as compared to 6.55 from intrinsic viscosity measurements}

Hoeve used the following statistically dependent model: the energy

 

barrier between the pair GG' was assumed to be 2150 cal./mole. Since

the GG‘ pairs produce the shortest end-to-end vectors of all the possible

pairs, increasing the energy required to form GG' lessens the probability

of these pairs and increases the average length of the chain. Hence the

value of Eg/n12 is increased. The coordinate system used in this work

is similar to those employed by Lifson and Hoeve.

Several authors have derived expressions for rg/nla for a

polymer chain with any number of bonds. Vol'kenstein and Ptitsyn first
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derived a closed mathematical relation for a normal alkane chain with one

fixed bond angle using a matrix diagonalization technique.M2 'The same deri-

vation was carried through by Smith using the method of difference equations. h}

In the equations to be developed in the next section for:

polydimethylsiloxane both fixed valence anglehh and bond lengthus are

assumed. These equations are the first to be developed for a chain with

two alternating valence angles that are valid for any number of bonds in

the polymer chain by the rotational transformation matrix technique.

Birshtein, Ptitsyn, and Sokolova have developed equations for

the dimensions of long chains with symmetric side groups and alternating

valence angles.“6 An equation is developed for the mean-square end-ton

end dimension of a chain with statistically independent bond pairs

i.e., statistically independent pairs of rotational states. The authors
 

chose [81061 as 150°el60° citing as references the dipole moment measure-

ments of linear and cyclic dimethylsiloxanes by Sauer and Mead“7 (160° :

15°) and the infrared and Raman absorption spectroscopic investigation

of disiloxane of Curl and Pitzer (150°a158°).h8 For the later references

cited in this thesis, the best choice for 131051 is 1h0° 1 5°.

Birshtein, et a1., found that (FS/Efif.p.): = 1.25 (1), where

the designation of 23f.p refers to the unperturbed dimensions of the chain

model with freely rotating pairs of rotational stator. Using

[81061 = 160°, Flory and couworkers reported (E0 50f): = 1.58 (2), where

Eof refers to the unperturbed dimensions of the chain model in which

all conformation are allowed to assume free rotation. Since the ratio

(1) is less than (2), the chain model of freely rotating pairs must be

a closer approximation to the real chain than the model with free

rotation of all conformations. The authors state that since the ratio
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(1) has a value as low as 1.25, the internal rotation in the polydi-

methylsiloxane chain is comparatively weakly restricted. These authors

do not consider the problem of cyclic formation in the polymerization

system.

In the following section a model for the polydimethylsiloxane

chain is presented in which all first neighbor interactions of bonds and

pairs of bonds can be included.

B. DevelOpment of equations for the dimensions of the pelydimethylsiloxane

chain.

1. Orthogonal transformations

The transformation of a rigid body from a set of coordinates,

x, y, z to a set of coordinates x', y', 2' can be described by a matrix. h9

For example, a two-dimensional transformation from one cartesian co-

ordinate system to another corresponds to a rotation of the axes in this

plane. This rotation can be specified completely by only one quantity,

the rotational angle 9.

The transformation equations are:

xi = xlcose + xgsine

xé = -xlsin6 + xacose

The matrix of the transformation, denoted by 9, is:

c059 sine

[at
seine cose

The matrix equation ?' = eg’thus represents the transformation

of the vector r to the vector $1 through the angle 6, where 3 corresponds

to the original set of coordinates for the rigid body and ?' corresponds

to the set of coordinates for the displaced rigid body.

2. End=touend distance of a microscopic configuration.
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Consider now the polydimethylsiloxane chain, a representative

segment of which is pictured below. Here Oi = [0810, Gé = 161031.

 

./

/ll+l

91 /

”/391___ e'=180°-e

11

An expression will now be derived for the end-to—end

 

A .

distance vector r for a given microscopic configuration,

n

r = iflfi

as a function of the bond length, 2, the complements of the valence

angles, 91 and 62, and the internal rotation angles flk.

To each bond is attached an orthogonal coordinate system of

its own. Then all of these coordinate systems can be transformed to a

common system, here chosen to be the system attached to the bond‘ll, by

a series of successive elementary matrix transformations. The co—

ordinate system attached to the first bond is chosen so that its 2 axis

points in the direction of that bond, its y axis lies in the plane which

passes through this bond and the bond preceding it, and its x axis

points in the direction of the vector productizle; of these two bond

vectors.

Consider now the transformation A which transforms the

(k + l)th coordinate system into the kth. It may be obtained by two

successive elementary transformations. The first, 9, is a rotation of
 

the (k + l)th coordinate system by an angle 9 around the x axis. This
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transformation leaves the x axis unchanged and rotates y and z in their

- .3

own plane so that the z axis points in the direction Of‘lk- This trans-

formation is given by the matrix

1 O O

[6] = O 0056 sine

O —sin9 c056

Next the new coordinate system is rotated by an angle ¢k around

A

the new z axis (i.e., aroumillpJ) until it will coincide with the kth

coordinate system. Since this transformation leaves 2 unchanged and

rotates y and x in their plane, it is given by the matrix

cosbk sin¢k 0

[¢] = -sinbk cos¢k O

O O 1

These two successive transformations, which are represented by

the matrix product

cos¢k sin¢k O

A = [6][¢] —Cosesinqk cosecos¢k sine

sinesin¢k ~sinecos¢k cose

transform the (k + l)th coordinate system into the kth coordinate

system. The vector Zh+l which in its own coordinate system was given

by'2;+l = (O, 0, Z) is therefore expressed in the kth system by’Zk =

(O, O, [)A, whereasjik is represented in this system by'Zk = (O, O, I).

This procedure of elementary transformations may be repeated, trans-

forming the coordinate systems of all bond vectors into that of the

first one, 1 'h

For the polydimethylsiloxane chain there must be two trans-

formation matrices, corresponding to the two bond angles in the chain.
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These matrices are designated A1 and A2.

cos¢1 ‘ simbl 0

A1 = -coselsinb1 coselcoscbl sinel

sinelsin¢1 -sin91cos¢l cose

cosbg sinbg 0

A2 = -cos925in¢2 cosegcosdg sin62

sinegsintg —sinegcos¢2 c0392

50 [1+2 = [iAeAi

Thus, the li+k bond vector can be expressed back in terms of the [1

vector by the relation: li+k = [1(A2A1)k/2 k an even integer.

To avoid the troublesome situation of fractional powers of the

matrix product AeAl, two different expressions for r'will be written -

one for the case of an odd number of links in the polymer chain and the

other for the case of an even number of links in the polymer chain.

In the system of coordinates previously described, the end—to—

end distance is thus given:

1. for n odd

.5. 11-5 11-5

r z (0 0 1)(I + A1 + AaAl +(A2A1)2 + A1(A2A1) 2 +

n—3 n-3 n-1

(Mm—2I + Mam—2“ + (A2A1)T .)

2. for n even

A n-e 11-4

r = (0 o l)(I + Al + AgAl 1 A1(A2A1) 2 + (A2A1)2 +

“—4 11-2 11—2

A1(A2A1)2 + (on)? + A1(A2Al)—2_)

Note that in both cases, for n links in the chain, the last term in the

3

expression for r must be the product of n-l matrices.
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5. Mean-square end-to—end distance of the chain

The square end-to-end distance r2 of a microscopic conformation

changes continually due to the thermal motion which causes the internal

rotation angles to vary between the potential energy barriers in the

chain. As mentioned in the beginning of this section, the experimentally

measurable properties of the macromolecule are related to the average

value of re, the mean - square end - to - end distance, $2. This

distance is obtained by averaging over all values of the trigonometric

functions of the angles of internal rotation ¢k as they appear in the

transformational matrices A1, A2, and the product matrices AlAg, AgAl.

In the process of averaging, each microscopic configuration has its

statistical weight which depends on the total energy of the system in

this configuration. This total energy includes: (1) The potential

energy of hindered rotation, that is, the interactions between the various

groups attached directly to the two atoms next to each other in the

skeletal structure. (2) The energy from the interactions between the

neighboring side groups. Models for the chain illustrating both of

these energy contributions will be discussed after the equations have been

developed. These models will serve as examples illustrating use of the

equations for calculations.

2
The mean—square end-to-end dimension F is obtained by multi—

A

plying-r by its transpose, rt and inserting averaged values for the trig-

onometric functions of the rotational angles into the transformation

matrices and matrix products.
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Consider the case of n odd.

n_-5_ 212

(a) '52 =12 2(0 0 1) [(1 + A1 + AaAl + (AeAl) + A1(A2A1) 2

2:2 E E}. t

(A2A1) 2 + A1(A2A1) 2 + (A2A1) 2 X [E1 + A1 +

2:2 _ t 2:2

AEA: + --- [(A2A1) 2 ]t + [(A2A1)E§2] A: + [(AaAi) 2 ]t +

n 5 n-l

[(A2A1)2 1t A1; + [(AeAl)?

(b) Multiplication yields*

F2 =£2(0 0 MEI + Al +(A1A2) 2 + (A1A2)2 A1 + (we) 2 +

n-5 n—1 11-7

(A1A2)2 A1+ (AlAe) 2 + A? + I + A2 + AaAl + A2(A1A2) 2 +

n-5 n-5 n-5 n—5

(A2141)? + A2(A1A2)—§_ + (Ash) 2 + A2(A1A2)T A1 + (Ans)t +

2:1 2:1 2:2 2:2

I + A ...(AlAg) 2 + (A1A2) 2 Al + (AlAg) 2 + (AlAz) 2 A1 +

2:: 2:2 t 2:1 t Ell t

(AlAe) 2 + ...[(A1A2) 2 ] + [A2(A1A2) 2 ] + [(AlAg) 2 ] + ...

I + A1 + AlAe + (A1A2)A1 + (A1A2)2 +

2:2 t 9:2 t 3:1 t t
[(AiAe) 2 A1 ] + [(AlAg) 2 ] + [(A1A2) 2 A1] + --- A1 + I + A2 +

A2Al + A2(A1A2) +

n-l 2:2 t

[(A1A2)2 1 +[A2(A1A2)2] + ...[(A1A2)21 +

O

[A2(A1A2)]t + (AlAg)t+ALi + 13 (0)

l

* Originally the development of r2 was made from the expression gt. ;

where f = (I + Al + ALAg + ...)G». This is identical with the

A 5t

_ .n , 3‘ 5 2
expression r - r where r = (O O [)(I + Al + AzAl + ...). ’
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(c) Collecting terms ,

211: = n + (o o 1) Bil-ix” (”J—1M2 + (“m+ (9—11». + (25-w. +

(L'bwot + (TMa. + <—'—)(A2A.) 22mm) + <3§><A2A1Aa +

(P—génaaeafc + %—5-)(A2A;A2)t + <-“—;.2)('A1A2A1A2) + (%2)(A2A1A2A1)3f
J

)01112111112)'°n-—'—-3 + (L'SHAaAlAgAflt +

n-S n~5 . n-5 t _n;5_ t

2(A1A2)TA1 + 2A2(A1A2)T + 2[(A1A2)—§:Ai] + 2[A2(A1A2) 2 J

n—___5_ n-__5_- n__:__5t 13-3 t

2(A1A2)——2 + 1 (A2A1)——2 + 2[(A1A2)—_2 ]t + 1 [(A2Al)? ] +

n--5 n-_5_ 32 9:21:

1(A1A2)—2 A1 + 1 A2(A1A2)_2 + 1 [(111132) 2 A11t+ 1 [A2(A1A2)—-2 ]t +

n-1 n-1 n-lt n-l

1 (A1A2)__2 + 0 (A2h1)—2 + 1 [(A1A2)_2 1t. + 0 [(A2A1)_2 ]](8)

l

Multiplication by the row matrix (0 O 1) reduces each 5 x 5 matrix

to a 1 x 5 matrix. Multiplication of the l x 5 matrix by the column matrix

(0 O l)t reduces to a number. This number is the 5,5 element of the original

matrix.

The 5,5 element in (At)r1 will be thesame as the 5,5 element in An.

This holds when A is any mxm matrix.

‘2

[7 ~- n + (n-1)(A1)3:3 + (n-1)(t“12)s;s + (n-l)(A1A2)5,3 + (“'5)(A2Al)8)3 +

. 2

(n-5)(A1A2Ai)s:e + (n-5)(A2A1A2)3:3 + (n-5)(A1A2)3,3 + (n'5)(A2A1)23)3

+

:22 . _n-5
+ “(Al/3‘2) 2 A1 hue + Ll}‘xg(AlA27-2— )s:s +

2:2 , 2:2

l*(l‘ufia) 2 33:3 + 2((1.2%) 2 )3:3 +

:22 n-
2(A1A2) 2 Aflem + 2A2(A1A252 )am +

n-1 n-1

2(A1A2) 2 )a;a + O (A2A1r2—)s:s
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2

(e) The equation for i; (n odd) in summation notation is as follow:

k-l

3‘: a n + 3'32 (n-k)[(A1A2)T'A1]3,3

l k—L,5,5,--- '

n-2 k-l

+ Z: (XI-k) [A2(A1A2)-2-]a:s

k:l,5,5...

n-l ' k

+ E (n-k+1)[(A1A2)'é 13,3

k=2,h,6. .

n-5 k

+ 2' (n—k-1)[(A2A1)§ 13,3

k=2,h,6...

A more compact notation for r2 will be developed in the following

section for the case of n even.

Note that in this derivation all terms have been retained so

that the expression for E2 is valid for all values of n. Thus, these

equations can be used for approaching the cyclic formation problem in

the siloxane system.

An expression for r2 will now be derived for n even.

n96 n-h

(a) r2 = [2(0 0 1) [I + A1 + AgAl + ...A1(A2A1)"2" + (A2A1)‘2-’ +

2:: 3.1;? _n"? "

A1(A2A1) 2 + (AgAl) 2 + A1(A2A1) 2 x

11-6 11-11.

, t t t -—— t ....

[i1 + A1 = A1 A2 + ~°° [(AZAl) 2 ltAl + [(AaAi) 2 ]t +

-u -2 - -2

[(A2A139'E’Jt A1“ + [(A2A1)BE—]t + [Mania—1’“ A15] (0)

’0

l

(b) Multiplication yields:

n-6 n-h

r2 = [2(0 0 1) [(1 + A; + A1A2 + ...(A1A2)T A1 + (Awe)? +

nah n-2 n-2

(111112)2 A1 +(A1A2)2 + (A1112) 5 A1 +
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n-6 n-6 n-h

A? + I + A2 ...(A2A1>—2‘ + MHZ)? + (A2A1)2 +

n-h n-2'

A2(A1A2)—2‘ +(A2A1)T +

t t t §l§ Elé “'6
A2A1 + A2 + I + ---(A1A2) 2 A1 + (A1A2) 2 + (AlA2) 2 A1 +

n_-& n_-A_
(A1A2) 2 + (A1A2) 2 A1 + ----

n-6 n—6 n-8

[(A1A2)TAl 1t + [(A1A2)—2_]t + [Omar—Al 11: + I + A2 +

AaAl + A2(A1A2) + (A2A1)2 +

n-h n-6 n-6

[(A1A2)'2‘_]t [A2(A1A.o_)"2_1t + awe)? 1t + A2 + I +

A1 + A1A2 + (A1A2)A1 +

2:2. n_—2t 31;}: t
[(A1A2) 2 Afl + [(AeAi) 2 ] + [(AiAe) 2 Ad + --- +[ (A2A1)2]’ +

[(A1A2)A11t + [(A2A1)]t + A? + I} (3

0

Here again the 5,5 element in (At)n will be the same as the 5,5 element

in An.

(c) For n even,

r2 n'1
E

—— = n +v TE: [(n-k+l)(A1A2) 2 A113,3

I k=1,5,5.“

n- .12.;
+ [(n—k—l) A2(A1A2) 2 13,3

k=l,5,5

n- E
+ [(h'k)(A1A2)2 13,3

k=2,h,6...

n—2 E

+ 2: [(n'k)(A2Al)2] 3,3
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(d) A change in summation notation follows:

Let Mike 2 B, AeAl a D

n_-2
n-l k-l 2 k

E (n-k+1) [3‘2 Ana. = 2 01-21:) [(13) A113,.
k=l,5,5 k=0,l,2

2;“
n-5 k-l 2 k

(n-k-l) {A2132 113,3 = 5: (n—2k~2) [A213 13,3
= ,5,5 k=0,l,2

n-h

2 k

= 2 (11—2102) [D A2: 3,3

k=O,l,2

n-2

n-2 2
2 .

z (mask/13,3 = Z <n—2A) [Bk13,3 - n
k=2,l+,6 ’ k=o,1,2

2:3
n-2 2

k 2 k

(Tl—k) [13/ 13,3 = E: (IQ-210“) 13,3 ' n

k=2,1+,6 k=0,l,2

(e) Dividing each Bum by n,

n—2

"2 7 2k k
If—z ='1+ E (1-—) [BA1]3,:3

fl k=0,1,2

n—2

_5_ 2 k k

+ (Ligflmalas
k=o,i,2

n—2

_5_ 2k k

+ (1 - ‘3) [B 13,3

k=0,1,2

n—2

_5_ 2k k

+ z (1 - _n) [D ]3’3

k=O,l,2

The equations will be used in this form for the determination

of the conditions of convergence of the series for 12/an discussed in

II D.
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C. Application of the equations to chain models

1. Intramolecular interactions in polymer chains

The interactions between atoms or groups in polymer chains

which are not directly joined can be divided into two classes. To the

first class belong the interactions between atoms or groups at distances

which are, on the average, small and which depend on one or a few

internal rotation angles, ¢i‘ These are termed short-range interactions.

The interactions have the character of repulsions between atoms or groups

with overlapping electron clouds, and lead to the appearance of hindrance

of internal rotation since the values of the angles ¢1 corresponding to

greater overlap of the electron clouds ordinarily correspond to greater

energies. Short-range interactions are characteristic not only of

polymer chains but of small molecules as well, where these interactions

lead to the appearance of a hindering potential for internal rotation

and to the well-known phenomenon of rotational isomerism. Detailed

accounts of the experimental facts and theoretical conceptions of hindered

internal rotation in small molecules are located in the book of Mizushima.5o

When a polymer chain is in the unperturbed state, chain configura—

tion is presumably determined only by short range interactions. Only the

unperturbed dimensions of the siloxane chain are considered here so the

"excluded volume" effect caused by long range intramolecular interaction

does not influence chain dimension.51

2. Statistically independent bond model for a polymer chain.

The subject of statistically independent bond models for polymer

chains was first discussed in section I—l.0. The essential mathematical

feature of this model is that the average of the trigonometric functions

of the rotational angle is not a function of the conformations of

adjacent links in the chain. That is, <cos¢1cos¢é> = <cos¢i><cos¢é>,
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so that there is no correlation between the rotational conformations of

adjacent links in the chain.

If all the potential minima in the curve representing the

potential energy as a function of rotational angle possess a line of

symmetry which passes through the point of minimum potential in the well,

then the continuous function can be well approximated by a point function,

and the polymer chain can «A 'xepresented as an corilibrium mixture of dis-

crete rotational isomers. Every link is thus assumed to have a definite

state of equilibrium with a discrete value of 4H. 52 Given below are the

formulas for calculation of<cos§>for the continuous and discrete models. 52

For a chain model having a continuum of rotational states,

231

/ e'u(¢)/kT cos¢ d dg

o

<cos¢>

211

/ e-u(¢)/k'r d b

0

where:

u(¢) is the rotational potential energy function. For a chain

model consisting of a finite number of discrete rotational states,

3"

<cos4> = 2 : Pi c0543i

i = l

n

2 , P1

1 = l

where:

Pi = the probability that the chain assumes the 1th rotational state.

The representation of the polymer chain as a mixture of rotational

isomers was recently experimentally justified by V. N. Nikitin and B. Z.

Volchek?5 who found spectroscopically a transition of certain rotational

isomers into others on stretching a polymer.
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The concept of statistically independent rotational states

in polymer chains with discrete states is perhaps mOSt clearly illustrated

by the use of probability models.

Consider a polymer chain viewed along the bond axis from the

ith atom in the chain to the (i+l)th. This chain will be allowed to

assume four possible rotational states (in the case of the siloxane chain

these are gauche right, trans, gauche left, cis;) The rotational states

¢T ) ¢Gl
will be designated as ¢G l

n-l n-

, , b with probability of

n-l
C l

occurrence a, b, c, d respectively. This model is pictured below.

 

a + b + c + d = l

Succeeding links will move outward from whichever of these four

states it occurs. If the polymer chain is statistically independent,

the probabilities of chain paths do not change with choice of the rotat-

,ch

, $0 are still a, b, c, d respect-

H n

ional state. That is, from ¢G

n-l

, t.

ively. The probability model is illustrated below.

¢G' , ¢C the probabilitis

n—l

}

n-l n-l

of going to ¢Gn , QTn

 





55

 



 

 



36

Since this probability model continues through the polymer chain,

a convenient shorthand notation is:

i. i.

 

n-l a man

91.4 . hm

c

96 ' n-l <1 (#G In+m

PCn-l ¢cn+m

where m = 1,2,5...

3. Statistically Independent Pairs of Bonds Model for a Polymer Chain

The concept of statistically independent pairs of rotational

states in the polymer chain means that the probabilities of the ¢G , ¢T ,

*3. , ¢C states will depend on the rotational state previously assumedn

by :he pglymer chain. That is, the chain will assume a preferential

orientation depending on the outcome of previous events. For the most

general case, there will be a different probability attached to each rotate

tional state. The restrictions thus imposed are that (l) <hos¢1 cos¢é>

] <cos¢f> <cos¢é> and (2) <cos¢1 cos¢é> = <cos¢3 cos 4> = . . . <cos§nnl

cos¢fi> for n chain bonds. The arguments of Section II C. 2. regarding

statistically independent chain bonds can be applied to this case

where now the repeating independent chain unit is a bond pair.
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D. The Prediction of Stability of Helical Conformations of Polymer

Chains.

DeSantis, Giglio, Liquori, and Ripamonti5h have approached

the problem of predicting the configurations of polymer chains from

fundamental principles of non-bonded interactions within the chains.

These workers have calculated rotational potential energy curves for

several simple polymer chains using a Van der Waal's potential to

describe the interactions between pairs of non-bonded atoms. The most

stable helical conformations calculated predict the previously known

preferred rotational states with surprising accuracy. In several cases

less preferred rotational states appear at angles not previously

suspected.

No calculations were made on the polydimethylsiloxane chain.

Calculations made for the structurally similar polyoxymethylene chain

H H

(-!=0=é=0=) assuming a one-atom helical chain (statistically independent

4 J.

model) with [000 = LCOC = 110°53' predict symmetric gauche states at

67° and 295° and a less preferred trans state at 180°. The calculated

potential energy curve is pictured on page 58.

In a note added in proof the authors state that no new

rotational states were predicted when the conformational potential
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FIGURE V

Conformational potential energy of polyoxymethylene considered

as a one-atom helical chain.

energy of the polymer chain was calculated using a statistically

dependent, two-atom helical chain model.

The authors state that the lack of side-groups attached to

alternate atoms of the chain is responsible for the fact that the

gauche conformations are more energetically favorable (have a higher

probability of occupancy) than the trans conformation(s) found for

both polyethylene and polytetrafluoroethylene, in which side-groups

are attached to every atom in the chain backbone.

They apply an analogous reasoning to explain the marked

flexibility of the polyoxymethylene chain and the existence of a

number of crystalline helical conformations.

The polydimethylsiloxane chain is structurally similar to the

polyoxymethylene chain since in both cases the oxygenv atom is an

alternating atom in the chain and has no side groups attached. In the

view of this author the results calculated for polyoxymethylene and the

observed structural similarities to polydimethylsiloxane lend weight
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to the three state approximation (G, G', T) for the allowed conform-

ations of the polydimethylsiloxane chain.

E. Long Range Interferences in Polymer Chains

The average configuration of real polymer molecules in the

unperturbed state is markedly influenced by the requirement that two

elements of the polymer chain are forbidden from occupying the same

location in space. This requirement is often implicitly neglected in

calculations of chain dimensions and has been neglected in all prior

derivations of this work. The long range interference effect means

that a given configuration calculated from a period one or period two

model will be acceptable only in the case that none of its segments

is assigned to a site occupied by another segment. Only a small

fraction of the calculated configurations may be realized by the actual

chain moleculess. Thus, even if one uses an accurate assignment of

rotational states and their occupancy and correct bond angles and

lengths, the calculated dimensions will be smaller than the actual

dimensions because unallowed configurations have been included in the

calculations.

G; W. King has provided much insight into the theoretical

considerations necessary to take account of the long range interference

effectsq King reifterated the generally accepted principle that the

thermodynamical properties of long chain molecules depend only on the

configurations of segments of the chain very short compared with the

whole molecule. The geometrical icomplexion of a segment, say, 20

atoms long are independent to a very large extent of segments more than

20 atoms away. The smallest tolerable subsystem necessary to accurately
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describe such a system is thus a sliding segment of Zf%-2O chain links,

whose configurations are independent of atoms outside the segment but

dependent on those within it. Each chain link occurs in Z1 + 1

different segments obtained by sliding.

What King proposed is, in the terminology of this work,a chain

of period Zr Let F1(Zl) be the number of configurations of a segment

of Zl atoms. Then the Markov matrix, P, necessary to describe the

chain is of order F3(Zl). Consider now a property P which has a value

pi in the ith. segment. P could be the vectorial distance between the

ends of the segment weighted by the Boltzmann factor of the energy of

the combined configuration. The elements of the Markoff matrix are

pi,j = pixpj. An element pij is the value of the property P of the

segment of length 221 obtained by the concentration of a segment of Zl

atoms of configuration 1 with a segment of Zl atoms of configuration 3.

The most important feature of this model to note is that long range

interferences are dealt with explicithrand directly. An element Pi,j

always has a factor which is 0 if the combined segments cannot exist,

1 if the combination is allowed.

The immense complexity of the formalism necessary to describe

the period Z1 chain makes calculations prohibitive. The important feature

is the insight which the model offers into the long range interference

problem. If the chain can be represented by a sliding segment of twenty

atoms, the model of King would account for long range interference

effects.

Tractlble solutions to the long range interference problem

lie in finding approximate methods to eliminate unallowed chain config-
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urations. In a classic paper, E. W. Montroll has treated a chain on‘a

square lattice in which right and left steps are required at each

lattice point, and short range overlapping is eliminateo.5? Those over-

laps which occur when a monomer four removed from a given monomer returns

to the position of the given monomer are called first-order overlaps

( Ll ). Overlaps of monomers l2 removed are called second-order over

laps ( r{ %7), etc. The first order overlaps are much more probable

than those of higher order and Montroll has chosen as his approximate

treatment the elimination of interferences in the chain due to first

order overlaps. Montroll is able to obtain in closed form, the difference

equation for the number of configurations for ths very restrictive model.

When n(the number of links in the chain) = 10, the fraction of config-

urations without first order overlap — 0.18.

When Montroll's method is applied to a real polymer chain off

a lattice, as, for example, the polydimethylsiloxane chain, the number

of configurations available to the chain is increased many times over

the number available to the square-lattice chain and predicting a priori

those configurations which lead to overlap becomes a much more difficult

matter. A numerical approach is taken in this work as follows:

The siloxane chain is assumed to have G, T and G' rotational

states available. The value of the end—to-end bond vector is

calculated for all possible configurations for small values

of n to numerically obtain the paths that lead to interferences.

The number of configurations available to this chain model is

—l

in , A further interest of this calculation is to gain insight
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into the necessity of postulating a cis state to explain the formation of

hexamethylcyclotrisiloxane.

F. Chain Configuration and Motion

Grubb and Osthoff58 have studied the kinetics of the KGH-catalyzed

polymerization of octamethylcyclotetrasiloxane as a function of catalyst concen-

tration and polymerization temperature. In all cases, the reaction was found

to be first order in monomer concentration. At 152.6°C and 0.0h3$ by weight

KGE, equilibrium is reached in approximately 90 minutes.

The frequency of intramolecular rotations in the polydimethylsiloxane

chain has been studied by nuclear magnetic resonance. Huggins and co-workers18

found that the transition temperature, arbitrarily defined as the point at which

the line width has changed by one-half the total change in log AH, is 180°K.

The temperaturewdependence of N.M.R. line narrowing has been explained in ternm

of the onset of intramolecular rotations by Slichterfig . The frequency of

chain=twisting and torsional oscillation is concluded from.line narrowing data,

to be greater than several tens of kilocycles per second.

Since the rate of intramolecular rotations is many orders of magnitude

' greater than the rate of monomer addition to a chain, the chain configuration

is taken up independently of the reaction mechanism and rate.

G. Convergence of ra/nla as Investigation of the Convergence of the

Matrix Power Series

The conditions under which the equation for ra/nla converges will be

determined.

Consider now the following matrix power series*:

* Multiplying each term in a matrix series by a constant matrix does not

alter the conditions of convergence. Two of the matrix series in ra/nla

are multiplied by a constant matrix, but are otherwise identical with la) and

lb). Therefore, establishing the conditions of convergence of la) and

lb) is sufficient to establish the conditiOns of convergence of rz/nla.
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la) ; (1 - ak/n)3k; 1b) '2 (l - 2k/n)Dk; where B - A132

k. ,2' k: ,2 13 ' Ask;

Both of these series can be expressed as:

2) S c 2 csAe, where A is an m x m matrix and the ca are mmbers.

. 6:0

The power series of S can be shown to converge for each element

of S if z: |c5| (na)e converges, where [an] _S a; i, J = l, 2......n 60.

The subject of interest thus becomes that of the convergence of

ordinary number power series 61 .

For the case of series la):

n-2

T

w 2= 2 we as W on
k=0,1,2

We examine the ratio of any two arbitrary terms in the series.

Consider the terms where k = m, n+1:

1 E 2 m+1 m+1

h) n x 53a; a: test ratio.

1 .. ~23 5“
n

Simplification of it) gives:

n=2m=2

 

5) W x 5s = test ratio.

11 — 2121

We wish to consider the lim (:‘fm:) E L

n——>(I) '1



 

 

 



2 1m 8312
6) (mfg-2) . 1 - :1. - 3-2- ;s— - ...........

n - 2m

5

7)mm[1-§--%§-%§~mm] -1=1.

n—>

‘o

The series 5) will converge whereverzé‘

8)--J-'-—<3a<—l-— a -1<3a<i

Therefore the series will converge whenever:

, . 1 1

_ _. < a < _

9) 3 5

Therefore, the convergence of 1a) is assured whenever lal < é— ,

where a is the largest matrix element in B. This means that the series will con-

verge for every element in the matrix. However, for the case of 52/1312, only

the 3,} element of B contributes to the final value. Consider now the form of

the matrix B and the effect on the convergence of the 3,3 element in the sum.

For a symmetrical potential; i.e., < sin (1) .-= O:

8.11 0 0

10) B 3 0 823 8.23

p 0 8:32 85a

The 3,} element in Bk is made up of the third row in Bk”; times the third column

key, km,

in B . Since zeros appear at the 3,1 and 1,} positions in B , the 5,5 element

in Bk will be of the forms:

11) 9.32 x 8.23 + ass x 9.33) km; = ass)k

B B
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Since only two row elements and two column elements make up ass) k’ the condition
” -.U.,_ n l ,W .5 B

for convergence of ass in la) subject to 10) is:

12) —1< 2a<l

13) |a| <1/2

Therefore, if all of the matrix elements in B, D, A1, and A2 are < 1/2,

£2/n1a is guaranteed to converge. This is not a very strict test for conver-

gence, since there are cases where some of the elements can be greater than 1/2

and ra/nl2 will converge. Several examples can be seen in Table VII and the

accompanying Figure VIII° Two other examples are: 1) The case of a statistically

independent polyethylene type chain. Here 2.52/12 a n + 2 2 : hi-k)A#|33.

'k

The condition for convergence of ra/nla is again |a|< 1/2. By evaluating the

'2

series in closed form, Volkenatein;’ has shown that if | a |< l, the series will

converge. In other words, Volkenstein's proof for the polyethylene case is

more general than the one offered here. 2) Similarly, Tokita + Krifgbaum65

have shown that for a three choice cubic lattice chain, ra/nl2 will converge

if I a l< l.
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III. Results

A. Verification
ofthe Equations

1. Correct
computation

of the ring formation
at n = 6 for

hexamethylcyclotrisiloxane.

An independent
corroboration

of the equations
for re/nlg is

the computation of $2/12 under the conditions of formation of hexamethyl—

cyclotrisiloxane and the prediction of ring closure at n = 6.

As discussed in Section I, the six—membered ring is known to

be planar. If the calculated chain is allowed to assume the cis con—

formation with probability 2 l and if the bond angles assigned are

those experimentally observed for the ring, the calculated value of

6. This behavior is illustrated£2/12 vs. n should become zero at n

'5 corresponds to the maximumin Figure V1. The maximum at n

distance between two chain atoms across the ring.

2. Computation of rE/nl2 for the freely rotating model.

Flory has shown2 for a chain of large n with bond angles

91 and 92 and free rotation ( <cos¢> = <sinQ>> = O) that

—2 2 _ l - cosG l — c0592)

1) r /nl — g1 - c0591 c0592;

Results from 1) are compared in Table VI with the computor

results for the freely rotating model.

For the calculation of r2/nl2 vs. n for a period 2 chain the

matrix elements in A1, A2, AlAe, and A2A1 are the data from which

calculations are made. Figure\fll is a plot of r2/nl2 vs. n for the

freely rotating model.

From the plot in Figure [Bjone can see that the computor value

of r2/n12 at large n approaches that value calculated in 1).
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Table VI. r2/nl2 as a function of lSiOSi for <cos¢> = 9.

Comparison with values calculated from Flory's approximate equation*

r2 0 F2 52 %d ‘t' f
zsos- — n=2l — n=l+o — Flor '5 ”la 10‘] 0

1 l n12) n12) n12)eq. y Flory's results

from computer

value

Case 1 1.50° 2.650 2.71** 2.79 2.9

Case 2 1h0° 2.96 5.07 5.16 2.9

Case 5 lh2.5° 5.02 5.lh** 5.25 5.5

* [0810 = 109°28' for all cases

** Extrapolated from n = 21.

B. Calculation of ra/nlz for statistically independent models of

the polydimethylsiloxane chain.

Because of the symmetry due to all identical substituents

(the same symmetry as exists in the previously discussed polyisobutylene

chain), U(¢i) = U(¢i+l). In all models considered here the rotational

states are symmetrically disposed about the trans state. Therefore,

<sin©f> = O. From the chain symmetry; <cos¢i> = <hos¢i+l>. For stat—

istically independent models <pos¢icos¢i+l> = <cos¢i>><cos¢i+l>.

In the series of curves of r2/nl2 vs. n in Figure X, <COs¢>

decreases from Case 1 through Case 5. It should be recalled at this

point that <cos®> is a function of two kinds of variables - the rotational

states available and their respective probabilities. For the four state

model of G, T, G' and C states with respective probabilities a, b, c d
)

(and a=c from chain symmetry),

1) <cosp> = l/2(l-5b+d)
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However, the gauche rotational states might actually be shifted

several degrees from their ideal values in hydrocarbons of 60° and 500°.

Liquomh calculations indicate minima shifted in polyoxymethylene (G=67°,

G'=295°).6O Two other sets of assignments for the gauche states in the

siloxane chain will be presented to discuss the implications of shifted

gauche states on the parameter of the chain dimensions.

(2) G=50°, G'=510°

<cos¢> = .6h28 - 1.62% + .5572d

(5) G=70°, G'=290°

<cos¢> = .5h20 — 1.51201) + .6580d.

For a given value of <hos¢> , the magnitude of the probabilities

b and d will depend on the choice of rotational angles for G and G‘. The

normal set of gauche states G=60° and G'=500° are chosen so that the

curves may be considered to be a function of only probability variables,

thus making interpretations simpler. But the choice is somewhat arbitrary

and further experimental work may indicate that those of (2) or (5) better

approximate the real chain.

None of the curves in Figure VIII approach the experimental value

of rz/nl2 = 7.25. In addition, the energy difference betWeen the trans

and gauche potential well OSE) in each of the Cases 5-7 in Table VII far exceeds

the allowable few hundred calories per mole commensurate with the data of

Scott, et. a1.28 From these two results it is concluded that the di—

mensions of the polydimethyl siloxane chain cannot be described using

a statistically independent model. One explanation for the difference

between r2/nl2 obtained from a model with a reasonable AE and the

experimental value of 7.25 is that included in dimensions of the model
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are many configurations of the entire chain that are physically unallowed

due to long range interferences. These interferences are from a segment

of the chain occupying a space previously occupied by another chain

segment. Chains in which this occurs have dimensions much lower than

chains which do not have long range intramolecular interferences. Thus,

the effect of including "unallowed" total chain configurationsis to lower

the calculated chain dimensions.*

The nature of the long range interference effect in the siloxane

chain will be examined in detail in III-D for chains with six and eight

chain bonds.

Table VII-

;2/n12 as a function of <cos¢>zSiOSi=iuo°, [OSiO=lO9°28'

—2 Probability

<cos¢> §i2)n=uo of trans * AE+, 25°

Case 1 .2 2.22 .200 750

Case 2 0 5.07 -555 0

Case 5 -.2 5.95 .467 —650

Case u -.u b.85 .600 -1250

Case 5 -.6 5.21 .755 -1950

* Assuming prob. of cis = 0. Then <cos¢> :%(l—5b).

+ Measured with E increasing upward from reference point of E=O at

deepest gauche minima at 60° and 500°.

The purpose of the graph in Figure IX is to investigate the

necessity for postulating the availability of a cis state to the siloxane

chain in order to explain the planarity of the hexamethylcyclotrisiloxane

ring. The model for this graph is [SiOSi = 140°, [OSiO = 109°28' (the

* In the case of polyethylene, the experimental re/nl2 = 6.55. Using a

statistically independent model with rotational states, G, T, G' and

AE = 500 cal/mole (the energy difference between trans and gauche obtained

from spectral data of normal paraffins), E2/n12 = 5.5M. Perhaps here as

well as in the siloxane case one of the major contributory factors to the

low model value is the inclusion of configurations which are unallowed due

to long range interaction.  
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bond angles accepted in this work as valid for the polymer chain) and

<hos¢> = 1 (corresponding to the cis state being occupied with probability

=1). At n=6, the value ofkfr27I2 represents how far the chain ends are

apart giving a direct indication of how readily they might be expected

to join to form the planar ring.

From the graph, fire/12 = .19. Thus the chain ends are slightly

less than half bond length apart at n=6. If the cis state is available to

the chain then the sequence of cis conformations seems to be a plausible

mechanism for the formation of hexamethylcyclotrisiloxane.

C. A comparison of statistically dependent and statistically

independent models for the polydimethylsiloxane: chain.

In TableVIII the values of <cos¢f> and <cos¢icos¢i+l>- are listed

for statistically independent pair and statistically independent modem

for the polydimethylsiloxane chain. The purpose of these models is to

illustrate that two rather widely differing models can be employed to

generate approximately the same value of r2/nl2 at large n. Case 1 is

a statistically independent model of the same form as presented in

Fig- VIII. In Case 2, <costi>case 2< <zosqi>case 1. This has the effect

of‘increasing the chain dimensions of Case 2 over Case 1. However,

<COsQicos¢i+l>Case 2>‘<Cos¢i>2case 2. Introducing this statistical

dependence into the chain has the effect of reducing the dimensions

from what they would be if the chain were statistically independent. At

large 11 the two changes in Case 2 nearly balance giving the result that

for Case 1, rQ/n12)n=h0 = h.2h, for Case 2, rz/n12)n=b0 = h.28.

Note from Figure X that the curves begin rather closely

together, spread apart in the region of n = 6—20 and become closer together
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as n approaches ho. The greater spread in the curves from n = 6-20 is a possible

indication that the statistically dependent model of Case 2 more accurately re-

fleets the cyclic formation in the polydimethylsiloxane chain which takes place

predominately in the region of n = 6-20.

Table VIII.

Application of statistically independent agd'statistically

dependent models for calculating the same rZ/nla. '

4.s1031 = 1h2.5,.aosio = 109°28'

 

-2
'2

(008» <cos¢icos¢1+1) 311:2)n38 Beg-'2) null-0

 

Case 1 «.259 +.0671 5.15 4.2%

Case 2 ..50h +.386 5.53 u.28

 

D. Calculation of ring—chain equilibria in polydimethylsiloxane.

- L

In 1950, Stockmayer and Jacobsofiipublished a theoretical paper in which

they predicted the equilibrium molecular size distributions of linear and cyclicr

molecules for polymers. A major assumption of this work was that the distribution

of endeto-end distances (r) of a randomly coiled chain, (W(r)dr), is Maxwellian.

That is, W(r)dr = as exp(r252) haradr, where 5 = and <r§> represents

1! 37: 2<r§

the unperturbed meanwsquare end=to=end distance of the polymer. From this, a

formalism was developed for the chain-cyclic distribution. However, no calculations

based on this formalism were undertaken for polydimethylsiloxane.

Calculations were performed on the ringechain equilibrium in polydecamethylene

adipate and compared with experimental results. More ring structures were predicted

than actually observed.

The treatment here parallels that of Stockmayer and Jacobson except that the

probability of ring closure is obtained from a discrete rotational state model.

The equilibrium constant for the formation of octamethylcyclotetrasiloxane

is calculated from the discrete rotational state model and from the Gaussian

distribution.



 

 
 
 



1. The distribution of I?! 's for a three rotational state chain.

We consider now the entire set of fill 's for the case of a growing three

rotationalustate chain. The total number ofchain conformations increases as 5nfl,

where n . number of links in the chain. Many of the [33' '3 thus produced'are degene-

erate. “The cases of n E, 6 and n s 8 will be examined in detail.

Consider the interval tabulation for the 215 I?) 's at n e 6 in Table 11:.

Table Ix.

Distribution of I?! 's for n=6

No. of I?) 's in Fraction of Ir '5

 

 

Range of r the interval in the interv

0;..51 o 0

.524 0 o

[a] .51 6 .02h7

in) -2 6 .0217

Tia-5.5 0 O

2. 1% :5 1+2 .1728

#66 56 .lu81

55AM 60 .2169

155. h . :51 51 . 2099

1.4155 he -.1728

215 9999

Note that no Fr" falls within the range of 0oz. If the three state model were

an exact description of the potential energy profile in the chain and if the require»

ment for ring closure were [_r‘i< I , no six-membered ring would form in the siloxane

system. As pointed out, however, the six-=membered ring does form and is planar.

Two possible mechanisms for the formation of this ring are offered. Mechanism A:

(1) A puckered six-membered ring is formed by a sequence of gauche rotational

states, some or all of which are shifted from 60° and 500° so that for this sequence,

'33]<[. (2) The ring rearranges from the puckered form into the planar form.

Since specific steric factors are thought not to influence ring configurations, due

to the large SiOSi angle and the comparatively long 810 bond, 2 shift from a puckered

to a planar ring form would probably require energy (since any puckered ring that

could form would be expected to be rather stable.) (5) In order to accamnodate  
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the gem?tri°al requiremeptsr°ffi¥ealaw _ 11.1%.: 13h?_.s.1034.,?999.5331§ 9.311.?“ rm“

1&8’1..F9,_l5°°- ms “mammal we? “1111179991.“, abamtmn. Pf ensrer- .

Mechanism Bza (l) A cis rotational state is available to the chain (probably with

much lower probability of occupancy than the gauche and trans states). (2) . The

chain grows to a length of six links occupying all cis states. _ A graphical repres-

sentation‘of this chain follows in Figure 5. Plotted is 12/342 vs. n(ra a l-rla).

Calculation from the graph shows I?‘ = 0.1191. Thus, the chain ends are slightly

less than half a bond length apart at n = 6. For the ring to form, the bond angle

SiOSi must compress from 110° to 150°.

The energy required to form the sixmmembered ring is probably least for

Mechanism B, so that if the cis state is available to the polymer chain, Mechanism

B may represent the most likely route to the formation of hexamethylcyclotetrasiloxane.

Consider now the interval tabulation for the 21.87 1?] 's at n 8 in Table X.

Table X.

Distribution of E] 's for n=8

 

 

_J No. of Irl 's in Fraction of [3"] '5

Range of Ir] the interval in the interval

0-.5 12 .00548

5]» 0 .0000

£41.51 58 .0265

1 . 517:2! m. . 0201

24—2 . 51 81+ .0581;

21.51-51 152 .0695

5 £15.51, 102 .oh66

5 . 55.1% " 291+ 45114

1.13-4.5; 520 «M65
t.5£u51 516 .11115

51.5% 567 .1678

5.5g.= " - 572 .1701

61-6. 5&‘ 66 .0502

2187 .9999

There are 12 [—13] 's in the range of 0—1] . All of these are less than 0.5L» and

71'

are probably within the range of cyclic forming molecules. We recall that Yokoi'H

postulated six reasonable structures for the eight-membered ring, octamethylcyclo~

tetrasiloxnne. Structure B , the structure which gives the best fit to the experimental

radial distribution function, is formed by all the following sequences of configurations:
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G,G,G',G',G,G,G'

G',G',G,G,G',G',G

G,G',G,G,G',G‘,G

G',G,G',G',G,G,G‘

T,G,G',G',G,G,G'

T,G',G,G,G',G',G

For structure B, [E] = 0.505 l .

Structure A_ has a crown form with the'four silicon atans in one plane and

the four oxygen atans lying in a plane above the silicons. This ring is formed by

the sequences of configurations:

G,G',G,G',G,G',G

G',G,G',G,G',G,G'

G,G,G',G,G',G,G'

G',G',G,G',G,G',G

T,G,G',G,G',G,G'

T,G',G,G',G,G',G

These 12 sets correspond to the 12 [3% '3 found to be less than 0.5fl and are

those most likely to form rings. These 12 Fri! '5 represent .0581+$ of the total

number of 2187 chains that are generated. The experimental evidence which must

be reconciled is that 10% of an equilibrated polymer is octamethylcyclotetrasiloxane.

The experimental data and theoretical calculation are compared through the equilibrium

constant for the formation of octanethylcyclotetrasiloxane.

2. Equilibrium constant for R4 formation.

Following the treatment of Stockmayer and Jacobson, we consider a siloxane

chain of (n + 1}) =Si~0 units in equilibrium with a chain of 11 units and. a cyclic

of four units .

 

(1) cn+4 Fzzi 0n + R4

[Cn+é]

Because the chains Cn+4

weight distribution curve for the high polymer, [C

and" Cn lie very close to one another on the molecular

n+4:| "j [Cn]°

(5) Therefore K13 [R4]

A. Calculation of experimental equilibrium constant.
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Density of R; - 0.9558 g./cm§at 20°C 1

Density of polydimethylsiloxane 2 0.9660 g. /cm3 at 25°C

Molal volume of R4:512m

 

. mole '

Consider 1000 grams of mixture 100g. = R4

900g. = Ch

ems of R4 =- --~1003-." = 101+.2 cc.

0.9558 g.7cc.

<an3 of c = 900g = 951.0 cc.
n w . . 7. ,

0.9665 g.7cc.

Total volume 1055 cc. Assuming

volume ‘

additivity

(1+) Kexpermental = 102:. 3, = 100 71+.15 1:101:15 of -SiO— units

—l+
Kexperimental = 15.2 x 10 moles of -SiO- units

_—.—___.3.__—

cm

5. Calculation of theoretical equilibrium constant.

' f

The general development here closely follows that of Stockmayer and Jacobsonnou

Important departures are noted in the text.

Since reaction (1) involves no change in number of chemical bonds, we may

assume it takes place with a negligible change of internal energy.’ With this

assumption, the prediction of K in (5) requires the calculation of the entropy

change in the equilibrium reaction. For this purpose, reaction (1) is broken

up into steps.

‘5) GIN-4, r: n

(6) 04 ‘ ;::f 34

For reaction (5), the entropy change is:

(7) s = kln(V/2v )
5 S

‘where vB is volume of the constrained skeletal atom under consideration, and V is

* For R4 the assumption seems valid based on the freedom from bond angle strain in

octamethylcyclotetrasiloxane. However, for R3 where strained bond angles are

present, such an assumption would be invalid.
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the volume of the system as a whole which 13,‘v§419b19 to this atom once the bond

is broken. The symmetry number of a chain molecule is 2. In the Stockmayer-

Jacobson development, vs cancelled with the same term in the denominator of Se

and calculation of V5 was unnecessary. In this development, vs remains in the final

expression for K and is calculated separately,

The entropy change in reaction (6) is:

(8) Se = k1n(P/‘+)

where P is the fraction of chains which will close. The symmetry number of an

n-membered ring is 2n. (The fact that the symmetry number as a siloxane chain is

two means that either end has an equivalent opportunity to close back on itself to

form a ring. For a ring containing n siloxane units, a symmetry number of 2n means

that there are 2n equivalent bonds that can be brdken when the ring reacts with a

chain to form a larger chain.)

Combining the results of equations (7) and (8), the equilibrium constant is:

(11) K = PV

8?
s

In the Stockmayer—Jacobson development, P was obtained by assuming a Gaussian

distribution of end-tonend distances and integrating over the volume element vs.

Here P is obtained from the set of chains generated from the threearotational

state model and found to be 0.005h8.

Calculation of vs will complete the specification of variables from which K

can be calculated. The approach is that of Mayer and Mayer. The one-dimensional

length available to an atom (along the reaction coordinate giving its distance) from

another atom to which it is bound is twice the average amplitude, 25,, of vibration.

The value of 5 as a function of temperature is given to a good approximation by the

emperical equation:

(10) 5= (RT/uni

where D is the energy necessary to break the chemical bond.

The twowdimensional surface available to an atom rotating about another is:

(11) A = hnré  
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where r0 is the distance between the two atoms.

The constrained atom of the molecule (the chain of n + 1!- segments) moves in a

shell of'radius re and thickness E' about the aton regarded as free. Therefore, the '\

volume, vs , is:

(12) 7 vs .= mag \

For the Si-O bond, r0 = 1.65 A

D =_ 95 Kcal./mole

at 155 c, E: 0.09h A

Inserting these data into (12),

(15) v8 = 5.2 29.

Substituting the values of v3 and P into (9) and assuming a system

volume, v, of 1 on.3 we find:

 

(1h) K = 5.6 x 10'4

1+. Discussion

This result is tabulated with two values of K calculated from the Stockmayer-

Jacobson theory and the experimental K in Table XI.

Table XI .

Comparison of Experimental and Theoretical Calculations of the

Equilibrium Constant for R4.

Worker K x lO-4moleleiter

Hartung and Camiolo6 15.2

\ I a'Stockmayer-Jacobs 0116’+ l . 2

bIbid 0.h2

8This work 5.6

8Calculated assuming equally probable rotational states. For the Stockmayer-

Jacobson calculation, <18?/ n12 = 5.2, where r51, refers to the mean square

dimensions of a freely rotating siloxane chain with three rotational states at

60°, 180°, and 500°.

bCalculated using experimentally determined <r§> / n12 = 6.5



 
i . . ' T't_'.-.
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In no case is there good agreement between theory and experiment. However, K

calculated in this work represents an improvement over the earlier Stockmayer—

Jacobson result. The only difference between the two derivations is in obtaining

P and Vs' Stockmayer and Jacobson assumed a Gaussian distribution with an effective

link length parameter, b, and we obtain P from a conformation model with equally

probable rotational states. Also, we find it necessary to calculate va whereas

Stockmayer and Jacobson found K independent of vs.

we must remember that Hartung's data, upon which the calculation of

Kexperimental was based, is data extrapolated for the undiluted polymer from

solvent polymerizations. Certainly, Hartung meant this extrapolation as a guide to

be used for predicting cyclic contents at solvent concentrations beyond the limits

of those he used. We are, no doubt, subjecting the extrapolated concentration of R4

to undue scrutiny in Table XI. '

Certainly the model developed here is a primitive beginning to the ring

closure problem. Evaluating preferred conformations and relating these to ring

formation in siloxanes with other organic side groups could help provide fundamental

groundings in this hitherto undeveloped area. No mention has been made here of

specific solvent effects which are, at present, impossible to evaluate theoretically.

No published data is available on the effect of media viscosity on cyclic concentra=

tion. It is hoped that this reuexamination of the ring closure problem will lead to

further critical experimental studies.
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APPENDIX.I

CALCULATION OF E FOR -M-O-N-O— CHAIN

Presented here is a derivation of an expression for r2 for a

polymer chain with two different bond lengths of the form 'M‘O’N‘O’M'

R R

|

For purposes of illustration, the system - O - Si - O - Sn — will

t. t

O\\/\::/
Let ll)l be the first bond of length 11

be used:

11

ll)n_2 be the (n—l)th bond of length 11

ll)n/2 be the nth bond of length 11

12)l be the first bond of length 12

12)n_2/2 be the (n—l)th bond of length 12

l2)n—2 be the nth bond of length 12

A1 = Matrix associated with bond angle 91 and rotational states ®l)i.

A2 = Matrix associated with bond angle 92 and rotational states ¢2)i.

A3 = Matrix associated with bond angle 63 and rotational states ¢3)i.

Each bond vector is written now in terms of the preceeding bond

vector using the associated transformation matrix. Matrix relations are

then written for the first eight bonds in the chain in terms of all

 



 

 

 

 



prior bonds.

ll)l = 11 lst bond

ll)2 = Alll)l 2nd bond

l2)1 = A211): + 12 " ll

3 A2Alll)l + (12 ' ll)* 5rd bond

12)2 = Aala)1

= A3A2A111)1 + A3(12 — 11) 4th bond

ll)3 = A2'12)2 ' (12 ' ll)

= AeAeAeAlll>l + AeAe(le - ll) — (12 — 11) 5th bond

ll)4 = Alll)3

= AlAeAeAeAlll). + A1A2A3(12 - ll) - Al(12 - 1.) 6th bond ‘

12). = A2 11). + (12 - l.)

= A2A1A2A3A2Alll)l + A2A1A2Ao(12 ' 11) - A2A1(12 ~11)

+ (12 - 11) 7th bond

12)4 = A312)3

= A3A2A1A2A3A2Alll)l + A3A2A1A2A3(l2 - ll) ‘

AeAeAl(12 - l.) + Ae(12 - 1.) 8th bond

For n = h, 8, 16, 20’

n-h

12)n/2 = (AeAeAlAe) 4 AeAgAlll

n—h

+ (ASAZAlAZ) 4 A3(12 * ll)

n-8

— (ABAZAlAZ) 4 A3A2Al(12 ' ll)

* The difference in bond lengths, 12 - ll, must be included for the

matrix equality to hold. This is the salient mathematical feature

of this chain model.

ii

 



 

 
 



n—4

law/2 = (A2A1A2A3)—4— AeAll.

n-h

+ (A2A1A2A3)T <12 - 1.)

n_-8

- (AaAlAaka) 4 A2Al(l2 - ll)

n—

ll)n/2 = (AlAeAsAe) 48 Alll

n—

+ (A1A2A3A2)"Z_ A1A2A3(12 — ll)

£32

' (AlAeAaAe) 4 A1(12 ' ll)

 

Consider the summations for the four types of bonds.

k—h
n 1’1 _

Z 1.)n/2 = fl (AeAeAlAe) 4 AeAeAlul)

k : u,8,12... k=!,8,l2...

n 15.1%

+ Z (n/lL — k/lL + l)(AeA2A1A2> 4 A3<12‘11)

k=u,8,l2...

n k_—8_
+ Z (n/h - k/2+ + l)(AeA2AlA2) 4 AeAeAlul - l2)

k=8,12,l6...

n “ 1:}.
Z 12)”/2 = Z (AgAlAeAe) 4 AeAlul)
k=A,8,l2... k=u,8,l2...

n E

+ X (n/u-k/u + Comm...) 4 <1. - 1.)
k=u,8,l2...

iii

I
n
-



 

 



n ‘ n-8

+ 25: (n/4 - k/4 + l>(AeA.AeAe)’Z~ A2A1(l. - 12)

k=8,l2,16...

n n 'k-A

IE: 11)n/2 = IE: (AlAeAeA2)T All.
k=u,8,l2 k=A,8,l2..

n .k_-8_
+ SE: (n/h - k/h + l)(AlA2AeA2) 4 A1A2A3(12 - 1.)

k=8,l2 .....

n k_-8
+ SE: n/h — k/h + l)(AlA2A3A2) 4 A.(ll - 12)

k=8,l2 .....

n n k—h

Z 1) =Z (AeAA2A>Tl

k:u, 8 l2 “2/2 k=A,8,12... 3 l l

n as
+ 25% (n/u — k/A + l)(AeAeA2Al> 4 A2Ae(12 - 11)

k: ,l2...

k8

(n/LA - k/A + l>CAeAeA2Al)T (l. - 12)r
v
q
s

k—8,l2...

A

The expression for r is the sum of the contributions from each of

the four types of bonds.

n I].

e - kZE: 12>n/ + 23:. 12) + ii: 1.)
r ‘ (l O 0) M8 l2. k=u,8,12... n“2/2 k=A,8,l2... “/2

Zn 11)

k=A,8,l2... “’2/é]

Substitution yields:

k-A n k-A

? = (l O O) :E:h (A3A2A1A2)—4 A3A2Al + 2:; (A2A1A2A3) 4 A24%

1&8l2. k=u,8,l2...

n k-AA n kA

+ SE: (AlAeAeAe) 4 + ZE:W (AeAeAeAl)4 :]
k=u,8,l2... k=A12.

iv

 



 

 

 



n E

+ (12 - 11 o 0) Z (n/4 - 14/4 + 1>(AeA2A.A2) 4 A.

k=u,8,l2...

n k-A

+ Z (n/4 - k/4 + 1)(A2A1A2Ae)—4‘

k=u,8,l2...

k-8

8 (n/4 - 14/4 + l)(AlA2AeA2)T AAA.

,12...

<Z

A.

k

+

11

£1 14.4%

+ 1.8 (n/4 — 14/4 + l)(A2AeA2Al) 4 AeAe

= ,l2...W

n k—8

+ (l. — 12 o o) [ 8 (n/4 - 14/4 + l)(1-\3A2AlA2)—4_ AeAzAl

k: ,12...

 

n k-8

+ Z (n/4 - 14/4 + l)<A2AlA2A3)T AgAl

,l2...W 0
0

{i k_—8

+ Z (n/4 — 14/4 + l)(A1AeAeA2) 4 A.

k=8,l2...

n k—8

+ Z (n/4 — 14/4 + l)(AeAeA2A1)T]

k=8,l2...

Rearrangement yields:

4 {i E n 1:4

r = (11 O O) [}4_ (AeAaAlAz) 4 A8A2Al + 2:: (A2A1A2A3) 4 A2A1

k=u,8,l2... k=A,8,l2...

n k-A n k—A

+ Z (AlAeAeAz) 4 A. + Z (AeAeAeAl)—4‘

k=u,8,l2... k=u,8,l2...

kit

— <n/4 — 14/4 + l)(AeA2AlA2) 4 A3

k=u,8,l2...

n M
- Z (14/4 — 14/4 + l)(A2AlA2Ae) 4

k=A,8,l2...



 

 



_ n k—8
C : _

U - Z (n/4 — 14/4 + l)(AlA2A.A2) 4 AlAeAe

k=8,12...

n
5:3

- Z (n/4 - 14/4 + l)(A2AeA2Al) 4 AeAe
. k=8,l2...

en— k_-€§

+ Z (n/4 — 14/4 + l)(AeA2AlA2) 4 AeAeAl
k=8,l2...

‘1 k_-8

+ Z (n/4 - 14/4 + 1)(AeAlA2Ae> 4 AeAl
k=8,l2.ne

\

.9— E
+ Z (n/4 - k/4 + l)(AlA21-\3A2) 4 A1

k=8,l2...

3i .k_-§
+ ;3_ (n/A - k/A + l)(A2A3A2Al) 4

;

n 1.2-1.

+ (l2 0 O) [1%)B)12.FI.1/)+
_ k/u + l)(A3A2AlA2)

4 A3

n
k—A

+ Z (n/lt ‘ k/4 + l)(A2AlA2A3)—4—

k=A,8,l2...

n k—8

+ Z (n/4 — 14/4 + l)(AlA2A3A2)T AlAeAe
k=8,12...

n k—8

+ Z (14/4 — k/4 + l)(A2AeA2Al) 4 AeAe
k=8,12...

[D];

k—8
I’l

~ Z (n/4 — 14/4 + l)(AeA2AlA2)—4“ AeAeAl
k=8,12...

' n k-8

- Z (fl/Lt ' k/Lt + l)(A2AlA2A3 )7 AlA2]

k28,12...

vi

 



 

 
 



k—8

— Z (n/4 - 14/4 + l)(A.A2AeA2)T A.

k=8,12...

k_-§
- Z (n/4 - 14/4 + 1)(A2AeA2A.) 4 1

k=8,12...

With the notation introduced above,

??= (11 0 0) [c] + (12 0 0) [D]

4> — — — tr2 = r . > > >

~ t

T?2 fill o 0)[C] + (12 0 0)[nflx[(ll 0 0)[C] + (12 0 0)[n]

— t t

i2 = (11 0 0)[c] + (12 0 0)[Dlx[01 1. + [D] 12 .
O O ‘

O O

—> t t

r2 = 1% [C][C ] l,l + lg [D][D] 1,1

t t

+ 1112 ( [D][C] + [C][D] )
1,1 1,1

As an illustration of these equations consider a chain with eight

links.

—>

T = (ll 0 0)[1 + A1 + A2Al + AGAZAl + A2A3A2Al + A1A2A3A2Al +

A2A1A2A8A2Al + AsAaAlAeAsAzAl]

+ (l2 — ll 0 0)[ l + A3 + A2A3 + Al A215.8 + AgAlAgAs + l + A3A2A1A2A3 + A3]

+ (ll—12 O O)[ l + Al A2A1 + ASAZAl]

?> = (11 0 0) [l + Al + A2Al + AgAeAl + A2A8A2Al + AlAgAaAgAl +

A8A2A1A2A3A2Al - l - A3 ' A2Aa - AlAaAe - AaAlAeAa - l - A3A2A1A2As

- A3 + l + Al + A2A1 = ASAZAl]

+(l2 O 0) [l + A3 + AaAs + AlAZAG + A2AlA2A8 + l + A3A2A1A2A3 + As - l -

Al ' A2A1 ' ASAZAl]

Simplification gives:

vii

 



 

 



? 4 (ll 0 0) [2A1 — 2A3 + 2A2A. + 2A3A2A. - AlAeAe + A2A3A2Al

- A2A1A2As + A1A2AeA2A1 - AsAaAlAaka + A2A1A2A3A2A1 +

AsAzAlAaAaAaAl]

+(12 0 0) [l + 2&5 - A1 + AzAa - A2A1 + A1A2Ax'5 - AsAaAi + A2A1A2As

+ AsAzAlAaAs ]
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APPENDIX II

160A FORTRAN Programs for Calculation of r2 for -M-O—M— Chain

Case one - n even

0001 format (12, (E8.A))

:0002 format (12HN; even; case; i2)

0005 format (E15.7)

OOOHOdimension ala2(3,5),

00041a1(3,5).a2(3.5).a2al(3.5),d(3.5).w(l°).x(l°).y(l°).z(l°)

0005 subroutine matpow (B,c)

0006 nonlocal d

0007 do 10 i=1,5

0010 d(I;J)=B(I;l)'C(l;3)+B(I.2)'C(2;J)+B(I;5)'C(3;J)

return

end

OOll subroutine matmul (B,c,e)

0012 e=B(l,l)’C(l,l)+B(l,2)‘C(2,l)+B(l,5)'C(3,l)

OOlB return

end

0014 read l,ncase, ala2, al, a2, a2al

0015 pause 0005

0016 do 50 3:1,5

0017 do 50 i=1,5

0050 d(I,j)=AlA2(I,j)

do 55k=2,10

0051 call matmul (D,al,e)

x(K)=E

0032 CALL MATMUL (A2d,e)

y(K)=E

0033 CALL MATPOW (A1A2,d)

0055 w(K)=D(l.l)

@056 J=l.5

d056i=1,5

ix

 



 

 

 

 

 



0056 d(I,j)=A2Al(I,j)

do 570 k=2,lO

0057 call matpow (A2Al,d)

0570 z(K)=D(l.l)

0058 punch 2, ncase

pameomfi

x(l)=Al<l.l)

0140 y(l)=A2(l,l)

00A1 w(l)=A1A2(l,l)

00A2 2(1)=A2Al(l,l)

0059 punch5(w(l),x(l),y(l),2(1),i=l,l0)

00A5 d046 n=2,20,2

m=N—l

RATIO=O

I___l

0044 DO 45 K=l’m,2

ratio=RAT10+(N-K+l)'X(1)+(N-K-l)'Y(l)+(N-K-l)'w(I)+(N—K—l)'z(l)

00A5 i—I+1

RATIO=RATIO+N

0046 PUNCH3,ratio

pause0007

end

end

 



 

 

 



Case two - n odd

0001 format (12, (E8.A))

0002 format (11HN;odd;case; 12)

0005 format (E15.7)

000A0dimens1on ala2(3,5),

00041a1(3,5),a2(3.5),4241(3.5),4(3.5).w(l°),x(10).y(1°).z(l°)

0005 subroutine matpow (3,0)

0006 nonlocal d

0007 do 10 i=1,5

0008 do 10 3:1,5

0010 d(I.j)=B(I.l)'C(l.J)+B(I.2)'C(2.J)+B(I,5)'C(3.J)

return

end

0011 subroutine matmul (B,c,e)

0012 e= B(l,l)'C(ll)+B(l,2)'C(2,l)+B(l,5)'C(3,l)

0015 return

end

001M read 1, ncase, a1a2, a1, a2, a2a1

0015 pause 0005

0016 do 50 3:1,5

0017 do 50 121,5

0050 d(I,j)=AlA2(I,j)

do 55k=2,10

0051 call matmul (D,a1,e)

x(K)=E

0032 CALL MATMUL (A2,d,e)

y(K)=E

0033 CALL MATPOW (A1A2,d)

0055 w(K)=D(l.l)

do 56 j=l,5

do 56 1=l,5

0056 d(I,j)=A2Al(I,J)

do 570 k=2,10
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00112 2(1)=A2.A1(1,l)

0059 p1mch5(W(I),x(I),y(I),2(1),i=1,10)

00A5 doA6 ne3,21,2

m=N-l

RATIO=°.

i=1

0044 D0 45 .K=1,m,2

ratio=RATIO+(N-K) 'X(I)+(N-K) 'Y(I)+(N~K) 'W(I)+(N4K4-2) 'z(I)

00115 i=I+l '

RATl0=RATIO+N

0°46 PUNCH3,ratio

pause 0007

end

end
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Appendix 5 — 160A Fortran

Program for generating all end-to—end vectors of a growing three—

rotational state chain.

c0811 CHEMISTRY PROGRAM

3 FORMATtElaoe)

1 ETQENEEEESIEEJ._____--____________________________-____--____-______-._-_-__________-________________
310 FORMAT (/)

4 FORMAT(XAHRSDOT$R$FOR$N8012)

2 FORMAT‘EBOS)

DIMENSION THETAC30302)OPHI(30303)0A1(30393)0A2(3o303)0A2A1(30309)o

1 TEMPlt30301)oTEMPZ‘30301)0TEMP3‘30301)0AlA2Al‘393927)OSUM(10301)

SUBROUTINE MULT‘XONOYOMOZ’L)

1"ERSZT'fEFi?1§“’"“'""""""""""“"""”" -.-_-.‘ _.__-__-_-__--_______.._..-..__-_

2 004 J'103

3_D___63__R_;i_._5-__._--..---..1...___-__..-__-__-_.-_ - .___.__-____._-____.._...__._.._________

4 Z(IoJoL)=XCIOKON)§Y(KOJQM)+Z(loJoL)

RETURN

END
----_ - - _ ._ _._.. _. __ ._ _.__-.._____.________-.__._--—._--__-_....___—___m__.___.______-_..__.____._.____._-.— 1

SUBROUTINE ADO (x.L.Y.M.21

1 002 131.3

2 2(10101)'X(3010L)+Y(3030M)

RETURN

END

00 300 1:1.3_______ _______________ _______ _________________ ‘

””“"_“‘“‘b‘6“:§66'3=‘1‘223 ‘ ' ’ _-____-_______________________-___1

___.--_E!2_5§952-EEE}.L§1_-_1____--....___._-___________-____-_______-___-___-_.-.1__1-_-___-____.___

IF (1-11 301.301.302 '"""

301 TEMP1(JtKoI)=OoO

TEMP3(J9KOI)'OOO

_._.. 9.92-6.11‘1231"?£032________.____..____-_____________-_____._.__-____-____ ___ _ ___ .

"" "'A211.J.K)=0.0 ‘“ ' "” """"""

A2Al(IoJ.K)-Oo0

"“““““§66”21§2A171{JVRY3676""""""""""""""""""""""""""""""""""""""""""""""

DO 303 1:1.3 '

oo 30§"U£1.3

oo 303K=4.q __________________

A2A1(IoJoK)IOoO

303 A1A2A1_(loJoK)'OoO

 

 

   

00 s04 a: 1.3

00 304 Kx1o.27

-2£fl_elA351£11£1§1§229________________________________________

"“""" READloNUMBER """""""""" ‘“““““““““““““

.._-__________BEAQ§1£5ilflfilflil1215Iiifiliéliigliélifitlzfil__________________________

REA02o(((PHI t1.J.K).1-1.31.J-1.31.K-1.3) """""""

18 005 M=1.3

5 CALL MULT (THETA.1.PH1.M.A1.M>

19 006 M21.3

6 CALL MULT (THETACZCPHIQMoAZoM)

  

007 N‘io3

007 M'lv3
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K=K+1

20 CALL MULT‘AZOMCAIQNQAZAX
OK) ‘

21 CALL ADD(A10N0AZA19KOSUM
)

-M-“——“-"-5U~NZCVH_3" ;“(SUE—(773 Z ‘1’ ) o {1:1333—" Z l____-__ -______._.-___-____ _- H _ — Z _"_--_______-___...........

”12192141114112________________________________________________________________
_____________________

PAUSE 0003

K=l

008 M=109

008 N3103

m-“—-—_2—2_—CKC—L_—“Off-TAT:75;31?AT331?!“3—2—377K7——————————————————————————————————
——————————————

IFKN-1)16015015

{Ev—52.51557?TE“1527373713.;3—;173—)________________________________
_______________________

)6 CALL ADD (AIAZAICKCTEMPZQICSUM)

23 PUNCH30(SUM(19J01)0J'1
03)

__§§E§Etl_-____________-___________..-__
____.__.___._----..-_.._______-_________

____._-_____.__-..-_..

8 CONTINUE

PAUSE 0004

009 N8109

009 M3109

00500 J3lo3

DO 500 13103

_500 TEMP](ICJ)*O

24 CALL MULT (A2619M9A2A19NOTEMP
IO‘1

'IF(M—1)112o25.112

112 1F1M-42113.2§,113

113 1F<M-7)26.25.2e

.....- __'__§.-8_E_ep_§_v_sls112211.231 1 2421-31 , ._______-_____________-___-__-______________________-___.

26 CALL ADD(TEMPX.1.TEMP2.1.SUM)

pUNCH3.<SUM(1.J.11.J-1.31

9 CONTINUE

IF(NUMBER-s>1oz.101.102

102 PAUSE 0005

0010 ~=1.9
“.-_-___.______._._.._____- i _- ____-_____...____._._____-.._._._ i__-_.______.__._—._.._____..-_._____-.__..______..___-__.'_-_____-____ --

0010 M=Xo9

     

00501 1:1.3

00501 1J1.3

TEMP1(IoJo1)'OoO

__ ____§_93__IE@E§_U !_-%_'_1_2_'_9-_9__1___-_ 1-11 ,_1____-__________________________

’"' CALL MULT (A1.L.A2A1.M.TEM91.1)' """""""""""""""

.---___-__-______§Al:l_-__MULT(IfiflflkzlzAgilzfizlfiflfiilj.____________________ , ..... _ _____________________

1F1L-1)31.3o.31

30 REA03.¢TEMp2(3.J.1).Js1.3)

31 CALL A001TEM93.1.TEM92.1.50M)

27 pu~cu3.<sum11.u.1).J=1.3)

"""""""1‘6"651QT‘1NUE‘"""""""‘"""“""“""““""""“""“"'"“ ‘ ' '""""""""""""

________________£5!NHMBEBTéZ1993.32.13.L051“___________________________________-____-___-________________
__

103 PAUSE 0006

0011 N-1.9
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____________DQLL_uaLdi___________________________________—____________________

0011 L8199

DO502J3103

 

TEMP1(IoJo1)'OoO

E§635'ii§ifi5§f(131J21'{Echtf—""'"—"'“""""‘—""-'-" -"—-"'__“"“"""""""'"" "'_"

28 CALL M0LT¢A2A1.L.A2A1.M.TEMP:.11

29 CALL MULT<TEMP1.1.A2A1.N.TEM93.11

!F(L-1)116o40o116

“""TfB"T1='ZL':-Tfi—f7."3'671"i"7"—""""""""""""""""""""""""""""""""""""""""""E

117 1F(L-7141.40.41

56-3—5"3553—?TE—M75273—:3713';3:1753‘_“'“—”""""”" ._____-___.________. __-___.

41 CALL A00 (TEMP3oloTEMP2o1oSUM)

PufiCH3.1SUM(1.J.11.Ja1.31

1} C§NSTEJSEE§- ___-____.-__-______-_-__.______._____...___________________--...-______-_.___._______
"'"YF(N0M552171104.101.104 “

1Ski-fiés£§EL_9529jl_---....-__-__-____._________________________________________________________

0012 Na1.9 1

0012 M=1.9

0012 L=1.9

.29£§15:1:§_____________________________________________________________________________________
""“"—"’00‘503 1s1.3 ’

00 503 3:1.3

TEMP1<1.J.1)=0.0

503 TEM9311.J.1)=0.0

CALL MULT<A1.K.A2A1.L.TEM91.11

-__mmanALL MULT<TEMP1:1oAZAleMoTEMPBol) _ 1111__11 _ 11--1_1_____1____

CALL MULT‘TEMPB‘IQAZAIQN'TEMPIOl)

"IF(K-1)51050051.

       

51 CALL ADD(TEMploloTEMPZOXv$UM)

pUfiCH30(SUM( IoJol 1.4-1.3)

12 CONTINUE

105 PAUSE 0010
..———_.—__———________-________ ..-____—......_._...____...________-.._____—..____..._____..____-..____—__-__-___--__---—.--__.__..-____ .

DOA3 Nalog

0013 M3109

0013 L8199

  

00 504 1:1.3

___________952-EEQEE_:EE!_L§____________-1-----,____11-___________-_-_____1___m-, __________________-________

"""" TEMP1(I.J.1>=0.0

504 TEMP3(IoJo1)=OoO ___

35 CALL MULT<A2A1.1.A2A1.L.TEMP1.11

36 CALL MULT<TEMP1.1.A2A1.M.TEMP3.11

37 CALL MULT(TEM93oIoA2A1oNoTEMPlol)

IF(I-1)1200609120

120 XF(I-4)121o60o121

121 IFCI-7)61.60061

X'V

 



  

  

     

    

  
  

 

0.0-3 1 (1'. .

"'H'W” " " " "moi-11:13.1

_.- ' i - 1.11... .q’ .5”... ’. ::‘$A,Tu
-'-‘33

.- U ._ .1 ' ' . wwfitarn in
_. "-"‘i"i"JI-..1f 1

1.2.35 _

-"|'J,fit f‘

“139'?

- 74..

 

 

 



60 BEAQ3,(JEMPg(3.J.z).J=1.§)

61 CALL A00 (IEMP1.1.TEMP2.1.SUM)

45 FUNCH3.(SUM(1.J.11.0=1.3)

1'3"":“551?TRUE"-"""T'T""""‘""—_'"_'"""mm—""—""—’_"“""""""T’—""""

_-_-___1§SNVEBERTBLQE:1912192W_-__-__-_-__..___________________--_-________._______

106 PAUSE 0011

00 14 ”3"9

001A Maf79

___..-_.______--_QSZ!ft-Eri3_LEL______._-_._._-___-___--__________._._____.__-________--_______.-___-___________._-__

0014 1:1.9

_____9521fi_EEEI_LE1-_______.____..______-__._._______..--______--..________._______-___________________-

00 505 121.3

09_505 0:1.3

TEMPI(IQJ01)3000

§9§LI§flE§11131115929____________________________________________________________________

CALL MULT(A19KOA2A10 1 OTEMPI '1)

__ <E“54: liEEiIIJI§¥1511:_£2115!!1:}:3j1@3955?:J.l.....___-_._._.._-_____________-__-__--__-____-___-_-

'""CALL’M0LT<TEMP3.1.A2A1.M.TEMP1.11

CALL M0LT1TEMP1.1.A2A1.N.T5Mp3.11

15(K—1171.7o.71

70 REA03.(TEMP2(3oJ-l)oJ=l.3)

71 CALL AOD( TEMPS. 1 o TEMPE ~ 1 9 SUM)

11429121111981.5_sy_n5.1_o_~lg_1_1_o_es_1_..3__1___-__________--._________-____________________._-________-_

1 4 CONT 1 WE

IF(NUMBER-10)107o 1010107

1 07 PAUSE 00 1 2

101 PAUSE 1234

 

   

L=27

NU=NUMBER-4 _____________
_____

"""""""""0Efi50“iiiiliiif""""""""'"
"'"""

"’ "‘ " ’ ” "' _""""”"' ‘ ' “’ “"""""‘

90 L=3*L

55 PUNCH4oNUMBER

...........9555952_Eif}_:E;_____________----_
________-___________---___________

___________________________-____

”“"' 47 READ3.(TEMP2(1.J.!)onl
o3)

__-_._________I§M?_2_$1.2=1g_1_)__=_IE_ME_2
_$J_2§_~_1.11129.

__________________________________________
________________

noor=o.0

49 00100 M=1.3

99 A:TEMP2(19M91)

__________Ehiéité-__, L________-_____-1-_-____________--
-__-____--______________-_1,__111_

1___1______________

' RDOT=B+RDOT

-LLAQQLEQEILNUE ____________________________________
____________________________________

______________________

"”"" 46 PUNCHaoRDOT

PUNCH310

200 CONTINUE

PAUSE 1111

""""""""""é“_5_"----___------_--_______-
__________--_____..1_-_-_____

___-______-____________1_____
____________

END
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