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PART a

EQUIVARIANT PROCEDURES IN THE COMPOUND DECISION PROBLEM
WITH FINITE STATE COMPONENT PROBLEM

0. SUMMARY

Let (X,3,P) be a probability measure space for each
PE@ = {FO,...,Fm}, @ be an action space and L be a loss function
defined on X X @ X ¢ such that for each i,
c, = i‘\; L(x,F;,a)dF (x) < =.

In the compound problem, consisting of N components each
with the above structure, we consider procedures equivariant under

the permutation group. With

- _ 12 3.3/2 . (-3/2
Py B\EIB‘Fi(B) - F;®)| and K@) =17 @7 e W-p) 7,

we show that the difference between the simple and the equivariant

envelopes is bounded by

(T1) {2k(p) = ci}!5 N-% where p = V pij’
i i, ]

and by

(T2) 2m{2K(p) b} ci}% N-AE where p = v{pij|pij < 1}.
i

The bound (T1l) is infinite unless the Fi are pairwise non-orthogonal

and (T2) is designed to replace it in this case.



1. NOTATIONS AND HISTORY

Let (X,B8,P) be a probability measure space for each
Pco = {FO,FI,...,Fm}, d be an action space, L be a loss
function which is defined on X X & X ¢ to the non-negative reals

with value variously expressed
(¢Y) L(x,F;,a) = L(x,F;)(a) = L, (a).

We assume that for each i, Vv Li(a) has finite lower integral
a
with respect to Fi’

(2) c, = j_‘ \a/ L, (a)dF, < .

Since the space (¢ serves only as a parameter space for the
class #£ = {L(a)‘a € @} of loss functions on X X &, it is without
loss of generality to assume that ¢ contains no duplicates in this
sense. To avoid the notational buildup attendant on the introduction
of randomization at this and higher levels, we assume that (¢ 1is its
own extension to the class of all probability measures on the o-field
of subsets of ¢ generated by {L(x,P)|x € X, P€ &} : given any

such probability measure §,

(3) 3 8 €4 > L) = [ L(a)dg(a), Vx,P.

a is unique by the assumption of no duplicates. We observe that

g

for each x and P, L 1is linear in a. For a, = ta, + (1-t)a0

is in @ if a and a

0 are, and
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4#) L(x,P,a) =[ L(x,P,-)da_ =t L(x,P,a;) + (1-t)L(x,P,a;),

where the first equality follows from (3) and the second one follows
from linearity of integrals.

Hereafter we shall write integrals in operator notation, e.g.
the integral in (3) would be expressed E[L(a)] or, and preferably,
glr).

let £ be the family of all functions d on X to ¢ such
that Li° d, the function which maps x to xLi(d(x))’ is [B-measurable
for each i. For d € B/ we define the risk of d at F, as the

integral of L,od with respect to Fi’

i

) R(Fi,d) = Fi[Lio d] < c e

1f G is a distribution on {0,...,m} we define the Bayes risk

against G by

(6) y(@G) =A G[Fi[Lio d1].
5

We refer to the decision problem described above as the
component problem. When N decision problems each with above
generic structure are considered simultaneously, the resulting
N-fold global problem is called a compound decision problem with
finite state components.

N N GN

Specifically, let x € XL, (A,B8) = A,B) , PEQL =¢,

€Ea= dN and let S be the family of all functions

a
S = (dl,...,dN) from } to g’ such that
™ x Lt G ®

o



is /[B-measurable for all o and i, Letting
-1 N
(8) W(x,P,a) =N Q,E]_ L(xa’Pa’aa)’

we define the risk of d € S at P c & by

©) R(P,4) = PWG,P,d(x)] < Nz Ne,.

- i

g € :? is called a simple (sometimes, simple symmetric)
procedure if dq(::) = d(xa) for all o, a.e. e for some d € 5.
Let § be the class of all simple procedures and let S € § be
denoted by dN. It will follow directly from the definition of &8 in
Section 2 that § c §, the subclass of .2 equivariant under the
permutation group. As functions of E, A R(B,S) and A R(S,g)
will be called the simple envelope and the equivariant envelope,
respectively. It is well known (cf. (27) ff.) that the former coin-
cides with the component Bayes risk W(E) with E denoting the
empiric distribution of Pl""’PN’

The compound decision problem was introduced by Robbins (1951).
He argued that a bootstrap procedure which first estimates the

empiric distribution of Pl""’P and then plays Bayes against

N
the estimate within each component may have its compound risk uni-
formly close to the simple envelope.

Hannan and Robbins (1955) considered 2 X 2 @ X & and
(Theorem 3) bounded the average loss of a bootstrap procedure by
the sum of an error of estimation and a loss-weighted Glivenko-
Cantelli measure of deviations of the empiric distribution of

XyseeorXgs thus obtaining strong convergence to zero uniformly

in P of the difference of the average loss from the simple



envelope for all correspondingly good estimators. Risk convergence
(Theorem 4) followed as a corollary. Oaten (1969) permits loss
dependence on x, replaces Bayes by any of a wide class of ¢-Bayes
and otherwise generalizes these results to m X n & X ¢ (Theorem
1 and its Corollary) and to certain compact & X compact ¢ with

L continuous for each x (Theorems 4 and 5). Under continuity
and other restrictions on densities, analogues of generalizations
to mXn € X ¢ were given earlier by Suzuki (1966a).

Hannan and Robbins (1955) also introduced the class of
equivariant procedures and showed (Theorem 5) that the difference
between the simple and equivariant envelopes convergesto zero
uniformly in P as N t o». The proof depended heavily on a measure
theoretic lemma specializing Theorem II.1l of Hannan (1953). Our
Theorems 1 and 2 ((T1l) and (T2) of our Summary) are a strengthened
generalization of their result, with Theorem 1 correspondingly re-
lated to Theorem 3 of Hannan and Huang (1969b) and Theorem 2 follow-
ing as a somewhat involved corollary to Theorem 1.

Hannan and Van Ryzin (1965), for 2 X 2 & X ¢, and Van Ryzin
(1966), for m X n & X ¢, have established a rate of O(N-%) (and
under additional restrictions on ¢ and 1L, O(N-l)) for uniform
risk convergence of bootstrap procedures based on estimators which
are averages OVEr Xj,...«,Xg of a suitable kernel.

The importance of our results stems from the basic character
of equivariant procedures in the compound problem. Until Oaten's
(1969) ¢-Bayes relaxation, all of the bootstrap procedures con-

sidered were essentially equivalent (cf. Lemma 3 of Oaten (1969))

to equivariant procedures. The equivariant envelope is then a



clearly more appropriate yardstick of performance than the simple
one, The results themselves have already been used by Oaten (1969),
together with his afore-mentioned Theorem 1, to prove risk con-
vergence for a wide class of equivariant uniformly-e¢-Bayes pro-
cedures (Theorem 2).

As noted in Section 3 of Hannan and Huang (1969%), a gen-
eralization of the underlying measure theoretic lemma, Theorem 2
of Horn (1968), turns out to be distinctly improved by an immediate
extension of the afore-mentioned Theorem II.1l. Her corresponding
result on the difference between the envelopes (Theorem 1) inherits
the deficiencies of her Theorem 2 and only shows convergence to
zero for each E with a stronger restriction on & than pairwise
non-orthogonality, with ¢ finite and with L constant with
respect to x.

Considerable other work relates to equivariant procedures
in the compound problem. Stein (1956) and James and Stein (1961)
(cf. Stein (1966), where the heuristic of the procedure is revealed,
and Cogburn (1965)) obtained strong results with a Gaussian squared-
deviation-loss estimation component problem. In an important general
development, Cogburn (1967%) imbeds the compound and Empirical Bayes
problems in a general theory of stringency. Section 4 of Samuel
(1967) (cf. Robbins (1962) and Suzuki (1966b)) investigates a pro-
cedure Bayes against uniform prior on proportions for the simplest

2 X 2 example.



2. EQUIVARIANT DECISION PROCEDURES AND
SYMMETRIFICATIONS IN A COMPOUND DECISION PROBLEM

Let &% be the permutation group on N objects. The generic
element g € % will also be used to denote the transformation induced

by g:
(10) gy = (ygl,---,ygN)-

letting g@®) = {g xl x € B} for B € B, it follows from the trans-

formation theorem (Theorem 39.C, Halmos (1950)) that for each P € &

~

and gc %, g P is in & and satisfies

(11) P(B)

~ o~

(gP)(gB), B €0.

Furthermore, it follows from the definition of W in (8) that, for

each a € 7, ga is in ¢ and

12) W(x,P,a) = W(gx,gP,ga).

Thus the compound decision problem is invariant under 4.

d € b 1is equivariant (under &) if for all g € %,
(13) d(gx) = gd(x) a.e. &,

Hannan and Robbins (1955) and Ferguson (1967) use the term invariant
procedures instead of equivariant procedures. The latter was
suggested by Wijsman (1968) to describe functions which transform
properly rather than "invariantly". 1In our further references we

will presuppose this change has been made.
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It follows directly from definition (13) that d € 4 if and

-1
only if there exists a function vy on X X 1? to d, symmetric

on IN-I, and such that for all «

(14) 4 () = Y& %) ae. &,
where
(15) Xy = (xl,...,xa_l, xa+1,...,xN).

Equivalently, d € § if and only if there exists a function § on

1L X IF to ¢, symmetric on IF, such that for all o,
1 = ’ .e. .

(16) da(g) 6(xd f) a.e. &

It follows from the definition of S and & that
17) s c 8.

For each d €8 and g € & define dg, the g-conjugate of

d, by

(18) a®(x) = g ' [d(e0)].

g

Thus d € § if and only if d = d° for all g. Define the

*
symmetrification d of d € f as the average of its conjugates,

(19) a*

ants d
&N
It follows immediately that

* *
@9) ¢-4" =112 e,



Corresponding results hold for subgroups of the permutation
group and relate to certain extended (cf. Swain (1965), Johns (1967),
Gilliland and Hannan (1969) where only the sequence version is con-

sidered) compound decision problems.



3. REPRESENTATION OF EQUIVARIANT RISK

As a basis for comparing the simple and equivariant envelopes,
we obtain in this section a convenient representation of the risk
function of equivariant procedures and relate to the Bayes risk
against a certain uniform prior.

For each S € f- and g € %, it follows directly from de-
finition (9), (12) and the transformation theorem that the risk of the

g-conjugate 1is

) = P[W(x,P,d5(x))]

(21) = P[W (gx,gP,d (gx))]

Averaging the above over 4% gives the risk of the symmetrification

*
d,

22) R(E,4) = ()71 T R(gP, ).

g

Since d = d® for equivariant d, (21) also implies

~

(23) R(P,d) = R(gP,d), d € §.

Letting Ni(s) = #{a\P& = Fi}’ and letting E(E) = (NO(E),...,Nm(B))
be a convenient index of the P-orbit, we shall hereafter write
R(N,d) for 1HS (23) with N = N(P), and denote the equivariant

envelope by

10



11

(24) ¥@) = A RM,).

e >

Hannan and Robbins (1955) consider the class g of all

~

d € B satisfying the constant risk property (23). They show that
W(N) coincides with A R(N,d), the "risk-invariant" envelope. We

R

~

wish to remark that the class & need not be considered separately
*

because, for each d € R, its symmetrification d has the same

risk according to (22).

For § € B it follows from the definition of risk (9) that

NR(E:Q) = 2 E[L(XQ’PQ/) o 60’(’:)]

T T F, x fa)[L1° 6a],

i “‘P;Fi
where Fi acts on X, and Ey = (Pl""’gy-l’ P&+1""’PN) acts
v
on Xx .
~a
In particular, if § € 8, then by (14) 6a (and therefore
Lio 60) is symmetric in Xy and, with Nji = Nj-l or Nj depend-

ingon j=i or j#1i and ¥ denoting sum over i such that

Ni > 0, we have the following representation of equivariant risk,

(25) NR(W,8) =% N.F, >j< Fjji[Lio 61],

where F, acts on x, and X F?ji acts on gl' The order of the
Fj in X F?ji is immaterialjsince the integrand is symmetric.

Let ge any measure dominating & and let fi . dFi/dp.

Abbreviating T N f. X F 7 [L, 0o 6.7 by T(6,) for & € &, (25)
AR 1 s ¢

is expressible as

(26) NRQW,8) = p.[T(él)].



12

If § €8S, say & = dN, then 61 is a function of Xy alone.

Thus

2

-5 L ]
(27) RQN,d ) = )i = F (Lo d].

~

The infimum over B of LHS (27) is, by definition, the simple
envelope. The infimum over & of RHS (27) is, by (6), ¢(§/N),
the Bayes risk against the prior N/N. (This is also the infimum
over .B of the (E/N)N-weighted risk but we shall make no use of
this interpretation). Hereafter we abbreviate ¢(§/N) by \y(g).
We now show that W(EI) is the Bayes risk in the compound
problem against the uniform prior on the orbit indexed by E
Let UN denote such a prior. Applying the transformation theorem
to the~mapping g - gf, we obtain from (22) that

(28) ROV, = 3 RQ,EU, @ -

~

1¥=;

The infimum over S of the LHS above is §(N) by (20). The
infimum of the RHS 1is, by definition, the Bayes risk against UN’

say, R(UN) . Thus

(29) YD = RUY;

and therefore d € B 1is ¢-Bayes if and only if

(30) ROY,d™) < §OO) + .



4. THE DIFFERENCE BETWEEN .-THE TWO ENVELOPES

WHEN ¢ IS PAIRWISE NON-ORTHOGONAL

In this and the following section we bound the difference
between the simple and equivariant envelopes. Since
v |F.@B) -F
BB ! 3 ]

only when ¢ 1is pairwise non-orthogonal.

(B)\ =1 when Fi 1L F,, Theorem 1 is of interest

Theorem 1. Let pij = vV ‘Fi(B) - Fj(B)\, c, satisfy (2),
_12 3.3/2 -3/2° B

K(p) =77 @7 "o -p) and let p = V p;,. Then
i,
~ 2 -
@D YD - Y < (2K T )R
~ ~ i

Proof. For each N and each equivariant §, we will con-
struct a simple procedure dN whose risk at E is close to the
risk of g at §. To bound the difference in risks we use Theorem
3 of Hannan and Huang (1969b), renotated here for our application
by the use of relation (14) of that paper:
For any positive integer N and any non-negative integral

partitions N and N' of N,

Ny N %* 2
Vix F;'l9] - xF (gll0 s 9 =¢ <1}
i i
(32)
< K()):A'I(N' - N2
n 2ee i S S A
= 1 = '
with n = #{k|N, #N;} - 1, A, = (N A N +1 for all i,
= L L] .
and p V{pij‘Ni # N5, N #Nj}
For 6 € 8 consider R(N,§8) in the form (25). For given i
and Xy let

13
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L e

- _ i1
(33) ¢ = the 3 section of V—izzzy .
a

From (2), ¢ takes values in [0,1] and, from (14), ¢ is symmetric
in ;l' Applying (32) to the integrand with respect to Fi in

RHS (25) for each i yields

N N
ji jJ - 1 . 1..%
(34) : Fj [Lio 61] > >j< 1.='j [Lio 51] {\; Li(a)}{K(piJ)(Ni +NJ)} R

for any J € {0,...,m}. With J such that NJ =V Nj’ we weaken

i, q
N, Kipyy)

by K(p). Taking upper integrals with respect to Fi and weighting

the bound (34) by simultaneously replacing %— by
J

by Ni’ we thus obtain

N
iJ - % %
(35) NR(E’.E’) =z 3 NiFi )j( Fj [Lio 61] (2K (p)) )i Nic

i’
with ¢, given by (2).

We now construct the simple procedure dN. Since for each
X and i, lei° 6(x1, ) 1s a symmetric function of gl’ it

follows from the transformation theorem that

N
iJ I = .
h| 1 1
N3 -1
with € = (X Fjj )[61(x1,-)] . We note that € depends on X
]
but not on 1. By assumption (3), there exists a € @ such that
1

RHS (36) = x Li(ax ), Vi. Letting d be the function mapping

1 1
Xy to such axl, we see that, for each Xq»
37) < Li° d(xl) = . Li(ax ) = 1HS (36),

1 1 1
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which is S-measurable. Therefore d € B, and &N is simple. Also
by (37) we recognize the first term of RHS (35) as N RHS (27)

which is bounded below by N y(N). Thus

(38) NRQY,8) 2 N 4O - (R(p)® g N,
- i

Applying the Schwarz inequality to the sum on RHS (38) yields

(39) ROGE) = 4 - 2K N g
i

Since (39) holds for all § € &, this completes the proof of Theorem
1.



5. THE DIFFERENCE BETWEEN THE TWO ENVELOPES WHEN
¥ MAY HAVE SOME PAIRWISE ORTHOGONALITY

In this section we derive, essentially as a corollary to
Theorem 1, a useful bound for the difference when & may have

some pairwise orthogonality.

Theorem 2. Let pij’ c; and K be as in Theorem 1 and let

p = V{pij‘pij < 1}. Then
(40) Y - T < 2K £ YR
~ ~ i

Proof. The plan of our proof is first to decompose the whole
problem into pieces of sub-problems, each satisfying the pairwise
non-orthogonality condition. For arbitrary E € § and a special
choice of d to be (2m+1 - 1) ¢ - Bayes with respect to E, we
represent the difference in risks as the sum of differences of simple
and equivariant risks in the sub-problems with the simple procedure
being e¢-Bayes against the restriction of E to the sub-problems.

For each I ¢ {0,...,m} let 5={Fi‘161} and §= T N,.

1
i€l
The subproblem determined by éﬁ will be called the 1 problem.

Let .5, é; ﬁ, Uﬁ’ ;, ¥ E, ¥' and * denote the I problem counter-
part of these symbols without the delete sign v . For simplicity
v

v
we omit the delete sign on * and R hereafter.

Let

(41) 1 = (x¢ £, x) >0 iff i€ 1},

16
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and let Wy be the restriction of u to 'I,I. Since L =% X
1

it follows that =g p.I.
I
Let § € 8. The risk of § 1is of form (25), which is

expressible as integrals with respect to Wps

My
(42)  NR(W,8) =z w { L N;E XF X F (Lo 6,1},

I - ier -t ojer jex 3
where we take X FNj to act on (Xy,.»e++3X. ) for each I. For
s R+12" N :
each I and each (x .»Xy) in RHS (42), there exists, for

19" H N
the same reason behind (36), a distribution € over ¢ such that

N

43) x F (L 06.]=¢L7], icI.

. j i 1 i

jé1
By assumption (3) there exists 3 € d with Li(ag) - E[Li] for
all i € I. Lletting ‘5’1 be the function mapping (xl,...,xﬁ) to
such aE we see that Li° 51 gives RHS (43) and is thus B“-
measurable for each i € I. Furthermore, § € 4 implies the symmetry

v v

of 51 in (x2,...,xﬁ), and therefore 61 is the first component

of some & € § constructable by the use of (14). Thus (42) yields

the representation,

4) NRQY,8) =3 b [TEDI.
I

For each I, let d. be ¢-Bayes in 5 against N/N and
let d =% I’IdI where I‘I serves as the indicator function of
I

itself. We note that d € 8 and d = dI a.e. Wy Thus by (27),

by w=2¢% Wy and by the fact that Li° d = Li° dI a.e. po and is

constant with respect to (xz,...,xﬁ), it follows that

45) NRQ,E) = 3 [TED]-
I

~
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The difference between (45) and (44) is

v VvV v
£ w (@) - TEDI.

@6)  NRE,d) - RE,H))
I

v v v v
For each I, define h = (hl""’hﬁ) €L by

v } .
6a(xI,.i.,x§) if X, € II
v
7)) ha(xl,...xﬁ) =

d_(x) otherwise .
I «o

By direct calculation using (26) and

ten<

v
By (14) we see that h ¢

v
the definition of h,

v v v
= uIET(él)] + (u-uI)[T(dI)]

(48) v v i{] v v Vv
NRQ,d;) - w [T@) - T(G].

2

%
2
=
o’
|

v v \'4
Since dI is ¢-Bayes with respect to E/N and h € 8, (48) yields

v v v vV v Vv y v v
49) uI[T(dI) - T(51)] SN@G@®) - y@®)) + Ne.
It follows from (38) that, with p = V{pij‘i,j €13,
v.. % E v
(50) RHS (49) < (2K(p))" I NZ7c, + Ne.
ii
ic1
Summing (50) over all I with by # 0, we obtain an upper bound
for RHS (46). Since by # 0 implies E < 1 we shall weaken (50)

by replacing ; by p, and then dropping the restriction on the

summand. Thus

6l raLdY) - RGE) < ke T sk, +8 ez k.
~ ~ T 1

1 ier +1

Since (51) holds for all & € 8§ and all ¢ > 0, and therfore for
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¢ = 0, the proof is complete upon using the Schwarz inequality in

(51):

) 5z Ne =2z s PNig Dt

I i€l i i



PART b

A STABILITY OF SYMMETRIFICATIONS OF PRODUCT MEASURES WITH
FEW DISTINCT FACTORS

0. SUMMARY

Let @ = {Fo,...,Fm} be a class of probability measures on
*
(X,8). For any signed measure T on GN, let T Dbe the average

of Tg over all N! permutations g and let ||| =v{|r(C)|:Cc¢€ 3.

ii (3)3/2 1-x) 3/2 . For any non-

negative integral partitions N = (No,...,Nm) and N' = 0,...,N )

Let dij = nFi - an and K(x)

=N! - = ' :
of N, let § N Ni and A ONi A Ni) + 1. With

TEXF. - X Fii and n = #{ilai # 0} - 1, we bound \\"'*nz

(T3) n K(d)x 6? A;l with d = v{dij|6i #0, 8, #0}

3

and, if € 1is internally connected by chains with non-orthogonal

successive elements, by
1 v 2 -1 , ¥
(T4) >ukR@E|s; D@ A7) with d = v{dilei/;: Pyl

The bound (T3) is finite iff the Fi are pairwise non-orthogonal

and (T4) is designed to replace it otherwise.

20



1. INTRODUCTION

Section 2 investigates some general properties of signed
measures and their symmetrifications w.r.t. general groups.

Section 3 specializes to the permutation group and notes a contrac-
tion effect of probability factors in product signed measures. The
properties developed in Sections 2 and 3 will be used throughout
the paper and, in particular, in Lemma 2, in the completion of the
proof of Theorem 1, and in the proofs of Theorems 2, 3 and 4.

Section 4 proves Theorem 1, which is the special case of
(T3) for m =1 and 61 = 1. This is the main result of the paper.
Its proof contains a detailed outline of itself including Lemmas
2, 3 and 4. An example, consisting of the simplest special case,
shows that the bound of Theorem 1 is sometimes asymptotically
sharp to within a factor of 3.18... .

Section 5 proves Theorems 2, 3, and 4, all as corollaries to
Theorem 1. Theorem 2 is the special case of (T3) for m =1,
Theorem 3 is (T3) and Theorem &4 is (T4).

Our main results are a strengthened generalization of
Theorem I1I.1 of Hannan (1953). The latter is easily characterized

in terms of the m = 1 case of (T3),
*\12 2 1 4
(T2) T 1" = kdy 8] ("o

amounting to the assertion that, for m =1 and fixed FO XFq»

21
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(T 1I.1) 7>~ 0 as RHS(T2) — O.

As partially indicated in Section 3 and Section 5, the derivation
in Section 5 of (T3) and (T4) as corollaries of Theorem 2 would
equally well yield weakened (as (T II.l) weakens (T2)) forms of
(T3) and (T4) as corollaries of (T II.l).

A corollary of the 61 =1 case of (T II.1), the Lemma of
Hannan and Robbins (1955), was there used to show (Theorem 5) that
the difference between the simple and equivariant envelopes con-
verges to zero. A generalization of the Lemma, Theorem 2 of Horn
(1968), is shown in Section 3 to be improved by the 61 =1 case
of a rather immediate corollary to (T II.l). The special case of
(T3) with two non-zero 61 is used in Hannan and Huang (1969a)
(Theorem 1) to bound a more general case of the difference. A

similar application, Theorem 1 of Horn (1968), inherits the

deficiencies of her Theorem 2.



2. PROPERTIES OF SYMMETRIFICATION AND OF AN i&-NORM

Although in this paper we will only be concerned with the
difference between two symmetrified probability measures, some of
the properties used in our proofs hold true and are easier to prove
in a more general context. This section investigates some of these
properties of symmetrified signed measures and their i&-norms.

Let (4,&) be a measurable space and % be a finite group
of measurable transformations g on (4,C). For a signed measure
T on (4,C), we define Tg as the induced signed measure and T*

as the symmetrification of T by
*
(tg)c = T(g(C)) c€C, T =AV(Tg)

where AV denotes the average over g € &. Thus symmetrification
(*, hereafter) is a linear operator.

*

For any real valued function f on )}, define feg and f

by

(fog)y = f(gy) , f = AV(fog).

* *
T and f are said to be symmetric if T =T and f = f , res-
* *
pectively. Since T g=T , v is symmetric iff T = 7g.
Throughout this paper we shall denote supremum and infimum

by VvV and A, and express integrals as left operators by
T(f) = [ £(y)dr(y).

23
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For any signed measure T, define an i&-norm of r by
) Il = v{|r@)]:c € c}.
It follows from the Jordan decomposition that
@ el = v e
and hence, if T(1) =0,
&) el = e = el
In particular, if P and Q are probability measures, then
%) 0o<l|p-q|| =1,

with equality at 0 iff P =Q, and equality at 1 iff P , Q.
For use in the proof of Lemma 1, let u be a measure

5 dr/du exists. Since d7+7du = (dT/du)+ and dr-/du = (dt/du)",
Il = u(dT/dp.)+ vV op(dr/dy) .
Hence, if T(1) =0,

&) 2l = wd5ED-

It follows from the transformation theorem (Theorem 39.C, Halmos

(1950)) that

47y ., = 478
(dp.).g dﬂog 3 g e 3'

*
In particular, if u = , AV of the above equality yields

*
dr.* _ dt

(6) (d—u-) "%
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let u be a measure and let h and f be such that the
* * *
products h f and hf are u -integrable. By the transformation
* % * *
theorem and symmetry, w (h fog) =u (h £) for all g € &. Averag-

ing over & and interchanging h and f yields
* % * % % * %
@) p(hf) =pmef) =y (f).

For the special case of (7) obtained by letting h = du/du*, we have
* *
h =1 by (6) and therefore, if f (and hence also f ) is

u*-integrable, then
* * * *
®) b)) =p (£) =n(f).

For use in the completion of proof of Theorem 1, we note that,

by subadditivity of norm and by ||7g|| = ||1|| for a signed measure T,

) [+ < av |lrg|l = ||]l.

It follows from norm subadditivity and the Schwarz inequality (here-

after referred to as NS-SI) that if T, are signed measures then
2 2
(10) [ ol )| L I

If 7= X T is a product signed measure, HTH is simply

1" T2
related to the corresponding norms of its factors. We abbreviate
by omission subscripts on the norms. Since
+ + .+ - - S S ..+
T = (Tl X 72) + (Tl X ¢2), T = (Tl X 72) + (11 X 12), it follows

easily that

an e gll=lirall = flrg x ol = 2flwqfl-limylls

with the first equality iff either Ty or T, is a measure or the
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negative of a measure, the second equality iff 71(1) = 72(1) = 0.

In particular, if T, 1is a probability measure, the first equality

2
of (11) yields

12) llry x 0l =iyl

To assist in comparing our results with Theorem II.1l of

Hannan (1953), consider a signed measure T with (1) = 0. By

3,
13) el = =) = vir oo < £ < 13.

*
Since T (1) = 0 by linearity of * operator, upon applying (13)

to 7*, and applying (8) to T*(f), it follows that
* * *
@) vl =virE)|0s £ 1} =v{r(®)|0s £ =f <1},

*
with the second equality following from {f ‘0 <f<1} =

%*
(flo< £=f < 1}.



3. PERMUTATIONS; CONTRACTION EFFECT OF PROBABILITY FACTORS

Henceforth we specialize & to be the group of transforma-
tions on (IyB)N induced by the group of permutations on N
objects, where (X,3) 1is a measurable space. We also let %
denote the permutation group itself. Thus a generic element
g € &4 will be used both as a permutation and the transformation
gx = (xgl,...,ng).

The following lemma will be used in the successive extensions,
in Section 5, from Theorem 2 to Theorem 3 to Theorem 4. Starting
from Theorem II.1 of Hannan (1953) rather than Theorem 2, Lemma 1
together with NS-SI (10) would yield an extension paralleling our
Theorem 3 extension from Theorem 2. It will be shown that Lemma 1
alone would yield an extension improving Theorem 2 of Horn (1968),

where there is a stronger restriction on the F, than pairwise

i
non-orthogonality, and where the non-zero 61 are 1 and -1
respectively.

lemma 1. If T = T x P for a signed measure ¥ with

¥(1) =0 and a probability measure P, then, abbreviating affixes

on * and on || || by omission,
I+ s 1)

* - *
Proof. Since T(1) =0, |t | =v{t@(E)|0=s f=£f <1}

by (14). Since f= P(f) 1is symmetric in the remaining variables
and since 0 < f < 1, one more application of (14) completes the

proof.
- 27
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N. N!
For our extension of Theorem II.1l, let T = X Fil - X Fil
where the Fi are pairwise non-orthogonal and fixed, and the

6; = Ni - N, are zero except for two i's. By judicious choice
N
of g, we have rtg = T X P with P = X{Fii\ 6i= 0}. By
* * * v %
(Tfg) =7 and Lemma 1, ||t || < ||(*)|| which, by (14) and Theorem

II.1, converges to zero as this case of the bound in (T2) does.



4. TWO DISTINCT FACTORS WITH UNIT DIFFERENCES IN MULTIPLICITIES

Theorem 1. Let F, and F, be p-measures and let

N = (Nl,NO) be an integral partition of N with N1 20< NO.

With d = HF1 - FOH, with ¢(@d) = d(l-d)-3/2 and with

k@ = ()26 + 5 le@ysec.a)
a9 eyt xmdt - @l xn? ) < xe G 5
Proof. Since both sides of (15) vanish if d = 0, hence-
forth assume F, # Fy
The proof proceeds according to the following outline: As
in Hannan (1953), a parametric family of densities of the F, is
introduced and some of their moment properties are related to d.
Starting as in Hannan (1953) but then weakening by the Schwarz.
inequality, Lemma 2 obtains a family of upper bounds for a slight
generalization of ILHS (15). Lemma 3 develops lower bounds for
modal binomial probabilities for application to the denominators
of a bound of Lemma 2. Lemma 4 uses characteristic function in-
versions to bound a generalization of the numerators of the bound
of Lemma 2. The bound of (15) is then obtained as the minimum of
d2, from Lemma 1, and a bound resulting from the application of

the other lemmas.

For 0<p=1l-q< 1 and i =1,0, let

(16) Fp = pF, + qF fi = dFi/de,

0 b4

29
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A7) 6 =F (£, B, =pF(£) =1-Q(=1-qF (),
and note
(18) F.(E) =F (£5) > F (£.))% =1
iti p i p i

by the Schwarz inequality, with equality eliminated by Fp # F..

Thus
(19) o =pl-q Fo(£)) < 1.

Let p be any o-finite measure dominating the Fi’ let hi = dFi/du

-1
= . = h h
and let hp ph1 + qho Since flthp h1 o"p 2 h1 A hO, it
follows that
(20) 62 p.(h1 A ho) =1 -d.

Finally, note that from (17) and (18)
(21) Pl - Po =1-9, PiQi = pq Fl(fi)FO(fi) > pq 6.

For integer N and P € [O,I]N, let b(k;g) denote the
generalized binomial probability of k successes in N independent
trials with success probabilities p-

At the cost of notational complications, the following lemma
could be stated and proved for m instead of 2 probability
measures.

Lemma 2. For non-negative integral partitions of N,

N N N; . N

= 1 = ' N\!? 1 = ' =
§ (NO’NI) and E = (NOle)? define E F1 X F0 , E F."XF

and T =F -F', For 0<p<1

~
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N N} N, N
dF'* b(Nl,P 1 Poo) b(Ni;Pl1 Poo)
(22) = >
dFN bav,sp') bavisp)
b(k;PT P Ty k=N' - r=N'
@3 4’ < 1.0 :] 1 '] L
b(k;p ) kN, O

* * * %
Proof. Since F (dF' /dFI;) =F' (dF /dFl;), the second
equality in (22) will follow from the first.
*
By (6) the integrand in IHS (22) is (dF'/dFI;) , whence, by

(8), LHS (22) is AV of

dr'
(24) F (=5 o8)
~ dF
P Ni
Since the integrand in (24) is the product nl fl(xga)l'{:._'_l fO(xga)

of F-independent variables, the integral is expressible, in terms

of K = #{o >N,'1| ga < Nl]’ ‘as the product

0 NO N6+K NI-K
[Fy(£y)] [Fl(fO)] “lr o £l [F (£)]

(23) -N, Ny K NJ-K N K Ni-Nl-lK
=p q PoQo P1 Q1 = H(K) .

Then (22) follows since
N

N' N' N b(Nl’Pl )
(26) AVH(K(g))-Z(k)( k)(N) H(k)

b, P
with the first equality following from the transformation theorem.

From (5) and the Schwarz inequality,

@) 4 - gl LN p( \>-T*<;’;N>
P P

Four-fold application of (22) to this bound results in (23), completing
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the proof.

For integers O < k < N, let

(28) a, = {(N-I)Pq}% b(k;pN) with p = (k+1)/(N+1).

= -1
Lemma 3. & 1.1 = & Z & $§e as Nto.

Proof. Note that f() = (1 +x )x+% as 0<xto

since, with t = (2x + 1)_1, log f(x) =1+ ¢t /3 + t4/5 + ...
The lemma then follows from the representations,

= £ _ _Sll__ 5 1
(29 A = k-1 FN-1 o I E®-1) * N {N+1} T

The following lemma uses characteristic function inversions
to bound a mixed second divided difference of generalized binomial
probabilities. 1In our application to certain numerators of (23),
the generalized binomials involve only two distinct probabilities
but the added generality simplifies the proof and may serve to
motivate other applications.

lLemma 4. For integers 0 < k<M, P= (Pl""’Pﬁ) € [O,I]M

~

2
and (P,P+h) € [0,1]  1less the diagonal, let A and A respectively

denote the divided difference operators from k to k+l and from

P to P+h. With B(x) = (4/n)jo (1 )AE 2% 4y and

2 M
o) = 21 Pa(l-Pa)’

(30) |a & b(k; (2,PN)| < B(s?),

x3/2 %

(31) B(x) = (2r) ° as x t o,

(32) s = sup {x3/2B(x)\0 < x ; o} = .545447... .
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Proof. Note for later use that, with g¢(u) = Pelu +Q the

ch.f. of a Bernoulli wvariable with parameter P =1 - Q,

(33) l¢(u)|2 =1 -4RK sin2 %s exp - 4K sin2 Lzl- .
Since Ae-iuk A p(u) = e-iuk 4 sin2 %, the iterated divided difference

in (30) is given by the Fourier inversion

1 -iuk ., 2u
(34) j’:_r e 4 sin” 5

o Oy (u)du.

=<

By application of (33) to the By the modulus of (34) is bounded
by

2

2u
4 2 u -20%si 2
(35) - IO sin 5 SIM T qu = B(o ).

(Since v-lsin vion O0<v<mn/2, RHS (33) < exp - AIQ(u/rr)2 on

\ul < m. The corresponding weakening of (35) implies

5 -
s<m /22 7/2 = 1,553 ...
2 2 5/2
4 . 2 u -2x(u/m) 1 2 -2x(u/m) _m -3/2
B(x) < p rg sin” 7 e du < - I: u'e du = ;77§'x $)
With IO’ I1 denoting the modified Bessel functions,
2 01 -% -3 -2x

Ba) = [- 2 [0 vy -y %" ay)

(36)

= [-2e™1, )] = 27 [1,60) - I,60)],

where the second equality follows by differentiation from the

corresponding Laplace transform (cf. 29.3.124 of NBS-AMA55 (1964)),
' =

and the last from I0 11.

In view of (36), (31) is an immediate consequence of the usual

asymptotic expansions of I0 and I1 (cf. 9.7.1 ibid).
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3 -
To verify (32), first note that [x /ZB(x)]' = x%e xF(x)

with
F = (3-4x)10 + (4x-1)11.

Since F(l) > 0 > F(2), the behavior of F' will imply that
3 %, € (1,2) with F §0 on [O,xo] and F< O on (xo,m) as

follows. Since I, < xI

! = - - -
1 0’ xF x (4x 5)10 + (1-x) (4x+1)11 < (15/16)xI0

on [0,1]. Since =x(4x-1)F' = (4x+1)(1-x)F - 31,5 1l <x and
F(x) 20=>F'(x) <0 and hence 1 < X and F(xo) =0=>F<0 on
(xoym)'

Since, in addition, .00012> F(1.452) > 0 > F(1.453) (p. 228

BAAS v VI (1937)),

% -1.452

/23(1.452) < (1.452) e (.00012) (.001) < 4(10°%)

0<s - (1.452)°

which results in (32) and thus completes the proof.

Completion of proof of Theorem.1l. From Lemma 2 with Ni = N1+1

we have this case of the bounds (23). let p = ('N1+1)/('N+1) hence-

forth. This choice insures both denominators in (this case of) (23)
are equal and, by Lemma 3, are bounded below by {(N-l)pq}-%auo.
Application of Lemma 4 to the mixed second difference remaining in

the numerator results in the upper bound s|h|o-3, with

2
h=P)-Py=1-6<sd and o° =N;PQ, + Oy-1)PRQ, > (N-1)pq(L-d)

/

/2f

by (20) and (21), so that, with o s s 2173 26 $

4 lge = .3706 ... as N t o,

1 1
c. C (d) s o ——) .
v ¢ G N

on 2 < — c(@){ N-1ypq} "
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*
From Lemma 1, ||t “2 < a2 independently of N. Since pq
is maximal at p = %, (37) is minimal w.r.t. N given N at

~

N, = [N/2] and, therefore, exceeds a2 for all d iff

38) max /o) = (4)2/c.4) s o @21 4 (1M7L
d

Since RHS (38) | w.r.t. N with first violation of (38) at N = 10,
S of (37) is replaceable by cg = .5185 ... . This in turn can
be improved by first increasing 8 to insure equality at N = 10,
thus replacing N by (.4)2(6-1 + 5-1)-1/0(.4) = ,5070 ... and
completing the proof.

That the bound of the theorem is sometimes relatively sharp,
will follow from examination of the simplest special case.

Example. Let F, and F1 be Bernoulli probability measures

0
b( ;E,) and b(;§;) with 0 =g <& < 1. Then

Ng Ny & Ny-1 N+,
(F0 X F1 ) and (F0 X F1 ) are symmetric probability
N <N -1 N,
measures on {0,1} , putting mass, k) b(k;g1 ) and

1 N+ N
(ﬂ) b(k;g1 ) respectively, on every X in {0,1} with exactly
Ny N h

k ones. Writing b, for b(k;g1 ) and using b(k;§1 ) =

k
€101 ¥ -E)bs

*

(39) 2| = i‘bk “€.by - (-EPb| = §1i|bk - b | =28
with m the greatest integer not exceeding (N1+1)§1. As
(N1+1)§1(1'§1) - ®, (N1+1)§1(1'§1)bi ~ (2n5-1 and therefore

(A S g

(40) L 1
2 1-51 N1+1
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When €, -0 and NO/N1 - ® (which is the most favorable case for

the following comparison), the bound of the theorem exceeds RHS (40)

/2

only by the factor .8m (30/11)(.6)3 = 3.18... .



5. mtl DISTINCT FACTORS

We now obtain various extensions of Theorem 1 as corollaries
to that theorem. Theorems 1, 2 and 3 represent successive extensions
each subsuming, yet corollary to, its predecessor. Theorem 3 is
vacuous unless the Fi are pairwise non-orthogonal, and Theorem &4
is designed to replace it in this case. Thus, as implied in the
summary, our final results are merely Theorems 3 and 4. Let

N N;
T=>;Fi - X F, ,dij=“Fi-FjH

(41)
= " o = ' . =
6i Ni Ni H] Ai (Ni A Ni) + 1’ 1’j 0,...,“1
Theorem 2. For m =1,
(%2) % < K(dy, 2 L4+l
1A A
0 1
Proof. Assume without loss of generality 61 2 1 (we may
rename N and N' otherwise), and for j = 1,...,51, let
N.-j+1  N_+j-1 N_-j N_+j
=% 0 1 0 1
(43) 5 FO X Fy - Fy X Fy

Since T =% Tj, it follows from linearity of * and NS-SI (10)

that
(44 1% = 5y = 7317

Applying Theorem 1 to each summand in RHS (44) completes the proof.

37
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Theorem 3. let n = #{ilbi # 0} - 1 be positive (otherwise

¥ =0), and let d =v{da, |6, #0, 5, #0}. Then

\\T*\\z < n K@) T af/\gl.

Proof. Given N and N' we construct a sequence of partitions
N = NO, Nl,...,Nr =N', for some r < n, as follows. To construct
N, = O s---oN; ), let s be such that |s_| = /\{\ajllaj # 0},
and let t be such that 6t has opposite sign with 68. Let
= + = - - 1] .
le Ns 68, Nlt Nt 68 and Nlj Nj for the other j's

Thus Nl stays between N and N' coordinatewise and differs from

N 1in two coordinates. Repeating this construction, the process

~

terminates in r < n s8teps since each successive N identifies

at least one more coordinate with N'. Define

~

m N, m N
T, = ijl'lj - xF M =,
1=0 3=0
Since Ni differs from Ni-l in two coordinates, say s and t,

* *
the fact that (Tig) = (wi) enables us to use Lemma 1 to obtain

* Ni-ls Ni-lt * Nis Nit *
@ Il s e xr T - @ ke 1T,

Applying Theorem 1 to RHS (45), we note that, since each N,
stays between Ei-l and §i+1 coordinatewise, the denominators
in this application of RHS (42) are bounded below by AS and Ne
respectively. Since K 1is increasing, we further weaken this

application of the bound (42) by replacing dst by d. Thus

2.1 1
i-1s Nis) QA + A ).
s t

(46) (RHS (45)]% < K(d) (N
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Since Ni-lj = Nij except for j # s,t, RHS (46) is
m
-1 2
K(d Z A - N, .
@ BN gyt Ny
r
Since = = % T by NS-SI and the above representation of RHS (46),
i=1
* 2 *,, 2 -1 2
CYOTN L | I 0 N LA R S C)) ? A ? CHPTIED PR
Since E (Ni-lj - Nij) = 6j and since Ni-lj - Nij are of the

same sign for fixed j, the summation w.r.t. i in the last term
2
of (47) is bounded by éj. Since r < n the proof is complete.

Theorem 4. Let FO’F1’°°"Fm be internally connected by

chains with successive elements non-orthogonal and let

g = V{d;,|F, LF,}. Then

* 1

I < % m K(d) (z;:\sil)z § AL

liv

Proof. For any connected graph of finitely many vertices
there exists a vertex whose removal leaves the remaining graph

connected. We shall rename F ,...,Fm in such a way that

0

successive removal of FO’Fl"" leaves the remaining connected.
For each 1, let t(i) be 5 t(i) >1i and F ., ,(Fi.
Given N and N' we consider the partition which differs

from either N (if &6, <0) or N' (if &, > 0) only on the

0 0
O-th and the t(0)-th coordinates, where the 0O-th coordinate is

Ny A Na and the t(0)-th coordinate, compared to that of N or

N', is increased by ‘60|.

and the second denominator (1 + the t(0)-th coordinate of the new

By weakening Theorem 3 on both K

partition = A + \60| z A we see that the square norm of

£ (0) £0))°

* of the difference between the product measures associated with
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the two partitions is bounded by

v 2
(48) K@ 60—+ ——).
0 t (0)

Iterate the process. Letting 6;1) be the difference in the
j-th coordinate at the i-th iteration of this process, we see that
6§1) =0 for j< i and
“9) 6j(1) =6, +2 (0 < r<i, £ = 1)
for j =2 i. We also note that the 6§r) above are disjoint sums
of §'s from {60,...,81_1}.

Since A}i), the minimum of the j-th coordinates for the two

partitions at i-th iteration plus 1, is increasing w.r.t. i, the
bound corresponding to (48), further weakened by Agi) 2 Ai, is

(50) k(@6 2 + L.
i N Meqd)

Since each iteration results in reducing one coordinate
difference to zero, the process terminates in m steps. By NS-

SI as in the proof of Theorem 3, we see that, by (50),

.\ 2
*
(51) || \\2 < m K@) T 5?) (/{— + /-\—1—).
i i t (i)

| . . (m)

The coefficient of o In the summation above is, with 6m =0,
i

N2 2

(52) 51(1) + 5 {s:r) |t = 1.
r

By (49) and the comment following it, complemented by T 6i =0,
we see that Ggi) and the 6§r) in (52) are disjoint sums of

{60""’61-1’6i+1""’6m}' Thus the maximum of (52) over
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all § is s (%ﬂ- - 6:)2 + (%ﬁl- - a;)z s% |6])?%, and the
proof is complete.

The hypothesis of Theorem 4 fails to hold if and only if
@ is disconnected.

Then either (i) there exists a component, i.e.

a connected set of factors, whose N-multiplicity differs from its

~

N'-multiplicity, in which case it follows easily that HT*H =1,
or (ii) every component has identical N- and N'-multiplicity,

in which case HT*H is simply related to the “(Tc)*n correspond-

ing to the separate components:
(53) v ('rc)*\\ <t <zl ('rc)*\\,
c c

where the second inequality follows from Lemma 1 and the triangular

inequality.
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