
  

CELASTI'.IN

 
 

  

 

 
 
 

 

3
.
1
.

2
;
.

“
W
H
A
T
1
:
!

,
.

.
.

 
 

 
 

 
 
 
 

imi 1}

5;

:s‘

 

                   

31,

N;

 

he.

I

 

.y

5 .

CH1

           
  

 
 

 
 

{
w

a
f
fi
x
.

‘
E
d

.
1
:
1
.
:

3
5
.
x
.
.
. E
m
a
.

‘
9

I
V
.
,
5
fl

 
f
.
”

:
r
.

4
/
2
.

      

 

 

ELLy-Hoiw     

RR

          

.
3
.
4
}
.

.
f
.

f
.
E
:

I
I
I
r
i
t
r
.
>
.
y
i
l

r
)

.
1
}
!
!
!

.
:
1
:

 
 
 

RDTH{RIcHA

     

 

    

.
.

.
1

5
.
!

.U
,

.
[
M
o
h
n
m
i
f
3
.
3
2
5

(
a
.
.
.

   

(
I
f
:

.
1
{
I
'
V
I
V

.
I

..
.
)
3
.
r
.
i
.
1
!
!
.

.
1
5
.
?

 

         
 

 

I
.
.
.

    

.
n
.
.
.
H
Q
.

l
-
«

V
.

§
.
h
l

l
.
.
;
~
.
‘
1
!
'
.

.
3
r
.
.
.
.
.
-
1
.
.
.
.
.
.
.
s
.
.
.
.
-
.
I
.

 

5
3
.
5
.

.
3
.
.
.
,
m
e

n
n
fi
fi
x
r
fi
n
fl
fi
.

 

 

    

x
\

   

.
W
R
V
u
g
.
.
.

.
.

.
1
.
‘
fl
m
.
.
§
\
|
.
J
l
i
w
m
i
n



     

    

 

  

(A!

Libs. 4RY

Midig .nStaUc

‘Jni=1§ky'

“ ‘

This is to certify that the

Z thesis entitled

»?5‘A PROTON SPIN FLIP PROBABILITY

IN INELASTIC SCATTERING

l2OSn AND 1243n AT 30 MeV

presented by

ON

Richard Harry Howell

has been accepted towards fulfillment

of the requirements for

PhD Jegree in Phys :‘LC 8
 

@200”

I V

Major professor

 

Date January 5, 1972

0-7639



 



 
I
|
I
P
I
I
I
V
‘
l



ABSTRACT

PROTON SPIN FLIP PROBABILITY IN INBLASTIC SCATTERING

ON l2OSn AND l2uSn AT 30 MeV

By

Richard Harry Howell

Proton spin—flip in the excitation of the first 2+

l2OSn and l2”Sn has been measured at 30 MeVstates in

using the (p,p'y) coincidence technique. The data are

fit by the DNA collective model using the full Thomas

spin—orbit coupling term and by the DWA microsc0pic model

using detailed wave functions and a realistic interaction.

These calculations are also compared to published proton

angular distribution and asymmetry data on the first ex-

cited state in 120Sn at 30 MeV. The effect Of including

a realistic two body spin—orbit interaction was investi—

gated with reSpect to these data. The effect of complex

coupling was also investigated for these data and pub—

lished cross section and asymmetry data on the first

208Pb and 58Ni. Imaginary form factorsexcited states of

obtained from the collective model and from a phenomeno-

logical microscopic prescription were used. It is con-

cluded that an imaginary term in the form factor can be

important.
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1. INTRODUCTION

In order to learn about the spin—dependent part of

the interaction in an inelastic scattering reaction there

are various measurements possible. The angular distribu-

tion of the differential cross section, asymmetry, polari—

zation and in special cases the projectile spin flip may

all be measured.

The probability of a spin-flip event occurring may

be measured through the particle—de-excitation gamma-ray

angular correlation function with the gamma—ray detector

fixed perpendicular to the scattering plane. Measure—

ments of the angular distribution of the spin flip prob—

ability of scattered protons have been reported on the

lowest 2+ states of several even—even targets with mass

numbers ranging from 12 to 64 and incident proton ener—

gies ranging from 10 to 40 MeV. There are also spin flip

data reported on some of these targets for the scattering

of medium energy helions and deuterons.

This report shows angular distributions for the pro-

ton spin flip probability taken on the lowest 2+ states

in 120Sn and 12“Sn at 30 MeV bombarding energy. The

data were compared with calculations done in the Distor-

ted Wave Approximation. Asymmetries and cross sections

were calculated and compared with data on 120Sn taken

elsewhere at the same energy (KA 70).

The four measured quantities, cross section, asym—

metry, polarization and spin flip, are related to the

1
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set of partial cross sections corresponding to specific

entering and exiting projectile spin projections along

the normal to the scattering plane. These may be written:

Cross section

0 = O++ + O+_ + O_+ + O__

Asymmetry

0A = O++ + O+_ — O_+ — O__

Polarization

OP = O++ — O+_ + O_+ — O__

Spin flip

03 = 0+— + 0—+ (1.1)

The symbol subscripts +- denote incoming projection +

and exiting projection -. The cross section may be

measured using an unpolarized beam by detecting the number

of scattered particles in some solid angle. The cross

section is: differential cross section = number of scat-

tered particles / (number scattering centers x number of

incoming particles x solid angle). The asymmetry is

measured with a polarized beam by detecting the difference

in the number of particles scattered into the same solbiangle

at scattering angles + and - 6. The difference is then

normalized to the sum of the scattered counts to obtain

the asymmetry. The polarization is measured with an un-

polarized beam by measuring the difference between the

number of spin up and spin down particles scattered into

some solid angle. This difference normalized to the sum

of the scatteredcxnnnxsis the polarization.
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The measurement of the Spin-flip probability through

the proton gamma-ray correlation function is deduced with

the aid of the Bohr Theorem (BO 59). This theorem is model

independent, depending only on reflection symmetry in the

reaction plane for its derivation. It may be simply

stated AMS + AMJ = + / — as the change in parity in the

reaction is even/odd, AMS (AMJ) is the change in the pro-

jection of the projectile (target) spin along an axis

normal to the scattering plane, the Z axis. In the case

of a J = 0 initial target state, information about the be-

havior of the projectile spin projection during the re-

action is retained in the population of the sublevels in

the excited target state. During the radiative decay,

only IAMJI = 1 transitions are non-zero along the Z axis

+

+ and 0+ to 2 inelastic scat—(SH 70). Thus for 0+ to l

tering, a projectile spin—flip will always produce a de—

excitation gamma-ray radiation pattern which is clearly

separated along the Z axis from the radiation from non—

spin-flip events. For higher spins IAMI i 3 channels are

also Open for de—excitation Of sublevels populated by

spin—flip. The de—excitation gamma—ray radiation pat—

terns from some excited state contain the most useful in-

formation about the excited substates for decays to a

J = 0 ground state where the substate quantum numbers re-

tain a unique correspondence with the magnetic quantum

numbers of the transition Operator. Thus all measure-

ments reported to date have been done on the first
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excited 2+ state of an even-even target nucleus. Also,

lower mass targets are preferred on experimental grounds,

as the ratio Of the gamma-ray yield from the first ex-

cited state to the total gamma-ray yield is higher and

the energy Of the state is generally high. The lightest

12
isotope studied has been C at 10.3 MeV (SC 64), 12 — 20

MeV (KO 69B), 15.9 and 17.5 MeV (WI 71), and 26.2 and 40

MeV (KO 69A). In the s-d shell, Mg2)4 has been done at

28
10.3 MeV (SC 64), Si at 30 and no MeV (GI 68) and S32

at 15.5 and 17.9 MeV (WI 71). Heavier isotopes studied

56
include Pe5Ll at 10 MeV (AH 70); Fe5” and Fe at 19.6 MeV

(HE 69); Cr50 and Cr52 at 12 MeV (SW 71) and a great

amount of data due to the University of Washington group

58 at 10.3 MeV (SC 64), 9.25 - 20 MeV (KO 69B) and

20 MeV (BE 71); N160 at 10 MeV (AH 70); Ni60 and N16” at

on Ni

10.5 and 14 MeV (KO 69B). Thus the presentation of data

on Sn120 and Snl2u at 30 MeV considerably extends the

range in mass of isotopes studied.

Data have been taken with other beams. He3 spin flip

is reported on 012 at 22.5 MeV (PA 68). Deuteron half

2u,26 32S
spin flip (AMS i1) has been reported for M8, ,

L‘8’50Ti, 58’60Ni at 11.8 MeV (H1 70).

With the exception of some data taken at energies

for which compound nuclear effects are important, all the

above data show the same general features. First, in

every case there is a large peak from .3 to .4 in magni—

tude which dominates the spin flip probability angular
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distribution. This peak occurs at back angles with a

maximum at around 150° proton scattering angle. Collec-

tive model calculations which normally have not included

any spin transfer in the nuclear interaction fit this

back angle peak in most cases. In all cases a back angle

peak is predicted. The collective model sometimes fails

in fitting the height of the peak. This is usually as-

sociated with a failure of the optical model in fitting

the elastic scattering and polarization data. A second

general feature of these data is a uniformly low, less than

.1, and smoothly varying angular distribution at angles

forward of around 100° proton scattering angle with a

small peak at about 75°. Exceptions to this tendency do

occur. In some reported data, the second peak is seen

in the general vicinity of 90°. This peak with a magni-

tude of about .2 is not as large as the back angle peak

and is not always predicted in collective model calcula-

tions.

The collective model calculations are only depen—

dent On the values of the optical model parameters.

The general success of the collective model in fitting

spin-flip probabilities over such a wide range of target

mass and energy suggests that the dominant processes pro-

ducing a spin-flip are dependent on the Optical (dis—

torted wave) channels in the spin-flip scattering. An

attempt has been made to use this property to determine

a value for the optical spin—orbit well depth in 3He



scattering from 012 (PA 68). Proton scattering from C12

and S32 have been studied and the Optical model parameters

adjusted in an attempt to fit both spin flip and elastic

data (WI 71).

In Figurelxl thecollected data for all targets at

all energies for which direct reactions are dominant are

displayed. The uniform character Of the spin flip angular

distribution is easily seen in this figure.

The spin flip data on 120Sn and l2“Sn reported in

this thesis are typical of those data just described. The

increase in the mass of these targets over that of pre-

vious targets does not significantly change the character

Of the data. A small isotopic effect appears at angles

forward of 75° proton scattering angle. In this region

the values from 120Sn are consistently higher than those

l2“Sn. DWA collective model calculations includingfrom

a full Thomas distorted spin orbit term (SH 68) fit these

data well. Varying the spin orbit deformation from 0 to

twice the deformation of the central well did not greatly

affect the quality of these fins.Comparisons with pub—

lished asymmetry data were more sensitive to the spin

orbit deformation. They indicate that the spin orbit

and central deformations should be about the same. Micro-

scopic calculations using the tin wave functions of D. M.

Clement and E. Baranger (CL 68) and the Kallio—Kolltveit

force also fit the spin flip well. The real, central

Kallio—Kolltveit force predicts the asymmetry badly. An
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imaginary contribution was estimated. The quality of the

asymmetry fit was greatly improved by this addition. The

fit to the cross section was also somewhat improved.



2. NUCLEAR THEORY

2.1 Approximations in the Treatment of Scattering

Reactions which occur in a time interval comparable

to the transit time across a nucleus are often thought

of as direct reactions. The theoretical treatment of

these reactions in the plane wave approximation is out—

lined by Tobocman (TO 61). In this approximation, the

interaction potential is treated as a perturbation and

the incident and exiting particle wave functions are

plane waves. A more complicated approximation separates

the elastic scattering interaction potential from the

total interaction potential. The incoming and exiting

channels are then described by the wave functions for

elastic scattering. This is the distorted wave approxi-

mation (DWA). The algebra of this approximation has

been discussed by G. R. Satchler (SA 64). A brief

discription of the DWA, methods for treating polariza—

tion phenomena in the DWA and the use of some nuclear

models in the DWA are found in the following sections.

DWA calculations were performed with DWMAIN, a code

written by T. Tamura and R. M.Haybron at ORNL and mod—

ified at M.S.U. and a collective model DWA code written

by H. Sherif at the University of Washington
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2.2 Optical Model

In order to accomplish the more sophisticated cal-

culations Of the DWA prescription, elastic scattering

wave functions must be calculated which are a more ac—

curate description of the scattering than that of plane

waves.

To describe elastic scattering and polarization of f

protons, a phenomenological scattering potential has

been developed. The strength and shape of this potential

has been parameterized. Searches are made on the po-

tential parameters attempting to minimize the chi—

squared values of calculated and experimental elastic

cross sections and polarizations.

The experience of a great many researchers in

applying this model to a wide variety of elastic scat-

tering data has resulted in a successful potential form

which has become accepted in describing proton elastic

scattering.

The accepted optical model scattering potential in

use for the elastic scattering of protons at this time is

U(r) = V(r) + iW(r) (2.1)

where

V(r) = V6(r) — VR f(r, RR’ aR)

h2++ld

+ Vso( mflc) O°£ F'EF f(P’Rso’ aso)



d
+ wSF 4aI 5—1"— f(I‘, RI, 8.1)

The Coulomb potential, V0, is normally taken to be

the potential between a point charge, ez, and a sphere

of uniform charge, Ze and radius RC. Thus

 

2 2
Zze r

2R0 [3 - RC :1 9 r : RC

VC z Zze2

r , r > RC (2.2)

The radial functions f(r, R, a) are of the Woods—

Saxon (Fermi) form

f(r, R, a) = [1 + exp (r - R) / a1"1 (2.3)

The nuclear radius R is further factored into RX = rXAl/3

where A is the atomic mass number of the nucleus. The

notation used here is consistent with that of F. D.

Becchetti and G. W. Greenless (BE 69).

The distorted waves used in DWA calculations of in—

elastic proton scattering are obtained from a potential

of this form. Also small deformations from the spherical

shape of this potential are expected in a macroscopic

picture of an excited nuclear state. Thus in the macro—

scopic (collective) model of inelastic scattering, the

scattering interaction potential may be deduced from

the optical model potential.
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2.3 DWA Basic Formalism

Using the notation A(a,b)B, the differential

cross section is written

2 |T|2

g9 _ “a“b Kg MAMBmamb (2 u)
— U

do (2nh2)2 ka (2JA¥I)Z2JéIl)

The mds are the reduced masses and the k's are the momenta.

The transition amplitude, T, may be written

_ —> —> —*—>+ ++—>

T — fdra fdrb Xb (kbrb)<bB[V|Aa>Xa (kara)

(2.5)

where <bB|V|Aa> acts as an effective interaction producing

the transition between the elastic states. The separation

vectors Pa (Pb) are the relative coordinates of particles

a and A (b and B).

The transition amplitude may also be written in

terms of reduced amplitudes, 2mmamb

st

_ t _ Am m

T — £§j J<JAIMA,MB MA|JBMB>BSjb a (2.6)

where

2mm m
b a .—£f-1 .

. = l E <2sm' m'—m' m—m +m >
BSJ J m'm'm' ’ a b '3 b a

a b ,

sb‘mb
l__l I_I _

x <sasbma mb [Sma mb> ( )

H"—> —> — —>—> +-—>

x fdra fdrb Xmé (kbrb) Gisj,m'(rb’ra)

+

X' +»

m ma (kara)

 
and 3 = /2j+l . (2.7)
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-> ->

stj,n1(rb’ra)is the radial form factor and contains all

information about the radial part Of the interaction. The

n
+

m'm
X (XQIm)are the distorted waves for the incoming

(outgoing) particle. Part of the dependence of the dis—

torted waves is on the projection quantum numbers of the,

projectile as a result of the L '8 force in the optical

potential. This dependence allows spin flip, polarization

and asymmetry to be predicted in the absence of any spin

dependent terms in the form factor.

The integral in equation 2.7 is over six dimensions

and is time consuming to evaluate. To simplify this

integral Pa and Pb may be taken to be parallel. This is

obtained by assuming that particle b emerges from the

location at which particle a is adsorbed. Algebraically

this condition is Eb = (MA / MB) Fa. This is the zero

range approximation. In this approximation, the parity

change in the reaction is just (—)2 where l is the trans-

ferred orbital angular momentum. Particle exchange may be

included in an approximate manner in the zero range ap—

proximation (PE 69), (PE 71).

2.4 Methods of Calculating the Spin Flip, Polarization

and Asymmetry in the DWA

There are two viewpoints from which spin dependent

quantities may be calculated. The first requires the de-

velopment of a density matrix, 9, for the interaction.

With the density matrix, formulae may be developed for the

polarization and spin flip. A detailed description of
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angular correlations calculated in the density matrix

formalism is found in reference (RY 70). The second

method divides the cross section into (2sa+1) x (2sb+l)

partial cross sections a , where ma and m are the
mamb b

particle spin projections taken with respect to a Z-axis

perpendicular to the scattering plane, i.e., Z is along

+

k3 x Rb. For spin 1/2 particles, the spin flip, asymmetry

_ and polarization are simple sums Of these partial cross

sections. These two approaches can be shown to reduce to

one another.

Since the cm m 's can in principle_be separately

a b

measured, it is appealing to the experimentalist to use

them to calculate the other quantities. The defining

formulae for 5a = 3b = 1/2 are

0 = 0++ + O__ + O+f + O_+

OA = 0++ + O+_ - O_+ - O__

OP = O++ - O+_ + O_+ - O__

°8 = °+- + °—+ (2.8)

If the Z—axis of quantization is taken perpendicular

to the scattering plane (in the direction Ea x Kb), these

partial cross sections may be calculated by performing

the sum over MA and MB in equation 2.4 while keeping the

projectile spin projections distinct. Most formulations

of the DWA algebra choose the Z—axis to be along the

direction of the incident projectile momentum, Ea' This
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choice greatly simplifies the algebra used in calculating

the reduced amplitudes. However, the reduced amplitudes

calculated in the coordinate frame with Z along fia may be

rotated into the coordinate frame with the Z axis along

Ra x Rb. The Om mb's may then be calculated directly.

a

The form of this rotation is (SA 64)

Imebma AHHm'mé

st (a1) = Z st (a2)

.* s s

JIR>fl° (R>,Da (R)I I !

OD u IJ 21 mbmb 21 mama 21

(2.9)

where u = m + ma — mb and R21 represents the set of

Euler angles (BR 68) necessary to rotate coordinates a2

into coincidence with coordinates a1. Theflj, (R) are
u u

the usual rotation matrices. The set of Euler angles

(a, B, y) = R21, which perform the rotation of Z along Ea

t z 1 I I ' R - 2 2o a ong ka x kb , is 21 - (-fl/ , —fl/ , 0). The

code DWMAIN has been modified to calculate the rotated re-

duced transition amplitudes. From these, the partial

cross sections, polarization, asymmetry, and spin flip

are all obtained.

2.5 The Collective Model

The interaction potential for the collective model

is derived from considering a deformation of the spherical

nuclear potential well. The spherical potential well

chosen is the one which gives the correct elastic scat-

tering, i.e., the Optical potential. A complete
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treatment of the deformation Of the full Optical poten-

tial, including the spin orbit term, has been done by H.

Sherif (SH 67). His treatment is outlined here.

The T matrix for scattering from a 0+ ground state

to some state Of spin J, parity (-)J is

T = 2 (X7' 3 3 ' U 00 l/2 ' >mamb mbmb (kara)|<JM.1/2 mblA I ma

|x; m (EaFa)> (2.10)

8.8.

where AU is the first order deformation of the Optical

potential. It is conventional to write this as a sum of

the terms in the optical potential

AU = AUC + AUR + AUi + AUSO (2.11)

The central parts of AU are Obtained by expanding

the radial parameters in the density function f(r, R, a)

so that R + R + d(r), and f(r, R + a,a) = f(r, R, a)

+ a(r) gg where r is the angular coordinates. The central

terms of the Optical potential become

- A 3
AUr + AUi - —d(r) (VR 3R; f(r, RR, aR)

+(w .. 4a w —"’—)—9— f(r R a ))
v i SF ar aRI ’ I’ I

(2.12)

where the deformation of the real and imaginary parts is

assumed to be the same. To derive AUSO, consider USO

written in explicit form
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2

) (VSO + iWso) o.($p(r) + %$) 

(2.13)

where p(?) is the nuclear matter density distribution and

both a real and imaginary potential strength are considered.

If p(?) is represented by the density function

f(r, R ago) and the first order expansion is made, AU

  

  

  

so’ so

becomes

AU -‘h2<v +-w>‘*I‘6( (3”) $151
so ' (m c) so 1 so 0 OLso r 3R X i

n so

(2.14)

Performing the gradient on aso(r)§%£— we may write

.. <1) <2) 30
AU - AU + U , where

so so so

2

(l) _ ‘h “ l_a_ 3f +.->

AUso . (m c) (Vso + iwso) o‘so(lfl) r 3r 3R 0 l
n so

(2.15)

and

AU (2) = (Tim +iW ) 3f *[Efl (r) xii]
so m c so so 3R 0 aSO i

n so

The sum AUSO(1) + AUSO(2) is called the full Thomas form

of the deformation. Using the usual multipole expansion

*

 

a(?) = Em a1m Y£m(r) the matrix element of d(r) is given

by

x

. BJR m .

<JM|a(r)|00> = YJ (r) (2.16)

V23+l

where BJ is the deformation parameter. The interaction

matrix for the central part, including Coulomb excitation,

is then just
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 <JM|AU |OO> BJ [V R §£_

cent (2J+1)l/2 o R 3BR

3 3f

‘ 1 RI(wV ‘ uaIwSF SEQ 3R

2 (r/R )J r<R *
+ 3Zze x c c ]Y M (é)

RCZ2J+1) (RC/r)J rlfic J

J *M ‘

= i GJOJ(r)YJ (r) (2.17)

which is factored into a radial form factor and an angular

 

 

part (see equation 2.7). The matrix elements for AUSO are

so

8 2

<JM|AUSO(1)|00> = J (afic) Rso [Vso + iWSO]

/2J+1 n

2 x

l 3f M "—>.->

r 3;—§—— YJ (P)O A (2.18)

so

and

so
2

(2) 8J «h .
<JM|AU |00> = ( ) R [V + iw ]

so (2J+l)l/2 mflc so so so

3 f

BRS

 

if

+ + M . 1 +
O o-(V(YJ (r)) X f v)

(2.19)

Since <JM|AUS (2)|00> contains an Operator which
O

differentiates the distorted waves, it is not simply

calculated in the "standard" codes, such as JULIE, DWMAIN

or DWUCK. These codes calculate the radial form factor

and distorted waves separately. The overlap integral is

then numerically preformed on the product of the incoming

and outgoing distorted waved and the form factor. H.

Sherif has written a DWA code (SH 68) which includes the

full Thomas form of the distorted spin—orbit potential.
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The terms which include the derivatives of the distor—

ted waves are included. The deformation parameters BJ

and 830 are left as free parameters so that the rela—

tive deformation strength may be varied.

2.6 The Microscopic Model

The matrix element <bB|V|Aa> in equation 2.5 may be

calculated using nuclear wave functions which are a super-

position of the wave functions of the individual nu-

cleons in the initial and final states. The interaction

potential V Operates between single nucleon initial and

final states. These two nucleon matrix elements, weigh-

ted and summed, comprise a microscopic discription of

the scattering reaction.

In the zero range approximation, using an inter-

action potential which ignores the L-S force, the form

factor G2sj,m of equation 2.7 may be factored and cal-

culated separately. In order to separate the radial

and angular dependence of the interaction potential,

it may be written in a multipole expansion (SA66)

—> + —> __ 2 J...“ ->

V(r’ Xa’ XA) ’ LSJ,u (’) VLSJ,u(r’ XA)

" +

TLSJ_u (r, xa) (2.20)

where

__ Z .L m ‘ +

TLSJ_L1 — m <LSm, u—mlJu>l Y£(r) SSu_m (xa)
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is the spin—angle tensor. By defining (PE 71) the tran-

sition density

 

5(r - r )
LSJ — Z O i LSJ .

F (r0) = /2 <JB||i r 2 T (1)||JA>

O

(2.21)

the radial form factor, GLSJ(r), becomes

_ LSJ 2

GLSJ(r) - IVLS(r, r0) F (r0) r0 drO

(2.22)

The multipole coefficients v are the coefficients of the
LS

multipole expansion of the potential.

One potential used here is the Kallio - Kolltveit

(KK) (KA 64) interaction. This potential is written

vTE = 475 exp(—2.5214 (r — 0.4))

VSE = 330 exp(-2.4021 (r - 0.4)) (2.23)

for r > 0.4 and

VTE = VSE = m

for r 5 0.4, where TE and SE refer to the triplet and

singlet parts of the interaction in total spin which

have even symmetry in the spatial coordinates.

Another potential which may be used has the Yukawa

form



21

-ar

— £_
V(r) - V Gr

In comparison to the KK potential, if a 1 fermi range is

used for the Yukawa potential, then the strengths of

__ -> —>

V(r) - V0(r) + Vl (r) 01- o
2

V0 V1 (MeV)

pp —18.4 18.4

pn —54.0 —5.75 (2.24)

will produce equivalent results (PE 71).

The nuclear wave functions used to calculate the

transition density were those of D. M. Clement and E.

Baranger (CB) (CL 68). These wave functions were calcu—

lated in a space of twelve single particle orbits for

both protons and neutrons. The quasi-particle Hamil-

tonian was diagonalized between the excited states J"

formed by a superposition of two neutron quasi-particles

coupled to J1' and proton particle-hole excitations

coupled to J1r anui a closed core ground state. The tran-

sition density is (CO 70)

  

LSJ z L+S

F r = z U.V. + — U.V.

( ) JJ' 33' ( J J' ( ) J J)

-1/2
.. l + .. 2.2TJJ. ( oJJ.) ( 5)

with

2' l/2 j'

.. AA can I

23., = l J'AAILSJ (-)Z 20 g 3 L S J

J /T A 1/2 J

un£(r) un,l,(r) (2.26)
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where Uj and VJ are the occupation parameters (BA 60),

wjj' is the amplitude from Clement and Baranger, and uni

is the radial part of the nuclear wave function calcu-

lated in an harmonic oscillator potential well.

The FORTRAN codes FBART and NUCFAC (PE 70) were used

to calculate the transition density and form factor for

input to DWMAIN. Values of Wjj' and V3 used in these

calculations are in Table 2.1



Table 2.1 Clement and Baranger Wave Functions and

 

 

 

 

 

 

Occupation Numbers for 120Sn and l2“Sn 2+

States

neutrons l208n 12”Sn

I 0" Bi VJ “'ii' Vi

p3/2 p3/2 -.013 .99634 I .01 .99683

pl/2 -.O23 -.02

f5/2 -.011 -.01

f7/2 .046 .04

pl/2 f5/2 -.O24 .99503 -.02 .99563

f5/2 f5/2 -.019 .99565 .02 .99612

h9/2 .139 .14

f7/2 —.001 00

g9/2 g9/2 .040 .99416 .04 .99523

d5/2 .081 .06

87/2 .037 .03

113/2 —.l44 — l3

d5/2 d5/2 .080 .97475 .06 .98314

g7/2 .045 .03

31/2 .187 12

d3/2 .132 .09

s7/2 g7/2 .155 .95506 11 .97140

d3/2 .309 21

sl/2 d3/2 .321 .89252 22 .94295

d3/2 d3/2 .299 .69423 24 .82497

hll/2 hll/2 —.602 .50763 - 74 .67294

h9/2 —.074 — 11

hll/2 f7/2 -.l70 - 20

h9/2 h9/2 —.092 .18520 - 13 .23899

h9/2 f7/2 .015 02

113/2 113/2 .058 .10566 06 .11668

f7/2 f7/2 —.040 .11569 — 04 .13197

protons 12OSn 12“Sn

1 1' “11' “’JJ'

93/2 r7/2 —.063 -.06

f7/2 h9/2 -.155 -.16

f5/2 f7/2 .005 .01

89/2 d5/2 .311 .28

89/2 g7/2 .108 .10

g9/2 113/2 -.164 -.16





3. EXPERIMENTAL PROCEDURE

3.1 Cyclotron and Experimental System

Proton beams for this experiment were accelerated

by the Michigan State University sector focused cyclotron

(BL 66). Normally 100% Of the internal H+ beam was ex-

tracted via an electrostatic deflector and magnetic chan-

nel. Figure 3.1 shows the floor plan of the cyclotron

experimental area and beam line used.

The beam transport system (MA 67) focused the ex-

tracted proton beam from the cyclotron on slits 81.

After being bent through 90° by magnets M3 and M4, a

second focus was formed at slits S3. Beam divergence

was limited by slits S2. Typical slit openings for this

experiment were .100 inches for all slits. These slit

values limit the FWHM energy spread to 8 parts in 10“.

Proton energies were determined from nuclear mag-

netic flux meters in the central fields of M3 and M4.

The energy of the analyzed beam as a function of mag—

netic field strength has been calculated (SN 66). Recent

measurements based on a new technique (TR 70) have allowed

the calibration of the absolute energy Of the analyzed

beam to better than 1 part in 1000.

The analyzed beam was deflected into the target cham-

ber by magnet M5, and focused at the target center. No

collimating slits are used between M5 and the faraday cup

in order to minimize radiation background in the experimental

24
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area. The focused beam was typically rectangular, 1 mm

high andZSmm wide. The beam was positioned by Observing

the beam spot relative to fiducial marks inscribed on a

one half mm thick piece of plastic scintillator viewed

with a closed circuit television system. This allowed

positioning of the beam spot to within 20 mils.

Targets for this experiment were isotopically en—

120
riched self-supporting rolled foils of Sn 9.9 mg/cm2,

12”Sn 5.13 mg/cm2, 94.7% iso—98.4% isotopic purity and

topic purity. The isotopes were Obtained from the Iso-

topes Division of Oak Ridge National Laboratory and the

targets fabricated at Microfoils Inc.,Argonne, Illinois.

Since target thickness and uniformity are unimportant in

the reduction of the data, thickness was determined by

weighing only.

The targets were mounted in the existing target

chamber (KO 69) which allows remote positioning of both

target height and angle.

Beam exiting the target chamber was collected in a

2.9 inch diameter by 59 inch long faraday cup. The beam

stop was located 2 m beyond the target position. With

this distance, radiation from the faraday cup reaches the

gamma detector approximately midway in time between ra-

diation counts from other beam bursts at the target.

The beam stop was a .75 inch carbon block chosen for

its low neutron production characteristics. The whole

faraday cup was encased in a 22 inch diameter by 34 inch
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long cylindrical water shield to further reduce the neu—

tron flux.

The beam current and integrated charge were measured

with an Elcor Model A 310 B current integrator connected

to the faraday cup.

3.2 Detectors

Gamma rays were detected in this experiment with a

Harshaw Integral Line 2 inch diameter by 3 inch long

NaI(Tl) crystal coupled to a RCA 8575 photo multiplier

tube. This detector has a measured energy resolution of

7.6% for the 662 KeV gamma ray from 137Cs.

Bias voltage was supplied to the photo multiplier

by an ORTEC 265 photo tube base. This base is designed

so that the photo tube anode is maintained at ground po-

tential, thus the anode signal rise time is not limited

by the time constant derived from a large coupling ca—

pacitance.

The ORTEC 265 base allows external voltage stabili-

zation of the final four photo tube dynodes. Current flow

from the voltage divider resistance chain through the

dynodes during pulse amplification increases the total

current in the resister chain. This increases the poten-

tial between the first few dynodes and the photo cathode.

The effect of this is a rather strong gain increase with

increasing count rates. This effect may be reduced by

adding large capacitors in parallel with the resistors in



28

the voltage divider chain. Since the fraction of the ca-

pacitors' charge necessary to compensate for the lost

dynode electrons is small, these serve to hold the inter-

dynode voltage difference more constant. Expanding on

this technique,batter1escn'Zener diodes may be used to

supply the voltage to the dynodes. In practice, Zener

diodes and .5 pf capacitors were placed in parallel with

the last four dynodes. The zener diodes were chosen such

that the interdynode voltages were those supplied by the

base with an overall Operating voltage of -3000 V. The

operating voltage used was —l800 V. This increased the

relative amplification of the last four, stablized, dy—

nodes in comparison to the normal amplification at -1800 V.

In this configuration, the shift of the centroid of the

1.33 MeV gamma line from 60Co was 5% (compared to 100%

without stabilization) when the counting rate was varied

from lOO/sec to 65,000/sec.

To reduce background, the gamma detector was en-

cased in a lead cylinder with 4 inch thick walls and 24 in-

ches long. The shielding weight was 1/2 ton and was

moved along a line centered to within 10 mils of target

center by a motorized screw jack. The measured total

displacement Off center is 10 mils. With this shield,

the background from sources other than the target was

measured to be 10% of the total counting rate when using

a tin target.
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The product of the gamma-ray detector efficiency and

solid angle was determined directly in the experimental

apparatus. A 60 Co radioactive source calibrated to i2%

at the MSU Cyclotron Lab (KO 69) of known activity was

placed at the position of the center of the target. Ob-

servation of the 1.17 MeV gamma—ray from this decay pro—

vided the detector efficiency-solid angle product, 5A0,

for the 1.17 MeV gamma-rays. Only the photo peak in the

gamma—ray spectrum is used in calculating 5A0. The

efficiency-solid angle for 1.13 MeV gamma-rays was ob—

tained from this with a small correction (HE 64). The

efficiency-solid angle product for the gamma—ray photo

peak and the face of the gamma-ray detector at 6 1/8

inches from the source was determined to 16% accuracy

to be l.16x10"3 steradian for 1.17 MeV (120

l2uSn).

Sn) and

1.24x10-3 steradian for 1.13 MeV (

To detect charged particles a 5 mm x 500 mm2 li—

thium drifted silicon detector was used. A detector of

large surface area was necessary in order to obtain a

sufficiently large proton solid angle.

To provide a suitable environment for operating the

detector outside of the target chamber, a portable vacuum

box was constructed (see Figure 3.2). Protons entered

the box through a 1 mil aluminum window. Solid angle

definition was Obtained with collimators placed in a hold-

er in front of the particle window and external to the

vacuum. The detector was housed in the box in a brass
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holder to which alcohol cooled by dry ice was pumped from

an external source. The detector holder was fastened to

the wall of the vacuum box with Delrin plastic mounts

which provided both heat and electrical insulation for the

detector and mount. After a period of rough pumping va—

cuum was maintained with a cryogenic pump filled with mo-

lecular sieve and kept at liquid nitrogen temperatures.

A typical spectrum of protons scattered from 12OSn

and detected with this system is shown in Figure 3.3. The

resolution for the elastically scattered protons is 250

KeV FWHM.

3.3 Electronics

Because the coincidence count rate is limited mainly

by the limit on the count rate in the gamma-ray channel,

the electronics were designed to extend this limit to as

high a count rate as possible. In particular, dead time

and pile up effects must be minimized. To reduce elec—

tronic dead times, cable delays and cable delays with

amplifiers were used instead Of gate and delay genera—

tors On all timing and logic signals in the gamma channel.

Also, 100 nsec differentiation and integration constants

were used to shape the bipolar gamma pulse.

A block diagram of the electronics configuration ap-

pears in Figure 3.4. Fast timing signals from a timing

single channel amplifier (TSCA) set on the bipolar proton

amplified pulses started the time to amplitude converter
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(TAC). Although the TSCA cross—over timing pulses were

quite pulse-height dependent, the high efficiency and

simplicity in use of cross-over timing over other timing

methods were judged more important than improved time

resolution in this case. Delayed signals from an induc-

tive pick up coupled to the anode of the gamma detector

photo tube were used to stop the TAC. A typical time

spectrum is shown in Figure 3.5. TAC starts were se—

lected from protons scattered from states of 0 to 3 MeV

excitation in the tin target. The spectrum passed through

a linear gate enabled by a TSCA which selected pulses be-

tween 0.7 and 1.5 MeV in the gamma-ray energy spectrum.

The large peaks are due to the pulsed nature of the cy—

clotron beam which has a period Of 61.5 nsec at 30 MeV.

Structure within these peaks was observed to correspond to

TAC starts from protons scattering from separate energy

levels in the tin nucleus. This was done by Observing

the time spectra of each proton state in relationship to

the cyclotron rf. This structure is due to charge col—

lection effects in the silicon detector integrated into

the double—delay-line amplified proton pulse. These

charge collection effects are seen in doped germanium

and silicon detectors where the mobility of electrons

and holes are different. The shape of the detector out—

put has two slopes on the leading edge of the output pulse

resulting from the separate carrier mobilities. This

difference in mobility results in a difference in the
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shape of the leading edge of the pulse Obtained from

events in various parts of the detector. Pulses from

protons of different energies and thus different ranges

in the silicon detector have different pulse shapes. In

cross-over timing these differences appear as changes in

the time output relative to the initial pulse.

Other fast timing techniques such as timing derived

from an inductive pickup leading edge timing coupled to

the unamplified proton pulse eliminated the structure in

the peaks in the time spectrum. However, in this method

the electronics available at the MSU Cyclotron Laboratory

did not generate timing signals with 100% efficiency. Be

cause of the slow rise time (the specified charge col-

lection time for the detector is 500 nsec) of the detector

output, the inductive coupling did not produce pulses

sufficiently large to reliably trigger thetnfiiflsstiming

discriminator.

The peak containing true coincidence events is

identified by an increase in the starts from excited

states (the right half of the peaks) while elastic events

contribute equally to all peaks. The full width at half

maximum of the total peak is 22 nsec.

Events from the true coincidence peak were selec-

ted by a TSCA set on the output of the TAC. A slow coin-

cidence was required between the output Of the TSCA set

on the fast time spectrum and the output of the TSCA set

on the gamma-ray energy spectrum. The output of the slow
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coincidence unit was used to enable a pair of linear gate

stretchers (LGS). The LGS's passed pairs of coincident

proton and gamma—ray pulses for pulse height analysis.

These pulses were converted by two ADC's and stored in the

set up (2-D) mode in a 128 x 128—channel array by the

program TOOTSIE (BA 69). The conversion gain and digital

offsets of the ADC's were varied so that the proton and

gamma-ray pulse height ranges selected by the respective

TSCA's filled the center region of the array. An ex—

ample Of such an array is seen in Figure 3.6.

Pulses converted by one ADC without a coincident

pulse being converted by the second ADC are stored along

the axes of the 2—D display. The counts on the axis in

this experiment represent cases in which the corresponding

coincident pulse was rejected by the LGS. This can occur

if the internal discriminator of the LGS is triggered by

a prior pulse and has not yet reset at the arrival Of the

gate enable signal (OR 69). The method for handling

these counts is described in the data reduction section.

The 2-D array was displayed on an oscilloscope and

markers were set to extract gamma—ray energy spectra cor—

responding tO coincidences with protons of chosen energy

bins.

Ungated,stretched proton pulses were analyzed by a

third ADC and after conversion were stored in a 1024—

channel spectrum using the data—taking program POLYPHEMUS

(AU 69). Collection of this singles spectrum for the
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whole run at each angle provided a convenient normali-

zation for the coincidence data. Collection Of the singles

spectrum in this manner eliminates charge collection, tar-

get thickness and target uniformity as parameters in re-

duction of the coincidence data.

A monitor counter served to measure the dead time of

the ADC'S. A selected portion of the monitor spectrum was

counted on a sealer and in channel zero of the ADC's. This

was typically about 3% for the proton singles counts and

always less than .1% for the case of the coincidence

counts. Also, proton starts, gated gamma—ray stops, true

coincidence gate-enables and all elastic events in the

monitor were separately counted on scalers in order to

monitor the course Of the experiment and to calculate dead—

time corrections. The selected one dimensional coinci-

dence spectra, the 2-D coincidence array and the singles

proton spectrum were stored on cards for later analysis.

Figure 3.7 shows a typical set of one dimensional

coincidence gamma—ray spectra for one run along with a

singles gamma—ray spectrum and a "standard" line shape.

The one dimensional gamma-ray spectra were taken for proton

energy bins which encluded the whole proton peak. The

peak seen in the second excited state spectrum was always

easily Observed and results from the two nearly equal

+ and 1.17 MeV 2+ to 0+)energy gamma-rays (1.22 MeV 3“ to 2

produced by the cascade Of the strongly excited 3— state

decaying through the first excited 2+ state to the ground
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state. In l2“Sn these two gamma-rays were not as close

in energy (1.42 MeV 3‘ to 2+ and 1.13 MeV 2+ to 0+) and

could be separately Observed. For both nuclei, collection

of the second excited state coincidences served as an

added calibration which was quite useful when the number

of real coincidences in the first excited state was small.

The peaks in the singles spectrum contain not only the

gamma-rays from the de—excitation of 120Sn but also gamma-

rays resulting from the B—decay of Sb118 to ll88n*. 1188b

is obtained through the (p, 3n) reactions on 120Sn.

3.4 Data Reduction

The probability for a proton scattered through some

angle 0 to have its spin flipped is, for infinitesimal

detector apertures,

at. 1 R.
S(6)-5 W N , (3.1)

where e is the proton scattering angle (5dQ)y is the

solid angle—efficiency product of the gamma-ray detector,

N is the total number of inelastic scattering events to the

2+ state and R is the number of real proton-gamma—ray

coincidences.

The number of real coincidences, R, was determined for

a proton pulse height bin, AEp 2+, which enclosed the 2+

proton peak and a gamma ray bin, EYPP, which enclosed

only the photo peak of the 2+ T 0+ gamma ray. So R is
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R = z R(Ey, Ep) = R( EyPP, AEp 2+) (3.2)

AEp(2+ state)

AE (2+ + 0+ photo peak)

The number of real coincidences R(Ey, Ep) as a func-

tion of gamma ray and proton pulse height (EY and Ep) is

determined from the total number of measured coincidences,

T(Ey, Ep), at the same By and Ep. In any coincidence

system with finite time resolution, random, accidental co—

incidences may occur. These accidental counts A(EY, Ep)

were determined and subtracted from T(Ey, Ep) to obtain

R(Ey, Ep). In calculating real counts as a function of

By and Ep it is convenient to sum T(Ey, Ep) over some

pulse height bin AEp(AEy) and calculate R(Ey, AEp)

(R(AEy, Ep)) as a function of only the gamma ray (proton)

pulse height.

A spectrum of accidental counts was determined as

a function of Ey for some proton bin AEp. A real counts

spectrum, R(Ey, AEp), was then obtained from the equation

R(Ev, AEp) = T(ET, AEp) - A(EY, AEp) . (3.3)

This equation is also valid for AEy, Ep sets.

Uncorrelated spectra, i.e., spectra which contain no

real coincidences, or for which no coincidence require-

ment was imposed, may be used to calculate A(EY, AEp).

A(Ey, AEp) (A(AEY, Ep)) will be proportional, within sta-

tistics, to any random coincidence spectrum U(Ey, AEp')

(U(AEy', Ep)) which is the same function of Ey(Ep) but
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calculated for any AEp'(AEy'). This is also true for the

singles spectra U(Ey, singles) and U(Ep, singles). Thus,

A(E, AE) = K U(E, AE') (3.4)

for either Ey, AEp' or Ep, AEy'.

The proportionality constant K is obtained from a

second U. For example, if U(Ey, AEp g.s.) = T(Ey, AEp g.s.)

were taken from random gamma-ray-proton ground state co-

incidences and A(Ey, AEp 2+) were desired to calculate

R(Ey, AEp 2*) with equation 3.3, K could be calculated

from the proton singles spectrum. In this case, K is

just the ratio of counts in U(Ep, proton singles),

K _ U(AEp 2+,proton singles)

— U(AEp g.s., proton singles) In addition to

 

U(Ey, AEp g.s.) and U(Ep, proton singles) an uncorrelated

spectrum may be obtained by choosing AEy to include only

pulse heights greater than the value Ex possible from a

decay of some proton excitation at Ep, i.e., U(AEy> Ex, Ep) =

T(AEy > Ex, Ep).

In practice, the calculation of R(Ey, AEp 2+) as

described in the above example, was used to Obtain R.

R(AEy P.P., Ep) was also calculated to check the limits

of AEp for the 2+ state. A computer program was written

which allowed input of either the one dimensional coinci—

dence spectra or the 2—D coincidence array in order to

calculate the real coincidence gamma—ray spectra for the

first and second excited states. A second, similar pro—

gram calculated real coincidence proton spectra.
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The photo-peak was cflWxnl distinguishable in the

real coincidence gamma—ray spectrum for the first excited

state, R(Ey, AEp 2*). When this was obtained, a bin of

gamma-ray pulse heights was chosen to include only the

photo—peak. The number of real counts in this bin was

used to calculate the spin flip (see equation 3.1). In

cases where the number of real coincidences for the 2+

state was small, the real coincidence spectrum containing

— +

the cascade gamma—rays (3 + 2 , 2+ + 0+) of the strongly

(l2OSn 2.39 MeV and l2uSn 2.55 MeV) state wasexcited 3-

heavily relied upon to define the limits of an acceptable

gamma-ray bin. The photo-peak of the 2+ to 0+ member of

the cascade decay was always clearly distinguishable in

R(Ey, AED 3_). This peak has the same gamma-ray energy

and thus pulse height as the (2+ + 0+) decay Obtained by

directly exciting the 2+ state. Since this peak is

sensitive to all the same experimental conditions, such as

gain shifts, as the peak expected in the real coinci—

dence spectrum for the first excited state, the limits

obtained from inspecting this peak could be directly ap-

plied to the real coincidence spectrum for the directly

excited 2+ state.

Real counts along the Ep axis were scaled and added

to those in the gamma-ray energy bin. It is presumed

that these counts represent a random sampling of the

counts throughout the gamma-ray energy spectrum. Thus

real counts along the axis were scaled by the ratio of
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the number of real counts in the selected gamma-ray energy

bin to the total number of real counts. Addition of the

real events along the proton axis typically lead to an

increase in the total number of real events of 5% and

never more than 15%.

The statistical standard error, 68(6), associated with

8(9) (equation 3.1) is

2 _ §1 1 2 + 2
[63(6)] - 5 m] [T(2 ) + K U

+ U2(5K)2] / N , (3.5)

where the pulse height summations over AEp and AEY in T

and U are implicit and the error in N is small and omitted

from this formula.

The formula for 8(a) in terms of R/N when detectors

subtend finite solid angles is not as simple as formula

3.1. The radiation pattern for gamma—rays resulting from

a spin-flip (Am = :1) transition is peaked along the line

perpendicular to the scattering plane. Also the radiation

patterns for the non-spin—flip (Am = O, :2) transitions

are not zero near the perpendicular (SH 70). Thus, to

calculate 8(6) for a finite gamma-ray detector and a point

proton detector, one must take the weighted average of .

the spin-flip gamma—ray radiation pattern over the detec—

tor solid angle and subtract the contribution of real co-

incidences from non-spin-flip transitions. The number

of real coincidences in a finite gamma—ray detector which

can result from non-spin—flip transitions is a function
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of the relative populations of the m = O and m = :2 (non-

spin-flip) sublevels of the excited 2+ state. Each has a

separate distribution in de-excitation.

The position of a particle detector with infini—

tesimal aperture defines the scattering plane. An aper-

ture of finite size will define an envelope of scatter-

ing planes. Each scattering plane in the envelope is

weighted by the fraction of the total accepted particle

flux contributed from that plane. The size of the enve-

lope depends on the scattering angle, becoming larger as

the scattering angle changes from 90° in the laboratory.

In this experiment 8(9) was calculated with a formula

(HI 70) which is a function of scattering angle, the ratio

of the m = +2 to the m = O substate populations, the half

angle acceptances of the proton and gamma detectors, the

geometry of the proton detector aperture and the depen—

dence of the gamma-ray detector efficiency on the angle

of incidence of the gamma—ray. The derivation of this

formula assumes that the gamma—ray detector is circular

and that the m = +2 and m = -2 sublevels are populated

equally. The formula is:

8(9) 2[l.6(l+2q) R/N — 3AuB - 6A B + 2.25A5B
l 2 2

+ 18A6BU + 6A3B5 + q(.75A5B3 — 2A1

+ 6A6BU + 2A3B5)]/[2Al — 9AUB — 18A2B

3

1

+ 7.5ASB3 + 6OA6Bu + 2OA3B5 + q(7.5A5B

- 6AuBl — 12A2B2 + 60A6Bu + 20A3BS)]

2

3

(3.6)
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where

x x 2

A = f Y sin x p(x)dx B I p f(x)x dx

1 O l O . 2 2

511’] 6 +X

X 2 Xp f(x)sin26dx
A = f Y cos x sin p(x)dx B I
2 O 2 O 2 2

sin 9 +x

X u
X Ll

A3 = f0Y cos x sin p(x)dx B3 [Op f(x)x dx

(sin29+x2)2

x x 2 2

A = f Y sin3xp(x)dx B j p f(x)x sin edx

M O u 0 . 2 2 2
(Sin 9+x )

X 5 Xp f(x)sinu6dx
A5 = f0Y sin xp(x)dx B5 - f0 2 2 2

(sin 9d+x )

x 2 3

A6 = oncos xsin xp(x)dx

and

P(x) = the angular dependent gamma—ray detector efficiency

th
xi = the half angle acceptance of the i detector

f(x)dx = a weighting function defined by the shape of

the proton detector aperture which gives the

fraction of protons between angles x and x+dx

q = a2/aO is the ratio of the population of the m=+2

nuclear substate to the m=O substate.

Figures 3.8 and 3.9 show the spin flip angular distri—

120 12“Sn when calculated with formulabutions for Sn and

3.1 which assumes that both detector apertures are infini-

tesimal. Figures 3.10 and 3.11 show the same angular

distributions when calculated with formula 3.6. In the

later calculations
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P(x) = (edQ)y / day = constant,

f(X) =u/Xp'fl /l_ (X/X )2

p

and

a2 / a0 = q = 1.

The half angular acceptances are xp = .07 rad. and xy =

.134 rad. The errors shown in Figures 3.8 and 3.9 are

only statistical. In Figures 3.10 and 3.11, the errors

include the RMS sum of the statistical error and an

estimate of the error generated in choosing q = 1.0. In

neither case was the 16% normalization error resulting

from the uncertainty in the gamma-ray detector efficiency

included.

Since the actual substate populations are unknown

and can be measured only with substantial effort, the

values of 8(9) calculated at each angle with q = O and

q = w represent the limits of possible values of 8(6).

The values of these limits with purely statistical errors

are shown in Figures 3.12 and 3.13. Plus or minus one

third the difference between these limiting values was

used as an estimate of the uncertainty generated by the

arbitrary choice of q. This contribution doubled the

error on some forward angle data where the statistical

error is small, but increased the error in the back

angle data by about 10% of the statistical error.
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Calculating 8(6) with Formula 3.6 resulted in lower

values than those obtained by assuming that the detectors

had infinitesimal apertures. This is especially true for

the forward angle l2“Sn data where the Choice of any value

of q greater than zero results in values of 8(6) (see

Figure 3.13) which are negative outside the experimental

error. The data on 120Sn and lzuSn are quite similar.

The main difference between the two isotopes is seen at

angles forward of 75° where the 120

tantly higher than that of 12”Sn.

Sn data is consis-



4. DATA ANALYSIS

A.1 Inelastic Scattering Data

The spin flip data treated in this section repre-

sents many lengthy periods of data collection on the

cyclotron. Data taken at forward angles represent the

shortest data collection time, requiring about four hours

per angle. At backward angles as long as twenty hours

of data collection time was spent on one point. Because

of the length of time invested in obtaining a data point

at some angle and because of the regular nature of the

data at forward angles, the angular distribution was

taken at 15° intervals. The data sets considered in

this section have been corrected for experimental solid

angle effects as described in the experimental section

of this work.

Elastic and inelastic cross—section data was ob—

tained along with the spin flip data at each angle in

the spin flip angular distribution. The large solid

angle acceptance of the proton detector used in this ex-

periment averages the cross—section measurement over its

angular aperture and degrades the usefulness of the cross—

section data. I

Both inelastic cross-section and inelastic asym—

metry data are available in the literature for protons at

120
30 MeV for Sn (KA 70). These data are included in

this analysis of proton scattering.

56
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4.2 Elastic Scattering Data and Optical Model Parameters

The basic set of scattering data at 30 MeV, including

elastic cross-sections, reaction cross-sections, and

elastic polarizations on targets from C to Pb was taken

at the Rutherford High Energy Lab (RHEL) (CR 6“, RI 6A,

TU 6A). The polarization measurements were repeated with

thinner targets so that the average proton beam energy

(GB 70) compares more closely with that for the cross—

section data. These data wereagadrlretaken (KA 71) at

RHEL in an experiment which included cross-section and

asymmetry measurements on the strong inelastic states of

some of the same nuclei.

Optical model searches were done by the RHEL group

(BA 64) and later by G. R. Satchler (8A 67) and G. W.

Greenlees (GR 66, GB 70) in separate attempts to extract

optical model parameters from the data in a consistent

manner.

None of the studies reported at 30 MeV proton energy

include the 12“Sn nucleus. Elastic cross section and

polarization data have been collected and searches have

been done over the tj11 isotopic sequence, including 120Sn

l2“Sn at 39.6 MeV (BO 68). The 39.6 MeV data, theand

RHEL data and data from other sources at these, and at

other energies were combined. A search was conducted on

all the collected data testing various analytic expres-

sions for the Optical model parameters by E. D. Becchetti
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and G. W. Greenlees (BGOM) (BE 69). The result of this

search was a set of best fit formulas from which Optical

model parameter values may be calculated for any nucleus

in the range A = A0 to 208 and for energies at least up

to 40 MeV.

The results of this search are expected to produce

the most consistent relationship between the Optical

120
model parameters used in the calculations for 8n and

l2“8n. Other sets of parameters have been tried and

calculations with one set (GB 70) are also presented

here.

The formulas for the BGOM parameters are

vR = 5A. - 0.323 + O.uz / Al/3 + 2u.O(N - Z) / A

rR = 1.17

ar = .75

WV = .22E - 2.7 3 O

wSF = 11.8 — 0.25E + 12.0(N - Z) / A

'= =rI rI 1.32

I: = —.aI aI .51 + .7(N Z) / A

V = 6.2
so

r = 1.01

so

aso = .75

The values Obtained from these formulas for 1208n at 30

MeV are compared with the values obtained from other

searches in Table “.1. In general, the values of a given

parameter do not differ greatly from one another. The

main deviation between separate parameter sets is seen in
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the various distributions of the absorbtive strength in

the surface and volume parts of the absorbtive (imaginary)

well.

4.3 Collective Model Calculations

Collective model DWA calculations have been done for

the spin flip probability on 1208n and l2“Sn using the

best fit Optical model parameters of E. D. Becchetti and

G. W. Greenlees. Also,cross section and asymmetry calcu—

lations done with these parameters are compared to the

Karban (KA 71) data on 120 Sn.

The effects of using another set of optical model

parameters are also presented in this section for all the

120Sn data. The set is GE 70 #3 in Table 4.1.

The results of collective model calculations for

spin flip for 120Sn and l2“Sn are seen in Figures 4.1

and 4.2. Due to the macroscopic nature of the collective

model, significant isotopic differences in the calcula—

tions for two such similar nuclei are neither expected

nor seen. The collective model correctly predicts the

value of the backward angle peak for both 120Sn and 12“Sn

and is in general agreement with the data at forward

angles.

The three curves displayed in Figures 4.1 and 4.2

use the deformed full Thomas spin orbit potential for

values of the spin orbit deformation parameter 83 of O,
O

18 and 2B. The spin flip calculations are not very
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sensitive to the parameter Bso’ Moreover, the calcula—

tions are most sensitive in the angular region when the

spin flip values are small. A choice of the value of 880

cannot be reliably made from comparison to the spin flip

data alone.

Calculations which are more sensitive to the value

of B are those of the asymmetry. Figure 4.3 shows
SO

asymmetry calculations for 880 = 0, B and 28 using the

BGOM parameters. While varying 88 produces some changes
0

in amplitude at the backward angles, a change in the

phase of the asymmetry occurs in the forward angles. J.

Raynal (RA 71) has suggested that the value of 880 is

dependent on the detailed structure of the state con—

sidered. It will not necessarily be the same as for the

central well, however, the best fit to the asymmetry data

here clearly is obtained when the value of Bso is close

to B.

The calculated inelastic cross sections for Bso = O,

B, 28 are seen in Figure 4.4. As in the case of spin

flip, the calculated cross sections are not very sensi-

tive to the value of Bso' The value of the central well

deformation parameter 8 is 0.133. This is in general

agreement with previous results (KA 71, FU 68). This

value is about 10% higher than that extracted from ex-

perimental BE(2) values (CU 69).

Spin flip calculated with a second optical model

parameter set (set GR 7O #3 in Table 4.1) for 120Sn is
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seen in Figure 4.5. The main feature of interest is that

while the strength of the spin orbit well of GR 7O #3 is

less than that of the BGOM, the value predicted for the

backward peak is higher than that predicted by the BGOM.

The relationship between the depth of the spin orbit well

and the magnitude of the predicted back angle peak is not

a straightforward one.

The effects of varying the optical model parameter

set on the calculated values of spin flip are interesting.

The collective model without a distorted spin orbit term

correctly predicts the backward peak. This form of the

interaction potential allows no spin flip in the nuclear

interaction. Thus, the back angle peak must be the re—

sult of spin flip in the elastic channels. It is known

that in the absence of spin orbit coupling in the elastic

channels that the backward angle peak is not predicted

(KO 69). However, the magnitude of the backward angle

peak does not depend on the depth of the spin orbit

well alone. It also depends on the strength and shape

of the other wells and the strength of the full Thomas

spin orbit term. Calculations of the asymmetry and cross

section with the GR 70 #3 parameters are seen in Figures

4.6 and 4.7, respectively. For either the asymmetry or

cross section, agreement with the data is not affected

much in using different optical model parameters. The

value of B(.127) is 5% lower than B from the BGOM calcu-

lations.
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4.4 Microscopic Model Calculations

Microscopic model DWA calculations have been done for

120 124
the spin flip probability on Sn and 8n using the KK

force and the Clement and Baranger wave functions. The

optical model parameters used here are the same as in the

collective model case, i.e., the BGOM and alternately,

GR 70 #3 from Table 4.1. Comparisons are also made to the

published cross section and asymmetry data on 1208n.

The results of the spin flip calculations on 1208n

and l2“Sn are presented in Figures 4.8 and 4.9. Exchange

 

is explicitly included in the calculations for both nu—

clei using the Petrovitch approximation (PE 71). These

calculations were repeated for 120Sn including exchange

exactly using the code DWBA 70 (8C 69) which is written

in the helicity formalism (RA 68). Because of restric-

tions in the input to DWBA 70, the KK force was not

used. Rather, a force of Yukawa form was required.

The range used was 1 fermi and the strengths were chosen

to produce the same results for the direct calculation

as the KK force (PE 71). So, while the comparison is

not exact, agreement between the calculations would indi—

cate that the exchange approximation is not in serious

error. This is the case for these calculations (Figure

4.8). The difference between the exact and approximate

calculatiOns is minor.
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The GE wave functions with the KK force predict a

spin flip which is in general agreement with the data.

120
The backward peak is somewhat too high for Sn, but

over all the fits are good.

A microscopic discription of the spin flip inter—

action might by expected to reproduce the details of

isotopic effects in the data. The calculations for l2uSn

120
is not depressed over that for Sn at forward angles.

An explanation of the lower values of the data for l"2L4Sn

does not result from these calculations.

The microscopic prediction of the 120Sn asymmetry  
is presented in Figure ”.10. The most striking feature

of these calculations is how poor the fits are to the

data in comparison with the collective model fits. The

values are too low throughout the whole angular range

of the fit. Only the phase of the oscillations continues

to agree with the data. There are two factors included

in the collective model case but not in these calculations

which might affect this. First, the KK force is central.

No spin orbit force is included in the KK force. Second,

the KK force is real. The force represented by the col—

lective model is complex and includes a spin orbit term,  
the strength of which was varied.

The cross section calculation is presented in Figure

H.11. The normalization of the cross section is absolute,

containing no effective charge parameterization. With this

in mind, the agreement of the cross section calculation
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with the data is very good. The cross section is too low

at the first maximum, but the shape is in general agree—

ment with the data. The CB wave functions appear to de-

scribe the 2+ state very well. The exchange approximation

is also successful here. The approximate and exact calcu-

lations are in close agreement.

Included in Figures 4.8, 4.10, andl4¢y1are calcu-

lations with the CB wave functions and KK force with ap—

proximate exchange using the optical model parameter set

GR 7O #3. As in the collective model case, varying the

 

optical model parameters does not result in large changes

in the calculations. The parameter set with the lower

VSO strength again predicts a slightly higher value for

the backward angle spin flip peak.

To investigate the degraded fit obtained with the

microscopic force and wave functions to the asymmetry

data, the exact exchange calculation was repeated with a

microscopic L-S force included in the interaction. The

radial form of the L-S force used is a superposition of

two Yukawa forces. The volume integrals of V(r) r2 and

V(r) r” have been equated to the volume integrals of

the Gaussian force of D.Gogny (G0 70) and the strengths

and ranges of the Yukawa form determined. The potentials

with strengths in MeV and ranges in fermis obtained through

this method are (AU 71)
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<

I

pp - —574 exp(.329 r) / .329 r

<
: llpn ~287 exp(.329 r) / .329 r

+ 218 exp(.238 r) / .238 r

The calculated cross section, asymmetry and spin

£114) with the KK equivalent central force and spin orbit

force are presented in Figures 4.12, 4.13 and 4.14. In—

cluding the spin- orbit force does not greatly affect any

of the results. w. G. Love has found the L'S force to be

important in fitting inelastic scattering to excited states

with high spin (6+, 8+) in 90Zr at 60 MeV (L0 71). A

more complete investigation (LO 71A) showed that for the

states of lower spin (2+, 4+), the spin orbit contribu—

tion to the cross section is not very strong. J. Raynal

(RA 68), using a somewhat stronger spin orbit force (J24

for Raynal is about twice J)4 for Love), found improved

agreement in the forward angles of the asymmetry of the

lowest 2+ state in 90Zr at 20.3 MeV. This is not the case

for l208n when the Gogny L-S force is used.

There are two methods of estimating the imaginary

part of the microscopic interaction. A simple-minded

approach is to take the collective model imaginary part

normalized to the microscopic calculations. A second

possible prescription for calculating the microscopic

imaginary part is the "frivolous model" suggested by G. R.

Satchler (SA 71). The preceding microscopic calculations,

including approximate exchange with the CB wave functions

 

 





81

and the KK force using the BGOM, have been repeated with

each of these imaginary parts. The asymmetry calcula—

tions may be seen in Figure 4.15. Also, calculations

done with a real collective model form factor including

deformed spin orbit are seen.

It is evident that a complex form factor with either

imaginary part gives substantial improvement to the asym-

metry over the real form factor calculation alone. Also,

one sees from the real collective form factor with de—

 

formed spin orbit calculation, that the imaginary term com—

plements the effects of the deformed spin orbit. The l

deformed spin orbit improves the agreement with the data

at forward. angles without a corresponding effect over

the rest of the angular range. The imaginary part has

least effect at forward angles, producing better agree-

ment over the range of middle and backward angles.

The fits to the cross section are presented in Fig-

ure 4.16. Addition of an imaginary part produces a general

improvement to the fit. The first maximum is in better

agreement, while the rest of the angular range is not

changed much. The spin flip calculations are seen in

Figure 4.17. While addition of the collective imaginary

part did not affect the values of the calculations, the

Satchler imaginary part grossly over predicts the value

of the backward angle peak. imu3"frivolous model" Clearly

produces much worse agreement in this case. It is note~

worthy that while the calculations for spin flip seemed
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fairly insensitive to other changes, the Satchler imagi—

nary part produced a pronounced effect.

Calculations studying these complex form factors on

other states and a description of the Satchler formulas

are found in the Appendix.

 

 





5. SUMMARY

Spin-flip probabilities for the excitation of the

first 2+ states in 120Sn and l2“Sn have been measured

for inelastic proton scattering at 30 MeV. The spin-

flip data for both isotopes are quite similar. Both

show the peak at back angles which is characteristic in

medium energy spin—flip data taken on lighter nuclei.

The tin cross section, asymmetry (KA 70) and spin—flip

 

data have been analyzed with both macroscopic and micro—

scopic DWA models.

For the collective model, fits to the cross

section are reasonably good. Use of a deformed spin or—

bit term is important, but no more so than the imaginary

part of the collective form factor, for the asymmetry

data. Deforming the spin orbit well has little effect on

either the spin-flip or cross section calculations. The

fit to the 1208n spin-flip data is quite good over the

whole angular range. The fit to l2“Sn spin-flip is good

for the backward angle peak but the low forward angle

values are not predicted. Little structure is predicted

or seen in the forward angle spin—flip data for either

nucleus.

For the microscopic model, the shape and magnitude

of the cross section and spin—flip predictions are quite

reasonable. The predicted spin—flip has a higher value

at the backward angle peak than for the collective case.

However, it still shows agreement with the data.
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Isotopic differences were not evident in comparing spin—

flip predictions for 1208n and l2”Sn. Use of an ap—

proximate exchange term did not result in serious error

for either cross section, spin—flip or asymmetry calcu—

lations. Including a realistic two body spin-orbit inter-

action potential did not significantly affect the cal-

culations for cross section, spin-flip or asymmetry.

The asymmetry was poorly fit with a real KK inter-

action. The addition of an imaginary term to the form

 

factor greatly improves the asymmetry prediction and

shows some improvement in the fit to the cross section.

Of the two imaginary terms used, calculations with the

collective imaginary term fit the spin-flip data much

better than calculations with the microscopic term. Cal—

culations of the cross section and asymmetry for the

lowest lying states of 58Ni and 208Pb were compared to

data at 30 MeV proton energy. Addition of an imaginary

term always improved the fit to the asymmetry. Both cross

section fits were improved by the addition of the col—

lective imaginary term. Only the 58Ni cross section fit

was improved by using the micrOSCOpic imaginary term.

 





6. APPENDIX

A number of authors have pointed out that when the

collective model is applied to inelastic proton—nucleus

scattering it is important to deform the imaginary and

spin-orbit wells in addition to deforming the real well

(SA 70). G. R. Satchler recently proposed a semi-

phenomenological model for the imaginary form factor in

microscopic (p,p') calculations (SA 71). Also, it is now

possible to include a two body spin orbit term in micro—

scopic calculations (SC 69, L0 71A). One such calculation

for 120
Sn is described in Chapter 4.

In View of this it is useful to study the effects of

complex coupling on cross sections and asymmetries and to

compare the results with those of similar calculations

which include a spin orbit term.

Calculations were performed for the lowest lying ex—

cited states in 58Ni, 120Sn, and 208Pb using in each case

a microscopic real form factor and each of two models for

the imaginary form factor. Spin orbit contributions were

calculated with the collective model.

The calculations were done in DWA for 30 MeV incident

protons using the BGOM parameters. Exchange effects were

included explicitly (PE 69). Angular distribution and

asymmetry data are from (KA 70), the spin-flip data from

this work.
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The real part of the microscopic form factor (RFF)

in DWA for a normal parity transition is

FJOJ
Re (r) = fVJO(r,rO)gJ(ro)r§drO (6.1)

where VJO is the Jth multipole of the projectile—target

interaction, which in these calculations was chosen to be

the long range part of the Kallio—Kolltveit potential.

The function gJ is the transition density. It was

assumed that the gJ's had the same form as charge transi—

tion densities used to calculate inelastic electron scat-

tering form factors. These may be inferred from experi—

mental data (CU 69), BA 67, HI 70, DU 67).

gJ(r) = (A/Z) “CHARGE(P) (6.2)

Transition densities also can be obtained from theo—

retical wave functions. A calculation of this sort was

120
described for the 2+ state in Sn in Chapter 4.

Satchler's microscopic imaginary form factor (IM) is

W(r)g (r)
JOJ J

Im FSA (r) = - ——3T?)—_— (6.3)

where W(r) is the imaginary part of the optical potential

and p(r) is the ground state matter density with the forms

_ d
W(r) - (WV—4aIWSa;)f(r,RI,aI)

and

p(r> = <1+w<r/c)2>r<r,c,z>

with

f(r,x,y) = [1+exp((1"-X)/y)]_l

 





9O

_ 1/3
and RI — rIA .

state densities (CU 69, BE 67, HA 57) are shown in Table

Values of the parameters for the ground

6.1. Values of the parameters for the optical potentials

were taken from the BGOM.

The collective model IM is

B
JOJ _ J I g_

Im FCOL(r) ‘ 2J+l dr W(r)

where the BJ's were obtained by normalizing the collective

cross sections to those calculated using gJ's given by

(4.2).

The microscopic real and imaginary form factors and

58
the collective model IM for the lowest 2+ states in Ni

120
and Sn are shown in Figure 6.1; those for the 3' state

in 208Pb are similar.

It is instructive to examine first the effects of de—

formed imaginary and spin orbit wells on the asymmetry in

a purely collective calculation. Such a calculation for

the first 2+ state in 120 Sn is shown in Figure 6.2. Both

complex coupling and a spin orbit term are necessary to

produce good agreement with the data. The spin orbit

contribution is especially important in the forward di—

rection. Inclusion of the IM produces a much improved

fit at intermediate and back angles, an effect which is

not accounted for by deformation of the real and spin

orbit wells alone, even if the spin orbit strength is

increased. These same observations hold for the other

states studied.

  





TABLE 6.1 Ground State Charge Density Parameters

 

 

c z w

58Ni u.25 .566 0

1208n 5.32 .575 o

208Pb 6.uo .5u2 .1u
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Figure 6.2 l2OSn collective model

asymmetry calculations.
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Calculations of cross section, asymmetry, and spin—

flip for the first 2+ state in 120Sn are shown in Figure

6.3. The set on the left was done with a transition den—

sity extracted from the quasi-particle wave functions of

Clement and Baranger. The two real form factors are very

similar to each other and to the real collective form

factor.

Includingeitherjnqimproves the fit to the angular

distribution in the forward direction and provides a def—

inite improvement in the asymmetry prediction. However,

the spin-flip calculations performed with the two IM's  
differ markedly, the collective 1M having little effect,

the microscopic IM overestimating the spin-flip at back

angles. Since the main features of spin—flip are believed

to be determined by the optical potential (SA 70) it

appears that in this case the microscopic IM effects un-

desirable interference among various of the distorted

waves.

58
Calculations for the lowest 2+ state in Ni and 3‘

208Pb are shown in Figure 6.4. The effects of

58

state in

complex coupling and the spin orbit term on the Ni

asymmetry and cross section and the 208Pb asymmetry are

similar to those for the 2+ state in 120sh. In the 58Ni

case including either IM produces little change in the

spin—flip prediction. While the collective 1M improves

208Pb
the predicted angular distribution for , the micro-

scopic IM overestimates the magnitude at all angles. The
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tions including complex coupling.
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microscopic IM improves the shape of the fit only at

forward angles. The shape at back angles is degraded.

It is evident that complex coupling and a spin orbit

term are important for accurate prediction of (p,p')

asymmetries. The effects of the two are largely comple-

mentary, so that neither alone is sufficient to produce

agreement with experimental data.

Complex coupling also has a salutary effect on angular

distribution predictions, although, it is not as pronounced

 

as for the asymmetries.

It appears that a collective model spin orbit term

has only a slight effect on spin-flip predictions, while

the effects of an IM may be pronounced.

The simple collective model IM (6.4) seems to be

more reliable than the microscopic prescription (6.3).
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