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In the water-cooled vapor-compression refrigeration unit the main

Operational costs, aside from labor, are for power and cooling water.

The relationship between these two is such that, for any given

conditions, the amount of power needed would be inversely proportional

to the amount Of cooling-water used. The more water used, the lower

would be the condensing temperature and consequently less power for

compression would he required, if water is expensive and the amount of

water used is small the condensing temperature would be high and

obviously more power would be needed for the compression of the

refrigerant. If one thinks in terms Of the cost of purchasing the

water and power, the above relationship would immediately suggest that

there must be some Optimum condition at which the total cost Of Operation

is a minimum. That is, given the cost of water and the cost Of power,

a water-cooled refrigeration unit Operating at some suction temperature

would have to Operate at a certain condensing temperature which is the

most economical for these conditions. The amount of water and the

amount of power to be consumed by this unit must balance each other so

that the resulting total cost is a minimum.

The paper prOposeSa completely analytical solution for the Optimum

condensing temperature taking into consideration all the variables

involved. In the derivation of the equations two main assumptions were

made: 1) compression is isentropic, 2) the heat to be removed by the

condenser is the refrigeration-effect plus the theoretical energy added

to the refrigerant by compression. An important part in the derivations



is the proof that, for any suction temperature, the relationship

between the condensing temperature and the compression required is

linear. The solution proposed is in terms of temperatures rather than

pressures and so it is applicable to more than a single refrigerant.

It is shown that the refrigerant used has very little effect on the

sOlution for the optimum condensing temperature. A comparison of

the solution prOpOsed with different methods and solutions for the

same problem by various authors shows its advantages and simplicity..

In addition the paper also presents a nomographic solution for

the Optimum condensing temperature. The nomograph is simple to use

and can be used for any water-cooled compression refrigeration unit

using any of the common commercial refrigerants. This nomograph is

particularly convenient for use by Operators of refrigeration

equipment who do not have a technical education.
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I. INTRODUCTION

The cost of Operation of any industrial piece of equipment is of

prime importance to the engineer, and the problem of achieving Optimum

Operating conditions would usually require very careful analysis of en-

gineering economics. Often, the actual design of equipment must be

directly tied to the initial cost and to the cost of Operation during

the useful life of the equipment. The cost of operation itself is

usually a function of several variables which have to be adjusted so as

to result in minimum eXpenses.

In the water-cooled refrigeration units the main Operational

costs, aside from labor, are for power and cooling water. The relation-

ship between these two is such that, for any given conditions, the amount

of power needed would be inversely prOportional to the amount of cooling

water used. The more water used, the lower would be the condensing

temperature and consequently less power for compression would be re-

quired; if water is expensive and the amount of cooling water used is

small the condensing temperature would be high and obviously more power

would be needed for the compression of the refrigerant. If one thinks

in terms of the cost of purchasing the water and power, the above relation-

ship would immediately suggest that there must be some optimum condition

at which the total cost of Operation is a minimum. That is, given the

cost of water and the cost of power, a water—cooled refrigeration unit





Operating at some suction temperature would have to Operate at a cer-

tain condensing temperature which is the most economical for these

conditions. The amount of water and the amount of power to be consumed

by this unit must balance each other so that the resulting total cost is

a minimum.

The main purpose of this paper is to give a solution for the Op-

timum condensing temperature taking into consideration all the variables

involved. The literature on the subject is quite limited. The problem

has been attached by a few different methods (see reference 1, 2, M,

6 and 8 in the Bibliography), however, these references do not offer a

generalized, complete and accurate solution. The solution prOposed in

this paper is completely analytical and generalized so that it can be

applied to any water-cooled refrigeration unit using any of the most

commonly used refrigerants. In addition, a nomograph for the solution

of the derived equation is given, so thpt an operator of refrigeration

machinery without technical training can easily get a solution and adjust

for the prOper condensing temperature.



 
 

 



II. DERIVATION OF THE EQUATIONS

The actual vapor-compression refrigeration cycle differs from

the theoretical cycle mostly by the amount of the superheat of the

refrigerant in the evaporator and in the lines before entering the com-

pressor, and by the degrees of subcooling in the condenser. The calcur

lations on the cycle here were based on the following assumptions:

1) 10°F superheating of refrigerant before leaving

evaporator.

2) Additional 10°F superheat before entering compressor.

3) 10°F subcooling of the refrigerant before leaving

condenser.

M) The compression is isentrOpic.

The first three assumptions are not essential for the deriva-

tion. but the result obtained could be of more practical value to the

Operating engineer. It will be shown later that the deviations in the

actual refrigeration cycle from the theoretical one would have little

influence on the results obtained, however, the assumption that the

vapor compression is isentrOpic is quite essential.

As it has been stated in the Introduction the principal Opera-

tional costs in a refrigeration plant are those for energy and water

and hence the two quantities to be considered are the compression to

be done by the compressor and the amount of heat to be removed by the

condenser. It is clear that if the energy added to the refrigerant

by compression is known, then the total heat to be removed in the con-



denser is the refrigeration-effect plus this added energy in the

compressor. Some additional heat might be added by the friction in

the cylinders, however, this is usually compensated by the cooling

in the head of the compressor which is done by waste water from the

condenser. The amount of heat that might be added by friction, even

if no cooling of the head is provided for, is usually quite small when

compared with the total heat to be removed by the condenser and it can

be neglected here. If one wishes to include this quantity, which is

usually unknown and at best can only be roughly estimated, it can be

done without any difficulty. The quantity can be added as percentage

of the total heat to be removed and its inclusion bears no consequence

on the equations derived below.

Based on the above assumptions, calculations of the theoretical

compression required per ton-hour were made for different refrigerants

at various Operating conditions and the results were plotted as shown

in Figure l and Figures 1A—5A in the Appendix.

The plots show that. for any given suction temperature within

the range Of normal operating conditions, the rise in the energy re—

quired for compression is linear with the condensing temperature. These

results are quite important for the following derivations since they

show the increase in the energy required per one degree rise in the

condensing temperature is independent of the condensing temperature.

The calculations and the plots were based on suction and condensing
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temperatures rather than pressures in order to generalize the results

for more than one single refrigerant.

Now let,

A - Cost of power in cents per kw-h

B - Cost of cooling water in cents per 1,000 gallons

6 = Overall compression efficiency in %

tw1 = Temperature of cooling water entering the condenser

in OF

tW2 : Temperature of cooling water when leaving the

condenser in °F

t8 ; Suction or evaporator temperature in 0F

tc : Condensing temperature in 0F

c a Specific heat in Btu.per lb. per OF

m - The increase in energy required for compression

caused by raising the condensing temperature one

OF, in Btu.per OF per ton of refrigeration per hour

All the above quantities are usually known or measurable except

for tc’ tw2 and m. tc is the variable whose solution is sought. tw2

is dependent on tc and an assumption is needed here. An assumption of

5°F terminal temperature difference would be quite satisfactory and this

value is adOpted in this paper, from this tw . to - 5. Any other value

9
b

may be assumed or actually measured and then used in.the equation.

m values are nofiiing but the lepes of the lines in Figures lArSA.in the



Appendix. (Tabulated values for m, for different refrigerants and differ—

ent suction temperature, may be found in Table 1A in the Appendix.)

If tug condensing temperature is to be tc, then the theoretical

compression work necessary per one ton of refrigeration per hour is:

m(tc - ts) Btu, and with.the overall efficiency being e, the energy in-

put is:

m(tc — t3)

3h12( (37100)

 Kw—h per ton per hour

The total heat to be removed by the condenser is 12,000+m(tc - t8)

Btu per ton per hour; from this the amount of cooling water required is:

12,000+ m(tc - ts) lbs. of water per ton per hour

cp(tw2 - twl)

 

Introducing the costs of electricity and water and substituting for tw

one gets the total cost of Operation for one ton of refrigeration per hour:

_, Am(tc - ts) [12,000...m(tc — t 85113
= cent er ton er hour

3m (e/ioo)“' (to - 5 - 1: VI} 8,330 1’ p
(l) C   

cp was assumed to be equal to unity.

From thermodynamic considerations in order to minimize the overall

cost, 0, the equation should be differentiated.with respect to tc and

equated to zero.

mB(tc-5-tw1)A - [12,000+m(tc-tafls - o

(2) _9_C_ = m 4. '-

dtc 314-12(e/100)‘ 8.330 [£3th 5)]?

solving from this equation for to:

(3) tc = (twl+ 5)t0.o6fiV§_e (twl+ 54,12,000 - 2‘s)

 



The negative sign should be discarded since the condensing temperature

cannot be lower than twi+-5. It will be equal to twl+ 5 if water cost

3:0-

The final equation then, is:

 

u t .-.(t+ 0.06 ..( ) c ”’1 5)+ “Ea (twf‘ 5+_1_g_1;_b9_g t8)

which is the solution sought for the optimum condensing temperature.



III. TEL NOMOGfiAPHIC SOLUTION

The construction of a nomOgraph with seven variables is not a

simple problem, especially when some of the variables have functional

relationships shch that they are not easily separable as in the above

equation (Eq. h). The details and proof of the construction of the

nomograph presented in this paper (Figure 2), will not be given since

fliis is not the primary concern of the paper. however, a brief outline

of the method might be of interest and that is given here.

The equation

tc = (th5)+0.o6u\E e (twig-5+l2m,000 — t8)

 

is separated in the following manner:

let K = 0.06 X 6 than.

 

to z (twf5)+KVtw]-'|-5+12,000 - t£3

, m

where K now is a variable coefficient of a certain function and it would

be one axis in the nomOgraph to be constructed from this reduced equa-

tion for tc. To get. this axis write _1_c_ - 0.06% and this type of rela-

AV?

tionship can be easily represented nomographically by the "double"

Z-chart method. In Figure 2, K is the central axis and it is not

graduated since its value is not required and the K axis serves only

as a pivot-line for the continuation of the nomograph.
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Now, if constant values are assigned to m and t8 the above re-

duced equation bedomes a polynomial in twl of the form:

. fl(X)+K f2(X) - L = 0

where,*

= tI "l

 

f2(x) - twf5+12,000 - ts

m

I.-.-tc

m and t8 are fixed constants

Polynomials of this form have nomographic representation, how—

ever, f2(x) here has two "variable constants" in it and the most that

one can incorporate within f2(x) for a "net-chart" is one "variable con-

stant". In other words, in the construction of a nomograph for the

variables x, K and L one can assign an additional variable and for each

given value of this added variable a different curve for x results since

f2(x) changes with.different values of this constant that is incorporated

with it. This additional variable is usually called "variable constant"

and the resulting nomograph would have a "network“ between x and this

"variable constant".

In the above reduced equation there are two such "variable constants",

namely, m and t8 and the equation must be reduced.further in order to enable

polynomial nomographic representation. Fortunately, it is possible in

this case to get a good approximate solution when the above equation is

reduced further to include only one "variable constant". Looming at the

values for m in Table 1A. in the Appendix it is seen that the variations
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in m for different refrigerants at any given suction temperature, t8, are

quite small and an average value would be quite satisfactory. It is

natural than to assume that by assigning a value to t8 the value of m

is fixed too, and henCe m and t3 are considered as one “variable con-

stant". Now, the construction of the "net-chart" nomOgraph is possible,

since f2(x) has been shown to have only one "variable constant".

The last assumption or "reduction" in the equation has the ad-

vantage of making the nomOgraph completely independent from any primary

calculations or finding a value for m, and if one considers tempera-

tures only, the refrigerant circulated in the unit has no influence on

the results.

ri‘he procedure followed in the construction of the nomograph for

the reduced equation is quite lengthy and it is not in.the sc0pe of

fiiis paper to describe this procedure or prove the construction. The

literature on nomography is quite abundant and many authors deal with

representation of polynomials by different methods.
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IV. DISCUSSION AhD CONCLUSIOhS

A comparison of the equations derived in this paper with other

equations or solutions, for the same problem, prOposed by different

authors would show best the advantages and the simplicity of the equa—

tions proposed here.

A solution similar, to a certain extent only, to the solution

given above was prOposed by E. J. Macintire (see references 1 and 2).

_ ~ . r156 .

his equation solves for the economical temperaturenof the cooling water

rather than for the optimum condensing temperature or pressure. The

total cost of Operating a refrigeration unit according to this equa-

tion is:

0 = Ame + 0.0012 as

e t
d

The notation is the same as used in this paper except for:

td = economical temperature rise of the cooling water

in OF.

H = the heat to be removed by the condenser in Btu.per

ton per minute.

There are two mistakes in this equation and one of them is an

appreciable one: 1) The difference between the suction temperature and

the condensing temperature (td) has the same numerical value as the

temperature rise in.the cooling water (td)' This situation is practically
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impossible. Only if the cooling water entered at the same temperature

as the evaporator suction temperature, and also if there were no ter—

minal temperature difference between the condensing temperature and

the water outlet temperature, could this be mathematically correct.

From both a practical and physical standpoint this would be an impos—

sible Operating condition for a refrigeration system. If the td terms,

in the above equation, are intended to be equal and have the defined

value above (of economical water temperature rise), then a fairly large

, part of the electrical cost for Operating the compressor has been left

out of this total cost equation. If the above equation were to repre-

sent the total cost the first term in the equation should be:

mud-t twl-t- 5 - t8)

 

s

2) The second error is in H. The heat to be removed by the con-

denser is assumed to be known and constant or a trial and error solur

tion would be necessary since i is dependent on the varying condensing

temperature. However, the error in here is not too serious, especially

since one can find approximate values for H in the literature.

While this equation for total cost of Operation is considerably

in errOr as noted above in K0. 1, the solution for the economical

water temperature rise yields fairly good values, since most of the

error disappears in the process of differentiating the equation with

respect to td when trying to solve for minimum cost. It is of interest

to note how Often this erroneous equation has appeared in refrigeration

textbooks. It first appeared in this exact form in Macintire's first
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edition and in the revised edition of his book and also in the new book

by Macintire and Hutchinson (reference 2). The equation was also picked

by Jordan and Priester in their textbook (see reference 3).

A completely different approach to the problem has been prOposed

by Boehmer (references 6 and 7), but his salution is limited to

"Freon 12" only and for units from 10 to 60 hp. His equation applies

only to relatively high suction temperatures as are encountered in air-

conditioning units and to some extent he relies on manufacturers' data

without allowing for different efficiencies for different units. In ad-

dition, no direct solution for the Optimum condensing pressure or

temperature is possible. The graph prOposed for finding the optimum con—

densing pressure has a limited range of values.

Another earnest attempt to solve the problem for ammonia conden-

sers only, was made by L. Buehler (see references H and 5) and an

elaborate set of equations and graphs has been prOposed by him. The

method is limited to ammonia as a refrigerant and for a relatively small

range of suction temperatures. Different suction temperatures require

different equations and no generalization is possible. In the derivation

of his equation he used manufacturers' data to a great extent and the

equations he arrives at are actually empirical equations rather than

analytical solutions.

Returning now to the solution prOposed in this paper. Of all

the variables involved in the solution for to, the temperature of the
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entering cooling water, t has the largest effect. All oflier variables
wl'

change only as the square-root and their effects on tc vary accordingly.

The suction temperature, ts’ has very little influence on tc; this can

be best seen in the nomOgraphic solution (Figure 2) where the curves

for tB are crowded together. This fact might seem a little surprising,

but noticing the lines in Figure l, (and Figures 1A. to 5A.) it is seen

that the different lines for different ta are almost parallel and one

might expect just a linear relationship between t8 and the total cost

of Operation.

The dependence of tc on m and the refrigerant used is not too

significant either. m is actually a measure to how "economical" the

refrigerant is. The variations here are not too big. Table lA. shows

that ammonia and Freon 11 are probably the most "economical" refriger—

ants, since they require less work for compression with rising tc and

this only for 10w evaporator temperatures.

From the above considerations one may safely assume that devia-

tions in the actual refrigeration cycle from the cycle considered here

(see page 3) will have little effect on.the solution for the Optimum

condensing temperature. One may say that the factors that appreciably

affect the solution for optimum Operating conditions are not inherent

within the refrigeration unit itself, but are external to it such as the

costs of water and electricity and in particular the temperature of

the available cooling water.
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In the same plant, variations in the temperature of the cooling

water may be quite large during the different seasons of the year and

this immediately brings the problem of automatic control for the system.

This phase of the problem requires special investigation by itself and

no solution is being prOposed here. However, an indication as to the

way by which this control might be accomplished is worthwhile mentioning.

Equation 1+, for the condenSing temperature yields at the same time tl'e

economical temperature rise in the cooling water, for, tc - tw+-5

2

 

twg - twl = .oouVE a [<th 5>+ia;9_0_9 - ts]

Since this economical temperature difference depends on tw the

1

problem of control, based on this temperature difference, is not a

simple one, but it can be simplified for an approximate solution. The

radical in the equation is not too sensitive to changes in twl. With

a typical value for m, say m 3 M0 and t3 2 10°F the term 12 000 is ob-

m

viously dominant and variations in t of 10 to 20°F will not change
w1

the value of the radical appreciably and a seasonal average for twl will

be quite sufficient. The control system then will have to measure the

inlet temperature of the water, t but control the outlet temperature,
wl’

tw2. The economical temperature rise then, is considered as constant.

One cf the most important factors in file derivations given in

this paper was the proof that m is indepenbnt of’the condensing tempera-

ture. This must be modified, since actually it holds true only up to

a certain condensing temperature. This can be best seen in the curves

used to determine the values for m in Figures lA.-5A. in.the Appendix.
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All the curves are straight lines up to about tc = ll5°F and above this

temperature the lines curve upward. The temperature at which the lines

start to curve is different for different refrigerants as can be seen

in the different plots. For ammonia, for instance, the lines are straight

up to tc = 120°F. The reason for these deviations at high condensing

temperatures could be due to the fact that the refrigerant is at high

superheat conditions, high pressure and temperature, and the amount of

work required to compress it at that region is more than the work needed

at lower temperatures and pressures. The constant entrOpy lines on a

p-h diagram would indicate this.

Fortunately, it is rarely that in a water-cooled condenser it

would be economical to operate at condensing temperature higher than

120°F. Economically speaking, high condensing pressures are advisable

only when electricity rates are extremely cheap or water costs very high.

For most practical purposes the independence of m on tc holds and the

equations derived are definitely applicable for most industrial refrigera-

tion machinery.

The above extensive discussion and derivations might give some

distorted.view as to the importance of operating at the Optimum condensing

temperature. To be sure, it is quite desirable to operate at the ap-

prOpriate conditions, but the optimum solution is not very critical and

one should not exaggerate its necessity. An example will best show the

effect of deviations from the Optimum condensing temperature.
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Assume:

Refrigerant: Freon 12

t8 = 30°F t, °F
u’IYl - 65

Electric rate,A : 3¢ per kw—h

Cost of water,B a 15¢ per 1,000 gallons

Overall efficiency,e e 60%

Interpolating in Table 1A, m = 33. Substituting in eq. u, or from

the nomograph (Figure 2), one finds tc = 93°F. Equation 1. can be used

now to find the minimum total cost of Operation:

c =W 1&9). + (12.000433) (93-30)] 15 =

3u12 ( b0) (93 - 5 - 65) (8.330)

 

3 3.07i—l.l2 = M.l9¢ per hour per ton.

Now, if the unit Operates at tc = lOO°F the total cost of Opera-

tion is found to be h.25¢ per hour per ton, and if the unit Operates at

tc = 85°F the total cost would be h.32¢ per hour per ton.

These differences are not too large to warrant strict adherence

to the Optimum to, but the differences grow quite fast as the deviation

from the Optimum point gets larger. With large refrigeration units

these differences may amount to large sums in.the long run. The problem

should not be taken very lightly. Many of the refrigeration plants

today Operate without the slightest attention to the problem; either

because the Operators are not aware d? it or because of lack of infor-

mation on how to achieve Optimum conditions. This is especially true

in plants where there is not constant engineering supervision. (There
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is some severe criticism in the literature for the neglect of this problem)

With this in mind the nomOgraph presented in this paper was constructed

to facilitate the achievement of a solution by Operators without techni-

cal training.

In conclusion it will be added that, since solutions for the

Optimum condensing temperature are available, it is the duty of the

Operating engineer to try and achieve these Optimum conditions. The

minimum total cost of Operation of a refrigeration plant can be deter-

mined without too much difficulty and it deserves the prOper attention

from the refrigerating engineer.
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TABLE 1A

m, THE INCh‘EASE IN ENERGY FOR COIviPh'ESSION CAUSED

BY ONE OF RISE IN THE COiEDEl-ISING ‘I’flVIPFLRATURE -

IN BTU PER °F PER TON PEP. HOUR

 g

 

Sucticmr

Temperature Ammonia Freon 11 Freon l2 Freon 22 Freon 11h

F

 

—l+o 50 1m 54 5*t 57

-2o 1+2 1+0 1+5 1+6 M9

0 36 36 39 no no

25 31* 31 f 32 32 33

     50 30 27* 30 30 3o
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