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ABSTRACT

BIOCHEMICAL ASPECTS OF EMBRYONIC DEVELOPMENT IN PRIMATES

FOLLOWING IN_VITRO FERTILIZATION

By

Reinhold J. Hutz

These studies were designed to evaluate the viability and bio-

chemical alterations in squirrel monkey ova fertilized and developed

12m.

Exclusion of the vital dye trypan blue and uptake of fluorescein

diacetate, by hamster and squirrel monkey (in vitrg_fertilized) ova

showed high correlations with in_vitrg_development and relative RNA

and protein synthesis. 3H-Uridine incorporation in unfertilized

squirrel monkey oocytes was diminished with time after HCG administra-

3
tion. There was an increase in H-uridine incorporation after ferti-

lization jg_vjtrg, with another rise following the second cleavage

division. 3H-Leucine incorporation decreased with oocyte maturation,

and then remained constant to the two-cell stage.

Uptake of estradiol-l7e and progesterone by squirrel monkey ova

increased with fertilization jg_vitrg_from 0.59 to 0.87, and 0.2l to

0.49 picomoles/embryo/Z hr, respectively, and to l.20 and 0.38 at the

two-cell stage. Changing the length of FSH treatment prior to HCG-

induced ovulation in Saimiri did not affect uptake. However, the

PMS-HCG superovulatory regimen reduced uptake of both steroids at all
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embryonic stages in the hamster. There was no effect on 3H-uridine

incorporation.

Unfertilized, immature oocytes from squirrel monkeys consumed

4.85 nanoliters oxygen/oocyte/4 hr. 14002 production was 4l.9 pico-

gram-atoms glucose carbon incorporated/oocyte/4 hr. The molar ratio

of 14CO2 produced from glucose to total oxygen uptake was estimated

at 0.l9.

Uptake of 2-deoxyglucose by unfertilized oocytes from squirrel

monkeys was not affected by the addition of either l0 nM or T uM

insulin. There was no change in 2-deoxyglucose uptake at ig_vitrg_

fertilization. Degenerate ova had significantly reduced levels of 2?

deoxyglucose uptake.

Detectable biochemical changes occur in the primate ovum with in

vitrg_fertilization. These include augmented 3H-uridine incorporation

and steroid uptake, and diminished incorporation of 3H-leucine. Glu-

cose utilization remains quite low in early primate embryos. These

results indicate normal metabolic development of primate embryos

fertilized jg_vitro that is similar to preimplantation development of
 

embryos in other mammalian species. Trypan blue, fluorescein diace-

tate and 2-deoxyglucose are good viability indicators of early primate

embryos.



May a love limitless in its breadth

And knowing no bounds,

From God and man,

'Till eternity resound.
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INTRODUCTION

Biochemical analyses of embryos have been previously used to test

viability in nonprimate systems or to investigate and establish normal

metabolic pathways. However, little research has focused on the bio-

chemistry of preimplantation development of primate embryos, particu-

larly those embryos derived from ifl_yjtrg_fertilization. The present

studies were designed to allow assessment of the embryo's metabolic

requirements in an effort to maximize output of jn_yitrg fertilization

systems utilizing primates.

The embryos of subprimate species experience little difficulty in

developing to the blastocyst stage in_yjtrg, Achieving this in

nonhuman primates is more difficult. The aims of the present studies,

then, were to determine both the viability and metabolism of primate

embryos. Several biochemical estimates of such variables were used:

(l) Assessment of viability of squirrel monkey embryos through

the use of vital dyes;

(2) Evaluation of 3H-uridine and 3H-leucine incorporation in

early preimplantation development;

(3) Determination of uptake of steroid hormones by squirrel

monkey embryos through early preimplantation development;

and
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(4) Ascertainment of the level of utilization of metabolic

substrates by monitoring oxygen consumption, carbon dioxide

production from glucose and 2-deoxyglucose uptake by primate

0V6.



LITERATURE REVIEW

Staining with vital dyes as an index of viability
 

Various vital dyes have been utilized to determine the viability

of ova and other cells. These included acridine orange, a fluorescent

dye (Austin and Bishop, 1959; Ezzell and Szego, 1979), several cyto-

plasmic and nuclear stains (Dolan, 1965; Whittingham, 1978), trypan

blue (Tennant, 1964; Clines §t_al,, 1980) and fluorescein diacetate

(Rotman and Papermaster, 1966; McGrath gt_al,, 1975; Jarnagin and

Luchsinger, 1980).

Trypan blue (TpB) has proven a successful indicator of membrane

integrity of cumulus and granulosa cells and embryos (Campbell, 1979;

Peluso et_al:, 1982; Thadani gt__l,, 1982). Campbell (1979) demon-

strated a 1:1 correlation between TpB exclusion and autoradiographic

assessments of relative syntheses of DNA, RNA and protein by granulosa

cells. Degeneration or atresia of ovarian follicles has also been

characterized through the use of a viability index for granulosa cells

with TpB (Peluso gt_al,, 1982).

The best index of embryo viability currently available delineates

the embryo's ability to take up diactyl fluorescein (FDA), a non-

fluorescent compound (Church and Raines, 1980; Renard et_gl,, 1982;

Taylor, 1982). Theoretically, once inside the cell, non-specific

esterases cleave the acetate groups from FDA, converting it to the

fluorescent compound, fluorescein, which is polar. Bright green



4

fluorescence under high-energy blue or ultraviolet light has been

highly correlated with the ability of oocytes to mature in culture and

embryos to go to term after transfer to recipients (Mohr and Trounson,

1980; Peluso gt a1 , 1982).

Macromolecular synthesis by the embryo
 

Measurements of synthesis of macromolecules (e.g., RNA and protein)

have provided indications of overall metabolic competency of the ovum

and embryo. I vivo uptake of 3H-uridine was demonstrable in ovarian
u—-—-
 

oocytes of rats, Macaca mulatta and M, fascicularis (Baker et_al,,
  

1969). RNA was synthesized at a high level by growing mouse oocytes

(Bachvarova, 1981). This synthesis was still present, but reduced, in

oocytes taken from antral follicles prior to and during germinal

vesicle breakdown in mice, monkeys, cattle and swine (existing pri-

marily as HnRNA, rRNA and tRNA) (Oakberg, 1968; Baker §t_al,, 1969;

Bloom and Mukherjee, 1972; Bachvarova, 1974; Rodman and Bachvarova,

1976; Wassarman and Letourneau, 1976; Wolgemuth-Jarashow and Jagiello,

1979).

Following fertilization, chromatographic and electrophoretic

analyses have detected RNA synthesis by the one-cell stage in the

mouse (as poly(A)' RNA (HnRNA precursor), poly(A)+ RNA (mRNA) and

tRNA) and at the two-cell stage (as HnRNA of high molecular weight

(mRNA precursor), rRNA, some mRNA and 4sRNA (Woodland and Graham,

1969; Murdoch and Wales, 1971; Knowland and Graham, 1972; Epstein,

1975; Clegg and Pik6, 1982). All classes of RNA were synthesized from

the 8-cell stage through blastocyst (including mRNA (Warner and Hearn,

1977b). Prominent rRNA peaks were discovered at the 8-16 cell stage
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(day 2 of embryonic development, when true nucleoli were labelled with

3H-uridine (Mintz, 1964)). There was a further increase in RNA syn-

thesis from morula to blastocyst stage (day 3) (Ellem and Gwatkin,

1968; Pik6, 1970; Tasca and Hillman, 1970; Epstein and Daentl, 1971;

Warner and Hearn, 1977a). 3H-Uridine incorporation which was actino-

mycin D-sensitive increased 90-fold at mouse morula and blastocyst

stages compared to unfertilized controls (Monesi and Salfi, 1967). At

low actinomycin 0 concentrations, RNA polymerase I and therefore rRNA

synthesis of mouse embryos were preferentially blocked. There was no

effect on development until concentrations of actinomycin D exceeded

0.1 ug/ml (Thomson and Biggers, 1966; Tasca and Hillman, 1970). This

led some workers to conclude that little concurrent synthesis of RNA

was necessary for protein synthesis in early cleavages of mouse

embryos (Schultz, 1975; Brower and Schultz, 1982). However, much

maternal message is lost as early as the two-cell stage in the mouse

(Pik6 and Clegg, 1982) and dg_ngy9_synthesis of RNA may assume an

important role thereafter.

RNA synthesis (particularly mRNA and tRNA) in the rabbit embryo

has not been demonstrated prior to the 16-ce11 stage (Schultz, 1973;

Manes, 1977). Synthesis of RNA markedly increased by late cleavage

stages (64-128 cells) (Manes, 1969, 1971). The RNA was present pri-

marily as nucleolar rRNA (Manes, 1977). Quantitative assessments of

total RNA and DNA content of oocytes and embryos have been determined

by spectrophotometry (Olds g__al,, 1973; Henriet gt_al,, 1980).

Innovative studies utilizing gene injection (plasmids produced by

fusion of bacterial DNA and the regulator region from embryonic genes
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of mice) have recently allowed us to further our understanding of

regulation of transcription of the embryonic genome (Brinster gt_al,,

1982a; Palmiter et_al,, 1982a; Stewart e§_al,, 1982) and subsequent

gene expression by progeny (Palmiter gt_al,, 1982b; Brinster et_al:,

1982b).

Protein was found to be synthesized in oocytes from mouse and

monkey follicles at the antral stage and undergoing meotic maturation,

though synthesis was attenuated considerably (Baker et_als, 1969;

Schultz et_al,, 1978, 1979).

Much of the protein synthesis detectable at the two-cell stage in

mouse embryos represents a control at the post-transcriptional level,

utilizing mRNA's synthesized prior to fertilization (Braude gt al,,

1979; Cascio and Wassarman, 1982). There is little indication of an

enhanced rate of protein synthesis at fertilization (Monesi and Salfi,

1967; Brinster, 1971a; Brinster et_al,, 1976; Abreu and Brinster,

1978). Only methionine incorporation (Schultz et_al,, 1979) and syn-

thesis of the FPl-6 proteins were augmented (Cascio and Wassarman,

1982). In fact, there is some evidence for decreased protein synthe-

sis with fertilization (Chen gt_al,, 1980). Qualitative patterns

remain essentially unchanged in early embryo development (Van Blerkom

and Brockway, 1975; Schultz gt 21,, 1979). However, utilizing a

double-isotope labelling technique (3H- and 35S-methionine) and two-

dimensional polyacrylamide gel electrophoresis (2-D PAGE), Chen et_al,

(1980) have compared 95 individual proteins prior to and subsequent to

fertilization. These workers demonstrated significant increases in

synthesis of only 6 specific proteins and a decline in the rates of 11
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proteins. Amino acid incorporation increased as embryonic development

proceeds further in the mouse (Mintz, 1964; Monesi and Salfi, 1967;

Tasca and Hillman, 1970; Brinster, 1971a) and pig (Motlik g__al,,

1980). Amino acid incorporation (Epstein and Smith, 1973; Brinster gt

35S-methionine (which was Na+-dependent and21,, 1976) and uptake at

competitive) (Kaye gt_al,, 1982) increased several-fold between day 2

(two-cell) and day 4 (blastocyst). Autoradiographic techniques have

been used to demonstrate 3H-lysine incorporation at syngamy in porcine

embryos with nuclear label disappearing by the four-cell stage (Motlik

et_al,, 1980). Nuclear methionine and tryptophan were still present

at 4- and 8-ce11 stages, respectively. Tryptophan was presumably

incorporated into non-histone proteins assuming a role in genomic

regulation.

Studies of amino acid incorporation must consider the pool size

of the endogenous precursor, which increases concomitantly with em-

bryonic development (Sellens _t_;l., 1981; Schultz et al,, 1981).

Therefore, uptake values are of major importance. With long culture

periods (>13 hr), protein degradation also significantly increased by

the blastocyst stage (Merz et_al,, 1981). Several specific proteins

present in embryos have been analyzed. Tubulin synthesis in mouse

embryos rose slightly after fertilization, increased to l4-fold by

blastocyst stage and accounted for 2% of the total protein synthesis

(Abreu and Brinster, 1978; Schultz gt al,, 1979). Actin, synthesized

by the unfertilized mouse oocyte (Osborn and Moor, 1982), increased

10-fold by the 8-cell stage and 90-fold by the blastocyst stage. This

represented 5.7% of the total protein synthesis. High levels of
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alpha-fetoprotein, transferrin, fetuin and glycoprotein synthesis have

35
been measured by radioimmunoassay, S-methionine and 3H-leucine

incorporation and 2—D PAGE before and after implantation in mouse,

bovine, sheep, and pig embryos (Janzen et_ 1., 1982; Godkin gt al.,

1982; Masters gt_al., 1982; Adamson, 1982).
——-

Steroid metabolism by the embcyg
 

Embryos of several species lack the capacity for steroid synthe-

sis and metabolite interconversions until the peri-implantation

period (Dickmann and Dey, 1974; Dickmann, 1979; Gadsby et_al,, 1981).

Acetate incorporation into cholesterol by mouse embryos was enhanced

ig_vitr9_from the blastocyst to the early somite stage (Carson gt_al,,

1982). These embryos were capable of converting 3H-pregnenolone to

progesterone and acylpregnenolone. Rabbit blastocysts showed high

aromatase activity by day 6 of development (Hoversland §t_al,, 1981;

Wu and Lin, 1982b). Other lipids were also synthesized. Enhanced

fatty acid levels were present by days 11-13 in bovine blastocysts

(Menezo gt_al,, 1982). PGE2 and PGan were produced from 3H-arachi-

donate by days 14-19 (Lewis gt_al,, 1982).

Although many workers have demonstrated steroid synthesis by the

embryo, only a few have attempted to assess radiosteroid uptake by the

embryo (Smith, 1968; Bhatt and Bullock, 1974; Wu and Lin, 1982a).

These studies were not validated autoradiographically. It is known

that an appropriate hormonal milieu is required for proper development

of embryos (Stone gt_al,, 1977; Dickmann gt al., 1977; Warner and

Tollefson, 1978), and early embryos initially respond to endogenous

levels of maternal steroids (Smith, 1968; Weitlauf and Greenwald,
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1968; Smith and Smith, 1971). Responses to these steroids may be

measured in terms of RNA synthesis, since steroid hormones classically

cause derepression of genes (O'Malley gt _l,, 1973). However, workers

have failed to demonstrate increases in incorporation of 3H-uridine by

mouse embryos treated with estrogen or progesterone, in vitrg_(Warner

and Tollefson, 1977, 1978). Estrogen has only been shown to increase

uptake of amino acids by implanting blastocysts (Smith and Smith,

1971). Therefore, these studies suggest changes of a mitotic or

membrane nature being effected.

Energy metabolism of the embryo
 

Oxidative pathways involved in substrate metabolism (primarily

glucose) have been elucidated for ova from various species. Oxygen

consumption increased during gonadotropin-induced maturation of un-

fertilized rabbit and rat oocytes (Lindner gt_al,, 1974; Dekel gt 31.,

1976; Magnusson et_al,, 1977; Magnusson and Hillensjb, 1981; Magnusson

gt__l,, 1981). Fertilized ova from rabbits showed increased oxygen

utilization during preimplantation development (Fridhandler, 1961).

Consumption of oxygen by rabbit embryos reached highest levels at the

blastocyst stage, primarily supporting the Na+-K+-ATPase used in

active transport of ions (Benos and Balaban, 1980). Mills and Brin-

ster (1967) and Sugawara and Umezu (1961) demonstrated a 3.5-fold

increase in oxidation by the mouse blastocyst over that of the unfer-

tilized egg. Further significant increases occurred at the 8-cell and

subsequent stages.

Oxygen consumption has been assessed simultaneously with CO2 pro-

duction (see below; Brinster, 1968; Hammerstedt, 1975). The resulting
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respiratory quotient was an important indicator of overall metabolic

competency and preference for energy substrate.

Measurements of 14CO2 production from universally- or Specifi-

cally-labelled glucose have been used to determine the metabolic

pathways utilized by the preimplantation embryo (Brinster, 1967a).

Carbon dioxide production increased lOO-fold over the first five days

of development in the mouse, with a five-fold increase occurring at

the time of fertilization. Incubation with specifically-labelled

glucose (14C in the C-1 or C-6 position) resulted in a C-l/C-6 ratio

of 1.6, indicating an active TCA cycle early in mouse development

(Brinster, 1967a). The Embden-Meyerhof pathway does not assume a

prominent role until the last two days before implantation (Thomson,

1967). Conversely, in the rabbit, inhibitors of oxidative metabolism

have demonstrated both an active pentose shunt (Cl/C6 = 10 one day

after fertilization, then declines) (Fridhandler, 1961; Wales and

Whittingham, 1970; Wales, 1973) and an active TCA cycle in preimplan-

tation embryos (Quinn and Wales, 1973a; Kane and Buckley, 1977).

Glycolysis was not quantitatively observed until the blastocyst stage

(Wales and Whittingham, 1970). Experiments comparing oxidation of

various substrates proved pyruvate to be the primary energy substrate

utilized by two-cell mouse embryos (Biggers gt_gl,, 1967) and primate

oocytes (Brinster, 1971b). Brinster (1971b) demonstrated a greater

capability for pyruvate oxidation for the monkey oocyte than for the

mouse ovum. LDH activity was, however, 80-fold greater in mouse

oocytes than either rabbit or primate (rhesus monkey, squirrel monkey

and human) oocytes (Brinster, 1967b). The values for pyruvate and

glucose oxidation by primate oocytes were equivalent to those of the
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unfertilized rabbit ovum (Brinster, 1968, 1969), but two- to five-fold

greater than for the unfertilized mouse ovum (Brinster, 1967a). This

may have been attributable merely to oocyte size, as the volume of

rabbit and primate ova is roughly 3.5 times that of the mouse (Brin-

ster, 1971b). Metabolic pathways have also been elucidated through

the use of inhibitors of carbohydrate, protein and nucleic acid meta-

bolism (Thomson and Biggers, 1966; Thomson, 1967).

Comparisons of viability between mouse blastocysts developing in

yjt:9_and ig_yiy9_have been made by monitoring C02 production (Menke

and McLaren, 1970). The mean C02 output and trophoblast outgrowth of

blastocysts (highly correlated) cultured jn_yitrg_from the 8-cell

stage were significantly reduced when compared to jn_yjy9_controls.

The addition of fetal calf serum to the medium augmented both viabi-

lity indices. Other metabolic determinations of embryo viability have

included ATP content, and pyruvate and lactate uptake (Quinn and

Wales, 1973b). A11 indices were diminished with retarded embryonic

development. In yitrg_uptake by bovine blastocysts has proven to be a

good index of subsequent development jn_yjyg_(Renard gt 21,, 1980;

Renard gt_al,, 1982). Of 13 transferred embryos which took up more

than 2.5 pg glucose/embryo/hr, 69% maintained pregnancy at day 50.

Only 14% of ova considered non-viable by the assay did so. 3H-Glucose

uptake increased over days 5-7 post-coitus in the rabbit blastocyst

(Benos and Biggers, 1981). This uptake was not dependent on external

sodium.

Glucose utilization, and hence, the cellular metabolic rate of

various mammalian tissues have been assessed by the cells' ability to
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take up radiolabelled 2-deoxy-D-glucose (2—DG) (Sokoloff gt_al,,

1977; Van den Broeck and Van Steveninck, 1981; Astic and Saucier,

1982). 2-DG is a nonmetabolizable analogue of glucose that, depending

on circumstances, is transferred across cell membranes by facilitated

transport (Kotyk and Michaljanicova, 1974) (like fructose, mannose and

glucose outside kidney and intestinal epithelium (White, Handler and

Smith, 1968)) or, as is more often the case, by active transport

(Jasper and Van Steveninck, 1975) (utilizing the same carrier as

galactose (Parra gt_al,, 1980) and 3-O-methylglucose (Segal and Ingbar,

1980)). 2-DG is phosphorylated by glucokinase (like mannose and

glucose) to 2-deoxyglucose-6-phosphate (2-DG-6P). 2-DG-6P inhibits

glucose phosphate isomerase and cannot be further metabolized. Analy-

ses of 2-DG uptake therefore provide valid information about the

utilization of glucose (Brooks, 1982).



METHODS AND MATERIALS

Animals

Forty mature female hamsters (Mesocricetus auratus) (8-10 weeks
 

of age) were monitored for postovulatory vaginal discharge for at

least three cycles before being placed on experiment. Hamsters nor-

mally received a superovulatory regimen of 30 I.U. pregnant mare's

serum (PMS) (Serotropin, Teizo, Tokyo, Japan) i.p. on the morning of

Day 1 (day of ovulatory plug). This was followed by 30 I.U. HCG

(A.P.L., Ayerst Laboratories, Inc., NY) i.p. 76 hr later (Mizoguchi

and Dukelow, 1980). In the experiments on steroid uptake, animals of

group A received no exogenous gonadotropins, and ovulated naturally.

All animals, regardless of treatment, were then mated on the evening

of Day 4. Following mating, animals were sacrificed at varying times

to obtain embryos at different stages of development.

Squirrel monkeys (Saimiri sciureus) of Bolivian and Guyanan
 

origin (Primate Imports, Charles River, Inc., Port Washington, NY)

were housed and fed as previously described (Kuehl and Dukelow, 1979).

Adult females of the same subspecies were used for related studies

(Bolivian type for macromolecular and steroid studies, Guyanan type

for metabolic studies). Animals were exposed to fluorescent lighting

on a 14L:100 cycle with ambient temperature controlled at 2112°C. In

the present experiments, animals were used during the breeding season

(October through May). They normally received an ovulatory regimen of

13
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4 days of 1 mg of FSH i.m. daily (Burns-Biotec Laboratories, Inc.,

Omaha, NE). However, in group B in the experiments on steroid uptake,

animals received 5 days of FSH. This reflected the hormonal regimen

designed for induction of single and double ovulations in Saimiri

(Dukelow, 1970), which requires increased FSH during the anovoulatory

season (Kuehl and Dukelow, 1975). On the final day of FSH treatment,

250 I.U. HCG was administered i.m., 16 hr prior to laparoscopy for

follicular aspiration (Dukelow, 1979).

Production and collection of embryos
 

Hamster embryos were recovered at 40 hr after mating for two-cell

embryos and 60 hr for four-cell embryos from the oviduct and at 72 hr

for eight-cell embryos, 78 hr for morulae and 86 hr for blastocysts

‘from the uterus (Ghosh e__al,, 1982).

Squirrel monkey oocytes were recovered at laparoscopy (Kuehl and

Dukelow, 1975, 1979). If processed immediately, oocytes were mechani-

cally denuded of cumulus cells with glass pipettes (unless stated

otherwise). Some oocytes were allowed to mature for 21 hr in tissue

culture medium (TC-199, GIBCO, Grand Island, NY) which was modified to

contain 1 mM pyruvate, 100 ug/ml gentamycin and 1 U/ml heparin (Asa-

kawa gt 21,, 1982). Twenty percent fetal calf serum (FCS) (heat

inactivated for 30 min at 56°C) was added prior to insemination jg_

yitrg, Semen was collected by electroejaculation (Kuehl and Dukelow,

1974). Embryos were collected 24 hr after insemination for one-cell,

48 hr for two-cell and 52-60 hr for three- to four-cell embryos.

Prior to experimental processing, ova and embryos from one animal

or group of animals were divided among the various treatments.



15

Techniques were usually validated with hamster ova (where larger

numbers of embryos were available), and further modified for squirrel

monkey ova. Some ova were also subjected to suboptimal (>0.5°C/min

freezing and 500°C/min thawing rates, Leibo, 1977) and optimal (O.25°C/

min freezing and 3°C/min thawing rates, DeMayo §t_al,, 1983) freezing

procedures to artificially yield groups of ova in varying states of

degeneration.

Staining with vital dyes
 

Ova were transferred to depression slides containing 10 pl of 15

uM FDA in Dulbecco's phosphate-buffered saline (PBS) and held at room

temperature for one min. The ova were then examined for 10 sec under

a fluorescence microscope (Leitz 8612 and 8038 exciter filters and a

K510 long pass barrier filter, The Microscope Co., New Castle, PA).

Ova were classified as either positive (bright fluorescence) or nega-

tive (faint or no fluorescence). Examinations were also made for

exclusion or uptake by ova of 0.2% TpB. Ova were washed and further

processed to correlate with morphologic studies and macromolecular

synthesis.

Evaluations of macromolecular synthesis
 

Ova and embryos were incubated in 0.25 ml of 2.8 (Daentl and

Epstein, 1971) and 5.6 uM 5-3H-uridine (for hamster and squirrel

monkey ova, respectively; S.A. 18 Ci/mmole) which supplemented the

modified TC-l99. Incubations took place for 3 hr in an atmosphere of

5% CO2 in air. Ova and embryos were washed 10X in medium containing

unlabelled uridine in lOOO-fold excess and solubilized in 100 pl of
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0.14 M 2-mercaptoethanol and 0.1% sodium dodecylsulphate in phosphate

buffer (pH 7.4) (Fishel and Surani, 1978). Samples were heated to

65°C for one hr in a water bath, duplicate aliquots removed and added

to Whatman GF/C glass fiber filters (Fisher Scientific, Pittsburgh,

PA), and air-dried. RNA was precipitated by addition of 30 m1 cold

10% TCA and 30 m1 cold ethanol (EtOH) to the discs under light suction

filtration (Sartorius-Membranfilter, Gdttingen, W. Germany). Treat-

ments of selected filters with either ribonuclease (RNase) A from

bovine pancreas (0.4%, Sigma, St. Louis, MO) and 0.5 N NaOH reduced

3H-uridine incorporation into TCA-precipitable material to background

levels, thereby serving as controls. Total uptake was determined by

assaying discs without prior TCA/EtOH treatment. Discs were assayed

for radioactivity in 10 m1 ACS (Amersham, Arlington Hts., IL) in a

Searle Model 6891 liquid scintillation counter. Machine efficiency

was 64.5% for 3H and quenching was 5.7% with an external standard.

Aliquots of the final wash were processed as procedural blanks (usu-

ally 30-60 CPM). The moles of precursor incorporated/embryo/unit time

were calculated using the known specific activity of the precursor and

the incorporated radioactivity (Epstein, 1975).

Autoradiography
 

Squirrel monkey ova were incubated 3 hr in modified TC-199 sup-

plemented with 5.6 uM 5-3H-uridine (S.A. 18 Ci/mmole) or 0.4 uM L-

4,5-3H-leucine (S.A. 50.4 Ci/mmole) and treated as described above.

Following washing, ova were fixed 24 hr in Bouin's fluid and processed

for autoradiography (AR) (Weitlauf and Greenwald, 1971). Ova were
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embedded in paraffin and serially sectioned at 5 pm. For uridine,

alternate paraffin sections were mounted on two sets of slides and the

paraffin removed. One set was treated with RNase A (0.1 mg%, activity

85 Kunitz units/mg, Sigma, St. Louis, MO) in sodium phosphate buffer

(0.1%, pH 7.4). The other set of slides received only buffer treat-

ment. A11 slices were incubated at 37°C for 1 hr and were subse-

quently treated with 5% TCA for 10 min at 4°C. For leucine, since

Bouin's fixative removes unincorporated amino acids (Weitlauf and

Greenwald, 1971), no further treatment was required. All slides were

washed 15 min in tap water, air-dried and dipped in Kodak NTB-3 emul-

sion at 42°C in the dark. The slides were exposed two weeks, de-

ve10ped, fixed and stained with hematoxylin and eosin (Peluso and

Hutz, 1980). Two blank slides in each set were exposed to light and

two processed in the dark to control for negative and positive chemo-

graphy, respectively. 3H-Uridine and -1eucine incorporation into RNA

and protein, respectively, were determined by counting reduced silver

grains over three different areas of 300 um2 each of nucleoplasm or

cytoplasm with a micrometer reticle. These counts were averaged and

background counts from similar averaging of equivalent areas 200 um

from the ovum were subtracted. (For the case of uridine, the back-

ground counts were the same as RNase-treatment.) The area over which

grains were counted was converted to 1000 um2 for ease in calculations

and graphic representation.

Steroid autoradiography was according to Uriel gt a1, (1973). In

brief, slides of sectioned ova were incubated 2 hr in PBS containing
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3
0.005 ug/ml of either 2,4,6,7-3H-estradiol—l78 (E or 1,2,6,7- H-2)

progesterone (P) (S.A. 94 Ci/mmole each), washed 1.5 hr in running tap

water and autoradiographed as described above. Positive controls were

nonradioactive E2 and P (each in 1000-fold excess) to compete for

radioactive E2 and P, respectively.

Measurements of steroid uptake
 

3H-Estradiol or 3H-progesterone (S.A. 94 Ci/mmole each) were

dried and dissolved in 0.1 ml EtOH. Ova were then incubated for 2 hr

in 0.2 m1 of modified TC-199 supplemented with 0.06 uM of either

radioactively-labelled steroid. (This amount provided for maximum

uptake in preliminary trials). Ova were washed 10X in phosphate

buffer, dissolved in 0.1 m1 of tissue solubilizer (Soluene, Packard,

Downers Grove, IL), and the solution assayed for radioactivity as

described above in 10 m1 of methanolic AC5 to reduce chemilumines-

cence.

Metabolic assessments
 

Oxygen consumption
 

Oxygen consumption of ova was measured by the method of Benos and

Balaban (1980). This utilized a polarographic oxygen electrode of the

Clark type with micromodifications (Model 5331, Yellow Springs Instru-

ments, Yellow Springs, OH). Hamster ova or squirrel monkey oocytes

with cumulus were incubated for 4 hr in a sealed glass chamber (0.5-

0.8 ml volume) containing modified TC-l99 medium (Seamark g__gl,,

1976). The medium, previously equilibrated with 5% CO2 in air, was

surrounded by a water jacket controlled at 37:0.01°C by a Haake Model
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FE2 circulating water bath (Haake, Karlsruhe, W. Germany). The

chambers' contents were stirred continuously with magnetic stirrers

and additions made with a microsyringe through the access ports.

Oxygen consumption of ova was calculated from the observed decrease in

02 tension per unit time (YSl 02 Electrode References, 1974) as com-

pared to a control chamber containing no ova. A positive control was

the addition of 1x10"4M KCN, which reduced the oxygen consumption of

ova to baseline levels. Consumption of oxygen by squirrel monkey

oocytes was estimated by taking 10% of the total uptake of the oocyte-

cumulus complex as the approximate value for oocytes alone (Dekel gt

§_l_.,1976).

Carbon dioxide production
 

CO2 production by oocytes was monitored by modifications of pub-

lished techniques (Brinster, 1967; Menke and McLaren, 1970) to those

used by Dey §t_al, (1979). Oocytes from squirrel monkeys were incu-

bated for 4 hr at 37°C in 5% CO2 in air in Dulbecco's PBS (titrated to

pH 7.3 with 0.5 N NaOH), supplemented with 100 pg/ml gentamycin. (PBS

has been shown to lack embryotoxic or metabolic effects in a 4 hr

culture period (Quinn and Wales, l973b,c).) The only energy sub-

4 4M D_U_14
strates added were 1.80x10' or 5.56x10' C-glucose (S.A. 296

mCi/mmole). Incubations were in equilibrated test tubes sealed with

rubber stoppers, and containing plastic center wells (Kontes Glass-

ware, Vineland, NJ). The incubations were terminated and 14CO2

liberated from the medium at the end of the culture period with an

injection of 0.25 ml 0.05 M potassium hydrogen phthalate buffer (pH

4.0). NCS (0.25 ml, Amersham, Arlington Hts., IL) was then injected
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14
into the center wells to absorb the C02. The tubes were agitated

one hr in a metabolic shaker (100 cycles per min). The tubes were

14
then discarded and the center wells containing the CO -1abelled NCS

2

were dropped into liquid scintillation vials with 10 ml standard PPO-

POPOP (6 g/L and 75 mg/L, respectively, in toluene; Spectrafluor,

Fisher Scientific, Pittsburgh, PA). Efficiences and quenching were

assessed using a NaZMCO3 standard. Picogram-atoms of carbon incor-

porated were calculated utilizing the method of Menke and McLaren

(1970). Blanks contained all components except oocytes. Background

levels produced 100-200 cpm, significantly less than experimental

tubes.

2-Deoxyglucose uptake
 

Ova from squirrel monkeys were preincubated one hr in 0.2 ml TC-

199 containing 5.56 mM D-glucose (non-radioactive) and washed in

saline 5 times. They were then incubated in 0.2 m1 of modified PBS

containing 1 uM 2-deoxy-D-1-3H-glucose (S.A. 25 Ci/mmole) (Dunn and

Mallucci, 1980) as the only energy substrate. (Incubations with 2-

deoxyglucose had no detrimental effect on jg_yjtrg_development of

early embryos (Kane and Buckley, 1977) or on viability of other cell

types as assessed by trypan blue (Segal and Ingbar, 1980).) Ova were

cultured for 3 hr with and without the addition of 10 nM or 1 UM

insulin (Segal and Ingbar, 1980) from bovine pancreas (24.3 U/mg; ICN

Pharmaceuticals, Cleveland, OH). Following incubations, ova were

washed 10X in nonradioactive medium and solubilized in 100 pl of 0.14

M 2-mercaptoethanol and 0.1% sodium dodecylsulphate in sodium phos-

phate buffer (0.1%, pH 7.4) for 1 hr at 65°C. Aliquots of the final
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wash served as procedural blanks (Fishel and Surani, 1978). Machine

efficiency for 3H was 57.6% and quenching was 5% using an external

standard. Although 2-DG depresses ATP levels in some cell types, the

technique allows accurate measurements of initial substrate utiliza-

tion (Parra et_al,, 1980).

Statistical analyses
 

Since scintillation counts normally follow a Poisson distribution

(Steel and Torrie, 1980), such data were usually transformed (Vi)

prior to further analysis. Steroid data were transformed to log (X+1).

Comparisons were analyzed by Student's t-test, or randomized one-way

ANOV or factorial designs. Student-Newman-Keuls test was used to

compare multiple groups. The rank sum (Mann-Whitney U) and Kruskal-

Wallis tests were performed if data was still nonparametric following

transformation. Vital dye data were compared by x2 (contingency

tables) or Fisher exact test, or by simple linear correlation.

Percentage data were evaluated following angular transformation (sin-1

vGZ). Simple linear regression analyses were done to validate oxygen

consumption data. P<0.05 was considered to be significant.



RESULTS

Control ova obtained from hamsters took up FDA and fluoresced

brightly, excluded TpB, and appeared morphologically normal after a 3

hr culture period (Table 1A). These ova also incorporated 3H-uridine

to a significant extent (Table 18). A suboptimal freezing procedure

reduced all indices of viability to zero. Although an optimal freez-

ing procedure for hamster ova reduced viability, ova judged normal by

vital stain criteria incorporated and took up 3H-uridine to the same

extent as controls. Although TpB exclusion and FDA uptake were

normally highly correlated with each other in ova of both species over

various treatments (r = 0.99, Figure 1), there were discrepancies in

groups with intermediate viability after culture (Table 1A). In this

third group, there was a drop of viability after culture (as assessed

morphologically) to TpB levels before and after culture. The percen-

tage of ova assessed viable by FDA was lower than the other indices

both prior and subsequent to culture. There was no effect of incuba-

tion with radioprecursor on the viability of control ova over the 3

hr. The use of vital dyes had no effect on radiouridine uptake by

hamster two-cell embryos, as estimated by radioautography. Control

embryos (no stains, n=4) had grain counts of 10815 versus 95:9 grains/

2
1000 um for embryos incubated 1 min in each of TpB and FDA and

22
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TABLE 18

Validation of Trypan Blue (TpB) and Fluorescein

Diacetate (FDA) in Hamster Ova

 

 

 

3H-Uridine1

Treatment

Incorporation Uptake

Control 0.69:0.15 6.50:1.50

Suboptimal ---2* ---2*

Freezing

Optimal 0.55:0.153 8.36:2.153

Freezing

 

1Femtomoles 3H-uridine/ovum/3 hr; number of ova

per RNA group was 73-110.

2Not detectable from background levels.

3Only ova judged viable by both TpB and FDA assays

were used.

*Significantly different from respective control

group (p<0.05).
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Figure 1. Statistical correlation between TpB and FDA.
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exposed to near-ultra-violet light (n=5). Eighty percent of one-

celled hamster embryos which stained viable by both dyes, proceeded to

the two-cell stage 24 hr later, jg_yjtr9_(Table 2). This was com-

parable to normal controls, not incubated in either dye. Embryos

which did not fluoresce and took up TpB did not cleave. The dyes were

not embryotoxic at the concentrations used.

Preliminary experiments determined that embryos incorporated 3H-

uridine maximally at concentrations of 2.8 uM for hamster embryos

(Figure 2) and 5.6 UM for squirrel monkey ova (not shown). Uptake

into the acid-soluble pool increased continuously. Without knowledge

of the size of the endogenous precursor pool (estimated by others in

the mouse embryo (Clegg and Piké, 1977), but not possible with the

sparse material available to us), this should have equilibrated the

external and internal pools (Tasca and Hillman, 1970; Daentl and

Epstein, 1971; Epstein, 1975). Ribonuclease or NaOH digestion for 1

hr after culture reduced uridine incorporation to that of background

levels (Figure 3). Actinomycin 0 treatment for 1 hr prior to culture

3H-
plus concomitant incubation of precursor and actinomycin 0 reduced

uridine incorporation more than 50%. Embryos which were morpholo-

gically degenerate had a reduced capacity to synthesize RNA to 38% of

controls. In studies with 3H-leucine, incorporation by monkey ova,

likewise, plateaued at 0.4 uM (as assessed by autoradiography). TpB

exclusion and FDA uptake correlated well with morphology and capacity

to synthesize RNA in autoradiographs (Table 3). Grain counts of

unfertilized and fertilized oocytes that stained TpB-positive and FDA-

negative remained at background levels. Those which stained TpB-

negative and FDA-positive showed much higher grain densities (25:3 and
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TABLE 2

Validation of Vital Dyes: In Vitro Development of

Hamster Embryos from the Ofie- to Two-Cell Stage

 

No. Developed to Two-Cell Stage

 

 

Treatment No. Cultured After 24 hr (%)

Control 18 15 (83.3)

(no dyes)

TpB'/FOA+ 15 12 (80)”‘5'

TpB+/FDA- 15 o (0)*

N.S

'Not significantly different from control group.

*Significantly different from control and TpB'/FDA+

(p<0.05).

groups
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39:3 grains/1000 umz), respectively. Both vital dyes correlated well

with 3H-leucine incorporation by squirrel monkey oocytes (Table 4).

Use of a suboptimal freezing procedure reduced viability as judged by

TpB and FDA, and the number of silver grains in the autoradiographs to

background levels, as compared to viable controls (Figures 4A, B).

3H-Uridine incorporation and uptake both decreased in oocytes re-

covered from squirrel monkeys 36 hr after HCG administration, compared

to oocytes recovered 16 hr after HCG (Table 5). Incorporation of 3H-

uridine increased at ig_yj:r9_fertilization in squirrel monkey oocytes

from 25 to 39 grains/1000 um2 and again after the second cleavage

division from 44 to 70 grains/1000 um2 (Figure 5). 3H-Leucine incor-

poration by squirrel monkey oocytes decreased after a 21 hr maturation

period 111 11.5119. (from 329:20 to 164:20 grains/1000 umz). Grain counts

remained the same at jg yiirg fertilization (118:40 grains/1000 umz),

with a nonsignificant elevation by first cleavage (to 220:25 grains/

1000 umz) (Figure 6).

In the steroid uptake experiments, correlative RNA studies were

performed. Incorporation of 3H-uridine into RNA increased by the

morula stage in embryos from hamsters which ovulated naturally from

1.5 to 16.1 femtomoles (fmoles)/embryo/3 hr (Table 6). Uptake in-

creased significantly at the 8-cell and morula stages over previous

stages. Superovulated ova showed similar increases in incorporation

at the 4-cell, morula, and blastocyst stages, and in uptake at the 4-

cell and morula stages. There were no differences in incorporation or

3
uptake of H-uridine between embryos from naturally- or superovulated

animals, except in the case of uptake by two-cell embryos.
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TABLE 5

3H-Uridine Incorporation with Respect to the Time of

Oocyte Collection in the Squirrel Monkey

 

Treatment Incorporation1 Uptake1

 

15 hr after HCG 3.81:0.54 (8)2 68.41:8.93 (8)

36 hr after HCG 1.07:0.14 (4)* 3.28:1.00 (4)*

 

1Femtomoles 3H-uridine/oocyte/3 hr : S.E.

2Number of trials in parentheses; 1-5 oocytes per trial.

*

Significantly different from respective group at 16 hr

(p<0.05).
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Figure 5. 3H-Uridine incorporation by early embryos of squirrel

monkeys, fertilized in vitro. Autoradiographic assessments were

done on a per-cell bEEis. Number of ova at base of bars. Values are

expressed as mean :_S.E. *Significantly different from previous cell

stage (p<0.05).
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Steroid uptake by hamster and squirrel monkey ova was validated

by autoradiography. Hamster two-cell embryos containing 3H-estradiol

(3H-E2) possessed 252:30 grains/1000 umz (n = 11 trials) (Figure 7A),

whereas background levels were 65:6. The use of the nonradioactive

3
competitors estradiol and progesterone (P) abolished uptake of H-E

2

and -P, respectively, to that of background levels (Figure 7B). Un-

fertilized oocytes from squirrel monkeys showed grain counts of 122:28

2 over background (n=3). The ratio of uptake of steroidsgrains/1000 um

as determined by autoradiography to that by liquid scintillation

counts (below) was equivalent between two-cell hamster embryos and

unfertilized oocytes of squirrel monkeys.

E2 uptake increased with development in hamsters ovulating natur-

ally (from 2200 to 4000 to 5700 CPM/embryo) (Table 7). There was no

increase seen in E2 uptake by the superovulated group over the same

stages. E2 uptake declined dramatically at the morula stage. P

uptake increased at the 4-cell stage but remained constant at the 8-

cell stage in naturally-ovulated hamsters. In the superovulated

group, a significant increase was not seen until the 8-cell stage, and

P uptake then remained constant. The superovulatory regimen reduced

uptake of both steroids at all stages analyzed.

E2 uptake by squirrel monkey ova fertilized jn_yi:r9_in the

groups treated with 4- or 5-days of FSH was augmented compared to

unfertilized controls, although the increase was not statistically

significant (Table 8). The group treated with FSH for 5 days showed

increased E2 uptake by unfertilized oocytes when compared to the 4-day

group. P uptake increased with fertilization in both FSH groups.



Figure 7a.

7b.
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Autoradiograph of a two-cell hamster embryo which was

sectioned and incubated for 2 hr in medium supplemented

with 3H-estradiol-178 (x900).

Autoradiograph of a two-cell hamster embryo which was

sectigned and incubated for 2 hr in medium supplemented

with H—estradiol-l78 and washed for 1.5 hr in a 1000-

fold excess of nonradioactive estradiol-17B. Note the

vast reduction in silver grains (x900).
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In a separate experiment (where the Specific amount of incorpor-

ated radioactivity was known), steroid uptake was analyzed for embryos

fertilized jg yi::g_from squirrel monkeys treated with 4 days of FSH.

There was a trend for increased E2 uptake with jg_yi:rg fertilization

and first cleavage (Figure 8), although this was not statistically

significant (from 0.59:0.07 to 0.87:0.17 to 1.20:0.40 picomoles

(pmoles)/embryo/2 hr). P uptake increased at jg_yj:r9_fertilization

(from 0.21:0.02 to 0.49:0.05 pmoles/embryo/Z hr), and then remained

constant at the two-cell stage (at 0.38:0.10 pmoles/embryo/2 hr).

Preliminary experiments were run to determine the viability of

hamster ova and squirrel monkey oocytes after a 4 hr incubation in

modified TC-199 in the oxygen monitor. Of 115 ova, 100% were morpho-

logically normal, excluded TpB and fluoresced brightly with FDA follow-

ing culture. Linear regression analysis proved oxygen consumption by

such ova to be 4- to 5-fold above baseline levels (n = 5 trials).

Immature oocytes from squirrel monkeys and mature hamster ova did not

differ in their oxygen consumption (4.85:1.84 (n = 4 trials, 9-10

oocytes/trial) and 5.51:0.92 nL O2 consumed/ovum/4 hr (n = 8 trials,

50-200 ova/trial), respectively.

Preliminary experiments assessed the viability of hamster ova and

squirrel monkey oocytes subsequent to a 4 hr culture in PBS for the

14
studies of CO2 production. Control ova in PBS alone (n=10) and ova

in PBS + radioglucose (n=15) all excluded TpB and FDA after the cul-

ture period. Unfertilized oocytes from squirrel monkeys incubated in

4 4 14
1.80x10' and 5.56x10- M U- C-glucose incorporated 10.4:2.4 (n = 4
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Steroid uptake by early embryos of squirrel monkeys,

Number of ova at base of bars. Values are

*Significantly different from previous cell

stage (p<0.05).
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trials, 9-10 oocytes per trial) and 4l.9:2.8 picogram (pg)-atoms

glucose carbon/oocyte/4 hr (n = 4 trials), respectively. From the

experiments on oxygen consumption and 14

14

CO2 production, an estimated

molar ratio of 002 produced from universally-labelled glucose to

total oxygen consumption was calculated at 0.19 for the unfertilized

squirrel monkey oocyte.

The addition of insulin at concentrations of 10 nM and 1 uM in-

creased 2-deoxyglucose uptake by unfertilized oocytes from squirrel

monkeys over controls, but not to a significant extent (from 13.95:

2.40 to 15.64:3.78 to 18.84:].22 femtomoles (fmoles)/oocyte/3 h,

respectively) (Figure 9). There was no change of 2-DG uptake at

fertilization (Table 9). All ova used in the 2-DG experiments were

viable by TpB and FDA prior to and subsequent to the culture period.

The uptake of 2-deoxyglucose by fertilized and unfertilized ova

classified as degenerate by morphology and vital dyes was reduced to

background levels (Table 9).
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Figure 9. 2-Deoxyglucose uptake by unfertilized oocytes from

squirrel monkeys: Effect of insulin. Four to five trials were run

per group, with 4-10 oocytes per trial. Values are expressed as mean

+ S.E.
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TABLE 9

2—Deoxyg1ucose Uptake by Squirrel Monkey Ova that are

Unfertilized, lg_Vitro Fertilized or Degenerate

 

 

Percent Viable by 1
Cell Stage Vital Dyes 2-DG Uptake

Unfertilized 100 (5)2 14.531120

Fertilized one-cell 100 (2) 16.67:2.60

Degenerate O (3) ---3

 

1Femtomoles 2-DG/ovum/3 hr :_S.E.

2Number of trials in parentheses; 3-10 ova per trial.

3Scintillation counts reduced to background levels.



DISCUSSION

The vital dyes trypan blue (TpB) and fluorescein diacetate (FDA)

were validated for use with hamster and primate ova in the present

studies. Exclusion of TpB and positive fluorscence with FDA by ova in

various treatments correlated well with 3H-uridine and -1eucine incor-

poration and stability and development jg ngrg, Such correlations

have also been shown for embryos and granulosa cells of other mammals

(Campbell, 1979; Mohr and Trounson, 1980; Peluso g:_gl,, 1982). Over

a sufficiently long period of culture, particularly in groups with

intermediate viability, FDA appears a better predictor of viability

than either TpB or purely visual assessments of morphology. However,

as there exists such a high statistical correlation between TpB and

FDA, it would be unnecessary to utilize both together in the future.

Although FDA may be a more active indicator of viability, the assay

also requires expensive fluorescence equipment and is more time-

consuming than TpB. Therefore, TpB should suffice for most quick

assessments of embryo viability jg_yj:rg, Nevertheless, both vital

dyes are excellent indicators of viability of primate embryos produced

by in yi:rg_fertilization.

The decrease in 3H-uridine incorporation by oocytes at 36 hr

after HCG administration to squirrel monkeys is consistent with the
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decrease seen with intrafollicular maturation in mammalian oocytes

(Baker g:_gl,, 1969; Bachvarova, 1974; Wassarman and Letourneau,

1976). Autoradiographic analysis showed an increase in the capacity

of squirrel monkey ova to incorporate 3H-uridine after jg_yi:rg_ferti-

lization. There was a further increase again after the second cleav-

age division. However, the amount of 3H-uridine incorporated was

several-fold lower than in similar autoradiographs of two-cell hamster

embryos. This difference may be due to appreciable differences in

precursor pools or membrane permeabilities to precursors (Clegg and

Pik6, 1982). Nevertheless, relative RNA synthesis remains quite low

in the early primate embryo. This observation compares with the low

synthesis of RNA detectable at early stages in the mouse (Knowland and

Graham, 1972). In this species, major increases in RNA synthesis do

not occur until the 8-cell and morula stages, with further increases

at the blastocyst stage (Monesi and Salfi, 1967; Ellem and Gwatkin,

1968). The decreases in 3H-leucine incorporation with oocyte matura-

tion and the low levels at fertilization and first cleavage are quali-

tatively similar to that demonstrated for other mammalian species

(Brinster, 1971a; Schultz g£_gl,, 1978, 1979; Chen g§_al,, 1980).

These attenuated levels of relative protein synthesis correlate with

the observed low number of polyribosomes up to the morula and blasto-

cyst stages of primate embryos fertilized jg_yiyg_(Enders and Schlafke,

1981) and ig_yi:rg (Yorozu e:_gl,, 1983). Again, as the size of the

precursor pool for leucine is not known in primate ova, absolute

measurements could not be made. Apparent increases in protein synthe-

sis occur late in preimplantation development, primarily at 8-ce11 and
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blastocyst stages in the mouse (Epstein and Smith, 1973; Abreu and

Brinster, 1978; Schultz 22.91:, 1979; Kaye e:_al,, 1982) and at the

blastocyst stage and beyond in embryos of domestic animals (Godkin 33

al,, 1982; Janzen §:_al,, 1982).

RNA synthesis is augmented throughout preimplantation development

in mammalian embryos (Epstein, 1975; Clegg and Pik6, 1982). Our

values for the relative incorporation of 3H-uridine in hamster embryos

closely resemble those for the mouse (Daentl and Epstein, 1971).

(Absolute values for 3H-uridine incorporation (and RNA synthesis)

cannot be given, as the size of the embryonic UTP pool is unknown for

any mammalian species but the mouse (Clegg and Pik6, 1977).) However,

few studies have attempted to assess steroid uptake by embryos (Smith,

1968; Bhatt and Bullock, 1974; Wu and Lin, 1982a). The present

studies demonstrate definite uptake of E2 and P by ova from hamsters

and squirrel monkeys and changes with in_yj:rg_development. The

classical mode of steroid action is by gene derepression and activa-

tion of RNA synthesis (O'Malley g: 31,, 1973). One can therefore

expect changes in 3H-uridine incorporation through the use of various

ovulatory regimens as compared to normal ovulatory cycles. This

hypothesis was based on the observation that treatment with exogenous

gonadotropins alters levels of endogenous steroids in several species

(Greenwald, 1976; Schrams g: 21,, 1979; Edwards g:_gl,, 1980). In the

present study, varying the length of FSH treatment showed no appre-

ciable effects on steroid uptake in embryos from squirrel monkeys.

However, the superovulatory regimen given hamsters significantly

decreased uptake of exogenous radiosteroids by the embryos at
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virtually all stages analyzed. Yet, there was no concomitant effect

on relative incorporation of 3H-uridine. Absence of effects of exo-

genously administered steroids on RNA synthesis of mouse embryos, jg_

ngrg, was demonstrated by Warner and Tollefson (1977, 1978). These

investigators hypothesized that the effects of E2 and P are directly

or indirectly on the membrane to alter permeability and subsequent

embryonic cleavage. This hypothesis is yet to be confirmed. Changes

in embryonic steroid uptake and receptors may therefore not be medi-

ated by alterations in RNA synthesis.

The apparent reduction in steroid uptake by superovulated hamster

embryos may be attributed to saturation of embryonic receptors with

augmented levels of endogenous steroids. (Steroid uptake, however, is

not necessarily indicative of receptor number (Martel and Psychoyos,

1981; Logeat g:_al,, 1982).) Such saturation of receptors would alter

true uptake values of radiosteroids. This has been reported to occur

in studies of steroid uptake at implantation sites in pregnant mice

and rats (Sartor, 1977; Ward g:_al,, 1978). (In preliminary studies

in our laboratory, we administered 3H-E2 and 3H-P to pregnant hamsters

carrying embryos at varying stages of preimplantation development and

demonstrated steroid uptake by the reproductive tract and embryos.

Relative changes between the jg_yi:rg_and jg_yjyg studies were identi-

cal, suggesting ig_vivo saturation of steroid receptors.) An alterna-
 

tive hypothesis is an actual alteration in receptor sites such as

occurs in down-regulation in the presence of prolonged, elevated

levels of endogenous hormones (Savoy-Moore g:_gl,, 1980). Yet another
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hypothesis is a delay in receptor synthesis which was not detected as

a concomitant change in RNA synthesis at the level investigated.

Although changes in uptake or receptor content may occur with

superovulation, it is apparent that these changes are probably not

severe enough to disturb ovum normality (Seidel, 1981). The changes

apparently do not prevent normal implantation and post-implantation

development as superpregnancy normally ensues. In fact, litter sizes

in hamsters have been reported as large as 27 (Fleming and Yanagi-

machi, 1980). Therefore, steroids may rather play a role in effecting

developmental changes of early preimplantation embryos and cleavage.

However, nearing implantation, embryos possess aromatase activity and

are probably able to synthesize their own steroids (Dickmann and Dey

1974; Shutt and Lopata, 1981; Sengupta e:_gl,, 1981; Gadsby g:_al,,

1981; Hoversland g:_gl,, 1982; Wu and Lin, 1982b), and thereby reduce

their uptake accordingly. This may be the case for hamster embryos at

the morula stage in the present study.

The limited studies on oxygen consumption and 14CO2 production

exhibit rates several-fold higher than reports in the literature for

mouse, rat, rabbit and rhesus monkey ova (which are extremely varied)

(Fridhandler, 1961; Mills and Brinster, 1967; Brinster, 1971b; Magnus-

son e:_al,, 1977). This may be due to the hormonal stimulation ad-

ministered to our hamsters and monkeys to induce ovulation. It has

been demonstrated that oxygen consumption increases with HCG-induced

maturation in rat oocytes (Magnusson §:_al., 1981). Also, experiments

with rhesus monkeys used ova collected at laparotomy, without ovula-

tion induction, from a heterogeneous population, and were not assessed
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for viability prior to culture (Brinster, 1971b). Although the volume

of the squirrel monkey occyte is 3-4 times that of the hamster ovum,

the two were equivalent in their rates of oxygen consumption. This is

contrary to previous measurements on rabbit and mouse embryos (Mills

and Brinster, 1967), which were more direct. It is possible that

either the sensitivities of the techniques differ, or that the mature

hamster ovum maintains a higher metabolic activity than the immature

primate oocyte. This may compensate for the smaller size of the

hamster ovum. The mouse ovum, in fact, possesses LDH activity 80

times that of other mammalian oocytes, including the squirrel monkey

(Brinster, 1967b). The ratio of CO2 production to 02 consumption of

0.19 for oocytes from squirrel monkeys was roughly 9—fold greater than

that calculated for the unfertilized mouse oocyte (Brinster, 1967a),

but still quite depressed. It appears that glucose oxidation is

extremely low in early embryonic development. In the mouse oocyte,

less than 5% of oxygen uptake is due to glucose oxidation, with the

rest primarily due to pyruvate (Brinster, 1969).

The 2-deoxygluc0se experiments open up an exciting area of quick

assessments of ovum metabolism and viability. Degenerate oocytes from

squirrel monkeys showed a greatly diminished uptake of 2-DG compared

to oocytes assessed as viable by vital dye assays. The uptake of 2-DG

by viable oocytes incubated with or without insulin was determined.

Although immunologic cross-reactivity between insulin of New World

primates and cattle is low, the hypoglycemic action of bovine insulin

is still effective in most primates (Howard, 1983). Insulin normally

enhances glucose uptake by most body tissues. Yet, pharmacologic
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concentrations of insulin were required to significantly increase 2-DG

uptake beyond controls in rat thymocytes, jg_yi:r9_(5egal and Ingbar,

1980). In our studies of early primate embryos, jg_yi:r9, 2-DG uptake

was not insulin-sensitive. The lowest levels of insulin used here

were still greater than 50 times the physiological levels in serum

from squirrel monkeys (Davidson and Blackwell, 1968). (Insulin levels

in follicular fluid from squirrel monkeys are not currently avail-

able.) Therefore, insulin effects at the oolemma may not be normally

operational. In fact, previous work has shown that the addition of

insulin to the culture medium had no effect on either the rate of

oocyte maturation or jg_yj:rg_fertilization in squirrel monkeys (Kuehl

and Dukelow, 1979), or on embryonic deve10pment in the mouse (Brinster,

1965). The experiment on 2-DG uptake with jg_yi:rg_fertilization of

oocytes from squirrel monkeys is consonant with the large body of data

showing low utilization of glucose by early embryos of most mammals.

The results of the present studies indicate that biochemical

changes were detected in the primate ovum with jg_yj:r9_fertilization,

including augmented incorporation of 3H-uridine and steroid uptake and

diminished incorporation of 3H-leucine. The embryos are viable and

follow metabolically normal development comparable with preimplanta-

tion development of other mammalian species.



SUMMARY AND CONCLUSIONS

The present studies were designed to evaluate the viability and

biochemical alterations of squirrel monkey ova fertilized and de-

veloped jg_vitro. In addition, the effects of ovulatory regimens on

the above variables were determined. The following conclusions

resulted from the data obtained:

Staining with vital dyes as an index of viability

l. Exclusion of trypan blue and uptake and fluorescence with fluore-

scein diacetate by ova from hamsters and squirrel monkeys was

highly correlated with in vitro development and relative synthe-

ses of RNA and protein.

Macromolecular synthesis in the early embryo

1. 3H-Uridine incorporation and uptake by squirrel monkey oocytes

were reduced at 36 hr after HCG administration compared to 16 hr.

Relative incorporation and uptake of 3H-uridine both increased

with embryonic development in the hamster. Superovulation had no

effect on either variable during embryonic development in the

hamster.

3H-Uridine incorporation increased at jg yi:rg_fertilization in

squirrel monkey ova. Another increase occurred at the second

cleavage division.

54
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3H-Leucine incorporation decreased with ovum maturation, and

thereafter remained constant to the two-cell stage, fertilized jg_

vitro.

Steroid uptake by the early embryo
 

l. Uptake of both estradiol-17B and progesterone by embryos re-

covered from superovulated hamsters increased with embryonic

development. The superovulatory regimen reduced uptake of both

steroids at virtually all stages analyzed.

Uptake of both steroids was increased with fertilization ig_y1:rg_

and first cleavage in the squirrel monkey. Only the progesterone

increase was statistically significant. Changing the ovulatory

regimen for squirrel monkeys from 4 to 5 days of FSH prior to HCG

administration had no appreciable affect on steroid uptake.

Metabolism of the ovum and early embryo
 

1. Oxygen consumption by immature oocytes from squirrel monkeys was

similar to mature hamster ova.

Unfertilized squirrel monkey oocytes incorporated 4l.9 picograms

of glucose carbon over a 4 hr period.

f 14
Utilization of the above variables produced a molar ratio 0 CO

2

production from glucose to total oxygen consumed estimated at

0.19.

The uptake of 2-deoxyglucose by unfertilized oocytes from squirrel

monkeys was not altered by the addition of insulin.

There was no change of 2-deoxyglucose uptake at jg_vitro fertili-

zation in squirrel monkeys.
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2-Deoxyglucose may be used as a viability indicator of primate

0V6.
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APPENDIX A

BIOCHEMICAL EVALUATION OF THE UNFERTILIZED HUMAN OOCYTE*

A pilot study was designed to investigate the effect of the time

of oocyte recovery on 3H-uridine incorporation. Due to the difficulty

in obtaining patients and oocytes, only two oocytes were processed.

Protocol

Patients were administered 5000 I.U. HCG on day 12 of the men-

strual cycle to induce ovulation. Laparoscopic procedures and egg

collection were routine (Jones g: al,, 1982). Incubation and pro-

cessing of human eggs was as described for oocytes from squirrel

monkeys.

Data

 

Morphologic data on the human oocyte recoveries are recounted in

Table l and Figure l. Incorporation of 3H-uridine was reduced by 35

hr following HCG administration, compared to 12 hr after (Table 2).
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TABLE 1

Morphologic Data on Human Oocyte Recoveries

 

Patient N0.

 

 

Variable

002 005

Ovary punctured Right Left

Follicle size by ultra- =20 mm =20 mm

sound scan

Volume of follicular «5.81 4.4

fluid

Compactness of cumulus Loose Loose

cell mass

Oocyte

Morphology Oolemma pulled away Ovum started to

from zona pellucida; shrink; expanded

ovum expanded in in cultured

culture

Meiotic state Germinal vesicle Germinal vesicle

intact broken down

 

1Follicular fluid was combined with the saline used to flush

the cannula prior to volume measurements.
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Figure 1. Photograph of a human oocyte recovered 12

hr after HCG administration. Note the intact germinal

vesicle and nucleolus. (Phase-contrast, x600).
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