

PVIESI_) RETURNING MATERIALS:

Piace in book drop to

LJBRARJES remove this checkout from

w your record. FINES wil]

be charged if book is

returned after the date

stamped be10w.

EVALUATION OF A SINGLE VLSI CHIP ALGORITHM

FOR

TRIANGULATING LARGE BAND FORM MATRICES

BY

Wen Chang Hsu

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering and

Systems Science

1982

ABSTRACT

EVALUATION OF A SINGLE VLSI CHIP ALGORITHM

FOR

TRIANGULATING LARGE BAND FORM MATRICES

BY

Wen Chang Hsu

One of the efficient procedures to solve a large,

sparse system of linear equations, 5 '.§ =‘b, as encountered

in a variety of common engineering problems, is to go

through fast, band matrix triangulation utilizing concurrent

Gaussian elimination. This algorithm may be implemented

using systolic computing cells configured into a simple,

regularly connected processing array. With the most recent

advances in microelectronics technology, it will soon be

possible to fabricate this computing array on a single chip.

A computing structure, utilizing both parallel and

pipeline concepts to triangulate an augmented band form

coefficient matrix k{§ g b}’ in 0(N) time steps, where N is

the order of the matrix, is presented. This new design uti-

lizes only C(82) processing cells, where B is the matrix

bandwidth. 'This compares favorably to previous algorithms

which require 0(N2) cells. Hardware arithmetic algorithms

of MAC and DC, the required processing cells of the com-

puting structure, are designed and evaluated.

Wen Chang Hsu

Three I/O circuits are presented and compared *with

respect to area-time trade-offs. An Optimal input strategy,

the data controlled algorithm and optimal output strategy,

the SCS algorithm are chosen.

A transistor level circuit simulation, based on parame-

ters of word size, matrix bandwidth and minimum lithographic

linewidth, provided parameters of area geometry and delay

time estimations for the I/O and computing structures. The

ultimate goal of this simulation was to provide two impor-

tant comparisons, total prOpagation delay and chip size ver-

sus matrix bandwidth. For a given matrix bandwidth, the

optimal chip size and throughput speed based on current and

projected lithographic linewidths were evaluated. Bottle-

necking of the I/O Operands was not observed for word

lengths g 16 bits and small matrix bandwidths.

These results, in turn, lead to an assessment of the

feasibility and advantages of this class of Special purpose

VLSI computing structures.

To my parents

Mr. and Mrs. Chiung-Yung Hsu

ii

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation

to his major advisor, Dr. Michael A. Shanblatt, for his

guidance and encouragement in the course of this research.

He also wishes to thank the committee members, Dr. P.

D. Fisher, Dr. R. G. Reynolds, Dr. E. D. Goodman and Dr. S.

R. Crouch for giving the valuable suggestions and comments

in this research.

Finally, the author owes a special thank you to his

wife, Huey-Fen, for her confidence and emotional support

that only a wife can give.

Work reported here was supported in part by NSF under

Grant ECS-8106675.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS O O C C O O O O O O O O O O 0

LIST

LIST

I.

II.

III.

IV.

OF TABLES O O O O O O O O O O O O O O 0

OF FIGURES O O O O O O O O O O O O O O 0

INTRODUCTION

1.1 Statement of Problem

1.2 Approach

103 contributions 0 O O O O O O O O 0

BACKGROUND 0 O O O O O I O O O O O O O O

2 l. Array Processors and the Vector

Nature of Gaussian Elimination .

2.2 VLSI Architectures and

Systolic Algorithms

2.3 ' Design Methodology of VLSI Systems

COMPUTING STRUCTURE DESIGN

3.1 Band Form Algorithm

3.2 Array Structure and Timing

3.3 Cell, Port and Time Slot Counts .

3.4 Floating-Point Considerations . .

3.5 Function Block Design

INPUT/OUTPUT CIRCUIT DESIGNS

4.1 SCS Input/Output Circuit

4.2 Binary Tree Structure

4.3 Data Controlled

Input/Output Circuit

4.4 Discussion

SIMULATION DEVELOPMENT

5.1 Chip Area Computation

5.2 Propagation Delay Computation . .

5.3 Significant Module Data

iv

Page

iii

vi

vii

\
I
U
I
W
H

10

10

14

17

22

22

26

31

32

35

46

47

50

55

57

60

63

65
H

I

VI.

VII.

SIMULATION RESULTS AND EVALUATION . .

6.1

6.1.1

6.1.2

6.2

CONCLUSIONS .

7.1 Summary

7.2

BIBLIOGRAPHY

Future Research

Comparison of I/O Strategies .

INPORT Strategy Selection .

OUTPORT Strategy Selection .

Entire Chip Simulation Results

Page

68

69

70

73

78

87

87

9O

92

LIST OF TABLES

Table Page

3.1 Port-coefficient timing table. 30

5.1 Significant module data. ' 67

6.1a Total chip area and time results of

algorithm #3 (INPORT) and #1 (OUTPORT)

for 8 bits per word at A = 0.8 pm. . . . 76

6.1b Total chip area and time results of

algorithm #3 (INPORT) and #2 (OUTPORT)

for 8 bits per word at A. = 0.8 pm. . . . 76

6.2a Total chip area and time results of

algorithm #3 (INPORT) and #1 (OUTPORT)

for 16 bits per word at A. = 0.8 pm. . . . 77

6.2b Total chip area and time results of

algorithm #3 (INPORT) and #2 (OUTPORT)

for 16 bits per word at A. = 0.8 gm. . . . 77

6.3 Simulation time results for 8 and 16

bit words at..A = 0.8 microns. 85

vi

LIST OF FIGURES

Vector nature of a full matrix

row-order elimination step.

Augmented matrix {‘A : b}

Upper triangular elements of

matrix { é : 2} O O O O O O O O O O O 0

Large band form matrix.

Computing array structure for matrix

of arbitrary dimension with B = 3. . .

Logic circuit diagram of a 5-by-5

Baugh-Wooley based MAC.

Logic gate diagram of a one-bit

fuj-l adder. O O O O O O O O O O O O O O

A l6-by-l6 convergence division

algorithm based DC.

D-type f1ip‘flOpo o o o o o o o o o o 0

Dynamic latch controlled by

two-phase nonoverlapping clock.

SCS input circuit diagram.

SCS output circuit diagram.

Input and output circuit control

signal timing diagram.

Binary tree input structure.

Binary tree output structure.

Data controlled input circuit diagram.

Data controlled output circuit diagram.

vii

Page

13

24

24

25

28

37

39

44

45

45

48

49

51

52

54

56

58

Figure Page

6.1 INPORT edge size versus matrix

bandwidth for 16 bits per word

at A = 0.8 ”m. 0 I O O O O O O O O O O O ‘ 71

6.2 IMPORT delay time versus matrix

bandwidth for 16 bits per word

at A = 0.8 um. O O O O O O O O O O O O O 72

6.3 OUTPORT edge size versus matrix

bandwidth for 16 bits per word

at A = 008 um. O O O O O O O O O O O O O 74

6.4 OUTPORT delay time versus matrix

bandwidth for 16 bits per word

at A = 008 um. O O O O O O O O O O O O O 75

6.5 Entire chip edge size versus

matrix bandwidth for 8, l6 and

24 bits per word at A = 0.8 pm. 80

6.6 Entire chip propagation delay versus

matrix bandwidth for 8, 16 and

24 bits per word at A. = 0.8 gm. 81

6.7 Entire chip edge size versus

matrix bandwidth for 8, 16 and

24 bits per word at A. = 0.5 gnu 82

6.8 Entire chip propagation delay versus

matrix bandwidth for 8, 16 and

24 bits per word at A. = 0.5 um. 83

viii

CHAPTER I

INTRODUCTION

High speed VLSI (yery Large Scale integration) comput-

ing arrays, based on concurrent Gaussian elimination, for

triangulating the linear equation system A ° 35 = b have

become a tOpic of recent interest. By combining parallel

and pipeline concepts, these "systolic arrays” [11 can

rapidly execute the numerous inner-product step operations

which serial computers must tediously operate upon sequen-

tially. It is projected that these high performance algori-

thms can be implemented directly using low cost, high speed

VLSI circuit technology either on a simple chip, or perhaps

in a modular fashion on a few chips. These devices can then

be attached to either dedicated or general purpose host con-

puters as plug-in components capable of producing fast solu-

tion vectors to large scale systems of equations. This con-

cept is similar to the currently available attached peri-

pheral array processors and to those devices which perform

dedicated fast Fourier transforms exclusively in hardware.

The work described herein advances this topic by the

design of a computing algorithm to triangulate systems of

arbitrary size which have been permuted, a priori, to mini-

mum band form. The algorithm is applicable to any struc-

turally symmetric, diagonally dominant coefficient matrix.

This permits use of the algorithm on many naturally occuring

band form matrices and, more importantly, on the highly

2

sparse, diagonally dominant matrices arising from a multi-

tude of engineering and scientific problem formulations.

The salient feature of the algorithm is that the key

restriction limiting network size is on the reduced matrix

bandwidth, not on the original network dimension. Moreover,

several good heuristic bandwidth reduction algorithms, based

on graph theoretic concepts, already exist and are quite

easy to implement [2, 3]. .

It is assumed that the permutation of A to minimum

band form involves full row and column pivoting so as to

ensure the retention of the necessary property of diagonal

dominance.

The processing elements of the computing structure were

originally designed to operate with fixed-point binary num-

bers. But the nature of this structure also allows these

PE's to work with the mantissas of floating-point input

operands provided that all eXponent values have been

equalized and stored in the host processor. More details of

this idea will be presented in Chapter III.

In a single chip system, operand input and output may

present a bottleneck due to some very practical problems of

packaging considerations. Therefore, high speed serial-to-

parallel input and parallel-to-serial output circuits must

be included in, the design so as to minimize any potential

bottleneck and thus retain optimal system throughput. Three

different I/O strategies are presented in Chapter IV.

Comparisons are made in terms of area and prOpagation delay

requirements.

The final quantifications of area geometry and propaga-

tion delay for the total chip, composed of the computing

structure with the optimal input/output strategies, are exa-

mined via a chip model simulation in terms of matrix band-

width, word size and lithographic linewidth.

These simulation. results are intended. to provide a

realistic estimation of the feasibility, with respect to

problem size and throughput, of this type of systolic array

numerical algorithm fabricated on a single VLSI chip. This,

in turn, will shed light on how these ideas may benefit the

numerous scientific and engineering problems for which

enhanced throughput in the rapid solution of large scale

simultaneous equations is greatly desired.

1.1 Statement of Problem

VLSI based dedicated computing structures offer great

potential for' optimizing problem throughput and 'hardware

investment. Yet many aspects of the design and implemen-

tation of these ideas still remain incomplete or under-

deveIOped. Such problems include the inner details of

various processing elements, packaging constraints and

input/output considerations. 4

The goal of this work is to develop and assess aspects

of a special purpose VLSI computing architecture to triangu-

late large scale, band form, linear equation systems.

Specific areas to be examined are as follows:

1. The design and evaluation of a computing array

structure for this problem type is presented. The

global dimensions of this structure are based on a

function Of coefficient matrix bandwidth and on the

assumption Of an implementation of the row-ordered

permutation of Gaussian elimination resulting in a

strict upper triangulation of the coefficient

matrix. .A coefficient input anui output patterns

are presented. .

Individual processing elements are designed and

evaluated. This includes eXplorathm1 of various

fixed-point multiplier, adder and divider

algorithms. Selection Of the best algorithms are

based on comparisons Of speed, area, modularity and

local communication prOperties.

Possible input demultiplexer and output multiplexer

circuit designs are evaluated. Parameters which

are examined include area geometry, prOpagation

delay and a consideration Of the effects of the

fundamental limitation Of pinouts per chip. I/O

designs are also evaluated with respect to poten-

tial bottlenecking of Operands which can severely

degrade the overall system throughput.

Realistic estimation of the total prOpagation delay

versus matrix bandwidth and chip size versus matrix

bandwidth of the entire chip is made by incorporat-

ing the Optimal computing structure and I/O circuit

designs.

The results Of this work, particularly tasks 1 and 4,

enable a more comprehensive assessment of VLSI's potential

for reducing solution time Of large linear equation system

problems.

1.2 Approach

In the past few years the advantages Of systolic, hex-

connected array structures, realizable with VLSI .tech-

nology, were introduced [12, 13]. These structures have

been shown to be applicable to many matrix computation

problems including Gaussian elimination [16, 17].

The first step Of this work is the develOpment of a

computing array to perform a complete factorization (not

merely L-U decomposition) Of an N x (N + 1) matrix (A

augmented by g) in minimum unit time. In other words, the

objective is to create a set of possible input patterns from

the nonzero entries of a matrix, most suitably in band form,

and implement a computing structure in a simple hexagonal

array. The plan is that these two structures, the input

pattern and the computing array, may be manipulated back

and forth until their subsequent output pattern fits the

required upper triangular pattern. The output pattern

should' be that which is most conducive to rapid back-

substitution.

The second step entails study Of the input/output

problems for the main body of the chip - the developed com-

puting array. The number of pinouts per chip of current and

projected VLSI technology give primary ideas on how control

signals, fan-in demultiplexer and fan-out multiplexer cir-

cuits must be developed. IDi order to avoid a potentially

serious I/O bottleneck problem, the major point of these

input and output circuit designs is to provide high speed

channels for operand routing. Also, design regularity and

low power requirements, necessary for good VLSI implemen-

tation, are considered.

The third step develops some of the inner details of

the processing element structures. In order to fully assess

the area geometry and prOpagation delay of these processing

elements, schematic logic circuit diagrams of various arith-

metic algorithms are studied. For example, the method for

designing an MAC (Multiply-Add gell) encompasses the

following:

1. Review existing LSI multiplication algorithms and

evaluate the optimal hardware implementation in

terms of design complexity, local connection pro-

perties, modularity, speed and area. Also, study a

possible attached high-speed full adder using iden-

tical procedures.

2. Develop a network realization of the chosen optimal

fixed-point arithmetic algorithm for a complete

MAC. This step will lead to quantification of the

necessary performance measurements of area geometry

and prOpagation delay.

3. DevelOp a tunui layout of the fundamental building

block modules, such as a full-adder, in terms of

scalable minimum lithographic linewidth, A. Using

these design layouts, quantify the Ac (area per

cell) in terms of A, and Tc (propagation delay per

cell). Tc will be determined in terms of typical

basic inverter discharge time, also a function of

A , and any non-negligible communication path

delays.

The fourth step is the develOpment and evaluation of

the required building block modules for several possible I/O

circuit strategies, then quantify area geometries and propa-

gation delays of these modules using the methodology of

step 3.

The fifth and final step is a Fortran-coded simulation

to provide two important comparisons, total prOpagation

delay versus matrix bandwidth and chip size versus matrix

bandwidth. These comparisons are determined by varying

parameters of minimum lithgraphic linewidth, word size and

matrix bandwidth. The results, combined with predictions of

future trends in VLSI technology, will help evaluate, and

hopefully promote, the feasibility and advantages of special

purpose VLSI computing structures as linear equation

solvers.

1.3 Contributions

This section provides readers with an additional

understanding of the original research which has been

accomplished in this dissertation work.

The successful design of a new VLSI systolic array

algorithm based on concurrent Gaussian elimination is

presented. This algorithm is unique in that it

triangulates a band form matrix A augmented by vector 2

(in other words, .{A g Q}). The array requires 0(N)

unit time and 0(B2) processing elements, (where N and B

are the dimension and half bandwidth of A, respec-

tively). The new algorithm, requiring 0(82) processing

elements represents a dramatic improvement over pre-

viously published algorithms of this form which have

required 0(N2) PE's. This is a tremendous saving, par-

ticularly when B << N.

The inner details of processing element designs are

develOped and assessed. This entails evaluating and

configuring the required MAC's (Multiply and Add gell)

and DC's (inider ‘Qell). The best designs were

Obtained subject to criteria of design regularity,

design complexity, chip area and propagation delay

requirements.

The best input strategy, the data controlled algorithm

and the best output strategy, the shift-register

control sequence (SCS) algorithm, were developed and

evaluated. ‘These strategies helped tremendously in

minimizing a potential I/O bottleneck problem which was

anticipated in systolic array structures of this type.

Determinations of the entire chip area geometry and

total prOpagation delay were obtained using a

comprehensive chip simulation. Results were based on

various word size, minimum lithographic linewidth

and matrix bandwidth parameters. The simulation

results have indicated that this type of special pur-

pose VLSI chip indeed provides rapid triangulation of

large scale, band form linear equation systems.

CHAPTER II

BACKGROUND

2.1 Array Processors and the Vector' Nature of (Gaussian

Elimination

Array processors are generally realized as one (vector)

or two (matrix) dimensions of processing elements which

allow data Operands to be processed in parallel. In the

literature [37], array processors have been defined as those

structures for which the information unit (data string) is

an array of one or two dimensions. This would define pro-

cessors in which both serial and parallel execution would be

implemented in a pipelined or even a parallel pipelined

fashion. The definition of array processors as used here

are those systems where the processing elements have both

parallel and pipelined structures. There are two basic

classifications of array processors. First, the stand alone

type, such as the CRAY-l or the CDC STAR-100, and second,

the scientific processors like the AP-lZO B/FPS-l64 family

or the MAP-300. The latter classification has been referred

to as a special algorithm processor [37]. Array architec-

tures are most advantageous for problem types which are vec-

tor or array oriented with highly repetitive arithmetic

operations. The typical operations include vector addition

and subtraction, matrix multiplication and convolution, and

.many advanced functions like fast Fourier transform.

Applications of array processors have been proven to be

10

ll

cost-effective in areas such satellite image processing [4],

power system network computation [5], reservoir simulation

[6], and pattern recognition [7].

For a class of large scale, linear equation systems,

A ° 5 = b, the method of reducing solution time via array

processors is to apply a vectorized form of Gaussian elimi-

nation Optimizing the use of these processors' parallel and

pipelined structures in the triangulation procedure Of the

coefficient matrix.

For example, consider an N x N matrix. A possible

FORTRAN coded program segment to perform rwo-order Gaussian

elimination is

DO 1 K = l, N

DO 1 J = 1, K

DO 1 I J + l, N

IF (K.EQ.J) GO TO 2

A(K,I) = A<KII) - A(KIJ) * A(J;I)

GO To 1

2 A(K.I) = A(K.I)/A(J.J)

l CONTINUE

The best way to expose the vector nature of this row-ordered

elimination is to inspect the inner loop, on index I, of

this Fortran program. Neglecting, at first, the conditional

branch step for the diagonal divide operation, the program

can be rewritten as,

DOl K=1,N

DOl J=l,K

J + l, NDO 1 I

1 A(KII) = A(KII) " A(KIJ) * A(JII)

The DO lOOp on index I, from J+1 to N, is again the

inner loop. For each J in the second lOOp, from 1 to K, the

inner loop can be completed in two vector operations; The

vectors and scalar Operands required at this step are

illustrated in Figure 2.1. In this example, K = 4, J = 2

and element A(4,2) is to be eliminated from the remainder of

row 4.

The two vector operations required to eliminate A(4,2)

are as follows. First, scalar-vector multiplication, that

is, scalar element .A(4,2) multiplies ‘vector 1. Second,

vector-vector subtraction, that is, vector 2 is subtracted

from the updated vector 1. These vector functions are com-

monly available in most array processors' program libraries

[8].

To illustrate the advantages of the array processors'

melding of parallel and pipelined structures, assume a

segmented multiplier where the Operation time of the longest

segment is Top. Also, assume that both a pipelined and

serial processor use the same segmented multiplier, but, the

serial processor does not use the pipelined capability.

Then, neglecting the set-up time, it takes Top time for each

multiply using the pipelined structure and n-TOp time, where

13

J

1 2 3 o o o

1

2 vscroa 1

3

\

K .. 4 \ VECTOR 2

O

O

O

Figure 2.] Vector nature of a full matrix

row-order elimination step [8].

14

n is the number of segments, for the serial processor to

perform its multiply.

If we consider a vector of length N, the serial com-

puter requires N'n Top time to complete the entire vector

multiplication; whereas the segmented architecture can per-

form this multiplication in N°Top time, neglecting set-up

time. Under this simple assumption, the pipelined proces-

sor is potentially n times faster than the serial version.

Therefore, array' processors have computational advantages

over serial computers on vector oriented problems. One fun-

damental drawback, however, is the Optimal utilization of

array processors' capabilities. A programmer must be able

to detect optimal parallelism and pipelining of mathematical

forms, then write efficient code for the array processor to

achieve optimal and cost—effective results.

2.2 VLSI Architectures and Systolic Algorithms

Progress in microelectronics has been extremely rapid

in the past few years. The ability to fabricate 107 to

108 transistors on a single chip will be possible by the

late 1980's [9, 10]. Array processors, as mentioned, are in

many ways still general purpose machines (i.e., program-

able). With VLSI technology, the design of truly special

purpose machines will become a reality.

VLSI implementations will improve cost, speed and size

of electronic components. Current interest lies in design-

ing high-performance parallel algorithms that can be

15

implemented directly with low cost, high speed VLSI hard-

ware. These devices are designed to be attached to a

general purpose host computer as a plug-in component, capa-

ble of performing high speed, cost-effective computation.

A direct VLSI implementation of any computational

algorithm should have the following properties [11]:

A. Regularity -

The algorithm must be implemented by only a few

types of processing elements so as to reduce the

design complexity and design cost.

B. Local Communication -

The processing elements must connect only to their

nearest neighbors; global communications are to be

avoided at all cost.

C. Parallelism and Pipelining -

The algorithm should ideally use both parallel and

pipelined processing concepts.

A ”systolic algorithm”, which. employs both. parallel

and pipelined processing concepts, is one which can be

implemented by a network of simple, regular processors that

compute and transmit data synchronously [1]. These pro-

cessors, with planar external connections, can be configured

into various geometric structures utilizing different frame-

works [12]. Kung first presented a special purpose array

structune built of standard inner product step processors

and one division function processor to carry out the L-U

decomposition algorithm on a full matrix of arbitrary size

16

[13]. This algorithm is well suited for a VLSI chip imple-

mentation because of its regular processing cell structure,

local communication paths and efficient parallelism and

pipelining.

Kung provided researchers with an innovative idea and

encouraged others to develOp different arithmetic algorithms

using VLSI systolic function elements [12]. In his work,

however, he neglects mention of any practical details, such

as I/O considerations and processor cell designs. These

issues will be considered in later chapters of this thesis.

Recently, several researchers have advanced the notion

that these systolic array architectures can be configured to

other highly concurrent numerical algorithms such as matrix

multiplication, matrix inversion and recursive digital

filtering [1, 9, 13, 14, 15]. Especially, Hwang and Cheng

have designed a VLSI architecture to perform L-U decom-

position of an entire linear system of equations {A g b} ,

advancing Kung's design of merely triangulating A. The

upper triangular portion (M5 the whole system's L-U decom-

position is analogous to the forward elimination algorithm

used in dense matrix linear equation systems [16, 17]. The

required time slots and processing elements of this pre-

viously’ published algorithm, when used for triangulating

band form linear equation problems, are O(N) and O(Nz),

respectively.

17

2.3 Design Methodology of VLSI Systems

A systematic method is essential in designing this kind

of complex system. The design problems can best be tackled

when decomposed into several subproblems with simple and

clear interrelationships.

VLSI chip design may involve the layout of as many as

2 x 105 gates on a chip [18]. Due to this complexity it is

crucial to utilize a supporting system design methodology.

Three basic design concepts - hierarchy, regularity and

testability must be followed to ease VLSI design complexity.

A brief description of each term is given below:

1. Design hierarchy -

VLSI system designers are forced to use both top-down

analysis and bottom-up synthesis procedures [11].

For practical VLSI system design, it is almost

impossible to consider global data and control flow,

circuit design and transistor characteristics all at

once. Consequently, the tOp-down design levels are

partitioned into five levels as follows:

A. Algorithm level -

The initial step involves. eXporing possible

parallelism and pipelining of the given problem.

Then, the algorithms' performance, i.e. chip area

and time parameters, may be estimated as functions

of problem parameters; for example, matrix

dimension.

Finally, the Optimal algorithm is evaluated and

18

chosen in terms of area—time trade-Off, design

complexity and practical design constraints.

Block level -

At this step, implementation of the algorithm via

functional blocks linked by data and control flow

begins. ‘This level. of <design combines circuit

functions and relative circuit positions as well as

signal inputs and outputs of different blocks.

Gate level -

Configuration of the function blocks with logic

gates (NAND, NOR, INVERTER, etc.) and memory ele-

ments (flip-flops, delay lines, etc.) is performed

at this stage. Additionally at this point, a fault

diagnosis or fault testing procedure is used to

detect the prOper function of the logic circuits.

These results may then be used to compare with

future field testing results. In other words, a

set of benchmark parameters are formulated.

Transistor level -

Next, gate level circuits are transferred to the

primary transistor level circuits. The area

geometry ration of pull-up transistor to pull-down

transistor Of the logic gates, according to various

gate categories and gate couplings, are calculated.

Physical layout level -

The complexity of a VLSI system obviously makes

hand layout too cumbersome to even consider.

19

Modern CAD (_C_omputer-Aided Resign) layout tools,

such as an interactive layout system, enable the

designer to create and edit element layout patterns

directly on a CRT screen. .The final pattern,

called a design file, can be represented in an

intermediate form; for example, the CIF (_C_a1tech

intermediate ‘gorm) [9]. Then, the intermediate

form file is transferred to a pattern generation

file which in turn is used in the mask making

process.

Design regularity -

The purpose of incorporating design regularity is to

minimize the design time. In bottom-up synthesis, if

only a few primitive cells have been used for creating

function blocks, then the design time will decrease

tremendously. Also, the area geometry of the intercon-

nection wires can be reduced by manipulating possible

processing element configurations.

Design testability -

In the past, 881 and MSI logic designers were trained

to design with the fewest gates. In this simple situ-

ation AC design parameters such as rise time, fall time

and circuit delay could easily be tested. The inherent

complexity of a VLSI chip, however, now makes the test-

ability consideration much more important. The task is

is even more complex since, with VLSI, it is impossible

to test every circuit. Consequently, circuit or logic

20

simulation is required to create a fault-free model,

which forms a benchmark by which actual results may be

judged. 2M1 actual circuit is then exercised by means

of a set Of stimuli called an input vector. Then, the

result or output vector is measured and compared with

the result of the logic simulation.

Eichelberger has suggested two new concepts of logical

structure design conducive to VLSI design and testability

[19]. First, one must structure the design so that the

subsystem operation time is calculated by the output stabi-

lization time due to the changes of input states. For

synchronous logic, the output response time is the obvious

limiting factor in determining minimum clock cycle time.

Second, one should design the internal storage elements as

shift-register type latches, which greatly simplifies the

testing procedure.

These two concepts can be especially beneficial for

testing high speed pipelined structures. Data flow is

controlled by a two-phase nonoverlapping clock which

controls the latches; one phase for pumping data into latch,

the other for refreshing or pumping out data. The clock

cycle time is determined by the sum of the steady-state

delay of the subsystem and latch. The advantages of this

type of VLSI testability are two-fold. First, the internal

storage elements (latches) provide the input/output ports

for tester's probes and thus, a convenient way to at least

21

isolate faulty circuits. Second, since data flow is

synchronously controlled, the clock rate can be slowed down

during the test.

CHAPTER III

COMPUTING STRUCTURE DESIGN

3.1 Band Form Algorithm

Central to the develOpment of a systolic array for band

matrix triangulation are some definitions of the type of

applicable band forms and the nature of Gaussian elimination

for such matrices. The algorithm is most analogous to the

row-ordered permutation of the elimination procedure. The

following definitions allow a quantification of Operative

matrix elements as a function Of B, the matrix bandwidth.

This will ultimately lead to quantification of crucial para-

meters Of the computing structure, also functionally related

to B.

An N x N band form matrix will be defined as

i-j|>s} (3-1)

A={aij:aij=0rv

where B, the bandwidth is given by

B = max{|i -j| : aij ¢ 0} (3-2)

for i, j = 1, 2,..., N. Note that structural symmetry only

(not absolute symmetry) is implicit in this definition.

Furthermore, B, as defined here, is sometimes referred to as

the half-bandwidth, spanning from the matrix diagonal to the

rightmost nonzero matrix element.

The entire equation system, A - 5 = p, can then be

described by the pair (A, Q), where A = {aij} is an N x N

22

23

matrix in structurally symmetric band form of bandwidth B

and ‘9 = (b1, b2,..., bN)T is a column vector of size N.

Conducive to Gaussian elimination, ,the system can be

described as an N x (N + l) augmented matrix{ A: p} .

The elimination procedure will reduce {A. la} to upper

|
'
-
‘

-
.
.
.
_
.
.
.

triangular elements U = {uij} for i = (, 2,..., N),

j = (i, i + l,..., i + B), augmented by a revised column

vector _d. This can be easily illustrated by considering a

9 x 10 augmented system with a bandwidth of 3 as depicted in

Figure 3.1a. After the upper triangulation has been per-

formed, the system appears as illustrated in Figure 3.1b.

For larger systems, some more interesting aspects can

be eXposed. Consider a large A with BiacN. An examination

of the elimination of row k from such a system, as shown in

Figure 3.2, reveals some useful information.

The shaded areas of this figure represent the total

number of matrix elements required to perfomm the elimina-

tion of row k. As depicted, the length, in matrix elements,

of row k is 28 + 1. This will be called the working row.

Neglecting the zero elements then, the width of an augmented

working row is merely 28 + 2 nonzero elements.

Examining the required upper triangular elements needed

to eliminate the augmented working row, a simple geometric

analysis reveals that B2 + B elements of A are required. In

addition, again neglecting null entries, B elements Of the g

vector (resolved A vector elements) are required. Thus the

total number of active nonzero elements involved in the

24

Figure 3.la Augmented matrix { 3.3 9.} °

Figure 3.lb Upper triangular elements of

matrix { A_E 9_}

l
l

.
x
_
c
u
m
e
E
c
o
»

O
c
m
n

m
a
c
e
;

N
.
m

.

7
m
m

u

f
i
l
m
I
I
Y
—

T
i
l
m

V
\
\
\
\
\
\

\
\
\
\
\
x

\
/

 V
A

I
,

26

elimination of augmented row k is given

E=BZ+4B+2 (3.3)

These elements, i.e., the shaded areas of Figure 3.2,

will be referred to as the "window" of elements required to

eliminate any given row k.

Now, focusing on the development of an ideal systolic

computing array for such a band form system, a reasonable

‘objective is to have the size Of the array, in processing

elements, related to this window Of elimination. The window

can then be viewed as "sliding down" the main diagonal eli—

minating rows as it passes. This is analogous to the func-

tion of the systolic array; row k is eliminated while the

new augmented working row k + l is brought in; simulta-

neously, the resolved elements just above the window are

placed on the output lines.

The advantage of such a scheme is simple and Of great

consequence. The size of the computing array, as will be

shown, is limited by B, the bandwidth, in both width and

depth.

3.2 Array Structure and Timing

Creation of the actual systolic array structure

required manipulating a set of possible coefficient input

patterns and arithmetic processing cells in order to produce

properly resolved upper triangular elements at the output

ports. Restrictions were based on structural simplicity,

27

regular connectivity and an ideal upper bound of O(Bz) pro-

cessing cells. Actual input alignment, as will be seen,

required the injection of dummy zero and one elements, used

as "spacers” in the operand string. The output string, also

regularly interlaced with spacers, contains the necessary

resolved upper triangular factors and the resolved column

vector A for subsequent back—substitution.

The systolic array Operates synchronously with latch

arrays controlling operand flows between processing cells.

There are no storage elements, save the latches, in the

array.

The most difficult part Of the design was to correctly

align the 2 vector element stream through the array. Many

of the possible input patterns and cell permutations pre-

sented data interference and conflict problems. This was

eventually overcome by isolating those processing cells

which perform the actual Operations Of resolving 2 into A;

this portion of the hardware is called the D section. It

is, however, constructed of precisely the same cells as the

rest of the systolic array, differing only in interconnec-

tion pathways.

The array structure for a matrix of arbitrary dimen-

sion, N, and of bandwidth B = 3 is presented in Figure 3.3.

Two types of processing cells are used, corresponding to the

two operations of the Gaussian elimination procedure.

The first and majority cell is labeled MAC (_Multiply

and Add Cell). It has previously been called an inner

28

e

. 9 .

9

,
y .

w

MAC MAC MAC x w x

024

'
z

' y

MAC MAC MAC

MAC MAC MAC \\\

o .__.l

4 l h

r
-
-
-
-
-
-
-
-
—
-
-
-
-
—

Figure 3.3 Computing array structure for matrix

of arbitrary dimension with B = 3.

29

product step processing element, and is a 3-input, 3-output

cell calculating w = xy + z and performing the transfer

x = x and y = y. The second cell performs the diagonal

divide operation and is labeled DC (Division gell). It is

a 2-input, 2-output cell. The DC performs the division

g = e/f and the transfer f = f. Both cell types are

illustrated in Figure 3.3.

The complementation circle shown on the input of the

tOpmost row of MAC's refers to a two's complement operation.

Inter-row registration, providing Operand synchronization,

is depicted by the thick black lines.

The array structure supports separate upward and down-

ward traffic flows. Input coefficients are synchronously

pumped into ports I1 through I7. The number of required

input ports is given by the full breadth of the matrix band

or ZB 4-11 (refer to Figure 3.2). Columns of A enter the

ports every two cycles interspersed with the prOper spacer

elements. Table 3.1, a timing table, illustrates the

Operand strings for the example B == 3 corresponding 'to

Figure 3.3.

Once this initial upward stream reaches the DC level it

proceeds downward toward the D section. At this point in

time, t3 in the example, A vector operands begin to enter

port ID of the D section. At the end of t3, b1 reaches the

w output of the rightmost MAC in the D section and latches

appropriately. During t5, b2 pumps in from ID and b1 is

transferred to the bottom latch of the D section waiting to

30

Table 3.l Port-coefficient timing table.

31

enter input 2 of the second rightmost MAC.

Once the first column of lower triangular factors

reaches the y inputs of the D section, the bottommost

latches are filled with the required bi elements so that

the generation of the new right hand side vector elements,

di, 1 = 2, 3,..., N, can begin. Note that during the pre-

vious time step, d1 (which equals b1) appeared at port 0d of

the D section. Then, D section outputs appear at. port

0d every two time slots.

3.3 Cell, Port and Time Slot Counts

The salient property of this new algorithm is that cru—

cial counts of input-output ports and processing cells are

found to be functionally related to the matrix bandwidth and

not the full matrix dimension. This fact is quite important

as many systems of large dimension yield tightly banded

matrices. Furthermore, many sparse coefficient matrices can

be reordered into band form which for some problem types

have been shown to yield B = 0.10 N [8].

It has been determined that the number of input/output

ports are ZB + 2 and 84+ 2, respectively. It must be remem-

bered that each port is m bits wide, m being the number of

bits per word. This introduces a very critical pin limita-

tion problem which will be addressed in the input/output

circuit design chapter.

The algorithm requires far less processing cells than

previously published schemes which could be classified as

32

requiring O(N2) cells, N being the full matrix dimension

[16]. Specifically, B(B + 1) MAC's and B DC's are required,

advantageously classifying the algoritmml as needing just

O(BZ) cells. Of course, this can only be applied to those

sparse coefficient matrices for which bandwidth reduction is

effective.

As far as time requirements are concerned, the new

algorithm requires 2N + 28 time slots, thus classifying it

as an O(N) algorithm. This is on the same order as other

systolic array algorithms, which require many more pro-

cessing cells for this type Of problem [16].

3.4 Floating-point Considerations

The computing structure presented in Section 3.2 is

basically constrained to a fixed-point binary number system

due to the nature of its processing element designs. It is

possible, however, to consider processing fixed-point num-

bers which are the pre-adjusted mantissas of previous

floating-point coefficients. This possibility, of course,

is a crude approach to a true floating-point solution, but,

due to current limitations of chip size and lithographic

linewidth, it deserves further investigation for, at best, a

near term application. It is realized, and must not be

understated, that this approach is extremely vulnerable to

the dynamic range of the input matrix entries and will work

only for those problems which possess well tempered coef-

ficients of tight dynamic range. A possible candidate for

33

this dedicated computing structure is the class of matrices

with all positive and strictly diagonally dominant coef-

ficients, such as the admittance matrix of a power system

load flow problem. For a well conditioned matrix with these

properties, no unpredictable overflOW' problem *will occur

during the elimination procedure if the following proposed

fixed-point scheme is considered.

In fixed-point number systems, the two most commonly

selected positions for the radix point are either at the

left extreme or at the right extreme of the magnitude posi-

tion Of the number [20]. To allow the PE's of the com-

puting array to Operate in both number systems, the left

extreme is aa more logical choice. Here, the radix point

lies between the sign bit and most significant bit.

Moreover, this dictates that all fixed-point numbers be

strictly less than one. To adjust floating-point numbers to

this fixed-point scheme, the host processor (or some

intermediate processor which will not be considered here)

must first sort out the maximum Operand. For the matrices

under consideration, this element lies on the matrix diago-

nal. The mantissa value of this maximum Operand is nor-

malized and the exponent value is stored. The other

operands in the matrix are then pre-adjusted in floating—

point to the same eXponent value as the maximum Operand.

As it is assumed that the latches Of computing struc-

ture are reset before any operands are pumped in, it is

obvious that the first significant arithmetic Operation,

34

which could possibly Offset the eXponent, is at the tOp row

of processing elements, the DC's. From the example of

Figure 3.1a it can be seen that during t4, the operands

working in the leftmost DC are dividend a21 and divisor all-

If we eXpress the pre-adjusted floating-point Operands as,

all M1 x 2e (3-4)

321 M2 X 28 '(3-5)

where ea is the eXponent value of the maximum operand, the

quotient

A21 M2 x 28 M2

A11 Ml x 28 M1 (3-6)

has an exponent value of zero. This quotient becomes the

multiplier for the next downstream MAC. The MAC algorithm,

w = xy + z, restores the exponent value to e. Moreover;

zero eXponent quotients continue to be pumped out of the

DC's every time slot and these factors propagate vertically

down through the array. Consequently, the eXponent values

of the resolved upper triangular elements at the output port

are all equal to the exponent value of the original input

elements.

A computing structure with this potential can operate

with only the adjusted mantissas of the input operands. The

fixed eXponent value can be retained by the host processor

and used for post-adjustment upon return of the upper

triangular elements prior to back-substitution.

35

3.5 Function Block Design

Examination of the computing array depicted in Figure

3.3 reveals that only three schematic logic circuit diagrams

of function blocks (MAC, DC and latch) are needed to esti-

mate the area geometries and propagation delays. Again, the

highly regular, localized wire routing among these building

blocks will reduce the design complexity, delay time and

layout area of the computing structure. °

Many addition, multiplication and division algorithms

can be called computationally efficient, but, for exclusive

hardware implementation, especially in this class of a data

oriented VLSI chip, the final algorithm selecting criteria

must also be judged in consideration of the design task.

It is most desirable to choose MAC and DC algorithms

based on existing arithmetic algorithms that can be imple-

mented in simple and regularly structured combinational cir-

cuits. For circuit and logic simulation, design verifica-

tion and test validation, combinational circuitry is pre-

ferable: to sequential circuitry [19]. Another' important

criterion is that those MAC and DC algorithms which are best

realized in locally connected array' networks. of 'unique,

simple and regular functional cells will considerably ease

the design of the building blocks themselves. This type of

network will have several other advantages. First, it can

provide increased throughput due to the parallel and pipe-

lined processing structure Of the algorithm. Second, func-

tion cells which only communicate with nearest neighbors are

36

very advantageous in that they minimize interconnection

requirements.

With these criteria in mind, the MAC and DC algorithms

were designed as follows:

A. MAC Algorithm -

The high speed cellular array multipliers such as

Wallace tree [21], Pezaris array [22], and Baugh-Wooley

array [23] were evaluated based on the design criteria

discussed above. The Baugh-Wooley algorithm, with its fast

multiplication speed (only 2n full-adder delay time for an n

x n multiplication, where n is word size), and regular

full adder structure [20], was determined to be the best

among these three. Furthermore, this algorithm allowed for

straightforward extension of the design to the desired MAC

function of nmdtiplication followed by addition by placing

an extra row of full-adders at the bottom edge of the

Baugh-Wooley multiplier. Thus the MAC function is obtained

in only one more full-adder delay time. The MAC array is

shown in Figure 3.4. Note that the portion within the

dotted line is the original Baugh-Wooley multiplier.

For design layout, consider the following equations of

the one-bit full-adder function for a standard gate-level

implementation:

Si = A1 + Bi + Ci (3-7)

Ci+i = AiBi + BiCi + AiCi (3-8)

where A1 and Bi are inputs to the current stage and Ci is

?
§

-
a
.

s
o
n

l
.
l
=
o
.
1
.
1
,
:
m
(
l
.
;
)
=
(
4
.
4
)

0
5
0
$
:

_
°
S
|
S
3

J
]

i
n

.
b

u
/

{
a

s
o

”
0

'
1
"
o

o
o

/

E

“-5

I’
5

I.

A:-

E"

‘M

‘V

F
i
g
u
r
e

3
.
4

L
o
g
i
c

c
i
r
c
u
i
t

d
i
a
g
r
a
m

o
f

a
5
—
b
y
-
5

B
a
u
g
h
—
W
o
o
l
e
y

b
a
s
e
d

M
A
C
.

:
P
U
‘
A
‘
T
‘
I
J
’

.
.

.
.

"
.
.
‘

‘
,
“
a
?
!
a

37

38

the carry from the previous stage.

The wire-logic gate implementation of this full-adder

is shown in Figure 3.5. This design, with only a two gate

level delay, provides a minimal propagation delay.

B. DC Algorithm —

Several existing high speed division algorithms are

considered feasible for VLSI implementation. These include

the Cappa-Hamacher array divider [20, 24, 25] and two types

of multiplicative division schemes, the convergence division

algorithm and divisor reciprocation division algorithm [20].

Ihi a pipelined structure, the total prOpagation delay

of the system is a function of the maximum delay of the

longest segment. However, the Cappa-Hamacher divider

algorithm‘s computational time, in terms of word size, is at

least two times that of the Baugh-Wooley algorithm [20]. A

consistency of computational speeds between MAC and DC

algorithms is crucial. Furthermore, it is ideal to strive

to make the MAC prOpagation delay the limiting factor of

clock rate 2“; it will most likely be the fastest element.

Limiting the clock rate by a much slower element will

degrade the computational efficiency of the entire chip.

Therefore, it is desirable to set the clock rate as the

reciprocal of the sum of MAC time plus a latch time and find

a DC algorithm within this bound. An alternative algorithm

which partitions the complex division function into several

subtasks, serving as segments of a pipelined structure, is

the prime candidate.

 %
%
\

..

L
D
o
-
i

.
F
i
g
u
r
e

3
.
5

L
o
g
i
c

g
a
t
e

d
i
a

r
a
m

o
f

a
o
n
e
-
b
i
t

»
f
u
l
l

a
d
d
e
r

[
2
0
3

39

40

Both the convergence division and divisor reciprocation

division algorithms can be implemented in segmented pipeline

structures. They both approach the final result of quotient

or divisor reciprocal quadratically. Through detailed study

of these two algorithms, the hardware requirements are found

to be approximately equivalent. But, there is a key advan-

tage to the convergence division algorithm; that is, the

number of iteration steps can ix; determined. a priori in

terms (ME word size» This factor is very important in an

exclusive hardware implementation because no software con-

vergence checking is required.

The convergence division algorithm operates by multi-

plying both the denominator and numerator with the same

sequence of convergence factors until the denominator

approaches unity. To illustrate this, consider the division

Operation,

Q = -—— . (3-9)

The right hand side can be expressed as

——— x ——— x ——— x - - - x ——— (3-10)

0 R0 R1 Rn

where the Ri's are a set of convergence coefficient factors

whose goal is to force the denominator to unity and thus

produce the quotient. If the resolved denominator comes up

41

to be one, that is,

D X R0 X R1 x 0 ° 0 X Rn > 1 (3‘11)

then the quotient can be eXpressed as

O = N x R0 x R1 x - . - x Rn. (3-12)

Assuming that D is positive and fixed-point arithmetic

is selected, then,

1 > D > 0. (3-13)

In order to converge faster, D should be normalized

first, that is,

1 > o' 2 L: (3-14)

where D‘ is the divisor after normalization. Then, N must

be shifted as many bits as D, thus,

N' N

D' D

Now, a number' 6 can be defined which makes

0' = 1 - 6 (3-16)

and then

0 < 6 3 L2. (3-17)

We can choose the first multiplying factor as

R0 = 1 + a
(3-18)

42

so that Do' D' x R0

(1-6)(1+d)

= l - 62. (3-19)

Now choosing

R1 = l + 52 (3-20)

then D1' = Do' X R1

(1 - 52) (l + 52)

1 .. 04°
(3‘21)

Therefore, in general

Di. = D0. X R0 x R1 x o o o X Ri

= 1 - 621+1, (3-22)

In the binary case, 6 g by, therefore

621 g 2‘21. (3-23)

Now, consider a word size of 16 bits implying 15 signi-

ficant digits. From equations 3-22, in order to make

Di' = 1 requires

62i+l < 2_15.
(3-24)

Then equation 3-24 gives i = 3. In other words, multiplying

factors R0, R1, R2, R3 are required to make D3' converge to

l and

O = N' x R0 x R1 x R2 x R3. (3-25)

43

For the same reason, if the word size is 24 bits, 5 multi-

plying factors are required and so on. Finally, the

quotient value should be shifted right by the same number of

bits as the divisor, D, has shifted left to normalize the

result.

The Convergence Division algorithm was chosen for use

in the DC's due to the fact that no software convergence

checking is required. The hardware implmentation Of a DC

working with 16 bits per word is illustrated in Figure

3.6.

C. Latch Design -

There are two basic types of latches -"- static (and

dynamic. A.txaditional static latch is a D-type flip-flop

as shown in Figure 3.7. The disadvantage of this latch is

that it requires four 2-input NAND gates and one INVERTER;

also four units Of gate delay. These area and time require-

ments are more than those required by a dynamic latch.

Dynamic latches are known to be ideal in high speed,

synchronous processor chip designs, especially using VLSI

[9, 19]. The dynamic latch, shown in Figure 3.8, consists

of two pass transistors and two inverters. It uses a two-

phase nonoverlapping clock to load and refresh the input

data. The utilization of pass transistors has the advan-

tages of a simple topology of interconnections and elimina-

tion of VDD and GND connections, thus reducing wire routing

geometry and power requirements.

44

N D

Jew +1.

DIVIDEND SHIFT - —1 DIVISOR SHIFT [" -'I-‘SHIFT BIT COUNT

I l_‘

[M 1—61 7

2-(1-6)

18 X 1. { 16 X 16

MULTIPLIER [MULTIPLIER

2-(1-6’)

[N(1+6) i

1' X 1C
1. X 18

“ULTIPUER
MULTIPLIER ‘—

I I

2-(1-6‘)

N'(1+a)(1+6’) fi

16 X 16 18 X 16

MULTIPLIER uuuwuan _A

{N’(1+o)(1+6’)(1+6‘) 1

2-u-f)
16 X I.

MULTIPLIER :

l

SHIFT REGISTER ~ —

‘T-ns

Q

L

SHIFT BIT COUNT

Figure 3.6 A l6-by-l6 convergence division

algorithm based DC.

45

v

{
D
I

{>O

Figure 3.7 D-type flip-flop.

Figure 3.8 Dynamic latch controlled by

two-phase nonoverlapping clock [9].

CHAPTER IV

INPUT/OUTPUT CIRCUIT DESIGNS

Operand I/O for VLSI structures inherently suffers from

a basic pinout limitation problem due to practical inte-

grated circuit, packaging constraints. This necessitates

the incorporation of serial-to-parallel demultiplexer and

parallel-to-serial. multiplexer circuits at the front and

rear ends of the computing array, respectively. Further—

more, very high speed DMUX/MUX designs are required to pro-

vide sufficient operand broadcasting to the row of input

cells which, in the case considered in this thesis, requires

2B + 2 Operands simultaneously, where B is the matrix band-

width. Additionally, any I/O circuit design for efficient

VLSI implementation must also be optimized with respect to

minimum cumin real estate requirements and practical pinout

counts. Currently, 64 to 100 pins per chip are considered

practical [26]. This limitation also affects the operand

word size and consequently the precision of the internal

computations.

The purpose of this chapter is to present three

possible input/output routing strategies for the VLSI com-

puting array presented in the last chapter. Logic circuit

diagrams of these I/O designs are developed and are used in

the simulation described in the next chapter. The simula-

tion provides comparative information on propagation delays

and chip area requirements.

46

47

The design methOdology used here is identical to that

used in designing the computing array network and processing

cells. In the logic circuit diagrams of the DMUX/MUX struc-

tures, pass transistors and inverters are used for building

switch logic and dynamic latches in place of traditional

logic gate structures. The new structures have simpler

interconnection topologies anui smaller power requirements.

Morever, gains in area geometry and speed are. also

anticipated.

Ideally, the I/O circuit structure should be fast

enough to avoid any I/O bottleneck. This must be accom-

plished with each input and output bus being only one word

wide due to pin limitations. The three I/O strategies are

presented in the following sections.

4.1 SCS Input/Output Circuit

The first 13%) circuit. candidates are illustrated in

Figures 4.1 anul 4.2, respectively. In the input circuit

(Figure 4.1), the SCS (ghift-Register‘gontrol Aequence) is

stored iJIEB one-bit wide control queue. This sequence is

synchronously pumped ixnx> the one-bit shift register chain

and is used to select the prOper operand input channel. The

first bit of this control queue is logic "1", the others are

logic "0". At the end of the first cycle, the output of the

first shift register is "l". The load pass transistors of

the top input channel are "on". Consequently, the first

data operand can propagate through the top channel and is

¢

M
A
C
"
w
,

0

I
N
P
U
T

«
—
1
{

F
_
L
I
{
>
*
*
E
>
°

3

1 1

#
9
4
0

J
:

t 0

fi

“i

F
i
g
u
r
e

4
.
l

S
C
S

i
n
p
u
t

c
i
r
c
u
i
t

d
i
a
g
r
a
m
.

48

a—l

.———l

.«——i

.———+

—-J.

I[

J‘L

_tx

i

V91 ‘ HDlV‘I H31 1

U
m 0 O O

_
l
\
r
"

{
/
1

n

f
>
—
o
u
w
u
r

1L

HDLV'I

_
[
\
f
n

F
L
.

{
/
7

F
i
g
u
r
e

4
.
2

S
C
S

o
u
t
p
u
t

c
i
r
c
u
i
t

d
i
a
g
r
a
m
.

49

50

refreshed by the ¢1 clock signal. At the next clock cycle,

logic ”1' of the control queue moves onto the output of the

second stage of the shift register. Then, the second chan-

nel is selected as the input channel. After N data Operands

are inside of the input structure, refreshing at every ¢1,

a control signal called MAC IN°¢1 (see Figure 4.3) enables

those ii Operands into tflua corresponding latches. These

latches are used to control the data flows and to stabilize

the operands.

The output circuit of this strategy is even simpler.

Identical to the input circuit, the pass transistors on the

output channels are controlled by an identical SCS. After N

data Operands are pumped into latches (by the MAC OUT'951

signal (see Figure 4.3)) they are refreshed by ¢2. Sequen-

tial output channels are then selected from top to bottom

until the operand of the Nth MAC flows out. Quite con-

veniently, channel pass transistors here also serve as the

tri-state output gates!

4.2 Binary Tree Structure

The input DMUX circuit, which is illustrated in Figure

4.4, features three important concepts. First, it uses the

abstract structure Of a binary tree, a basic interconnection

network architecture. Second, it is a revised version of

the traditional block DMUX tree. Third, and most impor-

tantly, it utilizes pass transistor and shift register con-

cepts in the routing circuitry so as to decrease power

l
_
_
_
_
.
.
.
J

N
+
1

L
.
.
_
_
I

§

—~——

-—._—- ——-.——Ih.———-P_

 M
A
C

O
u
r
-
I

M
A
C

o
u
r
-
d
1

l

F
i
g
u
r
e

4
.
3

I
n
p
u
t

a
n
d

o
u
t
p
u
t

C
i
r
c
u
i
t

c
o
n
t
r
o
l

s
i
g
n
a
l

t
i
m
i
n
g

d
i
a
g
r
a
m
.

51

S
R

F
F

S
R

F
F

S
R
F
;
_
|

I
S
R

F
F

I
I

I
a

I

L
A
T
C
H

L
A
T
C
H

L
A
T
C
H

L
A
T
C
H

F
i
g
u
r
e

4
.
4

B
i
n
a
r
y

t
r
e
e

i
n
p
u
t

s
t
r
u
c
t
u
r
e
.

52

53

requirements and area geometry. Moreover, this will facili-

tate better testability for tracking data flow.

This structure uses control signals to select on or off

for each pass transistor. When clock signal 4:1 rises, a

stream of "on" pass transistors generate an input channel

for a set (a word) Of data which is assumed to be ready at

the input port. The Operand prOpagates along and its bits

are momentarily held by the input capacitances of the first

bank of inverters. Then, when cloCk d9 rises, one of the

two down-stream pass transistors allows the Operand to flow

through a branch and it is again held via the input capaci-

tances of the second bank of inverters. The data is then

stabilized by the SR flip-flops providing temporary storage.

After all data operands are pumped in, they are simulta-

neously clocked into the latches and refreshed by ¢2. The

control signals and structure of the latches are identical

to those described in Section 4.1. The operands remain in

the latches until the next data stream replaces them.

The output MUX circuit, which is shown in Figure 4.5,

is basically a mirror image of input DMUX circuit. After

the rear edge of MAC's complete their computation, a set Of

latches are loaded with the resolved Operands and are thus

isolated from interference with the MAC's further com-

putation. Subsequently, each data Operand is pumped out of

the chip through an output channel selected by appropriate

control signals.

Among the disadvantages of this strategy is the

O
U
T
P
U
T

F
i
g
u
r
e

4
.
5

B
i
n
a
r
y

t
r
e
e

o
u
t
p
u
t

s
t
r
u
c
t
u
r
e
.

54

55

cumbersome control signal requirements, Which alone may

severely increase the pinout count. Additionally, the

nature of the regular binary tree requires that the number

of destination nodes be a direct power of 2. This will

imply that much Of the tree is wasted if the number of MAC's

at the input level of the array does not correspond to a

power of 2. For example, consider the case where there are

17 first row MAC's. Then a l to 32 input tree is implied,

resulting in a waste Of valuable chip area. Of course,

irregular binary tree designs are possible, but as will be

shown in Chapter VI this binary tree structure is far from

optimal even when a power of 2 match is Obtained.

4.3 Data Controlled Input/Output Circuit

The major difference in this routing strategy over the

others is that it pumps the data operands into the destina-

tion processing elements without using any channel-selecting

control signal. It utilizes the FIFO (First-In-First-Out)

stack concept employing :1 sets (where r1 is the number of

bits per word) of N-stage shift register chains (Where N is

the number of the first level MAC's). This concept is

illustrated in Figure 4.6.

The full set of N Operands are’pumped into the shift

register chain during the first N clock cycles. This provi-

des an entire set of operands available to the first row of

MAC's at the (N + l)th clock cycle. At this time, the

(N + l)th clock cycle, a control signal called MAC IN°¢1

I
N
P
U
T

1
1
’

1
1
.
.
.
.
1
1
1
.
.
.

d.
..

~

I
i

g

..
.;

a
a

F
i
g
u
r
e

4
.
6

D
a
t
a

c
o
n
t
r
o
l
l
e
d

i
n
p
u
t

c
i
r
c
u
i
t

d
i
a
g
r
a
m
.

M
A
C
m
a
t
,

"V—u—gu-l‘

i
—
l

56

57

(see Figure 4.3) will simultaneously pump the data operands

into their corresponding latches which are refreshed by d2.

These Operands will remain stable at the MAC inputs until

the next MAC IN'¢1 signal.

The data controlled output circut is illustrated in

Figure 4.7. After computational results are loaded into the

output latches, an output control signal, MAC OUT°4>1 (see

Figure 4.3) enables each Operand through the corresponding

first two pass transistors and one inverter of the shift

register chain. Note that at this time, the pass tran-

sistors, which are controlled by the MAC OUT (see Figure

4.3), are Off. They serve to eliminate possible interference

between the data of each shift register during the data

parallel-in Operation. The next ¢2 cycle completes the

parallel shift-in function. After this cycle, the MAC OUT

signal is Off (i.e.,-MAC—OUT.is on). The pass transistors

controlled by -MAC—OUT- are on, and they configure the

remaining output circuit to be a serial-out circuit only.

This output circuit then shifts one data operand out of the

chip every clock cycle.

4.4 Discussion

Three input and output strategies as well as their

related logic gate structures have been discussed and

illustrated in this chapter. The MAC IN and MAC OUT control

signals described in these I/O circuits are actually iden-

tical signals.

L
A
T
C
H

L
A
T
C
H

L
A
T
C
H

K
.
s.
"

.
3
L
“

M
A
C
G
U
I
-
A

{
f

I
{
L

M
A
C
O
U
T

M
A
C
O
U
T

F
i
g
u
r
e

4
.
7

D
a
t
a

c
o
n
t
r
o
l
l
e
d

o
u
t
p
u
t

c
i
r
c
u
i
t

d
i
a
g
r
a
m
.

L
A
T
C
H

58

O
U
T
P
U
T

59

From the gate count view, input and output circuits of

Figures 4.6 and 4.2 occupy the least area and provide

minimum delay time. But, at the circuit layout level, the

area geometry and propagation delay of each transistor must

be estimated under various gate coupling and fan-out

considerations. This information can then be extended for

calculating total I/O propagation delay and area geometry of

the entire circuit.

The next step requires the use Of simulation models for

accurately computing these area and time results. The simu-

lation models utilized in this work will be discussed in the

next chapter and the determination of the best candidate

among these I/O designs will follow.

CHAPTER V

SIMULATION DEVELOPMENT

As stated before, the ultimate goal of the circuit

simulation is to provide'two basic tradeoff comparisons,

throughput speed and chip size versus ‘matrix bandwidth.

Three fundamental parameters that may be manipulated in the

simulation are minimum lithographic linewidth, A , word size

and matrix bandwidth. It will be assumed that the ratio of

the band form matrix bandwidth to overall matrix dimension

is one-tenth. This ratio is chosen as it has been shown

that. for' a typical electrical. power" network. the nonzero

coefficients of the network admittance matrix can be reor-

dered into a band form, whose bandwidth is about 10% of the

original matrix dimension [8].

Of particular interest in the simulation is the manipu-

lation of)t which can track current trends in I.C. fabrica-

tion technology. The so-called ” A model" and " T model",

introduced by Mead and Conway [9, 27], provide a simple and

fast method for users to design and layout VLSI systems.

Most advantageously, these models offer designers freedom

from working with tedious computer simulations [27].

The A model, a layout geometry design tool, assumes

that the permissible layout linewidths and spaces along the

diffusion, polysilicon and metal lines can all be scaled

down in linear dimension. Consequently, a set of design

rules can be expressed in dimensionless form where the

60

61

geometries of layout elements are described in terms of

current minimum lithographic linewidth or the current reso-

lution of a given process. As the I.C. fabrication tech-

nology advances, A. decreases and thus the layout element

geometries, which are a function of A, also decrease.

But, there are some practical limitations to consider such

as bonding pad size and spacings which might not shrink

linearly [27]. As a result, some parts of the A [model

need to ‘be readjusted. Neglecting, 'however, the small

nonlinearities, these basic concepts have proven useful for

initial step design in the multi-chip project directed by

Caltech [9, 27].

The 7' model is a simple mathematic model for computing

propagation delay Of a transistor level circuit. This model

acknowledges that the delay time Of a node depends on the

total capacitance of that node together with the gate capa-

citance and transit time of the driving transistor [9, 27].

For example, the propagation delay of an inverter, with gate

capacitance Cg, driving a node with capacitance Ctotal' is

calculated as follows. At first, it is assumed that the

transit time 1' is the delay time for an electron to pass

through a channel of length L [9], where, for small Vds:

L2

T = V (5-1)

#Vds

Here 11 is the electron mobility and Vds is the drain to

source voltage.

Next, assume that the inverter ratio K is the ratio of

62

channel length to width of pull-ups, zpu, to pull-downs Zpd.

Then, the ”low-going” and "high-going" delay time for this

inverter to an identical inverter are ‘r and K07, respec-

tively. Therefore, an inverter with Ctotal load capacitance

requires (Ctotal/CgI'T and (Ctotal/Cg)°K"T of "low-going”

and ”high-going" delay times, respectively. Another impor-

tant feature of the T model is the propagation delay calcu-

lation method for a pass transistor chain. Each transistor

in the chain is thought of as a series resistance coupled

with a capacitance to ground formed by the gate capacitance.

Thus, the delay time through a chain of n identical pass

transistors is nZRCg, where R is turn-on resistance and

Cg is the gate capacitance of each pass transistor [9].

But the transit time, T , is the fundamental limit on

the switching speed of the gates. In a practical circuit,

the speed of MOS device Operation is determined realisti-

cally by the speed with which capacitors can be charged and

discharged [28]. Therefore, a revised T model was used in

this simulation. It assumes that 1? is the discharge time

for a basic inverter (with inverter ratio 4:1) coupled with

only one identical inverter. Also the gate effective capa-

citance of every logic gate is assumed equal. Thus, the

simulation results in the propagation delay section are more

realistic than the 7' model due to the fact that it uses

discharge time, T, and not transit time, T . Morever, this

simplifies the process of estimating total load capacitance.

When given the desired number of bits per word and B

63

(matrix bandwidth), the Fortran-coded simulation program

will model the required computing and I/O circuit struc-

tures. Then, at the transistor level, the total chip area

is calculated based On the circuit model and A. PrOpa—

gation delay, also calculated at the transistor level,

includes both active gate delays and communication path

delays for the entire chip.

5.1 Chip Area Computation

The hardware design can be partitioned into three

distinct parts, input circuit, computing structure and out-

put circuit. The layout of processing elements and latches

in the structure are regularly connected and support ggly

local communication (i.e., nearest neighbors). Furthermore,

the fundamental building blocks of the MAC's and DC's are

full-adder arrays; also locally connected. Therefore, it is

possible and practical to model basic units, such as latches

and full-adders, as functional modules and then tesselate

these modules into larger structures such as MAC's and DC's.

One can then, tesselate these larger structures, which are

now processing elements, and latches into the conglomerate

computing structure.

Designs of time three different input and output cir-

cuits are basically composed of inverters and pass tran-

sistors.’ The fundamental building blocks are chains of pass

transistors and inverters, SR flip-flOps, one-bit shift

registers, buffers and latches. The I/O designs are again

64

simple and regular block structures. Hence, it is realistic

to estimate the area geometries of the I/O circuits by

calculating individual areas and tesselating the fundamental

building block into the desired configuration. Of course,

during the tesselation, local communication geometry must be

included. Now, both the computing structure and I/O cir-

cuits require that relatively few specific modules be laid

out by hand and quantified for initial ”seeding" Of the

circuit model. These modules include a full-adder, one-bit

shift register, SR flip-flop, buffer and latch, as well as a

pass transistor and inverter chain.

The most primitive component of each module's layout is

the basic NMOS inverter. This device has a threshold

voltage, Vthr of approximately 0.2 VDD and an inverter

threshhold, Vinvr about midway between VDD and GND. Under

these conditions the inverter ratio, K, will be 4:1 as

determined by the equation,

VDD

Vinv z (5’2)

for Vth << VDD [9].

Based on this 4:1 ratio for the basic inverter, the

pull-up to pull-down ratio of other primitive gates, such as

an n-input NAND, can also be estimated. An important class

of circuits used in our designs is composed of two inver-

ters with one or more pass transistors in between. For the

case of two inverters coupled by one pass transistor, the

pull-up to pull—down ratio of the second inverter is

65

required to be 8:1 due to the threshold voltage of the pass

transistor [9].

Besides knowing these ratio values, parameters giving

linewidth and space dimensions Of the layout geometry must

be incorporated. Strict adherence to the layout design

rules of Mead and Conway, however, was avoided as it has

been pointed out that this unethod, while jproducing ‘very

rapid layouts, mOst often results in sub-Optimal use Of the

available chip area [30]. Therefore, other area estimations

were made using more practical rules of thumb [29]. Again,

the resolved building block real estates are <divided by

minimum lithographic linewidth of given technology so as to

maintain the dimensionless design rule values for reflecting

the predicted decrease in A as I. C. capabilities advance

towards VLSI.

5.2 PrOpagation Delay Computation

The localized connectivity of the computing array

structure and input/output circuitry allows straightforward

computation of delay parameters. Quantification of modular

delay parameters involved calculation of the active gates'

prOpagation time with consideration of loading (gate

fan-out) and internal communication path delays. Utilizing

the revised model, the active gate delay time is based on

T, the discharge time of a basic inverter with one fan-out

1x3 an identical gate. It is assumed that T? is linearly

dependent on A and when A = 3 um, T = 0.6 ns [9].

66

Consequently, if a basic inverter couples with. m basic

inverters at its output point, the rising time delay for the

active inverter gate is mKT or 4mT.

In polysilicon gate NMOS I.C. technology, the communi-

cation paths are mostly metal lines and diffusion lines.

Since the unit length delay of a metal line is much smaller

than that (MS a diffusion line (approximately 1:1000) [9],

the metal line delay is considered negligible. But, it is

impractical to measure diffusion line length piece by piece

through every module. Therefore, an upper bound was used by

taking the total diffusion line length as the length of the

longest side of a: given module. Then, the delay time is

calculated as a function of this line length squared. Using

the fact that transit time is 100 ns for a 10 millimeter

length line (when A.== 3pm) [9], communication path delays

were obtained. Interestingly, it is not necessary to con-

sider intermodule communication line length or delay since

modules are considered to tile the plane and, therefore,

abut one another.

Finally, the total module delay is the sum of active

gate delays and communication path. delays. Calculating

total chip delay, however, is much simpler once the maximum

segment delay is known. This is because the maximum segment

delay is the limiting factor in the determination of clock

speed. And since the overall chip design is pipeline in

nature, the total propagation delay is determined by the

maximum segment delay times the number of operands, plus the

set-up time.

67

5.3 Significant Module Data

Chip area and pmopagation delay computational methods

have been discussed in Sections 5.1 and 5.2. Table 5.1

presents results of these calculations for each fundamental

building block.

Table 5.1 Significant module data

Active Gate

Module Class Area (x A2) Delay (x T)

Full-Adder 65 x 54 . 28

One-bit Shift Register 23 x 17 18

Buffer 23 x 17 2

SR Flip-Flop 29 x 19 12

Latch 23 x 17 13

2-Input NAND Gate 19 x 5 8

Pass Transistor 3 x 3 l

CHAPTER VI

SIMULATION RESULTS AND EVALUATION

Chapter V described the simulation models which were

used to obtain parameters of chip area and prOpagation

delay. In this chapter, I evaluate the design performance

based on these models. The goals of this chapter are two-

fold; first, to evaluate the area and time versus matrix

bandwidth trade-offs of the three different I/O strategies,

and secondly, to evaluate and discuss the entire chip area

geometry and mepagation delay versus matrix bandwidth by

combining the computing structure and the I/O strategy

selection.

It has been predicted that the pattern resolution limi-

tation of optical lithography is about 0.5 microns [31].

Recently, however, many I.C. designers have been exploring

new and quite promising techniques including electron-beam

and x-ray lithography. With the electron-beam method, for

example, future linewidths Of 0.125 microns have been pre-

dicted [32]. For these reasons, 0.8 and 0.5 micron line-

widths have been chosen as realistic goals of mid and late

1980's VLSI capability.

Another simulation parameter, word size, was selected

to be 8, l6 and 24 bits per word. There are two major

reasons for selecting word size in this range. First, this

special purpose computing chip will ideally be used mainly

as a COprocessor along with a microprocessor-based

68

69

microcomputer system. With these word size selections, the

simulation results will match the sizes of these systems.

Secondly, based on the obtained simulation results, word

sizes of more than 24 bits severely decrease the number of

processing elements which can be fabricated on a single

chip. A small number of processing elements imply that only

networks of small bandwidth (S 2) (mum be considered.

Bandwidths in this range are considered insignificant for

solving linear equation systems of practical size. The

limitation is because the maximum chip size with current

I.C. technology is about 1 centimeter squared.

In addition Ix) the parameter selections of linewidth

and word size, an assumption is made that the matrix

dimension-bandwidth relationship is B = 0.1 N. The data and

figures presented in the following sections will ultimately

lead to a conclusion regarding the best area and time versus

problem size trade-offs in the design of the I/O structures.

6.1 Comparison of I/O Strategies

Three different input/output strategies and correspond-

ing circuit designs were explained in Chapter IV. In this

sectMMi two input port (INPORT) and output port (OUTPORT)

graphs comparing chip edge size (in cm) and propagation

delay (in #-sec) versus matrix bandwidth for the chosen

linewidth and word size are shown.

70

6.1.1 INPORT Strategy Selection

Figure 6.1 graphically shows the INPORT edge size

requirements CM? the three algorithms versus various matrix

bandwidths at A = 0.8 microns and 16 bits per word. The

required INPORT chip area is the INPORT edge size squared.

The graph contains three curves representing the algorithms:

1) SCS, 2) binary tree design, and 3) data controlled stra-

tegy. Upon examining the curves in Figure 6.1, [it is

obvious that algorithm #3, the data controlled strategy,

occupies the least area. The small edge difference between

algorithm #1 and #3 is due to the fact that algorithm #1

requires N one-bit shift registers and buffers for selecting

input channels, whereas algorithm #3 does not (see Figures

4.1 and 4.6). Also, the big edge difference of algorithm #2

over algorithms #l.anui #3 is because its many required SR

flip-flops occupy an enormous amount of area. It is also

noted that the reason for algorithm #2's step curve is due

to the regular (power of 2) binary tree structure. Yet from

this figure, it is plain that even an irregular binary tree

structure would be the most area-consuming.

In the determination of the best input structure, one

must also consider Figure 6.2, which illustrates the INPORT

delay time versus matrix bandwidth relationship. Again, it

is obvious that algorithm #3 requires the least time among

these three choices. ‘It is concluded then that algorithm

#3, the data controlled strategy, is the best input circuit

algorithm of the three, as it requires the least amount of

both chip area and delay time.

71

0
.
8
0

INPORT EDGE VS BRNDNIDTH

FUR 0.8 MICRON LINEHIDTH

0
.
7
2

+' RLGORITHH N0. 1

X RLGORITHH N0. 2

0 RLGORITHH N0. 3

0
.
6
4

l

n
1
0
“

.
0
.
6
6

0
.
4
8

.
4
0

l

I
N
P
O
R
T

E
D
G
E

I
N

C
M

0
-
8
2

J

0
.
2
4

.
1
6

0

0
.
0
8

rririlfiirTrFTlrlrrii

2 4 6 10 12 16 18 208 14

HRLF BHNUHIDTH

Figure 6.l INPORT edge size versus matrix

bandwidth for l6 bits per word

at A. = 0.8 Jum.

72

INPORT TIME VS BHNDHIDTH

FOR 0.8 MICRON LINEHIDTH

-+ BLGORITHH No. 1

w x HLGORITHH N0. 2

o.) o RLGORITHM no. 3

O

0
.
0
4

0
.
0
0

VIIIFIVIIITFIFTIIIII

4 6 a 10 12 14 16 18 20

HHLF BRNDHIDTH

Figure 6.2 INPORT delay time versus matrix

bandwidth for l6 bits per word

at)1 = 0.8 Ann

73

6.1.2 OUTPORT Strategy Selection

Figures 6.3 amui 6.4 illustrate the OUTPORT edge size

amd delay time versus matrix bandwidth with parameters Of

16 bits per word and 0.8 micron linewidth. The OUTPORT edge

size of algorithm #2 is the smallest among the three (see

Figure 6.3). Algorithm #1 requires the least propagation

delay (see Figure 6.4).

From the discussion in Section 6.1.1, it was concluded

that the input structure of algorithm #3, the data

controlled strategy, dominates both in area and time prOper-

ties. But, for (fine output structure, Figures 6.3 and 6.4

convey that algorithm #1 always requires less area geometry

and delay time than algorithm #3. At this point, an Obvious

method for choosing the best output structure is to

establish a complete data table of the entire chip delay and

chip area. This will incorporate the computing structure,

INPORT algorithm #3 and choices of OUTPORT algorithms #1 and

#2. If the INPORT and OUTPORT algorithm pair, #3 and #1, is

superior to pair #3 and #2, we can conclude that OUTPORT

algorithm #1 is the best among the three. Otherwise,

OUTPORT algorithms #2 and #3 must be compared in a similar

manner.

Tables 6.1 and 6.2 list bandwidth values (BW), INPORT

time (ITIME), OUTPORT time (OTIME), computing time

(MACTIME), OUTPORT area (OAREA) and total chip time .and

area. The corresponding data of INPORT and OUTPORT

algorithms #3 and #1 respectively, with an 8 bit word size

74

4
0

OUTPORT EDGE VS BRNDHIOTH

FOR 0.8 MICRON LINENIDTH

0
.
3
6

]

+ HLGORITMM ND. 1

X RLGORITHM N0. 2

0 RLGORITHM NO. 3

0
.
3
2

0
.
2
8

l

:
1
0
“

0
.
2
4

J

0
.
2
0

1

.
1
6

l

O
U
T
P
O
R
T

E
D
G
E

I
N

C
M

1
2

0
.

0
.
0
8

0
.
0
4

ITIIIITIIIIIITVTII

8 10 12 14

HRLF BRNDHIDTH

Figure 6.3 OUTPORT edge size versus matrix

bandwidth for l6 bits per word

at A. = 0.8 yum.

.
1
8

0
-
I
S

~
1
4

0
.
1
2

-
S
E
C

0
1

0
.
1
0

0
.
0
8

_
L

O
U
T
P
O
R
T

T
I
M
E

I
N

M
I
C
R
O

0
.
0
4

0
.
0
6

0
.
0
2

75

OUTPORT TIME VS BRNDHIDTH

FOR 0.8 MICRON LINEHIDTH

+ RLOORITHM NO. 1

X QLGORITHM NO. 2

0 RLGORITHM N0. 3

0
.
0
0

TIIITITITFIIIIIII]

a 10 12 14 16 18 20

HHLF BHNDNIDTH

N
"
l

Figure 6.4 OUTPORT delay time versus matrix

bandwidth for l6 bits per word

at A = 0.8 inn.

76

Table 6.1a Total chip area and time results for algorithm

#3 (INPORT) and #1 (OUTPORT) for 8 bits per word

at A = 0.8 microns.

BW ITIME OTIME MACTIME TOTALTIME OAREA TOTALAREA

(ns) (ns) (ns) (ns) (cmz) (cmz)

12 74.9 41.9 78.72 21611.7 0.00034 0.36216

13 80.6 44.8 78.72 23950.9 0.00036 0.41413

14 86.4 47.7 78.72 27565.0 0.00039 0.46946

15 92.2 50.6 78.72 31432.5 0.00041 0.52815

16 97.9 53.4 78.72 35553.4 0.00043 0.59019

22 132.5 70.7 78.72 65601.4 0.00058 1.03288

23 138.2 73.6 78.72 71496.5 0.00060 1.11840

46 270.7 139.8 78.72 277031.8 0.00116 4.01134

47 276.5 142.7 78.72 289009.4 0.00118 4.17738

Table 6.lb Total chip area and time results for algorithm

#3 (INPORT) and #2 (OUTPORT) for 8 bits per word

at A = 0.8 microns.

BW ITIME OTIME MACTIME TOTALTIME OAREA TOTALAREA

(ns) (ns) (ns) (ns) (cmz) (cmz)

12 74.9 71.7 78.72 21641.4 0.00022 0.36204

13 80.6 76.8 78.72 23982.9 0.00022 0.41440

14 86.4 81.9 78.72 27599.2 0.00022 0.46930

15 92.2 136.0 78.72 46072.8 0.00046 0152820

16 97.9 144.0 78.72 51956.3 0.00046 0.59021

22 132.5 192.0 78.72 94649.4 0.00046 1.03276

23 138.2 200.0 78.72 102997.0 0.00046 1.11826

46 270.7 384.0 78.72 392141.9 0.00093 4.01111

47 276.5 392.0 78.72 408937.4 0.00093 4.17713

Table 6.2a

BW ITIME

(ns)

16 97.9

17 103.7

18 109.4'

21 126.7

22 132.5

Table 6.2b

BW ITIME

(ns)

16 97.9

17 103.7

18 109.4

21 126.7

22 132.5

77

Total chip area and time results for algorithm

#3 (INPORT) and #1 (OUTPORT) for 16 bits per

word at

OTIME

(ns)

54.7

57.6

60.5

69.1

72.0

A = 0.8 microns.

MACTIME TOTALTIME

(ns) (ns)

150.40 54285.1.

150.40 57648.3

150.40 61011.5

150.40 71101.1

150.40 74464.3

OAREA

(cmz)

0.00078

0.00083

0.00087

0.00100

0.00105

TOTALAREA

(cmz)

2.45532

2.71757

2.99262

3.89457

4.22082

Total chip area and time results for algorithm

#3 (INPORT) and #2 (OUTPORT) for 16 bits per

word at A

OTIME MACTIME

(ns) (ns)

144.0 150.40

152.0 150.40

160.0 150.40

184.0 150.40

192.0 150.40

= 0.8 microns.

TOTALTIME

(ns)

54374.4

58345.9

64941.4

86840.0

94843.0

OAREA

(cm)

0.00092

0.00092

0.00092

0.00092

0.00092

TOTALAREA

(cm)

2.45546

2.71766

2.99267

3.89449

4.22070

78

and .A = 0.8 inn , are shown in Table 6.1a. The data for

algorithm #3 (INPORT) and #2 (OUTPORT), are shown in

Table 6.lb. Again, the same INPORT and OUTPORT algorithm

pairs, with a 16 bit word size, are presented in Table 6.2a

and 6.2b. According to these four tables, it was concluded

that the utilization Of OUTPORT algorithm #2 causes a

serious output bottleneck as the matrix bandwidth increases.

Thus, the entire chip propagation delay (TOTALTIME) is

forced to increase tremendously. Although it is noted that

the OUTPORT area (OAREA) of algorithm #2 is less than that

of algorithm #1, this small area difference is insignificant

when compared to the total area (TOTALAREA) in both cases.

Thus, it is concluded that OUTPORT algorithm #1, the

SCS strategy, is "better" than algorithm #2, the binary

tree design. In conclusion, the best INPORT and OUTPORT

algorithms for (NH: special purpose computing structure are

the data controlled and SCS strategies, respectively.

6.2 Entire Chip Simulation Results

The main objective of this section, and more impor-

tantly, one of the ultimate goals of this work, is to quan-

tify and discuss the entire chip area geometry and propaga-

tion delay in relation to problem size. The input and out-

put strategies used are the data controlled and SCS

algorithms, respectivelyu Graphs showing entire chip edge

sizes and propagation delays, with various.'matrix band-

widths and 0.8 micron linewidth, are illustrated in

79

Figures 6.5 and 6.6. Currently, the standard I.C. chip

size, due to reasons of productivity yield, is commonly

limited to about 1 cm2. To relate the results of these

graphs to realistic network sizes, consider, for example, 16

and 24 bit word sizes. Under these conditions the matrix

bandwidths are ldhdted 1x) 9 elements for 16 bits per word

amd 5 elements for 24 bits per word. To extrapolate this

result to a realistic problem size, it has been discussed in

Chapters III and.\/ that matrix bandwidth is assumed to be

about 10% of the original network matrix dimension. Thus,

the results indicate that for this class of sparse matrix

problems network dimensions of 90 nodes for a 16 bit machine

and 50 nodes for a 24 bit machine are possible. From Figure

6.6, the corresponding triangulation times, (n: total chip

propagation delays, for the 16 bit and 24 bit word size

examples are 30.7 and 25.6 micro-secs. each.

Next, consider 21 late 1980's technology linewidth of

0.5 microns. From Figure 6.7 it is noted that 16 and 9 ele-

ment bandwidths, with parameters of 16 and 24 bits per word

respectively, can be fabricated on a 1 cm2 silicon chip.

Therefore, possible network. dimensions become 160 enui 90

nodes, respectively. TNMa corresponding total chip delays

are 33.9 and 28.3 micro-secs. in each case as shown in

Figure 6.8.

Previously, it was questionable as to whether this type

of systolic array architecture would cause a serious I/O

bottleneck due to the number of simultaneous operands

3
.
6
0

3
.
2
0

T

2
.
8
0

80

CHIP EDGE VS BRNDHIDTH

FOR 0.8 MICRON LINEHIDTH

+ 24 BITS PER HORD

X 16 BITS PER MORE)

0 8 BITS PER HORD

0
.
0
0

I I r I'I I I I I r*I I I I

10 12 14 16 18 208

HRLF BRNDHIDTH

I I I I r

2 4 6

Figure 6.5 Entire Chip edge size versus

matrix bandwidth for 8, l6 and

24 bits per word at A = 0.8 lam.

1
8
0
.
0
0

1
6
0
.
0
0

1

1
4
0
.
0
0

1

1
2
0
.
0
0

1

0
-

1

T
I
M
E

I
N

M
I
C
R
O

S
E
C

6
0
.
0
0

8
9
.
0
0

1
0

o
o

1

4
0
.
0
0

0
0

2
0
.

1

TIME VS BHNDHIDTH

FOR 0.8 MICRON LINEHIDTH

+ 24 BITS PER HORO

X 16 BITS PER MORE)

0 8 BITS PER HORD

 .00

HITTISTITTPITTIIIIII

a 10 12 14 16 18 20

HHLF BRNDHIDTH

Figure 6.6 Entire chip propagation delay versus

matrix bandwidth for 8, l6 and

24 bits per word at A = 0.8 pm.

1
.
8
0

1
.
4
0

.
6
0

.
2
0

I
.
0
0

l

I
L

C
H
I
P

E
D
G
E

I
N

C
M

0
3
0

0
.
6
0

1

0
.
4
0

0
.
2
0

0
.
0
0

82

CHIP EDGE VS BRNDHIDTH

FOR 0.5 MICRON LINENIDTH

+ 24 BITS PER HORO

X 16 BITS PER HORD

O 8 BITS PER HORD

ITIIITIIIIIIIIIIn—II

246 1012 618 20a 14 1

HHLF BHNDHIDTH

Figure 6.7 Entire chip edge size versus

matrix bandwidth for 8, l6 and

24 bits per word at A = 0.5 ,um.

7
2
.
0
0

6
4
.
0
0

5
6
.
0
0

0
0

1
6
.

1

8
-
0
0

0
.
0
0

83

TIME VS BRNDHIDTH

FOR 0.5 MICRON LINEHIDTH

+ 24 BITS PER HORO

X 16 BITS PER HORO

O B BITS PER HORD

I I

a 10 12 14

HHLF BHNDHIDTH

fITIITITIIII

Figure 6.8 Entire Chip propagation delay versus

matrix bandwidth for 8, l6 and

24 bits per word at A = 0.5 pm.

84

required by computing structure [33]. In the 16 and 24 data

bit computing structure designs, the maximum segment delay

of the pipelined structure for the entire chip is the MAC

time, at least for bandwidths less than or equal to 20 ele-

ments. Therefore, no I/O bottlenecking is anticipated.

Also note that in both the 16 and 24 bit word size designs,

the corresponding total chip edge sizes for matrix band—

widths of 20 elements are mostly far beyond the limits of

our current I.C. technology (see Figures 6.5 and 6.7).

It is interesting to note here that for the 8 bit

designs, the breaks in the lepe of the delay curves (see

Figures 6.6 and 6.8) are, in fact, due to the suspected

input bottleneck. For ea more detailed illustration, the

INPORT time (IT), OUTPORT time (OT), MAC time (MACT) and

maximum segment time (SEGT), with bandwidths up to 20 ele-

ments for 8 and 16 bit machines are shown in Table 6.3. The

break in the slope is because, for small word sizes, MAC

time is prOportionally small as it is a function of word

size. INPORT time, however, is a function of bandwidth.

Thus, for small word sizes and large bandwidths, I/O time

will dominate as the maximum segment delay time in the pipe-

line. But, a major conclusion of this work is that for

reasonable word sizes (between 16 and 24 bits per word) and

reasonable matrix bandwidths (at least 5 20 elements) an

I/O bottleneck will not occur.

These results are quite encouraging and show great pro-

mise for throughput enhancement in a large number of

Table 6.3

BW IT

(ns)

1 11.5

2 17.3

3 23.0

4 28.8

5 34.6

6 40.3

7 46.1

8 51.8

9 57.6

10 63.4

11 69.1

12 74.9

13 80.6

14 86.4

15 92.2

16 97.6

17 103.7

18 109.4

19 115.2

20 121.0

85

Simulation time results for 8 and 16 bit

= 0.8 microns.at A

(8 bits)

OT MACT

(ns) (ns)

10.2 78.2

13.1 78.2

16.0 78.2

18.9 78.2

21.8 78.2

24.6 78.2

27.5 78.2

30.4 78.2

33.3 78.2

36.2 78.2

39.0 78.2

41.9 78.2

44.8 78.2

47.7 78.2

50.6 78.2

53.4 78.2

56.3 78.2

59.2 78.2

62.1 78.2

65.0 78.2

SEGT

(ns)

78.2

78.2

78.2

78.2

78.2

78.2

78.2

78.2

78.2

78.2

78.2

78.2

80.6

86.4

92.2

97.6

103.7

109.4

115.2

121.0

BW

10

11

12

13

14

15

l6

17

18

19

20

IT

(ns)

11.5

17.3

23.0

28.8

34.6

40.3

46.1

51.8

57.6

63.4

69.1

74.9

80.6

86.4

92.2

97.6

103.7

109.4

115.2

121.0

(16 bits)

OT MACT

(ns) (ns)

11.5 150.40

14.4 150.40

17.3 150.40

20.2 150.40

23.0 150.40

25.9 150.40

28.8 150.40

31.7 150.40

34.6 150.40

37.4 150.40

40.3 150.40

43.2 150.40

46.1 150.40

49.0 150.40

51.8 150.40

54.7 150.40

57.6 150.40

60.5 150.40

63.4 150.40

66.2 150.40

words

SEGT

(ns)

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

150.40

86

scientific and engineering problems. Integrated circuit

technologists have predicted that the actual hardware

implementation of such a class Of high performance

algorithms will soon become a reality. These results should

benefit and promote further research in this area.

CHAPTER VII

CONCLUSIONS

7.1 Summary

Advances in improving the throughput speed for solving

large scale, sparse matrices have been a topic of research

for many decades. The fundamental method for direct solu-

tion is Gaussian elimination. To improve on this classical

(serial) computer technique, Markowitz (ordering"has ‘been

traditionally used to provide a reduced fill-in during the

triangulation of a nonstructured coefficient matrix [34].

In recent years, the utilization of parallel and pipelined

structures of an existing new generation of array processors

have become popular in this area [8, 35, 36]. However, the

solution time provided by even the best current approach is

still far away from the real-time computational requirements

of many scientific and engineering problems.

Cellular-array architectures have emerged and shown

great promise in performing highly concurrent numerical

algorithms, such. as L-U’ decomposition, lnatrix inversion,

etc. Furthermore, recent improvements in I.C. fabrication

techniques have enabled computer architects to consider the

design of dense VLSI integrated systems on a single chip. A

new class of computing architectures, built of simple inner

product step processors, and possessing local communication

wires and highly regular elements, appear to be a prime

candidate for direct hardware implementation on a VLSI chip.

87

88

The high speed, low' cost advantages of ‘VLSI techniques

should prove to be in the mainstream of next generation spe-

cial purpose computer design spawning enthusiastic research

in this area.

The purpose of this research was first to develop a

modified systolic array algorithm to triangulate the

augmented coefficient matrix {A.E b}~ of large, band form

, .

linear equation systems, A '15 =‘b. The new algorithm will

broaden the application area of VLSI systolic array

algorithms to more practical engineering problems by con-

sidering such large scale systems.

Chapter III of this dissertation described and illus-

trated a computing structure design to triangulate a band

form augmented matrix, with matrix dimension N and half

bandwidth B, in O(N) time and using O(BZ) PE's. The number

of PE's required by this new VLSI algorithm is greatly

reduced compared to previously published algorithms of this

type which have required O(NZ) PE's. This structure is most

applicable to large scale, diagonally dominant, highly

sparse matrix systems whose nonzero elements naturally occur

in band form or can be permuted, a priori, to minimum band

form.

In the last section. of Chapter III, crucial inner

details of the processing elements in the computing struc-

ture were explored. Various arithmetic algorithms were eva—

luated and a modified Baugh-Wooley algorithm was determined

to be best for the majority PE, the MAC. Also, a suitable

89

DC algorithm was designed. The upper bound on the maximum

segment delay (M3 the systolic pipelined structure was the

MAC time. Dynamic latches were selected for temporary stor-

age of the data operands because of their small prOpagation

delay and area geometry as compared to static latches. More-

over, dynamic latches provide for better field testability.

I then focused on develOping the best I/O strategy

for this computing structure. The main objective here was

minimization of any possible I/O bottleneck. Three high

speedinput and output circuits were designed and evaluated

in Chapter IV. They were the SCS, the binary tree and the

data controlled algorithms.

Chip area and propagation delay computation models

based on transistor level NMOS technology were presented in

Chapter V. These two models provided a simple method of

calculating area and time parameters among' the ‘candidate

building block modules of the chip. The simulation parame-

ters also enabled tracking projected I.C. fabrication tech-

nology so that predictions of future capabilities could be

made.

In Chapter VI, I/O area and time trade-off results were

compared utilizing the simulation models. The best INPORT

strategy was determined to be the data controlled algorithm.

The best OUTPORT strategy was found to be the SCS algorithm.

Furthermore, for reasonable operand word sizes (2: 16 bits)

and chip area (about 1 cmz), bottlenecking of I/O coef-

ficients was not observed.

90

The entire chip simulation results showed that for a

1 cm2 chip size and 0.8 micron linewidth, the matrix band-

width is limited to 9 elements for 16 bits per word and 5

elements for 24 bits per word. Under the assumption of 10%

matrix bandwidth-dimension relationship, a single VLSI chip

of the type presented can operate upon a 90-by-9O and

50-by-50 banded matrix A for 16 and 24 bits per word,

respectively. The prOpagation delay for the two cases is

30.7 euui 25.6 micro-secs., respectively. Furthermore, at

the same chip size and a 0.5 micron linewidth, banded matrix

dimensions of l60-by-l60 and 90-by-90 elements can be

triangulated in 33.9 and 28.3 micro-secs. for 16 and 24 bits

per word, respectively.

The overall results were very encouraging. The initial

work, particularly the PE design evaluation and comprehen-

sive simulation, have helped in understanding the strengths

and weaknesses of special purpose VLSI algorithms for large

scale scientific and engineering problems.

7.2 Future Research

The VLSI single chip systolic array architecture under

investigation here presented a new approach for triangu-

lating practical, large scale, linear equation systems. The

utilizathm: of simulation models, based on NMOS technology

for quantification of entire chip area geometry and propaga-

tion delay, also provided significant results for evaluating

the feasibility of VLSI algorithms in this problem area.

Yet,

91

several additional tOpics are worth future study.

1)

2)

3)

One of the main problems for VLSI NMOS technology

is power dissipation. NMOS typically requires

much more power than CMOS. Future utilization of

CMOS technology will provide the needed reduction

in power dissipation. The speed and density of the

entire chip will also be enhanced by the incor-

poration of CMOS circuits. .

Our chip simulation results showed that I/O bottle-

necking was not serious for large operand word size

and small matrix bandwidth. This is because PE:

computation time dominated in the pipeline struc-

ture. Now, as I.C. technology advances, chip size

will increase and resolution will decrease. It

will still be many years, however, before we are

able to implement a large number of PE's (> 100

or so) (”I a single chip. Therefore, multi-chip

networks of processing elements with large word

sizes should be looked into as a near term

approach. Problems to be considered here include

algorithm decomposition and, most importantly,

inter-chip communication. V

Another crucial step will be the design of true

floating-point processing elements for our com-

puting structure. This will make the chip design

more universal as it will ease restrictions on

problem compatibility.

10.

11.

BIBLIOGRAPHY

Kung, H. T. and Leiserson, C. 3., "Systolic Arrays (for

VLSI)," Sparse Matrix Proc., (I. S. Duff, el. -al.

editors), Society for Indust. and Appl. Math. (1979),

pp. 256-282.

Cuthill, E. and McKee, J., "Reducing the Bandwidth of

Sparse Symmetric Matrices," Proc. 24th National Conf.

AQM, Brandon System Press, New Jersey (1969), PP.

157-172.

Gibbs, N. E., Poole, W. G. Jr., and Stockmeyer, P. K.,

"An Algorithm for Reducing the Bandwidth and Profile of

a Sparse Matrix," SIAM J. Numer. Anal., Vol. 13 (1976),

pp. 236-250.

Zeleny, P. C., and Nagle, R. 13., "Application of an

Array Processor :h1 Satellite Image ‘Processing,"

AD-A056664/6ST, National ‘Tech. Information Service,

Springfield VA 22151 (June 1977).

Pottle, C., "The Use of an Attached Scientific ("Array")

Processor to Speed Up Large Scale Load Flow Simula-

tions," Proc. IEEE ICCC 80, Port Chester, NY (1980).

Woo, P. T., "Application of Array Processor to Sparse

Elimination," SPE 5th Symposium on Reservoir Simulation,

Denver (1979).

”Array Processor' Does. Shape Recognition," Electronic

Design, Vol. 26, No. 18 (1978), p. 146.

Shanblatt, M. A., "Vectorized Elimination and Ordering

Strategy for Load Flows on an Array Processor," Ph.D.

Thesis, University of Pittsburgh (April 1980).

Mead, C. and Conway, L., Introduction to VLSI Systems,

Addison-Wesley Pub. Co., Reading, Massachusetts (1980).

Rem, M. and Mead, C. A., "Cost and Performance of VLSI

Computing Structures," 1888 J. of Solid State Circuits,

Vol. Sc-14 (April 1979). pp. 455-462.

Foster, M. J. and Kung, H. T., ”The Design of Special-

Purpose VLSI Chips," Computer (January 1980), pp.

26-400

92

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

93

Kung, H. T., ”Let's Design Algorithms for VLSI

Systems," Proc. Caltech. Conf. Very Large Scale Inte-

gration (January 1979): pp. 65-90.

Kung, H. T., "The Structure of Parallel Algorithms," in

Advances in Computers, Vol. 19, Academic Press (1980).

Kung, H. T. and Leiserson, C. 8., "Algorithms for VLSI

Processor Array," Symposium on Sparse Matrix Compu-

tations, Knoxville (1978).

Preparata, F. P. and Vuillemin, J., ”Optimal Inte-

grated-Circuit Implementation of Triangular Matrix

Inversion,” Proc. of Int‘l Cppf. Parallel Processing,

(August 1980) pp. 211-216.

Hwang, PL. and Cheng, Y-H, "VLSI Computing Structures

for Solving Large-Scale Linear Systems (ME Equations,"

Proc. 1980 Int'l Conf. on Parallel Processing (August

1980), pp. 217-230.

Hwang, BL. and Cheng, Y-H, ”Partitioned Algorithms and

VLSI Structures for Large-Scale Matrix Computations,"

Proc. 5th Symposium on Computer Arithmetic (May 1981),

pp. 222-232.

Oakes, M. F., "The Complete VLSI Design System," Proc.

16th Design Automation Conference (June 1979), pp.

452-460.

Eichelberger, E. B., "A Logic Design Structure for LSI

Testability,” Proc. 14th Design Automation Conference

(June 1977), pp. 462-468.

Hwang, K., Computer Arithmetic, John Wiley and Sons,

Inc. (1979).

Wallace, C. S., ”A Suggestion for Parallel Multi-

pliers,” IEEE Trans. Electronic Computers, Vol. EC-13

(February 1964), pp. 14-17.

Pezaris, S. D., ”A 40nS 17-bit-by-bit .Array’ Multi-

plier," IEEE Trans. Computers, Vol. C-20, No. 4 (April

1971), pp. 442-447.

Baugh, C. R. and Wooley, B. A., "A Two's Complement

Parallel Array Multiplication Algorithm," IEEE‘, Trans.

Computers, Vol. C-22, No. 1-2 (December 1973), pp.

1045-1047.

Cappa, M., "Cellular Iterative Arrays for Multipli-

cation and Division," M. S. Thesis, Dept. of Electrical

Engineering, University of Toronto, Canada (October

1971).

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

94

Cappa, M. and Hamacher, V. C., "An Augmented Iterative

Array for High-Speed Binary Division," IEEE Trans. on

Computers, Vol. C-22 (February 1973). pp. 172-175.

Lyman, J., "Tape Automated Bonding Meets VLSI Chal-

lenge," Electronics (December 18, 1980), pp. 100-105.

Fairbairn, D. G., "VLSI: A New Frontier for System

Designers," Computer (January 1982), pp. 87-96.

Taub, H. and Schilling, D., Digital Integrated Elec—

tronics, McGraw-Hill Inc. (1977).

Personal communication with Donnie K. Reinhard, Depart-

ment of Electrical Engineering and Systems Science,

Michigan State University (March 1982).

LaBrecque, M., "Faster Switches, Smaller Wires, Larger

Chips," NSF MOSAIC (January/February 1982).

Keyes, R. W., "Physical Limits in Semiconductor

Electronics," Science, Vol. 195 (March 1977): PP.

1230-1235.

Eidson, J. (3., "Fast Electron-Beam Lithography," IEEE

Spectrum (July 1981), pp. 24-28.

Chang, T. L., "Mixed Systolic Arrays: A Reconfigurable

Multiprocessor Architecture," Ph.D. Thesis, Michigan

State University (February 1982).

Markowitz, H. M., "The Elimination Form of the Inverse

and its Application to Linear Programming," Management

Science, Vol. 3 (1957); PP. 255-259.

Calahan, D. A., "Multi-Level Vectorized Sparse Solution

of LSI Circuits," Proc. IEEE ICCC 80, Port Chester, New

York (1980).

Dembart, B. and Neves, K. W., "Spare Triangular Factor-

ization (N1 Vector Computers," EPRI Special Report

E1-566-SR, pp. 57-102.

Siewiorek, D. P., Bell, C. G., and Newell A., Computer

Structures: Principles and Examples, McGraw-Hill Inc.

(1982).

