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CORRECTIONS

1959 Doctoral Thesis in Electrical Engineering: Compiler Solution of
Differential Equations with Differential Analyzer-Type Output, Lorn L. Howard

Page 51 - correct order pair 330 as follows:

330 40 531F
26 331F

Page 58 = correct order pair 444 as follows:

444 LS 592F
LO 493F

Page 72 - next to last line (part 2) - delete the first sentence and the
sentence in parenthesis immediately following it. Substitute
therefor the following:

“"pivide all the terms by the coefficient of the derivative of

highest order. (1If this yields coefficients whose values are

larger than 10,000 the original differential equation must be

scaled until the coefficients at this stage are below 10,000 =-
otherwise the problem will not go into the computer.)"

Page 75 - correct the first two terms in equation (1) to read:

0.05_d’y + d’y
46 2
dt dt

Page 75 - correct equation (2a) to read:

da*y + 20_a%y - 3900_dy + 200y = 2000sin 2t + 20t + 40
4 2

dt dt dt

Page 76 - correct equation (2b) to read:

0.0001 dai + 0,002 dzz - 0.39_92.4 0,02y = 0.2 sin 2t + 0.002t2 + 0.004
& 2

dt dt dt
Page 76 - correct equation (3) to read:
+ON5 +0001N4 <4ON3 +002N2 =39N1 +02NO = +2FSIN+OOO2NT

+002FT2 +004FK/IC 40 +0 +000001 +000001 +ON/INCR +IN

I am enclosing three copics of corrections
which should bz made to my 1959 Doctoral Thesis
in flectrical LEnginecering.
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ABSTRACT

Differential analyzer-type output is available from a digital
computer using the techniques described in this paper, In addition,
this is mande possible in such a way that anyone who needs the solution
to an ordinary linear constant coefficisnt differential squation may ob-
4aia it without assistance frou programmers or previous knowledge of the
operation or programming of either type of computer, . The user needs
only to convert his differential equation directly into a simple code
resembling the actual mathematical statement of the equation, punch this
code onto computer taps preceded by the compiler routine developed in
this paper, and have results immediately after feeding the tape to the
computer, The entire process should require at most only a few minutes,

As with the differential analyzer, the output is a simultaneous
presentation of the dependent varisble and all of its derivatives as a
function of time, A major difference, however, is in the greatly im-
proved accuracy of the results over those available from tpat type of
computer, Another desirable feature, of course, is in the large reduc-
tion in the time required to obtain the results,

Both the solution and the differential analyser-type of output
are accomplished without the necessity for the reduction of the differ-
ential equation to a series of first-order equations, a procedure which
ie often required, The standard Runge~Kutta integration procedure is
used,

The compiler routine developed herein is prepared especially for
-1 -



the Michigan State University automatic digital computer (MISTIC) but
may be used readily where other models of this type of computer are
available: Iowa State College , University of Illinois, University of
Sydney, Aberdeen Proving Ground, The programming technique, however,
is laid out in detail so that the method may be readily adapted to pro-
gramming for other types of digital computers,

Availability of storage space (1024 positions) limits use of the
program to the solution of equations of first through fifth order. A
wvide variety of combinations of "driving functions® is allowed, however,
Provision is made so that experienced programmers may readily modify the

routine to add other driving funotions as required,
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1, INTRODUCTION

It has been possidble to obtain the solution to differential equa-
tions with the aid of electronic equipment ever since the development of
the first all-electronic type digital computer, ENIAC, at the University
of Pennsylvania around 1942 (1). About five years later, another elec=
tronic device became available for this purpose: the electronic differ-
ential analyzer or analog computer (2),

The differential analyzer is frequently found to be faster, more
convenient, and more satisfactory in many problems, dbut the need is of-
ten felt for an accuracy and a kind of flexibility obtainable only on
the digital machine, This has inspired considerable effort toward the
production of either a machine or machine-program which would combine
the advantages of both types of computer,

The digital differential analyzer was one of the earliest of the
"machine® efforts, It was developed by a group of engineers from the
Northrop Aircraft Corporation (3), and was first discussed by Sprague
(4) 4n 1952, This digital-type computer is composed mainly of a set of
unite which perform an integrating function., These units are analogous
to the integrators in the typical electronic analog machine, The accur-
acy of this computer appears to be considerably less than that of the
usual digital computer; however, it ies sometimes approximately that of
the ordinary differential analyzer., It is slower than the differential

analyser,

In 1955 Selfridge (5) described a system of programming a digital
-1 -
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computer using a scheme very similar to that employed in the coding of
an analog computer, His method 'enploya a very simple integration pro-
cess in wvhich the increment consists solely of the sum of the inputs
multiplied by the mesh size of the independent variadble., Encoding a
differential equations problem for solution in this manner on a digital
computer is a great simplification; however, extremely small mesh sitze
is required in order to obtain appreciable accuracy. This has the die-
advantage of requiring much more time for the solution. Some problems
do not appear to be readily adaptable to this technique,

The Selfridge method allows the use of normal digital computer
coding. A different type of coding, using "pseude-code,” was developed
by Lesh and Curl (6,7) in 1957 for use with their "interpretive" digital
computer routine simlating differential analyzer operations. This cod-
ing depends upon an interpretive routine (previously fed to the computer)
to deduce the analeg computer component structure and sequence ef oper=
ations from it and to produce the differential equations' solutioa
therefrom, The system, called DEPI (differential equations pseudo-code
interpreter), is an aid to users familiar with analog computer oper-
ations but who are unfamiliar with digital methods since rapid, accurate
digital solutions to differential equation problems may be obtained with
out the necessity for learning digital techniques, In comparative per-
formance at similar accuracies the DEPI program is eight times slower
than an analog computer solution (6)., Even at this speed, DEPI perform-
ance is much faster than a digital differential analyser, At slower
speeds (reduced increment sisze), DEPI accuracy increases to that appro-
priate for normal digital computer output,

Recently (1959) Stein, Roese, and Parker (8) developed for a digi-



-3 -

tal computer a compiler routine (a program whose sole purpose is to as-
semble another program to carry out a specific function) which mekes use
of "analog-oriented® input information, Input to the compiler consists
of the encoded descriptica of an analog computer set-up diagram, This
system differs from either of the two previous programming techniques,
first, in that no effort is made to simulate the functional structure of
the analog computer, Secondly, the compiler does most of the program—
»ing for the digital machine, The balance is =ccomplished by Fortran,
an automatic ccding system developed by the International Business Mach-
ines Corporation, which accepts statements resembling mathematical lan-~
guage, The compiler output is Fortran input, and the entire operation
is handled by an IBM 704 digital computer, Common usage of the analog
computer set-up as a fundamentel "problem-source™ led the authors to be-
gin their programming at this point rather than at the point of mathe-
matical descriptionl. Deduction of differential equations from analog
computer set-up diagrams represents work done earlier by Stein and Rose
(9) and forms the basis for use of a code acceptable to the compiler,
Preliminary experience in use of this compiler indicates a speed four
times slower than a test analog computer on & similar problem at a com=
parable accuracy. This is two times as fast as the experience reported
with DEPI, and sueh a gain in computing speed was predicted by Lesh and
Curl (6).

The general purpose of the present work was to obtain a type of
program for the digital computer which would enable it to yield rapid,
aceurate, differential analyzer-type output from extremely simple, yeot

very flexible input,--input whieh could be written readily as a mathe-

lpersonal communiesation from Mr, Rose,
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matical expression by users having no familiarity with either type of
computer, Some conclusions were drawn from preliminary studies concern=-
ing the genmeral direction such an effort should take, and programming
was completed (within storage lirits of the computer available)in ful-
fillment of this aim,

In particular, a ecmpiler routine has been written for digital
computere of the MISTIC type (ILLIAC, SILLIAC, and OHDVAC) to provide
difforéntial analyzer-type output from simply-enccded differential equa~-
tion input, The differential equation may be of any order up to and in-
cluding the fifth, One-point boundary conditions must be availadle for
all except the highest order derivative, "Driving-functions” may con-
siet of a constant plus any additive combination of the following func-
tions multiplied by their respective coefficients: sin kjt, cos kot,
1n k3t, &4, ¢, 42, 3, and ¢1/2 or t1/3 or t1/% or +1/5, Rach func-
tion may be used only once; however, instructions for easy modification
cf the compiler to add other driving functions and still remein within
the storage capecity of the computer are given later, Also discussed
are outlines for extension of the present routine to include simultan-
eous equations and equatione of higher order (possible with the avail-
ability of more storage),

All previous effort to combine advantages of both types of com=-
puter har presumed knowledge of the programming of at least one of these
machines, Use of the compiler routine developed herein requires no sush
previous knowledge, and its programming for the digital computer yields
almost=-simultaneous information on the independent variable togetker
with the dependent variable and all of its derivatives,

Aside from advantages which accrue in obtaining a composite of
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the benefits of both types of computer, there 1s an economic urgency in
the development of compilers which is often pointed out by Hopper (9,10,
11), This fact obtains at installations of computers of the MISTIC type
mentioned previously as well as in industry. Insofar as is known to
this writer, however, there has beer no compiler development for solv-
ing differential equations on any of these machines, evean though the
physicist, chemist, enginser, or researcher there should be able to get
thie "bread-snd-tutter® job done as readily as his counterpart in indus-
try where compilers are commonplace,

On the following pages is described the preliminary study lead-
ing to the first programming efforts, assembly of the compiler routine
with a discussion of limitations, and final testing. The complete com~
piler routine is then given, together with instructions for ites use, An

example is also prepared in detail,



11, DIFFERENTIAL ANALYZER SIMUIATION

Most ef the attempts to simulate the differential analyzer have
sought i%s speed, eame of programming, flexibility, and economy. The
firet attempts (4) aimed at duplicating the phyeiocal action in an inte-
grating circuit by amassing a stored quantity at a programmed rate,

Some ease of programming and flexibility were gained, perhaps, but at a
loss of speed and aceuracy for some problems, Further developments have
made some improvement in these areas, Iater, Lesh and Curl's interpre-
tive routine (6) imitated only the structure of the analog program.

This routine made marked progress in achieving some of each of the de-
sirable attridbutes of the analog machine, Its authors pointed out, how-
ever, that the analog strueture of their program appeared to Ve artifi-
e¢ial and that improvement ecould probably be made by ite elimination,
They also suggested a compiler routine for increased speed, noting how-
ever, that it would be much more difficult to write and at the same time
keep flexible,

It was with the developnent of their modification idees in view
that the present work wee begun. There are several considerations which
make this type of compiler seem promising, First of all, both the Sel-
fridge routine (5) and the interpretive routine require sequential cal-
culation, This, in itself, precludes an output speed equal to that of
the analog device, Turther, it appears likely that =o long as digital
computers are sequential devices similar to present-day types, there is

little promise of completely duplicating the speed of the analog eomput-
- 6 -
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er., The compiler-type program, howsver, represeats an improvement over
the relatively slow interpretive routine, Secondly, the other desirable
characteristice principally involve the input and output of the machirce,
and it would seem reasonable to expect that, although the time and ef-
fort required might be appreciable, both the input and output of a digi-
%2l computer could be tailored to provide much of the flexibility, ease
of programming, and type of output found on the differential analyzer,
And then in particular, real economy of time might be realized by Hop-
per's "layman" (11), or inexperienced computer user, if such a compiler
were available, Finally, the solution of differential oqﬁutions need
not depend upon the integrating processes nor the component configura-
tion.inherent in the differential analyzer, but could be obtained more
readily by using a suitably-programmed mumerical method, Both the first
and last of these considerations have been utilized in a recent compiler
progranm (8,9).

The idea of simulating the differential analyzer as such then was
abandoned, and in its place was planned a compiler program which would
retain all the desirable features common to the analyzer as a differen-

tial equation solver except some of its speed, Even in this area, it

was planned to choose and provide routines to allow as close an approach

as possible to analog speed.



III. OBGANIZATION OF THE COMPILER ROUTINE

General Descriptioa

The Compiler is a complete routime in itself, designed to be

put on tape and fed into the computer Jjust ahead of a small amount of

coding (also on a tape) describimg the differential equation to be

solved, The coding is diecussed later, but it is the jeb of the Com=

piler to brimg this cede into the computer, to obtaia, and then to out-

put the solution to the differeatial equation represeated thereon,

The Compiler must mecessarily contain a mumbder of sudbroutines

designed to do specific Jjobs if the calculations are te be obtained ef-

ficiently, The routines are listed belew in the order im which they

appear en the Compiler tape, (Their memoery locatioas are given at the

end of the Compiler Routine and in the Appendix,)

1.

3.

5.
6.
7.

Input the balance of the Compiler (Decimal Order In-
put)

Differential Equation (including "Driving Function”
Routine)

Assendly

Tast Sine-Coeine

Integral Root

Exponential

Logarithm

Decimal Fractien Input

- 8 -
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9, Decimal Fraction Print
This 1list comprises everything in the Compiler with the exception of
special control orders. The complete Compiler program, except for
standard library routines noted in the following dieculuion, is given
order by order in part V,

In operation, the Decimal Order Input brings in the rest of the
Compiler. Control is then transferred to the Assembly routine which
proceeds to bring in the encoded differential équation. As this equa-
tion code is being brought in, the Assemdbly routine makes choices and
sets counters to organisze a program to solve the differential equation,
Program control 1is transferred to the differeantial equation-solving rou-
tine at the end of this read-in,

That routine then proceeds to carry out a program to evaluate the
differential equation. Control is often transferred out of the routine
and into subroutines for frequently-repeated operations such as print-
ing or punching out information or calculating the driving function. In
the case of the latter process, program control frequently leaves its
subroutine also to go to other subroutines such as the exponential, sine,
logarithm, et cetera, finally returning to the Driving Function routine,
and then later to the main routine, One increment of each of the vari-
ables after another is calculated and ocutput., The machine will continue
to run until stopped or until hang-up occurs due to overflow,

Since the computer operates with fractional quantities, the pro-
gram is designed to carry out calculations at a value of the variables
which is at least 0,0001 of their actual value (see part VI) in order to
allow for considerable growth of the variables before overflow or hang-

up. This implies that in determining the range of allowable computa=
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tions the user must consider that normal unscaled values in the solution
may not exceed 9,999 (when a factor of 0.0001 only is used). In fact,
they must be considerably less than this if the cglculation is to pro-
ceed usefully for very lonzg. Scaling must also be considered in the use
of the various driving functioa subroutines such as those listed (1imits
are discussed later on in this part).

Fixed-point programming is used throughout. This does not seem
t0 linit seriously most problems of the usual engineering type encoun-
tered, A decision to provide floating-point prograaming would have al-
lowed considerably less storage space for essential operations,

The routine to input the balance of the Compiler ie the stand-
ard Decimal Order Input routine availadble at any of the MISTIC-type com~

puter installations,

Differential Bquation Routine

The Numerical Method

The Differential Equation routine is prepared especially for this
compiler, Its purpose is to carry out the numerical solution of the dif-
ferentinl equation using the Runge-Kutta method (four-step). It is de-
sirable to consider some reasons for such a choice,

Numerical methods for‘ solving differential equations on digital
computers have been studied extensively since 1942 and a partial list of
the work reported in the literature is givem in the bibliography (13-20).
A recent comprehensive study was made by Williams (20). He fouad that
the best accuracy obtained in a comparison including several four-point

methods, a series method, the Runge-Kutta-Gill technique, and the Wilf
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method came from use of the Runge-Kutta-Gill procedure. The price for

this accuracy is a somewhat reduced speed, however. Gill himself points
out that his modification of the Runge-Kutta process is slower than the
original (21).

Actually, this general process (Runge-Kutta) has been chosen by
several authors as the outstanding method for machine solution. ZThe
earliest seems to have been Froberg (14) in 1950. Alse, it was used by
Lesh and Curl (6), and by Stein, Rose and Parker (8)., It is essentially
a refinement of what may be called averaging methods, and has the very
desirable characteristic that it requires no special formulas to get the
solution started. FPurther, for purposes of this work, it lends itself
readily to prozramming without the annoying neceseity for reducing equa-
tions of order greater than one down to the first order. In addition,
it is easy to obtain the usual values one expects to find at the output
of a differential analyzer, i.e., ¥, ¥, ¥, et cetera, in passing nermal-
ly through the calculation procedure,

The Runge-Kutta method has no check on eccuracy, and the error
cannot be determined although it is near the order of the fifth power of
the increment of the independent variable (22)., Improvement in accuracy
can be obtained by taking smaller increments——up to a point. Such a de-
crease always reduces the speed and increases the possible roumd-off
error, Another method, such as Milne's, might be added to the Runge-
Kutta method after starting in order to provide for a regular check on
the accuracy. It 12 felt that this would require excessive storage—
already in short supply for the present program—eznd it has not been

done,
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Runge-Kutta Equations

The unmodified verson of the Runge-Kutta method was chosen after
preliminary testing (see part IV) demonstrated its suitadbility insofar
as speed and accuracy were concerned. The equations (22), including all
steps necessary to make calculations for two increments of all the de-
pendent variables in an ordinary linear constant coefficient fifth order
differential equation, are given on pages 13 and 14, Note that the equa~
tions for two increments are given; also, that a2ll steps necessary for
the calculation of a fifth order equation are included, The assembly
routine decides the order of the equation being input and makes a choice
as to whether all or part of these ejuations are used-—depending upon
the order of the equation., The major modification of the steps for an
equation of order less than five requires calculating the highest deri-
vative of the equation as 2 function of the other terms in the equation—
in a manner similar to that shown for the fifth order equation-—-rather
than as shown for that derivative in the chart, As for the fifth deri-
vative, the function is evaluated using the values of the variables cor=-
responding to the step in which the highest derivative is being evalu-
ated.

Consider the procedure for obtaining the solution to a fifth or-
der differential equation using the steps shown in the chart, The first
line (except for the highest derivative) at the top of the two pages
consiste of initial conditions, and the first calculation requires the
use of these in evaluating the highest derivative'?il. The next calcu-

lation is of Y12, and then the calculating proceeds to the left until

%12 is calculated, Follewing this, 712 1s calculated using the values

obtained in the calculations which proceeded leftward aloag the second
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line, A similar pattern is followed in making the calculations along
the third line. After completing the fourth line in the same fashion
the incremente AY), A¥;, AY1s A¥1,4y), andAt are calculated in that
order. This completcs calculations in the first increment group. One
may then proceed to the beginning of calculations for the first step in
the second increment group and obtain ¢33, Next, ¥21 is obtained, and
80 on, After the fifth derivative is celculated, the balance of the
computation proceeds in the ;ame manner as that in the first incremeant
group, Calculations in successive increment groups proceed in the same
manner,

Differential annlyzer-type output is desired, so in actual com-
puter operation each of the variables in the first etep of each incre-

ment calculation group is output as soon as its value is available,

Programming the Bquations

Figure la shows the flow diagram for programming the first half
of the calculations in any increment group, The flow diagram for the
second half is shown in Figure 1b, The block notation is thab given by
McCracken (23); Lowever, the functions of all of the blocks in the dia-
gram are largely self-evident, Iines lesading to encircled letters make
connection with other lines at points where thare are ideatical letters,

Some discussion of the contents of blocks in the flow diagram is
desireble., In the upper left-hand corner of Figure la is a box indicat-
ing calculation and storage of the driving function, step 1, This oper-
ation is actually a subroutine in iteelf and its flow diagram may be
found in Figure 2, The program goes into this calculation four times

during the calculation of one increment--cnce for each step therein,
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The value of the driving function is obtained here for later use in cal-
culation of the highest derivative, An "order test" box indicates the
location of a programmed test to ascertain the order of the differential
equation being solved, "Print" boxes indicate the position in the pro-
gram at which information is being output, and, dependirg upon the com—
puter, this may come out as punches on tape, printed numbers ( see part
VI for interpretation) or plotted points, Blocke representing caleula-
tion and location of opeciallincrenent constants, and blocks giving in-

structione for output have been omitted for simplicity.

Calculation of the Driving Function

The flow diagram of Figure 2 indicates the pattern used for ob-
saining the value of the driving function. A test to determine whether
or not one of the allowed functions is contained in the driving function
ie indicated by "f(t) test.” The routine frequently requires that pro-
gram control leeve it for calculation in other routines specifically de-
signed to obtain the values of certain types of functions. A brief dis-
eussion of all the routines and their limitations follows,

The calculation of ¢, t2, and ¢3 is etraightforward, and there 1s
no restriction on the walues which t may have, The computer will, how-
ever, give incorrect output when either of these powers of t multiplied
by ite coefficient exceeds 9,999 when unscaleld, The same rule applies
to any of the succeeding driving functions and its coefficient,

The Logarithm subroutine requires that the number for which it
computes the logarithm lie between zero and 1 (not inclusive), Of
course, the coefficient of ¢, ky (in 1ln kjt) must be less than 10,000 in

order to be able to scale it to fractional size according to instrug.-
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tions in part VI and then get it in the computer, If it is less than
this number and can be input, then gomputation of the 1ln kit may pro-
ceed as long as the product of scaled k) and the unscaled value of t (t
is normally carried in the computer at 0.0001 its actual value) is less
than unity, |

The Exponential routine has a similar requirement except that the
product kjt must 1lie between -1 and O, The sign ie taken care of in the
program so the user need only place the same restrictions on the pro-
duct of the coefficient and t as in the previous routine,

In calculating the integral root, it should be emphasized that
only one of the three "roots" may be calculated by the driving function
in the solution of any one differential equation. No other restrictions
are necessary.

In using the Fast Sine-Cosine routine, the same restrictions
apply as were necessary for the Logarithm routine: the product of the
scaled coefficient of ¢t and unscaled t must be less than unity,

Insofar as the constant is concerned, it must be less than unity
when scaled for input, This applies, as well, to all coefficients,

It may be seen by inspection of Figure 2 that additional driving
functions mnay be added readily with very little additional programming,
Actually, the entire Differential Equation routine may be easily lifted
out of the Compiler and used by itself with no modification when addi-

tional driving functions are required for differential equation solving,

Assembly Routine

The Assembly routiae is shown in block diagram form in Figure 3,

The programming of this routine is begun with order pairs at location
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670 in the memory (see part V). 1ts sequence of operations begins with
reading in and storing each of the coefficients of the derivatives, As
soon as a non-zero coefficient of a derivative is sensed, the order of
the differential equation is available and a constant is set to indicate
this order, After all coefficlients are input and stored properly, the
Assembly routine begins sensing more of the differential equation code
to determine the nature of the driving functions, initial conditions,
and increment, and set indicators accordingly. The actual code used is
given in part VI together with instructions for its use, The code is
also listed below together with the characters of each code group whichn
is sensed and the binary representation of the sensed characters, The
letters "IC" and "INCR" representing respectively “initial conditions
and "increment" are also equation code but are merely indicators and are
not sensed for directions; therefore, they are not listed. (Lower—case

k and k] are constants.)

Driving Function _ Code

Character(s) Sensed Binary Representation(s)

kloky t  kFLNKN? L 1111
k elnky t  KFSINKNT s 1011

k cos kj ¢ KFCOSKkNT 0 1001
constant, k kFK K 1010

Kt KPT1 72 1001 0001
k 2 KFT2 T2 1001 0010
k t3 KFT3 73 1001 0011
x t1/2 KFR2T R2 0100 0010
r ¢1/3 KFR3T R3 0100 0011
e t1/k KFRUT RY 0100 0100
i ¢1/5 KFRST R5 0100 0101
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Driving Fuaction Code Character(s) Sensed  Binary Ropresentatioa(s)
x o1t KFEk,T ® 0011

Inspection of the coding will show that the coefficient of the
driving function can be easily read in with the input routine (which ie
stopped by the "P* )-after which the next character in the code can be
sensed in the a, position of the accumulator. Thie holds true for all
except the cosine code, In practice it holds there, also, because the
"C"* 18 a fifth hole character and as such is skipped by the read-in pro-
cess, When the charscter following the "F* is sensed, function indica-
tors ars set accordingly. This is tle general plan of the driving func-
tion sensing, and it includee the setting of indicators for as many
functions as are included in the equation,

Initial conditions are read in after the differential equation
driving functions are determined. They are stored according to inform-
ation sensed on the order of the equation. Finally, the increment is
read in and stored, Control is then transferred to the beginning of the

Differential Equation routine,

Other Routines

The function of each of the other routines listed in the general
description of the Compiler is indicated by its title--the last two rou-
tinee being responsidle for all input and output operations, Finally,

a brief increment-constant caleulating routine precedes the Differential
Equution routine and would need to be included with it in any attempt to
use it apart from the Compiler,



1v, EXPERIMENTAL PROCEDURE

The first experimental work was planned to test the speed, ease
of programming, and accuracy of the Runge-Eutta equations using a sec=-
ond order differential equation with only a simple driving function, ¢,
and an increment of t = 0.1, The results were good in each case: speed
was such that a complete increment was calculated and output for each
variable in approximately one second; the programming was readily car-
ried out; and the results were accurate well beyond normal three-to-
four-place eagineering requirements, This accuracy remained even when
the program was run for a great many cycles and when it might be ex-
pected that round-eff error would begome appreciable, This was evideat
in a test in which three values of the incremeat of the independeat
variable , t, 0,01, 0,05, and 0.1 were used in three separate program
runs of the same second order equation described above, Six or seven
significant figure agreement between the values of the differeat vari-
ables calculated for each of these values of At was evident after ¢ =
LS seconds, Increments of 0.3, 0,6, and 0,9 were also tested; however,
the error for these values grew excessive rapidly. The increment of
0.1 was used in all further testing.

A general fifth order differential equation solution program
(solving aay order up to and including the fifth) was written thereafter
and was tested with the same second order equation used above, After it
worked successfully and minor changes were made to improve accuracy,

equations of first, third, fourth, and fifth orders were tested and run
-28 = )
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successfully with the simple driving function, t, used above,

After the main differential equation solving routine appeared to
run successfully for all squation ordere, testing was carried out on es
panding its driving function calculating subroutine to include she cal-
culation of all the other allowed (see part V1) functions, The testing
of the calculation of each of the other functions was performed with a
firet order equation haviang the driving function under test. The test
was considered successful when the results corresponded with values od-
tained from an analytsical solution, The end of these tests marked the
oompletion of the Differential Bquation routine,

The Conpiler Assembly routine was begun next and was tested first
to read in properly all the coefficients of derivatives, Thereafter,
sach test included coefficient read-in and the proper read-in of another
driving function code, After each driving function code had been
checked, several combinations of those codes 1n.typtcally-encodod aif-
ferential equations were further checked, Each checking involved an ex-
aaination of computer post-mortem print-outs indicating the storage in
certain locations since the ability of the Differential Equation romtine
to run properly depends upon proper storage of data from the encoded
equation., TFinally, each of the equations which had been run earlier in
testing the Differential RBquation routine were encoded and fed %o the

.
computer after the Compiler—aov complete with the addition of the As-
semdly routine, All ran successfully and the Compiler programming and
testing was considered complete,

The Compiler might have been written to punch out on tape the
completely asseabled program which it prepares in the computer storage,

I8 was decided that there was little justification for this when 4%
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would only involve the loss of time required to output and thea input
the same information again before starting the solution. For this rea-
son, computer control is transferred immediately to the Differential
Equation routine for the beginning of the solution just as soon as
the Asseably routine dbrings in the encoded equation,

Some operating times are of interest, It requires approximately
fifty-two seconds to input the Compiler. Program assembly is accom—
plished in negligible time., The tiae required to odtain and output all
of the increments for all of the variadles in a given equation is called

the "time per cycle.” Typical values follow:

Order of Equatjon Driving Functien Time per Cycle (Sec,)’
1 ] 0.93
2 t 1.25
3 t 1.6
b 3 2,0
5 ] 2.4
1 0 0,94
1 t2 0,96
1 %) 0.96
1 la t 1.05
1 W1/2 1.25
1 t1/3 1.4
1 s1/4 1.7
1 v1/5 1.7
1 et 8.2

1l cos ¢ 1.0
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Order of Equation Driving Function Time per Cycle (sec,)
l sin § 1.0



V. THR COMPLETE COMPILER PROGRAM

Order pairs for the coqplote'Compilor progran are givea in the
pages which follow., No attempt has been made to "tighten-up®" the pro-
gram, In fact, room has been left in the program for easy modification
of sections where, for exampls, it might be desiradble to add a driving
function or modify the calculation of an cxietiﬁg ome,

This program, witheut additions or modificatiens, represents the
entire code needed for preceding the encoded differeatial equation tape
discussed in part VI,

Some special motation includes:

£( ) = The value of the highest erder derivative fer any
step in the four-step process is the explicit
function of all the other variables and the con-
stant in the differential equation evaluated with
the values these variables have at any given step,

This functien is represented thus,

oerder

sest - Test to detersmine the order of the differential

equation,
Letters such at t4;, Y41+ et cetera, are those in the Runge-Eutta

relations ea pages 13 and 14,

- 32 -



LOCATION ORDER ROTES
Library Routine X1 Decimnl Order Iaput
00 20K
20 22 207
Ls S1F
21 10 17 —  Calculate and store &t
40 520F __| 2
22 50 519F
7J Lgor — Calculate and store _%t.
23 o s21¢ __|
50 5197 |
24 ?2J 491F — Calculate and store At(x 10'!’)
b 5177 __
25 L5 517F |
10 1F -~ Calculate and store -O%(x 107
26 4o 5187 2
26 277
27 92 131¢ Carriage return and line feed
92 131¥
28 92 515F Delay
L5 516F |
29 o N IR
50 29F
30 26 963F
92 963F 2 carriage spaces
31 92 963F
26 33F
32 26 3¢
26 33F
33 22 33F —
15 s515¢
34 52 114
50 WP — Print out yj)
35 26 963
92 963F

2 spaces
36 92 963F



LOCATION ORDER
Lidbrary Routine X1

20

21

23

24

25

26

27

28

29

30

31

32

33

35

36

00 20K
22 207

L5 S19F
10 1P

Lo 520F
50 519F
7J Loor
4o 5217
50 5197
?7J 491F
40 517%
L5 517F
10 1F

Lo 5187
26 277
92 131r
92 1317
92 515r
L5 516r
52 1147
50 29P
26 963F
92 963F
92 963F
26 33F
26 33F
26 33F
22 33F
15 515r
52 1147
50 3uF
26 963¢
92 963F
92 9637

Ii

KOTES
Decims] Order Iaput

Calculate and store &t
2

Calculate and store .%‘.

Calculate and store At(x 10"")

Calculate and store Azt(x 107")

Carriage return and line feed

Delay

Print out til

2 carriage spaces

Print out yi)

2 spaces



LOCATION

37

38

39

151

k2

43

ks

47

50

51

52

53

ORDER

26 387
26 38r
26 I8¢
S0 516r
50 3&r
26 373F
26 Loy
LS W3
10 4o2F
36 L2r
26 91r
50 505¢
71 515¢
66 Wo1r
S5 ¥

14 566r
40 5142
22 457

| |

NOTES

(516) is t,

p— Transfer to a subroutine to cal-
culate the driving function of the
firet calculation of £( )

— Order test No. 1

(differential equation order = 1)

(differeatial equation order > 1)
Ceatrol toc print iil

— Caloulate and store y43 = f( )

LS Siur
52 114r
50 LEr
26 963F

— Print ¥4, = ()

26 sor
26 sar
26 507
26 50F
26 s50P
50 520F
7J 514¢
14 515F
4o 536F

— Calculate and store ’12

L5 518r
14 5168

— Calculate and store t45

ko 5377 __I



LOCATION

54

55

56

5?7

58

59

60

61

62

63

65

67

69

70

ORDER

26 SUF
50 S37%
50 sSuP
26 373F
26 56F
15 4o3F
10 uy2F
36 58P
26 1107
50 505F
71 53&r
66 W91r
Ss ¥

14 566F
ko 53sr
50 S520F
79 535¢
4 S15F
ko sk3r
15 5377
Lo suury
50 SiuE
50 64T
26 3737
26 66r
L5 493F
10 4927
36 68F
22 1207
50 505F
71 5437
66 W91y
S5 ¥

LS 5667

|
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NOTES

(537) 1s tiZ

Pransfer to a subroutiaze and oal-
culate the driving function of the
second calculation of f£( )

Order test No, 2

( differeantial equation order = 1)
( differential equation order > 1)
Control to order test No, 6

Calculate and store ys, = £( )

Calculate and store 113

Obtain and store t43

Transfer to subroutine to calculate
the driviag function of the third
calculation of £( )

Order test ¥o, 3

(Differeatial equation order = 1)
(Differential equation order > 1)
Coatrol to order test No, 7

Caloulate aad store y;3 ¥ £( )



LOCATION

71

72

73

7%

75

76

77

78

79

80

81

82

83

85

86

ORDER

4o su2r
50 519F
7J 542F
14 515¢
40 550F
LS S17F
14 516r
ko 551F
26 7%
50 551F
50 75F
26 3737
LS 493P
10 492F
36 797
26 131r
26 79F
50 Sos®
71 550P
66 W91r
S5 ¥
A 566r
ko suoP
22 82F
11 39F
LS s3s¥
4 Su2P
00 1P
4 5147
IA4 S4LOF
ko 556F
50 556r
7J 521r

11

Il

NOTES

o Calculate and store yy

— Calculate and store ti4

— Transfer to subroutine to calculate

the driving function of the fourth
calculation of f( )

— Order test No, 4

(aifferential equation order = 1)

(differential equation order > 1)
Control to order test No, 8

— Calculate and store yy) = £( )

— Caloulate and etore Ay,
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LOCATION ORDER NOTES
87 ko 561 __|
15 577 |
88 Ik 516F — Calculate and store %, ,
bo 516F __|
89 15 s6ir |
4 515¢ b Calculate and store y:l.+1.1
90 b 515¢ |
26 277 Control to 27 to begia calculation
— of values at the next increament
91 L5 5147
14 s60F
92 Lo 5147
L5 514 — Obtain, store and print ;11
93 52 114F
50 93¢
94 26 9637
92 963F 2 spaces
95 92 9637
26 977
96 26 977
26 97 ___
97 LS Lour
L0 492r — Order test No. S
98 36 99F (differential equation order & 2)
22 144F | (differential equation order > 2)
99 50 50ST -/ Control to print 731
71 515¢
100 66 491F
Ssr
101 4o s526r
50 s04¥ — Obtain and store ;;1 =1()
102 71 S14F
66 491r

103 Ss T



LOCATION

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

ORDER

I4 5267
1A S66F
4o 513F
22 105F
L5 513F
52 1147
50 106F
26 963F
50 520F
73 513F
Ih 5147
Lo 535F
26 sorF

15 4our
10 4927
36 112F
26 1647
50 505F
71 536r
€6 4o1r
S5 T

4o 526F
50 S0uF

71 535F
66 W1r
§5 7

L4 5268
14 566F
ko s34F
50 S20F
79 534%
4 S14p
ho su2r

| |
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NOTES

e Print ;11 = ()

— Calculate and etore }‘2

Control to calculate y4

— Order test No., 6

(differential equation order = 2)

(differential equation order > 2)
Control to order test No, 10

— Calculate and store ;12 = 2( )

- Caleulate and store .713



LOCATION

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

ORDER

26 é1r
LS Wolr
L0 492F
32 122F
22 177F
50 505F
71 s43F
66 491r
ss5 ¥
4o 526r
50 sour
71 542F
66 491r
S5 Y

14 526r
Ik 566r
ko su41r
50 519F
73 sy
IA 5147
4o Su9r
26 717
LS 4our
10 4927
36 133
26 191F
50 S05F
71 550F
66 491r
ss ¥

Lo s26r
50 Ssour
71 SM9F
66 491r
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NOTES
Control to calculate and store y4,
Order test No., 7

(differential equation order = 2)

(differential equation order > 2)
Control to order test No, 11

Calculate and store y33 = £( )

Calculate and store yg,

Control to calculate and store yy)

Order test No, 8
(differential equation order = 2)

(differential equation order > 2)
Control to order test ¥Wo, 12



LOCATION

137

138

139

140

141

142

143

1k

145

146

147

148

149

150

151

152

153

ORDER

S5 ¥

14 5267
14 566F
4o sugr
11 39¥
LS 534F
1A 5417
00 1F
14 5137
LA skar
ko 555¢
50 555¢
7J 521r
Lo 560F
22 82r
L5 5137
14 559¢
ko 513¢
52 1147
50 146r
26 963r
92 963F
92 963F
L5 495r
10 Lo2r
32 150F
26 2087
50 S05F
71 515F
66 W91F
S5 ¥

4o s526r
50 SOuF

NOTES

Calculate and store yyy = f£( )

Calculate and store Ayy

Control to calculate and store Ay,

Obtain, store and print ;11

2 speces

Order test No, 9
(Differential equation order = 3)

(Differential equation order >3)
Sontrol to print yiy



LOCATION

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

ORDER

71 Si4r
66 4o1r
Ss»

ko s257
50 503F
71 5130
66 491r
Ss?”

Ik s26r
14 s2sr
4 5667
ko 5127
L5 512
52 1147

50 1607
26 963F
50 520F
73 512¥
A4 513¢
4o S3UT
22 1077
LS Wsr
10 492r

36 166 -

22 234r
50 505F
71 536¢
66 bo1r
S5 r

4o S26r
50 5047
71 535¢
66 u91F
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NOTES

Calculate and store 3;1 = £( )

Print ‘i’u w ()

Calculate and store ¥y,

Control to calculate and store yj2

Order test No. 10

(differential equation order ® 3)

{differential equation order > 3)
Control to order test ¥o. 14



LOCATION

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

ORDER

Ss”r

Lo s2sr
50 503F
71 S3u¥
66 491r
S5

14 5267
14 525¢
14 5662
Lo 533
50 5207
73 533F
4 5137
Lo su1ry
26 118F
L5 495r
10 W92F
32 1797
26 2527
50 505F
71 SL3TF
66 491r
8s?

Lo s26r
50 Sour
71 5427
66 491r
85 ¥

Lo s25r
50 503F
71 ssr
66 W1y
S5y

|
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NOTES

- Calculate and store yi» = £( )

- Caloculate and store ;13

Control to calculate and store 513

— Order test No. 11

(differential equation order = 3)

(differential equation order D 3)
Control to order test No. 15

- Caloulate and store yy3 = £( )




LOCATION

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

14 526F
4 5257
14 5667
40 skorF
50 519¥
73 SkoF
4 513F
4o suar
22 128r
15 b9sr
10 Lg2r
36 1937
26 2697
50 505F
71 550¢
66 49T
ss T

ko s26r
50 S0u¥
71 skor
66 491X
SsTr

40 5257
50 503
71 s48P
66 Lo1F
Ss”

IA 526r
14 5259
T4 S66F
4o su7r
11 397
15 533F

NOTES

— Calculate and store ygi

Control to calculate and store :.r‘u

— Order test No, 12
(differential equation order = 3)

(differential equation order > 3)
Control to order test No, 16

- Calculate and store y3y = f( )




LOCATION ORDER NOTES
203 1A SskoF
00 1r
20 4 5128 —  Calculate and store Ay,
14 su7y
205 Lo ssur
50 554F
206 7d 521r
ko 5597 ___
207 26 1397 Control to calculate and store Ai’i
26 2087
208 15 5127 |
I4 5587
209 ko 5127
L5 512 - Obtain and print yy;
210 52 114F
50 2107
211 26 963F
26 212¢
212 92 131r Carriage return, line feed
92 515¢ Delay
213 92 677 Tad
92 515¢ Delay
214 92 677 Tad
92 515¢ Delay
215 L5 bosr |
10 ko2r — Order test No. 13
216 36 2177 (differential equation order = 4)
26 2897 __ | (differential equation order D> &)
217 50 sosF ] Control to print yiy
71 5158
218 66 491r
S5
219 ko 526r

50 sou4r



LOCATION

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

ORDER

71 S14p
66 491r
Ss »

o s25¢
50 503F
71 5137
66 491r
S5 ¥

4o 5247
50 502P
71 5120
66 491F
S5 ¥

1A 5267
14 525%
4 s2up
Ih 5660
bo S11P
22 2297
L5 511F
$2 1147
50 230F
26 9637
50 5207
73 511F
Ik 5127
bo 5337
22 161r
22 2347
LS 496r
10 War
32 236r
22 3157
50 sosr

- U5 -

Caloulate and store yy; = f£( )

Print y;, = 2( )

Calculate and store '5'12

Control to calculate and store y,,

Order test No, 14
(differential equation order = 4)



LOCATION

237

238

239

240

2

242

243

244

245

246

2u7

248

2b9

250

251

252

253

ORDER

71 536F
66 W91r
S5

Lo s26»
50 504%
71 535¢
66 4o1r
S5 r

Lo s25r
50 S03¥
71 534F
66 491F
S5 T

Lo s24®
50 502F
71 533¥
66 491F
S5 T

14 526F
14 525F
Ik 52uF
14 566F
Lo 532F
26 2u9F
50 520r
7d 532%
I4 512F
Lo suor
26 175¢
26 2527
15 Wer
10 L92F
36 254F
26 334F

NOTES

Calculate and otore“y'iz w ()

Calculate and etore yi3

Control to calculate and store }"3

Order test No. 15

(d1fferential equation order = 4)

(d1fferential equation order > L4)
Control to calculate and store ¥i3



LOCATION

25k

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

ORDER

50 505F
71 Sk3F
66 W91F
S5 ¥

Lo 526r
50 50u4F
71 S542F
66 491r
§5 ¥

Lo s25F
50 503F
71 sy
66 L91F
S5 F

Lo s2ur
50 502F
71 skor
66 491F
S5 T

14 526r
14 525F
14 S24F
14 566F
Lo 5397
50 519F
7d 539F
14 512F
Lo su7F

22 188r

26 2697

15 496r
10 Lo2¥
36 271F

-“‘?-

NOTES
— Calculate and atore"irb - ()
— Calculate and etore'§;“

Control to calculate and store ;‘u

Order teet No. 16
(differential equation order = L4)



LOCATION ORDER NOTES
26 352 __| (differential equation order > i)
271 50 505F — Control to calculate and store y,,
71 550F
272 66 491F
SS F
273 Lo s526r
50 sour
274 71 549F
66 Lo1r
275 S5 ¥
4o 525F
276 50 503F
71 5keF e Calculate and store 'y, = £( )
277 66 491F
S5 F
278 Lo s24%
50 502F
279 71 547F
66 L91F
280 S5 r
14 526r
281 14 525F
Ik 524F
282 Ih 566F
ho skér __|
283 11 397 |
L5 532r
284 1A 539F
00 1r
285 4 5117 — Calculate and store Ay,
1A S46F
286 4o 553F%
50 5537
287 73 S21F __




LOCATION ORDER NOTES
Lo 558% __'
288 26 202F Control to calculate and storeAyy
26 289F -
289 L5 5117 |
14 557F
290 ko s11F
LS 511F - Calculate, store and print"}:'u
291 52 114F
50 291r
292 26 963r __|
92 963F
293 92 963F
92 9631 5 spaces
294 92 963F
92 963F
295 50 50 |
71 515F
296 66 491¥
Ss ¥
297 Lo s26r
50 sour
298 71 S14F
66 Lo1r
299 S5 F
Lo 525F
300 50 SO3F
71 513¥%
Jn 66 Lo1¥ e Calculate and etore"j"il g ()
S5 F
302 Lo 5247
50 502F
303 71 s512r
66 W91¥




LOCATION

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

ORDER

S5 ¥

40 523F
50 501F
71 511F
66 Uo1r
S5 ¥

L4 526F
14 5257
1A s24x
14 523F
IA 566F
ko 5677
22 310F
L5 567F
52 114¥
50 311F
26 9637
50 520F

7J 5677
4 511F
Lo 5327
26 3157
22 2317
50 505F
71 536F
66 L91F
S5 ¥

Lo s26r
50 S04F
71 535¢
66 4o1F
S5 T

Lo 4257

1

-50-

NOTES

Print’yyqy = £( )

Calculate and storo‘?iz

Control to calculate and storo'yiz



LOCATION

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

ORDER

50 503F
71 S3UF
66 u91Y
S5 F

4o 52uF
50 5027
71 5337
66 L91F
S5 ¥

ko s23»
50 501F
71 532F
66 491X
S5 ¥

s 526F
4 5257
14 52uF
4 523T
& 5667
Lo s31¥
26 2317
50 5207
7J 531r
4 5117
Lo 5397
26 2uoF
26 3347
5¢ 505r
71 5437
66 Lo1r
S5 T

4o 526r
50 SOMF

NOTRS

Calculate and store"fiz = ()

Calculate and store :y',.3

Control to calculate and store yi3



LOCATION

337

338

339

340

341

342

343

345

346

347

348

350

351

352

353

ORDER

71 Sk2F
66 Lo1y
S5 7

Lo s25r
50 503F
71 S41F
66 4o1F
S5 F

Lo 52u4F
50 5027
71 Skor
66 491F
s5

ko 5237
50 501F
71 5397
66 491F
S5 F

IA S26r
4 525¢
4 524
4 5237
14 5667
ko 538r
50 5197
7J 538F
L5 511»
bo suer
26 266r

.26 352F

50 505F
71 550F
66 491r
S5 »

-52-

NOTES

Calculate and |tore'"y'i3 =2()

Calculate and store vy

Control to calculate and store 'i'w



LOCATION

354

355

356

357

358

359

360

361

362

363

64

365

366

367

368

369

370

ORDER

Lo 526r
50 SOUF
71 S49F
66 917
S5 7T

40 525F
50 5037
71 Suer
66 491F
ssr

40 S2uF
50 5027
71 5477
66 U9TF
S5 ¥

Lo s23¢
50 5017
71 S4EF
66 U9IF
ssTr

Ik 526F
14 525¢
14 5247
14 5237
14 5668
bo susr
11 397
15 53IF
14 538F
00 17

i S67F
Ik susr
4o 5527
50 552

|

- 53 -

NOTES

Calculate and storeA'iii



LOCATION ORDER NOTES

371 7J 521r ‘_I
ko 557F
372 26 283F Control to calculate and store Ay,
26 373F
373 S5 F Begin subroutine to calculate the
46 375% driving function
374 14 L93P
42 651F Set link
375 15 () T} Store ty; in location for driving
4o 527F function calculation
376 L1 s6ér - Clear driving function storage
26 3777
377 L5 seer — Is t included in the driving func-
10 4337 tion?
378 36 3797 (Yes)
22 381F | (No) Transfer to $2 test
379 50 527¢ |
75 575%
380 66 4917 — Calculate and store kt
SS F
381 bo s66r __ |
LS 569F - Is t2 included in the driving func-
382 10 497 tion?
32 383°F (yes)
383 22 3877 __ | (no) Control to t3 test
50 527F T |
384 75 576r
66 L91F
385 75 527F | Galculate and store kt2
66 u91F
386 S5 T
14 566r
387 Lo 566F

L5 583  |—  1Is t3 in the driving function?



LOCATICN

388

389

390

391

392

393

394

395

396

397

398

399

koo

4o1

Lo2

403

ORDER

10 493F
32 389F
26 395F
50 527F
75 S84F
66 U91F
75 5277
66 uo1r
75 527%
66 4W91F
S5 T
14 566F
Lo 566F
26 395r
L5 570r
L0 493F
36 3977
26 Loor
L5 5277
Lo 4937
36 3997
26 L2sr
22 399F
50 585F
75 527¥
66 491r
S5 7

26 Loy
50 F

50 4O2F
26 9237
10 &r
73 W77
14 499Y

NOTES
(yes)

(no) Control %o ln t test

Calculate and store kt3

Is 1n ¢ included in the driving
function?

(yes)
(no) Transfer to log ¢t test

Calculate and store k 1n kjt



LOCATION

Los

ko6

407

Lo8

ko

k1

k12

413

b1k

b1s

Kné

L7

418

k19

k20

b21

ORDER

ko 587F
50 587F
75 577¥
66 491F
S5 T

Ik 566F
Lo s66r
26 Loor
LS 571r
10 493F
36 u11r
26 L2s¥
L5 527F
LO k93P
36 413F
26 Lasr
22 4137
50 586F
75 527F
66 491r
ss T

26 L6r
50 ¥

50 L16Y
26 9237
10 ér
77 Lo7¥
1A 4oor
ko 587F
50 587F
73 uosr
4o seer
50 588F
77 s78r

- 56 -

NOTES

e Is log ¢t included in the driving
function?

(yes)
(no) Control to e test

— Obtain and store k log k3t




LOCATION
L22

423

42l

b2s

426

427

428

k29

L30

431

k32

L33

b3

k35

L36

L37

k38

ORDER

66 W91F
S5 F
14 566F
Lo S56AF
26 L25F
26 L425¥
L5 572F
10 493r
36 4277
26 Luly
41 4F
15 527F
10 4937F
36 431r
15 579F
1M 566F
Lo 566F
26 L4uF
50 527F
71 589F
66 L89F
Ss ¥
S50 F

50 433F
26 902F
Lo 591¥
4o 590F
50 591F
7J 590F
ko 591F
15 4p
14 W93F
Lo 4F
LO 488F

NOTES

Is et included in the driving func-
tion?

(yes)
(no) Control to tllp test

Obtain and store k e1°



LOCATION

439

U0

L)

Liy2

bl3

Lus

L7

k50

451

Ls52

k53

b sk

k55

ORDER

36 L4oF
22 435F
L5 491F
66 591r
7J S79F
66 491F
S5 F

I4 566r
Lo 566F
26 Luur
L5 492F
10 493F
36 LULEF
26 47ur
L5 595F
00 20F
L6 Luor
22 LuLgF
22 LugF
L5 S527F%
50 (p)*
50 LUOF
26 878F
Lo SouF
L5 4ouF
LO 595F
36 453F
26 W4S6F
50 594F
73 487F
Lo S94F
26 470F
26 Lsér
26 L4567

L

- 58 -

NOTES

Is t1/P sncluded in the driving
function?

(yes)
(no) Control to sin t test

Obtain and store $1/P



LOCATION

Ls6

Ls?

L4s8

k59

Léo

L6l

k62

k63

165

L66

67

bé9

4720

k71

L72

ORDER

LS 49SF
L0 595F
36 Lser
26 L62F
50 SO4F
75 486EF
66 uBSF
Ss ¥

Lo sour¥
26 470F
26 Lé2r
26 L62F
LS 496r
10 595F
36 LENF
26 467F
50 S9UF
7J L86r
Lo sour
26 470F
26 L67F
26 L6TF
50 594F
75 491F
66 48hr
ssr

40 SONF
26 W70F
50 SOuF
75 5930
66 u91r¥
S5 7

22 722
Lo 566r

- 59 =
NOTES

Obtain and store k t1/P



- 60 -

LOCATION OPDER NOTES
k73 26 Loy
26 hour
ok L5 574¢ —  1s sin t included in the driving
LO W93F function?
475 36 L76r (yes)
26 627 __ | (no) Control to cos t test
476 50 S27F |
75 596F
w7 66 ho1r — TYor k sin kit calculation, obsain
55 F and store kjt x 104
L78 Lo 5977 __
26 600F
k79 26 600F
26 600F
48o 26 600F
26 600F
481 00 F
00 314159265358 ( = 1071)
482 oor
00 3141592657 ( x10™%
483 00 F
00 6283185303 (2 x 107%)
48k oor

00 1584893192500 (antilog 16/5 x 107*)
485 00T
00 4641588826645 (antilog 8/3 x 10~3)

486 00 ¥

00 1000000000J (10~3)
L87 o0r

00 100000000008  (10™2)
488 00r

00 999F
489 00T

00 10000000J (10-5)



LOCATION

490

k91

g2

493

4ok

kg5

496

kg7

498

600

601

602

603

604

605

606

- 6] -

CRDER

00 F
00 166666666666J
oor

00 100000000J
oor

00 (order no.)r
oor

00 1r

00 F

00 2r

oo F

00 Ir

oor

00 4¥

W

00 L436041956J
oor

00 4342944819037
oor

00 921034037J

00 600K

L5 597F |
10 483F

Lo s98F

32 6o0r

A 4827

Lo S99F

36 6097

Lk 482r

22 6okP

66 us1r

1P

66 486F

S5 »

NOTES

(107

(Ses by the compiler)

64
(' —T5000— 1°8e2)

( 107% 1oge10™ )

( 10 logg207* )



LOCATION

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

CRDER

4o 599F
26 61€r
26 614r
26 616r
26 616r
15 L82r
10 5997
Lo 599F
L5 599F
66 481y
S5 T

10 486r
36 615F
14 L8ér
66 u8er
s17”

26 616r
51 491F
22 17r
S0F

50 616F
26 8har
ko s6sr
50 565
7d 580F
26 6200
26 6201
Ih s566r
ko 566F
26 622r
26 622¢
15 573¢
10 493F
36 62ur

- 62 -

NOTES

Obtain and store k sin k3t

Is cos t included in the driving
function?

(yes)



LOCATION

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

ORDER

22 649F
50 527F
75 S6MT
66 491r
1 ]

4o 5977
26 6277
L5 5977
10 4837
40 S98rF
32 6277
A 4B2F
4o 599F
36 636r
1A LB2F
2 631r
66 481F
S5 ¥

66 LBEF
S5 ¥

ko s9o®
26 644F
26 6u4ur
26 6uur
26 6ulr
L5 482r
10 5997
Lo 5997
L5 5997
66 481r
S5 T

1O 486r
36 6u2r
Ik LBEr

- 63 =
NOTEBS

(no) Control to add the constant
tern

— For k cos k31t oalg&auon. obtain
and store kK3t x 1

— Obtain and store k cos k3t




LOCATION

641

642

643

6l5

647

650

651

668

670

671

672

ORDER

66 48EF
s17

26 6uur
S1 4o1F
22 6477
26 GLur
26 64ur
50 F

50 64urF
26 8u48P
S5

Lo 563F
26 6u7?
50 S63¢
7J 581
26 G4oF
26 6497

bo 562F __
L5 582F
IA 562¢
Ik 566F
ko s66r
22 ()r
00 668K
00 F

00 6F
oor

00 S¥

15 669F

b0 6F
w1 77
41 9F

50 8F
50 672F

NOTES

Pu$ constant in A

Add k cos k3t

Add previous driving function value
Store ccmplete driving function

g%ugy (374); return to main rou-
tine

Compiler begins; set counter to in-
dicate order of the derivative -
vhose coefficient is being read in
Clear differential equation order-

setting counter
Clear "end of coefficient read in"
counter

Bring in coefficient



LOCATION ORDER NOTES
673 26 9377
by ¥ Clear A
674 12 8F Subtract coefficient from zero
36 698F Coefficient ® 0; control to reduce
675 41 ¥ = read-in counter
— Has differential equation order no,
o7 been set?
676 36 6777 (no) .
26 6797 __ | (yes) Control to determine location
677 L5 ér _— gztc::g:g::::a;t:mion order no.
Lo wo2r ___|
678 L5 493F — Set counter to indicate order no.
Lo 77 — has been set
679 15 ¢ |
LO 699F
680 36 681r - If coefficient of 5th order term,
22 682F store in 500
681 L5 &r
ko soar
682 26 698 |
15 6r
683 10 L96F
32 68ur — If coefficlent of 4th order term,
68l 26 €8EF etore in 501
- LS5 8rF
685 ko 501F __ |
26 698r
686 156 |
LO 49s¥
687 36 688y — If coefficient of 3rd order ternm,
26 6907 store in 502
688 15 8¢
4o 502F __|
689 26 698r

26 690r



LOCATIOR

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

CRDER

15 6F
LO 494F
36 692r
22 693r
1s &r
Lo s03rF
26 698F
15 ér
10 L93r
32 695¢
26 6977
15 &r
Lo SOM4F
26 698F
Ls 8r
4o sosr
15 6r
10 4937
Lo &F
80 u4F
15 9r
A 4o3P
40 or
10 668P
36 704F
26 672F
26 70M4T
26 7047
50 87
50 7047
26 9377
26 7077
26 7077
26 7077

- 66 -

NOTES

If coefficient of 2nd order ternm,
store in 503

If coefficient of lst order tern,
store in S04

If coefficient of dependent vari-
able, store in 505

Reduce "number of the order" count-
er by one

Skip order no,

Test for end of coefficient read-in

?gg'gf coefficient read-in (if poe-

Not the end; control to continue
read-in

Bring in coefficient of driving
function and store temporarily



LOCATION

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

CRDER

81 47
00 36r
26 709F
26 7097
36 717F
00 1r
32 738F
L5 8r
ko 577%
L5 4o3F
ko s70r
80 4r
50 585F
50 713¢
26 9377

. 80 4r

26 7047
26 717¢
26 7
26 N7*
00 1F
36 734r
00 27
36 7308
81 4r
4o 9r
10 495F
32 727F
L5 9F
1O 4oy
36 725F
L5 k93
ko 568F
L5 &r

- 67 -
NOTES

Bring in the driving function indi-
cator

Begin sensing on a, to determine
the driving functions
Continue sensing on a,

Driving function = 1ln t; store co=
efficient of ln t and set indicator

Skip N in IN
Store coefficient of ¢

Skip T
Bring in next driving function

Continue sensing on ao

Driving function = tP; bring in p

Determine p value

Driving function = t; set indicator
and store coefficient of ¢



LOCATION CRDER NOTES
72l ko 5758 __|
26 70u4r Bring in next driving function
725 LS bo3r
40 569F L Driving function = ¢2; set indi-
226 15 &F cator and store coefficient of tz
Lo s76F __ |
727 26 7047 Bring in next driving function
L5 4937
728 4o 583F — Driving function = t3; set indicat-
Ls &r or and store coefficient of tJ
729 Lo s8ur
26 704F Bring in next driving function
730 L5 493P |
1l
bo 592¢ — Driving function & ¢ /p : set in-
731 L5 8r diyator and store coefficient of
ti/P
Lo 5937 -]
732 81 41 — Bring in p and store
ko 5957 _
733 80 ur Skip T
26 7047 . Bring in next driving function
734 LS 493F
%0 5728 L Driving function = €%; set 1ndi-
735 15 & cator and store coefficient of ekt
4o 579F __|
736 50 589F |
— Read in and store coefficient of &
50 736F in
737 26 9377 |
80 4r Skip T
738 26 7047 Bring in next driving function
00 1r
739 32 7u45F — Continue sensing on ag
00 1F
740 36 751F |
1S 493F |




LOCATION

71

2

73

7hels

h5

7146

747

748

749

750

751

752

753

754

755

756

757

ORDER

Lo s7ur
15 &F

ko 580F
80 &r

50 596r
50 743F
26 9377
80 ur

26 704F
80 4ur

LS 4939
4o 573F
LS 8F

Lo 581F
50 5647
50 748F
26 9377
80 4r

26 7047
26 7517
L5 8P

Lo 582F
26 754F
26 754F
26 754F
26 7547
80 ur

LS 492r
L0 669F
36 7707
LS 4o2r
10 4o6r
36 768F
L5 492F

NOTES

Driving function ® sin ¢; set indi-
cator and store coefficient of sint

Skip IN (SIN sensed on S)

Read in and store coefficient of ¢
in sin kt

Skip T

Bring in next driving function
Skip 8 in CO8 (sensed on O)

Driving function = cos t; set indi-
cator and store coefficient of cost

Read in and store coefficient of ¢t
in cos kt

Skip T

Bring in next driving function

Store constant

Skip IC

Test to determine where $0 store
initial conditions

Equation order = 5; store initial
oonditions accordingly
Differential equation order <5

Equation order = 4;store initial
conditions accordingly
Differential esquation order <k



LOCATION

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

70

ORDER

10 49SF
36 766F
15 bo2r
1O Loy
36 763F
26 761r
50 515F
50 761F
26 937F
26 772¢
50 5147
50 763
26 9377
26 772¢
26 776r
26 776F
50 513F
50 766F
26 9377
26 772F
50 512F
50 768F
26 937F
26 ¥
50 511F
50 7707
26 9377
26 772¢
80 12F

26 773°
50 5197
50 773
26 9377
22 207

- 70 =

NOTES

Equation order = 3; store initial
conditions accordingly
Differential equation order <3

Equation order = 2; store initial
conditions accordingly
Xquation order = 1; store initial
oconditions accordingly

Control to read in At

Control to read in At

Control to read in At

Control to read in At

Skip IN and R in INCR

Transfer to bdeginning of differen~
tial equation solution routine



LOCATION OHDER

00 848K
Lidbrary Routine Té-S
00 878K
Lidrary Routine R2
00 902K
Library Routine S&
00 923K
Library Routine S3
00 937K
Iibrary Routine N2
00 963K
Lidrary Routine Pl

24 670W

-71 -

NOTES

Fast Sine-Cosine
Integral Root, AP
Exponential, eX
Logarithm

Input Fractions

Print Fractions

Transfer to beginninz of cempiler

routine



VI, GENERAL INSTRUCTIONS FOR USE OF THE COMPILER ROUTINE

The Cempiler routine assembles in the computer memory 2 program
wvhich, vhen executed by the computer, will provide the solution to an
ordinary linear constant coefficient differential equation of any order
up to and including the fifth, The equation "driving function" may coa-
sist of a constant plus any additive combination of the following func-
tions (each used only once) multiplied by their respective coefficients.
1n k3t, ek4t, ¢, 2, ¢3, t1/2 or £1/3 o t1/% or t1/5§91n k,t, cos k,t.
The solution consists of printed, punched, or plotted--as desired
(and as available at the computer)-~consecutive values of the indepen~
dent variable, §, the dependent variadble, e.g., ¥y, and all the deriva-
tives of y. These values begin with the initial conditions and continue
with values at intervals of the independent variable corresponding to a
' previously-selected increment, After the computer begins the selution,
i1t will continue te yield values indefinitely or until computer "ever-
flow" or "hang-up® occurs,
In order to obtain the solutien te a differential equation coming
within the eategory descrided abeve, carry out the following procedure:
l, W¥rite, in descending order of the derivatives, the differen-
tial equation to de solved, If there is no constant in the
driving function, add a zere at the end of the equation,
Otherwise, add the constant at the end.

2. Divide all the terms by a constant such that the coefficients

and constant term are all less than 10,000 and preferadly lie
72 -
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between 1 and 10, (The smaller these values are, the lenger

the computer can run before overflow or hang-up. See the

discussion ef limitations belew.,) Thereafter, divide all

the coefficients and the constant term by 10,000, (The sel-

ution to the equation before the division by 10,000 is edb-

tained by multiplying the computer output values dby 10,000,

Location of the decimal peint in the print-eut makes the cer-

rected values available by inspection,) All the coefficients

are novw decimal fractions. The decimal peint itself will not
be carried inte the computer but will be considered by the
computer as lying immediately to the left of the numbers in
the ceefficients; therefere, retain all zeros to the left eof
other significant figures in the coefficients, BNach coef-
ficient must be preceded by its sign,

Re-write the equation:

3.1 Substitute the letter N followed by a number equal to
the erder of the derivative for each derivative symdel,
Where the dependent variable or any order ef the deri-
vative from the first through the fifth is miesing, sudb-
stitute an N preceded by a 40 and follewed by a numbder
equal to the order of the derivative,

3.2 Substitute the syambels listed below for the driving
functions:

eink ¢,.....000000....FSIN k N?
@08 Kk t......000000....FCOS k NT
lnk $..00000c00cesece.FIN k NT

ok'..lO.-.uOUOOOOQQOCQOH k m
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constant,.....ccoaees.0eefFK
| TR & 3 |
L TPOPPRRRRS »
L% RPN ¢35

/2, ... FR2T

Y3, i TROT

2L RS , 1"

t1/5, iiiierieneienee  JRSD
The signed coefficients of the driving functions precede
these gymbols, VYhen the value k is included in a function
such as in sin kXt, cos kt, 1ln kt, or ek$, this constant must
be divided by 10,000 and preceded by its sign,
Place a slant sign (/) after the equation and then the let-
ters "IC" to indicate that the initial conditions will fol-
low, Write 1nﬁediately following the letters "IC" the in-
i1tial values (in descending order of the derivatives begin-
ning with the derivative whose order is one less than the om
der of the equation) of the derivatives and the dependent
variable, each divided by 10,000 and any other scaling con-
stant used in step 2, Follow this by the initial value (di--
vided by 10,000) of the independent variable., Precede each
value by itg sign, Put the letter "N" after the last value
to indicate the end of the initial conditions,
Follow the initial conditions by another slant sign (/) and
the letters "INCR," After these letters, put a plus sign and
the value of the increment (unscaled), This value may be any

fraction lying between O and +1. Any number so chosen is
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considered by the computer to be a fraction having its deciml
point immedintely to the left of the digit(s) chosen., Again,
put an "N* after the increment value to signify the end of the
iacrement,

6., Put the Compiler routine on tape immediately followed by this

equation, initial conditions, and the increment——in the for-

mat and in the order specified above, !
7. The completed tape when fed to the computer will cause the ‘ ‘!

computer to stop when it reaches the order 24 670, A "black- : J

switch exocute"thon will start the computer emitting the {

series of values described in the second paragraph of these
instructions, (An alternate method would be to feed only the
Cpampiler tapes to the computer, When its "stop" order is
reached, feed the equation tape to the computer reader and
"execute.")

A typical example follows:

(1) .osﬂg + a%y -1953dy + 10y = 100 sin 2% + ¢ + 2
at

dt 4at
\-hered_%_ = =0and dy =y =1 for t = 0; assume an increment of
at ds dt
0.1
(2a) .0005 a¥

+ '0”'2% -1.954y + .1 y = sin 2¢ + .01 t2 + .02
dt s

(<)

\]
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(2p) .00000005 gz;_ + 0,000001 - ,000195 &y + .00001 y =

at at at

4.0001 sin 2t + .000001 t2 + 000002

(3) +0N5 40000000584 +(M3 4000001N2 = 000195N1 +00001NO =
40001FSIN+0002NT +4000001FT2 +000002FK/IC 40 40
4000001 4000001 <+ON/INCR +1N

Bquation (3) is the complete encoded squation,
The author has found it advantageous to have an equation-writing
code check-off 1list, One frequently used follows:
1, Represent all five derivative orders and the independent
variable,
2. Scale and put a sign on each coefficient,
3., Terminate signed initicl conditions with "N.*
4, Terminate a signed increment with "N.”
S« Terminate scalsd coefficiente of t in the 1ln, sin, cos, and e
functions with "H,"
€, Add a zero if there is no constant in the driving function,
Put the zero or the constant at the end of the encoded driv-
irg functéion together with its proper symbol.
7. Specify the proper number of initial conditions,
8. Correctly encode the driving functions.
When a print—out of the answers is obtained, it may be inter-

rreted as follows:
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1. The values of ¢, ¥, ¥, ¥, ¥» ¥ 80d°Y in this order are dis-
played beginning at the left of the page, All except the
last two are located on one line, These two, ¥ and ‘¥,are
printed in the middle of the line below. Eleven digits com-
priee each value,

2. The decimal point is located to the right of the fourth digit
from the left—or at the break in the number preseantaticn,

An example follows:

nt A 4

0003 2000000 0209 4372338 -0000 0020318

Interpretation
t =32 y = 209.4372338 y = -0,0020318



VII, MODIFICATION PROCEDURES AND FURTHER

DEVELOPMENT OF THE COMPILER

Size of the storage facility of MISTIC has prevented making the
foregoing compiler more general. It has been a purpose of this work,
however, to point the general direction for writing a new, more compre-
hensive program or for expanding this one along the same lines when ad-
ditional storage might become available, Both the Runge-Kutta method
and its programming can be adapted (22) to the solution of more than one
differential equation, and it is possible to write the same type of as-
sembly program as that given herein by using similar techniques and al-
lowing for more equations,

A program to allow for the solution of differential equatione of
higher order may be obtained readily by following the pattern set down
in the foregoing Differential Equation routine. Actual programming in-
volves merely the addition of higher order derivative-calculating paths
(see Pigures la and 1b) in parallel with those already existing—-begin-
ning at each order test and duplicating (except for higher order values)
the last path already there, To provide the new path, modify the last-
added path in the same way it represents a modification of the path just
before 1t,

The Driving Function routine ie an "open-ended® type of program
in which additional function-calculating routines are brought into the
program as it is made successively to sense certain locations for 1" or

%0.* Thus additional driving functions may be added readily by merely
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.

continuing the present program and then directing it to sense (at the
appropriate time) the positive or negative value of certain storage, If
the storage is positive at that time control may be transferred to some
new function-calculating routine as desired., This my be done with the
present program which still does not utilize some seventy-five storage
locations. (This storage appears mot to be enough to allow for sixth
order equations, also, but may readily handle several driving functions,
depending upon the length of the program required to calculate them. The
Assemdbly routine might also be modified within this storage to handle
the additional function if desired,)

Close inspection of the organisation of the machine memory in the
appendix is suggested as an initial step in any modification prograa.
Simplification of writing the routines presented herein was facilitated

by its detailed planning.



APPENDIX

Orzanizatien of the Memory

Location Contents

6 T
1
. — Subroutines' temporary sterage space
3 —
4
5
6 Order of the derivative whose coefficient is beiag read in
?7 Order indicator setting
8 Temporary coefficieat storage
9 No, of coefficients which have bdeen read in
10
11
12
20 Differential Equation Routise begins
499 Part 1 of Differential Bquatien Routine ends



Location

500
501
502
503
Sol
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

Contents

Coefficlent of ‘¥ ( x 107%)

L] " ';' "
" ] 'y" L
n " i L}
L] n i "
n L] y L}

Initial condition.'§6 ( x 10'b) ="§;1

Y =¥

" " ;O ] = 311
] ] iO [ ] = iil
[ ] [ ] yo [ ] - yil
" " ty » = til

at ( x 10%)

&t ( x 107%)

: t (not multiplied by 10~%)

at * " " "

2

O

Temporary storage for 'y times its coefficient (x 10~4) in
calculation of the highest derivative
Temporary storage for 7 times its coefficient (x 10~%) im
calculation of the highest derivative
Temporary storage for 7 timee 1ts coefficient (x 10~%#) in
calculation of the highest derivative
Temporary storage for 7 times its coefficient (x 10~%) in
calculation of the highest derivative



|
o
(.4
(S
(=]
(-]

526
527
528
529
530
531
532
533
534
535
536
537
538
539

skl
542
543

su5
546
47

550
551

Ti2

- 82 -

Contents

Temporary sterage for y times its coefficieat (x 10%) 1a
calculation of the highest derivative

Storage for t .tiz.t o OFr '1# as required in calculation
of the driving functigz

"Y.;z (x 10"’)

yip "
Tan
Tl

Y5



Location
552
553
55k
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

ooooo

(Fyy + Fiz + Fi3 +7is) (x 1079
(Fyy + 2F12 + 2513 +¥y,) (x 107%)
(¥4 + 2545 + 2?13 +¥) (x 10~%)

(¥4) + 2745 +2y33 +¥y,) (x 10%)

a5y (x 1074
a ?1

Ai’i

oy

Ay

b

1

Value of k; cos kt (x 10°%)

Value of cos kt (x 10~¥)

Coefficient of ¢ in driviag fumction = cos kt (x 10-%)

Value of sin k¢ (x 10~4#) (see 597-599)

Value of the driving fumctioa (x 10-%)

ooooo

1l is stored here, t is a driving functioa

l
1
1
1
1

1

v t2 48 a driving functiea

» 1a ¢t is a driving function
» log ¢t is a driving function
, ot is a driving function

,c08 t is a driving fumction

,8in ¢t is a driving function

Coefficient of t ( x 10-%)



Location

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

600

651

Conteats
Coefficient of log t (x 10-%)

" " gkt "

. " ein ¢ .

. " cos t .
Constaat term
If a 1 is stored here, t) s a driving fuaction
Coefficient of t3 (x 10~%)

k., coefficieat of t in 1la k3t driving fumction (x 10"'*)

1
ki, coefficient of ¢ in log Kyt ariving function "

la k¢t (x 10-4)

log klt "

Iy, coefficient of ¢, in &K1t  (x 107%)

I/letxlo-B

T;:Bgrary storage for (1/ektx10-3)® and final storage for
1l

If a 1 is stored here, t]'/p is a driving fuanction
Coefficient of t]‘/p (x 107%)

(t x 10"‘*)1/p or (10~* t1/P) as needed

Value of p in tll p driving function

Coefficient ef t in sin kyt driving function (x 107%)

k,t x 10% 1a sin k;t (or coe k%) driving function cal-
culation

(kt x 10~%) - 2aTTx 104

"Zlct x 10%) - 2nTr x 10-‘*:“ +Tx 10~ after the bracketed
tera becomes negative; alse the fraction of TT represented

by xt ( sin k.t or cos kyt)
Part 2 of Dif}erontial Equation program begins

Part 2 ends



Location Contents

670 Assembly Routine begins

773 Assembly Routine ends
848-877 Fast Sine-Cosine Routine, T6-S
878-901 Iategral Root, R2
902=922 Exponential, S4

923-936 Logarithm, S3
937-962 Decimal Fraction Iaput, N2
963-990 Print Routine, P1

999-1023 Decimal Order Input, Xl
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