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ABSTRACT

NETWORK SYSTEM RELIABILITY ANALYSIS

By

Feng Hsu

The reliable performance of a network system for a mission

under various conditions is of utmost importance in many

industrial, military, and everyday life situations. Main effort

of this thesis research have been devoted to develop algorithms

and optimization methods for network reliability problems. In

chapter 1, two algorithms so-called MDT and DBM methods are

presented respectively for qualitative and quantitative

evaluation of large networks and the relevant theorems are

proved. The three sections in chapter 2 are spent on the

optimility problems of network reliability, in which a useful

optimal redundancy allocation method is presented and in

addition, two useful mesures called the maintenance importance

‘ ( MIs,t(Xi) ) and the diagnosis importance ( DIs,t(Xi) ) are

presented for deriving optimal policies used in network

reliability maintenance and failure diagnosis. Examples and

comments are included correspondingly to each of the topics in

the thesis.
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Chapter 1 Network Reliability Analysis

Section 1 Qualitative Analysis of Network Reliability

Through Fault-tree and MDT Method

In this section an efficient approach is presented for

qualitative analysis of network reliability through PTA (Fault-

tree Technique) and finding MCS (Minimal Cut Sets) by the MDT

(Modified Dual-graph Transformation) method. It is generally

accepted that for the purpose of qualitative analysis for

networks (or any complex system) one must establish its Fault-

tree by first finding its MCS. Therefore the enumeration of all

MCS seperating a specified node pair is a fundamental step in

reliability evaluation of network systems which are frequently

encountered in communications, electronics, computers and power

systems, etc. It is well know in graph theory [1-2] that the

algorithms existing for enumerating MCS are not satisfactory so

far, while the algorithms for finding MPS (Minimal Path Sets) are

much more time efficient. Hence, based on the principle of graph

theory, a so called MDT method is presented below for enumerating

the MCS of networks by employing any of the existing efficient

MPS algorithms [2, 3-5].



P
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1.1 Theorems and Definitions

Definition 1

If, for any two vertices in a graph G, there

is at least one path between them, then G is

said to be a connected graph.

Definition 2

A network is a connected graph, which has a

finite number of vertices and a finite number

of edges.

Let C(V, E) be the notation of a network, where V and E are the

sets of vertices and edges in the network, respectively.

Definition 3

Consider a network G(V,E) drawn in the plane

in such a way that each vertex vi 6 V is

represented by a point, each edge is

represented by a continous curve connecting

the two points which represent its end

vertices and no two curves, which represent

edges, share any points except in their ends.

Such a drawing is called a Plane Network.



Throughout the reminder of this chapter, we assume that all

networks discussed are plane networks.

Definition A
 

Definition 5

Definition 6

Definition 7

Let C(V,E) be a connected plane graph, K be an

edge set. Then K C E is called a cutset if it

is a minimal seperating set of edges, ie, the

removal of K from G interrupts its connectivity,

but no proper subset of K has this property.

In other words, a cutset seperates G into two

connected components.

The network C(v, E) is said to be the Dual of

a connected grapn C(V, E), if there is a l - l

correspondence f: E a E, such that a set of

edges T forms a simple circuit in G if and only

if f(T) ( the corresponding set of edge in C )

froms a cut set in C.

A point V1 is a Boundary Point if there exists

a curve connecting vi to the exterior of the

convex hull of the network which does not

intersect the network.

An edge of a network G is a Boundary Edge if

each point on the edge is a boundary point.



Definition 8

A cycle C of a network G is a Boundary Cycle if at

least one boundary edge exists in C.

Theorem 1 Let G be a network and x be a boundary vertex

of G and assume that 3 at least one cycle

through x. Then, 3 at least one boundary

cycle through x.

Proof Suppose the theorem is false. Take an arbitary

.cycle CO through x and let e be an edge in

O

CO. Then 3 a point yO 6 e0 which is not a

boundary point. Every curve connecting yO to

the exterior of the convex hall of the network

intersects the network.

Then, 3 a cycle C1 ¢ Co through x

which includes e0 and a subset of this set of

intersections. This construction can be

repeated, each time creating a new cycle by

taking en an edge of Cn and 01’ C2, ...Cn

distinct.

Thus, 3 an infinite sequence of

cycles leading to a contradiction.



Definition 9
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Let C(V, E) be a plane network and let C(V, E) be

a dual of G. If s and t are two boundary vertices

of G, (s, t E V) then, by drawing two half curves

from s and t respectively, the exterior of the

network G is divided into two parts.

Let s' and t' be points,, one on each side.

of the two parts of the exterior of G given

above, and let C(V, E) be a dual of G with

s' 6 v . Form a network 6*(V*, E*) as

as follows:

3% ._

V = V U {t'}

Find a boundary cycle through 5' with a

e' ~ .
boundary edge x - s', e' E E and replace such

e' e'
x - s' by x - t', so that the new graph is a

.plane graph.

Repeat 2 for as many cycles of C as possible

without destroying any path from s' to t' which

*

already existed. The new network C is called

a Modified Dual Network of G.

a .

Figure 2 G is a modified dual graph of C (Figure 1):
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Construction of the above modified network G from G is illustrated

in Figure 3.
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(c) 3rd stage

Figure 3



In the following theorem a notation s will be used to represent

the equivalency between any two edge sets.

Theorem 2.

Let S be the set of all MCS seperating s and t

in the network G. Let 6* be a modified dual

network of G and P' be the set of all MP3 from

s' to t’ in C*. Then we have S a P'.

Proof .

Let S be the set of all MCS's and T be the set

of all cycles in a usual dual network C of C.

Thus, each Sk E S is equivalent to some

rk 6 T , That is, Sk a rk e T , where

rk passes through at least one vertex v' with

v' E V and v' in the interior of C.

Morever, S and t are also seperated by r seek'

(Figure 4).

If we suppose that M is the set of all such

rk 6 T , we then have:

M s S (1)

Let P’k to be any minimal path of 6* which

goes from s’ to t'. If s' and t' are merged

into one point say 3', then any path from s' to

t' will become a cycle of C through 5' and all

edges containing 5' are edges contained in each MPS

*

of C . That is P'k is equivalent to a cycle

rk of G.



C
)

Thus, P k E rk E T (2)

Since rk a Sk E S, it follows that

a P k 6 M

For V P'k E P', it follows that

P' E M (3)

0

On the contrary, if each r, e M and s and
1

)‘c .

t' are the source and sink of G , respectively,

then we can break each cycle rk such that both

3' and t' are to be connected by edges of each

r without disturbing the 1 - l correspondence
k

of edges between E and E' as given in

Definition 5, and meanwhile, either 5 or t of G

is no longer inside any cycle rk of G

Hence, r is a minimal path of Gx by which
k

s and t is separated.

Hence, rk E M

I I = I

and P k E P = rk ~ P k Q P

= P'k e M Q P'

So, M Q P' (4)

is proved to be true. the theorem then follows

from (1). (3), (4) #



‘
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Definition 10 A Fault-tree is a system logical diagram

composed of logical operational symbols

which explicitly shows the logical interactions

between each basic components of the system,

and gives all the possible system failure

information that may be existed in the system.

[6-10]

By applying the above Theorems, the problem of finding a

given network's MCS simply becomes a problem of enumerating the

minimal path of its modified dual graph. Therefore, any of the

efficient path-finding algorithms can be used to find the minimal

cut sets of a given network and, then, the Fault-tree of such a

network can be easily obtained by simply plugging all the MCS

into a tree with each of its leaves represent a possible failure

event, which equivalently corresonding to a MCS. (see Figure 5)



lo

1.2 Algorithm and Examples

Algorithm

*

(1) Obtain the modified dual network G of G.

(2) Enumerate all the path sets P' between s'

and t' .in G}. and then get the MCS S of

C by theorem 2, ie, S = P’.

(3) Drawing the fault-tree of the network by

applying all the MCS obtained in step (2).

The construction of fault tree stated in step (3) can be

very time consuming if a large complex network is encountered. In

recent years much effort has been spent to develop algorithms and

techniques, for computer-aided automatic synthesis of fault trees

of large networks or any complex systems, and several algorithms

have been presented [11-13]. However, for a network with small

number of components, the corresponding fault tree can be easily

drawn. That is, as is shown in Figure 5 we can first start out

from the source (vertex 5') and let 5' be the 'root' of the tree,

and then draw a tree rooted at s' by representing all the edges

in each of the MCS as an individual path from s' to a 'leaf' (ie,

vertex t') respectively.



ll

For example, the MCS and the fault-tree (Figure 5) of

network in Figure 2 is obtained by using above algorithm:

L

\

 

 
   

%-

(7t7t35) }; ,, X;

’ (Xx. web)

('3': 3(5 X; XI) M 03.0)19) 7‘1 (Xaflfii’l‘e’h)

(XI. Xt, Yr) ' (mum

(Figure 5)

The above fault-tree is a simple version which uses node and

'branches' instead of using logical OR , AND symbols

respectively. A formal fault-tree of the same network is given

below. see (Figure 5'):
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Figure 5'

The above fault tree (Figure 5') is logically equivalent to

the simple version (Figure 5), the only difference is that Figure

5' uses the logical AND, OR symbols (see Figure 5") to represent

the relationship between components instead of using nodes and

'branches' in Figure 5. Since the formal fault tree is easier to



construct by using a computer, it is more widely used than the

simple version.
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Figure 5"
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Section 2 Quantitative Analysis by DBM Method

A meaningful masure of the reliability and availability of a

network system is the terminal reliability between a given pair

of vertices, defined as the probability that there exists at

least one path between these two nodes. This parameter depends on

.both the network topology and the reliability of all elements

composing the network and is relevant inot only for network

analysis but also for synthesis of reliable networks.[14]

In recent years much effort has been spent to develop

algorithms [15-17] for computating the network reliability.

However the difficulty is that the complexity of the algorithms

remains exponential with the increase of number of elements,

therefore the need remains to widen the class of tractable

networks.

It is well known that for the quantitative evaluation of

system failure probability (reliability), one must transfer the

structure function (a Boolean S-O-P form) into the disjoint-S-O-

P (sum of product) form. J. M Cargal has shown [18] that the

crucial problem of determining the network reliability is to

assess the desired probability with much less effort than is

currently extended and higher algebra is most likely the avenue

for such a task. To attain the same object by trying the DBM - a
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Disjoint Boolean Manipulation method in this section, we have the

very helpful approach of calculating the network reliability. The

substance of the DBM method is the minimization principle of a

Boolean function in disjoint sense. In other words, the advantage

of using the DBM method is that it minimizes the number of

Boolean terms of sytem's logical expression while eliminating any

logical redundencies. The ordinary minimization principle of

Boolean functions is to minimize the total number of symbols of

intersection and union manipulations. Using DBM we can not only

simplyfy the computation of network reliability but also make the

design of switching circuits much efficient and easier.

For example, by the ordinary Boolean principle A U B is

minimal for an OR operations with two inputs, but A U A'B or B U

B'A is much more convenient for probability computations. The

difference between these principles seems to be very little when

n is small, but it may become very large eventually when n is

large. In fact the expression of system reliability given by the

sum of events X + X + ... + Xn (these X

l 2 1

MP8 in the network or any compex system that can be constructed

can express a MCS or

logically by Fault-tree technique) may contain 2n_1 terms, but

that of disj01nt sum event X1 + X1 X2 + ... + X 1...X n-lxn

contains only n terms.

Rosenthal has shown [19] that computing the probability of

a desired event (system success or failure) for an arbitry system

structure function, like computing the reliability of a general

network, is NP difficult, ie, the amount of computation increases



exponentially with the number of components in the network.

2.1 DBM Method and Its Application

(1) Nomenclature

UB(X)=UB(X1,...Xn) denotes a usual Boolean expression,

an event-expression for system success or

failure that contains only Boolean variables

and operations.

DB(X)»DB(X1,...Xn) denotes a disjoint Boolean expression

that can be used directly for computing the

system reliability.

X denotes an event.

denotes the indicator of Xi.

(2) Assumptions:

1. A network system S which consists of n-independent

elements could be expressed as:

S = {el,e2,...en ).

We assume that each of these elements has two states:



l7

functioning and failure. The state of ei could be

characterized by the binary variable xi as following:

0 (failure)

1 (functioning)

Thus, x1 is the indicator of the event that the ith component

 

functions.

Definition 11 The system structure function denoted by

9(x1, x2,...xn) is a Boolean function which

is the indicator of the event of system functioning.

Definition 12 a system failure function denoted by 

W(x1, x2,...xn) is a Boolean function which

is the indicator of the event of system failure.

Let xri be the indicator of the event that the ith component

of the rth MP5 is functioning. The x are x .,x and, for

ri n

1...

r # s, it is possible to have x . a x for some i and j.
r1 sj

If we enumerate the MCS and MP3 of S, the structure function

and the failure function will be written, respectively, as:

¢(x) - ¢(xl,x2,....xn) = Z eri xri e rth MPS

r1

r(x) = w(xl,x2 ..... xn) = E gxqj xqj e qth MCS

Let P = (p1,p2,...pn) denote the reliability vector of components
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e1,e2,...en. Because of the assumption that the components

are independent of one another, the domain of g and of W are

extended by setting:

9(P) = El¢<X>1

W(P) = E[W(X)]

Thus,

¢(P) - ¢(pl,p2,....pn) = X Ilpri is the'probability of the

r i

system functioning.

W(P) - \I!(pl,p2 ..... pn) = X Hqu is the probability of the

qj

system failing.

Where, fiCP) = 1 - 0(P) since ¢(x) = 1 - W(x).

2 In graphs only arcs may be faulty. Nodes have 0 failure

probability. The reliability of each arc is given.

3. Component (arc) failures are independent.

4. Given a network and two of its particular nodes, 3 and t, all

simple paths from (or all minimal cut sets seperating) s and t

are known or can be found.



(3)
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Operations (UBM):

Logical

interaction

1. AND operation

2. OR operation

3. NAND operation

4. NOR operation

Using Venn diagrams

OBM

rules

AB

A+B

(AB)'= A'+B’

(A+B)'= A'B'

the OBM and

interpreted as following:

...-M-..—

- -—.—...--—_—

. _

~—-—~_--—

— -— ..——.--__ __

...—...c‘ . ~, - -

-..—...—

..--—--. ...—- -——..--._--.~..q

L c- a--.

—— -... q“...-

—- ...—H——

-_. .-—-- ‘._—_.

 

 
 

A+B by UDM

B --

uu_¢..~ 0...... o -w-...

...-.7

(Figure 6)

Rules & comparision between DBM and usual

DBM

rules

AB

'A+A'B or B+B'A (Fig 6)

(AB)’- A'+AB' or

(AB)'= B'+BA' (Fig 7)

(A+B)'= (A+A'B)'= A'B’ or

(A+B)'= (Bl-B'A)'=== A'B'

UBM can ‘berules

 

 

 

A+B by DBM

(Sa+S ”Sb

shows the reTation of area)
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(AB)' by UDM (AB)' by DBM

(Figure 7)

According to the addition and multiplication theorems of

probability, it is easy to see that:

The rules of the two types are equivalent completely

for the calculation of probability.

Althrough the expressions of DB algebra are non-

unique, they are equivalent to each other.

Using DBM to decompose the logical structure of

system, the disjoint Boolean function can be obtained

directly from the logical structure of the network

(or any systems).

By extending, absorbing and summarizing the structure

functions using the logical identities such as:



A + AB - A AB + AB = AB

AA - A AB + AB'= A AA'= 0

the disjoint S-O-P expression of the system can be

eventually obtained.

2.2 Algorithm and Examples

(4) Examples:

A given network is shown in Figure 8 and its fault-tree shown in

Figure 9:

 

 

 

  

 

  

   

  

  
  

(Figure 8)



  

  

 

 

  
  

 

(Figure 9)

 

1. Using Fratta's algorithm: [20]

OB(X) a ABB + ABE + ABCD + ABDF + AHB + AHE + AHDC + AHDF

- AB + AHE + AHDC + AHDF.

Simplify the above structure function into the disjoint-S-O-P

form by the following steps:

a. (AB)'(AHE + AHDC + AHDF) a (A'+ B')(AHE + AHDC + AHDF)

= B'AHE + B'AHDC + B'AHDF
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b. (B'AHE)'(B'AHDC + B'AHDF) = (B + A'+ H'+ E')(B’AHDC + B'AHDF)

: E'B'AHDC + E’B'AHDF

c. (E'B'AHDC)'(E'B'AHDF) = (E + B + A' + H' + D' +C')E'B'AHDF

= C'E'B'AHDF

Finally, the disjoint S-O-P form is:

UB(X) = AB + B'AHE + E’B'AHDC + C'E'B'AHDF (l)

2. Using the DBM method:

The disjoint S-O-P form can be obtainted directly (in one

step) from the system structure diagram (in either

network or Fault-tree form):

DB(X) = A(B+B'H)[B+B'E + B'E'D(C+C'F)]

= ABB + ABB'E + ABB'E'DC + ABB'E'DC'F + AB'HB

+ AB'HB'E + AB'HB'E'DC + AB'HB'E'DC'F

= AB + AB'ME + AB'HE'DC + AB'HE'DC'F (2)

Obviously, (l) a (2)



It is easy to see that in the DBM approch the amount of

computation is reduced significantly, and the computer

implementation of calculating the reliabilities between

any given pair of boundary vertices of a network,_can be

more easily performed in a shorter & unique program.

Suppose the element reliabilities of the given network

are as follows:

pa=0.9 pbnO.7 pch.8 pdw0.97

Faro-95 ph=0.7 pf=0.8

Then the system reliability of the network is:

RS = O.9*O.7 + O.9*O.3*O.7*O.95 + 0.9*O.3*O.7*0.05*O.97*O.8

+0.9*0.3*0.7*0.05*O.97*O.2*O.8

- 0.818 ' #

Combining section 1 and section 2 we can form an algorithm for

reliability evaluation (quantitatively & quantitatively) of the

network systems:

Algorithm

*

1. Apply the MDT algorithm to given network and get G of C

and all the MCS in the system.

2. Construct the system structre function ¢(x) using all

the MCS information obtained in step 2 (or by

applying the DBM method).

3. Reduce ¢(x) first by general boolean identities ie:



I
"
)

(
f
l

X+XY=X XY+XYuXY XY+XY'=X XX=X XX'=O .

Apply the DBM rules directly to the simpfied ¢(x)

from 3.

Any more redundent terms? if yes, go to 4. if no go to 6.

Input all the failure probabilities of every component Xi'

Calculate the reliability directly for the whole

system and then stop.



Chapter 2 Some Optimal Policies for System Reliability

Section 1 Redundency Policy for Series-paralell System

Under Resource Constraints Using L-M Method

This section is devoted to discuss the problem of allocating

redundent components subject to 'resource constraints so as to

optimize some measure of system performance. Since the 19503,

many models and solution procedures have been developed for

various of these problems. The solution procedures can be divided

into two categries: heuristic and exact methods. While useful

heuristics are easy to implement and have modest computational

requirements, they do not guarantee optimal solutions. All known

methods which guarantee optimal solutions are enumerative, such

as integer and dynamic programming. These exact methods have

computational requirements that grow exponentially with the size

of conponents. Tillman & Frank [21] provide an excellent survey

of research on the problem.

The optimization problem presented here is a rather simple

and useful method in practice, which gives approximately the

optimal solution for minimizing the whole system cost under the

constraint that the whole system must meet the designed

reliability requirement. This approach rather than just
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maximazing the system reliability subject to element constraints,

is most commonly used [22—24].

1.1 Problem Formulation and Solution 

Suppose there are n different stages (subsystems)

coneeted serialy with each other, . where the ith

(i=1 ..... n) subsystem consist of mi identical

conponents connected paralelly with each other. Assume

also the compoent failures are independent. Given that

the failure probability is qi for any element in the

ith subsystem and that its cost is Ci’ the problem is

to find an optimal allocation of the elements for each‘

subsystem which will minimizing the total system cost

under the constraint that the whole system must be at

least as reliable as is required by the designer. Thus

let R0, be the minimum reliability requirement the

' whole system must meet. That is:

Evaluate the decision variables mi such that

n

Minimizes f(mi) = min E: Cimi (1)

=1

n .

Subject to R = |”“| (1 - q. )2 R (2)



and m , m ,...m are inte ers.

l 2 n g

where Ci’ qi and R0 are given. Since, the higher

the system reliability required, the more element

redundencies need to be added on to each of the

subsystems. so the solution (m1,m2,...mn) which

minimizes the total cost must also meet the requirement

that R 2 R0. However, a little increase in R0 will

result in a big cost for the system, Therefore, to

make the problem simpler we can get an approximation

for the problem by making the following two

assumptions:

a. Use equality (m) in (2) rather than inequality

(2)

b. Take each ”i as a continous variable (vector) and

the logrithm in both sides of (l) and round off

solutions at the very end.

c. Following assumptions (a) & (b) we can easily

apply the Lagrange multiplier method to solve the

problem.



[
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)

 

 

Let H(ml,m2 ...... mu, 7)

n

mi
__ X clu + 7 (21nd - qi ) - 10%)

1=1

m.

1

6H -qi lnqi

5;. = Ci + 7 ( ——————a? ) = O (l = l, 2, n)

i l

l - qi

mi Ci

9- (3)

i Ci+7lnqi

Ci

Then, m1 = 1n ( C.+7lnq. ) / lnqi (A)

i i

From (2) & (3) and (A) we get:

7“ -{ R lhI(C +71nq )/|_|1nq } = 0 (5)
0 . i i . i

1 l

we can get the solution 70 of (5) and then by (A) we geti

 

) / lnqi (6)

1.2 Example

The system is given as shown in (Figure 10),

it consists of three subsystems, and each of

m differentwhich is composed of ml, m2, 3

elements parallel. (components in a
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a

subsystem aSsumed all the same)

 

  
i .

z , .

_.__._::::::}”__- li_{“‘_:::}... ..ir-’*-j___

(Fig 10)

The failure probabilities of the three kinds

elements are assumed to be 0.02, 0.01, 0.03

and their cost are $3000, $4000, $5000

respectively. The best policy is sought for

allocating those elements so as to minimize

the total cost under the condition that the

system reliability must no less than

0.99.

q1 = 0.02, q2 = 0.01, q3 = 0.03. CI = 3

a 4, c3 - 5 (unit)

find (m1, m2. m3)



(l)

(2)
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st. min{3ml + Amz + Sm3}

_ mi

subject to | | (1 - q. ) 2 0.99

i=1

By (5).

13 + 30372 - 2977 + 94 = O

solving the equation yields 70 = ~99.806.

Then, by (6),

ml = 1.24), 1112 = 1.032, m3 = 1.215

Rounding up, we finally get:

m1 = m2 = m3 a 2

system reliability is

2 2 2
[1-(0.02) ][l-(0.01) }[l-(0.03) ] = .9986 > .99

80 (ml, m3) = (2, 2, 2) is the optimal policy form2,

allocating the three different kinds of elements to the

system, which yields a total cost of (3 + 4 + 5)*2 = 24

(1000 dollars) to the system.

This can be verified as following that reduction

any of the elements mi will violate the system

reliability constraint :

If m2 = 1, system reliability is

[l-(O.02)2][l-(0.Ol)1][1-(0.03)2] = 0.988 < 0.99

If m3 = 1, system reliability is

I)

[l-(0.02)“][1-(0.01)2][1-(0.03)1] = 0.969 < 0.99

On the other hand, suppose we want the total cost be

$22 which is less than $24. let m1 = 3, m2 = 2 m3 = 1,
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Then the system reliability becomes

[l—(0.02)3][l-(0.01)2][l-(0.03)1] a 0.9699 < 0.99

which violates the R0 constraint. This has verified

that the privous solution for the problem is truly a

optimal solution.

Section 2 Some Optimal Polices Used for Reliability Maintenance 

And Failure Diagnosing Without Cost Constraint

Based on the results from chapter 1, once we have the

disjoint S~0-P form of system failure function (or success

function), we can also develop some useful mesures which can be

used in determining the optimal polices for system reliabiliy

maintenance and repairing diagnosis. In this section two measures

that may be useful in network reliability maintainence and

failure diagnosis will be discussed [25-26].

2.1 Maintenance Importance: { MIS t(xi) }

For a functioning network system, the primary interest

for the system operator and the maintenance engineer is

to know which one of the components among the system is

more important to the performance of the whole system.

In other words, we want to know the optimal policy



which gives a best time scheduling (or priorities) for

each of the components in a routine maintenance project

which will substantially reduce the risk of system

break-downs. However, without considering the cost, the

main effort is to determine the dependencies of the

network reliability on the reliability of a individul

element. Therefore it is quite natural that the

maintenance importance of the components should be

defined as follows:

HIS t(Xi) = Pr{ system failed I component Xi failed )

This is the conditional probability of system failure

(no path from s to t exists anymore) given that component

Xi has failed. As already described in chapter 1

(section 2), HIS t(Xi) is the expectation of the

failure function given that xi=0, ie,

~ Y a n =M15 t ii) E[&(x) | xi 0] (2)

Similarly, 0(x) = 1 - W(x) so that,

E[o(x) | xi=0] = 1 - HIS t(Xi) (3)
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Diagnosing Importance: { DI (Xi) ).

For repairing a failed network system, one must

first find out which one of the elements is most likely

to be the failed one which has caused the break-down of

'the whole system. In other words, in order to fix the

system in a lowest cost and shortest time, one must

know the optimal priority ordering for cheking those

components. Therefore, a so-called Diagnosing

Importance DIS t<xi) should be defined as:

1

DIS t(Xi) = Pr{component Xi failed I system failed} (4)

DI

This is the conditional probability that component Xi

failed given the whole sytem has failed already.

Likewise, we can derive DIS t(Xi) by Bayes' rule and

conditioning to the failure of component xi and finally

conditioning to system failure, ie:

(Xi) Pr{Xi failed, system failed} / Pr{system failed}

P{system failed I xi failed}P{Xi failed} / w(p)

= (1'Pi)"“s,c(xi) / Mp) <5)



2.3 Example

For the network system given in chapter 1 (Figure 8)

the component's reliabilities are given as:

p = 0.9 pb = 0.7 pC = 0.8 p8 = 0.95

= 0.8 pd = 0.97 p} = 0.7

1

From (3), MIS,t(Xi) = 1 - E[e(x) | xi=0] and,

W(x) = l - 0(x)

80, W(P) = 1 - fi(P) = 1 - ( papb + paqbphpe

+ paqbphqepdpc

+ paqbphqepdqcpf )

= l - 0.818 = 0.182.

Let w(xi=0) = E[W(x) | xi=0], which is the expectation of the

system failure function given that component Xi is failed.

Then, from (2) we get:

MI (A) \II(xa = 0) = l - 0 = 1

1 - { 0.9*1*0.7*0.952 H

A

o
n

V

I! \I!(xb = 0)

+ 0.9*l*0.7*0.05*0.97*0.8

+ 0.9*1*0.7*0.05*0.97*0.2*0.8}

= l - { 0.5985 + 0.02444 + 0.004888 }

= 0.372



3E

HIS t(C) = \I!(xC 2 0) = l - { 0.9*0.7 + 0.3*0.9*0.7*0.95

+ l*0.05*0.3*0.9*O.7*0.97*0.8 }

= 1 - { 0.63 + 0.17955 + 0.0073332}

= 0.183

Similarly,

“Is,t(D) = \II(xd = 0) = 0.1905

MIS,C(H) = II!(Xh = O) = 0.37

“Is,t(E) = II!(xe = 0) = 0.358

MIS t(F) = ‘I!(xf = 0) = 0.183

From (5) and the above results we get:

1*(l—O.9)/O.]82!!01 (A) == ms C<A><1 - p > / Mp)
s,t a

= 0. 549

DIS t(B) = M15,t(B)(l - pb) / W(p) = 0.372(1-0.7)/0.182

= 0.613

DIs,t(C) = MIs,t(C)(1 - pc) / w(p) r 0.183(1-0.8)/0.182

= 0.201

Similarly,

DIs,t(D) = MIs,t(D)(1 - pd) / W(p) = 0.0314

. g - T = /
DIs,t(E) MIs,t(E)(1 pe) / V(p) 0.0984

DIs,t(H) = MIs,t(H)(l - ph) / 0(p) = 0.609

= . - r =DIs,t(F) MIS,t(F)(l pf) / W\p) 0.201

From the above results:

(a) If the system is functioning, the maintenance importances

for the components are listed as follows:
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(ie, list of MIS t(Xi)from largest to smallest)

D

lst : component A 2nd : component B

3rd : component H 4th : component E

5th : component D 6th : component C or F

Obviously, for the functioning system the optimal

maintenance scheduling for each of the components should

follow the priorities as below:

lst maxinumH-‘II 01.)} ie, component A

. s,t l

1

After finishing examination and repair of component A

the next one will be:

maxi mum ( M I Xi)’ given A is ok} which can be

i
s,t(

evaluated as maximum(W(xi=0, xa=l)} = 0.3025

i

ie, component B

After finishing component B, and so on we finally get

3rd component E 4th component H

5th component D 6th component C or F

It can be noticed that this actual optimal maintenance

scheduling for the given system is just slightly different

from the list of maintenance importances obtained before.



If the system has failed, the diagnosis importances for each

.of the components are listed below:

(ie, list of DIq t(Xi) from largest to smallest)

lst : coponent B 2nd : component H

3rd : component A 4th : component C or F

5th : component E 6th : component D

From above list, we can decide that component B ( with

largest DIS (Xi) ) . should be the one to check first.

However, the optimal diagnosis policy for checking out the

failed component is more complicated than that of the

maintenance cases described above, and which will depend on

different conditions of the system.

Suppose that on checking component B it was found that it did

not fail. Then the next one (or the only one for this

particular example) to check is:

maximum{ DI

i s,t
(Xi’ given B is ok) } which is obviously

component A . That is, for this particular example if system

has failed and first found out B did not failed, then we can

immediately decide that component A must be the failed one

which has causted the failure of the system.

However, for diagnosing the failure of a general network, if

we first find out component Xj did not failed, then the next

component needs to check will be:



‘maximum{ DIs,t(xi’ given kj is ok) } (1 # j)

max:mum{ DIs,t(Xi I xj=l) }

maximum { Pr(Xi failed I system failed, Xj 0k) }

i

Let in denote the event that component Xi failed

F denote the event that system failed

Then, DI (x. I x.=1)
s,t i j

Pr( FX | F , xj=l }
i s

Pr( F ., F , x. = l }
x1 s jg

Pr( F , x.

S J

l }

flPr{ F3 | F ., x. l } P{ F ., x. = 1 }
x1 3 xi 3
 

Pr{ F5 , xj = 1 }

Pr( F8 | in, xj = 1 } Pr( in)

Pr{ F5 | xj a 1 }

M1s t( xi | xj = 1 ) ( 1 - pi)

7

W . = l( X3 )

W( Xi = 0, xi = l ) ( 1 - pi )

 

0(x. = l)

J
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Thus, by repeatedly using formula (5) we can always find a priority

list for the purpose of system failure diagnosis. That is:

maximum{ DIS

i

a.

L.

(Xi’ given Xj is ok)‘} (i # j)

W(xi-0,xj=1)(1-Pi)

 

= maximum( } (i ¢ j).

i @(x. e l)

J

2.4 Comments and More Examples on Failure Diagnosis Policy

Since the profit related optimal diagnosis policy for a

certain system depends on the actual conditions of the system, it

is not easy to determine an optimal diagnosis strategy which

yields a minimal expected total cost. The following two

examples are employed to show that no simple optimal diagnosis

strategy exists for general network systems.

Example 1

Consider a two components (A1 and A2) series system given

below ( Figure 11):

,4“ 5’, A, t’.

W'm

Figure 11

Here, p., denote the reliability and diagnosing cost of

i ci

component Ai respectively. Let F denote the event that
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system failed and Ai denote the event that component Ai failed.

Then, we have

 

 

ql
P(Al I F) =

q1 + plq2

q

P(A2 I F) n 2

(11 + plq2

Suppose that the system has failed and let the possible diagnosis

policies be:

Policy 1: check component A1 first

Policy 2: check component A2 first

Let CP1 and CPQ denote the expected total costs involved in

policy 1 and policy 2 respectively. Then we have:

 

 

c 0

2‘2

CPl _ c1 + +

q1 p1‘12

C q
l l

CP2 — c2 + +

q1 p1q2

C q ‘ C q
2 2 l l

and, CP1 - CP2 = C1 - c2 +

ql +p1Q2

= (clplq2 - C2pqu) / [q1 + plqzl.

C1 p2q1
Obviously, if -—+ < , then CP1 < CP2 and

C2 pqu

 

policy 1 is better. Otherwise, policy 2 is better.



Example 2

For the three component system given below (Figure 12),

5 C.)

I

r—-————

A . C, I “J“?

__lon-{"”“'“}~___fi_, plm_lMlmn

Figure 12

q

P(A | F) - 1 ;

q1 + p19233

 

. q (q + p q )
P<B I F) _ 2 1 1 3 ;

q1 + plq2q3.

 

q (q + p q )
P(C I F) - 3 1 1 2 ;

ql + plqzq3

 

q2‘13
 

P(BC | F) —

ql + qu2q3

Suppose that the system has failed and let the possible diagnosis

policies be:



Policy 1: Check component A first. Then,

(02 + C3>q2q3
 

 

 

CPl w c1 +

q1 + plq2q3

Policy 2: Check component B first. Then,

C 9
,, 1 l
CE2 c2 + .

q1 + p1q2q3

Policy 3: Check component C first. Then,

C q
l l

r) =013 C3 +

(11 + plq2q3

Let Cm = min( c2, c3 ), and

c q
:7. C + ...-1;-..

m

CPm = min( 0P2, CP3 ) .

q1 + p1q2q3

Then, the numerator of CP1 — CPm is:

C1p1q2q3 + (C2 + C3>q2q3 ' Cm(ql + p1q2q3)°

If Cm = c2, the numerator becomes:

C1p1q2q3 '-62q1(1 ‘ qzq3) + C3q2q3'

Set c3 = kc2 ( k 2 1) Then, this quantity is:

Clp1q2q3 ‘ C2[q1(l - q2q3) - kq2q3] = f(ci’pi’k)'

If f < 0 than policy 1 is optimal.
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Otherwise, policy 2 is optimal.

These examples show that we cannot find a general easy algorithm

for the failure diagnosis of general networks.
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