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ABSTRACT

ASSESSING UNCERTAINTY IN MEDICAL DIAGNOSIS

BY FOUR PROBABILITY MODELS

BY

Raywin Rufus Huang

Uncertainty plays a pernicious role in medical

diagnosis. This dissertation defines uncertainty as not

having knowledge of the relational structure of the disease
 

outcome and a set of symptoms in the true state of nature.

Conditional probability is used as the fundamental measure

of uncertainty. Four probability models, namely (1) the

Bayesian model, (2) the Binary Regression model, (3) the

Logistic Discrimination model, and (4) the Entropy Minimax

Pattern Discovery model, are presented as well as their

mathematical algorithms for generating the conditional

probability of a disease outcome given a set of symptoms.

An algorithm is also developed to simulate different classes

or levels of uncertainty within the structure of the diag-

nostic problem. Each model is applied to eachclass to

derive its parameters and each model is cross-validated

to an equivalent sample for the purposes of (l) determining

the stability of each model's estimated parameters in terms

of sensitivity, specificity, and predictive value, and (2)
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to model the clinical situation where the physician is

cross-validating his set of strategies to new cases on the

basis of prior information. Each model is also evaluated in

terms of a utility function, losses and gains. Some special

classes of the uncertainty structure are also simulated and

each model is evaluated by the same methodology and with the

same evaluation indices. The models are then applied to

different relational structures and are then evaluated in

terms of sensitivity, specificity, predictive value and

utility function. These results are then compared to prior

findings. The findings of this dissertation are as follows:

1. Overall, sensitivity increases for all models as

the correlation with the disease outcome increases.

2. There is a "hump" or convex effect for sensitivity

for all models except the Bayesian (B), Bayesian with the

Bahadur's expansion (BB), and the Entropy Minimax Pattern

Discovery (EMPD) models, in situations where the symptoms

have a low correlation with the disease outcome. That is,

the maximum sensitivity is not when the intercorrelation

between the symptoms is greatest but when the symptoms are

moderately intercorrelated! This phenomenon did not appear

in situations where the symptoms have a high correlation

with the occurrence of the disease. In fact, sensitivity

increases as the intercorrelations increase under the

latter situation.
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3. The values for sensitivity did not differ among

models in situations where highly interrelated symptoms

are also highly related to the occurrence of the disease.

In other words, when the relational structure is highly

correlated, it does not matter which model one uses if

sensitivity is chosen as a criterion for selection models.

4. The "pit" or concave effect of specificity across

binary regression models occurs when, given those situations

where the symptoms are highly correlated with the disease

outcome, the intercorrelations between the symptoms increase.

This means that specificity is at a minimum when the

symptoms are moderately related.

5. The "hump" or convex effect is also found for

predictive values in the same way as the sensitivity index,

that is, when the symptoms have a low correlation with the

occurrence of the disease.

6. With the presence of a suppressor symptom, it does

not matter what measure one uses as a criterion for select—

ing models as all models perform the same for all prediction

efficiency indices.

7. If a model is chosen with the criterion as having

the best sensitivity, it is at a cost of losing specificity

and vice versa. In other words, there are ng_models that

have the best of both indices for all classes considered in

this dissertation. The statement holds when one looks
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across classes and within classes of problems. This also

means that there is no single model that performs consis-

tently better for each class or across classes in terms of

sensitivity and specificity.

8. A decision function analysis was performed.

Penalty (negative) weights were given for the two diagnostic

errors (i.e., Type I and Type II) and no credit was given to

the correct diagnosis. The binary least square model (BLS)

and the binary weighted least square model (BWLS) showed the

smallest loss when the symptoms had a low correlation with

the disease's occurrence but themselves had high intercor-

relations. However, when considering gains, with credits

given to the correct diagnosis, but the same penalty weights,

the Bayesian model (B) had the most gain when the intercor-

relations among the symptoms were 1ow but the correlation

between the symptoms and outcome was high. The logistic

discrimination model (LD) had the most gain when the symp-

toms had a low correlation with each other but had a high

correlation with the occurrence of the disease outcome.

The LD model also had the most gain when the symptoms were

moderately interrelated with each other and the symptoms

had a low correlation with the disease. If one disregards

the intercorrelation among symptoms, the LD model had the

highest gain whether the symptoms had a high or low corre-

lation with the occurrence of the disease. That is, the
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best model to use to maximize gain in the absence of

knowledge about the relationship among and between symptoms

and disease outcomes, is the LD model.

Implications and applications of these findings to

diagnostic problem solving are also presented.
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CHAPTER I

INTRODUCTION

Uncertainty is a root of indecision. It is like a

disease to the process of decision making and it curtails

human performances. Swet (1961) found that performance in

signal detection by human subjects decreased as the amount

of uncertainty increased. Uncertainty, however, is defined

in many ways. Webster (1974) defined it as a quality or

state of being indefinite, indeterminate, problematical,

dubious and fitful. Bowman (1964) defined it as a situ-

ation characterized (either objectively or subjectively)

by incomplete predictability of alternative events.
 

Cohen (1973) distinguished two categories of

uncertainty, namely the intrinsic and the extrinsic.
 

 

Intrinsic uncertainties arise from imprecicion, ambiguity,

and limitation of the data on which the decision is to be

made. Extrinsic uncertainties refer to the failure on the

part of the data interpreter in translating the data,

otherwise known as "observer error." Kaplan (1964), on

the other hand, defined two different kinds of uncertainty.

One kind is £i§k_where there is a knowledge of a law that

operates in nature but involves a purely random element.



The outcome, despite a given probability, remains unassured.

The other kind of uncertainty is referred to as statistical
 

ignorance where the law of Operation itself is unknown.
 

Ignorance arises not necessarily because of non-specifiable

circumstances but rather because there is a lack of the

occurrence of enough significant outcomes so that deter-

ministic probabilities can be assigned to these outcomes.

Kaufmann (1968) classified levels of uncertainty according

to the degree of knowledge available. One level is £227

structural uncertainty, that is, when the states of the
 

system are unknown at any point in time. Structural uncer-
 

tainty occurs when the state of the system, despite being

known in general, is not known at any given time. The

condition when the states of the system with its laws of

probability are known at any time, is called chance.

Certainty is a state where the system is known and it
 

can be described at any point of time.

This dissertation defines uncertainty as not having

the knowledge of the structure of the relationship between
   

 

an outcome and certain sets of conditions and the inter-
 

relationships among_the attributes in the condition
   

(Figure 1.1). The term condition is referred to as a

universal space in which the attributes are its elements.

Predictors, indicators, attributes, independent variables,

and exogeneous variables will be used synonymously with
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symptoms and/or signs whereas dependent variable, the

criterion and endogeneous variables will be used synony-

mously with the disease outcome. The terms variables or

attributes will refer, in general, to both disease outcome

and symptoms. The term relational structure will refer to

the relations between the disease outcome and the symptoms

and the interrelations among the symptoms.

One underlying assumption of this definition of

uncertainty is that there exists a well defined and

structural deterministic relationship between an occurrence

of a disease and certain sets of conditions in the true

state of nature. This has two implications. One implying

that certain sets of conditions precede the disease and are

causative agents to the disease outcome. The other impli-
 

cation is the set of conditions are subsequent to the
 

disease outcome and are purely symptomatic in nature.
 

This stipulated definition of uncertainty also leads to

the formulation of the uncertainty principle which states
 

 

that only when full knowledge of this (true state of nature)
  

relational structure is obtained, can the outcome of any
  

diseases be stochastically predicted without error with
 

reference to the given known conditions. Hence, when only
  

partial or imperfect knowledge of this relational structure

is obtained, uncertainty arises and thus leads to random

guesses.



The paradox of this principle is that even when full

knowledge is gained, which demands the collection of

exhaustive information relating to the disease, the

prediction of a specific disease outcome is still subject

to error. This is due to the complex relations among

variables as illustrated in Figure 1.2. For instance,

symptom S is related to both disease D1 and D2 (denoted

by SD1 and SDZ)° The absence of the symptom, S, is also

related to the outcome of both of these diseases denoted

by SDl and SDZ. Adding to this complexity of relationship,

the presence of the symptom is not necessarily related to

the outcome of either Dl or D2 denoted by S51 and 852.

Hence, the presence or absence of the symptom, 8, could

not determine exactly the occurrence of either D1 or D2

for a single case. Error is, therefore, an inescapable

consequence. Nonetheless, this principle holds over a

large number of cases. That is, when the relational

structures are known, the prediction of the proportion
 

of cases having the disease will be without error. But

it should be noted that this is accomplished only when

full and perfect knowledge is obtained.

This imperfect and incomplete knowledge of the

relational structure is caused by the complexity of the

relational structure itself which leads to the difficulty

of obtaining this knowledge as Hammond et a1. (1975) noted:



Knowledge of the environment is difficult to

acquire because of casual ambiguity and because

of the probabilistic intangled relations among

environmental’variables. (emphasis mine)
 

In spite of this difficulty, partial knowledge of

the environment and its relational structure can still

be gained from samples from the complex state of nature.

These samples constitute imperfect information about the

universal relational structure. This sample information,

unfortunately, leads to inferences about the state of

nature in probabilistic terms such as "likely," probable,"

"perhaps," or "maybe" which constitute many human beliefs.

Inference of the true state of nature becomes then an art

of estimation. These probabilistic beliefs prompted

Tversky (1974) to describe uncertainty as an essential
 

element of the human condition. It should be noted that
 

prediction and inferences are used synonymously.

The ambiguity of the structural relationship of

the true state of nature constitutes uncertainty, and

this ambiguity is due to partial knowledge arising from

insufficient information. This, in turn, is primarily due

to the complexity of the true relational structure and

secondarily due to methodological limitations in obtaining

full and complete information about the structure.



Uncertainty in Medicine
 

Disease is defined as literally meaning "lack of ease"

or the pathological condition of the body that presents a

group of symptoms peculiar to it and which sets the condi-

tion apart as an abnormal entity differing from other normal

or pathological body states (Taber, 1970) and symptom simply

denotes the manifestation of the disease. Medical diagnosis

is then an art of identifying the correct disease with

reference to certain set of symptoms as Wakefield (1955)

remarked: "Diagnosis is the art and the science of

recognizing the presence of the absence of disease from

signs, symptoms. . . ."

The Dorland's Illustrated Medical Dictionary defined
 

diagnosis as the art of distinguishing one disease from

another.

In a different perspective, medical diagnosis is also

an art of probabilistic inferences or prediction. "Medicine

is a science of uncertainty and an art of probability," was

the dictum of Sir William Osler (Bean, 1950). Lusted (1968)

further remarked the following: "The uncertainty about the

correlation of signs, symptoms and disease makes medical
 

diagnosis a matter of probability."

Engel and Davis (1963) distinguished five orders

(levels) of medical uncertainty with variation of etiology

within each order. They are presented as follows:



1. Diagnosis of the First Order: the diagnostic

situation where the disease is considered to be

well defined and the etiology of the disease is,

in most instances, clear and the disease picture

does not vary much from person to person or from

environment to environment.

2. Diagnosis of the Second Order: diagnosis with

well defined etiology but the disease picture

has greater variability from patient to patient

and from environment to environment.

3. Diagnosis of the Third Order: the diagnosis is

clearly descriptive and the etiology is unknown.

4. Diagnosis of the Fourth Order: .the general type

of reaction is recognized but the specific cause

is not known and individual and environmental

variation occurs.

5. Diagnosis of the Fifth Order: the diagnosis is

based on the constellation of signs and symptoms

which comprise the disease picture. However,

the etiology of the disease is unknown.

This dissertation will consider Engel and Davis' last

order of diagnostic certainty.

Engel and Davis (1963) concluded their thesis by

stating the following:

Thus, inherent in every diagnosis is a factor

of uncertainty, greater in some and less in

others. These uncertainties are partially

related to our imperfections of knowledge

concerning health and disease7_ (emphasis

mine)

  

Consider the situation where a patient is at the

physician's office showing a set of symptoms or signs.

The physician has a prior knowledge of the disease as

represented in a disease-symptom matrix, something like

Figure 1.3, with p symptoms and N patients. The ones and
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_ Condition

(Disease) “———_——‘

Outcome S
l 52 S3 0 Q 0 Sp

l

Patient 1 l ' l 0 0 l

I

l

Patient 2 0 : 0 l 1 0

l

l

I

l

I

l

. . ' . .

I

Patient N l : l O 1 l 
Figure 1.3 Representation of the Physician's Prior Knowledge

of a Disease With Its Symptom.

zeroes represent the presence or absence of the disease or

symptoms. It is worthy to note that only two possible
 

disease outcomes will be considered in this dissertation,

namely, the presence of a disease, denoted by D and the

absence of the disease, denoted by 5, and that emphasis

is placed on discrete symptoms. Such form of diagnosis

is referred to as symptom diagnosis (Rinalde et al., 1963)
 

or a diagnosis of the fifth order. The physician, based

on this prior information can proceed with the medical

diagnosis in two possible ways. One way is by pgobabilistic
 

explanation and may be schematized as follows:
 

From the matrix, the probability for disease D

to have symptom or symptoms S is high. The

patient has symptom or symptoms S, (therefore

it is highly probable that) the patient has

disease D.
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This is known as the laws pf ppobabilistic form
 

(Hempel, 1966); the explicans implies the explicandum

not with deductive certainty but with near certainty or

with high probability.

The other way is by pattern recognition: that is
 

to say, the selection of a number of possibilities which

come nearest to explaining the signs or symptoms. The

process of matching the disease with symptoms was noted

by Harvey and Bordley (1970). Alternatively, the physician

considers the process which enumerates in orderly fashion

the various diseases which give rise to particular signs

or symptoms .

These two methods represent two diagnostic paradigms

but the final diagnosis, by either method, is still

characterized in the form of "odds," "risk," and "chances."

Medical uncertainties undoubtedly play a detrimental role

in human welfare. It is a challenge to assess these

uncertainties in the hope of reducing them.

The Structure of Uncertainty

Since the relational structure in the true state of

nature is unknown, the main problem is how can "uncertainty"

be conceptualized such that it can be systematically and

formally investigated? The key to this problem is by

theoretically partitioning the relational structure into
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possible exhaustive states. This is done by arbitrarily

dividing the degree of relationship among attributes into

categories and likewise the degree of relationship with

the disease. Figure 1.4 shows one way of partitioning

uncertainty into these possible classes.

The number of dividing levels is totally at the

discretion of the investigator. As the number of levels

increases, the structure of uncertainty is increasingly

defined. The mixture of the classes also constitutes

states of uncertainty.

Intercorrelation of the Symptoms
 

 

 

 

Low Medium High

Low I II III

Correlation with .

the Disease Medium IV VI VI

High VII VIII Ix

     

Figure 1.4 The Structure of Uncertainty.

Hence, uncertainty is "captured" into a well defined

bounded framework, making assessment possible.
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Quantifipation of Uncertainty
 

Bearing in mind with the above uncertainty structure,

a step is taken further to derive a quantitative measure.

Since the occurrence of any event cannot be determinis-

tically defined, the occurrence of any event can only be

stochastically derived. This means that with certain sets

of a known condition, the occurrence of an event appears

only n% of the time or n times out of a hundred. The

(lOO-n)% times that the event does not occur with relation

to the set of conditions is either due to imperfect or

partial knowledge from insufficient information or due

to error.

In deriving a quantified measure for uncertainty,

consider a disease, D, has n number of cases in a popu-

lation of size N. Assuming equally likely outcomes, the

probability of D occurring in this pOpulation is simply:

P(D)==n/N (1)

For a given sign or symptom, S, the probability that

D will occur conditioned upon the occurrence of S is:

p(n|3) = P(DnS)/P(S) (2)
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where P(DnS) is the probability that both the disease and

the symptom will occur and P(S) is the probability that S

will occur in the population of size N. The probability,

P(DIS), is known as the conditional probability or posterior
  

probability. In this dissertation, it will be referred to

as diagnostic probability. Equation 2 can be elaborated by
 

the following 2 x 2 matrix as illustrated in Table 1.1:

Table 1.1

The Possible Distribution of Cases by Both

Disease and Symptom Outcome

 

 

Symptom S

l 0

Disease 1 n1 n2 4

2n=~1

D 0 n3 n4 i=1

    

where n1 is the frequency or number of cases having the

symptom and the disease, n2 is the number of cases having

the disease but no symptom, n3 is the number of cases having

the symptom but not the disease, and n4 is the number of

cases not having either the symptom or the disease. Hence,

assuming equally likely events, the above probabilities can

be written as:
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P(DnS) = nl/N (3)

P(D) = (nl+n2)/N (4)

P(S) = (n1-+n3)/N (5)

Hence, equation (2) can be written as follows:

P(DIS) = nl/(nl+n3) (6)

Extending to p number of signs or symptoms, the

probability that D will occur conditioned upon the

occurrence of the symptoms will be:

P(DISl,S .,Sp)==P(DnS nS n...nSp)/P(SlnS1 2 n...nSp) (7)
2"' 2

where P(51“32”"'“Sp) is the probability that the symptoms

jointly occur. The left side of the term of equations (2)

and (7) can be interpreted as the probability of occurrence

of the disease given the occurrence of the symptom or p

symptoms. Let 5 and SE denote the absence of the disease

and the ith symptom, respectively. Then P(DIS) would be

the probability of the disease's not occurring given the

absence of the symptom. Likewise, for P(DISl,SZ,...,Si...Sp)

would be the probability of the disease's not occurring

given the occurrence of (p-l) symptoms and the absence

of the ith symptom. It is worthy to note that for p number

of signs or symptoms, there will be 2p number of possible

combinations or patterns. Let k=1...2p denote one of the
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possible patterns and let ék denote the vector of the

pattern, then equation (7) can be rewritten as:

pmlggk) = P(Dm_(k)/P(§k) (8)

With more than one symptom, the situation can be

presented as in Table 1.2. The probability that the disease

will occur given the 5k pattern and assuming equally likely

events is:

P(Dlxk) = mlk/(mlk-thR) (9)

The conditional probability of the symptom(s) given

the disease, P(SID) or P(kuD) can be written for a single

symptom as:

P(SID) = P(SnD)/P(D) (10)

or in the case of p symptoms as:

P(xle) = P(xknD)/P(D) = mlk/Ml (11)

These probabilities are used to derive the diagnostic

probabilities with respect to the base rate of the disease

which will be presented in the following chapter. P(SID)

is also known as the likelihood probability.

The conditional probabilities derived from equations

(2) and (8) are exact probabilities. They are derived

directly from allocating observed cases according to the

disease outcome and the symptom pattern outcomes.
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Table 1.2

The Frequency Distribution of Cases by Disease

Outcome and Symptomatic Patterns

 

 

 

 

 

Disease

Symptom Pattern D '5

51 = (Sl'SZ'°"'Sp) m11 m21

£2 = (Sllszl'°°lsp) mlz “122

5k ‘ (Sl'SZ'°"'sp) m1k m2k

5h = (Sl'SZ'°'°'Sp) 1h 2h

M1 M2

 

111..

13

3
H
.

II the total number of cases for the ith disease;

h = 2P where p is the number of symptoms.

the number of cases having the ith disease outcome

and the jth pattern;

and
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The Diagnostic Situation and the

Diagnostic ProBIem

 

 

There are at least two paradigmatic ways of diagnosing

under uncertainty: (1) the probabilistic explanation and

(2) pattern recognition.

The two paradigms can be illustrated as follows.

Probabilistic explanation can be seen in a physician's

checking off the diseased and non-diseased cases in a

set of new patients based on his prior experience and the

manner used to integrate this information or the method

used for diagnosis. Pattern matching can be seen in the

attempt of a disease clinic to detect the high risk group

for a particular disease with respect to certain symptoms

or signs. This latter situation is known as mass screening.
 

One example of mass screening would be the detection of

breast cancer.

With reSpect to these two paradigms, the crucial

question to be raised is, which way i§_better? Better
 

will be considered in terms of diagnostic accuracy and

in terms of utility, losses or gains in dollars, or

mortality.

The Purpose and Strategy of the Study
 

The purpose of this dissertation is to answer this

question of diagnosing under uncertainty through quanti-

fication methodology. Quantitative methods or probability
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models are chosen because they are a set of systematic

and formal procedures capable of deriving an Optimal

solution from a complicated entanglement of variables

in the true state of nature.

This dissertation will investigate the performance

of four different statistical models in assessing uncer-

tainty. The paradigms and associated probability models

are:

 

Paradigm Models

A. Probabilistic Bayesian

explanation

B. Pattern l. Binary Regression

recognition a. Ordinary Least Squares

b. ‘Weighted Least Squares

c. Ridge Regression

d. Weighted Ridge

2. Logistic Discrimination

3. Entropy Minimax Pattern

Discovery

The strategy of this study begins by simulating

the structure of uncertainty by a set of mathematical

algorithms shown in Figure 1.4. Each simulated class

with a fixed population is randomly divided into equal

halves, one representing the prior information available

and the other half representing the "unknown." Although

the two halves have the same relational structure statis-

tically, the second half is still referred to as the
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"unknown." Statistical models are then applied to the

first sample to derive its parameters and these parameters

are used in turn to predict the outcome in the second

"unknown" sample. This latter procedure is known as

cross-validation. This step will assess the stability
 

of the estimates from a statistical point of view. It is

also analogous to the practice of medicine where a physician.

is constantly cross-validating his decision algorithms when

a conclusion is reached after examining two patients pre-

senting with the same sign and symptoms. How well each

model cross-validates is measured by a set of efficiency

indices. The values of each index will indicate the

accuracy and error of each model. Each model is also

evaluated in terms of utility or worth. The efficiency

indices and utility measures are then compared with each

other to determine the best model under different degrees

of uncertainty. The models will also be examined under

different relational structures between the two halves of

each pOpulation.

The above procedure will deal with the following

questions.

1. Which probability model has the best performances

in terms of efficiency indices and utility across

 

classes pf uncertainty?
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2. Which probability model performs the best in terms

of efficiency indices and utility within each
 

class pf uncertainty?
 

The remainder of this dissertation is organized in the

following manner. Chapter II presents the description and

derivation of the probability models used for this study.

Chapter III derives and discusses the algorithm used to

generate the simulated data employed in deriving the

estimates for each model. Chapter IV presents the data

analysis and results of applying each probability model

for each degree of uncertainty. The analysis is in terms

of efficiency indices and utility functions. The models

are then cross-validated with the same and with different

relational structures between samples. Chapter V presents

general findings and recommendations for further research.

An implication of this study to decision making in a real

medical setting is also discussed in Chapter V.



CHAPTER II

PROBABILITY MODELS

The probability models which follow the two main

paradigms of medical diagnosis to derive the diagnostic

probabilities are selected in this thesis are as follows:

 

Paradigm Models

A. Probabilistic Bayesian

explanation

B. Pattern l. Binary Regression

recognition a. Ordinary Least Squares

b. Weighted Least Squares

c. Ridge Regression

d. Weighted Ridge

2. Logistic Discrimination

3. EntrOpy Minimax Pattern

Discovery

A description of each model within each paradigm is

now presented.

Probabilistic Explanation
 

Bayesian Model (B)
 

This model was originated by Rev. Thomas Bayes (1763)

and is simply formulated as:

22
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P (D) P (sin)
_ _ 2.1

Punp(shn-+Punptshn ( )
P(DIS) =

where the probabilities are explained in the previous

chapter. In the situation of determining the diagnostic

probability when the symptom, S, is not present. The

probability becomes:

IND)PdflD)
 P(Dls) = . (2.2)

Punpt§hn-+Pdip(§fii

However,

p(§|p) = l-P(SID) (2.3)

and

p(§|5) = 1=p(s|E) (2.3.1)

so that equation (2.2) can be rewritten as:

P(Dhn = P(D)Cl-P(Shfl) . (2.4)

P(D) (1-P(s|D)) +p(‘6) (1 -p(s|1'5))

For convenience in computation, a new variable, a, is

defined to associate with the symptom. The new variable,

a, will take a value of 1 if the symptom is present and 0

if it is absent. Hence, equation (2.1) and equation (2.4)

are combined as follows:

Pans = pwlmpmbn+41-aH1-Pmb») (25)

P(D) (aP(SID)+(1-a) (1-P(SID))+P(D) (aP(S|3)+(1-a)(1-P(SI3))
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In extending to the situation of two symptoms,

equation (2.1) becomes:

Punp(s hnp(s hms )

P(Dlslnsz)= 1 _? ¥_ __ (2.6)

P(D)P(SllD)P(SZIDnSl)+P(D)P(SllD)P(SZIDnsl)

 

and for p number of symptoms and letting Dl==D and D2==D,

the formula becomes:

P(D1)P(sllpl)P(52|Dlnsl)...P(splp ns n...ns )

  

 

 

_ l 1 p-l

P(Dl|slnszn...nsp) — 2

i:lP(Di)P(sllpi)P(szIpinsl)...P(splpinsln...nsp_1)

(2.7)

When the symptoms are independent, equation (2.7)

becomes:

p(D )P(s In )P(s In )...p(s In )
_ 1 1. 1 2 1. p 1.

P(Dllslnszn...nsp) — 2 (2.8)

'5 P‘Di’P(51lDi’P(52|Di)"'P(Sp|Di)

1-1

or simply written as:

P

P(D1)jgl p(sjlol)

P(Dllslnszn...nsp) = 2 p (2.9)

2P(D.) IIP(S,hk)

i=1 1 j=1 3

Similarly, when the symptoms are not present, the

diagnostic probability becomes:
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p

P(Dl) jgl (l-P(Slel))

P(91I51“52“°°°“Sp) = 2 p I (2.10)

2 P(D.) H (1-p(s. 0.))

i=1 1 j=l 3 1

In combining equation (2.9) and equation (2.10), let

A denote the complete set of aj (i.e., A = {al,a2,...,ap}).

The diagnostic probability becomes:

P

P(Dl) H ((ajP(Sj|Dl)-+(1-aj)(l-P(Slel)))

P(nllA) = 2 p (2.11)

aieA 2 PUL)H

1

In deriving the diagnostic probability for various

combinations of the symptoms, say 5k, the formula can be

written simply as:

ptp )P( In )
_ 1 5k 1

P(Dilék) ’ 2

.2 P‘Di’P‘EkIDi’

1=l

 

(2.12)

The Bayesian model has two underlying assumptions.

They are:

1. Independence among the symptoms--the occurrence of

one symptom is not related to other symptoms.

2. The set of diseases, D in this dissertation
it

i=1,2, is exhaustive and mutually exclusive—-

the diseases are distinct from each other.
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In adjusting the model to correlated symptoms, Scheinok

(1972) proposed a solution by using the Bahadur's distribu-

tion (1961) and this is presented as follows. Let P(xk)

denote P(Dlxk). Then for p number of independent symptoms,

P(xk) becomes:

p Xi l‘Xi

P(xk) = H cl (l-—a) (2.13)

i=1

=IN(§k)

where ai is the marginal probability or base rate for

symptom i and xi takes a value of either "1" or "0"

depending on the presence or absence of the symptom,

respectively. Let:

t
2.1 = (xi —ai)/(ai(l -ai)) (2014)

where i=1...p and Z1 becomes the standardized variable for

the ith symptom with the following property:

2 ~ N(0, 1).

Then the following correlation parameters of second, third,

..., pth order can be defined as:

r.. = E (2.2.)

13 P 1]

rijh= Ep(zizjzh)
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where Ep denotes expectation with respect to the

distribution of P(xk) which is presented as:

P(gk) = P' (5k)f(xk) (2.15)

where

z (2.16)f(_)_gk) = 1 +2 ri,z.z.+ 2 rijkzizjzk+”'+2r1,2...nzlzz°°' p

i<j l 3 i<j<k

From Table 1.1, the probability that the pattern 5k given D

is estimated by:

P(Ele) = MIR/Ml = ck (2.17)

Bailey (1965) suggested an alternative estimator as follows:

P*(§k|D) = (mlk-+1)/(Ml-+2) = a; (2.18)

Then in estimating the correlations for D, the following is

used:

M1

rij = l/Mlg=1 zilzjfi

M1

rijk = 1/M1£:1 zizzjlzkt

M1

r12...p = l/Mliil 21222£°°°zp£
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These correlation estimates are then substituted into

equation (2.16) and the probability estimates into equation

(2.14). P(xk) is derived and this is substituted into

equation (2.12) to obtain the desired diagnostic

probability.

These computations can become tedious even with a small

number of symptoms. Davies (1972), however, demonstrated

that with correlated symptoms, the diagnostic probability

is simply the proportion of patients having the disease,

out of the total having the symptom pattern, xk, which is

the exact formula of equation (9) in the previous chapter.

Further references on the Bayesian model and its

application can be found in studies by Warner et al. (1961),

Fraser and Franklin (1974), Overall et a1. (1963), Lusted

(1968), Vanderokas (1967), Barnoon and Wolfe (1972),

Cornfield (1967), Hall (1967), Parker (1967), Schmidt

(1971), and Gustfatason (1969).

Pattern Recognition
 

Binary Regression

Ordinarnyeast Squares (BLS). For p number of
 

symptoms, the binary regression model is formulated as

follows:

Y. = a+ 2 b.S,.+e. (2.19)
1 j=l j 1
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where

Y. = the disease of the ith patient (i=1,...,N) and

takes on a value of one or zero depending on

the presence or absence of the disease outcome,

respectively;

a = constant term;

b. = regression weight or coefficient for the jth

symptom;

S.. = the jth symptom for the ith patient (j=l,...,p)

and it takes on a value of one or zero depending

on the presence or absence of the symptom for the

ith patient, respectively; and

e. = random error of the ith patient with the

following property:

e ~ N(0,cz).

The matrix formulation of the binary regression model is

as follows:

Y = $3 + E (2.HL1)

where

Y = vector of disease outcome of ones and zeroes of

dimensions N x l;

S = matrix of symptoms with ones or zeroes of

dimensions N x (p-il) including the constant

term;

B = vector of regression parameters, including the

constant term, of dimensions (p-tl) x l; and

E = vector of random errors of dimensions N x l with

the following property;

E ~ N(0, 102)
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The objective of the binary regression model is to

minimize the sum of squared errors, E'E. This is done by

reformulating equation (2.19.1) as:

E = Y - SB. (2.19.2)

Premultiplying both sides of equation (2.19.2) by its

irrespective transpose to get positive squared errors,

the above equation becomes:

E'E (Y-SB)'(Y-SB)

Y'Y-2Y'SB+B'S'SB (2.19.3)

Differentiating equation (2.19.3) with respect to B and

setting the resultant matrix equation equal to 0 yields

BE'E
TBS—'- = -zs'y +ZS'SB = 0 (2.19.4)

Replacing B by p to denote an estimated parameter, the

previous step provides the normal equations as follows:
 

(s'S)p = s'y (2.19.5)

If the p normal equations are independent, (S'S) is non—

singular, and its inverse, (S'S)-1, exists. Then equation

(2.19.5) can be rewritten as:

g = (s'S)'ls'Y (2.19.6)
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The solution E has the following properties:

1. It is an estimate of B which minimizes the sums

of squares error E'E irrespective of any distri-

butional prOperties of the errors.

2. The elements of p_are linear functions of the

observations Y1, Y2,...,Y and provide unbiased
n

estimates of the elements of B, irrespective of

distributional properties of the errors.

The procedure from equation (2.19.2) to the derived estimate

2 in equation (2.19.6) is known as the ordinary least
 

sguares procedure. Since both the disease outcome and

symptoms take on value of ones or zeroes, Haase (1976)

found that the prediction outcome (Y) which is derived

from (2.19.1) as:

§==s p

or

I = b0.+s*2f

where:

S* = a N x p matrix of symptoms;

b = estimated constant term; and

b* = a pxl vector of estimated regression weights

without the constant term,

is in fact the diagnostic probability. Hence, for a given

pattern, say xk, the diagnostic probability is given by:

mung) = b0+b_*§k . (2.20)
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It is very important to note at this point that the

estimated diagnostic probability's value is highly

dependent upon the values of the estimated regression

weights. These weights are derived from the matrix (5'8)-1

and vector S'Y.

The ordinary least squares solution to the binary

regression model is inappropriate when the errors have

unequal variances or are intercorrelated. In the former

case, the variance-covariance matrix of the errors is a

diagonal matrix with unequal diagonal elements. In the

latter case, the off-diagonal elements of the variance-

covariance matrix are non—zero values so that the matrix

is still symmetric but no longer diagonal. Weighted least

squares with a properly estimated variance-covariance matrix

can be used to correct for either or both of these problems.

For cases in which the observations are highly inter-

correlated, or multicollinear, the matrix (S'S) approaches

singularity. In such situations, the variances of the

estimated regression weights become highly unstable,

resulting in a highly unstable binary regressiOn equation

which is sensitive to changes in the data set. Ridge

regression is an appropriate technique to use in this

situation.

In some instances the estimated diagnostic probability,

P(Dlxk), can become greater than one, an overestimate, or
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become less than zero, an underestimate for all three

forms of binary regression. As noted earlier, the values

of the estimated diagnostic probability depend on the values

of the estimated regression weights which are also subject

to underestimation and overestimation. In either case, the

diagnostic probability is reset to one if it is greater than

one and reset to zero if it is less than zero.

The description of the two forms of solution to the

ordinary least square binary regression will be presented

in the following two sections. Further reference on the

ordinary least squares binary regression can be found in

Draper and Smith (1966), Cohen and Cohen (1975) and

Kerlinger and Pedhazur (1973). References on the appli-

cation of the binary regression model in medicine can be

found in Feldstein (1966) and Elwood and Mackenzie (1971).

Weighted Least Squares (BWLS). As stated earlier,
 

when the error variance is heterogeneous, it is necessary

to amend the estimation procedure by using the weighted

least squares method. The key step is to transform the

outcome Yi' to a new variable, 2 such that it satisfiesit

the condition of homogeneous error variances. The new

transformed model becomes:

2 = SQ-i-F (2.22)
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where

Z = vector of new transformed observation of

dimensions (N x 1);

Q = vector of new weights transformed from vector B

of (2.19.1). This vector has dimensions

((p+l) X l);

S = matrix of symptoms of ones and zeroes with

dimensions (N)r(p+1); and

F = vector of errors of the new transformed model

of dimensions (N)(l) with the following

properties:

F ~ N(0, I02)

Computationally, the weighted least squares can be

performed by the two stage method (Neter and Wasserman,

1974) and is described in the following manner:

1. obtain the estimated outcome (§i) for each patient

or case by the ordinary least squares method; and

2. define a new variable for each case, wi, by:

wi = 1/(§i(1 -i?i))

obtaining a diagonal matrix, W, of rank (N){N).

The new regression weights or the "weighted" regression

weights, g, become:

g_= (s‘ws>'ls'wy (2.23.1)

where g is the estimate of Q.

Hence, the estimated diagnostic probability for pattern,

xk, for the weighted least squares model is given by:
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P(Dlxk) = qO-igka (2.24)

where

q0 = the constant term estimated by the weighted

regression model; and

g* = vector of new regression weights estimated by

the weighted regression model.

Ridge Regression (BR). In the situation of highly
 

correlated symptoms, the variances of the regression

estimates become highly unstable when derived by the

ordinary least squares procedure. The estimated values

of the regression weights will change with slight changes

in the data set. Thus, there is difficulty in determining

the contribution of each symptom to the outcome of the

disease. Therefore, it is necessary to stabilize the
 

variance of the regression estimates. One technique is

by the ridge regression method (Hoerl, 1964, 1970a, 1970b;

Marquardt & Snee, 1975). The method consists of adding a

constant term, c where c lies between 0.1 and 1.0, to the

estimation procedure,

y = (s's+c:)’1 5'? (2.24.1)

and at a certain point of c, say c*, the variance of the

estimated regression weights become stabilized. That is,

let V(b;.) be the variance of the ith estimate regression

weight at point cj and e be a predefined amount of change

such that the following condition holds:
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{V(b?, )-v(bt.)}se .
+1 1]

I]

Then when the variance of estimated regression weights is

plotted against the various values of c, the following

properties will be found:

1. at a certain value of c, say c*, the variances of

the regression weights will all stabilize and have

the general characteristics of an orthogonal

system;

2. the weights will not have unreasonable values with

respect to the symptom for which they represent

rates of change; and

3. any weights with apparently incorrect signs at

c==0 will have changed to have the proper signs.

The curve connecting the points for all values of c is

known as the ridge trace, and the above properties not only
 

hold for a single estimate for a single symptom but for all

p estimates.

Weighted Ridge Regression (BRWLS). This model
 

combines ridge regression and the weighted least squares

method. The resulting weighted ridge coefficients or

weights are substituted into the first stage of weighted

least squares instead of the ordinary least squares regres-

sion weights. The second stage of the weighted least

squares procedure remains the same. This model is intended
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to correct both for heterogenous error variances and highly

interrelated symptoms.

Logistic Discrimination (LD)
 

A second pattern recognition method maximizes the

relationship between the presence or absence of the disease

and a linear combination of the symptoms. This method was

develOped by R. A. Fisher (1936) and is commonly known as

linear discriminant analysis. The description of this
 

technique can be found in Morrison (1967), Tatsuoka (1971),

Van de Geer (1971), Timm (1974), and Bock (1975).

Conventional discriminant analysis only applies to

variables that are continuous, so when the variables are

dichotomous in nature it becomes inappropriate. Anderson

(1972a, 1972b, 1973, 1974) proposed logistic discrimination
 

which was originally introduced by Cox (1966) as a solution

to this problem. Essentially, the mathematical representa-

tion of the model is equivalent to the binary regression

model which can be presented as follows:

Y=SB+E

where

a vector of observations or disease outcomes with

ones and zeroes of dimensions (N x 1):

Y

S = a matrix of symptoms of ones and zeroes of dimen-

sions (N1r(p+l)), including the constant term;
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B = vector of discriminant weights of dimension

(p+1xl); and

E = vector of random error of dimensions (N)(l).

However, the algorithm in deriving the estimated

discriminant weights is different from that used in the

binary regression model. In developing the mathematical

algorithm for this model, let aij represent the ith row

and jth column of the matrix S. Then thu diagnostic

probability of an outcome, say D, is given by (Cox, 1970):

aiB

e

P(Dls) =-————-— (2.25)

l + ealiB

and its complement is:

p(BlS) = ———l—7§- (2.26)

l + eal

The above two equations can be rewritten as the log odds

ratio as:

A = log ——-l—P(DS) = a.B . (2.27)

i e P(Bls) 1

Then the likelihood of Y1, Y2""’YN independent dichotomous

outcomes is:

 
 

N p

H eaiB exp( 2 Bsts)

1:1 = N s=1
(2.28)

n (1+eaiB) H (1+eaiB)

i=1 i=1
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where

Thus, the log likelihood of the above equation becomes

N

P a:B

L(B) = 2 BsTs - 2 log(l+e 1 ) (2.30)

s=l i=1

The solutions for the estimated parameters are derived by

the Newton-Raphson iterative numerical procedure as

described by Bock (Bose, 1970) which is illuatrated

as follows: Let e be a criterion value to step iteration

Pi be the value of the parameters at the ith iteration;

Ai be the increment value at the ith iteration

then

Ai = -(I)-1F (2.31)

where I is the matrix of the second derivative and F is the

vector of first derivatives of equation (2.30) with respect

to B (Cox, 1970). The increment is, therefore,simply the

product of the negative of the inverse of the second deriva—

tive and the vector of the first derivatives. The values

for the parameters at the (i-+l)th iteration are:

P. = F.+~A.; (2.xn

1+1 1 1
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the iteration stops when the vector of F is less than or

equal to e (i.e., F se), and the final I is the solution

for the estimated discriminant weights B. These estimated

weights are then substituted into equation (2.25) to derive

the estimated diagnostic probabilities.

There are two key assumptions to this model. They are:

l. the populations, the diseased and the non-diseased

populations, are multivariate normal with equal
 

variance-covariance matrices; and

2. the populations are multivariate independent and

dichotomous in nature.

Other techniques for deriving the solution besides the

Newton-Raphson solution can be found in Walker and Duncan

(1967) and Jones (1975).

Application of this model to medicine can be found in

Truett et a1. (1967), Halperin et a1. (1971) and Hartz and

Rosenberg (1975).

The EntrOpy Minimax Pattern Discovery (EMPD)
 

The term entrOpy refers to the statistical measure of

uncertainty. This method was developed from information

theory by Christenson (1967, 1968, 1972, and 1973). The

key concept of this method is to define symptom subsets

that are capable of acting as predictors of a disease

outcome. If the presence or absence of a symptom
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contributes significantly to a change in the probability

of a given outcome, it will be classified as a determinant

of the outcome of the disease. The term determinant does

not imply deterministic or causative in nature. The purpose

of this model is to minimize uncertainty. The model assumes

that the measurement of uncertainty has the following

properties:

1. uncertainty is a continuous function of the

probabilities of various outcomes;

2. greater relative weights are given to occurrence

of rare events than to occurrence of common events

because rare events convey more information than

events that agree with previous prediction; and

3. additivity-—the uncertainty associated with two

or more independent sources is just the algebraic

sum of uncertainty associated with each taken

separately.

Given the above properties and give n possible out-

comes, each with probability of occurrence Pn' Shannon and

Weaver (1964) postulated the measure for the average infor-

mation per outcome for the discrete case is

n

H = E(-logzP(x)) = - 1:1 PilogzPi (2.33)

where
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The function H is maximized when Pi = l/n for all i.

To derive the maximum of the above equation, take the

derivative of H with respect to Pi

3H

——-= —(logze-tlogZPi)-+(1og2e-+1ogZPn) (2.34)

8Pi = -1092(Pi/Pn)

Setting

3H _ 0

5Pi '

equation (2) becomes

n

H = - 2 (l/n)logz(l/n) = logzn (2.35)

max i"- l

The attributes can be partitioned into cells and can be

repartitioned into sets of disjointed cells whose sum fill

the space. This repartitioning of cells is referred to as

screening. Hence, the probability of an outcome for a given

cell and jth screening is given by

P(Dlith cell, jth screening) = PDIij

The measure of uncertainty for the ith cell and jth

screening becomes

H.. = -£ PDIij logzPD

13 13
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Summing across outcomes, the measure of uncertainty for

the jth cell is

 

k D

H, = - 2 P.. 2 P .. log P .. (k==no. of cells) (2.36)

3 i=1 1] d=l dIIj 2 dlij

where

n..-+u..

P = 1] 13 .

ij n-tu. '

J

P = nijk‘+wijk

dlij nij+wij '

n = total number of events in the sample;

ni'k = number of events with outcome D in the ith

3 cell and jth screening;

ni. = total number of events across D for the ith

3 cell and jth screening;

wijk = theoretical number of outcome event; and

1 = the total sum of theoretical event for both

3 happening and non-happening outcome.

The ratios have the following meanings:

—$lE-= priori probability of the D outcome in the

wij jth cell; and

= priori probability of finding even in the

j ith cell.
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The measure Hj determines how successful the

information is in separating the outcome into individual

cells in the feature space (i.e., the amount by which the

screening has reduced the average uncertainty in predicting

an outcome given a set of attributes).

The "best" screening that partitioned the feature

space is the one that minimized uncertainty or entropy.

The final results are the probabilities of outcome for

various patterns of attributes.

These models may be summarized in Table 2.1.

The following chapter will present the theoretical

foundation and the algorithm to simulate each individual

class of the uncertainty structure when the levels of the

correlation have been predefined as presented in Figure 1.4.
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CHAPTER III

SIMULATION

Prior to simulating the classes in Figure 1.3, consider

the situation for a single symptom. The probability that it

will have 111 number of occurrences in a pOpulation size of

N is simply:

P(n ) = ——§-'——P“1 (I-p)n2 (3.1)
1 n1! n2!

where N = nl-i-n2 and where P is the marginal proportion of

the symptom. This is known as the binomial distribution
 

(Hasting and Peacock, 1975). It is noted that the values

of n1 can be greater or equal to zero and less than or

equal to N. Extending this to p number of mutually exclu-

sive symptoms, the joint distribution of the symptoms,

, where n. is the number of occurrences for the

P J

jth symptom with marginal pr0portion Pj' is (Johnson, 1969)

nlpnzpoo on

as follows:

P n°

P(n1,n ..,n ) = N! H (Pj J/nj!) (3.2)'0

2 p j=l

where n.j 20 and N = 3 nj. This distribution is known as

i=1

the multinomial distribution.
 

46
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Since the symptoms are not necessarily mutually

exclusive, attention should be given to their intercorre-

lation and also the correlation of each with the occurrence

of the disease. This can be represented in the following

matrix (Figure 3.1), Ri' where i denotes the ith class as

presented in Figure 1.3:

U U
)

(
I
)

O U
)

U
) U
)

  

1 2 j 3' p
l

l

D

:
S -----|-------------------

—l

1 l

l

S2 I

I

° I

' I

' l

I = R

8j rs.d l rs.s 1

3 J j'

’ I

' l

° I

S I

P I

Figure 3.1 The Relational Structure of a Disease and p Symptom.

where rds. is the correlation between the disease outcome

3

and the jth symptom and r (j fj'), is the intercor-. o I

835].

relation between the jth and j'th symptom. Since the

disease and the symptoms are dichotomous with only ones

and zeroes, denoting their presence and absence,
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respectively, the correlations are phi-coefficients. In

terms of probability, this coefficient can be represented

as follows:

1
_ _ - _ _ ’2

rdsj ‘ ¢phi - (P(DnSj) P(D)P(Sj))/((P(D)(l P(D))(P(Sj)(l P(Sj)) (3.3)

Given the marginal proportions or base rates of the

disease and the symptoms, Pd and Ps-' respectively, the

3

above correlation matrix is reformulated into a variance

and covariance matrix, I, as in Figure 3.2:

D s s . . . s.s. ... S
I 1 2 33' P

I

D I

add I ads
|

--..— -.- ———————————————————
J

l S;S1 ' “

\

32 5“ ‘.‘

I \\ ‘\ a

. l ‘ ‘\ 5.5.

o ' \‘ ‘\ J].

I \\ \‘

o I \ \

I \\ ‘s

S.
\ 4‘ =

J : \?S.S_ \ $1

_ .3 J “

I ‘ \

o ' ‘\ \\J

\

o '
\

\

s 1 ‘.

P I l  
Figure 3.2 The Covariance Structure of a Disease and p Symptoms.
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where

add = Pd(1-Pd);

a = P (l-P ); and
. . S

5353 3 J

*5

ads ‘ rds.(addas.s.) ' and
J J J

a r ( )%- a a e

S. S. . S S.

383' 353' S] 353'

It should be noted that a term of the form, P(l-P), is the

variance of the disease or the symptom.

The Simulation Computer Routine
 

A computer program was written by Scheifly (1974), to

generate a multivariate continuous distribution with a given

mean vector and variance—covariance matrix. In modifying

the program to generate the multinomial distribution, the

steps comprising this generation are as follows:

1. Generation of independent random variables which

are uniformly distributed between zero and one.

2. The generated uniform variates are then combined

to form normal deviates with zero means and with

the identity matrix for the covariance matrix.
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3. The normal deviates are then generally transformed

to obtain the desired structure of means and

variance-covariance structure.

4. The resultant matrix is then transformed back into

probability terms and each variate is assigned a

one or zero according to whether the probability

is greater or less than the marginal probability

of that variable.

The following description elaborates the above steps.

The uniform random variate is generated by the mixed

congruential method (Mihram, 1972). This technique can be

represented by the following equation:

U = (aUk_k -+c) (mod m) k=l,2,...

1

where a and c are constants, Uk is the kth recursion, and

U0 is known as the seed set in the initial recursion. The

residual is then divided by P. The values of a, c, and P

are chosen as to maximize the period of the generator that

produce numbers which behave as if they are random. In

terms of these three constants, the kth pseudorandom

variate in the sequence is given by

Uk = akU0-+c(ak-l)(a-l) (mod m) (3.5)
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The generated sequence of uniform variates are then

converted to normal variates by the Teichroew's technique

(Knuth, 1968) which is an approximation of the inverse of

the probability function for the standard normal distribu-

tion. His procedure generates 12 independent random

variables, U1,U2,...,U12, uniformly distributed between

zero and one. Then, R is defined as follows:

R = (Ul-+U -+...-+U12-6)/4. (3.6)
2

The normal variate, z, is then approximated by

z = ((((alR2+a2)R2+a3)R2+a4)R2+a5)R (3.7)

where

a1 = .029899776;

a2 = .008355968;

a3 = .076542912;

a4 = .252408784; and

3.949846138.

This 2 is only a point in the N x p matrix. In order to

obtain the total entries of the matrix, this 2 is generated

N x p times. The result matrix is z of dimensions N x p.

In transforming the matrix 2 to the desired matrix, X,

which is distributed with the given mean vector, p, and

variance-covariance matrix, I, the following linear

transformation is necessary:
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X=TZ+E

N'P

where

TT' = I (T is the cholesky factor of I).

In transforming the entries of the matrix X into

discrete entries, the following procedure is used:

2.. = (xij--ui)/Ji (3.9)

where ui is the given mean and Ji is the ith given standard

deviation. The new variable, zij’ is converted into a

probability or the area under the standard normal curve

by numerical approximation according to the following

equation:

*

2 . * 2

142;.) =/ 13 l - 81:213. dz (3.10)

3 (21!)

By the rejection method (Hasting and Peacock, 1975),

the entry on the ith column and jth row is assigned a zero

or one according to the following rule:

1 if 1>(z‘!",)<Pi

y = 13
(3.11)

o if p(z‘.'.) >p.
13 1

where Pi is the given marginal proportion of the ith symptom

or the disease.
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In this dissertation, the marginal proportion or the

base rate for the disease is set at 0.2 and the marginal

prOportions for the symptoms, of which there are three, is

set at 0.5. Given such marginal prOportions, the maximum

positive correlation between symptoms and disease is 0.5

and among symptoms is 1.0. The number of cases, N, is

set at 300.

Given the above, Table 3.1 represents the partitioning

of uncertainty. It must be noted carefully that this table

is a reformulation of Figure 1.4 (page 10). Because the

maximum correlation between symptoms and the disease is

0.5, the medium and the high categories will be absorbed

under the label "High."

Table 3.1

The Simulated Structure of Uncertainty

 

 

Intercorrelations of the Symptoms

 

 

Low Medium High

0.00-0.30 0.31-0.50 0.51-1.00

Low I II III

Correlation 0.00-0.30

with the

disease High IV V VI

0.31-0.50
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It should be noted that the resultant matrix of Y*

of zero and one entries is generated from an underlying

continuous distribution and the correlations computed

from his matrix are in fact tetrachoric correlations.
 

The relationship between the phi-coefficient, pij' and

the tetrachoric coefficient, pij, between the ith and jth

symptom, is developed by Pearson (1900) and cited by Lord

and Novick (1974) as:

Oio'pi' 1 1= . _ .2 __ 2 _ 2 _ . 3

(vi) (qj) pij+2 Yinpij+6 ”i 1’ ”j “913'

'93L 2_ 2_ .
-+24 Yin(Yi 3)(Y_j 3’pij

...L... “_ 2 lo_ 2 '5

4-120 (Yi 6Yi+3)(Yj 6Yj-t3)pij-+... (3.12)

where Y1 and Yj are the cutoff points for the ith and jth

variable, respectively, and oi and oj are its standard

deviations. In the special case where Pi = Pj = 0.5, the

relationship is simplified as:

pij = sin ("Dij/Z) (3.13)

The following chapter will present the analysis on the

generated samples by the above simulation algorithm. The

analysis will include (1) the statistical test of equivalence

between the generated sample and the predefined population

for each individual class in the uncertainty structure,
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(2) the statistical test of equivalence between the

randomly split samples for each individual class in the

uncertainty structure, (3) the statistical test of severity

of multicollinearity for each generated class, (4) the

evaluation of each probabilistic model in terms of dis-

crepancy indices, (5) the evaluation of each probabilistic

model in terms of prediction indices, (6) the evaluation

of relative performance of each probabilistic model in

terms of utility functions, losses, and gains, (7) the

evaluation of relative performance of each probabilistic

model for three special classes of the uncertainty structure

with the same evaluation indices and utility function, and

finally (8) an application to a set of real data.



CHAPTER IV

DATA ANALYS I S

The population correlation matrix, RP' and the

variance-covariance matrix, Ip, are defined and shown

in Appendix A. The sample variance-covariance matrices,

*s' and correlation matrices, Rs' were then obtained by

the generation routine described in Chapter III, also shown

in Appendix A. The sample variance-covariance matrices

are then tested to determine if they are statistically

equivalent to the population matrices. This procedure

translates into testing the following hypothesis:

The test statistic used (Morrison, 1976) is as follows:

--1

L = v(1oge|th-1oge|tsl+tr tstp -p) (4.1)-

where p is the number of symptoms plus the disease outcome

and v is equal to (N-l) where N is the population size.

The test statistic, L, is distributed as a chi-square

56



57

variate with k(p(p-+1)) degrees of freedom if the null

hypothesis is true.

suggested the scaled statistic as:

For moderate N, Bartlett (1954) has

 

 

 

1
6 (MD (2p+1 2/(p+1))}L (4.1.1)

as an improvement on the chi-square approximation. The

results of the tests are presented in Table 4.1

Table 4.1

Test of Fit for Sample Variance-Covariance

Matrices With the Specified Population

Variance-Covariance Matrices

(N = 300; p = 4)

Significance

Probability

Class L L' df P

I 11.03 10.98 10 .50

II 10.32 10.27 10 .50

III 11.05 11.00 10 .50

IV 9.97 9.93 10 .50

V 10.48 10.43 10 .50

VI 12.47 12.41 10 .25

 

*Significant at the 0.5 level.
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From these results, the sample variance-covariance

matrices are not significantly different from the specified

population variance-covariance matrices.

Each class of 300 cases was then shuffled and randomly

divided into two equal sub-samples of 150 each, called

Sample I and Sample II. The resultant variance-covariance

matrices of the "split" samples for each class are also

shown in Appendix A. The hypothesis tested becomes:

The test statistic used (Morrison, 1976) is as follows:

2 2

M = :1 ni loge |tp,| -1121 hi ti (4.1.2)

where 111 is equal to (Ni -l), Ni is the sample size of the

ith sample and tp, is the pooled matrix of Ilanuitz. Box

(1949) has found that if the scale factor,

 

 

2p2+3p-1 1 1
c=1- —- , 4.1.3

6(P+1) (2 n1 ) ( )2

i=1 3 n
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is introduced into equation (4.1.2) (i.e., G)(M), GM is

approximately distributed as a chi—square variae with

degrees of freedom equal to k(p(p-+l)). The results of

the tests for equivalence between split samples are

presented in Table 4.2.

Table 4.2

Test of Equivalence of Split-Samples

Variance-Covariance Matrices

 

 

 

(N1 = N2 = 150; p = 4)

Significance

Probability

Class GM df P

I 1.39 10 .99

II 3.39 10 .99

III 6.44 10 .75

IV 1.55 10 .99

V 10.29 10 .50

VI 2.02 10 .99

 

Again the split-half samples for each class show no

statistical differences at the 0.5 level of significance.

From these results, it can be concluded that the similar—

ities between the specified pOpulation and the sample and

between split samples are statistically assured.
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Before proceeding further into the analysis, the first

sample, Sample I, of each class is tested for the severity

of multicollinearity (i.e., highly interrelated symptoms).

This is achieved by testing the following hypothesis:

HO: IS'SI = 1

against the alternative:

H : Is's|< 1

where S is the matrix of symptoms of dimension (p)(p).

If S is a standardized matrix, then (S'S) will be a

correlational matrix and the testing hypothesis can be

reformulated as:

HO: (S'S) = I

against the alternative:

H1:(S'S)7‘I

where I is an identity matrix of the same rank. Barlett

(1950) formulated the following test statistic:

A = -((N-l)-1/6(2pi-5))1oge|S'Sl

where A distributed as a chi-square variate with degrees

of freedom 8(p(p'-l)). The results for testing for

multicollinearity for each class are presented in Table 4.3.
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Table 4.3

Test of Severity of Multicollinearity

for Sample I of Each Class

 

Significance

Probability

Class df P

I 7.94 3 .025*

II 54.04 3 .005*

III 149.98 3 .005*

IV 13.99 3 .005*

V 76.07 3 .005*

VI 174.16 3 .005*

 

*Significant at the 0.5 alpha level.

Each class shows the presence of multicollinearity,

even in Class I and Class IV which were supposed to have

low intercorrelated symptoms. This is not at all sur—

prising. Correlation coefficients of 0.16 are significantly

different from zero at the 0.05 level for 150 cases and 3

symptoms. Since most of the correlations among the symptoms

exceed that value, the situation represents a significant

multicollinear condition.

Since there are only three symptoms, there are 23 = 8

possible combinational patterns. The exact probability for

a disease to be positive (present) with pattern §k is

calculated as follows:
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(number of patients with disease that has pattern 5k)

 

P(Dlfik) = (number of patients with pattern 5k)

The exact probabilities calculated from the preceding

formula for each class and pattern are presented in Table

 

 

 

4.4.

Table 4.4

Exact Probabilities, P(DI ) for Each

Class of the First Sample

Pattern I I I I I I IV V VI

111 .36 .41 .27 .58 .57 .43

110 .22 .13 .12 .21 .36 .20

100 .08 .14 .10 .00 .00 .00

001 .00 .07 .33 .00 .00 .00

011 .12 .24 .00 .00 .00 .00

101 .37 .57 .36 .17 .07 .14

010 .18 .15 .25 .06 .07 .00

000 .08 .03 .10 .00 .00 .00

 

In evaluating the discrepancies between the estimated

probabilities from the exact probabilities for each model,

the following three discrepancy measures are used:
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1. Mean Square Deviation (MSD):

“ 2

p (pjk Pg)

MSDj = ZT (4.3)

i=1

where fiij denotes the estimated probability for the ith

pattern by the jth model and p; (where pfi = P(Dlxk) is the

exact probability for the kth pattern. It is worthy to note

that the numerator of equation (4.3) is the squared differ-
 

gpg§_between the model's estimates and the true probability.

Squaring the differences insures a positive value. Dividing

by the denominator which is the number of combinations or

patterns and summing across all 2p possible combinations,

equation (4.3) gives the mean square differences within a

class.

2. Weighted Mean Square Deviation (WMSD):

 

2p (g. -p"')2 ‘15.

k

mmng = 2: 3 2 3k (4.4)

k=1 2

Equation (4.4) is essentially the same as equation

(4.3) with the exception of the inclusion of the multiplier,

fijk, in the numerator. This means that more weight is given

to the higher probability estimates by the model. In other

words, higher probability estimates for the kth pattern by

the jth model are assumed to have greater squared differ-

ences and vice versa.
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3. Misclassification Rate (MR):

2 2p A

MRj = 2: pjkdpd (4'5)

d=l k=l

where id is the marginal probability or the base rate of the

dth disease not occurring (i.e., 56 = l-Pd) where d is

equal to l and 2 in this dissertation. The term, fijkd, is

the estimated probability for the dth disease outcome. It

is noted that p.1jl = fiij = P(Dlxk) and p is simply equal
ij2

to (1-§ijl). Then the multiplication of the terms gives

the expected misclassification rate for the kth pattern in

the event that the dth disease does not occur. Summing

across all possible 2p patterns, equation (4.5) gives the

£2221 expected misclassification rate within a class.

The probability models with the exception of the

Bayesian model are then applied to the first sample to

obtain the estimated parameters for each symptom as shown

in Appendix B. These parameters are then used to derive

the conditional or diagnostic probabilities ij for each

class, pattern and model as presented in Appendix C. The

performances of these probability models in terms of the

above three indices are then obtained and they are presented

in Table 4.5.
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Table 4.5

Comparison of Models in Terms of Discrepancy Indices

 

 

 

 

 

 

 

 

 

 

Classes

Discrepancy

Indices I R9 II R III R R*b Iv R v R vr R Rfi*° R***d

SMD .000 1 .000 1 .000 1 1 .000 1 .000 1 .000 1 1 1

e MWSD .000 1 .000 1 .000 1 1 .000 1 .000 1 .000 1 1 1

MR .306 4 .335 6 .306 3 4.6 .278 2 .280 1 .255 1 1.3 2.9

SMD .006 4 .012 4 .012 4 4 .010 3 .016 5 .013 .6 8

BLS MHSD .001 4 .003 4 .002 4 4 .002 3 .004 4 .002 3 3.6 3.8

MR .311 6 .325 4 .320 5 5 .304 4 .328 6 .309 5

sun .007 6 .012 4 .027 5 5 .014 4 .025 6 .017 6 5.3 5.15

BWLS uwsp .001 4 .003 4 .009 7 5 .004 4 .007 6 .003 5 5 5

MR .312 7 .325 4 .355 7 6 .305 5 .335 7 .312 7 6.3 6.15

SMD .014 7 .017 7 .030 7 7 .020 5 .031 7 .014 4 5.3 6.65

BR MHSD .001 4 .004 7 .002 4 5 .005 5 .009 7 .002 3 5 5

MR .265 2 .290 1 .236 l 1.3 .328 6 .327 5 .306 4 5 3.15

SMD .006 4 .012 4 .027 5 4. .034 6 .013 4 .015 5 5 4.65

BRWLS MHSD .001 4 .003 4 .004 6 4.6 .007 6 .004 4 .003 5 s 4.8

MR .301 3 .320 3 .293 2 2.6 .269 l .326 4 .309 3.3 '2.9

SMD .005 3 .008 3 .009 3 3 .002 2 ~.000 .1 .000 l 2

LD msn . 000 1 . 002 3 . 001 2 2 . 000 1 . 000 1 . 000 1 1 . 5

MR .308 5 .315 2 .315 3.6 .293 3 .285 2 .256 2.3 2.9

sup .000 1 .000 1 .001 2 1.3 .042 7 .001 3 .024 7 5.6 ' 3.4

EMPD MWSD .000 l .000 l .001 2 1.3 .024 7 .000 1 .010 7 5 3.15

MR .031 l .339 7 .331 6 4.6 .328 6 .295 3 .303 3 4 4.3

 

3R I ranking of model within classes.

bR* - average ranking of model across classes I, II, and III (pool situation where the symptoms

are lowly correlated with the disease outcome).

cRn - average ranking of model across classes IV, B, and VI (pool situation where the symptoms

are highly correlated with the disease outcome).

dR**‘* - average ranking all classes.
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In the situation in which the symptoms have a low

correlation with the disease outcome, the Bayesian model

(B) has the smallest mean squared deviation (MSD), followed

by the Entropy Minimax Pattern Discovery (EMPD) model. The

Binary Ridge (BR) model has the highest MSD. In terms of

having the smallest weighted mean squared deviation (WMSD),

the B model again ranks first with the EMPD model ranking

second. The Binary weighted least square regression model

(BWLS) ranks first in having the highest WMSD and also in

having the smallest misclassification rate (MR) when the

Binary Ridge regression (ER) is used as the solution.

In the situation where the symptoms are highly

correlated with the disease outcome, the logistic dis-

crimination model (LD) and the B models have the smallest

MSD and WMSD. The EMPD has the highest MSD and WMSD. The

B model ranks first in terms of having the smallest MR

followed by the LD model. The Binary weighted least squares

(BWLS), BLS and BR models, all three solutions to the BLS

model, have the highest MR, implying these solutions did

not improve the BLS model with respect to MR.

When the situations of (1) symptoms having high

correlation with the disease outcome and (2) the symptoms

having low correlations with the disease outcome are pooled,

the B model has the smallest MSD, WMSD, and MR followed by

the LD model. The BR, BWLS, and the BRWLS did not improve

the ranking of all three indices for the BLS model.
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However, the main thrust of this dissertation is

diagnostic prediction. The term prediction entails a

different and perhaps future event. The indices discussed

so far address the guality of the probability models that

are available for building a basis for judgment. The

assessment of prediction will be done by cross-validating

each model on Sample II, the statistically equivalent

counterpart to Sample I. This notion is similar to the

process used by physicians of determining the best procedure

to treat a class of problems (model selection, Sample I) and

then evaluating its efficiency and correctness on new

patients with the same problem (cross—validating, Sample II).

The process of cross-validation can result in four

possible outcomes. They are:

l. the correct prediction or identification of a truly

diseased case, also known as true positives (TP).

2. the correct prediction or identification of a truly

non-diseased case, also known as true negatives

(TN).

3. the incorrect prediction or identification of a

truly non-diseased case as having the disease, also

known as false positives (FP).

4. The incorrect prediction or identification of a

truly diseased case as not having the disease,

otherwise known as false negatives (FN).
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These outcomes can be represented in the following

figure (Figure 4.1):

True State

D H?)

B a?)

D

The Model

Diagnostic

Decision _. D (FN)

D

B um)

Figure 4.1 Possible Outcome of a Diagnostic Decision.

The above situation can also be reformulated into the

following table (Table 4.6):

Table 4.6

Possible Distribution of Cases by Model

Decision and the True Outcome

 

 

True State

D 3

Model's
-

Decision - nl _ N
D FN(n3) TN(n4) i=1
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where n1 and n4 are the numbers of patients with true

positives and true negatives, respectively, n2 and n3

are the numbers of patients with false positives and false

negatives, respectively. From Table 4.6, the following

indices henceforth termed as prediction indices are defined:
 

1. Sensitivity (SEN): The ability of the model to
 

predict the proportion of patients who truy have the disease.

The formula is:

SEN = nl/(nl-in3).

The standard error of SEN is found to be:

A A 1 A

SE(SEN) = {(plqll/(nl + n3) )1 where p1 = nl/(nl + n3)

A

and q]. = (1'51).

Hence, the confidence interval for SEN becomes:

SEN i za ' SE(SEN) where 1 -0L - confidence level.

The greater the sensitivity, the greater the accuracy of

the model in predicting the occurrence of the disease.

2. Specificity (SPEC): The ability of the model to
 

predict the proportion of patients who truly do not have the

disease. The formula is:

SPEC = n4/(nL2+n )
4

The standard error of SPEC is found to be:
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SE(SPEC) = “gap/62mph where 62 n4/(n2-l-n4)

and q2 = (l-pz).

Hence, the confidence interval for SPEC becomes:

SPEC i 20 °SE(SPEC).

The greater the specificity, the greater the accuracy of

the model in predicting the non-occurrence of the disease.

3. Predictive value (PRED): The Proportion of
 

patients who truly have the disease among those predicted

by the model to have it. The formula is:

PRED = nl/(nl + n2)

The standard error of PRED is found to be:

SE(PRED) = i(’(f>3<’i3)/(nl+n2)}l5 where £53 nl/(nl+n2)

and 6) =(1-i‘v3 ).
3

Hence, the confidence interval for PRED becomes:

PRED i” za ' SE(PRED) .

The greater the predictive value, the more accurate or

"precise" is the prediction of the model.

It should be noted that when the values for both SEN

and SPEC are one, it implies that the PRED is also one.

However, a PRED of one does pgp_necessarily imply a SEN

value of one or a SPEC value of one. A SEN value of zero

would imply a PRED value of zero and vice versa.



71

4. Type I error (E1): The proportion of patients

which the model predicted as not having the disease among

those who truly have the disease. The formula is:

E1 = r13/(nl +n3)

or simply the complement of SEN, i.e.,

E1 = l-SEN.

It can also be written in the form of a conditional

probability as:

El==P(§JDS)

where 55 is the model's diagnosis as not having the disease

and DS denotes the true state as having the disease. The

standard error of E1 is equivalent to the standard error

of SEN as E1 is the complement of SEN. Hence, the con-

fidence interval for E1 is simply:

El 1‘ 201 ' SE(SEN).

5. Type II error (E2): The proportion of cases
 

which the model predicts as having the disease when the

patients are in fact non-diseased. The formula is:

E2 = nZ/(n2 +n4) ,

or simply is the compliment of SPEC; i.e.,

E2 = 1 - SPEC.
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Written as a conditional probability:

E2==PU%JDS)

where Dm is the model's diagnosis as having the disease

and Us denotes the true state as not having the disease.

The standard error of E2 is equivalent to the standard error

of SPEC as E2 is the complement of SPEC. Hence, the

confidence interval for E2 is simply:

E2 i 20 - SE(SPEC) .

The conventional rule in allocating patients with

pattern 5k as having the disease, D, or not having the

disease, 5, is as follows:

 

Diagnostic Rule Decision

P(Dlxk):>P(Dl§k) Disease

P(Dlxk):>P(D|xk) Non-Disease

P(Dlxk)==P(D|xk) Equivocal

These decision rules, however, are arbitrary and they

are at the discretion of the decision maker. In this dis-

sertation, the criterion of allocation is chosen at n where

n is equal to the base rate of the disease in the first

sample. Hence, these decision rules are reformulated as

follows:
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Diagnostic Rules Decision

P(Dlxk) 2n Disease

_ > _ ,

P(Dlxk) 0 Non DISease

This has, in effect, eliminated the equivocal decision

and has the advantage of increasing sensitivity of the model

to detect diseased cases which have a low base rate. The

price of using this decision rule, however, is maximizing

the probability of identifying a case as diseased when, in

fact, it is non-diseased.

However, this is seen as better than identifying a case

as non-diseased when, in fact, it is a diseased case. The

reason for this is explained by Neyman (1950) as follows:

[If the patient is actually well, but the

hypothesis that he is sick is accepted, a

Type 2 error] then the patient will suffer some

unjustified anxiety and, perhaps, will be put to

some unnecessary expense until further studies

of his health will establish that any alarm about

the state of his chest is unfounded. Also, the

unjustified precautions ordered by the clinic

may somewhat affect its reputation. On the other

hand, should the hypothesis (of sickness) be true

and yet the accepted hypothesis be (that he is

well, a Type 1 error), then the patient will be

in danger of losing the precious opportunity of

treating the incipient disease in its beginning

stages when the cure is not so difficult. Fur-

thermore, the oversight by the clinic's specialist

of the dangerous condition would affect the clinic's

reputation even more than the unnecessary alarm.

From this point of view, it appears that the error

of rejecting the hypothesis (of sickness) when it is

true is far more important to avoid than the error

of accepEIfigthe hypofhesis (of illness) when it is

false. (1950, p. 270, emphasis added)
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Increasing the opportunity of committing the former

error to reduce the risk of the latter error is one of the

pervasive and fundamental rules in medicine which may be

stated as: "When in doubt, continue to suspect illness."

The logic of this decision rule rests on two assumptions

(Scheff, 1963). They are:

1. Disease is usually a determinate, inevitably

unfolding process, which, is undetected and

untreated, will grow to a point where it endangers

the life or limb of the individual, and in the

case of contagious disease, the lives of others.

2. Medical diagnosis unlike legal judgment, is not

an irreversible act which does untold damage to

the status and reputation of the patient.

He further states that: "In light of these two

assumptions, it is far better for the physician to chance

a Type 2 error than a Type 1 error."

The results for the cross validation in terms of

these prediction indices for each model and for each

class are presented in Appendix D. These results are

then re-tabulated in Table 4.7 to show those classes

within each model with the highest and lowest values

for SEN, SPEC, and PRED.



The Class Where Each Model Has the Highest

and Lowest Predictive Indices
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Table 4. 7

 

 

  

 

 

Highest Lowest

Models SEN SPEC PRED SEN SPEC PRED

Bayesian VI IV IV I III III

Bayesian w/Bahadur

Binary VI IV IV I I I I I I I

Binary:

Ordinary Least Squares V IV IV I I I

Weighted Least Squares V IV IV I I I

Ridge Regression IV,V III IV III V III

Weighted Ridge V IV IV-VI I I I I

Logistic Discrimination VI IV IV I III I

Entropy Minimax Pattern

Discovery VI IV IV I III III

Class VI is the class where the B, BB, LD, and EMPD

models have the highest SEN, and Class V is the

the BLS and its solutions have the highest SEN.

class where

In terms of

SPEC, all models with the exception of BR have the highest

SPEC in Class IV where all models also have the highest

PRED. Hence, Class IV, V, and VI, where the symptoms

are highly related to the disease outcome, are optimal

situations for these models in terms of the three predictive

efficiency indices.
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All models with the exception of BWLS have the lowest

SEN for Class I, and Class III has the lowest SPEC for B,

BB, LD, and EMPD. Class III also has the lowest PRED for

B, BB, BWLS, and EMPD, and Class I has the lowest PRED for

BLS, BR, and LD. Class I and Class III, where the symptoms

are lowly correlated with the disease outcome, are "pit"

situations for these models in terms of these indices as

all models have the lowest values in this class. From the

above results, the B, BB, LD, and EMPD models perform

similarly in having the highest and lowest predictive

efficiency indices.

To determine the relative performance of these models

within each class, Table 4.8 is reformulated. The binary

regression models have the highest SEN across all classes

except Class III. The BR model has the lowest SEN in

Classes I, II, and III, and BRWLS model has the lowest

SEN in Class IV, and LD and B models have the lowest SEN

for Classes V and VI. In terms of having the highest SPEC,

the BR model performs the best in Classes I to III and the

LD model from IV to VI. In terms of PRED, BRWLS performs

the best in Classes I and III while the LD model performs

most optimally in Classes II, IV, V, and VI.
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Those classes where the symptoms have low correlation

with the disease outcome are now considered. Table 4.9

shows the values and ranking for the three predictive

indices across models with their condition. The BLS and

BWLS models have the highest SEN but have the lowest SPEC.

The BR model has the lowest SEN but ranks first in having

the highest SPEC. The B, BB, LD, BRWLS, and EMPD have the

best predictive value.

Table 4.9

Performances of Each Model in Terms of Prediction Indices

When the Symptoms Are Lowly Correlated With

the Disease and Their Ranking

 

 

 

Mode1 SEN Rank SPEC Rank PRED Rank

Bayesian .76 3 .61 4 .32 1

BB .76 3 .61 4 .32 l

BLS .78 l .54 8 .29 7

BWLS .78 l .56 7 .30 6

BR .31 8 .84 l .21 8

BRWLS .73 7 .62 2 .32 1

LD .75 6 .63 3 .32 1

EMPD .76 3 .61 4 .32 1
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When the symptoms are highly correlated with the

disease, Table 4.10, the BR model has the highest SEN,

implying that the ridge solution improves the ordinarily

BLS in SEN but at the price of losing SPEC. The B has the

lowest SEN but has the highest SPEC and PRED. The LD and

EMPD share in having the highest PRED.

Table 4.10

Performances of Each Model in Terms of Prediction Indices

When the Symptoms Are Highly Correlated With

the Disease and Their Ranking

 

 

 

Model SEN Rank spec Rank PRED Rank

Bayesian .86 7 .79 1 .49 1

BB .88 5 .79 1 .49 1

BLS .96 2 .64 7 .37 7

BWLS .92 3 .65 6 .38 5

BR .98 1 .64 7 .38 5

BRWLS .90 4 .66 5 .37 7

LD .86 7 .79 l .49 1

EMPD .88 5 .78 4 ".49 1

 



80

When the conditions of high and low intercorrelated

symptoms are pooled, the BLS model has the highest SEN

and the BR model has the lowest SEN and PRED but with the

highest SPEC as shown in Table 4.11. The BWLS model has

the lowest SPEC. The BB model ranks first in having the

highest PRED followed by the B, LD, and EMPD models.

Summarizing the above results, Table 4.12 is

formulated, as can be seen below.

Table 4.11

Performances of Each Model in Terms of Prediction Indices

for Pooled Situation and Their Ranking

 

 

 

Model SEN Rank SPEC Rank PRED Rank

Bayesian .81 5 .70 3 .40

BB .82 3 .70 3 .41

BLS .87 l .69 6 .33

BWLS .85 2 .61 8 .34

BR .65 8 .74 l .30

BRWLS .81 5 .64 7 .34

LB .80 7 .71 2 .40

EMPD .82 3 .70 3 .40
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Table 4.12

Performance of Models Relative to the Predictive

Indices Across Correlational Patterns of

Disease and Symptoms

 

 

 

 

 

 

 

Correlation With the Disease Outcome

Intercorrelation Among Symptoms

Low High

Low High Pooled Low High Pooled Overall

SEN BLS, B, BB, BLS, BR BB, BLS, BLS BLS

BWLS EMPD BWLS BWLS , BR,

BRWLS ,

EMPD

SPEC BR BR BR LD LD LD , B , BB BR

PRED BRWLS BRWLS B, BB , LD LD LD , BB , B , BB

BRWLS , EMPD

LD, EMPD II       

A key question could be asked as to the cost of using

these models in each class (i.e., when the symptoms have low

correlation with the disease outcome or when the symptoms

are highly correlated with the disease outcome). In exam-

ining these models to answer this question, the following

table represents the consequences for various outcomes.

This table is also known as the utility_matrix.
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True State

D 5

Model ' s D w11 w12

Diagnostic ._

Action D w21 w22

    

where wij represents the arbitrary weight given to each

outcome. These weights can be in the form of mortality or

cost in dollars. They could either be gain--(positive in

value) or a loss--(negative in value) or zero (neither gain

or loss). Hence, a decision function, E(D), is defined for
 

the mth model as follows:

2

= *A

2

i=1

where p; denotes the marginal probability or base rate of

the disease. In this dissertation, pi = P(D) and P* = P(D).
2

fiijm is the probability of patients having the disease

predicted by the mth model for the ith and jth outcome.

To emphasize the Type 1 and Type 2 error differences,

let us assume the following weights: w21 = -2, w12 = -l,

and w11 = w22 = 0, which means that the penalty for com-

mitting a Type 1 error is twice as costly as that for

committing a Type 2 error, and there is no credit or gain

given to the right diagnosis. A loss function can now be
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formulated since there will be only loss and no gains.

This can be shown in the following matrix.

True State

 

 

D D

Model's D 0 -1

Diagnostic

Action D. _2 0

    

The model's performance in terms of this loss function is

presented in Table 4.13.

The LD model has the least loss followed by the B

and BR models, and the BLS model has the most loss when

the symptoms are lowly correlated with the disease outcome.

The B and LD models share in having the least loss and the

BB model has the greatest loss when the symptoms are highly

correlated with the disease outcome. For both situations,

the B and LD models again have the least loss with the BLS

and BWLS models having the greatest loss.

If credits are given to the right diagnosis by setting

w11 = 2, w22 = 1, then the amount of credit given to a

correct diagnosis of a truly diseased patient is worth

twice as much as a correct diagnosis of a truly non-diseased

patient. The matrix below references the result of setting

w12 = -l and w22 = l.
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D -2 1

    

In terms of gain, as shown in Table 4.14, the LD model

has the most gain followed by the EMPD, BRWLS, and B models

with the BR model having the least gain when the symptoms

are lowly correlated with the disease outcome. And when

the symptoms are highly correlated with the disease outcome,

the B and LD models share the highest gain with BRWLS having

the least gain. Again, combining the conditions where (l)

the symptoms have a low correlation with the disease and

(2) the symptoms have a high correlation with the disease

produces the following results. The LD model had the most

gain with the B model ranking second. The binary regression

‘models have the smallest gain. These results show that

solutions resulting from the binary regression model and

the Bayesian model which are intended to correct for highly

interrelated symptoms did not improve significantly in

reducing loss nor in increasing gain.

The summary of these resultant losses and gains are

presented in the following matrix:
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Least Loss Best Gain

Low correlation LD LD

with the disease

High correlation

with the disease LD' B LD, B

=

Pooled LD, B LD

  

It should be borne in mind that the above evaluation

is contigent on the choice of weights and the fact that the

second sample has the same relational structure as the

first. It is now of interest to see how the models would

perform when the estimated parameters are applied to a

second sample that has a different relational structure

than the first, keeping the weights constant. This situ-

ation would represent the case when a sample of information

is gained and the relational structure is derived based on

that sample and assumed to hold for all subsequent samples.

That is, the derived parameters from this initial sample

are "blindly" generalized to a second sample which has an

unknown relational structure. The results of using one

class to generalize to another class in terms of the

prediction indices are shown in Appendix E.

In Table 4.15, the rows represent the knowledge of

the sample equivalent to the class and the columns represent

the model that has the highest SEN, SPEC, and PRED across

the classes. These classes have a different structure from
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Table 4.15

The Best Model in Terms of Predictive Efficiency Indices

Under Different Relational Structural Situation

 

 

 

Highest Highest Highest

Situation SEN SPEC PRED

A BB EMPD LD, EMPD, B

B BB EMPD LD

C BLS LD B , LD

D BLS LD LD, B

 

the sample relational structure from which they are

developed. For simplicity, only four classes were chosen,

namely, Class I, III, IV, and VI. These classes permit

comparisons of the effects of low versus high intercor-

relations among symptoms and low versus high correlations

with the disease. The case of intermediate intercorre-

lations among the symptoms was ommited. Let the following

notation represent these situations:

A. Prior knowledge of the relational structure of I

and predicting across relational structure III, IV,

and VI.

B. Prior knowledge of the relational structure of III

and predicting across relational structures I, IV,

and VI.
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C. Prior knowledge of the relational structure of IV

and predicting across the relational structures I,

III, and VI.

D. Prior knowledge of the relational structure of VI

and predicting across relational structures, I,

III, and IV.

In terms of the predictive efficiency indices, the

results are shown in Table 4.15.

The BB model has the highest SEN with the EMPD model

having the highest SPEC and LD with the highest PRED for

situations A and B. The BLS model has the highest SEN and

the LD model has the highest SPEC and PRED along with the

B model in situations C and D.

In terms of utility, the B, LD, and EMPD models have

the least loss for situation A. The LD model has the least

loss for situation B. The B, BB, and LD models have the

least loss in situations C and B, and the LD model has the

least loss in situation D. Across all four situations, the

LD model has the least loss followed by the B and BB models.

This is shown in Table 4.16.

The BB model has the most gain in situation A with the

BLS model having the least gain. The LD model has the most

gain in situation B and also in situation C along with the

B model. The B and LD models also have the most gain in

situation D. This is shown in Table 4.17.
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Table 4.16

The Performance of the Probabilistic Models

Terms of Losses When Cross Validating to

a Different Relational Structure

 
 

  

 

 

 

 

 

 

 

 

 

Prior

Knowledge B BB BLS LD R EMPD R

I .28 .29 .36 .28 l .28 1

III .46 .42 .43 .35 1 .46 4

IV .32 .32 .34 .32 l .35 5

VI .32 .33 .38 .32 l .34 4

.34 .34 .37 .32 l .36 4

Table 4.17

The Performance of the Probabilistic Models

Terms of Gains When Cross Validating to

a Different Relational Structure

Prior.

Knowledge B BB BLS LD R EMPD R

I .64 .71 .48 .64 2 .64 2

III .28 .36 .34 .50 l .28 4

IV .55 .54 .52 .55 l .50 5

VI .56 .54 .43 .56 l .52 4

.51 .54 .44 .56 1 .48 4
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These results can be summarized as follows:

Least Loss Highest Gain

 

 

 

 

A LD, EMPD, & B BB

B LD LD

C B, BB, & LD B 8. LD

D LD,!B LD,I3   
 

Special Classes
 

Besides the above Six classes generated, three

"special" classes were generated to have the following

properties.

1. Mixed Class: The mixture of the six classes,
 

i.e., there are highly correlated symptoms and also lowly

correlated symptoms and some are highly correlated or lowly

correlated with the disease outcome.

2. Suppressor Class: The presence of a symptom which
 

is highly correlated with other symptoms but has low corre-

lation, near zero, with the disease outcome, i.e., if ith

is the symptom, then, rij = high and riD = 0. This symptom

is known as the suppressor symptom (Lubin, 1957; Conger and
 

Jackson, 1972).

3. High Correlated Class: An extreme class of high
 

correlation among symptoms and high correlation with the

disease.
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The population and sample variance and covariance

matrices for these special classes are presented in

Appendix F. Using the same test of equivalence, the

following results were obtained (Table 4.18).

Table 4.18

Test of Equivalence for Special Classes

 

 

 

 

  

Class L L' d.f. p

 

Mixed 152.04 151.32 10 .005*

Suppressor 4.83 4.81 10 .999

High correlation 36.94 36.76 10 .025*

 

*Significant at the 0.05 level.

Despite the statistical lack of equivalence between the

p0pulation and sample variance-covariance matrices for the

mixed and high correlation classes, the two classes still

represent the intended situations and hence, would not be

a major concern for later analysis and interpretation.

The three samples were then randomly split into two

equal halves and the two sub-samples were then tested for

equivalence as shown in Table 4.19.
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Table 4.19

Test of Equivalence for Sub-Samples for Special Classes

 

 

 

Significance

Probability

Class 2 d.f. P

Mixed 1.56 10 .995

Suppressor 15.77 10 .10

High correlation 2.86 10 .99

 

The estimated parameters were derived from the first

sample as before and they were cross-validated with the

second sample. The performances in terms of the prediction

indices are presented in Appendix G. Table 4.20 shows the

summary results for the special classes.

Table 4.20

The Models That Perform Relatively the Best in

Terms of Predictive Indices

 

==

 

Highest Highest Highest

Class SEN SPEC PRED

Mixed All B, BB, LD, B, BB, LD,

EMPD EMPD

Suppressor All All All

High correlation All B, BB, LD B, BB, LD
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In terms of decision function values and using the same

weights as given before, Table 4.21 and Table 4.22 Show the

values of loss and gains, respectively.

In all three special classes, all models surprisingly

perform the same in terms of sensitivity! In terms of

having the highest SPEC and PRED, in the mixed class, all

models except the binary regression models, BLS, BWLS, and

BR, perform the same. In the suppressor class, all models

have the same performances in terms of SEN, SPEC, and PRED.

In the high correlation class, all models have the same SEN,

and B, BB, LD models have the highest SPEC and PRED.

In terms of loss, all models except the binary regres-

sion models have the same amount of loss in the mixed class.

In the suppressor class, all models have the same amount of

loss. In the high correlation class, the B, BB, and LD

models have the least loss while the BR model has the

most loss.

In terms of gain, the B, BB, LD, and EMPD models have

the most gain in the mixed class. In the suppressor class

there is no difference in gain for all models. In the high

correlation class, the EMPD model has the most gain while

the BWLS model has the least gain.



95

Table 4.21

Loss Function for Various Models

for Special Classes

 

 
 

 

 

 

 

 

 

 

Models

Class B BB R BLS R BWLS R ER LD EMPD

Mixed .19 .19 l .26 5 .33 7 .31 .19 .19

Suppressor .40 .40 1 .40 l .42 1 .42 .42 .42

High cor-

relation .30 .30 1 .32 5 .36 7 .34 .30 .31

Table 4.22

Gain Function for Various Models

for Special Classes

Models

Class B BB R BLS R BWLS R BR LE EMPD

Mixed .82 .82 l .68 5 .53 7 .57 .82 .82

Suppressor .36 .36 1 .36 l .36 l .36 .36 .36

High cor-

relation .60 .60 2 .55 5 .48 7 .52 .60 .88
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Clinical Application
 

The data selected for application are from a study on

brain scans by Potchen (1975) from July 1974 to June 1975

at Johns Hopkins Hospital, Maryland. The procedure involved

in his study is shown in Figure 4.2. The instrument that

was used is presented in Appendix H. The patients with the

given symptoms were recorded on a questionnaire and these

were given to physicians to determine the probability of

having an abnormal scan for each patient and whether a brain

scan was necessary. The final results were confirmed by the

brain scan when the patient was referred for such action.

In this application, only those patients that were referred

for brain scan were used. There are altogether 86 patients

in which 8 patients had abnormal brain scans which means

tumor growth in the brain. Since the application is about

symptomic diagnosis, only the signs and symptoms were

selected. They are:

l. headaches;

2. seizure;

3. cortical deficit;

4. motor deficit;

5. sensory abnormality; and

6. visual field defect.
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The normality or the abnormality of the final brain

scan will be considered as the disease outcome, the 86

patients will be considered as the "population" of brain

tumor suSpected patients with the given Six symptoms—-the

set of conditions. It should be borne in mind that with

such few patients, the following results can only be con-

sidered a pilot study or preliminary investigation for the

models.

With the same procedure, the 86 patients were split

into two equal halves of 43. Each half having 4 abnormally

scanned patients. The variance-covariance matrix for the

"population" and the samples are shown in Appendix J. The

test of equivalence for the split samples and test for

multicollinearity are presented in Table 4.23.

Table 4.23

Test for Equivalence and Multicollinearity

 

 

Significance

Probability

Test 2 d.f. P

Equivalence .001 28 .99

Multicollinearity 20.65 15 .25
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The estimated parameters are shown in Appendix F.

The decision point r is set at .10 (n = 8/86 = .10). The

results of computing the prediction indices for the models

are Shown in Table 4.24. From the table, the weighted ridge

solution surprisingly improves the sensitivity of the ordi-

nary least squares binary model. The entropy model has the

highest specificity with the binary model having the least

specificity. However, the binary model has the highest

predictive value.

Table 4.24

Prediction Indices for Various Models for Brain Scan

 

 

 

 

Models

Indices B BB BLS BWLS BR BRWLS LD EMPD PSPa

SEN .00 .50 .50 .25 .75 .75 .25 .00 .75

SPEC .90 .95 .54 .65 .69 .41 .74 .97 .41

PRED .00 .00 1.00 .06 .20 .12 .09 .00 .09

 

aPSP= physician subjective probability derived from category IV,

section la, on the questionnaire as shown in Appendix H.

With respect to the values of the decision function

with the weights as given on page 82, Table 4.25 shows the

values for both the loss and gain for various models.for

the brain scan data.
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Table 4.25

Decision Function Values for Various

Models on Brain Scan

 

 

 

 

Models

Function B BB BLS BWLS BR BRWLS LD EMPD Pspa

Loss .29 .14 .51 .46 .33 .58 .38 .03 .25

Gain .52 .81 .08 .17 .44 .07 .34 .84 .63

 

aPSP = physician subjective probability derived from category IV,

section la, on the questionnaire as shown in Appendix H.

Hence, from the results, the EMPD model is the best

model in terms of utility; the least loss and the most

gain, in screening or predicting brain scan patients.

What are the significant findings from the analyses

in this chapter? What can these models have to offer for

diagnostic problem-solving? How do these models relate to

a real clinical setting? And how can one go about using

these probabilistic models for diagnostic problem solving?

These issues and other important issues will be discussed

in the following chapter.



CHAPTER V

SUMMARY AND DISCUSSION

The significant findings in this thesis may be

summarized as follows:

1. Overall, sensitivity increases for all models as

the correlation with the disease outcome increases.

2. There is a "hump" or convex effect for sensitivity

for all models except the Bayesian (B), Bayesian with the

Bahadur's expansion (BB) and the Entropy Minimax Pattern

Discovery (EMPD) models, in Situations where the symptoms

have a low correlation with the disease outcome. That is,

the maximum sensitivity is not when the intercorrelation

between the symptoms is greatest but when the symptoms are

moderately intercorrelated as shown in Appendix L. This

phenomenon did not Show in situations where the symptoms

have a high correlation with the occurrence of the disease.

In fact, sensitivity increases as the intercorrelations

increase under the latter situation as shown in Appendix M.

3. The values for sensitivity did not differ among

models in situations where highly interrelated symptoms are

also highly related to the occurrence of the disease. In

other words, when the relational structure is highly

101
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correlated, it does not matter which model one uses if

sensitivity is chosen as a criterion for selection models.

4. The "pit" or concave effect of specificity across

binary regression models occurs when, given those situa-

tions where the symptoms are highly correlated with the

disease outcome, the intercorrelations between the symptoms

increase. This is also shown in Appendix M. This means

that specificity is at a minimum when the symptoms are

moderately related.

5. The "hump" or convex effect is also found for

predictive values in the same way as the sensitivity index,

that is, when the symptoms have a low correlation with the

occurrence of the disease as shown in Appendix L.

6. With the presence of a suppressor symptom, it does

not matter what measure one uses as a criterion for select—

ing models as all models perform the same for all prediction

efficiency indices.

7. If a model is chosen with the criterion of having

the best sensitivity, it is at a cost of losing specificity

and vice versa. In other words, there are pp_models that

have the best of both indices for all classes considered

in this dissertation. The statement holds when one looks

across classes and within classes of problems. This also

means that there is pp_single model that performs consist-

ently better for each class or across classes in terms of

sensitivity and specificity.
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8. A decision function analysis was performed.

Penalty (negative) weights were given for the two diag-

nostic errors (i.e., Type 1 and Type 2) and no credit is

given to the correct diagnosis. The binary least square

model (BLS) and the binary weighted least square model

(BWLS) showed the smallest loss when the symptoms had a

low correlation with the disease's occurrence but themselves

had high intercorrelations. However, when considering gains,

with credits given to the correct diagnosis, but the same

penalty weights, the Bayesian model (B) had the most gain

when the intercorrelations among the symptoms was low but

the correlation between the symptoms and outcome was high.

The logistic discrimination model (LD) had the most gain

when the symptoms had a low correlation with each other

but had a high correlation with the occurrence of the

disease outcome. The LD model also had the most gain

when the symptoms were moderately interrelated with each

other and the symptoms had a low correlation with the

disease. If one disregards the intercorrelation among

symptoms, the LD model had the highest gain whether or

not the symptoms had a high or low correlation with the

occurrence of the disease. That is, the best model to use

to maximize gain in the absence of knowledge about the

relationship among and between symptoms and disease

outcomes, is the LD model.
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9. Summarizing the above results, the following

table (Table 5.1) can be formulated. The columns denote

the kind of relational structure cross—validated and the

rows represent the criterion for selecting models. For

example, assume one wants to cross-validate under the

assumption of an unknown relational structure and also

chooses specificity (SPEC) as the criterion. One would

go to the intersection of column two (Unknown) and the

second row (SPEC) and conclude that the B model should

be used.

TafleSJ

Decision Table in Choosing Models With Respect to

Prediction Index and Kind of Cross—Validated

Relational Structure

 

Criterion for

 

Selecting Models Same unknown

SEN BLS BLS

SPEC BR B

PRED BB, LD, EMPD LD

LOSS LD, B LD

GAIN EMPD, LD LD
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Further Recommendations
 

The purpose of this thesis was to demonstrate how

different statistical models perform when applied to

different relational structures and under differing degrees

of uncertainty. The following are some recommendations for

further research:

1. Vary the base rates of the disease and the symptoms

and determine the changes of the prediction

efficiency indices for various models.

Increase the number of disease categories beyond

the two that were considered in this dissertation

(i.e., D1, D2, ... Dd).

Change the direction of the intercorrelation among

the symptoms and with the occurrence of the disease

to negative and determine the changes in prediction

efficiency indices for various models.

Vary the decision rules and determine the changes

in prediction efficiency indices for various models.

For symptoms that have high intercorrelations,

combine symptoms to form "factors" by means of

factor analysis and principal components techniques

and use these generated factors or components to

predict the occurrence of the disease.
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Clinical Implications
 

What sort of implications do these models and the

findings have for an empirical clinical setting? First

of all, these models are attempts to quantify uncertainty.

They are a set of mathematical algorithms to generate

indices from a complicated universe in order to enable

decision-making to be less difficult and to be more effec-

tive. They are ppp_meant to replace the human decision

maker but rather to supplement the decision process. They

act as an additional source of information for the decision

maker. The model's relationship with the human decision

maker may be illustrated as in Figure 5.1.

 

   

    

  

  

   

 

Quantitative

Models

 

 
  

   

 

Clinical

Decision

Clinical

Intuition   

. Clinical

Uncertainty Action

   
 

Figure 5.1 The Relationship Between Quantitative Model Decision

and Clinical Intuition.
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After one obtains the additional information from the

quantitative models, one can choose the following three

alternatives: (1) ignore the prediction made by the

quantitative models and follow clinical information,

(2) modify the clinical impression on the basis of the

information provided by the quantitative models, or (3)

abandon clinical intuition in favor of the quantitative

choice. It should be borne in mind that the final and full

responsibility of medical diagnosis lies on the physician

and not on a set of mathematical algorithms, regardless of

which of the three alternatives is chosen.

When the physician's clinical intuition is in agree-

ment with the quantitative prediction, there is no problem

and the quantitative prediction is seen as "reinforcing"

clinical intuition. However, when clinical intuition is

in disagreement with the quantitative prediction, the

physician should weigh all the evidence by objectively

examining the validity of his own intuition and the validity

{pf the assumptions of the quantitative models to generate
 

the prediction. If the model's assumptions are violated,

then he should take alternative (1) (i.e., abandon the

quantitative prediction and follow his own intuition).

However, if the physician feels that for some reason his

clinical intuition is somehow suspect, then it is recom-

mended that he take alternative (3) (i.e., abandon his own
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intuition and follow the model's prediction). Again the

physician must bear the responsibility of abandoning his

own intuition and abiding by the quantitative prediction.

For all clinical decisions, if the crux is to determine

whether the patient has a disease, and there is doubt,

deSpite all possible evidence gathered by both the human

decision maker and the models, it is better to diagnose the

patient as having the disease. This follows the axiom, "If

in doubt, diagnose illness." The above situations can be

illustrated in the following table (Table 5.2).

TfifleSJ

Final Decision by Clinical Intuition

and Quantitative Prediction

0
|

 

 

D

Clinical D D D

Intuition - —-

D D D

    

Schema for Application of the Models

to a Diagnostic Problem

 

 

To apply these probabilistic models to a diagnostic

problem, the following steps should be taken:

1. Select the disease to be identified.

2. Identify the set of signs or symptoms which are

thought to occur jointly with the disease. That

is, in effect, similar to identifying the signs or
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symptoms which are related to the occurrence of the

disease without implying causality between the

symptoms and the occurrence of the disease.

Collect all available cases of the set of signs or

symptoms. It is to be noted that the frame-of-

reference for the data collection is with respect

to the set of signs or symptoms and not with

respect to the occurrence of the selected disease.

Hence, the collected data will include those cases

that the selected disease and those cases that have

other diseases or no diseases of interest.

From the collected data and for each individual

case, code a one (1) if the case shows the presence

of the selected disease and code a zero (0) if the

case shows other diseases or no disease. Likewise,

use the same scheme of coding with the signs or

symptoms for each individual case. The resultant

coded data will resemble the data matrix shown in

Figure 1.3.

Define an uncertainty structure by dividing the

magnitudes of the intercorrelations among the signs

or symptoms into levels and likewise with the mag- I

nitudes of the correlation of the signs or symptoms

with the occurrence of the disease. Then label,
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numberically or alphabetically, the cells or

classes in the uncertainty structure. The above

two procedures will result in the following figure:

Intercorrelation Among Symptoms

Level 1 Level 2 Level 3

 

 

 

Level 1 I II III

Correlation

of Symptoms Level 2 IV V VI

With Disease

Level 3 VII VIII IX

     

It should be noted that the levels need not be of

equal intervals.

From the new coded data matrix, compute all pos-

sible pairwise correlations among the symptoms and

the correlations between the symptoms and the occur-

rence of the disease by using the phi-coefficient

formula (Cohen and Cohen, 1976), obtaining the

correlational matrix as shown in Figure 3.1. The

computed correlational matrix constitutesthe

relational structure of the disease and the

symptoms.

Identify the cell or class where the computed

relational structure is the closest in value with

the results in step 5. This is done by either
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"eyeballing" the values of the computed

relational structure along with the values of

the correlations in each individual classes in

the uncertainty structure and selecting the

class that bears the most resemblance (a purely

subjective judgment) to the computed relational

structure, or

performing a statistical test of equivalence

between the classes and the computed relational

structure. This is, in effect, testing the

following hypothesis:

H : = .

0 Rs Rc1

against the alternative,

H1: Rs 7‘ RC1

where Rci = the ith class in the uncertainty

structure. It is worthy to note that the

values in the correlation matrix, Rci’ are the

median values of the two intervals of the ith

class (i.e., if the level of correlation among

symptoms is 0.5 to 0.7 and the level of corre-

lation of symptoms and the disease is 0.0 to

0.30 for the ith class, the median values for

the correlational matrix, R are 0.6 and
ci'

0.15, respectively).
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RS = the computed relational structure from

the collected data.

Such test of equicorrelation patterns of relational

structures can be found in Morrison (1976, p. 276).

8. Select a criterion, sensitivity, specificity, or

predictive value, according to the following rule:

 

 

Criterion

Situation SeIécted

The consequences of committing a

Type 1 error is more serious than

committing a Type 2 error Sensitivity

The consequences of committing a

Type 2 error is more serious than

committing a Type 1 error Specificity

The consequences of committing both Sensitivity

Type 1 and Type 2 errors are of no or

difference Specificity

9. Use Table 4.8 where the rows represent the crite-

rion to be selected and the columns represent the

classes of the uncertainty structure. The inter-

section of the rows and the columns represents the

probability model or models that perform relatively

the best with reSpect to the selected criterion in

that particular class.

10. Use that model for diagnostic prediction for the

selected disease in maximizing the chosen

criterion.

The summary of the above ten steps is represented in

Figure 5.2.
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Select the Disease

to be diagnosised

identify the iymptoms

relating to the

occurrence of the

disease

 

Addition of___’ Collect those cases

New cases that have the set of

symptoms i

Compute the relational

structure of the disease

and the sym toms

Define the uncertainty

structure for the disease

and the symptoms

Identify the class which

the computed relational

structure best fits

Select the criterion

according to the nature

of the diagnostic problem

From table identify the

model that performs the

best with respect to the

criterion in that class

Use the model for

diagnostic prediction

Figure 5.2 Schema for Application of the Models to a Diagnostic

Prdblem.
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An Example in Breast Cancer

Consider the problem of detecting breast cancer which

is one of the major causes of death among women. It is

widely recognized that the early detection of this cancer

will reduce its mortality rate. However, the term "early"

has equivocal meanings as it denotes the absence of any

signs or symptoms at the onset stage of the cancerous growth.

The only "signs" or "symptoms" for such an early detection

are sociological cues: the patient's familial history of

breast cancer, the patient's pregnancy and menarche history,

and other cues which are not directly related to the cancer.

These cues are known as risk factors and they constitute the
 

physician's index-of—suspicion. The diagnostic problem is
 

then to use these risk factors to identify the high risk

group of patients as having breast cancer. The risk factors

that are known to be highly related to the occurrence of

breast cancer are (1) age, (2) socioeconomic status, (3) age

at menarche, (4) age at pregnancy, (5) age at menOpause,

(6) familial history of breast cancer, and (7) number of

pregnancies. Gather all available cases that have these

risk-factors. An excellent data source would be from mass

screening centers. A portion of the collected cases will

be confirmed breast cancer cases (coded as ones) and the

other portion of cases will be non-confirmed breast cancer
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cases (coded as zeroes). Each risk factor is dichotomized

by setting a subjective cut-off point and coding a value

of one if the value of the risk-factor exceeds the cut-off

point and coding a value of zero if the value of the risk—

factor lies below the cut—off point. The next step is then

to define an uncertainty structure. The following matrix

is one possible definition of the uncertainty structure:

Intercorrelations Among the

Risk Factors

<O.20 0.21-0.50 3>O.50

 

 

 

Correlations :>O'20 I II III

of the Risk 0.21- IV V VI

Factors with 0.50

Breast Cancer <10.50 VII VIII Ix

     

Then compute all possible pairwise correlations among the

risk-factors and the correlations between the risk-factors

and the occurrence of breast cancer, thereby deriving the

relational structure of the risk factors and breast cancer.

Using the relational structure and the uncertainty structure,

identify the class of the relational structure by either

strategy as mentioned in Step 7. Misclassifying a breast

cancer case as non-breast cancer case (Type 1) has more

serious consequences than classifying a non-breast cancer

case as a cancer case (Type 2 error), since the former
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action means later detection and delayed therapy which might

lead to death; consequently, sensitivity is preferable to

specificity as a criterion for selecting models. Finally,

from Table 4.8, with sensitivity as the criterion and the

class that has been identified for the relational structure,

say hypothetically Class IV, the binary ridge regression

model is the best model relative to the other models, for

identifying the high risk breast cancer group.

It should be borne in mind that Table 4.8 is generated

from the assumption that the base rate for the selected

disease is 0.2 and the base rates for the symptoms are 0.5.

However as further studies which use the same methodology

as this dissertation, investigate the effects of varying

the base rates for the disease and the symptoms, this

assumption can be relaxed.

Quantitative Models in Medical

Decision Making

 

 

The use of quantitative models can achieve three main

objectives which are merits of the models in their own

right. They:

1. Combine probabilistic reasoning and uncertainty

of the data in a formal explicit system rather

than by intuition to achieve more efficient and

consistent information processing.



117

2. Provide a systematic processing of uncertainty
 

that takes account of all available information

for decision making and find the optimal weighting
 

combination of symptoms, ensuring that each
 

contributes properly to the disease outcome.

3. Develop formulae, rules, or strategies for optimal
  

consistent information processing in the presence

of uncertainty.

There are three areas in which quantitative models can

assist in better medical decision making. They are (1)

teaching tools, (2) patient management, and (3) public

policy. These areas might be considered as follows:

1. Teaching Tool: Elstein (1976) has noted that
 

strategies for different degrees of uncertainty have been

made explicit by quantitative models. Hence, they can

become a learning device for the novice in finding strat-

egies and rules for identification of a disease. Consider

the detection of breast cancer. The problem is to find the

"high risk" group without referring every case for radiolog-

ical examination. Radiological examinations haveturned out

to be hazardous to health. Blair (1976) has found that

radiation has killed as many patients as breast cancer

itself. Yet, radiological examinations or techniques

remain the best device for detecting breast cancer despite

their potential hazards. Hence, the crux of the problem is
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to (l) assume the patient has breast cancer and to refer

the patient for radiological examination knowing that

exposure to radiation is hazardous, a possible Type 2

error, or (2) assume the patient does not have breast

cancer with the danger of committing a Type 1 error. When

the explicit rules and strategies for making this crucial

decision have been generated by quantitative models, the

novice could learn from these rules to make his decision.

2. Patient Management: In situations of diagnostic
 

ambiguity, the physician has difficulty in taking clinical

action. But when rules and strategies for diagnosing the

disease have been made explicit, this information becomes

a frame-of—reference for diagnosis hence removing the

ambiguity of the situation. An excellent example for

patient management is the common symptom, headache.

MacBryde and Blacklow (1970) have listed fifteen diseases

associated with the symptom, headache, among which is brain

tumor. Each disease demands unique treatment and therapy.

The kinds of treatment range from administering an aspirin

to brain surgery. Each treatment procedure demands cost,

time, and potential hazard. The problem is to identify

the disease correctly in order to give the correct form

of patient management.
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3. Public Policy Making: In the area of health care,
 

there are many decisions involving the expenditure of large

dollar amounts for public health programs. AS one instance,

a debate is current between the Department of Public Health

and the third party carriers as to whether physicians be

for "whole body" computed assisted tomography (CT) scans.

This is only symptomatic of the impact of technology on

medical diagnosis. The question becomes, how should one

and when should one use these expensive and sometimes

potentially hazardous diagnostic techniques. Further,

who will pay for it; how much will be paid; and how often

will these procedures be paid for, become a series of

questions that are entering into health policy. It is

anticipated that the application of the quantitative models

studied in this dissertation will help provide answers to

questions such as these. For example, if one can determine

the efficacy and correctness of a clinical diagnosis through

the use of quantitative models, then the procedures used to

reach the diagnosis would be strengthened and consequently,

be candidates for reimbursement. If, however, the weight

assigned to particular procedures is low, which would indi-

cate little or no contribution to the overall clinical

diagnosis, then the procedures needed to obtain the

information as to whether the symptom is present or

absent should be scrutinized for reimbursement.



APPENDICES



APPENDIX A

THE RELATIONAL STRUCTURE OF THE POPULATION,

THE GENERATED SAMPLE AND THE SPLIT SAMPLES
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NOTE

The correlational matrices (R) and the variance-covariance

(2) matrices in this appendix and the following appendices

should be interpreted as follows:

where

a11'322'333'add =

81 82 S3 D

1 a11

a12 a22 (Symmetric)

  

1 if it is a correlational matrix and

the variances of symptom l, 2, and 3,

and the disease, respectively, if it is

a variance-covariance matrix;

— correlation between symptom 1 and

symptom 2 if it is a correlational matrix,

and the covariance of symptom 1 and

symptom 2 if it is a variance-covariance

matrix;

— correlation between symptom l and

symptom 3 if it is a correlational matrix,

and the covariance of symptom l and

symptom 3 if it is a variance-covariance

matrix;

— correlation between symptom 2 and

symptom 3 if it is a correlational matrix,

and the covariance of symptom l and

symptom 2 if it is a variance-covariance

matrix; and
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2,

= the correlation of the occurrence

of disease with symptom l, and

3, respectively, for the correlational

matrix and the covariance of the disease

with symptom 1, 2, and 3, respectively,

for the variance-covariance matrix.

Relational Matrices of Populations and Samples

 

w
>

w
>

 

 

 

 

Class

II III

1.00 1.00 1.00

0.20 1.00 0.40 1.00 0.60 1.00

0.20 0.20 1.00 0.40 0.40 1.00 0.60 0.60 1.00

0.20 0.20 0.20 1.00 0.20 0.20 0.20 1.00 0.20 0.20 0.20 1.00

1.00 1.00 1.00

0.10 1.00 0.40 1.00 0.56 1.00

0.13 0.14 1.00 0.35 0.33 1.00 0.67 0.62 1.00

0.21 0.10 0.11 1.00 0.24 0.24 0.31 1.00 0.23 0.18 0.23 1.00

IV V VI

1.00 1.00 1.00

0.20 1.00 0.40 1.00 0.60 1.00

0.20 0.20 1.00 0.40 0.40 1.00 0.60 0.60 1.00

0.40 0.40 0.40 1.00 0.40 0.40 0.40 1.00 0.40 0.40 0.40 1.00

1.00 1.00 1.00

0.15 1.00 0.31 1.00 0.56 1.00

0.23 0.21 1.00 0.44 0.42 1.00 0.67 0.61 1.00

0.41 0.34 0.32 1.00 0.45 0.41 0.37 1.00 0.43 0.44 0.42 1.00
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Variance-Covariance Matrices of Population and Samples

 

 

 

 

 

Class

I II III

.250 .250 , .250

.050 .250 .100 .250 .150 .250

.040 .050 .250 .100 .100 .250 .150 .150 .250

.040 .040 .040 .160 .040 .040 .040 .160 .040 .040 .040 .160

.250 .250 .250

.020 .250 .100 .250 .140 .250

.030 .030 .250 .080 .080 .250 .168 .155 .250

.040 .020 .020 .150 .040 .040 .060 .160 .045 .037 .046 .154

IV v VI

.250 .250 .250

.050 .250 .100 .250 .150 .250

.050 .050 .250 .100 .100 .250 .150 .150 .250

.080 .080 .080 .160 .080 .080 .080 .160 .080 .080 .080 .60

.250 .250 .250 '

.040 .250 .080 .250 .140 .250

.060 .050 .250 .110 .100 .250 .170 .150 .250

.080 .060 .060 .150 .090 .080 .070 .160 .080 .080 .080 .150
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Correlational Matrices of Sub—Samples

 

I
!
)

w
>

W
)

:
0
)

 

 

 

 

Class

I II III

1.00 1.00 1.00

0.16 1.00 0.43 1.00 0.52 1.00

0.15 0.09 1.00 0.30 0.35 1.00 0.63 0.60 1.00

0.23 0.13 0.11 1.00 0.29 0.22 0.29 1.00 0.16 0.10 0.18 1.00

1.00 1.00 1.00

0.03 1.00 0.38 1.00 0.60 1.00

0.11 0.17 1.00 0.41 0.32 1.00 0.72 0.64 1.00

0.18 0.08 0.10 1.00 0.20 0.26 0.33 1.00 0.29 0.27 0.28 1.00

IV V VI

1.00 1.00 1.00

0.21 1.00 0.41 1.00 0.59 1.00

0.36 0.26 1.00 0.49 0.36 1.00 0.68 0.60 1.00

0.36 0.43 0.34 1.00 0.49 0.44 0.32 1.00 0.43 0.43 0.40 1.00

1.00 1.00 1.00

0.10 1.00 0.22 1.00 0.55 1.00

0.12 0.16 1.00 0.39 0.49 1.00 0.67 0.65 1.00

0.46 0.26 0.30 1.00 0.42 0.38 0.42 1.00 0.48 0.46 0.45 1.00
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Variance-Covariance Matrices of Sub-Samples

 

‘
9
1
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)
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N

 

 

 

 

Class

I II III

.250 .240 .240

.040 .250 .100 .240 .120 .240

.030 .040 .250 .070 .080 .250 .150 .150 .250

.040 .020 .020 .150 .050 .040 .050 .160 .030 .020 .030 .150

.250 .250 .250

.010 .250 .090 .250 .150 .250

.020 .040 .250 .090 .070 .240 .180 .160 .250

.030 .010 .020 .150 .040 .050 .060 .170 .050 .050 .050 .150

IV V VI

.250 .250 .240

.050 .250 .100 .250 .140 .250

.090 .060 .250 .120 .090 .250 .160 .150 .250

.060 .080 .060 .150 .090 .080 .060 .150 .080 .080 .070 .140

.250 .240 .250

.020 .240 .050 .250 .140 .250

.030 .040 .250 .090 .120 .250 .160 .160 .240

.080 .050 .050 .150 .080 .070 .080 .150 .090 .080 .080 .140

 



APPENDIX B

THE ESTIMATED PARAMETERS FOR EACH

PROBABILITY MODEL FOR EACH CLASS



Estimated Parameters Binary Regression (LS)

 

 

 

 

 

 

 

 

 

 

 

Class

I II III IV V VI

Constant .03 .03 .10 -.14 -.07 —.04

Symptom l .17 .14 .07 .27 .28 .17

Symptom 2 .07 .09 -.02 .19 .22 .18

Symptom 3 .06 .14 .ll .12 .03 .09

Estimated Parameters Binary Regression (Weighted LS)

Class

I II III IV V VI

Constant .07 .02 .11 -.27 .04 .02

Symptom l .16 .09 .05 .23 .28 .14

Symptom 2 .08 .14 .02 .24 .14 .17

Symptom 3 .01 .02 .09 .34 -.05 .03

Estimated Parameters Binary Regression (Ridge)

Class

I II III IV V VI

Constant

Symptom 1 .05 .12 .05 .19 .06 .12

Symptom 2 .ll .06 .01 .14 .16 .13

Symptom 3 .05 .12 .06 .10 .19 .09
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Estimated Parameters Binary Regression (Weighted Ridge)

 

 

 

 

 

 

 

Class

I II III IV V VI

Constant

Symptom l .16 .15 .07 -.07 .18 .14

Symptom 2 .ll .10 .18 .13 .19 .16

Symptom 3 .06 .15 .06 .15 .04 .07

Estimated Parameters Logistic Discrimination (LD)

Class

I II III IV V VI

Constant -2.75 -3.07 -2.10 -6.78 —6.69 -9.25

Symptom l 1.20 1.12 .52 3.48 3.27 5.87

Symptom 2 .53 .40 -.14 2.15 3.04 1.69

Symptom 3 .44 1.31 .75 1.46 .66 1.46

 



APPENDIX C

THE ESTIMATED DIAGNOSTIC PROBABILITIES

FOR EACH 2P PATTERN FOR EACH

PROBABILITY MODEL FOR EACH CLASS
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Estimated Diagnostic Probabilities for 2p Possible Pattern for p = 3

Bayesian (B)

Class

Pattern I II III IV V VI

111 .35 .42 .27 .59 .60 .43

110 .21 .13 .10 .22 .35 .18

100 .08 .14 .09 .00 .00 .00

001 .00 .07 .26 .00 .00 .00

011 .14 .24 .00 .00 .00 .00

101 .38 .63 .35 .18 .06 .13

010 .18 .15 .25 .05 .06 .00

000 .08 .02 .10 .00 .00 .00

 

Estimated Diagnostic Probabilities for 2p Possible Pattern for p = 3

Binary Regression (BLS)

 

 

 

Class

Pattern I II III IV V VI

111 .33 .39 .29 .45 .47 .39

110 .27 .25 .18 .32 .43 .31

100 .20 .16 .18 .13 .22 .12

001 .09 .17 .22 .00 .00 .04

011 .17 .26 .22 .17 .18 .23

101 .26 .30 .29 .25 .25 .21

010 .ll .11 .11 .05 .15 .14

000 .03 .02 .11 .00 .00 .00
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Estimated Diagnostic Probabilities for 2p Possible Pattern for p = 3

Binary Regression (BWLS)

 

 

 

Class

Pattern I II III IV V VI

111 .31 .39 .27 .54 .41 .34

110 .30 .25 .18 .19 .46 .33

100 .22 .16 .16 .00 .32 .16

001 .07 .17 .19 .06 .00 .05

011 .15 .26 .22 .30 .13 .22

101 .23 .30 .25 .29 .27 .19

010 .14 .ll .13 .00 .18 .19

000 .07 .02 .ll .00 .04 .02

 

Estaimted Diagnostic Probabilities for 2p Possible Pattern for p = 3

Binary Regression-Ridge (BR)

 

 

 

Class

Pattern I II III IV V VI

111 .22 .30 .12 .43 .42 .35

110 .16 .18 .06 .32 .23 .26

100 .05 .12 .05 .18 .06 .12

001 .05 .12 .06 .10 .19 .09

011 .17 .17 .07 .24 .36 .23

101 .10 .24 .ll .29 .26 .22

010 .11 .06 .01 .14 .16 .13

000 .00 .OO .00 .OO .00 .00
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Estimated Diagnostic Probabilities for 2p Possible Pattern for p = 3

Binary Regression (BRWLS)

 

 

 

Class

Pattern I II III IV V VI

111 .34 .40 .31 .21 .42 .37

110 .27 .25 .25 .06 .37 .30

100 .16 .14 .07 .00 .18 .14

001 .06 .15 .06 .15 .04 .07

011 .18 .25 .24 .28 .24 .23

101 .22 .29 .13 .08 .23 .19

010 .ll .10 .18 .13 .19 .16

000 .00 .00 .00 .00 .00 .00

 

Estimated Diagnostic Probabilities for 2p Possible

Logistic Discrimination (LD)

Pattern for p = 3

 

 

 

Class

Pattern I II III IV V VI

111 .36 .44 .28 .65 .57 .44

110 .27 .17 .15 .29 .40 .15

100 .17 .12 .17 .05 .03 .03

001 .09 .14 .21 .00 .00 .00

011 .14 .20 .18 .05 .05 .00

101 .25 .34 .33 .18 .06 .13

010 .09 .06 .10 .01 .02 .00

000 .06 .04 .11 .00 .00 .00
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Estimated Diagnostic Probabilities for 2p Possible Pattern for p = 3

Entropy Minimax Pattern Discovery (EMPD)

 

 

 

 

Class

Pattern I I I I I I IV V VI

111 .36 (.17) .41 (.25) .28 (.35) .58 (.23) .57 (.26) .44 (.36)

110 .24 (.09) .15 (.09) .17 (.03) .23 (.07) .38 (.07) .25 (.02)

100 .09 (.11) .15 (.09) .ll (.19) .01 (.02) .07 (.04) .06 (.01)

001 .03 (.02) .10 (.04) .37 (.08) .01 (.02) .01 (.02) .00 (.02)

011 .14 (.06) .25 (.09) .06 (.01) .58 (.02) .04 (.01) .44 (.02)

101 .38 (.10) .57 (.04) .37 (.08) .18 (.08) .07 (.04) .16 (.06)

010 .19 (.08) .18 (.05) .28 (.35) .08 (.04) .10 (.04) .00 (.02)

000 .09 (.11) .04 (.05) .11 (.19) .01 (.02) .01 (.02) .00 (.02)

Note: The entries in the parentheses are the entropy values (H) Of the

particular pattern within the particular class.



APPENDIX D

THE PREDICTIVE INDICES OF EACH MODEL

FOR EACH CLASS
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Predictive Indices

 

 

 

 

 

 

 

Bayesian

Class

Indices I II III IV V VI

SEN .65:.17 .81i.l4 .82:.l3 .78:.14 .90:.10 .92:.09

SPEC .66:.08 .631.08 .54f.08 .84i.06 .78:.07 .77i.07

PRED .3li.1l .37i.ll .29i.lO .521.15 .50:.13 .471.13

El .35i.l7 .l9i.14 .18:.13 .21t.14 .lOi.10 .07i.09

E2 .34i.08 .37i.08 .46i.08 .l6i.06 .22:.07 .22:.07

Note: Results are reported as estimate i standard error.

Predictive Indices

Bayesian (BB)

Class

Indices I II III IV V VI

SEN .65 i .17 .81: .14 .82 i .13 .78 i .14 .90 i .10 .96 i .07

SPEC .66i .08 .633. .18 .54 i .08 .841r .06 .78i .07 .74: .07

PRED .31-41.11 .37i.ll .29i.10 .521.15 .501.13 .45i.12

El .34i.17 .19t.l4 .l8i.13 .211.14 .101.10 .04i.07

E2 .34i .08 .37: .08 .46: .08 .161 .06 .21:r .07 .261 .07
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Predictive Indices

Binary Regression (LS)

 

 

 

Class

Indices I II III IV V VI

SEN .72:.16 .83i.13 .78i.14 .93:.O9 1.00:.00 .96i.07

SPEC .Sli.08 .54i.08 .58i.08 .75:.07 .53i.08 .65:.08

PRED .25:.09 .33i.10 .30:.10 .451.12 .34i.10 .38i.11

El .271.16 .l6i.13 .22:.14 .07i.O9 .00:.00 .04i.07

E2 .49i.08 .45:.08 .42:.O8 .251‘.07 .47i.08 .35.+..08

 

Note: Results are reported as estimate 1 standard error.

Predictive Indices

Binary Regression (WLS)

 

 

 

Class

Indices I II III IV V VI

SEN .72i.16 .84i.13 .78i.l4 .82i.13 1.00:.00 .96i.07

SPEC .51 i .08 .54 iL .08 .64 i .08 .75 i .07 .53 i .08 .69 i .08

PRED .251.07 .33i.10 .33i.1l .42:.13 .34i.10 .40:.1l

E1 .27i.16 .l6i.13 .221.l4 .l8i.13 .001.00 .04i.07

E2 .49r.08 .46i.08 .36i.08 .251.07 .47i.08 .31i.08
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Predictive Indices

Binary Regression-Ridge (BR)

 

 

 

 

 

 

 

Class

Indices I II III IV V VI

SEN .271L .15 .66i.17 .00: .08 1.001L .00 .00:.00 .96i.07

SPEC .84i.06 .68i.08 1.00:.00 .66i.08 .601.08 .65:.08

PRED .29i.17 .351.12 .00.+..00 .40:.ll .38:.10 .38.+_.ll

El .721.15 .341.17 1.00:.00 .00i.00 .00i.00 .04t.07

E2 .lSt.06 .32 1.08 .00i.00 .33 1.08 .40i.08 .35:.08

Note: Results are reported as estimate standard error.

Predictive Indices

Binary Regression (BRWLS)

Class

Indices I II III IV V VI

SEN .651.17 .841.13 .711.16 .751.15 1.00:.00 .96i.07

SPEC .66i.08 .54:.08 .67i.08 .72 $.08 .601.08 .651.08

PRED .321.11 .331.10 .33i'.ll .38i.12 .38i.lO .38i.ll

El .34i.17 .lSi.l3 .29i.l6 .25i.15 .OOi.00 .04i.07

E2 .34r.08 .46i.08 .331.08 .28i.08 .391.08 .351.18
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Predictive Indices

Logistic Discrimination (LD)

 

 

 

 

 

 

 

Class

Indices I II III IV V VI

SEN .65i.17 .81:.14 .78:.14 .78t.l4 .90:.1O .92i.09

SPEC .66t.08 .63i.08 .611.08 .84i.06 .78i.07 .77i.07

PRED .31i.ll .37i.ll .32i.10 .52i.15 .SOi.13 .47i.13

El .34i.17 .l9i.14 .22i.l4 .21i.l4 .10i.10 .07i.09

E2 .341.08 .37i.08 .39i.08 .161.06 .21:.O7 .221-.O7

Note: Results are reported as estimate i standard error.

Predictive Indices

Entropy Minimax Pattern Discovery (EMPD)

Class

Indices I. II III IV V VI

SEN .65i.l7 .Bli.14 .821.13 .781.14 .90i.10 361.07

SPEC .66 i .08 .63 i .08 .54 i .08 .84 i .06 .78 i .07 .74 i .07

PRED .31i.11 .37i.ll .29i.10 .52t.15 .501.13 .4Si.12

El .343:.17 .lBi.14 .18i.13 .21:.14 .1o:._1o .O4i.O7

E2 .34i.08 .371.08 .461.08 .l6i.06 .21i.07 .261.07

 



APPENDIX E

THE PREDICTIVE INDICES OF EACH MODEL

WHEN PREDICTING TO A DIFFERENT

RELATIONAL STRUCTURE
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Prediction from Prior Knowledge of One Relational Structure to

Another Different Relational Structure

Bayesian (B) Model

 

 

 

 

 

 

Class

Prior

Knowledge I III IV VI Average

SEN .65 .78 .93 .96 .89

SPEC .66 .66 .74 .70 .70

I PRED .31 .34 .45 .41 .40

El .35 .22 .07 .03 .11

E2 .34 .34 .25 .29 .29

SEN .55 .82 .86 .92 .78

SPEC .65 .54 .66 .70 .67

III PRED .28 .29 .37 .40 .35

El .45 .18 .14 .08 .22

E2 .35 .46 .34 .30 .33

SEN .45 .71 .78 .92 .69

SPEC .76 .67 .84 .74 .72

IV PRED .30 .33 .52 .45 .36

E1 .55 .28 .21 .08 .31

E2 .24 .33 .16 .26 .28

SEN .45 .71 .78 .92 .65

SPEC .76 .67 .83 .77 .75

VI PRED .30 .33 .52 .47 .38

El .55 .28 .22 .07 .35

E2 .24 .33 .17 .22 .25

 



Prediction from Prior Knowledge of One Relational

Another Different Relational Structure

Bayesian W/Baduhur (BB) Model

136

Structure to

 

 

 

 

 

 

Prior

Knowledge I III IV VI Average

SEN .65 .78 .96 .96 .90

SPEC .66 .66 .66 .69 .67

I PRED .31 .34 .39 .41 .38

El .34 .21 .03 .03 .09

E2 .34 .34 .33 .30 .32

SEN .62 .82 .89 .96 .82

SPEC .54 .54 .53 .60 .56

III PRED .25 .29 .30 .35 .30

El .38 .18 .ll .04 .18

E2 .46 .46 .47 .40 .44

SEN .44 .71 .78 .96 .70

SPEC .76 .70 .84 .73 .73

IV PRED .30 .36 .52 .44 .37

El .55 .29 .21 .03 .29

E2 .23 .30 .16 .26 .26

SEN .45 .71 .85 .96 .67

SPEC .76 .70 .79 .74 .75

V PRED .30 .36 .48 .45 .38

El .55 .29 .14 .04 .33

E2 .23 .30 .21 .26 .25
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Prediction from Prior Knowledge of One Relational Structure to

Another Different Relational Structure

Binary Regression (BLS) Model

 

 

 

 

 

 

Class

Prior

Knowledge I III IV VI Average

SEN .76 .78 .92 .96 .89

SPEC .51 .59 .60 .62 .60

I PRED .55 .31 .35 .35 .34

El .24 .22 .07 .03 .11

E2 .49 .41 .39 .37 .39

SEN .62 .78 .86 .92 .80

SPEC .51 .58 .51 .65 .56

III PRED .23 .30 .28 .37 .29

El .38 .22 .14 .08 .20

E2 .48 .42 .49 .35 .44

SEN .65 .78 .93 .96 .80

SPEC .65 .66 .75 .70 .67

IV PRED .31 .34 .45 .41 .35

El .34 .22 .07 .03 .20

E2 .34 .34 .25 .29 .32

SEN .72 .78 1.00 .96 .83

SPEC .52 .62 .66 .65 .60

VI PRED .26 .32 .40 .38 .33

El .27 .21 .00 .04 .16

E2 .47 .38 .33 .35 .39
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Prediction from Prior Knowledge of One Relational Structure to

Another Different Relational Structure

Entropy Minimax Pattern Discovery (EMPD) Model

 

 

 

 

 

 

Class

Prior

Knowledge I III IV VI Average

SEN .65 .78 .93 .96 .89

SPEC .66 .66 .75 .70 .70

I PRED .31 .34 .45 .41 .40

El .34 .22 .07 .04 .11

E2 .34 .34 .25 .30 .30

SEN .62 .82 .89 .96 .72

SPEC .54 .54 .53 .60 .56

III PRED .25 .29 .30 .35 .30

E1 .38 .18 .11 .04 .28

E2 .46 .46 .47 .40 .44

SEN .45 .71 .78 .92 .69

SPEC .76 .67 .84 .74 .72

IV PRED .30 .33 .52 .45 .36

El .55 .28 .21 .08 .31

E2 .24 .33 .16 .26 .28

SEN .45 .71 .78 .96 .65

SPEC .76 .67 .83 .74 .75

VI PRED .30 .33 .52 .45 .38

E1 .55 .28 .22 .04 .35

E2 .24 .33 .17 .26 .25
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Prediction from Prior Knowledge of One Relational Structure to

Another Different Relational Structure

Logistic Discrimination (LD) Model

 

 

 

 

 

 

Class

Prior

Knowledge I III IV VI Average

SEN .65 .78 .93 .96 .89

SPEC .66 .66 .74 .70 .70

I PRED .31 .34 .45 .41 .40

E1 .34 .22 .07 .03 .11

E2 .34 .34 .25 .29 .29

SEN .55 .78 .86 .92 .78

SPEC .65 .61 .66 .70 .67

III PRED .28 .32 .37 .40 .35

El .45 .22 .14 .08 .22

E2 .35 .39 .34 .30 .33

SEN .45 .71 .78 .96 .71

SPEC .76 .70 .84 .74 .73

IV PRED .31 .36 .52 .44 .37

E1 .55 .29 .21 .03 .29

E2 .23 .30 .16 .25 .26

SEN .27 .71 .60 .92 .53

SPEC .84 .72 .92 .77 .83

VI PRED .29 .37 .63 .47 .43

El .72 .28 .39 .07 .46

E2 .15 .27 .08 .22 .17

 



APPENDIX F

THE RELATIONAL STRUCTURE FOR

EACH SPECIAL CLASS
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Correlational and Variance-Covariance Matrices for Special Classes

 

 

 

 

Class

Mixed Suppressor High Correlation

1.00 1.00 1.00

0.20 l.00 0.40 1.00 0.80 1.00

0.40 0.60 1.00 0.01 0.10 1.00 0.80 0.80 1.00

0.50 0.50 0.20 1.00 0.09 0.40 0.20 l.00 0.50 0.50 0.50 1.00

1.00 1.00 1.00

0.55 1.00 0.36 1.00 0.70 1.00

0.27 0.37 1.00 0.01 0.10 1.00 0.77 0.71 1.00

0.46 0.48 0.26 1.00 0.08 0.37 0.15 1.00 0.46 0.47 0.41 1.00

.250 .250 .250

.200 .250 .100 .250 .400 .250

.100 .125 .250 .002 .020 .250 .400 .400 .250

.090 .100 .040 .160 .020 .080 .040 .160 .100 .100 .100 .160

.250 .250 .250

.140 .250 .090 .250 .350 .250

.070 .100 .250 .003 .030 .250 .380 .350 .250

.100 .100 .050 .150 .018 .070 .030 .160 .080 .080 .070 .140
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Correlational and Variance-Covariance Matrices

for Special Classes for Split-Samples

 

 

 

 

Class

Mixed Suppressor High Correlation

1.00 1.00 1.00

R 0.49 1.00 0.24 1.00 0.76 1.00

l 0.24 0.34 1.00 0.08 0.14 1.00 0.84 0.76 1.00

0.46 0.48 0.25 1.00 0.10 0.46 0.04 1.00 0.48 0.47 0.45 1.00

1.00 1.00 1.00

R 0.59 1.00 0.49 1.00 0.78 1.00

2 0.29 0.40 1.00 0.06 0.06 1.00 0.83 0.78 1.00

0.49 0.50 0.28 1.00 0.08 0.28 0.27 1.00 0.45 0.46 0.42 1.00

.250 .250 .250

t .120 .250 .060 .250 .380 .250

l .060 .090 .250 .020 .030 .240 .420 .380 .250

.090 .090 .040 .150 .020 .090 .008 .160 .090 .090 .080 .140

.250 .250 .250

t .140 .250 .120 .250 .400 .250

2 .070 .100 .250 .010 .020 .250 .400 .400 .250

.090 .090 .050 .150 .010 .050 .050 .150 .080 .080 .070 .140

 



APPENDIX G

THE ESTIMATED DIAGNOSTIC PROBABILITIES AND

PREDICTIVE INDICES FOR EACH MODEL

WITHIN EACH SPECIAL CLASS
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Estimated Parameters and Estimated Diagnostic Probabilities

for 29 Number of Patterns of Special Classes

Bayesian (B)

 

 

 

Class

Pattern Mixed Suppressor High Correlation

111 .54 .40 .43

110 .42 .42 .30

100 .00 .00 .00

001 .00 .04 .00

011 .00 .35 .00

101 .00 .00 .00

010 .00 .45 .00

000 .00 .01 .00

 

Estimated Parameters and Estimated Diagnostic Probabilities

for 2P Number of Patterns of Special Classes

Bayesian W/Baduhur (BB)

 

 

 

Class

Pattern Mixed Suppressor High Correlation

111 .5250 .4000 (.4262

110 .4118 .4118 .2500

100 .0000 .0000 .0000

001 .0000 .0476 .0000

011 .0000 .3333 .0000

101 .0000 .0000 .0000

010 .0000 .4444 .0000

000 .0000 .0400 .0000
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Estimated Parameters and Estimated Diagnostic Probabilities

for 29 Number of Patterns of Special Classes

Binary Regression (BLS)

 

 

 

 

 

Estimated Class

Parameters Mixed Suppressor High Correlation

Constant -.08 .04 -.02

Symptom l .22 —.01 .20

Symptom 2 .25 .37 .17

Symptom 3 .06 —.02 .04

Pattern Mixed Suppressor High Correlation

111 .45 .38 .39

110 .39 .40 .35

100 .14 .03 .18

001 .00 .02 .01

011 .23 .39 .19

101 .19 .01 .22

010 .17 .41 .15

000 .00 .04 .00
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Estimated Parameters and Estimated Diagnostic Probabilities

for 2p Number of Patterns of Special Classes

Binary Regression (BWLS)

 

 

 

 

 

Class

Estimated

Parameters Mixed Suppressor High Correlation

Constant .11 .04 .005

Symptom 1 .12 -.04 .22

Symptom 2 .23 .38 .15

Symptom 3 -.13 .00 .002

Pattern Mixed Suppressor High Correlation

111 .32 .38 .37

110 .45 .38 .33

100 .22 .00 .22

001 .00 .04 _ .00

011 .20 .42 .15

101 .09 .00 .24

010 .34 .42 .15

000 .11 .04 .00
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Estimated Parameters and Estimated Diagnostic Probabilities

for 2p Number of Patterns of Special Classes

Binary Regression-Ridge (BR)

 

 

 

 

 

Classes

Estimated

Parameters Mixed Suppressor High Correlation

Constant

Symptom 1 .06 .00 .12

Symptom 2 .17 .21 .12

Symptom 3 .16 .06 .09

Pattern Mixed Suppressor High Correlation

111 .39 .23 .34

110 .23 .21 .25

100 .06 .00 .12

001 .16 .02 .09

011 .33 .23 .21

101 .22 .02 .21

010 .17 .21 .12

000 .00 .00 .00
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Estimated Parameters and Estimated Diagnostic Probabilities

for 29 Number of Patterns of Special Classes

Logistic Discrimination (LD)

 

 

 

 

 

‘ Class

Estimated

Parameters Mixed Suppressor High Correlation

Constant -l9.lS -3.54 -17.40

Symptom l 9.35 -.08 8.13

Symptom 2 9.44 3.27 8.17

Symptom 3 .46 -.16 .80

Pattern Mixed Suppressor High Correlation

111 .52 .37 .57

110 .41 .41 .25

100 .00 .03 .00

001 .00 .02 .00

011 .00 .39 .00

101 .00 .02 .00

010 .00 .43 .00

000 .00 .03 .00
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Estimated Parameters and Estimated Diagnostic Probabilities

for 2P Number of Patterns of Special Classes

Entropy Minimax Pattern Discovery (EMPD)

 

 

 

 

Class

Pattern Mixed Suppressor High Correlation

111 .53 (.26) .40 (.19) .43 (.40)

110 .42 (.11) .41 (.11) .31 (.02)

100 .00 (.02) .01 (.02) .06 (.01)

001 .00 (.02) .05 (.09) .006 (.02)

011 .03 (.02) .35 (.09) .43 (.02)

101 .00 (.02) .01 (.02) .06 (.01)

010 .03 (.02) .45 (.05) .006 (.02)

000 .00 (.02) .05 (.09) .006 (.02)

Note: The entries in the parentheses are the entropy values (H) for

that particular pattern within that particular class.
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Predictive Indices for Special Classes for Various Models

 

 

 

 

 

 

 

 

 

Class

Models Indices Mixed Suppression High Correlation

SEN 1.001 .00 .76$ .15 1.00$ .00

SPEC .761 .07 .601 .08 .63$ .08

B PRED .491 .12 .311 .10 .371 .11

E1 .001 .00 .241 .15 .001 .00

£32 .24 1 .07 .401 .08 .37 1 .08

SEN 1.001 .00 .76$ .15 1.00$ .00

SPEC .761 .07 .60 $ .08 .63 $ .08

BB PRED .49$.12 .31$.10 .37$.11

E1 .00 1 .00 .24 $ .15 .00 $ .00

E2 .24 1 .07 .40 $ .08 .37 $ .08

SEN 1.00 1 .00 .76 $ .15 1.00 $ .00

SPEC .67 1 .08 .60 1 .08 .59 $ .08

BLS PRED .411.11 .31$.10 .35$.10

E1 .001.00 .241.15 .00$.00

E2 .331.08 .401.08 .41$.08

SEN 1.001.00 .76$.15 1.00$.00

SPEC .58 $.08 .60$.08 .55 $.08

BWLS PRED .35$.10 .31$.10 .33-$.10

E1 .00$.00 .24$.15 .ooi.00

E2 .42 $ .08 .40 $ .08 .45 i .08

SEN 1.00 1 .00 .76 $ .15 1.00 $ .00

SPEC .61 1 .08 .60 $ .08 .58 $ .08

BR PRED .371.10 .31$.10 .34 $.10

E1 .00 1 .00 .24 $.15 .00 $.00

E2 .39 1.08 .40 $.08 .42 $.08

SEN 1.00 $.00 .76 $.15 1.00 $.00

SPEC .76 1.07 .60 1.08 .63 $.08

LD PRED .49 1.12 .31 1.10 .37 $.11

E1 .00 1.00 .24 1.15 .00 $.00

E2 .24 1.07 .41 1.08 .37 $.08

SEN 1.00 1.00 .76 1.15 1.00 1.00

SPEC .76 $.07 .60 $.08 .61 $.08

EMPD PRED .49 $.12 .31 $.10 .36 $.10

E1 .00 $.00 .24 $.15 .00 $.00

E2 .24 $.07 .41 $.08 .39 $.08

Note: Results are reported as estimate i standard error.



APPENDIX H

BRAIN SCAN EVALUATION QUESTIONNAIRE
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COO-2427-5

I. Patient Identification

JHH History Number

Patient Name

Sex: ----- 0 Male

5 0 Female

2

Age: Fill in or use JHH Patient

Identification Card.

0 Outpatient

O Inpatient

11.W

1. Physician Filling Out Form

2. Date

.. 3. Is the decision to do a brain 0 yes

3 scan based (in part) on the (3 no

m results of another diagnostic

D procedure?

If yes, what was it?

m

g 4. Has the patient had a: yes no normal abnormal

It

E Lumbar Puncture ------ O O 0 0

g EEG -------------- O O O O

9 Skull x-ray -------- O O O 0

f3 Arteriorgram ------- O O 0 0

5 Echo ------------ O O O O

a

g . . .
9 III. n i M v

m

g 1. Efficacy:

E The use of a diagnostic procedure is motivated by

g efficacy if the outcome of the procedure could con-

g tribute to-or effect-a change in the course of the

a patient's disease.

g 2. Defense:

0

m A procedure is being used defensively if its use is

E motivated by either potential peer incrimination or

5 legal responsibility.

m

3. Innovation-Curiosity

Innovation-Curiosity is the principal motivating

force if the objective in ordering a procedure is

simply to find out what the result will be for this

particular case. It may even help the patient.
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COO-2427-5

IV. Historical Data

1. Headache———————————— Oyes Ono

a) Duration — -- - ——--- O<1 Week

01 Week to 1 Mo.

0 1 Mo. to 3 Mo.

0>3 Mo.

b) Continuity -------- 0 Continuous

O Intermittent

c) Severity ———————— O Mild

0 Moderate

0 Severe

d) Location if diffuse-- -— O Bilateral

O Unilateral

e) Location if focal ----- Retroorbital

Frontal

0 Temporal

O Parietal

O Occipital

2. Seizure ----------- 0 yes 0 no

a) Number of Episodes - - - - 0 Single (First)

0 Multiple > 10

0 Multiple < 10 (Longstanding)

b) Location --------- O Generalized

0 Focal

c) Type ----------- 0 Major Motor

0 Minor Motor

0 Temporal Lobe

O Other

d) Is Seizure Pattern - --- 0 yes

Changing? 0 no

e) Pertinent Family History 0 yes

of Seizures 0 no

0 unknown

3. Neoplasm ——————————— 0 yes 0 no Osuspect ‘

a) Location ---------- 0 Brain

0 Lung

0 Breast

O Other

b) Pertinent Family History Oyes

of Neoplasm 0 no

0 unknown

4. History of Trauma ------- Oyes Ono



V.
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Physical Examination

1. Cortical Deficit ———————

a) State of Consciousness

(Indicate by an X anywhere

on the scale)

b) Generalized Deficit - —‘—-

If "Other” what is it?

C) Focal Deficit -------

If yes, what is it?

Motor Deficit ---------

a) If yes: Location

Lateralization

Severity

b) Ataxia __________

Type?

c) Involuntary Movement-—--—-

Type?

d) Reflex Abnormality -----

Type?

e) Abnormal Gait -------

Sensory Abnormality -------

If yes, what is it?

Visual Field Defect-------

If yes, what is it?

Alteration of Brain Stem----

Function Including Eye

'Movements

If yes, what is it?

(Dyes

C)no

M
u
n
-
W
N
H

O Dementia

COther Abnormality

COO-2427-5

Normal

Abnormal

 

()yes

()no

 

0 yes

C)no

 1
 

U
i
b
U
N
H

()yes

ono

Mild

Severe

 

()yes

()no

 

Oyes

()no

 

0 yes

()no

Oyes

()no   

Oyes

()no

 

0 Yes

C)no
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COO-2427-5

VI. Prospective Outcomes

l. Subjective Probabilities (Mark anywhere on the scale, probabil-

ities need not total 100%)

a) In your opinion what is the

probability that this brain 0% 20% 40% 60%

scan will be normal E 11 { {

0% 100%

b) With what probability do

you suspect each of the

following diagnosis?

Note:‘ Probabilities need not

total 100%

N O a
s

40% 60% 80% 100%

 

 

Subdural Hematoma

Vascular Malformation

 

F
—
—
—

o

'
7

7
w

-
-
1
—

o
—
t
l
—
~
)
—

-
—
-
_

—
l
_

—
L
—
d
h
-
—
—

n
u
n
—
-

u
—
(
h
—
v
u
-
I
u
—

Stroke (e.g., TIA, Hemorrhage

or Infarction)

 

Cerebral Infection

 

Cerebral Tumor (Primary)

Cerebral Tumor (Metastasis)

Other Pathology
 

—
—
—
—

u
n
q
—
-
—

o
u
r
-
—

c
u
r
-
—

a
—
n
—
n

—
-
+
-
—

c) What is your Presumtive

Diagnosis?  

d) What do you feel the odds Certain Even Remote

are that your diagnosis 10:1 1:1 1:10

is correct? L. I J

.
_
-

l
1
.
.
.
:
fi

e) Will you alter your manage-

ment of this patient if the

result of this brain scan is:

(i) Normal Oyes 0 no  
(ii) Abnormal Oyes Ono

Taking total motivation to request brain scan as 100 - How do you dis-

tribute your subjective motivation over the following reasons (as

defined above) for requesting this examination?

Efficacy

Defense

Innovation-Curiosity

Other fl
fl
fi
fi

Total 100



APPENDIX I

THE RELATIONAL STRUCTURE FOR

THE BRAIN SCAN STUDY
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Correlation Matrix and Base Rates of the Symptoms

and the Disease for Brain Scan

 

 

Headache 1.000

Seizure -.006 1.000

Cort. def. -.256 -.079 1.000

Motor Def. -.081 -.172 .318 1.000

Sen. ab. .054 -.035 -.151 .215 1.000

Visual -.052 -.113 .151 .031 -.190 1.000

Outcome -.015 -.l30 .215 .225 .097 .064 1.000

Pheadache = '52 Pseizure = '31

Pcort. def. = '31 Pmotor def. = '30

Psen. ab. = '24 Pvisual = '17

P = .10
outcome

 

 



 

APPENDIX J

THE RELATIONAL STRUCTURE FOR THE SPLIT SAMPLES

OF THE BRAIN SCAN STUDY
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APPENDIX K

THE ESTIMATED PARAMETERS AND PREDICTIVE INDICES

OF EACH MODEL FOR THE BRAIN SCAN STUDY
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Scan by Various Models
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Models

Symptom BLS BWLS BR BRWLS LD

Constant -.02 -.06 .00 -ll.23

Headache .06 .13 .03 1.96 .58

Seizure -.09 .41 -.07 -6.38 —8.57

Cortical deficit .12 -.29 .12 .39 1.58

Motor deficit -.03 .08 .06 -2.15 -.47

Sensory abnormal .24 .15 .05 .25 9.89

Visual defect .12 .09 .02 -.05 9.16

Prediction Indices for Various Models for Brain Scan

Models

Indices BB BLS BWLS BR BRWLS LD EMPD

SEN .00 .50 .25 .75 .75 .20 .00

SPEC .95 .54 .61 .69 .41 .74 .97

PRED .00 .10 .06 .20 .11 .09 .00

E1 1.00 .50 .75 .25 .25 .75 1.00

E2 .05 .46 .38 .31 .59 .26 .02
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APPENDIX L

GRAPH FOR THE PREDICTIVE INDICES FOR EACH

PROBABILITY MODEL WHEN THE INTERCORRELATION

OF THE SYMPTOMS ARE LOW
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APPENDIX M

GRAPH FOR THE PREDICTIVE INDICES FOR EACH

PROBABILITY MODEL WHEN THE INTERCORRELATION

OF THE SYMPTOMS ARE HIGH
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