
E

MESHQEJAM 5

$4293: 45:): 27M» 9&5?“ 5;?

Emma Harbas’f games.

‘1”. .l ’3‘! i 5 R.

:i'ie’i .4 \ 43.?0!"; G
"
!

LIBRARY '-

Michigan State

University

IV1ESI_J RETURNING MATERIALS:

P1ace in book drop to

usamuss remove this checkout from

.“ your record. FINES win

 be charged if book is

returned after the date

stamped below.

THE SYMBOLIC ADDRESS INPUT CONVERTER

By

BRUCE HERBERT BARNES

AN ABSTRACT

Submitted to the College of Science and Arts

Michigan State University of Agriculture and

Applied Science in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE

Department of Mathematics

1957

Approvedzwg Ply/353:;

ABSTRACT

The SAIC is a symbolic address conversion input routine. It has the

following modes of operation:

1. The SAIC will interpret the pseudo coded routine and store it in

memory.

2. The pseudo coded routine will be interpreted and punched on tape.

The first mode of operation is limited to routines which will, to-

gether with the SAIC, fit into the 1024 words of electrostatic storage.

The second option is used when the routine will not fit into electro-

static storage. It is also useful if the routine is to be used repeatedly.

The SAIC accepts instructions in the following format:

operation code address connective

O 02 A N C

l

1e operation code is he standard Mistic sexadecimal operation code. A

is a regional designator. The alphabetic characters may be used as regional

designators. If the address of the instruction does not pertain to an

electrostatic memory location or if a pure address is desired, A may be

left vacant. N is a decimal number composed of one or more digits. If

N is a negative number, it is preceded by a minus sign. When a regional

designator is used, the value of N is added to the assigned value of A.

The connective C is either a carriage return (CR) or a period. The

carriage return is used if the next piece of information is of the same

kind as the last accepted. The period is used when the next piece of

information on tape is a directive.

The SAIC uses alphabetical operation codes as directives. These

directives are orders punched on tape which direct the input operation.

The directives are as follows:

1. Dictionary. The dictionary is a set of memory locations in which

the values of the regional designators are stored.

2. Store Orders. This directive will store the succeeding informa-

tion on tape to be stored as order pairs beginning at the specified L

memory location N.
i

3. Store Fractions. This directive causes information following

it on tape to be stored as fractions beginning at the Specified address

N.

A. Store Integers. This directive operates in the same way as the

store fraction directive except that integers are stored.

5. gump, The jump directive informs the SAIC that the next piece

of information on tape is an instruction and causes control to be trans-

ferred to that instruction. This directive is usually used to transfer

control from the SAIC to the routine just assembled in memory.

6. Jump to DOI. This directive transfers control to the DOI. It

is ordinarily used to input DOI subroutines.

7. BEESB' When one desires the routine to be converted and punched

on an output tape in machine language, the punch directive must appear as

the first item on tape.

8. §tore, This directive is used to cause information to be stored

rather than converted and punched. The store instruction is needed only

if the routine has already been set to the punch mode of operation.

ACKNOWLEDGMENTS

‘

The author wishes to express his gratitude to Professor Gerard P.

Weeg for his understanding and guidance throughout the writing of this

paper.

ii

THE SYMBOLIC ADDRESS INPUT CONVERTER

By

BRUCE IERBERT BAIU‘IES

A THESIS

Submitted to the College of Science and Arts

Michigan State University of Agriculture and

Applied Science in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE

Department of Mathematics

1957

. '2 3

g3."

(
1
,
Q
t

I. INTRODUCTION

Michigan State University has recently completed the construction

of the Mistic, a stored program digital computer, patterned after the

Illiac of the University of Illinois. It operates on binary numbers,

directed by orders stored two to a word in the memory of the computer.

The memory is capable of holding 102M forty binary digit (bit) words,

roughly the equivalent of 12 decimal digits. An order pair has the

following format: (1)

8 bits 2 bits 10 bits 8 bits 2 bits 10 bits

[operation codej waste 1 address L operation code I waste I addresfl

The eight bits used for the instruction allow for the use of a two

sexadecimal digit operation code. Since there are 102% memory locations,

. ten binary bits are needed to assign a numerical address to each. The

remaining two bits are not used. Thus, each instruction has an eight

bit operation code telling the computer which Operation to perform and a

ten bit address telling on which number to perform the operation. Some

operations do not need an address on which to operate. In these cases

the address is used to amplify the operation code, giving information

such as how many times the operation is to be performed.

Instructions may be input into the machine in the form described

above. However, this method possesses several disadvantages. It is,

therefore, advantageous to use an input routine which will accept instruc-

tions and numbers in a form more amenable to programming and which will

convert them into machine form. There have been a number of such routines

.
-
—
—
.
v

‘
<
s
M
I
-
—
n
.
.
.
!
7

A

written, the most notable being the Decimal Order Input, which is described

later in this paper. Although the Decimal Order Input has reduced program-

ming difficulties, it possesses several difficulties. The present paper

presents an input routine which attempts to remove certain of these dif-

ficulties. It is called the Symbolic Address Input Converter (SAIC).

I
.
‘
n
.
_
‘
-
_
»
n
.
r
—
_

I

II. THE SYMBOLIC ADDRESS INPUT CONVERTER

A. Description of the SAIC

The SAIC is a symbolic address conversion input routine. It has the

following modes of operation:

1. The SAIC will interpret the pseudo coded routine and store it in

memory.

2. The pseudo coded routine will be interpreted and punched on tape.

A combination of the two modes of operation may be employed if

desired.

The first mode of operation is limited to routines which will, to-

gether with the SAIC, fit into the 1021; words of electrostatic storage.

The second option is used when the routine will not fit into electro-

static storage. It is also useful if the routine, though short enough

to fit in memory, is to be used repeatedly.

The SAIC aeoepts instructions in the following format:

operation code address connective

0 O A N C

l 2

The operation code is the standard Mistic sexadecimal operation code. A

is a regional designator. The alphabetic characters A through Z may be

used as regional designators. If the address of the instruction does

not pertain to an electrostatic memory location or if a pure address is

desired, A.may be left vacant. N is a decimal number composed of one,

two, three, or more decimal digits. If N is a negative number, it is

preceded by a minus sign. When a regional designator is used, the value

of N is added to the assigned value of A.

The connective C is either a carriage return (CR) or a period. The

carriage return informs the SAIC that the instruction is complete and

that the next piece of information on tape is of the same kind as the last

word accepted. The carriage return is not printed on the typed copy but

causes the carriage of the page printer to return to the left margin.

Thus, as the tape is run through the page printer, the instructions are

listed in a column. If a period is used, the next piece of information

on tape is a directive. The period is always followed by a carriage

return.

One of the outstanding features of the SAIC is its use of alphabeti-

cal characters as directives. These directives are orders punched on

tape which direct the input operation. The directives are as follows:

1. Dictionary. The dictionary is a set of memory locations in

which the values of the regional designators are stored. This direc-

tive is used by punching DY on tape followed by a CR. After this is

the list of regional designators, each one followed by its numerical

value and a CR. The last value is followed by a period and a CR. To

give an illustration, if the letters A, B, P, Q, and T are to be used

as regional designators and assigned the following values:

A = 200

B = 1H5

P=5

Q=26

T=372

then the input tape would appear as

‘
-
.
-
_
—
_
-
.
'

‘
-

DYCR

A2OOCR

BihSCR

PSCR

Q26CR

T37CR

2. Store Orders. The symbol for this directive is 80. It appears

on tape as SONCR. In this case N always contains a regional designator.

This directive will store the succeeding information on tape to be stored

as order pairs beginning at the specified memory location N. The first

order after this directive is always a left hand order. There need not

be an even number of instructions between successive store order direc-

tives. For example, if it is desired to store a routine at A-7, the

following would appear on tape:

SOA-YCR

26A3CR

LAB-2GB

SSOCR

3. Store Fractions. This directive appears on tape as SFNCR fol-

lowed by the list of fractions. This directive causes information follow-

ing it on tape to be stored as fractions beginning at the specified

address N. As in the preceding case, N always contains a regional

designator.

A. Store Integers. This directive appears on tape as SINCR followed

by the list of integers. This directive Operates in the same fashion as

the store fraction directive except that integers are stored. As before,

the address contains a regional designator.

5. Jump. This will appear on tape as JP followed by the instruction

to be obeyed. The jump directive informs the SAIC that the next piece of

information on tape is an instruction and causes control to be transferred

to that instruction. This directive is usually used to transfer control

from the SAIC to the routine just assembled in memory. This directive

appears on tape, for example, as JP2ANCR.

6. Jump to DOI.(2) The symbol for this directive is JD followed

by a cR. This directive transfers control to the DOI. It is ordinarily

used to input DOI subroutines. This directive is needed in order to

take full advantage of the computer library. ; L-

7. 32222, When one desires the routine to be converted and punched

on an output tape in machine language, the punch directive must appear as .

the first item on tape. The symbol for punch is PUCR.

8. §39£g, This directive is used to cause information to be stored

rather than converted and punched. The store instruction is needed only

if the routine has already been set to the punch mode of operation. The

symbol for store is STCR.

B. Restrictions in Using the SAIC

The routine is punched on tape in such a way that a printed teletype

copy will appear in the same form that the program.appears on the program-

mer's written COpy. For this reason, all letter shifts and number shifts

must be punched. If they are neglected, it is an error; and the SAIC will

either make an improper entry, or in some cases, will stop and punch ER on

tape, indicating an error. This characteristic of the SAIC is a help to

the programmer in checking the routine. By comparing the printed copy

with the written copy, one can note many errors such as missed letters or

number shifts.

Some of the places where a letter or number shift must be punched

are before and after the regional designators and before all directives.

The operation code is always punched in number shift; therefore, K and S

will appear on tape as + and - respectively.

If the programmer makes a mistake in punching the tape, he will

retype a space (all five holes punched) and continue with the routine.

There are three types of addresses: pure addresses, symbolic

addresses with N positive, and symbolic addresses with N negative. A

few reasonable restrictions must be placed on the addresses. Since all

addresses are positive, there is no need for negative addresses. All

pure addresses, therefore, must be positive and lie between zero and

lO23._ If N is negative, its numerical value must not exceed the value

of the regional designator. If N is positive, N plus the value of the

regional designator should normally not exceed lO23. For example, if A

has the assigned value 200, then N should have the range -200$ N S 823.

If the address is greater than 1023, it will be interpreted modulo 102h.

In all cases N must be at least one digit. If the pure address zero is

desired, 0 is written. If the address is the value of the regional desig-

nator, A0 is used.

As was previously noted, two types of constants may be input, integers

and fractions. Since the Mistic is a fractional machine, integers will not

39.
fit in memory without scaling. The scaling for integers is 2- Any in-

teger n will be input as n-2’39. All integers will be followed by a CR

except the last, which is followed by a period and a CR. If the integer is

negative, it will be preceded by a minus sign; if positive, no sign is used.

.
‘
,

_
.
_
fl
-
_
_
.
-

When writing fractions for machine input, no decimal point is used.

Terminal zeros may be included but are not needed. However, all zeros

preceding the first non-zero digit must be written. As with integers,

all fractions are terminated by a CR or a period and CR. When inputting

negative fractions, the same notation is used as with integers, a minus

sign preceding the fraction.

C. Advantages of the SAIC

The Computer Laboratory at Michigan State University, like many

university installations but unlike most industrial installations, does

not employ a staff of professional programmers. Each computer user will

be responsible for his own programs. It was primarily for such individ-

uals, not the professional programmer, that the SAIC was written. Since

the SAIC is easier to use than any previous input routine, the time re-

quired to learn to program should be lessened. There should also be a

savings in time after one has learned to program. The time saved in

coding will not be so appreciable as the time that may be saved in check-

ing (finding and correcting errors). There are two reasons for this:

(I) The format is natural and easy to use. (2) The printed copy is

easier to read and to examine for errors.

The most generally used input routine until now has been the DOI.

The DOI, however, has four major defects:

1. Its program form is not natural.

2. Modification of address is difficult and in many cases impossible.

3. The input of constants is so difficult that the use of a constant

input routine is almost essential.

.
f
‘

A
a
-
.
~
‘
~
_
.
.
-
-
-
.

If:

A. Additions to a program are not easy to make.

The DOI instructions have the following format: th2 N C. The XlX2

is the standard Mistic code. The N is the address and C is a connective.

The connectives used for address modification are F, L, and S. F is used

if the address is pure. When L is used, the address where the first in-

struction is stored is added to the value of N. The symbol S is followed

by a sexadecimal number m, m = 3, A,..., L. When this symbol is used, N l-

is added to the value stored at memory location m. This method will

accomplish most address modifications desired. However, it is difficult

to use, especially for an inexperienced programmer.

The S symbol can be used almost exactly as the Dictionary. The

format is one of the major objections. It is difficult to learn how to

obtain the maximum flexibility from the DOI. Not only training but con-

siderable practice and experience are needed to learn the tricks and

methods used for address modification with the DOI. This is not the case

with the SAIC. ne use of the symbolic address makes address modification

straightforward and simple to accomplish.

Aside from the unnatural form of the DOI, there are many address

modifications that cannot be accomplished with the DOI. Often after one

has nearly completed his routine, he notices that it is necessary to adi

instructions to the beginning. Since N is added to the address of the

first instruction, all addresses using the L connective must be changed

accordingly. This not only involves more time in completing the finished

program, but it is a common source of errors.

It is frequently desirable to store, in memory, an instruction that

is not an Operating part Of the routine, but which is used to reset an

lO

instruction that has been changed in the performance of the routine. This

is usually done with an Sm connective. In this case the L connective may

not be used. The reason for this is that the address of the first instruc-

tion stored in memory will not be the same. With the use of the dictionary,

this difficulty has been eliminated, since the symbolic addresses are de-

pendent only on the dictionary which is constant throughout the entire

routine.

When using the DOI, constants appear on tape as order pairs. To input

a positive integer N, O (N S 239-1, the left h nd order would appear as

00 F and the right hand order as 00 NF. The address in an instruction in

the DOI format is always positive; therefore, it is necessary to devise a

method by which negative integers N may be input into the computer. inis

is accomplished by inputting an order pair which is the sum of LLhO95FLLhO96F

and OOFOONF. This will input the two's complement of the integer, the

machine representation of a negative number.

This, obviously, is not as easy as writing the integer and following

it with a carriage return, which is the form used by the SAIC. With the

SAIC, all integers are input in their standard form. It is not necessary

to use an operation code or to find the complement of a number to input

its negative, nor to write an integer as an order pair.

The input of fractkans is further complicated by a prOblem of scaling.

Fractions are input into the computer by use of the J connective. When

fraction is followed by J, the address is multiplied by 239 x lO-le. In

order that all fractions have the same scaling (20), it is imperative that

l2
all fractions have a scaling of lO . Thus, when inputting fractions with

the DOI, one not only has to concern himself with operation codes and

calculating the complement of numbers, but one is also bothered with a

problem of scaling. These problems are not encountered when inputting

fractions with the SAIC.

For most computer installations, the Decimal Order Input might be a

satisfactory input routine. Wherever such is the case, the SAIC will be

an improvement. The Symbolic Address Input Converter, with its natural

format, straightforward methods of address modification, and its simple

form of constant input, should lend itself to ease of programming.

III. THE SAIC PROGRAM

The Symbolic Address Input Converter is composed of seven major sub-

routines: the directive determinater, the dictionary, store order routine,

store integer and fraction routine, jump, punch, and store.

The directive determinater does primarily just what its name implies.

It inputs the alphabetical directives, determines which directive it is,

and transfers control to the proper subroutine.

When control is transferred to the directive determinater, it will

first input one four bit character. This will be the P of punch, the Y

of dictionary, the J of the two jump directives, or S of the store direc-

tives. The values of the four possible characters are 0, 6, ll, and 13

for P, Y, S, and J respectively. Thus, if the negative of the character

is brought into the accumulator, P will be the only one whose negative is

greater than or equal to zero. A Sign check can be used here to determine

P. The next step is to add six. This will Change the accumulator to zero,

if the character was Y. Again a sign test will determine Y.

The next step is to input one five bit character. All five hole inputs

must be checked for a Space which is used to cover an error in typing. At

this point in the routine, D (a five hole character), P (o), T (5), I (8),

O (9), or F (lh) will be in the accumulator. When a five hole character is

input, the fifth binary bit is placed in the sign position; therefore, we

may use a sign test to determine D. If the character is not D, its negative

is sent to the accumulator. Again a Sign test will determine P. The next

step is to add six to the accumulator. This will make T positive. If the

12

13

character is not T, then -2, -3, or -8 will be in the accumulator. Now

two may be added to check for I and then 1 may be added to determine 0.

If the accumulator is still negative, then the character input was F. When

a character is determined, control is transferred to the proper subroutine.

The basic subroutine is the dictionary. It is in this that the sym-

bolic addresses are assembled. The dictionary subroutine also has the

function of storing the value of the regional designator.

Before the symbolic addresses can be assembled, the value of the

regional designator must be stored in memory. This is accomplished by

inputting the regional designator and checking to determine if it is a

five hole character. The reason for determining whether or not the char-

acter has a fifth hole is that the regional designators are stored two to

a memory location in order to save Space. The addresses will be assembled

in the right hand address location. If the character has a fifth hole,

preparation will have to be made to shift the addresses to the left hand

address position. The last four bits of the character are added to the

address of the instruction which sends to memory the value of the regional

designator.

Many times during the routine, letter shifts or number shifts will

be needed on the tape so that the printed copy will appear in the correct

form. Some of these are of special significance to the SAIC; others will

be checked to see if they are present. If they are not present, ER is

punched on tape and the machine will stop. Such a check is performed here.

At this point the routine is prepared to assemble the address. As

each character is input, it is stored in memory. The address storage,

where the partial addresses are stored, is multiplied by ten and the new

W
.

‘
“
“
M
y

"
‘
r
.
"

p
r

lh

digit is added. The new partial address is then stored in the address

storage. The partial address is multiplied by ten by shifting left two

places. This multiplies it by four. Adding the partial address to this

will put five times the partial address in the accumulator. A left shift

of one bit will multiply it by two, leaving ten times the partial address

in the accumulator. This process is continued until a carriage return or

period is input. When a carriage return is input, the memory location

where the regional designator is to be stored is added to the address.

This memory location has previously been set to zero. The address is

now sent to tis proper place in memory. If the address is the value of

a five bit character, it is shifted to the left hand address position

before the memory location is added. The dictionary routine will now

prepare to input the next regional designator. When a period is en-

countered, the address is stored and control is transferred to the

directive‘determinater.

The symbolic addresses are assembled in almost the same way as the

regional values are stored. However, the memory locations where the

regional designators are stored are no longer zero, but contain the

values of the regional designators. When the two are added, the correct

address will be in the accumulator. Instead of sending the address back

to memory, control is transferred to the subroutine which requires this

address.

Pure addresses are assembled in the same way except that control is

transferred before the regional designators are added. Negative addresses

are handled by sending the negative of the address to the accumulator be-

fore the regional designators are added.

15

The store order routine has the function of storing the order pair

in memory. Before it can do this, it must pick up the address where the

instructions are to be stored and send it to the store instruction. To

do this, it first prepares the dictionary to jump back to the store order

routine. Then control is transferred to the dictionary, the symbolic

address is assembled, and control is transferred back to the store order

routine. The store order routine now transfers this address to the store I.

instruction. If the regional designator of the symbolic address is a 1

five hole character, the address is shifted to the right hand address

before it is transferred to the store instruction. {

The order pairs are assembled in the order storage before they are

transferred into their proper place in memory. The first step in as-

sembling the orders is to bring the order storage to the accumulator.

If the instruction to be input is a left hand instruction, the order

storage is zero. ,Otherwise, the order storage contains the left hand

instructions in the right hand position.

The operation code is now input, using a four bit input and the

accumulator is shifted left twelve bits. This will put the operation

code in its proper position; and if a left hand instruction was in the

order storage, it will be shifted to the left hand position.

The next step is to assemble the address and transfer it to the

order storage. This is done in the same way that the address was sent

to the store instruction.

The address of the instructions is not necessarily symbolic. The

pure addresses are distinguished from the symbolic addresses by the

letter shift. Since the Operation code is in number shift, a letter

l6

shift must precede all symbolic addresses. If the letter shift is not

present, the address is assumed to be pure. With the pure address the

dictionary is set to transfer control back to the store order routine

before the regional designator is added.

At this point it must be determined whether the instruction is a

left or right hand instruction. A.left-right switch is used for this

purpose. The left-right switch is originally set to the left. It is

changed to right and back to left as the instructions are assembled.

If a left hand instruction has just been input, it is left in the

right hand side of the order storage. The left-right switch is set to

right and control is transferred to input the next instruction. After

a right hand instruction is assembled, the order storage containing the

order pair is sent to its proper place in memory. One is then to be

added to the address of the store instruction. The left-right switch is

set to the left and control is transferred to input the next instruction.

When a period is encountered, indicating that the last instruction

has been input, it must be determined whether the last instruction was

a left or right hand instruction. This is done by the use of the left-

right switch. If the left-right switch is set for left, the last instruc-

tion of a right hand instruction and all the order pairs were entered

into memory. This is not the case if the last instruction was a left

hand instruction. In this case the left hand instruction must be shifted

to the left hand position in the order pair and transferred to its proper

place in memory.

The purpose of the integer-fraction routine is to assemble integers

and fractions and store them in their proper place in memory. The address

W
i
t
.
“

'
~
“

-
m

‘
r
‘
.
’

l
.
'
;
:
‘
v

17

where the first constant is to be stored is assembled in a similar way as

is the store order routine and is sent to the store instruction in this

routine.

The integers are input in the following way: The first character

is input and checked to see if it is a minus sign. If it is a minus sign,

the routine is set to store its negative. Otherwise, it is stored in

 integer storage. The next character is then brought in and checked to

see if it is a carriage return or period. If it is not a carriage return

or period, it is stored and the integer storage is multiplied by ten and

”
‘
m
a
q
—
u
-
_
fi
‘
1
‘
m
y
“
!

.
r

‘
‘

the new character is added. This procedure is continued until a carriage

return or period is input.

When a carriage return is input, the integer storage is sent to the

accumulator. The integer is then sent to memory. One is added to the

store instruction and control is transferred back to the beginning to

input the next constant. If a period follows the integer, the same pro-

cedure is followed as above eXCept that control is transferred to the

directive determinater.

The assembly of fractions follows closely that of integers. The

major difference is that when the constant or its negative is sent to the

accumulator, it is divided by a power of lO,x 2‘39. The power of ten is

equal to the number of decimal digits in the constant. This changes it

to the appropriate scaling (20). This is accomplished by adding one to

the address of the divide instruction after each digit is input. The

powers of ten are stored in ascending order beginning at the original

address of the divide instruction. Thus, a fraction containing n digits

is divided by lOn x 2‘39, leaving a scaling of 20.

18

The jump routine is the shortest routine. ts purpose is to transfer

control to an instruction. It does this by preparing the store order

routine to transfer control to the right hand order of the order storage

after the order is input and assembled. After making this change, control

is transferred to the store order routine.

The purpose Of the punch routine is to set the routines previously

described to the punch mode Of Operation. When the SAIC is in punch mode,

the routine is punched on tape in a format to be input by a special input

routine. The following format is used for the input tape: N1 000 00

X1X2X3. When this appears on tape, the succeeding information is stored

in memory beginning at address X1X2X3. This address is a sexadecimal

number. The order format is 0102 XlX2X3. The 0102 is the standard Mistic

operation code and XlX2X3 is the sexadecimal address. Constants appear

on tape in their standard sexadecimal form. To transfer control to a

specific'instruction, N2 000 followed by the instruction is punched on

tape.

In order to produce this tape, it is necessary to make five major

changes in the SAIC. These are as follows:

l. When the address where information is to be stored is assembled,

it is not sent to the store instruction. Instead, it is sent to a memory

location containing Nl as the left hand Operation code. The contents of

this memory location are then punched on tape.

2. The store instruction in the store order routine is set to

punch the order pair on tape.

3. The store instruction in the integer-fraction routine is set to

punch the constants on tape.

‘
-
-
a
*
M
*
“
~
*
;
l
l
l
l
v

;
r

19

h. The jump routine is changed in such a way that it will set the

store order routine to send the instruction to a memory location having

N2 as its left hand Operation code. This order pair is then punched on

tape.

5. The Decimal Order Input must be set to punch the information in

the same format as previOusly described.

The store routine has the function Of setting the SAIC back tO the

store mode of Operation. It does this by replacing the instructions that

were changed by the punch routine.

In order to Obtain the desired results in as few memory locations as

possible, it was necessary to require that each subroutine perform as

many distinct functions as possible. For this reason, many instructions

in the SAIC are changed several times. As one is reading through the SAIC

and trying to understand exactly how it Operates, one must keep a close

record as to what instruction is presently stored in each memory location

that is changed. If one will do this and keep continually in mind the

rough outline Of how the SAIC accomplishes its various functions, he

should be able to follow the SAIC with a minimum amount of difficulty.

LOCATION

762

763

76h

765

766

767

768

769

770

771

ORDER

LS 936fi"

no 89SF

L5 946F

1+0 8951:

L5 783F-

uo 899F

L5 763F

to 879F

L5 78hF

1+0 89831

LS 762§7

ho 907F

L5 782F

ho 92hF

L5 78lF 1+0 9251';

LS 780F

hO 827F

LS 779F

no 999F

20

IV. APPENDIX

NOTES

Stored order pairs i
' 1

1

a

1

Reset store order routine

Reset integer-fraction routine

Reset jump routine

LOCATION

772

773

77k

775

776

777

778

779

780

781

782

783

ORDER

L5 778F

ho

L5

to

L5

ho

26

26

ho

22

A2

00

he

Lh

SS

26

L5

ho

F5

ho

85

to

F5

#0

lmBF

777F

lOl9F

776F

 100134

831F

831F

001F-1

OOOF

lOlOF

O39F

lOOlF

1016F

OOOF

lOth

931F

895F

924F

92hF

OOOF

OOOF

898F 898F

21

NOTES

Reset D.O.I.

Jump to directive determinater

Stored order pairs

J
2
"
.
“

1
‘
.
~
‘
\
”
x
?

I

.
“
‘
9
‘

"
~

‘
.
w
-

a
‘
y
-
s
f
a
:
L
-
f
"

i

LOCATION

78h

785

786

787

788

789

790

791

792

793

79+

795

ORDER

22 888F

ho OOOF

L5 786]?

#0 895F

1+2 827F

22 798F_i

L5 785i"q

no 907F

L5 826E

1+0 8793;

L5 82in?-

l+o 898F

L5 823F

1+0 899F_j

L5 822F-

1+0 921“?

L5 82lF no 9253;

L5 82OF

1+0 8283'

L5 8183"1

no 999F

L5 817}?

 ho lOlBF

22

NOTES

Prepare to punch store address on

tape

Set store order routine to punch

Set integer-fraction routine to

punch

Set jump routine to punch N2 000

0102 x1X2X3

Set D.O.I. tO punch

LOCATION

796

797

798

799

800

801

802

803

80%

805

806

807

ORDER

LS 815F

ho lOl9F

L5 aqu

#0 lOOIF .J

26 83lF

L5 827F

82 nor

26 9lOF

L5 827F

82 AGE

26 89uF

5o 8l3F

J0 9SOF

S5 00F

Lh 8l2F

82 hos

26 83lF

S5 OOOF

no 002F

Lh 827E

82 hOF

26 lO2OF

ho OOlF

SO 813R-l

23

NOTES

Jump to directive determinater I

N1 000 01021X1X2X3 E71

Punch on tape L

Jump to integer-fraction routine i '

Add N1 000

Punch on tape

Jump to store order routine

OO°°°Oll°°'l

Instruction to Q

Q to A

Add N2 0 0,0
l 2 3

Punch on tape

Jump to directive determinater

Address to A

Address to 002

Add Nl 010203 to A

Punch on tape

Jump to D.O.I.

Instructions to 001

LOCATION

808

809

810.

811

812

813

81h

815

816

817

818

819

L5 OOOF

82 uOF

26 lO2OF

26 102OF

N2 OOOR-l

OO OOOF

OO OOOF

11 AO9SF

22 807F

22 OOlF

36 810F

OO O39F

lL 3O5uF

J3 OOlF

A2 lOOlF

LO 816F

22 8th

22 BOAF

A2 95OF

22 801F

2h

NOTES

Instruction to Q

Instruction to A

Punch on tape

Jump to directive determinater

Order pair to A

Punch on tape

Jump to D.O.I.

Stored order pairs

1
5
:
4
"
—

0
?

'

LOCATION

820

821

822

823

82h

825

826

827

828

829

830

831

. ho 867F

ORDER

L5 819F

no 895E

26 926F

26 926F

S5 00F

82 uOF

26 9OOF

26 9OO§J

22 8881-?-

82 uOF

ho 827F

26 800E

L5 825E

ho 895F

N1 OOOF

00 000 [W

L5 93lF

#0 895 I
L
L
—
J

L5 9h5F

l
_
_
J

22 888F

22 888F

L
_
_
_
_
_
J

81 AF

#0 962F

25

NOTES

Stored order pairs

Set store order routine for jump

Set dictionary for store order

Jump

Jump to store order routine

Input one A hole character

Store character

fi
—

LOCATION

832

833

83A

835

836

837

838

839

8h0

8A1

8&2

8A3

ORDER

Ll 962F

36 787F

LA 970F

32 8A3F

91 AF

32 836E

LO 969F

36 83k

26 999F

ho 962F

L1 962F

36 828F

Lu 97OF

36 76uF

Lh'968F

32 903F

LA 968F

36 878F

26 9O5F

L5 953F

ho 86hF

26 861F

L5 967F

ho 863E

26

Minus

If P,

Add 6

If positive, the character is Y

Input

Is it

Is it

If D,

Store

Minus

If P,

Add 6

Is it

Add 2

Is it

Add 2

Is it

Is it

NOTES

character to A

jump to punch

one 5 hole character

negative (D or space)?

a space?

jump to D.O.I.

character

character to A

jump to jump routine

a T?

an I?

an 0?

an F?

Set 86h for negative address

Jump to input address

Set first period jump

LOCATION

8AA

8A5

8A6

847

8A8

8A9

850

851

852

853

85A

855

ORDER

L5 966F

A0 868F

L5 965E

A0 867F

91 AF

36 929F

LO 969F

36 8A6F

LS 963F

A0 86AF

A1 960F

L5 959F

A0 866F

A2 867F

L5 958F

A0 865F

91,AF

32 857F

LO 969F

36 852F

LA 96AF

AO 962F

L5 956F

A0 865E

27

NOTES

Set second period jump

Set store order jump

Input one character

Is it a five hole character?

Is it a space?

Set for positive address

Set dictionary storage

Set five hole jump

Input one 5 hole character

Does it have a fifth hole?

Is it a space?

Restore last four bits of character

Store character

Set five hole jumps

LOCATION

856

857

858

859

860

861

862

863

86A

865

866

867

ORDER

L5 955F

AO 89AF

L5 962F

LA 866F

A0 866F

A2 867F

91 AF

36 929F

L0 969F

36 859E

91 AF

32 868E

L0 969F

36 861E

LA 95AF

36 87AF

L5 96OF

26 865F

22 866F

J0 9S7F

OO 20F

LA 983R

22 867F

A0 983F

28

NOTES

Character to A

Add character to dictionary instruction

Send address to store instruction

Input one character (N.S.)

Does it have a fifth hole?

Is it a space?

Input one character

Does it have a fifth hole?

Is it a space?

Is it a period? If not, it is a

carriage return

Address to A

For use with a non-symbolic address

Five hole jump

Set Q to zero

Left shift 20 bits

Add dictionary

Store order jump

Store in dictionary

LOCATION

868

869

870

871

872

873

87A

875

876

877

878

879

ORDER

26 8A6F

L0 961F

32 8AiF

LA 961F

AO 962F

LS 96oF

00 2F

LA 96OF

00 IF

LA 962F-

A0 960F

26 861F

LS 952F

AO 868F

26 86AF

L5 9SlF

no 888F]

26 86AF

26 878F

26 878F

L5 9A8F

AO 888F

L5 9A6F

A0 895F

NOTES

Jump to input next regional designators

Is it a minus sign?

Restore character

Store character

Partial address to A

Multiply by ten

Add new character

Store in address storage

Jump to input next character

Set period jump

Jump to address assembly

Set period jump

Jump to address assembly

Reset period jump

Set tO send address to store instruction

‘
l
fl
fi
’
“
“
"
"
“
”
fi
fi
fi
l
f

'14

LOCATION

880

882

883

88A

885

886

887

888

889

890

891

ORDER

L5 9ASF

AO 867F

26 8A8F

AO 962F

Ll 896E

LA 9AAF

36 831F

L5 962F

OO 20F

22 898F

L5 9h3F

A0 895F

L5 9A2F

AO 863F

L5 9AAF

AO 896F

Ai 95OF

L5 950F

80 8F

00 12F

AO 95OF

91 AF

30

NOTES

Set to store order jump

Jump to assemble address

Store instruction

Left-right switch to A

Add left switch

If positive, jump to directive determinater

Instruction to A

Left shift 20 bits

Jump to store in memory

Set to form instruction

Set period jump

Set left-right switch

Set word storage to zero

Set five hole jump

Word storage to A

Input eight bits (Operation code)

Left shift twelve bits

Store in word storage

Input one character

w
a
r
m
“

*
"
E
R
S
E
V

i

LOCATION

892

893

89A

895

896

897

898

899

900

901

902

903

ORDER

32 9O1F

LO 969F

32 89lF

26 8A8F

26 895F

10 20F

A2 95OF

L5 950F

22 896F

AO 950E

L5 9A1F

AO 896F

22 888F

A0 (OOO)F

F5 898F

AO 898F

L5 9AAF

AO 896F

26 888F

A0 960E

L5 9AOF

AO 86AF

26 861F

L5 939F 1

31

NOTES

Does it have a fifth hole?

Is it a space?

Jump to address assembly

Five hole jump

Right shift 20 bits

Send address tO word storage

Word storage to A

Left-right switch

Instruction to word storage

Set left-right switch to right

Jump to input next instruction

Store in memory

Add one to store address

Set left-right switch to left

Jump to input next instruction

Store character

Set for pure address

Jump to address assembly

LOCATION

90A

905

906

907

908

909

910

911

912

913

91A

915

A0 923F]

26 906F

L5 938F

AO 923F

L5 937F

AO 927F

LS 936F

AO 895F

26 880F

L5 93SF

AO 927F

22 922F

L5 93AF

A0 922F

81 AF

LO 961F

32 927F

LA 961F

A0 933F

91 AF

36 917F

LO 969F

32 913F

LA 95AR]

32

NOTES

Set integer-fraction switch to integer

Set to input routine

Set integer-fraction switch tO fraction

Set integer jump

Set to send address to store instruction

Jump to pick up store address

Set period jump

Jump to store last integer

Set for positive integer

Input one character

Is it a minus sign?

Restore character

Send to integer storage

Does it have a fifth hole?

Is it a space?

LOCATION

916

917

918

919

920

922

923

92A

925

926

927

ORDER

32 908F__l

22 922F

AO 962F

15 933F

J0 957F

00 2F

LA 933F

 00 1F

AA 962F

1+0 933F

F5 923F

AO 923F

22 913F

15 933F

22 923F

66 971F

85 F

AO (OOO)F

F5 92AF

A0 92AF

LS 939F

A2 923F

26 9lOF

L5 93% _|

33

NOTES

Is it a period or carriage return?

If period, jump

Jump to store integer

Store character

Integer storage to A

Set Q tO zero 1

Multiply by ten

Add new character

Store in integer storage

Add one to divide instruction

Jump to input next character

Integer to A

Integer-fraction switch

Divide by a power of ten

Fraction to A

Store in memory

Add one to store instruction

Reset divide instruction

Jump to pick up next integer

LOCATION

928

929

930

931

932

933

931+

935

936

937

938

939

ORDER

A0 9223'

22 911F

92 259F

92 19AF

92 258E

OF F

A2 950E

22 950E

22 913F

Ll 933F

00 F

00 F

22 913F

L5 933F

26 831F

L5 932F

A2 92AF

26 910F

26 910F

L5 932F

22 923F

66 971E

22 92AF

66 971F

3A

NOTES

Set for negative integer

Jump to input next character

Punch letter shift

Punch E

Punch R

Stop 1

-
~
a
s
l

Integer storage

LOCATION

9A0

9A1

9A2

943

9AA

9A5

9A6

9A7

9A8

9A9

950

951

OmmR

L5 960F

26 895F

22 898

A0 95OF

LA 95AF

32 875F

A2 950E

L5 950F

22 896F

A0 95OF

26 89AF

A0 983F

A2 898F

26 885F

26 895F

1O 20F

A1 95OF

L5 9A7F

82 20F

26 885F

00 F

’00 F

A1 950F

22 881F

35

NOTES

Word storage

LOCATION

952

953

95A

955

956

957

958

959

960

961

962

963

ORDER

26 831F

» LO 961F

Ll 96OF

26 865E

OO OOOF

OO OO5F

22 89AF

10 20F

22 865F

J0 957F

OO OOOF

OO OOOF

22 866F

J0 957F

OO 20F

LA 983F

00 F

00 F

00 OOOF

OO O11F

00 F

00 F

L5 96OF

26 865F

36

Address storage

Storage

NOTES

1
.
5

LOCATION

96A

965

966

967

968

969

970

971 - 982

983 - 998

999 - 1023

ORDER

OO OOOF

OO 015F

22 867F

AO 983F

26 8A6F

LO 961F

LA 95AF

36 87AF

OO OOOF

OO OO2F

80 OOOF

OO O15F

OO OOOF

OO OO6F

37

NOTES

Powers of ten

Dictionary

D.O.I.

V. REFERENCES

Gill, 8., et a1. Illiac Programming A Guide to the Preparation of

Problems for Solution by the University of Illinois Digital Computer.

Digital Computer Laboratory, Graduate College, University Of Illinois,

Urbana, Illinois, April 1, 1955.

Wheeler, D. J. University Of Illinois Digital Computer Library

Routine X1-18, Decimal Order Input. Urbana, Illinois, December 2,

195 3. (Mimeographed)

38

§

mRmLY.
h

SREwNUETAT
“
?
-IIHIWIW

