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CORRECTIONS

1959 Doctoral Thesis in Electrical Engineering: Compiler Solution of

‘Qifferential gguations with DifferentialLAnalyzer-gype Output, Lorn L. Howard

Page 51 -

Page 58 -

Page 72 -

Page 75 -

Page 75 -

Page 76 -

Page 76 -

correct order pair 330 as follows:

330 40 531E

26 331?

correct order pair 444 as follows:

444 L5 592?

L0 493?

next to last line (part 2) - delete the first sentence and the

sentence in parenthesis immediately following it. Substitute

therefor the following:

"Divide all the terms by the coefficient of the derivative of

highest order. (If this yields coefficients whose values are

larger than 10,000 the original differential equation must be

scaled until the coefficients at this stage are below 10,000 -

otherwise the problem will not go into the computer.)"

correct the first two terms in equation (1) to read:

0.05 d4! + 931

4 - 2
d: dt

correct equation (2a) to read:

£1 + 20 «122 - 3900_g_ + 200y - 200031;; 2: + 20:2 + 40

4 2
dt dt dt

correct equation (2b) to read:

0.0001 d4! + 0.002 (122 - 0.3931 4 0.02y . 0.2 sin 2:: + 0.0023 + 0.004

I. 2
dt dt dt

correct equation (3) to read:

+0N5 +0001N4 +0N3 +002N2 -39Nl +02N0 - +2PSIN+0002NT

+002PT2 +004FKIIC +0 +0 +000001 +000001 +0N/INCR +1N

I am enclosing three c0pies of corrections

which should be made to my 1959 Doctoral Thesis

in Electrical Engineering.

“WWW
\/ 7 ~7 Ray 3, 1965

Lorn L. Howard
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ABSTRACT

Differential analyzer-type output is available from a digital

computer using the techniques described in this paper. In addition.

this is made possible in such a way that anyone who needs the solution

to an ordinary linear constant coefficient differential equation may ob-

tain it without assistance from programmers or previous knowledge of the.

operation or programming of either type of computer.. The user needs

only to convert his differential equation directly into a simple code

resembling the actual mathematical statement of the equation. punch this

code onto computer tape preceded by the compiler routine deve10ped in

this paper. and have results immediately after feeding the tape to the

computer. The entire process should require at most only a few minutes.

As with the differential analyser. the output is a simultaneous

presentation of the dependent variable and all of its derivatives as a

function of time. A major difference, however. is in the greatly im—

proved accuracy of the results over those available from that type of

computer. Another desirable feature. of course, is in the large reduc-

tion in the time required to obtain the results.

Both the solution and the differential analyser-type of output

are accomplished without the necessity for the reduction of the differ-

ential equation to a series of first~order equations, a procedure which

is often required. The standard Runge-Eutta integration procedure is

used.

The compiler routine developed herein is prepared especially for
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the Michigan State University automatic digital computer (HISTIO) but

may be used readily where other models of this type of computer are

available: Iowa State College . University of Illinois. University of

swdney..Aberdeen Proving Ground. The programming technique. however,

is laid out in detail so that the method may be readily adapted to pro-

gramming for other types of digital computers.

Availability of storage space (1024 positions) limits use of the

program to the solution of equations of first through fifth order. A

wide variety of combinations of "driving functions” is allowed, however.

Provision is made so that experienced programmers may readily modify the

routine to add other driving functions as required.
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I. INTRODUCTION

It has been possible to obtain the solution to differential equa-

tions with the aid of electronic equipment ever since the development of

the first all-electronic type digital computer. INILC. at the University

of Pennsylvania around l9#2 (l). About five years later. another elec-

tronic device became available for this purpose: the electronic differ-

ential analyzer or analog computer (2).

The differential analyzer is frequently found to be faster. more

convenient. and more satisfactory in many problems. but the need is of-

ten felt for an accuracy and a kind of flexibility obtainable only on

the digital machine. This has inspired considerable effort toward the

production of either a machine or machine-program which would combine

the advantages of both types of computer.

The digital differential analyzer was one of the earliest of the

I'Ilachine" efforts. It was developed by a group of engineers from the

Northrop Aircraft Corporation (3). and was first discussed by Sprague

(h) in 1952. This digital-type computer is composed mainly of a set of

units which perform an integrating function. These units are analogous

to the integrators in the typical electronic analog machine. The accur-

acy of this computer appears to be considerably less than that of the

usual digital computer; however. it is sometimes approximately that of

the ordinary differential analyser. It is slower than the differential

analyser.

In 1955 Selfridge (5) described a system of programming a digital

- 1 -
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computer using a scheme very similar to that employed in the coding of

an analog computer. His method employs a very simple integration pro-

cess in which the increment consists solely of the sum of the inputs

multiplied by the mesh sise of the independent variable. Encoding a

differential equations problem for solution in this manner on a digital

computer is a great simplification; however. extremely small mesh size

is required in order to obtain appreciable accuracy. This has the dis-

advantage of requiring mach more time for the solution. Some problems

do not appear to be readily adaptable to this technique.

The Selfridge method allows the use of moral digital computer

coding. A different type of coding. using "pseude-cede.‘ was developed

by Lesh and Curl (6.7) in 1957 for use with their 'intsrpretive" digital

computer routine simulating differential analyser operations. This cod-

ing depends upon an interpretive routine (previously fed to the computer)

to deduce the analog computer component structure and sequence ef oper-

ations from it and to produce the differential equations' solution

therefrom. The system. called DEPI (differential equations pseudo-code

interpreter). is an aid to users familiar with analog computer oper-

ations but who are unfamiliar with digital methods since rapid. accurate

digital solutions to differential equation problems may be obtained with»

out the necessity for learning digital techniques. In comparative per-

formance at similar accuracies the DIPI program is eight times slower

than an analog computer solution (6). lven at this speed. DIPI perform-

ance is much faster than a digital differential analyser. At slower

speeds (reduced increment sise). DIP! accuracy increases to that appro—

priate for normal digital computer output.

Recently (1959) Stein. Rose. and Parker (8) developed for a digi-
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tal computer a compiler routine (a program whose sole purpose is to as-

semble another program to carry out a specific function) which.mekes use

of “analogroriented' input information. Input to the compiler consists

of the encoded description of an analog computer set-up diagram. This

system differs from either of the two previous programming techniques.

first. in that no effort is made to simulate the functional structure of

the analog computer. Secondly. the compiler does most of the program-

ming for the digital machine. The balance is accomplished by Iortran.

an automatic coding system deveIOped by the International Business Mach-

ines Corporation. which.acccpts statements resembling mathematical lan-

guage. The compiler output is Fortran input. and the entire operation

is handled by an IBM 70“ digital computer. Common.usage of the analog

computer set-up as a fundamental 'problem»souree"led the authors to be-

gin their programming at this point rather than at the point of mathe-

matical descriptionl. Deduction of differential equations from analog

computer set-up diagrams represents work done earlier by Stein and Rose

(9) and forms the basis for use of a code acceptable to the compiler.

Preliminary experience in use of this compiler indicates a speed four

times slower than a test analog computer on a similar problem at a com—

parable accuracy. This is two times as fast as the experience reported

with.DBPI. and such a gain in computing speed was predicted by Leah and

Curl (6).

The general purpose of the present work was to obtain a type of

program for the digital computer which would enable it to yield rapid.

accurate. differential analyser-type output from extremely simple. yet

very flexible input.--input which could be written readily as a mathe-

 

1Personal communieation from Mr. Rose.
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matical expression by users having no familiarity with either type of

computer. Some conclusions were drawn from preliminary studies concern-

ing the general direction such an effort should take. and programming

was completed (within storage limits of the computer available)in m1-

fillment of this aim.

In particular. a compiler routine has been written for digital

computers of the MISTIC type (IIJJAC. SILLIAC. and OBDYAC) to provide

differential analyser-type output from simply-encoded differential aqua.

tion input. The differential equation may be of any order up to and in-

cluding the fifth. One-point boundary conditions must be available for

all except the highest order derivative. 'Driving-functions' may con—

sist of a constant plus any additive combination of the following func-

tions multiplied by their respective coefficients: sin klt. cos kzt.

1n k3t. 31““. t. t2. t3. and t1/2 or t1/3 or t1/“ or t1/5. Bach func-

tion may be used only once; however. instructions for easy modification

of the compiler to add other driving functions and still remain within

the storage capacity of the computer are given later. Also discussed

are outlines for extension of the present routine to include simultan-

eous equations and equations of higher order (possible with the avail-

ability of more storage).

All previous effort to combine advantages of both.types of com-

puter has presumed knowledge of the programming of at least one of these

machines. Use of the compiler routine developed herein requires no such

previous knowledge. and its programming for the digital computer yields

almost-simultaneous information on the independent variable together

with the dependent variable and all of its derivatives.

Aside from advantages which accrue in obtaining a composite of
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the benefits of both types of computer. there is an economic urgency in

the development of compilers which is often pointed out by Hopper (9.10.

11). This fact obtains at installations of computers of the MISTIC type

mentioned previously as well as in industry. Insofar as is known to

this writer. however. there has been no compiler development for solv-

ing differential equations on any of thesennachines. even though the

physicist. chemist. engineer. or researcher there should be able to get

this "bread-and-butter'Job done as readily as his counterpart in indus-

try where compilers are commonplace.

On the following pages is described the preliminary study lead-

ing to the first programming efforts. assembly of the compiler routine

with a discussion of limitations. and final testing. The complete com-

piler routine is then given. together with instructions for its use. An

example is also prepared in detail.



II. DIEMEIAL ANAHZQ SIMULATION

Most ef the attempts to simulate the differential analyser have

sought its speed. ease‘ofl‘programming. flexibility. and scene”. The

first attempts (h) aimed at duplicating the physical action in an inte-

grating circuit by amassing a stored quantity at a programmed rate.

Some ease of programming and flexibility were gained. perhaps. but at a

loss of speed and accuracy for some problems. Further developments have

made some improvement in these areas. Inter. Lesh and Curl's interpre—

tive routine (6) imitated only the structure of the analog program.

This routine made marked progress in achieving some of each of the de-

sirable attributes of the analog machine. Its authors pointed out. howb

ever. that the analog structure of their program appeared to be artifi-

cial and that improvement could probably be made by its elimination.

They also suggested a compiler routine for increased speed. noting howu

ever. that it would be much more difficult to write and at the same time

keep flexible.

It was with the development of their modification ideas in view

that the present work was begun. There are several considerations which

make this type of compiler seem promising. First of all. both the Sel-

fridge routine (5) and the interpretive routine require sequential cal-

culation. This. in itself. precludes an output speed equal to that of

the analog device. Further. it appears likely that so long as digital

computers are sequential devices similar to present-day types. there is

little promise of completely duplicating the speed of the analog comput-

- 6 -
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er. The compiler-type program. however. represents an improvement over

the relatively slow interpretive routine. Secondly. the other desirable

characteristics principally involve the input and output of the machine.

and it would seem reasonable to expect that. although the time and ef-

fort required might be appreciable. both the input and output of a digi-

tal computer could be tailored to provide much of the flexibility. ease

of programming. and type of output found on the differential analyzer.

And then in particular. real economy of time might be realized by Rep-

per's Ilayman." (11), or inexperienced computer user. if such a compiler

were available. Finally. the solution of differential equations need

not depend upon the integrating processes nor the component configura-

tion.inherent in the differential analyzer. but could be obtained more

readily by using a suitably-programmed numerical method. Both the first

and last of these considerations have been utilized in a recent compiler

program (8.9).

The idea of simulating the differential analyzer as such then was

abandoned. and in its place was planned a compiler program which would

retain all the desirable features common to the analyzer as a differen-

tial equation solver except some of its speed. ‘lven in this area. it

was planned to choose and provide routines to allow as close an approach

as possible to analog speed.



III. ORGANIZATIQN OF THE COMPILQR ROUTINE

General Description

The Compiler is a complete routine in itself. designed to be

put on tape and fed into the computer Just ahead of a small amount of

coding (also on a tape) describing the differential equation to be

solved. The coding is discussed later. but it is the Job of the Com-

piler to bring this cede into the computer. to obtain. and then to out-

put the solution to the differential equation represented thereon.

The Compiler must necessarily contain a number of subroutines

designed to do specific Jobs if the calculations are te be obtained ef-

ficiently. The routines are listed below in the order in which they

appear en the Compiler tape. (Their memory locations are given at the

end of the Compiler Routine and in the.ippendix.)

1. Input the balance of the Compiler (Decimal Order In-

put)

Differential Equation (including “Driving Function“

Routine)

hissembly

rest Sine-Cosine

Integral‘Bcot

lxponential

Logarithm

Decimal Fraction Input

- 8 -
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9. Decimal.!racticn Print

This list comprises everything in the Compiler with the exception of

special control orders. The complete Compiler program. except for

standard library routines noted in the following discussion, is given

order by order in part V.

In operation. the Decimal Order Input brings in the rest of the

Compiler. Control is then transferred to the Assembly routine which

proceeds to bring in the encoded differential equation. As this equa-

tion code is being brought in. the Assembly routine makes choices and

sets counters to organise a program to solve the differential equation.

Program control is transferred to the differential equation-solving rou-

tine at the end of this read-in.

That routine then proceeds to carry out a program to evaluate the

differential equation. Control is often transferred out of the routine

and into subroutines for frequently—repeated operations such as print-

ing or punching out information or calculating the driving function. In

the case of the latter process. program control frequently leaves its

subroutine also to go to other subroutines such as the exponential. sina.

logarithm. et cetera. finally returning to the Driving Function routine.

and then later to the main routine. One increment of each of the vari-

ables after another is calculated and output. The machine will continue

to run until stopped or until hanguup occurs due to overflow.

Since the computer operates with fractional quantities. the pro-

gram is designed to carry out calculations at a value of the variables

which is at least 0.0001 of their actual value (see part VI) in order to

allow for considerable growth of the variables before overflow or hang-

up. This implies that in determining the range of allowable computa—.
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tions the user must consider that normal unsealed values in the solution

my not exceed 9.999 (when a factor of 0.0001 only is used). In fact.

they not be considerably less than this if the calculation is to pro-

ceed usefully for very long. Scaling oust also be considered in the use

of the various driving function subroutines such as those listed (limits

are discussed later on in this part).

Fixed-point programing is used throughout. This does not seem

to limit seriously most problems of the usual engineering type encoun-

tered. A decision to provide floating-point programming would have al-

lowed considerably less storage space for essential operations.

The routine to input the balance of the Compiler is the stand-

ard Decimal Order Input routine available at any of the MISTIC-type com-

puter installations.

Differential Equation Routine

The Numerical Method

The Differential Iquaticn routine is prepared especially for this

compiler. Its purpose is to carry out the numerical solution of the dif-

ferential equation using the Runge-Kutta method (four- step). It is de-

sirable to consider some reasons for such a choice.

Numerical methods for solving differential equations on digital

computers have been studied extensively since 1942 and a partial list of

the work reported in the literature is given in the bibliography (13-20).

A recent comprehensive study was made by Williams (20). He found that

the best accuracy obtained in a comparison including several four-point

methods. a series method. the Runge-Iutta-Gill technique. and the Iilf
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method came from use of the RungeAKutta—Gill procedure. The price for

this accuracy is a somewhat reduced speed. however. Gill himself points

out that his modification of the Bungeéxutta process is slower than the

original (21).

Actually. this general process (Runge-Iutta) has been chosen by

several authors as the outstanding method for machine solution. The

earliest seems to have been Proberg (In) in 1950. Also. it was used by

Dosh and Curl (6). and by Stein. Rose and Parker (8). It is essentially

a refinement of what may be called averaging methods. and has the very

desirable characteristic that it requires no special formulas to get the

solution started. Further. for purposes of this work. it lends itself

readily to programming without the annoying necessity for reducing equa-

tions of order greater than one down to the first order. In addition.

it is easy to obtain the usual values one expects to find at the output

of a differential analyzer. i.e.. y. i. y. et cetera. in passing normal-

ly through the calculation procedure.

The Bungeéxutta method has no check on accuracy. and the error

cannot be determined although it is near the order of the fifth power of

the increment of the independent variable (22). Improvement in accuracy

can be obtained by taking smaller increments-up to a point. Such a de-

crease always reduces the speed and increases the possible round-off

error. Another method. such as Milne's. might be added to the Bunge-

Iutta method after starting in order to provide for a regular check on

the accuracy. It is felt that this would require excessive storage-

already in short supply for the present programp—and it has not been

done.
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The unmodified verson of the Rungedlutta method was chosen after

preliminary testing (see part IV) demonstrated its suitability insofar

as speed and accuracy were concerned. The equations (22). including all

steps necessary to make calculations for two increments of all the de-

pendent variables in an ordinary linear constant coefficient fifth order

differential equation. are given on pages 13 and 1“. Note that the equa-

tions for 332 increments are given; also. that all steps necessary for

the calculation of a fifth order equation are included. The assembly

routine decides the order of the equation being input and makes a choice

as to whether all or part of these equations are used-vdepending upon

the order of the equation. The major modification of the steps for an

equation of order less than five requires calculating the highest deri-

vative of the equation as a function of the other terms in the equation-

in a manner similar to that shown for the fifth order equation-rather

than as shown for that derivative in the chart. As for the fifth deri-

vative. the function is evaluated using the values of the variables cor-

responding to the step in which the highest derivative is being evalu-

ated.

Consider the procedure for obtaining the solution to a fifth or-

der differential equation using the steps shown in the chart. The first

line (except for the highest derivative) at the top of the two pages

consists of initial conditions. and the first calculation requires the

use of these in evaluating the highest derivativemyil. The next calcup

lation is of'yiz. and then the calculating proceeds to the left until

‘12 is calculated. Following this. 3K2 is calculated using the values

obtained in the calculations which proceeded leftward along the second
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line. A similar pattern is followed in making thc'calculations along

the third line. After completing the fourth line in the same fashion

the increments A°y'1.o'§1.4y'1. Ay1.Ay1, andAt are calculated in that

order. This completes calculations in the first increment group. One

may then proceed to the beginning of calculations for the first step in

the second increment group and obtain ‘21- Next. y21 is obtained. and

so on. After the fifth derivative is calculated. the balance of the

computation proceeds in the same manner as that in the first increment

group. Calculations in successive increment groups proceed in the same

manner.

Differential analyzer-type output is desired. so in actual com-

puter operation each of the variables in the first step of each incre-

ment calculation group is output as soon as its value is available.

Pr rammin the tions

Figure la shows the flow diagram for programming the first half

of the calculations in any increment group. The flow diagram for the

second half is shown in Figure lb. The block notation is that given by

flcCracken (23); however. the functions of all of the blocks in the dia-

gram are largely self-evident. Lines leading to encircled letters make

connection with other lines at points where there are identical letters.

Some discussion of the contents of blocks in the flow diagram is

desirable. In the upper left-hand corner of Figure la is a box indicat-

ing calculation and storage of the driving function. step 1. This oper-

ation is actually a subroutine in itself and its flow diagram may be

found in Figure 2. The program goes into this calculation four times

during the calculation of one increment-once for each step therein.
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The value of the driving function is obtained here for later use in cal-

culation of the highest derivative. An ”order test' box indicates the

location of a programmed test to ascertain the order of the differential

equation being solved. "Print" boxes indicate the position in the pro-

gram at which information is being output. and. depending upon the com—

puter. this may come out as punches on tape. printed numbers ( see part

V1 for interpretation) or plotted points. Blocks representing calcula-

tion and location of special increment constants. and blocks giving in-

structions for output have been omitted for simplicity.

Calculation of the Drivigg Function

The flow diagram of Figure 2 indicates the pattern used for ob-

taining the value of the driving function. A test to determine whether

or not one of the allowed functions is contained in the driving function

is indicated by 'f(t) test.” The routine frequently requires that pro-

gram control leave it for calculation in other routines specifically de-

signed to obtain the values of certain types of functions. a brief dis-

cussion of all the routines and their limitations follows.

The calculation of t. t2. and t3 is straightforward. and there 1-

no restriction on the values which t may have. The computer will. howu

ever. give incorrect output when either of these powers of t multiplied

by its coefficient exceeds 9.999 when unsealed. The same rule applies

to any of the succeeding driving functions and its coefficient.

The Logarithm subroutine requires that the number for which it

computes the logarithm lie between zero and 1 (not inclusive). Of

course. the coefficient of t. k1 (in In klt) must be less than 10.000 in

order to be able to scale it to fractional size according to instruo-»
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tions in part VI and then get it in the computer. If it is less than

this number and can be input. then computation of the ln k1t may pro-

ceed as long as the product of scaled k1 and the unscaled value of t (t

is normally carried in the computer at 0.0001 its actual value) is less

than unity. '

The Exponential routine has a similar requirement except that the

product klt must lie between -1 and 0. The sign is taken care of in the

program so the user need only place the same restrictions on the pro-

duct of the coefficient and t as in the previous routine.

In calculating the integral root. it should be emphasized that

only one of the three "roots“ may be calculated by the driving function

in the solution of any one differential equation. No other restrictions

are necessary.

In using the Fast Sine-Cosine routine. the same restrictions

apply as were necessary for the Logarithm routine: the product of the

scaled coefficient of t and unsealed t must be less than unity.

Insofar as the constant is concerned. it must be less than unity

when scaled for input. This applies. as well. to all coefficients.

It uny’be seen by inspection of Figure 2 that additional driving

functions may be added readily with very little additional programming.

Actually. the entire Differential Equation routine may be easily lifted

out of the Compiler and used by itself with no modification when addi-

tional driving functions are required for differential equation solving.

Assembly Routine

The Assembly routine is shown in block diagram form in Figure 3.

The programming of this routine is begun with order pairs at location
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670 in the memory (see part V). Its sequence of operations begins with

reading in and storing each of the coefficients of the derivatives. As

soon as a non-zero coefficient of a derivative is sensed. the order of

the differential equation is available and a constant is set to indicate

this order. After all coefficients are input and stored properly. the

Assembly routine begins sensing more of the differential equation code

to determine the nature of the driving functions. initial conditions.

and increment. and set indicators accordingly. The actual code used is

given in part VI together with instructions for its use. The code isv

also listed below together with the characters of each code group which

is sensed and the binary representation of the sensed characters. The

letters ”IO" and 'INCR' representing respectively”'initial conditions

and ”increment" are also equation code but are merely indicators and are

not sensed for directions; therefore. they are not listed. (Lower-case

k and k1 are constants.)

Driving Function W.deg, Chagacterfisl Sensed ‘Binary Representationgs)

k In k1 t kFLsklnr L 1111

k sin k1 t kFSINklflT s x 1011

k cos k1 t kFCOSklnT 0 1001

constant. k kFK K 1010

k t kFTl Tl 1001 0001

k t2 kFTZ T2 1001 0010

k t3 kFTB T3 1001 0011

k t1/2 kFBZT R2 0100 0010

k t1/3 kEBBT R3 0100 0011

k t1,” krnun an 0100 0100

k t1/5 kFRST R5 0100 0101
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Driving_Functigp. Code Character 3 Sensed Binary Representationfls)
 

k skit kFEle s 0011

Inspection of the coding will show that the coefficient of the

driving function can be easily read in with the input routine (which is

stopped by the 'F')-after which the next character in the code can be

sensed in the no position of the accumulator. This holds true for all

except the cosine code. In practice it holds there. also. because the

'C' is a fifth hole character and as such is skipped by the read-in pro-

cess. Ihen the character following the '1' is sensed. function indica-

tors are set accordingly; This is the general plan of the driving func-

tion sensing. and it includes the setting of indicators for as many

functions as are included in the equation.

Initial conditions are read in after the differential equation

driving functions are determined. They are stored according to inform-

ation sensed on the order of the equation. Finally. the increment is

read in and stored. Control is then transferred to the beginning of the

Differential Equation routine.

Other Routines

The function of each of the other routines listed in the general

description of the Compiler is indicated by its title--the last two rou-

tines being responsible for all input and output operations. Finally.

a brief increment-constant calculating routine precedes the Differential

Equation routine and would need to be included with it in any attempt to

use it apart from the Compiler.



IV. EXPERIMENTAL FBOOIDURB

The first experimental work was planned to test the speed. ease

of programming. and accuracy of the Runge-Kutta equations using a sec-

ond order differential equation with only a simple driving function. t.

and an increment of t = 0.1. The results were good in each case: speed

was such that a complete increment was calculated and output for each

variable in approximately one second: the programming was readily car-

ried out; and the results were accurate well beyond normal three-to-

four-place engineering requirements. This accuracy remained even.wmen

the program was run for a great many cycles and when it might be ex-

pected that round-off error would become appreciable. This was evident

in a test in which three values of the increment of the independent

variable . t. 0.01. 0.05. and 0.1 were used in three separate program

runs of the same second order equation described above. Six or seven

significant figure agreement between the values of the different vari-

ables calculated for each of these values of A t was evident after t =

45 seconds. Increments of 0.3. 0.6. and 0.9 were also tested; however.

the error for these values grew excessive rapidly. The increment of

0.1 was used in all further testing.

A general fifth order differential equation solution program

(solving any order up to and including the fifth) was written thereafter

and was tested with the same second order equation used above. After it

worked successfully and minor changes were made to improve accuracy.

equations of first. third. fourth. and fifth orders were tested and run

- 28 - '
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successfully with the simple driving function. t. used above.

After the main differential equation solving routine appeared to

run successfully for all equation orders. testing was carried out cncna

pending its driving function calculating subroutine to include the cal-

culation of all the other allowed (see part VI) functions. The testing

of the calculation of each of the other functions was performed with.a

first order equation having the driving function under test. The test

was considered successful when the results corresponded with values ob-

tained frcn‘an analytical solution. The end of these tests marked the

completion of the Differential.lquation routine.

The Compiler Assembly routine was begun next and was tested first

to read in properly all the coefficients of derivatives. Thereafter.

each test included coefficient read-in and the proper read-in of another

driving function code. After each driving function code had been

checked. several combinations of those codes in typically-encoded dif-

ferential equations were further checked. ‘Iach checking involved an ex-

amination of computer post-mortem print-outs indicating the storage in

certain locations since the ability of the Differential Squation routine

to run properly depends upon proper storage of data from the encoded

equation. finally. each of the equations which had been run earlier in

testing the Differential lquaticn routine were encoded and fed to the

.

computer after the Compiler-now complete with the addition of the.As-

sembly routine. All ran successfully and the Compiler programming and

testing was considered complete.

The Compiler might have been written to punch out on tape the

completely assembled program which it prepares in the computer storage.

It was decided that there was little Justification for this when it
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would only involve the loss of time required to output and then input

the same information again before starting the solution. For this rea-

son. computer control is transferred immediately to the Differential

Equation routine for the beginning of the solution Just as soon as

the Assembly routine brings in the encoded equation.

Some operating times are of interest. It requires approximately

fifty-two seconds to input the Compiler. Program assembly is accenn

plished in negligible time. The time required to obtain and output all

of the increments for all of the variables in a given equation is called

the 'tine per cycle.“ Typical values follow:

gage: 2f Equation Qgiving Zuggtien Time per Cycle (Sec.)‘

1 t 0.93

2 t 1.25

3 t 1.6

4 t 2.0

5 t 2.u

1 o 0.94

1 t2 0.96

1 t3 0.96

1 ln t 1.05

1 t1/2 1.25

1 t1/3 1.u

1 til“ 1.?

1 31/5 1.7

1 et 8.2

1 cos t 1.0
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Ordeg of Eguation Driving Function Time per Cycle face.)

1 sin t 1.0



V. THE COMPLETE COHPIEIR PROGRAM

Order pairs for the complete Compiler program are given in the

pages which follow. No attempt has been made to 'tighten-up' the pro-

gram. In fact. room has been left in the program for easy modification

of sections where. for example. it might be desirable to add a driving

function or modify the calculation of an existing one.

This program. without additions or modifications. represents the

entire code needed for preceding the encoded differential equation tape

discussed in part VI.

Some special notation includes:

f( ) - The value of the highest erder derivative for any

step in the four-step process is the explicit

function of all the other variables and the con-

stant in the differential equation evaluated with

the values these variables have at any given step.

This function is represented thus.

erder

test 4 Test to determine the order of the differential

equation.

Letters such at ‘il! ’11. et cetera. are those in the Runge-Kutta

relations on pages 13 and 1n.
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LOCATION 01mm NOTES

Library Routine 11 Deciml Order Input

00 20K

20 22 201'

L5 519?

21 1o 1! Calculate and store A;

no szor 2

22 50 5191'

7.1 l+90? ]— Calculate and store %‘

23 1&0 5211'

50 5191'

21+ 7.! 491? :j- Calculate and store At(x 10"“)

tho 5171'

25 is 517? ‘-"‘

10 11' — Calculate and store A“: 10"“)

26 no 518? _J 2

26 2'7?|

2? 92 1317 Carriage return and line feed

92 1313'

28 92 515! Delay

1.5 5161- '-

29 52 1141' —- Print out t11

50 291'

30 26 963R

92 963’ 2 carriage spaces

31 92 963!

26 333'

32 26 33?

26 33!

33 22 33? _.

L5 5153

3“ 52 11a!

50 3M, — Print out In

35 26 9632 __4,

92 9633'
2 spaces

36 92 963!
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Library Routine 11

20

21

23

2h

25

26

27

28

29

30

31

32

33

35

36

00 20K

22 201'

LS 519?

10 1!

no Szor

50 5191‘

N L190?

#0 5211'

50 5191'

7.! M1!

to 517!

1.5 517?

1c 11'

no 518?

26 277

92 131!

92 131?

92 5151'

1.5 516!

52 11hr

50 291'

26 9631‘

92 9631'

92 9631'

26 333'

26 33?

26 331‘

22 33?

L5 515!

52 11hr

50 3“!

26 963!

92 963!

92 9631'

}

J

 

 

 

NOTES

Decimal Order Input

Calculate and store A;

2

Calculate and store JELE

Calculate and store £§t(x 10'“)

 

Calculate and store [:‘(x 10‘“)

Carriage return and line feed

Delay

Print out tn

2 carriage spaces

Print out J11

2 spaces



LOCATION

37

38

39

#1

#2

“3

“5

h?

50

51

52

53

ORDER

26 38!

26 38!

26 38!

50 516!

50 38!

26 373?

26 #0?

L5 1‘93?

L0 “92!

36 b2!

26 911 _J

50 505! ""

71 515!

66 “91!

35 r

Ih'5661

40 51k!

22 as?

15 51hr '_—_'

52 11hr

50 #6!

26 963?

26 50!

26 sor

26 so:

26 50?

26 50?

so 520!

7J siur

L“ 5157

no 5361? _J

L5 518!

Lb 516?

#0 537?

J

 

  

 

NOTES

(516) is tn

Transfer to a subroutine to calp

culate the driving function of the

first calculation of f( )

Order test lo. 1

(differential equation order 0 1)

(differential equation order > 1)

Control to print.§11

Calculate and store ii; I f( )

Print 511 . r( )

Calculate and store y12

Calculate and store ‘12



LOCATION

5h

55

56

57

58

59

60

61

62

63

65

66

67

69

7O

ORDER

26 sur

50 537?

so sur

26 373?

26 561

1.5 l1931'

Lo #92!

36 581

26 1101

50 505!

71 5361

66 #911

as r

L» 566!

no 535!

so 5201

7J 535!

Lb 515E

“0 5“}!

16 537!

no suar

50 5““?

so 6m!

26 3731

26 661

L5 “93!

LO #921

36 68!

22 1201

50 505!

71 5&3?

66 #91!

as r

15 5661

I
L
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_l
l
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NOTES

(537) 1' tlZ

Transfer to a subroutine and cal-

culate the driving function of the

second calculation of f( )

Order test lo. 2

( differential equation order 8 1)

( differential equation order) 1)

Control to order test lo. 6

Calculate and store 912 - f( )

Calculate and store y13

Obtain and store t13

Transfer to subroutine to calculate

the driving function of the third

calculation of f( )

Order test No. 3

(Differential equation order I 1)

(Differential equation order > 1)

Control to order test lo. 7

Calculate and store 5.3 I f( )



LOCATION

71

72

73

7»

75

76

77

78

79

so

81

82

83

85

86

ORDER

uo suzr

50 5191‘

W 5&2!

L“ 515?

no 5501'

1.5 5171'

Lb 516!

to 551?

26 75?

50 5511'

50 751'

26 373?

L5 1.933

LO #92?

36 791‘

26 1311'

26 793

50 505!

71 5501'

66 l+911?

ss 1'

11+ 56$

no SW

22 82?

11 39?

1.5 535!

Lb 5&2!

00 1!

Lu 51h!

Lb 5H9!

no 5561'

50 5561'

7J 521!

_JI
ll
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J
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J
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NOTES

Calculate and store yin

Calculate and store tin

Transfer to subroutine to calculate

the driving function of the fourth

calculation of f( )

Order test No. 4

(differential equation order 3 1)

(differential equation order >'l)

Control to order test lo. 8

Calculate and store ii“ = f( )

Calculate and store £§y1



LOCATION

87

89

9O

91

92

93

91+

95

96

97

98

99

100

101'

102

103

ORDER

1+0 5611'

L5 5171‘

IA 516!

1K) 5161'

L5 5611'

12‘ 515'

1+0 515?

26 273

1.5 514!

M 5601'

“O 51‘le

L5 5m

52 11b!

50 931‘

26 9631’

92 9631‘

92 9631'

26 971'

26 97?

26 973'

L5 15915!

1.0 “92!

36 991'

22 1M?

50 5051'

71 5157

66 “911‘

$5 I

1&0 5261'

50 5016!

71 51W

66 “911'

SS 1'

l
l
_

 L

 

IL
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NOTES

Calculate and etore ‘i+l.l

Calculate and etore yi+1 1

0

Control to 27 to begin calculation

of valuee at the next increnent

Obtain. etore and print 911

2 epacee

Order teat lo. 5

(differential equation order I 2)

(differential equation order > 2)

Control to print yn

Obtain and etore 5’11 = f( )



LOCATION

10“

105

106

107

108

109

110

111

112

113

11“

115

116

117

118

119

ORDER

L» 526!

1A 5661'

no 5131‘

22 1051'

1.5 5131'

52 11»!

50 1061'

26 9631'

50 520!

W 513?

I» 51hr

no 535!

26 501'

Ls h9h!

1.0 11921

36 11211

26 16hr

50 5051'

71 536!

66 41911

55 1'

no 5261'

50 Solar

71 535?

66 ~91:

SS 1

1.4 5261‘

m 5661"

no 53141

50 520'

7: 53w

1» 51»

no 51121
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NOTES

- Print Sin - r( )

r- Calculate and etore 9‘2

Control to calculate y12

- Order teet lo. 6

(differential equation order I 2)

(differential equation order >’ 2)

Control to order test No. 10

" Calculate and etore §12 8 f( )

_. Calculate and etore 913



LOCATION

120

121

122

123

12h

125

126

127

128

129

130

131

132

133

13“

135

136

ORDER

26 61!

L6 49ml

LOW”

32 122r

22 177!

50 505!

71 5H3!

66®n

35 r

#0 526!

50 5o“!

71 Sher

66 #91!

35 1

L» 526!

L» 566!

no 5H1!

50 519?

7J 5nd!

1» 51m?

40 5H9!

26 71?

15 agar

Lo #92:

36 133!

26 1917

50 505!

71 550!

66Mn

55 r

#0 526!

50 504!

71 5H9!

66MB

ll

 

I
L

 

NOTES

Control to calculate and etore Vi)

Order teat lo. 7

(differential equation order I 2)

(differential equation order )»2)

Control to order teet lo. 11

Calculate and etore §13 I f( )

Calculate and store 51¢

Control to calculate and etore 71h

Order teet lo. 8

(differential equation order 8 2)

(differential equation order )»2)

Control to order teet lo. 12



LOCATION

13?

138

139

11m

1101

1’42

1‘43

1M

1&5

1%

11+?

1‘58

1&9

150

151

152

153

ORDER

$5 1'

11+ 526!

Ht 566?

40 5'48!

11 391'

L5 5341‘

Lb 5&1?

OO 11'

1.4 5131‘

IA 5‘48!

1+0 5551'

50 5551'

7.7 5211'

1&0 5601'

22 821'

1.5 5131‘

In“ 5591'

(+0 5131'

52 1141'

50 1&6!

26 9631'

92 963?

92 9631'

1-5 495'

IO “921'

32 1501'

26 2081'

50 505?

71 5151'

66 “911‘

SS 1‘

1+0 526!I

SO 5010!

ll

 

J
l

 

 

 

-uo-

HOBBS

Calculate and store §1u = r( )

Calculate and store Afri

Control to calculate and store An

Obtain. store and print .1.“

2 epacea

Order teat lo. 9

(Differential equation order I 3)

(Differential equation order > 3)

Control to print ’11



WATIOH

15“

155

156

157

158

159

160

161

162

163

16“

165

166

167

168

169

ORDIB

71 51M

66 (5911'

85 l‘

“0 5251'

50 503’

71 5137

66 (491?

SS 1'

I» 5261'

1.4 5251'

1A 566!

(+0 5121‘

L5 5121'

52 1111!

50 1601'

26 9631'

so 5201'

N 512!

m 5131'

£50 5311»!

22 1071‘

1.5 “951'

1.0 1492!

36 1661

22 231+]-

50 5051’

71 5361'

66 #911-

35 1

1+0 5261‘

50 501+!

71 5351'

66 Mon

ll
ll

 

ll

 

-111...

NOISE

Calculate and etore 3'11 8 f( )

Print 'Sr'u - f( )

Calculate and etore §12

Control to calculate and etore 912

Order test No. 10

(differential equation order t 3)

(differential equation order >3)

Control to order teet lo. 111



LOCATION

170

171

172

173

17“

175

176

177

178

179

180

181

182

183

18b

185

186

ORDER

85 I

no 525!

50 503!

71 531*!

66 1:911

55 r

in 526!

L» 525!

m 568‘

no 533!

50 520!

7J 533!

IA 513!

no 5171!

26 1181'

15 #95!

no “921'

32 179!

26 252!

50 505!

71 5‘0!

66 491!

35 r

to 526!

50 Son!

71 5&2!

66 £191!

85 1'

no 525!

So 503!

71 5&1!

66 hon

35 1

I
L

 

l
1

I
L

 

.112.

NOTES

Calculate and etore 3‘12 = :( )

6616111». and etore 313

Control to calculate and etore 513

Order test lo. 11

(differential equation order 3 3)

(differential equation order )'3)

Control to order teat Io. 15

Calculate and etore'§i3 = f( )



WATIG

187

188

189

190

191

192

193

191+

195

HG

197

198

199

200

201

202

ORDER

M 526!

$55!

1» 566!

no 5&0!

50 519!

7J 5&0?

Lb 513!

no 5h8!

22 128!

15 “95!

10 #92!

36 193!

26 269!

50 505!

71 556!

66 #91!

s5 !

no 526!

50 50b!

71 5&9!

66 #91!

55 !

no 525!

50 503!

71 548!

66Wu

55 !

1» 526!

L» 525!

1b 566!

no 5&7!

11 39!

15 533!

J
L

 
J

L
|
L

 _l

-n-

NOI'IS

Calculate and etore ‘y'm

Control to calculate and etore y.“

Order teat Ho. 12

(differential equation order I 3)

(differential equation order > 3)

Control to order teet lo. 16

Calculate and etore yin = f( )



LOGATIOB

203

2016

205

206

207

208

209

210

211

212

213

21“

215

216

217

218

219

ORDER

1» 5901'

00 1!

IA 512!

1A 5117!

no 5561'

50 5591‘

7J 521!

no 559?

26 139!

26 208!

1.5 512!

m 558!I

no 512!

L5 512!

52 11ur

50 2101‘

26 963!

26 212!

92 131!

92 5151‘

92 67!

92 5151‘

92 67!

92 5151'

15 1196!

1.0 1192!

36 217!

26 269!

50 505!

71 515!

66 1191!

35 r

to 526!

50 5011!

I
L

 

 

 

DUES

Calculate and etore Afl

Control to calculate and etore A};

Obtain and print yu

Carriage return. line feed

Delay

Tab

Doll!

Tab

Delay

Order test No. 13

(differential equation order a it)

(differential equation order > ‘0)

Control to print 711



LOGAIIOI

220

221

222

223

22“

225

226

227

228

229

230

231

232

233

23"

235

236

ORDER

71 51b!

66 #91!

ss !

too 525!

50 5031’

71 513!

66 091!

$5 !

no 520!

50 502!

71 512!

66 991!

35 !

1k 526!

L9 525!

11+ 52k!

1» 566!

no 511!

22 229!

15 511!

52 11a!

50 230!

26 963!

50 520!

7J 511!

Lb 512!

no 533!

22 161!

22 23a!

15 996!

no 992!

32 236!

22 315!

50 505!

 

J
L

J
!

 

 ____'

-45-

30138

Calculate and etoreuy'h = f( )

Print ’5'“ = r( )

Calculate and etore '9'12

Control to calculate and etore 9.12

Order teat lo. 1%

(differential equation order I 1+)

(differential equation order >16)

Control to calculate and etore :12



LOCA‘I'IOH

237

238

239

2&0

2151

2&2

293

2%

2&5

2146

297

2%

249

250

251

252

253

ORDER

71 536!

66 l191!

35 !

£10 526!

50 50M

71 535?

66 991!

$5 !

no 525!

50 503!

71 53M?

66 091!

85 !

no 5211!

50 502!

71 5331‘

66 9911'

$5 1'

Us 526!

11+ 525!

11+ 52%

L“ 566!

no 532!

26 21:9!

50 5201‘

7-7 532!

10 512!

1&0 51m!

26 175!

26 252!

15 I096!

ID “92!

36 251»!

26 33h!

 
 

 

NOTES

06161111116 and atoro'iv'iz I r( )

Calculate and etore y”

Control to calculate and etore 513

Order teet No. 15

(differential equation order 8 to)

(differential equation order >...”)

Control to calculate and etoren3



LOCATION

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

ORDER

50 505!

71 star

66MB

SS ?

no 526!

so sour

71 5927

66 ~91:

85 F

40 525?

so 501!

71 say

66Wfl

35 F

1+0 520!

50 5021

71 590?

66mm

SS T

w 526!

m 5259

w 5an

m 566!

no 539!

50 519!

7a 539!

m 5127

to 5m

22 188?

26 269!

16 “96!

10 “92!

36 271?

-117-

NOTES

- Calculate and etore?” I f( )

- Calculate and etore°§ku 
Control to calculate and etore §1n

Order test No. 16

(differential equation order I u)



LOCATION

271

272

273

271.

275

276

277

278

279

280

281

282

283

28“

285

286

287

ORDER

26 356 _1
50 5051‘

71 550!

66 991!

55 !

no 526!

50 5010'

71 5991'

66 #91!

$5 I

no 525!

50 503!

71 she!

66 9911‘

$5 1'

40 5211!

50 5021’

71 5473'

66 991!

55 !

19 526!

M 5251‘

IA 520!

1.11 566!

no 5961'

11 391‘

L5 532!

M 539!

00 1!

11+ 511!

I!» 596!

90 553?

50 553!

7.1 5211' _j

I
L

 

NOTES

(differential equation order >30)

Control to calculate and store yin

Calculate and storey“, - f( )

Calculate and etore A'fi



 

LOCATION 01mm NOTES

1+0 558? __'

288 26 2021‘ Control to calculate and etoreAifi

26 2891? ....

289 1.5 511:!

1A 5573‘

290 1&0 511.!

1.5 5111' _. Calculate. etore and printufu

291 52 11h!

50 2911'

292 26 9631' ._I,

92 953?

293 92 9637

92 9631' 5 epacee

29“ 92 9637

92 963!

295 50 505! —W

71 5151‘

296 66 '+9130

55 l'

297 90 526!

50 509!

298 71 5191'

66 #91!

299 85 F

1+0 5251'

300 50 5031‘

71 513?

301 66 “91’ — Calculate and etore'Sv'il a f( )

S5 1“

302 ‘00 5241'

50 5021'

303 71 5121'

66 1491!  



LOCATION

304

305

306

307

308

309

310

311

312

313

31%

315

316

317

318

319

320

ORDER

35!

#0 523!

50 501!

71 511!

66 #91!

$5!

19 526!

19 525!

1b 521!

Lb 523!

10 566!

no 567!

22 310!

15 567!

52 11k!

50 311!

26 963!

50 520!

7.1 567!

1a 511!

no 532,

26 315!

22 2311'

50 505!

71 536!

66Mn

85 1'

no 526!

50 sour

71 535!

66‘691!

$5 1'

no #25!

 

 

 

-50-

NOTES

13111115.;11 9‘ f( )

Calculate and etore'yiz

Control to calculate and etore.§12



LOCATION

321

322

323

32“

325

326

327

328

329

330

331

332

333

33“

335

336

ORDER

50 5031'

71 53b!

66 “911'

55 F

no 52»!

50 5021

71 5331'

66 4911‘

55 I

too 5231'

50 5011'

71 5321'

66 ‘+911

55 1'

IA 5261'

1A 5251'

Lu 52hr

11+ 5231'

m 5661'

no 5311

26 2311?

50 520!

7.1 5311'

m 5111'

“0 5391‘

26 2&9!

26 3341‘

50 5051'

71 5&3!

66 ‘+91?

55 1'

no 5261'

50 50b]?

 
 

 

NOTE

Calculate 1nd store???” 35' f( )

Calculate and store 5'13

Control to calculate and store 3713



LOCATION

337

338

339

3140

3141

$2

3’43

345

3%

397

3&8

350

351

352

353

ORDER

71 5021"

66 “911'

$5 I

#0 525!

50 503?

71 5411'

66 #91?

$5 I

1&0 5241'

50 5021‘

71 5%!

66 l+91?

S5 1'

no 5231'

50 5011'

71 5391'

66 “911'

85 1'

1% 5261'

IA 5251‘

U4 5211!

III» 5231‘

IA» 5661‘

1+0 5381'

50 5197

W 5333'

L5 5111'

M 5166?

26 266!

26%”

50 505!

71fim

66 #911

Mr

H

 
 

-52-

NOTES

Calculate and star-emih = f( )

Calcuhto and etore yin

Control to calculate und etore '9'“



LOCATION

351+ '

355

356

357

358

359

360

361

362

363

36k

365

366

367

368

369

370

ORDER

#0 526!

50 504!

71 5H9?

66 #91!

85 !

no 525!

50 503!

71 ska!

66 “91!

$5 !

#0 52h!

50‘5021

71 5b?!

66 #91!

$5 !

no 523!

50 501!

71 5“GF

66 #91!

s5 !

L» 526!

IA 525!

1» 52h!

L» 523!

La 566!

no 5&5!

11 39!

L5 531!

m 538!

00 1!

Eh 567?

Lb 5u5!

no 552!

50 552!

H
P

i.— 

- 53 -

NOTES

Calculate and store'§14 8 f( )

Culculate and etoreA"y"1



LOCATION

371

372

373

37“

375

376

377

378

379

380

381

382

383

38“

385

386

387

ORDER

7J 521!

#0 557?

26 283!

26 373?

55 r

#6 375?

L# #93!

#2 651!

L5 ( )r

#0 527!

#1 566!

26 377!

L5 568!

L0 “931

36 379!

22 381!

50 527!

75 575!

66 #91!

55 r

#o 566!

L5 569?

L0 #93!

32 383!

22 387!

50 527!

75 576!

66 #91!

75 527?

66MH

55 !

L# 566!

#o 566!

L5 583!

IL
I
L

ll

 
=1.

HOMES

Control to calculate and store £§§1

Begin subroutine to calculate the

driving function

Set link

Store t1 in location for driving

function calculation

Clear driving function storage

Ie t included in the driving func-

tion?

(Yes)

(No) Iranefer to t2 test

Calculate and etore kt

In t2 included in the driving func-

tion?

(you)

(no) Control to t3 test

Calculate and etore ktz

In t3 in the driving function?



LOCATION

388

389

390

391

392

393

399

395

396

397

398

399

#00

#01

#02

#03

#0#

ORDER

L0 “93?

32 389E

26 3953

50 527?

75 584?

66 “91?

75 527!

66 “911

75 527?

66 491!

85 I

L“ 566!

40 566!

25 395r

L5 570!

L0 #93!

36 3977

26 #09!

L5 527?

L0 #93!

36 399?

26 #25!

22 399!

50 5857

75 527?

66 “91!

85 I

26 #02?

50 r

50 #021

26 923!

10 6!

7J “977

L# “991

ll

 

 

Horns

(you)

(no) Control to In t teet

Calculate and etore kt3

Ia 1n t included in the driving

function?

(you)

(no) Transfer to log t teet

Calculate and etore k 1n klt



-55-

 

1.0011101 01mm sons

#05 #0 587!

50 5871'

#06 75 5771'

66 #91!

#07 85 !

Ht 566!

#08 #0 566! __J

26 #09! _}

#09 L5 5711' _ 1. 103 2 included in the driving

:0 uggy function?

#10 36 #11! (yes)

26 #25! ___7 (no) Control to et test

#11 1.5 527! _‘

L0 “93?

#12 36 #13!

26 #25!

#13 22 #13?

50 586!

#1# 75 527!

66 #91!

#15 $5 !

26 #16!

#16 50 !

50 #16!

#17 26 923! — Obtain and etore k log kit

10 6!

#18 7.1 #97!

L# #99!

#19 #0 587!

50 5871'

#20 7J #98!

#0 5881'

#21 50 588!

N 578!  



LOCATION

#22

#23

#2#

#25

#26

#27

#28

#29

#30

#31

#32

#33

#3#

435

#36

#37

#38

ORDER

66 #91!

S5 !

L# 566!

#0 566!

26 #25!

26 #25!

L5 572!

LC #93!

36 #27!

26 ###!

#1 #!

L5 52??

Lo #93?

36 #31!

L5 579?

L# 566!

#0 566!

26 ###!

50 527?

71 589!

66 #89!

55 r

50 F

50 #33!

26 902!

#0 591!

#0 590!

50 591!

7J 590!

#0 591!

L5 #!

L# #93?

#0 #!

Lo #88!  

NOTES

1e 6‘ included in the driving func-

tion?

(you)

(no) Control to 111/p teet

Obtain and etore k eklt



LOCATION

939

##0

##1

##2

“#3

#45

##7

#50

#51

#52

453

#5“

“55

ORDER

36 ##0!

22 #35!

L5 #91!

66 591!

7J 579!

66 #91!

$5 !

L# 566!

#0 566!

26 ###!

L5 #92!

10 #93?

36 ##6!

26 #7#!

L5 595!

00 20?

#6 ##9!

22 ##8!

22 ##8!

L5 527!

50 (p)!

50 ##9!

26 878!

#0 59#!

15 #9#!

LO 595F

36 #53!

26 #56!

50 59#F

7J #87!

#0 59#!

26 #70!

26 #56!

26 #56!

 
JI

J
l

 

- 53 -

NOIES

1e tl/P included in the driving

function?

(you)

(no) Control to sin t test

Obtain and etore t1/P



IDCATI ON

#56

“57

#w

#59

#60

#61

#62

l#63

#65

#66

#67

#69

W0

#71

#%

ORDER

L5 #95!

LO 5951'

36%fl

26%”

50$“

75%&

66mg

5!

#0 59#!

26 #70!

26%8

26 #62!

sta

Infifl

36%“

26%”

509%

W #86!

#ofiu

zéww

26%fl

26 #67?

Sofiw

75Wu

66 #8#!

a!

#0 59#!

26ww

509%

75%?

ééwn

%!

22 #72!

#0%&  

- 59..

Horns

Obtain and etore k ‘llp



LOCATION

#73

#7#

#75

#76

#77

#78

#79

#80

#81

#82

#83

#8#

#85

#86

#87

#88

“89

- 60 -

ORDER

26 #7#!

26 #7#! ,

16 574? -1..

L0 #93!

36wa

26 622!

50 527!

75 596!

66 #91!

S5 !

#0 597? ...,

26 600!

26 600!

26 600!

26 600!

26 600!

00 !

00 31#159265358J

00‘!

00 31#159265J

00 r

00 628318530J

00 r

00 158#89319250J

00 !

00 #6#15888266#J

00 !

00 1000000000J

00 r

00 lOOOOOOOOOOJ

00 !

00 999!

00 !

00 lOOOOOOOJ

Jl

 

NOTES

1e :12 t included in the driving

function?

(108)

(no) Control to coe t teat

For k ein klt calculation. obtain

and etore klt x 10-“

( x 10‘"1 )

( x 10'“)

(2 x 10'“)

(autilog 16/5 1 10'“)

(antilog 8/3 x 10'3)

(10-3)

(10'2)

(10'5)



1.001! I 011

#90

#91

#92

#93

#9»

#95

#96

#97

#98

600

601

602

603

60#

605

606

- 61 -

01mm

00 !

00 166666666666J

00 r

00 lOOOOOOOOJ

00 !

00 (order no.)F

00 !

00 11

00 r

00 21

00 !

00 3!

00 !

00 #1

00 !

00 ##360#1956J

00 r

00 #3#29##81903J

00 r

00 92103#037J

00 600K

15 597! ‘1

L0 #83?

#0 598!

32 600!

L# #82!

#0 599!

36 609!

L# #82!

22 60#!

66 #81!

55 r

66 #86!

55 !  

NOTES

(16")

(Set by the compiler)

56

( 10000 1°502)

( 10'” 105.107“ )



MEATION

607

608

609

610

611

612

613

61#

615

616

617

618

619

620

621

622

623

CRDB

#0 5993'

26 6161'

26 616!

26 616!

26 616!

1.5 #82!

10 599!

#0 5991'

L5 5991'

66 #81!

85 r

1.0 #86!

36 615!

1.# #86!

66 #86!

s1 !

26 616!

51 #91!

722 617!

50 !

50 616!

26 am

#0 565!

50 5651'

W 580!

26 620!

26 620!

I# 566!

#0 566!

26 622!

26 622!

L5 5731'

1.0 #93!

36 62#!

 
—'L

 

-62..

NOTIS

Obtain and etore t sin klt

II can t included in the driving

function?

(yes)



LOCATION

62#

625

626

627

628

629

630

631

632

633

63#

635

636

637

638

639

ORDER

22er

50 5271‘

75 56“?

66 #91!

55 !

#0 597!

26 627!

15 597'

L0 #83!

#0 598!

32 627!

L# #82!

#0 599!

36 636!

L# #82!

22 631!

66 #81!

S5 !

66 #86!

$5 !

#0 599'

26 6##!

26 6##!

26 6##!

26 6##!

15 #82!

L0 5991

#0 599!

L5 5991‘

66 #81!

s5 !

L0 #86!

36 6#2!

L# #86!  
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NOTES

(no) Control to add the constant

term

For k can k1t calggiation. obtain

and etore klt x 1

Obtain and etore k can klt



ICCATION

6#1

6#2

6#3

6#5

6#7

651

668

670

671

672

ORDER

66 #86!

81 !

26 6##!

51 #91!

22 6#7!

26 6##!

26 6##!

50 r

50 6##!

26 8#8!

S5 !

#0 563!

26 6#7!

50 563!

7J 581!

26 6#9!

26 6#9!

#0 562!

15 582!

L# 562!

L# 566!

#0 566!

22 ( )!

00 668!

00 !

00 6!

00 !

00 5!

L5 669!

 

#1 7r

#1 9!

50 8F

50 672?

NOTES

Put constant in.A

‘Add k con k1t

(Add previcue driving function vaIue

Store complete driving function

§3¥nfiy (37#): return to main rou-

tine

Compiler begine; eet counter to inp

dicate order of the derivative _

whose coefficient in being read in

clear differential equation order-

eetting counter

Clear end of coefficient read in!

counter

Bring in coefficient



LOCATION

673

67#

675

676

677

678

679

680

681

682

683

685

686

687

688

689

ORDER

26 937!

#1 r

1.28!

36 698!

#1 !

L0 7!

36 677!

26 679!

L5 6!

#0 #92!

L5 #93!

#0 7!

15 6!

L0 699!

36 681!

22 682!

L5 8!

#0 500!

26 698!

L5 6!

L0 #96!

32 68#!

26 686!

L5 8!

#0 501!

26 698!

L5 6!

LOW9

36 688!

26 690!

15 8!

#0 502!

26 698!

26 690!

 

1
,
1
,
1

ll
1

I
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NOTES

Clear A

Subtract coefficient from zero

Coefficient S 0: control to reduce

read-in counter

Ban differential equation order no.

been set!

(no)

(yes) Control to determine location

of coefficient storage

Set differential equation order no.

Set counter to indicate order no.

hae been eet

If coefficient of 5th order tern.

store in 500

If coefficient of #th order term.

store in 501

If coefficient of 3rd order term,

store in 502



LOCATION

690

691

692

693

69#

695

696

697

698

699

700

701

702

703

70#

705

706

ORDER

15 6!

10 #9#!

36 692!

22 693!

15 8!

#0 503!

26 698!

15 6!

LO #93!

32 695!

26 697!

15 8!

#0 50#!

26 698!

15 8!

#0 505!

15 6!

10 #93!

#0 6!

80 #!

15 9!

L# #93!

#0 9!

10 668!

36 70#!

26 672!

26 70#!

26 7o#!

50 8!

50 7o#!

26 937!

26 707!

26 707!

26 707!

 

 

l
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NOTES

If coefficient of 2nd order term.

store in 503

If coefficient of 1st order tern,

store in 50#'

If coefficient of dependent vari-

able. store in 505

Reduce 'nunber of the order" count-

er hy one

Skip order no.

Teet for end of coefficient read-in

3nd of coefficient read-in (if pos-

itive

Not the end: control to continue

read-in

Bring in coefficient of driving

function and etore temporarily



LOCATION

707

708

709

710

711

712

713

71#

715

716

717

718

719

720

721

722

723

ORDER

81.#!

00 36!

26 709!

26 709!

36 7171‘

00 1!

32 738?

L5 8!

#0 577!

L5 #93?

#0 570!

80 #1

50 5851'

50 713?

26 937!

, 80 #I

26 7o#!

26 717!

26 717!

26 717!

00 1!

36 73M'

00 2!

36 730!

81 #!

#0 9!

10 #95!

32 727!

15 9!

10 #9#!

36 725!

LS #93!

#0 568!

L5 8!

.I
Lr
J

 

 

 L
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NOTES

Bring in the driving function indi-

cato!

Begin eensing onao to determine

the driving functions

Continue eeneing onao

Driving function I 1n t; store co-

efficient of In t and set indicator

Skip I in LR

Store coefficient of t

Skip !

Bring in next driving function

Continue eeneing on no

Driving function -.gP; bring in p

Deternine p value

Driving function I t: set indicator

and store coefficient of t



LOCATION

72#

725

726

727

728

729

730

731

732

733

73“

735

736

737

738

739

7#0

#0 579!

50 589!

50 736!

26 937!

80 #r

26 7o#!

00 1!

32 7#5!

00 1!

36 751!

 

 L
l

 

LF
JI

 

 
15 tear—l

NOTES

Bring in next driving function

Driving function = t2; eet indi-

cate! and store coefficient of t

Bring in next driving function

Driving function = t3; set indicat-

or and store coefficient of t3

Bring in next driving function

1 p

Driving function 8 t I a set in-

diyator and store coefficient of

g P

Bring in p and store

Skip T

Bring in next driving function

Driving function I ek‘; set indi-

cator and store coefficient of ek‘

Read in and store coefficient of t

in ek‘

Skip T

Bring in next driving function

Continue sensing on a0



LOCATION

7#1

7#2

7#3

7##

7#5

7#6

7#7

7#8

7#9

750

751

752

753

75#

755

756

757

ORDER

#0 57#!

15 8!

#0 580!

80 8!

50 596!

50 7#3!

26 937!

80 #r

26 7o#!

80 #r

15 #93!

#o 573!

15 8!

#o 581!

50 56#!

50 7#8!

26 937!

80 #r

26 7o#!

26 751!

15 8!

#0 582!

26 75#!

26 75#!

26 75#!

26 75#r

80 #r

15 #92!

10 669!

36 770!

15 #92!

LO #96!

36 768!

L5 #92!

 

J
L

 

Jl
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NOTES

Driving function I sin t; set indi-

cator and store coefficient of sint

Skip IN (SIN sensed on 5)

Read in and store coefficient of t

in sin kt

Skip T

Bring in next driving function

Skip S in 008 (sensed on 0)

Driving function 8 cos t; set indi-

cator and store coefficient of cost

Read in and store coefficient of t

in cos kt

Skip T

Bring in next driving function

Store constant

ship 10

Test to determine where to store

initial conditions

Equation order =r5: store initial

conditions accordingly

Differential equation order <5

Equation order = #:store initial

conditions accordingny

Differential equation order <:#



IOCATION

758

759

760

761

762

763

76#

765

766

767

768

769

770

771

772

773

?7#

ORDER

LO #951I

36 766!

'15 #92!

10 #9#!

36 763!

26 761!

50 515!

50 761!

26 937!

26 772!

50 51#r

50 7631'

26 937!

26 772!

26 776!

26 776!

50 513!

50 766!

26 937!

26 772!

50 512!

50 768!

26 937!

26 772!

50 511!

50 770!

26 937!

26 772!

80 12!

26 773!

50 519!

50 773!

26 937!

22 20!

 _J

-70-

NOTE

Equation order 2 3: store initial

conditions accordingly

Differential equation order <3

Equation order a 2; store initial

conditions accordingly

lquatien order a: 1: store initial

conditions accordingly

Control to read in At

Control to read in At

Control to read in At

Control to read in At

Skip 1N and R in INCB

Transfer to beginning of differen-

tial equation solution routine



LOCATION ORDIR NOTES

00 8’48!

Library Routine T6—S Fast Sine-Cosine

00 878!

Library Routine R2 Integral Root. 111/p

00 902!

Library Routine S# Exponential, ex

00 923!

Library Routine S3 Lomrithn

00 937K

Library Routine 82 Input Iractiens

00 963!

Library Routine Pl Print Fractions

2# 670R Transfer to beginning of compiler

routine



VI. GENERAL INSTRUCTIONS FOR USE O! THE COMPILER ROUTINE

The Conpiler routine assembles in the computer memory a program

which. when executed by the computer. will provide the solution to an

ordinary linear constant coefficient differential equation of any order

up to and including the fifth. The equation "driving function? may con-

sist of a constant plus any additive combination of the following func-

tions (each used only once) multiplied by their respective coefficients.

In 1231. M‘. t, 12. 13. :1/3 or 9” or tll“ or 113.2111 1:11. cos 221.

The solution consists of printed. punched. or plotted—nae desired

(and as available at the coaputer)-censecutive values of the indepen-

dent variable. t. the dependent variable. e.g.. y. and all the deriva-

tives of y. These values begin with the initial conditions and continue

with values at intervals of the independent variable corresponding to a

' previously-selected increment. After the computer begins the solution,

it will continue to yield values indefinitely or until computer l'ovor-

flow” or “hang-up" occurs.

In order to obtain the solution to a differential equation coming

within the category described above. carry out the following procedurei

1. Urite. in descending order of the derivatives. the differen-

tial equation to be solved. If there is no constant in the

driving function. add a sore at the end of the equation.

Otherwise. add the constant at the end.

2. Divide all the terns by a constant such that the coefficients

and constant term.are all less than 10.000 and preferably lie

-72..
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- 73 -

between 1 and 10. (The smaller these values are. the longer

the computer can run before overflow or hangdup. See the

discussion of limitations below.) Thereafter. divide all

the coefficients and the constant term by 10.000. (The sol-

ution to the equation before the division by 10.000 is ob-

tained by multiplying the computer output values by 10.000.

Location of the decimal point in the print-out makes the cor-

rected values available by inspection.) All the coefficients

are now decimal fractions. The decimal point itself will not

be carried into the computer but will be considered by the

computer as lying immediately to the left of the numbers in

the coefficients; therefore. retain all zeros to the left of

other significant figures in the coefficients. Each coef-

ficient must be preceded by its sign.

Re-write the equation:

3.1 Substitute the letter N followed by a number equal to

the order of the derivative for each derivative symbol.

fibers the dependent variable or any order of the deri-

vative from the first through the fifth is missing. sub—

stitute an N preceded by a +0 and followed by a number

equal to the order of the derivative.

3.2 Substitute the symbols listed below for the driving

functions:

sin.k t................!SIN k H!

see k t................!COS k NT

ln.k t.................!IN k NT

ek‘OIICOOOOOOOOOIOCOCOOH k M



5.

-7#-

constant................FK

t.......................?T1

12......................!!2

13......................!!3

:1/2....................!22!

11,3....................!n3T

:1/“....................!n#!

:1/5....................!!5T

The signed coefficients of the driving functions precede

these symbols. When the value k is included in a function

such as in sin.kt. cos kt. ln.kt. or art. this constant must

be divided by 10.000 andMby Lt; 3153,

Place a slant sign (I) after the equation and then the let-

ters "10' to indicate that the initial conditions will fol-

low. ‘Urite immediately following the letters '16" the in-

itial values (in descending order of the derivatives begin-

ning with the derivative whose order is one less than the or-

der of the equation) of the derivatives and the dependent

variable. each divided by 10.000 and any other scaling con-

stant used in step 2. Follow this by the initial value (di-—

vided by 10.000) of the independent variable. 2:22213_gggh,

19.1.“... by uLsi‘gg‘ Put the letter 'N‘ after the last value

to indicate the end of the initial conditions.

Follow the initial conditions by another slant sign (I) and

the letters 'INOR.! After these letters. put a plus sign and

the value of the increment (unsealed). This value may be any

fraction lying between 0 and +1. Any number so chosen is
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considered by the computer to be a fraction having its decimal

point immediately to the left of the digit(s) chosen. Again.

put an 'N‘ after the increment value to signify the end of the

increment.

6. Put the Compiler routine on tape immediately followed by this

equation. initial conditions. and the increment-in the for-

mat and in the order specified above. E

7. The completed tape when fed to the computer will cause the *‘1

computer to stop when it reaches the order 2# 670. A 'black- ‘ j

switch execute'then will start the computer omitting the 7

series of values described in the second paragraph of these

instructions. (An alternate method would be to food only the

Compiler tape to the computer. When its 'stop' order is

reached. feed the equation tape to the computer reader and

'execute.')

A typical example follows:

(1) .0531; + 931 -195g_ + 10y=100e1n2t+t2+2

dt dt dt

whered¥ s 93% scandgzeyaelfortzo'.‘assumeanincrement of

dt dt dt

0.1

(22) .0005 d“ + .01 513% — 1.95 51!. + .1 y -.= sin 2t + .01 t2 + .02

dt dt dt



(2b) .00000005 41; + 0.000001 ~ .000195 9.1 + .00001 7 =-

dt dt dt

+.ooo1 sin 2t + .000001 t2 + .000002

(3) +015 +00000005!# +0113 +000001N2 - 000195111 +000011Io =

+0001rsm+0002rr +000001!!2 +000002!x/Ic +0 +0

+000001 +000001 +0N/INCR +1!

Equation (3) is the complete encoded equation.

The author has found it advantageous to have an equation-writing

code check-off list. One frequently used follows:

I 1. Represent all five derivative orders and the independent

variable.

2. Scale and put a sign on each.coefficient.

3. Terminate signed initial conditions with.'N.'

#. Terminate a signed increment with “N.”

5. Terminate scaled coefficients of t in the ln. sin. cos.-and o

functions with ”B."

6. Add a zero 1! there is no constant in the driving function.

Put the zero or the constant at the end of the encoded driv-

ing function together with its proper symbol.

7. Specify the proper number of initial conditions.

8. Correctly encode the driving functions.

Vhen.a print-out of the answers is obtained. it may be inter-

preted as follows:
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1. The values of t, y, i, ’y‘, 'if. 'if'. and'§"in this order are dis-

played beginning at the left of the page. All except the

last two are located on one line. These two. "y"and'?'.'are

printed in the middle of the line below. Eleven digits com-

prise each value.

2. The decimal point is located to the right of the fourth digit

from the left~or at the break in the number presentation.

An example follows:

at t

0003 2000000 0209 1872338 -0000 0020318

Integgetatigg

t = 3.2 y = 2093872338 y = -0.0020318



VII. MODIFICATION PROCEDURES AND FURTHER

DEVELOPMENT OF THE COMPILER

Size of the storage facility of MESTIC has prevented making the

foregoing compiler more general. It has been a purpose of this work.

however. to point the general direction for writing a new. more compre-

hensive program or for expanding this one along the same lines when ad-

ditional storage might become available. Both the Bungedlutta method

and its programming can be adapted (22) to the solution of more than one

differential equation. and it is possible to write the same type of as-

sembly'program as that given herein by using similar techniques and al-

lowing for more equations.

A program to allow for the solution of differential equations of

higher order may be obtained readily by following the pattern set down

in the foregoing Differential Equation routine. .Actual programming in-

volves merely the addition of higher order derivative-calculating paths

(see Figures la and lb) in parallel with those already existing-begin-

ning at each order test and duplicating (except for higher order values)

the last path already there. To provide the new path. modify the last-

added path in the same way it represents a modification of the path Just

before it.

The Driving Function routine is an “open-ended“ type of program

in which additional function-calculating routines are brought into the

program as it is made successively to sense certain locations for '1? or

'0.“ Thus additional driving functions may be added readily by merely

-73..
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continuing the present programtand then directing it to sense (at the

appropriate time) the positive or negative value of certain storage. If

the storage is positive at that time control may be transferred to some

new function-calculating routine as desired. This my be done with the

present program which still does not utilize some seventy-five storage

locations. (This storage appears not to be enough to allow for sixth

order equations. also. but may readily handle several driving functions.

depending upon the length of the program required to calculate them. The

.Assembly routine might also be modified within this storage to handle

the additional function if desired.)

Close inspection of the organisation of the machine memory in the

appendix is suggested as an initial step in any modification program.

Simplification of writing the routines presented herein was facilitated

by its detailed planning.



APPENDIX

Organisatien of the lie-cry

 

Qcatiog Contents

0 _

l

2 -- Subroutines' temporary sterage space

3 _J

L;

5

6 Order of the derivative whose coefficient is being read is

7 Order indicator setting

8 Temporary coefficient storage

9 No. of coefficients which have been read in

10

ll

12

20 Differential Equation Routine begins

#99 Part l of Differential Equation Routine ends

--80-



w

500

501

502

503

50“

505

506

507

508

509

510

511

512

513

51“

515

516

517

518

519

520

521

522

523

52%

525

-81..

Contents

 

Coefficient ef '§”( 1 10'“)

I I '§° I

I I 'y" I

I I 'y' I

I I 9 I

I I y I

Initial condition.'§6 ( x 10'“) 2 Iii

. yo . =3.in

s s ‘y‘o s g 'y‘11

" ' i0 ' = 511

s s yo I =.y11

e s to s g ‘11

lgt ( x 10‘“)

‘i1,( 1 10'“)

aft (pg; multiplied by 10'“)

'94- s s s s

2

%E. . ..

Temporary storage for'?°times its coefficient (1 10'“) in

calculation of the highest derivative

Temporary storage for y’times its coefficient (1 10'“) in

calculation of the highest derivative

Temporary storage for 9 times its coefficient (1 10‘“) in

calculation of the highest derivative

Temporary storage for y times its coefficient (1 10'“) in

calculation of the highest derivative
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nggtion ngtents

526 Temporary sterege for y times its coefficient (1 10'“) in

calculation of the highest derivative

527 :goizged:::izélf::§tI6z. er ‘ih as required in calculation

528

529

530

531 ‘31. (x 10-“)

532 °§iz '

533 3",. -

531» 3%.. -

535 312 '

536 ' 1'12 "

537 ‘12 '

538 "sq. -

539 '§;3 '

51m :13 "

541 5‘3 "

5% 913 "

5“) 1'13 "

54“ ‘13 '

5+5 a. -

5‘6 7’10 "

5”? yin "

5"8 hit "

5“9 Yin '

550 nu "

551 t1“ -



3103.31.21

552

553

551‘

555

556

557

558

559

560

561

562

563

561+

565

566

567

568

569

570

571

572

573

SW:

575

576

577

Contegtg

(“in + 2312 + 2323 +31») (x 10'")

+ 25.2 + 23".} +33“) (1 104*)

+ 2512 + 2')?” Vii“) (x 10‘“)

(5‘11

(311

(3‘11 + 2.3312 4- 2513 + fig.) (1 10

-33-

4')

(5‘11 + 2912 + 2’13 *510) (" 10"“)

A'i'i

A y.

(if.

Ai

A!

i

i

(x 10““)

Value of :1 cos let (x 10'“)

Value of cos kt (x 10'“)

Coefficient of t in driving function = cos kt (x 10*)

Value of sin kt (x 104*) (see 597-599)

value of the driving function (x 10’“)

If a l is stored here. t is a driving function

1

1

1

I

1

1

.. $2 is a driving function

. In t is a driving function

. log t is a driving function

. at is a driving function

.cos t is a driving function

.sin t is a driving function

Coefficient of t ( x 10'“)



29.2.1.9;

578

579

580

581

582

583

585

586

58?

588

589

590

591

592

593

591+

595

596

597

598

599

600

651

Content;

Coefficient of log t (x 10'“)

s e ekt s

" " sin t "

" " cos t "

Constant term

If a 1 is stored here. t3 is a driving function

Coefficient of t3 (x 10"“)

k1. coefficient of t in la klt driving function (x 10"“)

k1. coefficient of t in log ‘51: driving mung; i

la klt (x 104*)

log klt "

k1. coefficient of t. in eklt (x 10"“)

l/okltx10'3

Engrary storage for (l/ekt110"3)n and final storage for

If a 1 is stored here. t1/p is a driving function

Coefficient of ‘l/p (x 10'“)

(t x 104)”? or (104 t1/P) as needed

Value of p in t”p driving mnction

Coefficient of t in sin kit driving function (x 10"“)

1: t x 104* in sin klt (or cos klt) driving function cal-

culation

(kt x 10"“) - 2nTl'x 104

Mint 1 10"“) - 2n‘lTx 1046) HT: 10"“ after the bracketed

tern becomes negative: also the fraction ole' represented

by kt ( sin I: t or CO! klt)

Part 2 of Dif erential lquation program begins

Part 2 ends
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Location 9.92.19.12.11;

670 Assembly Routine begins

773 Assembly Routine ends

848-877 Inst Sine-Cosine Routine. '1'6-5

878-901 Integral Root. R2

902-922 hponentisl. 81+

923-936 Logarithn, 53

937-962 Decinal Fraction Input. I2

963-990 Print Routine. P1

999-1023 Decimal Order Input, 11



1.

2.

3.

5.

7.

9.
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