112 127 THS

EQUIVARIANCE IN COMPOUND DECISION PROBLEMS AND A STABILITY OF SYMMETRIFICATIONS OF PRODUCT MEASURES

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
JIN - SHENG HUANG
1970

This is to certify that the

thesis entitled

EQUIVARIANCE IN COMPOUND DECISION PROBLEMS
AND A STABILITY OF SYMMETRIFICATIONS OF
PRODUCT MEASURES

presented by

Jin-Sheng Huang

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Statistics & Probability

Major professor

Date February 24, 1970

HEST

EQUIVARIANCE IN COMPOUND DECISION PROBLEMS AND A STABILITY OF SYMMETRIFICATIONS OF PRODUCT MEASURES

Ву

Jin-Sheng Huang

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Statistics and Probability

1970

662195

TO MY PARENTS

ACKNOW LEDGEMENTS

I wish to express my sincere thanks to Professor James

F. Hannan who suggested the area of research and whose participation at each stage of the development actually amounts to co-authorship. I am also grateful to Professor Dennis C.

Gilliland for reading the manuscript and for suggesting improvements. I am indebted to my former colleagues for their encouragements during my M.S.U. years. Finally I wish to thank

Mrs. Noralee Barnes for her excellent typing and her cheerful attitude in preparing the manuscript.

TABLE OF CONTENTS

Part			Page
а	EQUIVARIANT PROCEDURES IN THE COMPOUND DECISION PROBLEM WITH FINITE STATE COMPONENT PROBLEM		
	0.	Summary	1
	1.	Notations and History	2
	2.	Equivariant Decision Procedures and Symmetrifications in a Compound Decision	
		Problem	7
	3.	Representation of Equivariant Risk	10
	4.	The Difference Between the Two Envelopes When $m{ heta}$ is Pairwise Non-Orthogonal	13
	5.	The Difference Between the Two Envelopes When $ heta$ may have some Pairwise Orthogonality	16
b	A STABILITY OF SYMMETRIFICATIONS OF PRODUCT MEASURES WITH FEW DISTINCT FACTORS		
	0.	Summary	20
	1.	Introduction	21
	2.	Properties of Symmetrification and an \mathcal{L}_1 -Norm	23
	3.	Permutations; Contraction Effect of Probability Factors	27
	4.	Two Distinct Factors with Unit Differences in Multiplicities	29
	5	m 4 1 Distinct Footons	27

PART A

EQUIVARIANT PROCEDURES IN THE COMPOUND DECISION PROBLEM WITH FINITE STATE COMPONENT PROBLEM

O. SUMMARY

Let $(\mathfrak{X},\mathcal{B},P)$ be a probability measure space for each $P\in \boldsymbol{\mathscr{G}}=\{F_0,\ldots,F_m\},\,\mathcal{Q}$ be an action space and L be a loss function defined on $\mathfrak{X}\times\boldsymbol{\mathscr{G}}\times\mathcal{Q}$ such that for each i,

$$c_i = \int_a^{\vee} L(x,F_i,a) dF_i(x) < \infty.$$

In the compound problem, consisting of N components each with the above structure, we consider procedures equivariant under the permutation group. With

$$\rho_{ij} = \bigvee_{B \in \mathcal{B}} |F_i(B) - F_j(B)|$$
 and $K(\rho) = \frac{12}{11} (\frac{3}{5})^{3/2} \rho (1-\rho)^{-3/2}$,

we show that the difference between the simple and the equivariant envelopes is bounded by

(T1)
$$\{2K(\rho) \sum_{i} c_{i}^{2}\}^{\frac{1}{2}} N^{-\frac{1}{2}} \quad \text{where} \quad \rho = \bigvee_{i,j} \rho_{ij},$$

and by

(T2)
$$2^{m} \{ 2K(\rho) \sum_{i} c_{i}^{2} \}^{\frac{1}{2}} N^{-\frac{1}{2}}$$
 where $\rho = \bigvee \{ \rho_{ij} | \rho_{ij} < 1 \}$.

The bound (T1) is infinite unless the F_{i} are pairwise non-orthogonal and (T2) is designed to replace it in this case.

1. NOTATIONS AND HISTORY

Let $(\mathfrak{X},\mathcal{B},P)$ be a probability measure space for each $P\in \mathscr{P}=\{F_0,F_1,\ldots,F_m\},\ \mathcal{Q}\ \text{ be an action space, L be a loss}$ function which is defined on $\mathfrak{X}\times\mathscr{P}\times\mathscr{Q}$ to the non-negative reals with value variously expressed

(1)
$$L(x,F_i,a) = L(x,F_i)(a) = L_i(a)$$
.

We assume that for each i, \vee L_i (a) has finite lower integral a with respect to F_i ,

(2)
$$c_{i} = \int_{-a}^{\vee} L_{i}(a) dF_{i} < \infty.$$

Since the space \mathcal{Q} serves only as a parameter space for the class $\mathcal{L} = \{L(a) \mid a \in \mathcal{Q}\}$ of loss functions on $\mathfrak{X} \times \mathcal{O}$, it is without loss of generality to assume that \mathcal{Q} contains no duplicates in this sense. To avoid the notational buildup attendant on the introduction of randomization at this and higher levels, we assume that \mathcal{Q} is its own extension to the class of all probability measures on the σ -field of subsets of \mathcal{Q} generated by $\{L(x,P) \mid x \in \mathfrak{X}, P \in \mathcal{O}\}$: given any such probability measure ξ ,

(3)
$$\exists a_{\xi} \in \mathcal{Q} \ni L(a_{\xi}) = \int L(a)d\xi(a), \forall x, P.$$

 a_{ξ} is unique by the assumption of no duplicates. We observe that for each x and P, L is linear in a. For $a_{t} = t a_{1} + (1-t)a_{0}$ is in \mathcal{Q} if a_{0} and a_{1} are, and

(4)
$$L(x,P,a_t) = \int L(x,P,\cdot)da_t = t L(x,P,a_1) + (1-t)L(x,P,a_0),$$

where the first equality follows from (3) and the second one follows from linearity of integrals.

Hereafter we shall write integrals in operator notation, e.g. the integral in (3) would be expressed $\xi[L(a)]$ or, and preferably, $\xi[L]$.

Let $\mathcal B$ be the family of all functions d on $\mathcal X$ to $\mathcal Q$ such that $L_i \circ d$, the function which maps x to ${}_xL_i(d(x))$, is $\mathcal B$ -measurable for each i. For $d \in \mathcal B$ we define the risk of d at F_i as the integral of $L_i \circ d$ with respect to F_i ,

(5)
$$R(F_{i},d) = F_{i}[L_{i} \circ d] \leq c_{i}.$$

If G is a distribution on $\{0,\ldots,m\}$ we define the Bayes risk against G by

(6)
$$\psi(G) = \bigwedge_{\mathcal{F}} G[F_i[L_i \circ d]].$$

We refer to the decision problem described above as the component problem. When N decision problems each with above generic structure are considered simultaneously, the resulting N-fold global problem is called a compound decision problem with finite state components.

Specifically, let $x \in X^N$, $(X,B) = (X,B)^N$, $P \in \mathcal{Q} = \mathcal{O}^N$, $A \in \mathcal{Q} = \mathcal{O}^N$ and let $A \in \mathcal{D}$ be the family of all functions $A = (A_1, \dots, A_N)$ from $A \in \mathcal{Q}$ such that

is ${\mathcal B}\text{-measurable}$ for all ${\boldsymbol \alpha}$ and i. Letting

(8)
$$W(x,P,a) = N^{-1} \sum_{\alpha=1}^{N} L(x_{\alpha},P_{\alpha},a_{\alpha}),$$

we define the risk of $d \in \mathcal{B}$ at $P \in \mathcal{P}$ by

(9)
$$R(P,d) = P[W(x,P,d(x))] \leq N^{-1} \sum_{i} N_{i} c_{i}.$$

procedure if $d_{\alpha}(x) = d(x_{\alpha})$ for all α , a.e. \mathscr{D} for some $d \in \mathscr{D}$. Let S be the class of all simple procedures and let $d \in S$ be denoted by d^{N} . It will follow directly from the definition of S in Section 2 that $S \subseteq S$, the subclass of S equivariant under the permutation group. As functions of S, S, S, S, S, S, will be called the simple envelope and the equivariant envelope, respectively. It is well known (cf. (27) ff.) that the former coincides with the component Bayes risk $\psi(N)$ with N denoting the empiric distribution of P_1, \dots, P_N .

The compound decision problem was introduced by Robbins (1951). He argued that a bootstrap procedure which first estimates the empiric distribution of P_1, \ldots, P_N and then plays Bayes against the estimate within each component may have its compound risk uniformly close to the simple envelope.

Hannan and Robbins (1955) considered $2 \times 2 \quad \theta \times \mathcal{Q}$ and (Theorem 3) bounded the average loss of a bootstrap procedure by the sum of an error of estimation and a loss-weighted Glivenko-Cantelli measure of deviations of the empiric distribution of $\mathbf{x}_1, \dots, \mathbf{x}_N$, thus obtaining strong convergence to zero uniformly in \mathbf{P} of the difference of the average loss from the simple

envelope for all correspondingly good estimators. Risk convergence (Theorem 4) followed as a corollary. Oaten (1969) permits loss dependence on x, replaces Bayes by any of a wide class of ε -Bayes and otherwise generalizes these results to $m \times n \ \theta \times Q$ (Theorem 1 and its Corollary) and to certain compact $\theta \times$ compact Q with L continuous for each x (Theorems 4 and 5). Under continuity and other restrictions on densities, analogues of generalizations to $m \times n \ \theta \times Q$ were given earlier by Suzuki (1966a).

Hannan and Robbins (1955) also introduced the class of equivariant procedures and showed (Theorem 5) that the difference between the simple and equivariant envelopes converges to zero uniformly in P as N † ∞ . The proof depended heavily on a measure theoretic lemma specializing Theorem II.1 of Hannan (1953). Our Theorems 1 and 2 ((T1) and (T2) of our Summary) are a strengthened generalization of their result, with Theorem 1 correspondingly related to Theorem 3 of Hannan and Huang (1969b) and Theorem 2 following as a somewhat involved corollary to Theorem 1.

Hannan and Van Ryzin (1965), for $2 \times 2 \theta \times \mathcal{Q}$, and Van Ryzin (1966), for $m \times n \theta \times \mathcal{Q}$, have established a rate of $O(N^{-\frac{1}{2}})$ (and under additional restrictions on θ and L, $O(N^{-1})$) for uniform risk convergence of bootstrap procedures based on estimators which are averages over x_1, \ldots, x_N of a suitable kernel.

The importance of our results stems from the basic character of equivariant procedures in the compound problem. Until Oaten's (1969) 6-Bayes relaxation, all of the bootstrap procedures considered were essentially equivalent (cf. Lemma 3 of Oaten (1969)) to equivariant procedures. The equivariant envelope is then a

clearly more appropriate yardstick of performance than the simple one. The results themselves have already been used by Oaten (1969), together with his afore-mentioned Theorem 1, to prove risk convergence for a wide class of equivariant uniformly- ε -Bayes procedures (Theorem 2).

As noted in Section 3 of Hannan and Huang (1969b), a generalization of the underlying measure theoretic lemma, Theorem 2 of Horn (1968), turns out to be distinctly improved by an immediate extension of the afore-mentioned Theorem II.1. Her corresponding result on the difference between the envelopes (Theorem 1) inherits the deficiencies of her Theorem 2 and only shows convergence to zero for each P with a stronger restriction on P than pairwise non-orthogonality, with P finite and with P constant with respect to P.

Considerable other work relates to equivariant procedures in the compound problem. Stein (1956) and James and Stein (1961) (cf. Stein (1966), where the heuristic of the procedure is revealed, and Cogburn (1965)) obtained strong results with a Gaussian squared-deviation-loss estimation component problem. In an important general development, Cogburn (1967) imbeds the compound and Empirical Bayes problems in a general theory of stringency. Section 4 of Samuel (1967) (cf. Robbins (1962) and Suzuki (1966b)) investigates a procedure Bayes against uniform prior on proportions for the simplest 2 × 2 example.

2. EQUIVARIANT DECISION PROCEDURES AND SYMMETRIFICATIONS IN A COMPOUND DECISION PROBLEM

Let $\mathcal B$ be the permutation group on N objects. The generic element $g\in \mathcal B$ will also be used to denote the transformation induced by g:

(10)
$$g_{g_1} = (y_{g_1}, \dots, y_{g_N}).$$

Letting $g(B) = \{g \times | \times \in B\}$ for $B \in B$, it follows from the transformation theorem (Theorem 39.C, Halmos (1950)) that for each $P \in B$ and $g \in B$, g(P) is in B and satisfies

(11)
$$P(B) = (gP)(gB), \quad B \in \mathcal{B}.$$

Furthermore, it follows from the definition of W in (8) that, for each $\mathbf{a} \in \mathcal{Q}$, ga is in \mathcal{Q} and

(12)
$$W(x,P,a) = W(gx,gP,ga).$$

Thus the compound decision problem is invariant under \mathcal{L} .

 $d \in \mathcal{J}$ is equivariant (under \mathcal{J}) if for all $g \in \mathcal{J}$,

(13)
$$d(gx) = gd(x) \quad a.e. \theta^{N}.$$

Hannan and Robbins (1955) and Ferguson (1967) use the term invariant procedures instead of equivariant procedures. The latter was suggested by Wijsman (1968) to describe functions which transform properly rather than "invariantly". In our further references we will presuppose this change has been made.

It follows directly from definition (13) that $d\in \mathcal{S}$ if and only if there exists a function γ on $\mathfrak{X}\times\mathfrak{X}^{N-1}$ to \mathcal{Q} , symmetric on \mathfrak{X}^{N-1} , and such that for all α

(14)
$$d_{\gamma}(\mathbf{x}) = \gamma(\mathbf{x}_{\gamma}, \overset{\mathsf{x}}{\mathbf{x}_{\gamma}}) \quad \text{a.e. } \boldsymbol{\theta}^{\mathsf{N}},$$

where

(15)
$$\overset{\mathsf{x}}{\underset{\alpha}{\mathsf{x}}} = (\mathsf{x}_1, \dots, \mathsf{x}_{\alpha-1}, \; \mathsf{x}_{\alpha+1}, \dots, \mathsf{x}_{\mathsf{N}}).$$

Equivalently, $d\in \mathcal{S}$ if and only if there exists a function δ on $\mathfrak{X}\times\mathfrak{X}^N$ to \mathcal{O} , symmetric on \mathfrak{X}^N , such that for all α ,

(16)
$$d_{\alpha}(x) = \delta(x, x) \quad \text{a.e. } \theta^{N}.$$

It follows from the definition of S and \mathcal{E} that

For each $\stackrel{d}{\sim}\in \frac{\mathcal{B}}{\sim}$ and $g\in \mathcal{B}$ define $\stackrel{d}{\sim}$, the g-conjugate of $\stackrel{d}{\sim}$, by

(18)
$$d^{g}(x) = g^{-1}[d(gx)].$$

Thus $d \in \mathcal{S}$ if and only if $d = d^g$ for all g. Define the symmetrification d^* of $d \in \mathcal{S}$ as the average of its conjugates,

(19)
$$d^* = (N!)^{-1} \sum_{\mathcal{L}} d^g.$$

It follows immediately that

Corresponding results hold for subgroups of the permutation group and relate to certain extended (cf. Swain (1965), Johns (1967), Gilliland and Hannan (1969) where only the sequence version is considered) compound decision problems.

REPRESENTATION OF EQUIVARIANT RISK

As a basis for comparing the simple and equivariant envelopes, we obtain in this section a convenient representation of the risk function of equivariant procedures and relate to the Bayes risk against a certain uniform prior.

For each $d\in\mathcal{B}$ and $g\in\mathcal{B}$, it follows directly from definition (9), (12) and the transformation theorem that the risk of the g-conjugate is

(21)
$$R(P,d^{g}) = P[W(x,P,d^{g}(x))]$$
$$= P[W(gx,gP,d(gx))]$$
$$= R(gP,d).$$

Averaging the above over 2 gives the risk of the symmetrification $\frac{d}{d}$,

(22)
$$R(\underline{P},\underline{d}^*) = (\underline{N}!)^{-1} \sum_{g} R(\underline{g}\underline{P},\underline{d}).$$

Since $\frac{d}{a} = \frac{d^g}{a}$ for equivariant $\frac{d}{a}$, (21) also implies

(23)
$$R(P,d) = R(gP,d), d \in \mathcal{S}.$$

Letting $N_i(P) = \#\{\alpha \mid P_{\alpha} = F_i\}$, and letting $N(P) = (N_0(P), \dots, N_m(P))$ be a convenient index of the P-orbit, we shall hereafter write R(N,d) for LHS (23) with N = N(P), and denote the equivariant envelope by

(24)
$$\widetilde{\psi}(N) = \wedge R(N,d).$$

Hannan and Robbins (1955) consider the class \mathcal{R} of all $d \in \mathcal{B}$ satisfying the constant risk property (23). They show that $\tilde{\psi}(N)$ coincides with $\bigwedge R(N,d)$, the "risk-invariant" envelope. We $\tilde{\mathcal{R}}$ wish to remark that the class $\tilde{\mathcal{R}}$ need not be considered separately because, for each $d \in \mathcal{R}$, its symmetrification d^* has the same risk according to (22).

For $\delta \in \mathcal{F}$ it follows from the definition of risk (9) that

$$NR(\underbrace{P, \delta}_{\alpha}) = \sum_{\alpha} \underbrace{P[L(x_{\alpha}, P_{\alpha}) \circ \delta_{\alpha}(\underline{x})]}_{\alpha}$$

$$= \sum_{i} \sum_{\alpha \mid P_{\alpha} = F_{i}} (F_{i} \times \underbrace{P}_{\alpha})[L_{i} \circ \delta_{\alpha}],$$

where F_i acts on x_{α} and $P_{\alpha} \equiv (P_1, \dots, P_{\alpha-1}, P_{\alpha+1}, \dots, P_N)$ acts on x_{α} .

In particular, if $\delta \in \mathcal{S}$, then by (14) δ_{α} (and therefore $L_{i} \circ \delta_{\alpha}$) is symmetric in \tilde{x}_{α} , and, with $N_{ji} \equiv N_{j}-1$ or N_{j} depending on j = i or $j \neq i$ and Σ denoting sum over i such that $N_{i} > 0$, we have the following representation of equivariant risk,

(25)
$$NR(N,\delta) = \sum N_i F_i \times F_j^{N_{ji}} [L_i \circ \delta_1],$$

where F_i acts on x_1 and $x_j^{N_{ji}}$ acts on x_1 . The order of the F_j in $x_j^{N_{ji}}$ is immaterial since the integrand is symmetric. Let μ be any measure dominating θ and let $f_i = dF_i/d\mu$. Abbreviating $\sum N_i f_i \times F_j^{N_{ji}} [L_i \circ \delta_1]$ by $T(\delta_1)$ for $\delta \in \mathcal{S}$, (25) is expressible as

(26)
$$NR(\mathbf{N}, \delta) = \mu[T(\delta_1)].$$

If $\delta \in S$, say $\delta = d^N$, then δ_1 is a function of x_1 alone. Thus

(27)
$$R(N,d^{N}) = \sum_{i} \frac{N_{i}}{N} F_{i}[L_{i} \circ d].$$

The infimum over \mathcal{B} of LHS (27) is, by definition, the simple envelope. The infimum over \mathcal{B} of RHS (27) is, by (6), $\psi(N/N)$, the Bayes risk against the prior N/N. (This is also the infimum over \mathcal{B} of the $(N/N)^N$ -weighted risk but we shall make no use of this interpretation). Hereafter we abbreviate $\psi(N/N)$ by $\psi(N)$.

We now show that $\widetilde{\psi}(N)$ is the Bayes risk in the compound problem against the uniform prior on the orbit indexed by N.

Let \bigcup_{N} denote such a prior. Applying the transformation theorem to the mapping $g \to gP$, we obtain from (22) that

(28)
$$R(N,d^*) = \sum_{Q} R(Q,d) \cup_{N} Q.$$

The infimum over \mathcal{L} of the LHS above is $\widetilde{\psi}(N)$ by (20). The infimum of the RHS is, by definition, the Bayes risk against \bigcup_{N} , say, $R(\bigcup_{N})$. Thus

(29)
$$\widetilde{\psi}(\underline{N}) = R(\bigcup_{\underline{N}}),$$

and therefore $d \in \mathcal{B}$ is $\varepsilon\text{-Bayes}$ if and only if

(30)
$$R(N, d^*) \leq \tilde{\psi}(N) + \epsilon.$$

4. THE DIFFERENCE BETWEEN THE TWO ENVELOPES

WHEN & IS PAIRWISE NON-ORTHOGONAL

$$\frac{\text{Theorem 1. Let } \rho_{ij} = \bigvee |F_{i}(B) - F_{j}(B)|, c_{i} \text{ satisfy (2),}}{B \in \beta}$$

$$K(\rho) = \frac{12}{11} \left(\frac{3}{5}\right)^{3/2} \rho (1-\rho)^{-3/2} \text{ and let } \rho = \bigvee_{i,j} \rho_{ij}. \text{ Then }$$

(31)
$$\psi(N) - \tilde{\psi}(N) \le \{2K(\rho) \sum_{i} c_{i}^{2}\}^{\frac{1}{2}}N^{-\frac{1}{2}}.$$

<u>Proof.</u> For each N and each equivariant δ , we will construct a simple procedure d^N whose risk at N is close to the risk of δ at N. To bound the difference in risks we use Theorem 3 of Hannan and Huang (1969b), renotated here for our application by the use of relation (14) of that paper:

For any positive integer N and any non-negative integral partitions N and N' of N,

(32)
$$\bigvee \{ \times F_{i}^{N_{i}}[\phi] - \times F_{i}^{N_{i}^{i}}[\phi] | 0 \leq \phi = \phi^{*} \leq 1 \}^{2}$$

$$\leq n K(\rho) \sum_{i} \wedge_{i}^{-1}(N_{i}^{i} - N_{i}^{i})^{2},$$

with $n = \#\{k | N_k \neq N_k'\} - 1$, $\wedge_i = (N_i \wedge N_i') + 1$ for all i, and $\rho = \bigvee\{\rho_{ij} | N_i \neq N_i', N_j \neq N_j'\}$.

For $\delta \in \mathcal{S}$ consider $R(N, \delta)$ in the form (25). For given i and x_1 , let

(33)
$$\varphi = \text{the } x_1 \text{-section of } \frac{L_i \cdot \delta_1}{\vee L_i(a)}$$
.

From (2), φ takes values in [0,1] and, from (14), φ is symmetric in $\overset{\star}{x_1}$. Applying (32) to the integrand with respect to F_i in RHS (25) for each i yields

$$(34) \times_{\mathbf{i}}^{\mathbf{N}_{\mathbf{j}}\mathbf{i}}[L_{\mathbf{i}} \circ \delta_{\mathbf{1}}] \geq \times_{\mathbf{j}}^{\mathbf{N}_{\mathbf{j}}\mathbf{j}}[L_{\mathbf{i}} \circ \delta_{\mathbf{1}}] - \{ \vee_{\mathbf{a}} L_{\mathbf{i}}(\mathbf{a}) \} \{ K(\rho_{\mathbf{i}\mathbf{J}}) (\frac{1}{N_{\mathbf{i}}} + \frac{1}{N_{\mathbf{J}}}) \}^{\frac{1}{2}},$$

for any $J \in \{0,\ldots,m\}$. With J such that $N_J = \vee N_j$, we weaken the bound (34) by simultaneously replacing $\frac{1}{N_J}$ by $\frac{1}{N_i}$ and $K(\rho_{iJ})$ by $K(\rho)$. Taking upper integrals with respect to F_i and weighting by N_i , we thus obtain

(35)
$$\operatorname{NR}(N,\delta) \geq \sum \operatorname{N}_{i} F_{i} \times F_{j}^{i} [L_{i} \circ \delta_{1}] - (2K(\rho))^{\frac{1}{2}} \sum_{i} \operatorname{N}_{i}^{\frac{1}{2}} c_{i},$$

with c_i given by (2).

We now construct the simple procedure d^N . Since for each x_1 and i, $x_1^{L_i} \circ \delta(x_1)$ is a symmetric function of $x_1^{L_i}$, it follows from the transformation theorem that

(36)
$$\times \operatorname{F}_{\mathbf{j}}^{\mathbf{N}_{\mathbf{j}J}} \left[\operatorname{x}_{1}^{L_{i}} \circ \delta_{1}(\operatorname{x}_{1}, \cdot) \right] = \xi \left[\operatorname{x}_{1}^{L_{i}}(\cdot) \right],$$

with $\xi = (x + y)^{1/2} [\delta_1(x_1, \cdot)]^{-1}$. We note that ξ depends on x_1 but not on i. By assumption (3), there exists $a \in \mathbb{Z}$ such that RHS (36) = $x_1^{1/2} (a_x)$, \forall i. Letting d be the function mapping $x_1^{1/2}$ to such $a_x^{1/2}$, we see that, for each $x_1^{1/2}$,

which is \mathcal{B} -measurable. Therefore $d \in \mathcal{B}$, and d^N is simple. Also by (37) we recognize the first term of RHS (35) as N RHS (27) which is bounded below by N ψ (N). Thus

(38)
$$NR(\underbrace{N}, \underbrace{\delta}) \geq N \psi(\underbrace{N}) - (2K(\rho))^{\frac{1}{2}} \sum_{i} N_{i}^{\frac{1}{2}} c_{i}.$$

Applying the Schwarz inequality to the sum on RHS (38) yields

(39)
$$R(N,\delta) \ge \psi(N) - (2K(\rho))^{\frac{1}{2}}N^{-\frac{1}{2}}(\Sigma_{i} c_{i}^{2})^{\frac{1}{2}}.$$

Since (39) holds for all $\delta \in \mathcal{S}$, this completes the proof of Theorem 1.

5. THE DIFFERENCE BETWEEN THE TWO ENVELOPES WHEN ### MAY HAVE SOME PAIRWISE ORTHOGONALITY

In this section we derive, essentially as a corollary to Theorem 1, a useful bound for the difference when ${\mathscr O}$ may have some pairwise orthogonality.

Theorem 2. Let ρ_{ij} , c_i and K be as in Theorem 1 and let $\rho = \bigvee \{ \rho_{ij} | \rho_{ij} < 1 \}.$ Then

$$(40) \qquad \psi(\underline{N}) - \widetilde{\psi}(\underline{N}) \leq 2^{m} \left\{ 2K(\rho) \sum_{i} c_{i}^{2} \right\}^{\frac{1}{2}} N^{-\frac{1}{2}}.$$

<u>Proof.</u> The plan of our proof is first to decompose the whole problem into pieces of sub-problems, each satisfying the pairwise non-orthogonality condition. For arbitrary $\delta \in \mathcal{S}$ and a special choice of d to be $(2^{m+1} - 1) \epsilon$. Bayes with respect to N, we represent the difference in risks as the sum of differences of simple and equivariant risks in the sub-problems with the simple procedure being ϵ -Bayes against the restriction of N to the sub-problems.

For each $I \subseteq \{0,\ldots,m\}$ let $\check{\theta} = \{F_i \mid i \in I\}$ and $\check{N} = \sum_{i \in I} N_i$. The subproblem determined by $\check{\theta}^{\check{N}}$ will be called the I problem. Let $\check{\mathcal{B}}$, $\check{\mathcal{B}}$, \check{N} , $\dot{\cup}_{\check{N}}$, $\check{\psi}$, $\check{\psi}$, \check{K} , \check{T} and $\check{*}$ denote the I problem counterpart of these symbols without the delete sign \vee . For simplicity we omit the delete sign on $\check{*}$ and \check{R} hereafter.

Let

(41)
$$\chi_{\tau} = \{x \in \chi | f_{i}(x) > 0 \text{ iff } i \in I\},$$

and let μ_I be the restriction of μ to $\chi_I.$ Since $\chi=\sum\limits_I\chi_I$ it follows that $\mu=\sum\limits_I\mu_I.$

Let $\delta \in \mathcal{S}$. The risk of δ is of form (25), which is expressible as integrals with respect to μ_T ,

(42)
$$NR(N,\delta) = \sum_{i} \mu_{i} \{ \sum_{i \in I} N_{i} f_{i} \times F_{j}^{i} \xrightarrow{j} \times F_{j}^{i} [L_{i} \circ \delta_{1}] \},$$

where we take $\times F_{j}^{N_{j}}$ to act on (x_{N+1}, \dots, x_{N}) for each I. For each I and each (x_{1}, \dots, x_{N}) in RHS (42), there exists, for the same reason behind (36), a distribution ξ over \mathcal{Q} such that

By assumption (3) there exists $a_{\xi} \in \mathcal{Q}$ with $L_{i}(a_{\xi}) = \xi[L_{i}]$ for all $i \in I$. Letting δ_{1} be the function mapping (x_{1}, \ldots, x_{N}) to such a_{ξ} we see that $L_{i} \circ \delta_{1}$ gives RHS (43) and is thus S -measurable for each $i \in I$. Furthermore, $\delta \in \mathcal{S}$ implies the symmetry of δ_{1} in (x_{2}, \ldots, x_{N}) , and therefore δ_{1} is the first component of some $\delta \in \mathcal{S}$ constructable by the use of (14). Thus (42) yields the representation,

(44)
$$\operatorname{NR}(\mathbf{N}, \delta) = \sum_{\mathbf{I}} \mu_{\mathbf{I}}[\mathbf{T}(\delta_{\mathbf{I}})].$$

For each I, let d_I be ε -Bayes in $\mathcal B$ against N/N and let $d=\sum_I I_I d_I$ where I_I serves as the indicator function of itself. We note that $d\in \mathcal B$ and $d=d_I$ a.e. μ_I . Thus by (27), by $\mu=\sum_I \mu_I$ and by the fact that $L_i \circ d=L_i \circ d_I$ a.e. μ_I and is constant with respect to (x_2,\ldots,x_N) , it follows that

(45)
$$NR(\mathbf{N}, \mathbf{d}^{\mathbf{N}}) = \sum_{\mathbf{T}} \mu_{\mathbf{I}} [\mathbf{T}(\mathbf{d}_{\mathbf{I}})].$$

The difference between (45) and (44) is

(46)
$$N\{R(N,d^{N}) - R(N,\delta)\} = \sum_{I} \mu_{I}[\check{T}(d_{I}) - \check{T}(\check{\delta}_{1})].$$
For each I, define $\check{h} = (\check{h}_{1},...,\check{h}_{N}) \in \check{\mathcal{D}}$ by

(47)
$$\check{h}_{\alpha}(x_{1},...x_{N}) = \begin{cases} \check{\delta}_{\alpha}(x_{1},...,x_{N}) & \text{if } x_{\alpha} \in \mathcal{I}_{1} \\ d_{1}(x_{\alpha}) & \text{otherwise} \end{cases}$$

By (14) we see that $h \in \delta$. By direct calculation using (26) and the definition of h,

$$\tilde{\mathbf{N}}R(\tilde{\mathbf{N}},\tilde{\mathbf{h}}) = \mu_{\mathbf{I}}[\tilde{\mathbf{T}}(\tilde{\delta}_{1})] + (\mu - \mu_{\mathbf{I}})[\tilde{\mathbf{T}}(\mathbf{d}_{\mathbf{I}})]$$

$$= \tilde{\mathbf{N}}R(\tilde{\mathbf{N}},\mathbf{d}_{\mathbf{I}}^{\tilde{\mathbf{N}}}) - \mu_{\mathbf{I}}[\tilde{\mathbf{T}}(\mathbf{d}_{\mathbf{I}}) - \tilde{\mathbf{T}}(\tilde{\delta}_{1})].$$
(48)

Since d_{I} is ϵ -Bayes with respect to N/N and $h \in \mathcal{S}$, (48) yields

(49)
$$\mu_{T}[\check{T}(d_{T}) - \check{T}(\check{\delta}_{1})] \leq \check{N}(\check{\psi}(\check{N}) - \check{\check{\psi}}(\check{N})) + \check{N}\varepsilon.$$

It follows from (38) that, with $\rho = \bigvee \{\rho_{ij} | i, j \in I\}$,

(50) RHS
$$(49) \le (2K(\tilde{\rho}))^{\frac{1}{2}} \sum_{i \in I} N_{i}^{\frac{1}{2}} c_{i} + \tilde{N} \epsilon$$

Summing (50) over all I with $\mu_I \neq 0$, we obtain an upper bound for RHS (46). Since $\mu_I \neq 0$ implies $\tilde{\rho} < 1$ we shall weaken (50) by replacing $\tilde{\rho}$ by ρ , and then dropping the restriction on the summand. Thus

(51)
$$R(N,d^{N}) - R(N,\delta) \leq (2K(\rho))^{\frac{1}{2}}N^{-1} \sum_{i} \sum_{i} N_{i}^{\frac{1}{2}}c_{i} + N^{-1} \in \sum_{i} \tilde{N}.$$

Since (51) holds for all $\delta \in \mathcal{S}$ and all $\epsilon > 0$, and therfore for

 ϵ = 0, the proof is complete upon using the Schwarz inequality in (51):

(52)
$$\sum_{\substack{\sum \\ i \in I}} \sum_{i \in I} N_{i}^{\frac{1}{2}} c_{i} = 2^{m} \sum_{i} N_{i}^{\frac{1}{2}} c_{i} \leq 2^{m} N_{i}^{\frac{1}{2}} (\sum_{i} c_{i}^{2})^{\frac{1}{2}}.$$

PART b

A STABILITY OF SYMMETRIFICATIONS OF PRODUCT MEASURES WITH FEW DISTINCT FACTORS

SUMMARY

Let $\mathscr{O}=\{F_0,\ldots,F_m\}$ be a class of probability measures on $(\mathfrak{X},\mathcal{B})$. For any signed measure τ on \mathscr{B}^N , let τ^* be the average of τg over all N! permutations g and let $\|\tau\|=\vee\{\left|\tau\left(C\right)\right|:C\in\mathscr{B}^N\}$. Let $d_{ij}=\|F_i-F_j\|$ and $K(x)=\frac{12}{11}\left(\frac{3}{5}\right)^{3/2}x\left(1-x\right)^{-3/2}$. For any nonnegative integral partitions $N=(N_0,\ldots,N_m)$ and $N'=(N_0',\ldots,N_m')$ of N, let $\delta_i=N_i'-N_i$ and $\delta_i=(N_i',\delta_i)+1$. With $\tau=\times F_i$ and $\tau=(N_i',\delta_i)+1$, we bound $\tau^*=(N_i',\delta_i)+1$ by

(T3)
$$n K(d) \sum \delta_i^2 \wedge_i^{-1} \text{ with } d = \bigvee \{d_{ij} | \delta_i \neq 0, \delta_j \neq 0\}$$

and, if θ is internally connected by chains with non-orthogonal successive elements, by

(T4)
$$\frac{1}{2} m K(\check{d}) (\Sigma |\delta_i|)^2 (\Sigma \wedge_i^{-1}) \quad \text{with} \quad \check{d} = \vee \{d_{i,j} | F_i \neq F_j \}.$$

The bound (T3) is finite iff the F_i are pairwise non-orthogonal and (T4) is designed to replace it otherwise.

1. INTRODUCTION

Section 2 investigates some general properties of signed measures and their symmetrifications w.r.t. general groups.

Section 3 specializes to the permutation group and notes a contraction effect of probability factors in product signed measures. The properties developed in Sections 2 and 3 will be used throughout the paper and, in particular, in Lemma 2, in the completion of the proof of Theorem 1, and in the proofs of Theorems 2, 3 and 4.

Section 4 proves Theorem 1, which is the special case of (T3) for m=1 and $\delta_1=1$. This is the main result of the paper. Its proof contains a detailed outline of itself including Lemmas 2, 3 and 4. An example, consisting of the simplest special case, shows that the bound of Theorem 1 is sometimes asymptotically sharp to within a factor of 3.18...

Section 5 proves Theorems 2, 3, and 4, all as corollaries to Theorem 1. Theorem 2 is the special case of (T3) for m = 1, Theorem 3 is (T3) and Theorem 4 is (T4).

Our main results are a strengthened generalization of Theorem II.1 of Hannan (1953). The latter is easily characterized in terms of the m = 1 case of (T3),

(T2)
$$\|\tau^*\|^2 \leq K(d_{01}) \delta_1^2 (\frac{1}{N_0} + \frac{1}{N_1})$$
,

amounting to the assertion that, for m = 1 and fixed $F_0 \not \perp F_1$,

(T II.1)
$$\|\tau^*\|^2 \to 0$$
 as RHS(T2) $\to 0$.

As partially indicated in Section 3 and Section 5, the derivation in Section 5 of (T3) and (T4) as corollaries of Theorem 2 would equally well yield weakened (as (T II.1) weakens (T2)) forms of (T3) and (T4) as corollaries of (T II.1).

A corollary of the δ_1 = 1 case of (T II.1), the Lemma of Hannan and Robbins (1955), was there used to show (Theorem 5) that the difference between the simple and equivariant envelopes converges to zero. A generalization of the Lemma, Theorem 2 of Horn (1968), is shown in Section 3 to be improved by the δ_1 = 1 case of a rather immediate corollary to (T II.1). The special case of (T3) with two non-zero δ_1 is used in Hannan and Huang (1969a) (Theorem 1) to bound a more general case of the difference. A similar application, Theorem 1 of Horn (1968), inherits the deficiencies of her Theorem 2.

2. PROPERTIES OF SYMMETRIFICATION AND OF AN \mathcal{L}_1 -NORM

Although in this paper we will only be concerned with the difference between two symmetrified probability measures, some of the properties used in our proofs hold true and are easier to prove in a more general context. This section investigates some of these properties of symmetrified signed measures and their \mathcal{L}_1 -norms.

Let (U,C) be a measurable space and $\mathcal L$ be a finite group of measurable transformations g on (U,C). For a signed measure τ on (U,C), we define τg as the induced signed measure and τ^* as the symmetrification of τ by

$$(\tau g)_C = \tau(g(C))$$
 $C \in \mathcal{C}$, $\tau^* = AV(\tau g)$

where AV denotes the average over $g \in \mathcal{J}$. Thus symmetrification (*, hereafter) is a linear operator.

For any real valued function f on \u03c4, define for and f*
by

$$(f \bullet g) y = f(gy)$$
, $f^* = AV(f \bullet g)$.

 τ and f are said to be symmetric if $\tau = \tau^*$ and $f = f^*$, respectively. Since $\tau g \equiv \tau$, τ is symmetric iff $\tau \equiv \tau g$.

Throughout this paper we shall denote supremum and infimum by \vee and \wedge , and express integrals as left operators by

$$\tau(f) = \int f(y)d\tau(y).$$

For any signed measure τ , define an \mathcal{L}_{γ} -norm of τ by

(1)
$$\|\tau\| = \vee \{ |\tau(C)| : C \in \mathcal{C} \}.$$

It follows from the Jordan decomposition that

(2)
$$\|\tau\| = \|\tau^{\dagger}\| \vee \|\tau^{-}\|$$

and hence, if $\tau(1) = 0$,

(3)
$$||\tau|| = ||\tau^{\dagger}|| = ||\tau^{-}||.$$

In particular, if P and Q are probability measures, then

(4)
$$0 \le ||P - Q|| \le 1$$
,

with equality at 0 iff P = Q, and equality at 1 iff $P \perp Q$.

For use in the proof of Lemma 1, let μ be a measure $\exists d\tau/d\mu$ exists. Since $d\tau^+/d\mu = (d\tau/d\mu)^+$ and $d\tau^-/d\mu = (d\tau/d\mu)^-$,

$$||\tau|| = \mu (d\tau/d\mu)^+ \vee \mu (d\tau/d\mu)^-.$$

Hence, if $\tau(1) = 0$,

(5)
$$2||\tau|| = \mu(|\frac{d\tau}{d\mu}|).$$

It follows from the transformation theorem (Theorem 39.C, Halmos (1950)) that

$$(\frac{d\tau}{d\mu}) \circ g = \frac{d\tau g}{d\mu g}, g \in \mathscr{L}.$$

In particular, if $\mu = \mu^*$, AV of the above equality yields

$$(\frac{d\tau}{d\mu})^* = \frac{d\tau}{d\mu}^* .$$

Let μ be a measure and let h and f be such that the products h and h are μ integrable. By the transformation theorem and symmetry, μ (h for g) = μ (h f) for all $g \in \mathcal{J}$. Averaging over \mathcal{J} and interchanging h and f yields

(7)
$$\mu^*(h^*f) = \mu^*(h^*f^*) = \mu^*(hf^*).$$

For the special case of (7) obtained by letting $h = d\mu/d\mu^*$, we have $h^* = 1$ by (6) and therefore, if f (and hence also f^*) is μ^* -integrable, then

(8)
$$\mu^*(f) = \mu^*(f^*) = \mu(f^*).$$

For use in the completion of proof of Theorem 1, we note that, by subadditivity of norm and by $\|\tau g\| \equiv \|\tau\|$ for a signed measure τ ,

(9)
$$\|\tau^*\| \leq AV \|\tau g\| = \|\tau\|.$$

It follows from norm subadditivity and the Schwarz inequality (hereafter referred to as NS-SI) that if τ_i are signed measures then

(10)
$$\left\| \sum \tau_i \right\|^2 \leq (\sum 1) \sum \left\| \tau_i \right\|^2.$$

If $\tau=\tau_1\times\tau_2$ is a product signed measure, $\|\tau\|$ is simply related to the corresponding norms of its factors. We abbreviate by omission subscripts on the norms. Since $\tau^+=(\tau_1^+\times\tau_2^+)+(\tau_1^-\times\tau_2^-),\ \tau^-=(\tau_1^+\times\tau_2^-)+(\tau_1^-\times\tau_2^+),\ \text{it follows}$ easily that

$$||\tau_1|| \cdot ||\tau_2|| \le ||\tau_1 \times \tau_2|| \le 2||\tau_1|| \cdot ||\tau_2||,$$

with the first equality iff either τ_1 or τ_2 is a measure or the

negative of a measure, the second equality iff $\tau_1^{(1)} = \tau_2^{(1)} = 0$. In particular, if $\tau_2^{(1)}$ is a probability measure, the first equality of (11) yields

(12)
$$||\tau_1 \times \tau_2|| = ||\tau_1||.$$

To assist in comparing our results with Theorem II.1 of Hannan (1953), consider a signed measure τ with $\tau(1) = 0$. By (3),

(13)
$$\|\tau\| = \|\tau^{\dagger}\| = \sqrt{\{\tau(f) \mid 0 \le f \le 1\}}.$$

Since $\tau^*(1) = 0$ by linearity of * operator, upon applying (13) to τ^* , and applying (8) to $\tau^*(f)$, it follows that

(14)
$$\|\tau^*\| = \sqrt{\tau(f^*)} = \sqrt{\tau(f)} = \sqrt{\tau(f)} = f^* = f \leq 1$$
,

with the second equality following from $\{f^* \mid 0 \le f \le 1\} = \{f \mid 0 \le f = f^* \le 1\}.$

3. PERMUTATIONS; CONTRACTION EFFECT OF PROBABILITY FACTORS

Henceforth we specialize $\mathscr L$ to be the group of transformations on $(\mathfrak L,\mathcal B)^N$ induced by the group of permutations on N objects, where $(\mathfrak L,\mathcal B)$ is a measurable space. We also let $\mathscr L$ denote the permutation group itself. Thus a generic element $g\in \mathscr L$ will be used both as a permutation and the transformation $g_{\widetilde L} = (x_{g1}, \dots, x_{gN})$.

The following lemma will be used in the successive extensions, in Section 5, from Theorem 2 to Theorem 3 to Theorem 4. Starting from Theorem II.1 of Hannan (1953) rather than Theorem 2, Lemma 1 together with NS-SI (10) would yield an extension paralleling our Theorem 3 extension from Theorem 2. It will be shown that Lemma 1 alone would yield an extension improving Theorem 2 of Horn (1968), where there is a stronger restriction on the \mathbf{F}_i than pairwise non-orthogonality, and where the non-zero δ_i are 1 and -1 respectively.

Lemma 1. If $\tau = \check{\tau} \times P$ for a signed measure $\check{\tau}$ with $\check{\tau}(1) = 0$ and a probability measure P, then, abbreviating affixes on * and on || || || by omission,

$$\|\tau^*\| \leq \|(\check{\tau})^*\|.$$

<u>Proof.</u> Since $\tau(1) = 0$, $\|\tau^*\| = \sqrt{\{\check{\tau}(P(f)) \mid 0 \le f = f^* \le 1\}}$ by (14). Since $\check{f} = P(f)$ is symmetric in the remaining variables and since $0 \le \check{f} \le 1$, one more application of (14) completes the proof.

For our extension of Theorem II.1, let $\tau = \times F_i^{N_i} - \times F_i^{N_i'}$ where the F_i are pairwise non-orthogonal and fixed, and the $\delta_i = N_i' - N_i$ are zero except for two i's. By judicious choice of g, we have $\tau g = \check{\tau} \times P$ with $P = \times \{F_i^{i} | \delta_i = 0\}$. By $(\tau g)^* \equiv \tau^*$ and Lemma 1, $\|\tau^*\| \leq \|(\check{\tau})^*\|$ which, by (14) and Theorem II.1, converges to zero as this case of the bound in (T2) does.

4. TWO DISTINCT FACTORS WITH UNIT DIFFERENCES IN MULTIPLICITIES

Theorem 1. Let F_1 and F_0 be p-measures and let $N = (N_1, N_0)$ be an integral partition of N with $N_1 \ge 0 < N_0$. With $d = ||F_1 - F_0||$, with $C(d) = d(1-d)^{-3/2}$ and with $K(d) = (.4)^2 (6^{-1} + 5^{-1})^{-1} C(d) / C(.4)$

(15)
$$\|(F_1^{N_1} \times F_0^{N_0})^* - (F_1^{N_1+1} \times F_0^{N_0-1})^*\|^2 \le K(d)(\frac{1}{N_1+1} + \frac{1}{N_0}).$$

<u>Proof.</u> Since both sides of (15) vanish if d = 0, henceforth assume $F_1 \neq F_0$.

The proof proceeds according to the following outline: As in Hannan (1953), a parametric family of densities of the $\mathbf{F_i}$ is introduced and some of their moment properties are related to d. Starting as in Hannan (1953) but then weakening by the Schwarz inequality, Lemma 2 obtains a family of upper bounds for a slight generalization of LHS (15). Lemma 3 develops lower bounds for modal binomial probabilities for application to the denominators of a bound of Lemma 2. Lemma 4 uses characteristic function inversions to bound a generalization of the numerators of the bound of Lemma 2. The bound of (15) is then obtained as the minimum of \mathbf{d}^2 , from Lemma 1, and a bound resulting from the application of the other lemmas.

For 0 and <math>i = 1,0, let

(16)
$$F_p = pF_1 + qF_0$$
, $f_i = dF_i/dF_p$,

(17)
$$\theta = F_1(f_0), P_i = p F_1(f_i) = 1 - Q_i (= 1 - q F_0(f_i)),$$

and note

(18)
$$F_{i}(f_{i}) = F_{p}(f_{i}^{2}) > (F_{p}(f_{i}))^{2} = 1$$

by the Schwarz inequality, with equality eliminated by $\mathbf{F}_{\mathbf{p}} \neq \mathbf{F}_{\mathbf{i}}$. Thus

(19)
$$\theta = p^{-1}(1 - q F_0(f_0)) < 1.$$

Let μ be any σ -finite measure dominating the F_i , let $h_i = dF_i/d\mu$ and let $h_p = ph_1 + qh_0$. Since $f_1f_0h_p = h_1h_0h_p^{-1} \ge h_1 \wedge h_0$, it follows that

(20)
$$\theta \ge \mu (h_1 \wedge h_0) = 1 - d.$$

Finally, note that from (17) and (18)

(21)
$$P_1 - P_0 = 1 - \theta$$
, $P_i Q_i = pq F_1(f_i) F_0(f_i) > pq \theta$.

For integer N and $p \in [0,1]^N$, let b(k;p) denote the generalized binomial probability of k successes in N independent trials with success probabilities p.

At the cost of notational complications, the following lemma could be stated and proved for m instead of 2 probability measures.

Lemma 2. For non-negative integral partitions of N, $N = (N_0, N_1) \quad \text{and} \quad N' = (N_0', N_1'), \quad \text{define} \quad F = F_1^{N_1} \times F_0^{N_0}, \quad F' = F_1^{N_1'} \times F_0^{N_0'}$ and $\tau = F - F'. \quad \text{For} \quad 0$

(22)
$$\mathbf{F}^{*}(\frac{d\mathbf{F}^{**}}{d\mathbf{F}^{N}_{p}}) = \frac{b(N_{1}; P_{1}^{N_{1}} P_{0}^{N_{0}})}{b(N_{1}; P_{1}^{N})} = \frac{b(N_{1}; P_{1}^{N_{1}} P_{0}^{N_{0}})}{b(N_{1}'; P_{1}^{N})} ,$$

(23)
$$4\|\tau^*\|^2 < \frac{b(k; P_1^r P_0^{N-r})}{b(k; p^N)} \Big]_{k=N_1}^{k=N_1'} \Big]_{r=N_1}^{r=N_1'}.$$

<u>Proof.</u> Since $f''(df'')/df^N_p = f''(df''/df^N_p)$, the second equality in (22) will follow from the first.

By (6) the integrand in LHS (22) is $(dF'/dF_p^N)^*$, whence, by (8), LHS (22) is AV of

(24)
$$F\left(\frac{dF'}{dF_{p}}\right) \circ g$$

Since the integrand in (24) is the product $\prod_{1}^{N_{1}'} f_{1}(x_{g\alpha}) \prod_{N=+1}^{N_{1}'+1} f_{0}(x_{g\alpha})$ of F-independent variables, the integral is expressible, in terms of $K = \#[\alpha > N_{1}'] g\alpha < N_{1}$, as the product

Then (22) follows since

(26) AV H(K(g)) =
$$\sum_{k}^{N_0'} {N_1' \choose N_1 - k} {N_1' \choose N_1}^{-1} H(k) = \frac{b(N_1; P_1^{N_1'} P_0^{N_0'})}{b(N_1; P^N)}$$

with the first equality following from the transformation theorem.

From (5) and the Schwarz inequality,

(27)
$$4\|\tau^*\|^2 = \left[F_p^N(\left|\frac{d\tau^*}{dF_p^N}\right|)\right]^2 < F_p^N(\left|\frac{d\tau^*}{dF_p^N}\right|^2) = \tau^*(\frac{d\tau^*}{dF_p^N}).$$

Four-fold application of (22) to this bound results in (23), completing

the proof.

For integers $0 \le k \le N$, let

(28)
$$a_{Nk} = \{(N-1)pq\}^{\frac{1}{2}} b(k;p^{N}) \text{ with } p = (k+1)/(N+1).$$

Lemma 3.
$$a_{NN-1-k} = a_{Nk} \ge a_{N0}$$
 \$ e^{-1} as $N \uparrow \infty$.

<u>Proof.</u> Note that $f(x) = (1 + x^{-1})^{x + \frac{1}{2}}$; e as $0 < x \uparrow \infty$ since, with $t = (2x + 1)^{-1}$, $\log f(x) = 1 + t^2/3 + t^4/5 + \dots$.

The lemma then follows from the representations,

(29)
$$a_{Nk} = a_{Nk-1} \frac{f(k)}{f(N-k)} = a_{N0} \frac{f(j)}{f(N-j)}, a_{N0} = \left\{\frac{N-1}{N+1}\right\}^{\frac{1}{2}} \frac{1}{f(N)}.$$

The following lemma uses characteristic function inversions to bound a mixed second divided difference of generalized binomial probabilities. In our application to certain numerators of (23), the generalized binomials involve only two distinct probabilities but the added generality simplifies the proof and may serve to motivate other applications.

Lemma 4. For integers $0 \le k \le M$, $P = (P_1, \dots, P_M) \in [0,1]^M$ and $(P,P+h) \in [0,1]^2$ less the diagonal, let Δ and Δ respectively denote the divided difference operators from k to k+1 and from P to P+h. With $B(x) = (4/\pi) \int_0^1 y^{\frac{1}{2}} (1-y)^{-\frac{1}{2}} e^{-2xy} dy$ and $\sigma^2 = \sum_{1}^{M} P_{\alpha}(1-P_{\alpha})$,

$$|\Delta \ b(k; (P,P))| \leq B(\sigma^2),$$

(31)
$$x^{3/2}B(x) \rightarrow (2\pi)^{-\frac{1}{2}} \text{ as } x \uparrow \infty,$$

(32)
$$s = \sup \{x^{3/2}B(x) | 0 \le x < \infty\} = .545447...$$

<u>Proof.</u> Note for later use that, with $\phi(u) = Pe^{iu} + Q$ the ch.f. of a Bernoulli variable with parameter P = 1 - Q,

(33)
$$|\phi(u)|^2 = 1 - 4PQ \sin^2 \frac{u}{2} \le \exp - 4PQ \sin^2 \frac{u}{2}$$
.

Since $\Delta e^{-iuk} \triangle \phi(u) = e^{-iuk} 4 \sin^2 \frac{u}{2}$, the iterated divided difference in (30) is given by the Fourier inversion

(34)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-iuk} 4 \sin^2 \frac{u}{2} \prod_{1}^{M} \phi_{\alpha}(u) du.$$

By application of (33) to the ϕ_{α} , the modulus of (34) is bounded by

(35)
$$\frac{4}{\pi} \int_0^{\pi} \sin^2 \frac{u}{2} e^{-2\sigma^2 \sin^2 \frac{u}{2}} du = B(\sigma^2).$$

(Since $v^{-1}\sin v \downarrow \text{ on } 0 < v \leq \pi/2$, RHS (33) $\leq \exp - 4\text{PQ}(u/\pi)^2$ on $|u| \leq \pi$. The corresponding weakening of (35) implies $s < \pi^{5/2} 2^{-7/2} = 1.553 \dots$:

$$B(x) \leq \frac{4}{\pi} \int_0^{\pi} \sin^2 \frac{u}{2} e^{-2x(u/\pi)^2} du < \frac{1}{\pi} \int_0^{\infty} u^2 e^{-2x(u/\pi)^2} du = \frac{\pi^{5/2}}{2^{7/2}} x^{-3/2}.$$

With I_0 , I_1 denoting the modified Bessel functions,

(36)
$$B(x) = \left[-\frac{2}{\pi} \int_{0}^{1} y^{-\frac{1}{2}} (1-y)^{-\frac{1}{2}} e^{-2xy} dy \right]'$$

$$= \left[-2e^{-x} I_{0}(x) \right]' = 2e^{-x} \left[I_{0}(x) - I_{1}(x) \right],$$

where the second equality follows by differentiation from the corresponding Laplace transform (cf. 29.3.124 of NBS-AMA55 (1964)), and the last from $I_0^* = I_1$.

In view of (36), (31) is an immediate consequence of the usual asymptotic expansions of I_0 and I_1 (cf. 9.7.1 ibid).

To verify (32), first note that $[x^{3/2}B(x)]' = x^{\frac{1}{2}}e^{-x}F(x)$ with

$$F = (3-4x)I_0 + (4x-1)I_1$$

Since F(1) > 0 > F(2), the behavior of F' will imply that $\exists x_0 \in (1,2)$ with $F \neq 0$ on $[0,x_0]$ and F < 0 on (x_0,∞) as follows. Since $I_1 \leq xI_0$, $xF' = x(4x-5)I_0 + (1-x)(4x+1)I_1 \leq -(15/16)xI_0$ on [0,1]. Since $x(4x-1)F' = (4x+1)(1-x)F - 3I_0$, $1 \leq x$ and $F(x) \geq 0 \Rightarrow F'(x) < 0$ and hence $1 \leq x_0$ and $F(x_0) = 0 \Rightarrow F < 0$ on (x_0,∞) .

Since, in addition, .00012 > F(1.452) > 0 > F(1.453) (p. 228 BAAS v VI (1937)),

$$0 \le s - (1.452)^{3/2} B(1.452) \le (1.452)^{\frac{1}{2}} e^{-1.452} (.00012) (.001) < 4(10^{-8})$$

which results in (32) and thus completes the proof.

Completion of proof of Theorem.1. From Lemma 2 with $N_1' = N_1 + 1$ we have this case of the bounds (23). Let $p = (N_1 + 1)/(N + 1)$ henceforth. This choice insures both denominators in (this case of) (23) are equal and, by Lemma 3, are bounded below by $\{(N-1)pq\}^{-\frac{1}{2}}a_{N0}$. Application of Lemma 4 to the mixed second difference remaining in the numerator results in the upper bound $s|h|\sigma^{-3}$, with

h =
$$P_1 - P_0 = 1 - \theta \le d$$
 and $\sigma^2 = N_1 P_1 Q_1 + (N_0 - 1) P_0 Q_0 > (N - 1) pq (1 - d)$
by (20) and (21), so that, with $c_N = 4^{-1} s (N+1)^{3/2} (N-1)^{-3/2} f(N)$ § $4^{-1} se = .3706 \dots$ as $N \uparrow \infty$,

(37)
$$\|\tau^*\|^2 \le \frac{s}{4a_{N0}} C(d) \{ (N-1)pq \}^{-1} = c_N C(d) (\frac{1}{N_1+1} + \frac{1}{N_0}).$$

From Lemma 1, $\|\tau^*\|^2 \le d^2$ independently of N. Since pq is maximal at $p = \frac{1}{2}$, (37) is minimal w.r.t. N given N at $N_1 = [N/2]$ and, therefore, exceeds d^2 for all d iff

(38)
$$\max_{d} d^{2}/C(d) = (.4)^{2}/C(.4) \le c_{N}(\left[\frac{N+2}{2}\right]^{-1} + \left[\frac{N+1}{2}\right]^{-1}).$$

Since RHS (38) \downarrow w.r.t. N with first violation of (38) at N = 10, c_N of (37) is replaceable by c_9 = .5185 This in turn can be improved by first increasing s to insure equality at N = 10, thus replacing c_N by $(.4)^2(6^{-1}+5^{-1})^{-1}/C(.4)$ = .5070 ... and completing the proof.

That the bound of the theorem is sometimes relatively sharp, will follow from examination of the simplest special case.

Example. Let F_0 and F_1 be Bernoulli probability measures b(; ξ_0) and b(; ξ_1) with 0 = ξ_0 < ξ_1 < 1. Then

 $(F_0 \times F_1)^*$ and $(F_0 \times F_1)^*$ are symmetric probability measures on $\{0,1\}^N$, putting mass, $\binom{N}{k}^{-1}b(k;\xi_1^{-1})$ and $\binom{N}{k}^{-1}b(k;\xi_1^{-1})$ respectively, on every x in $\{0,1\}^N$ with exactly x ones. Writing x for x one x and using x one x in x one x one x one x in x one x

(39)
$$2\|\tau^*\| = \sum_{k} |b_{k} - \xi_{1} b_{k-1} - (1 - \xi_{1}) b_{k}| = \xi_{1} \sum_{k} |b_{k} - b_{k-1}| = 2\xi_{1} b_{m}$$

with m the greatest integer not exceeding $(N_1^{+1})\xi_1$. As $(N_1^{+1})\xi_1(1-\xi_1) \rightarrow \infty$, $(N_1^{+1})\xi_1(1-\xi_1)b_m^2 \sim (2\pi)^{-1}$ and therefore

(40)
$$\|\tau^*\|^2 \sim \frac{1}{2\pi} \frac{\xi_1}{1-\xi_1} \frac{1}{N_1+1}$$
.

When $\xi_1 \to 0$ and $N_0/N_1 \to \infty$ (which is the most favorable case for the following comparison), the bound of the theorem exceeds RHS (40) only by the factor $.8\pi$ (30/11)(.6) $^{3/2}$ = 3.18....

m+1 DISTINCT FACTORS

We now obtain various extensions of Theorem 1 as corollaries to that theorem. Theorems 1, 2 and 3 represent successive extensions each subsuming, yet corollary to, its predecessor. Theorem 3 is vacuous unless the $\mathbf{F_i}$ are pairwise non-orthogonal, and Theorem 4 is designed to replace it in this case. Thus, as implied in the summary, our final results are merely Theorems 3 and 4. Let

$$\tau = \times F_{i}^{N_{i}} - \times F_{i}^{N_{i}^{\dagger}}, d_{ij} = ||F_{i} - F_{j}||$$

$$\delta_{i} = N_{i}^{\dagger} - N_{i}, \wedge_{i} = (N_{i}^{\dagger} \wedge N_{i}) + 1, i, j = 0, ..., m.$$

Theorem 2. For m = 1,

(42)
$$\|\tau^*\|^2 \leq K(d_{01})\delta_1^2(\frac{1}{\Lambda_0} + \frac{1}{\Lambda_1}).$$

<u>Proof.</u> Assume without loss of generality $\delta_1 \ge 1$ (we may rename N and N' otherwise), and for $j=1,\ldots,\delta_1$, let

(43)
$$\tau_{j} = F_{0}^{N_{0}-j+1} \times F_{1}^{N_{1}+j-1} - F_{0}^{N_{0}-j} \times F_{1}^{N_{1}+j}.$$

Since $\tau = \sum \tau_j$, it follows from linearity of * and NS-SI (10) that

(44)
$$\|\tau^*\|^2 \leq \delta_1 \sum \|\tau_1^*\|^2$$
.

Applying Theorem 1 to each summand in RHS (44) completes the proof.

Theorem 3. Let $n = \#\{i | \delta_i \neq 0\} - 1$ be positive (otherwise $\tau^* = 0$), and let $d = \bigvee\{d_{ij} | \delta_i \neq 0, \delta_j \neq 0\}$. Then $\|\tau^*\|^2 \le n \ K(d) \ \Sigma \ \delta_i^2 \wedge_i^{-1}.$

<u>Proof.</u> Given N and N' we construct a sequence of partitions $N = N_0$, $N_1, \dots, N_r = N'$, for some $r \le n$, as follows. To construct $N_1 = (N_{10}, \dots, N_{1m})$, let s be such that $|\delta_s| = \wedge \{|\delta_j| | \delta_j \neq 0\}$, and let t be such that δ_t has opposite sign with δ_s . Let $N_1 = N_1 + \delta_s$, $N_1 = N_1 - \delta_s$ and $N_1 = N_j$ for the other j's. Thus N_1 stays between N and N' coordinatewise and differs from N in two coordinates. Repeating this construction, the process terminates in $r \le n$ steps since each successive N_i identifies at least one more coordinate with N_i . Define

$$\tau_{i} = {\begin{array}{c} m & N \\ \times & F \\ i=0 \end{array}} i-1j - {\begin{array}{c} m & N \\ \times & F \\ i=0 \end{array}} ij, i = 1,...,r.$$

Since N_i differs from N_{i-1} in two coordinates, say s and t, the fact that $(\tau_i g)^* = (\tau_i)^*$ enables us to use Lemma 1 to obtain

(45)
$$\|\dot{\tau}_{i}^{\star}\| \leq \|(F_{s}^{N_{i-1s}} \times F_{t}^{N_{i-1t}})^{\star} - (F_{s}^{N_{is}} \times F_{t}^{N_{it}})^{\star}\|.$$

Applying Theorem 1 to RHS (45), we note that, since each N_i stays between N_{i-1} and N_{i+1} coordinatewise, the denominators in this application of RHS (42) are bounded below by \wedge_s and \wedge_t respectively. Since K is increasing, we further weaken this application of the bound (42) by replacing d_{st} by d. Thus

(46)
$$[RHS (45)]^2 \le K(d) (N_{i-1s} - N_{is})^2 (\frac{1}{\Lambda_s} + \frac{1}{\Lambda_t}).$$

Since $N_{i-1j} = N_{ij}$ except for $j \neq s,t$, RHS (46) is

$$K(d) \sum_{j=0}^{m} \wedge_{j}^{-1} (N_{i-1j} - N_{ij})^{2}.$$

Since $\tau = \sum_{i=1}^{\tau} \tau_{i}$, by NS-SI and the above representation of RHS (46),

(47)
$$\|\tau^*\|^2 \le r \sum \|\tau_i^*\|^2 \le r K(d) \sum_{j} \int_{j}^{-1} \sum_{i} (N_{i-1j} - N_{ij})^2$$
.

Since $\sum_{i} (N_{i-1j} - N_{ij}) = \delta_{j}$ and since $N_{i-1j} - N_{ij}$ are of the same sign for fixed j, the summation w.r.t. i in the last term of (47) is bounded by δ_{j}^{2} . Since $r \le n$ the proof is complete.

Theorem 4. Let F_0, F_1, \dots, F_m be internally connected by chains with successive elements non-orthogonal and let $d = \sqrt{d_{ij} | F_i / F_j}$. Then

$$\|\tau^*\|^2 \leq \frac{1}{2} m K(\check{d}) (\Sigma |\delta_i|)^2 \sum_i \Lambda_i^{-1}.$$

<u>Proof.</u> For any connected graph of finitely many vertices there exists a vertex whose removal leaves the remaining graph connected. We shall rename F_0, \ldots, F_m in such a way that successive removal of F_0, F_1, \ldots leaves the remaining connected. For each i, let t(i) be $\exists t(i) > i$ and $F_{t(i)} \swarrow F_i$.

Given N and N' we consider the partition which differs from either N (if $\delta_0 \le 0$) or N' (if $\delta_0 > 0$) only on the 0-th and the t(0)-th coordinates, where the 0-th coordinate is $N_0 \wedge N_0'$ and the t(0)-th coordinate, compared to that of N or N', is increased by $\left|\delta_0\right|$. By weakening Theorem 3 on both K and the second denominator (1 + the t(0)-th coordinate of the new partition $\ge \wedge_{t(0)} + \left|\delta_0\right| \ge \wedge_{t(0)}$), we see that the square norm of \ast of the difference between the product measures associated with

the two partitions is bounded by

(48)
$$K(\check{d}) \delta_0^2 (\frac{1}{\wedge_0} + \frac{1}{\wedge_{t(0)}}).$$

Iterate the process. Letting $\delta_j^{(i)}$ be the difference in the j-th coordinate at the i-th iteration of this process, we see that $\delta_j^{(i)} = 0$ for j < i and

(49)
$$\delta_{\mathbf{j}}^{(\mathbf{i})} = \delta_{\mathbf{j}} + \sum \left\{ \delta_{\mathbf{r}}^{(\mathbf{r})} \middle| 0 \le \mathbf{r} < \mathbf{i}, \ \mathbf{t}(\mathbf{r}) = \mathbf{j} \right\}$$

for $j \ge i$. We also note that the $\delta_r^{(r)}$ above are disjoint sums of δ 's from $\{\delta_0, \dots, \delta_{j-1}\}$.

Since $\wedge_j^{(i)}$, the minimum of the j-th coordinates for the two partitions at i-th iteration plus 1, is increasing w.r.t. i, the bound corresponding to (48), further weakened by $\wedge_i^{(i)} \geq \wedge_i$, is

(50)
$$K(\check{d}) \left[\delta_{i}^{(i)}\right]^{2} \left(\frac{1}{\wedge_{i}} + \frac{1}{\wedge_{t(i)}}\right).$$

Since each iteration results in reducing one coordinate difference to zero, the process terminates in m steps. By NS-SI as in the proof of Theorem 3, we see that, by (50),

(51)
$$\|\tau^*\|^2 \leq m K(\widetilde{d}) \sum_{i} \delta_i^{(i)}^2 (\frac{1}{\Lambda_i} + \frac{1}{\Lambda_{r(i)}}).$$

The coefficient of $\frac{1}{\Lambda_i}$ in the summation above is, with $\delta_m^{(m)} = 0$,

(52)
$$\delta_{i}^{(i)^{2}} + \sum_{r} \{\delta_{r}^{(r)^{2}} | t(r) = i\}.$$

By (49) and the comment following it, complemented by $\sum \delta_i = 0$, we see that $\delta_i^{(i)}$ and the $\delta_r^{(r)}$ in (52) are disjoint sums of $\{\delta_0, \dots, \delta_{i-1}, \delta_{i+1}, \dots, \delta_m\}$. Thus the maximum of (52) over

all δ is $\leq (\frac{\sum |\delta|}{2} - \delta_i^+)^2 + (\frac{\sum |\delta|}{2} - \delta_i^-)^2 \leq \frac{1}{2} (\sum |\delta|)^2$, and the proof is complete.

The hypothesis of Theorem 4 fails to hold if and only if θ is disconnected. Then either (i) there exists a component, i.e. a connected set of factors, whose N-multiplicity differs from its N'-multiplicity, in which case it follows easily that $\|\tau^*\| = 1$, or (ii) every component has identical N- and N'-multiplicity, in which case $\|\tau^*\|$ is simply related to the $\|(\tau_c)^*\|$ corresponding to the separate components:

(53)
$$\bigvee_{c} \| (\tau_{c})^{*} \| \leq \| \tau^{*} \| \leq \sum_{c} \| (\tau_{c})^{*} \|,$$

where the second inequality follows from Lemma 1 and the triangular inequality.

BIBLIOGRAPHY

- British Association for the Advancement of Science (1937).

 Mathematical Tables, Vol. VI, Bessel Functions, Part 1,
 Functions of Order Zero and Unity. University Press,
 Cambridge.
- Cogburn, Robert (1965). On the estimation of a multivariate

 location parameter with squared error loss. Bernoulli (1723),

 Bayes (1763), Laplace (1813), Anniversary Vol., 24-29.

 Springer-Verlag.
- _____ (1967). Stringent solutions to statistical decision problems. Ann. Math. Statist. 38, 447-464.
- Ferguson, Thomas S. (1967). <u>Mathematical Statistics</u>. Academic Press, New York and London.
- Fox, Richard (1968). Contributions to compound decision theory and empirical Bayes squared error loss estimation. RM-214, Department of Statistics and Probability, Michigan State University.
- Gilliland, Dennis C. and Hannan, James F. (1969). On an extended compound decision problem. Ann. Math. Statist. 40,
- Halmos, Paul R. (1950). Measure Theory. D. Van Nostrand, New York.
- Hannan, James F. (1953). Asymptotic solutions of compound decision problems. UNC Institute of Statistics Mimeo Series No. 68.
- Hannan, James F. and Huang, J.S. (1969a). Equivariant procedures in the compound decision problem with finite state component problem. RM-237, Department of Statistics and Probability, Michigan State University.
- Hannan, James F. and Huang, J.S. (1969b). A stability of symmetrications of product measures with few distinct factors. RM-238,

 Department of Statistics and Probability, Michigan State
 University.
- Hannan, James F. and Robbins, Herbert (1955). Asymptotic solutions of the compound decision problem for two completely specified distributions. Ann. Math. Statist. 26, 37-51.

- Hannan, J.F. and Van Ryzin, J.R. (1965). Rate of convergence in the compound decision problem for two completely specified distributions. Ann. Math. Statist. 36, 1743-1752.
- Horn, Susan Dadakis (1968). The optimality for compound decision problems. Tech. Report No. 10, Department of Statistics, Stanford University.
- James, W. and Stein, Charles (1961). Estimation with quadratic loss. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 361-379. University of California Press.
- Johns, M.V., Jr. (1967). Two-action compound decision problems.

 Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1, 463-478.
 University of California Press.
- National Bureau of Standards Applied Mathematics Series 55 (1964).

 Handbook of Mathematical Functions, U.S. Government Printing
 Office, Washington, D.C.
- Oaten, Allan (1969). Approximation to Bayes risk in compound decision problems. RM-233, Department of Statistics and Probability, Michigan State University.
- Robbins, Herbert (1951). Asymptotically sub-minimax solutions of compound decision problems. Proc. Second Berkeley Symp. Math. Statist. Prob., 131-148. University of California Press.
- Robbins, Herbert (1962). Some numerical results on a compound decision problem. Recent Developments in Information and Decision Processes. The Macmillan Co., New York (1962), 56-62.
- Samuel, E. (1965). On simple rules for the compound decision problem. J. R. Statist. Soc. (B), 27, 238-244.
- Samuel, E. (1967). The compound statistical decision problem.

 Sankhya 29, 123-140.
- Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 197-206. University of California Press.
- Stein, Charles (1966). An approach to the recovery of inter-block information in balanced incomplete block design,

 Research Papers in Statistics, Festschrift for J. Neyman, 351-366.

 John Wiley & Sons, London, New York and Sydney.
- Swain, Donald D. (1965). Bounds and rates of convergence for the extended compound estimation problem in the sequence case. Tech. Report No. 81, Department of Statistics, Stanford University.

- Suzuki, Giitiro (1966a). Asymptotic solutions of the compound decision problem for many completely specified distributions. RM No. 1, The Institute of Stat. Math.
- Suzuki, G. (1966b). Discrete compound decision problem. Ann. Inst. Stat. Math. 18, 127-139.
- Van Ryzin, J.R. (1966). The compound decision problem with m x n finite loss matrix. Ann. Math. Statist. 37, 412-424.
- Wijsman, Robert A. (1968). Review of Thomas S. Ferguson: Mathematical Statistics. Ann. Math. Statist. 39, 2163-2167.

