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ABSTRACT

DISPERSION AND INSTABILITY CHARACTERISTICS OF SOLID-STATE

CARRIER WAVES IN MICROWAVE INTEGRATED SYSTEMS

by

Chang Eon Kang

The interaction of solid-state carrier waves in semiconductors

is studied in order to predict the wave instabilities and wave

characteristics of propagating modes. The analysis is based on the

Maxwell's, continuity, and Boltzmann transport equations, and is deve10ped

in a general manner. Here, two models of wave interactions are mainly

investigated in the frequency range of 1 m 10 GHz: the first model of

interaction is obtained between a carrier stream in semiconductors and

the slow circuit waves guided by meander-tape line, and the second model

of interaction is obtained due to velocity-modulated carrier waves in

two adjacent streams pr0pagated in the same direction. By introducing

the carrier effective mass and collision frequency, the scattering effects

in solids are taken into account.

In the interaction of the carrier stream with rf circuit waves,

a hydrodynamic model is adopted to describe the behavior of the carrier

motion. The effects of diffusion, insulator thickness, semiconductor

thickness, and the substrate material are included in the analysis. A

general dispersion expression of the coupled waves traveling along a

finite semiconductor slab is developed in a formal way so that for a

non-trivial solution of the fields the determinant of the fields matrix
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must vanish. This analysis aims to evaluate the possibility of obtaining

net gain for materials such as InSb, GaAs, Si and Ge by choosing the

continuous meander-tape circuit and capacitively-coupled meander-tape

circuit. The instability characteristics of the growing wave are analyzed

for a range of material parameters in terms of frequency, circuit velocity,

collision frequency, carrier drift velocity and actual layer thickness.

Judging from the theoretical analysis varied by the material constants

and the practical point of view, the best result of this type of device

does not heavily depend upon materials themselves but proper design,

fabrication and maximization of their drift velocities. The result

shows that the collision frequency and the drift to thermal velocity

ratio play an important role in the nature of the carrier wave.

The feasibility of wave amplification in the two-valley model

is investigated, leading to a clearer description of Gunn instability.

Two stream instability is analyzed first by establishing an equivalent

transmission line and then by writing the appropriate partial differential

equations for the interactions between two valleys. The dispersion and

instability characteristics are obtained as a function of frequencies

and doping levels. The analysis is in agreement with the experimental

results, which confirm the validity of this approach.
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CHAPTER I

INTRODUCTION

The classical electron vacuum device in the generation or

amplification of high frequency signals has many drawbacks, such as the

interelectrode capacitance and long transit time between electrodes.

In order to overcome such deleterious effects the Heils and the Varian

brothers proposed the scheme of velocity modulation, in which the

electron bunching process produces the signal. However, in the klystron

operation the electron beam interacts with the rf field over a short

cavity gap, hence the electric field must be intense to provide proper

modulation and the frequency band is rather narrow.

The scheme, extended interaction space, is the wellknown traveling-

wave amplifier or backward—wave oscillator. In the past several years,

a great deal of research effort in solid-state physics has been devoted

to potential application between electron beam devices and solid-state

devices. At present the solid-state device has some merits in the

generation or amplification of microwave and millimeter-wave signals

because it shows excellent noise figure and high frequency response,

although the electron beam device has no competition in considering high

power operation. Furthermore, especially due to cost, weight and space

consideration, some solid-state sources for applications are in the

stage of taking over. Besides, many potential applications in the

future are expected in various aspects.

In this thesis the properties of carrier-wave interactions in

several solid-state materials will be investigated —— mainly concerning
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two types of interactions, namely, the two stream instability and

carrier wave interaction with the circuit.

Two stream instability in solids could cause wave amplification,

which explains the Gunn instability mechanism. Possibly there exist

some similarities between the streams of carriers in solids and electron

beams in a vacuum. Therefore, in order to understand the important

physical insights of the phenomena such as energy conversion and wave

coupling, the concept of wave interaction, which has been successful

in electron beam devices, will be used in describing the various

instability characteristics in solid-state materials.

Another interaction is when a slow electromagnetic wave is coupled

to a drifting stream of carriers by depositing the slow-wave meander

line on the semiconductor slab with integrated circuit technology. The

solid-state traveling-wave amplifier is based on the principle that a

meander type of slow-wave circuit is suitably coupled to the carrier

stream of a negative kinetic power. Conventionally, the dispersion

relation is first formulated and then the instability characteristics

are determined by examining its propagation constant. In such approaches,

some crucial aspects of the interactions such as the limiting conditions

and the way of finding the dispersion relation were neither fully

explored, nor rigorous enough. For example, the reflected waves and

surface charges on the semiconductor were totally ignored in spite of

its finite dimension. A formal and straightforward way of deriving the

dispersion relation is presented here.

Wave prOpagation in solid-state materials will be examined

theoretically, then solved by a computer technique. From the solutions,

possibly some instabilities can be obtained.
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In Chapter II, the literature survey for solid-state devices and

preliminary analysis are presented with descriptive explanations of the

device structure. Electromagnetic field solutions of wave propagation

in semiconductor and circuit are derived in Chapter III and IV. Chapter

V presents the characteristic equations and gain expressions, and the

computer solution of gain and dispersion solution are plotted, as a

fUnction of the carrier drift velocity, circuit wave velocity and

collision frequency. Chapter V1 is devoted to investigating two stream

instability and the theoretical results of gain are compared with the

experimental results.

Chapter VII presents the design criteria of solid-state microwave

devices. The design data of experimental devices are illustrated.

Finally, a discussion of results and conclusions is given in

Chapter VIII, together with suggestions for further study.
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CHAPTER II

PRELIMINARY ANALYSIS AND THEORETICAL BACKGROUND

2.1 Introduction
 

Before getting started with the development of the main theory it

might be well not only to understand the theoretical and historical

background of the study but also to establish directions for the research.

This chapter contains what is believed to be the most fundamental details

required by the following chapters. Some basic equations and a mathe-

matical model that will be used in subsequent studies are discussed.

Section 2.2 is mainly devoted to the literature review of wave inter-

action theory in the solid-state and semi-metal materials. Section 2.3

is concerned with the mathematical description of our model in attacking

the problem. Descriptive explanations and developments of the model

will be treated within the context of this model configuration. Maxwell's

equations and Boltzmann's equation are introduced in Section 2.4 and

small signal analysis is employed in Section 2.5 so that the nonlinear

equations can be linearized. Several theorems pertaining to periodic

structures and wave propagation are also explained; these will be

significantly helpful in understanding the main problem.

Finally, the basic theory of negative resistance effects and the

two valley model are reviewed in Section 2.6. Of several physical

phenomena, bulk effects within solid-state materials have received

intense interest. Devices employing these phenomena are quite different

from junction devices, such as transistors, and one would expect greater

power output from bulk effect devices since the interaction regions are
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one or two orders of magnitude larger in dimension. In solids there

are two types of bulk effects, negative resistance and two valley

instability which are explained in Section 2.6. However, the theoreti-

cal work on these effects has not been well developed. Two stream

analysis and a new type of wave interaction mechanism based on these

bulk effects will be investigated utilizing the contents of this chapter.

2.2 Historical Observation of Wave Interaction Phenomena in Semi-

conductors

 

 

In the 1960's a great deal of interest in solid-state plasma

suggested the possibility that the gaseous plasma theory could anal-

ogously be applied to the solid-state materials but a clear description

was not then possible. The solid-state plasma exists in semiconductors,

semimetals and metals commonly —- being a gas of conduction electrons

confined to the volume of the specimen. Interest began with the

prediction that certain electromagnetic waves would be propagated in

solids with relatively little attenuation. The idea was proposed by

Konstantinov [K01] and independently by Aigrain [All] in applying dc

magnetic fields to certain semiconductors.

After first reports of wave propagation in semiconductors, an

experimental observation was successfully carried out with sodium in

1961 by Bowers, et a1 [B01]. The problem in solid-state plasma, there-

fore, is not how to generate a plasma but how to disturb the existing

plasma from thermal equilibrium and induce instabilities, both

convective and absolute.

In 1963 Gunn [GUI], [cuz] observed that, with GaAs and InP, a

periodic oscillation could be obtained at a threshold electric field.

This was completely different from previous negative resistance effects
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which occurred in p-n junction semiconductor devices. The velocity was

measured by a hetrodyne detection system, removing any possibility that

capacitive probe experiments [GUZ] measured something other than a

moving high field region in bulk GaAs devices.

Kromer [KR4], [KRS] proposed in late 1964 that the observed

properties of the Gunn effect [GUI], [GUZ] could be explained by a

differential negative conductivity. The negative mass amplifier was

also insisted upon earlier by Kromer [KRZ], [KR3] in 1959. The

differential negative mobility changes sign at the critical electric

field on which sufficient electrons are transferred to low mobility

states. This is caused by a decrease in carrier drift velocity with an

incremental increase in electric field. Actually this mechanism had

been proposed three years earlier by Ridley and Watkins [R11].

Ridley [R12]extended the earlier analysis [R11] of differential

negative mobility of the voltage controlled type by general thermo-

dynamic arguments. He neglected carrier diffusion and assumed that a

single layer of mobile charge would accumulate or be removed from the

discontinuity in the longitudinal electric field. While the voltage.

controlled negative resistance occurs in bulk Gunn effect devices,

another type of current controlled negative resistance may occur in p-n

junction and impact ionization devices [GUl], [GUZ]. Several workers

had verified experimentally that the transferred electron mechanism is

responsible for the voltage controlled negative conductance observed in

GaAs [8L2], [F01], [GIl], [H12], [HU4], [R01]. Additionally, Betjemann

[BEZ] treated temporal effects on carrier mobility.

McCumber and Chynoweth [MCl] undertook the solution of the

relevant transport nonlinear equations for bulk GaAs by numerical
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methods. They assumed that the relative population of the central and

satellite conduction band valleys was given instantaneously by a

Maxwellian distribution with a single electron temperature. Microwave

amplification and negative conductance have been discussed theoretically

and experimentally for materials such as GaAs, InP, InSb, and CdTe by

several authors - [BL3], [8L4], DHAz], [HA3], [HA5], [HEI], [H12],

[x03], [KRS], [LAl], [101], [MAl], [NAl], [PEI], [P11], [R13], [8A2],

[T01]. No one, however, has clearly justified the transferred electron

mechanism in semiconductors. It is very obvious quantum mechanically

that an electron is transferred from a high mobility, low mass,

conduction sub-band of low energy valley to a low mobility, high mass,

conduction sub-band of high energy valley when the excitation is given.

In this work we adopt a similar approach to the method used by

Pierce [P12] for the traveling-wave tube amplifier where the mutual

interactions between beam and circuit are subjected to a self consistency

requirement to explain the new interaction mechanism of the two valley

model.

Thim and Barber [THl] demonstrated that it is possible to achieve

stable, linear and comparatively high microwave amplification in bulk

GaAs devices. The devices tested had n2 = 2 x lOlz/cm2 where n is

carrier density and 2 active length.

Recently Ho [H01],[H02], [H03] attempted to describe the various

instabilities in solid—state plasmas by the concept of wave interaction,

which has been successfully used in electron beam devices [RAl], [SE1],

[8T1] - analyzing the problem by both the coupled mode approach and

transmission line analog [FUI].
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The amplification of acoustic waves in piezoelectric semi-

conductors such as CdS has been analyzed by many research workers [BU4],

[C01], [GAL], [HA1], [HUI], [HUZ], [1N1], [KRl],[LOl], [M11]. Kinetic

power carried by carrier waves was given by Vural and Bloom [VUZ].

Solymer and Ash developed [501] a one dimensional analysis by

substituting the electron beam in a traveling-wave tube for the drifting

carrier in a semiconductor. Sumi [SUl], [SUZ] treated the theoretical

explanation of solid-state traveling-wave amplifier by comparing it to

ultrasonic wave amplification. Even though the growth of semiconductor

industry has many workers concentrating on this type of research [DEl],

[052], [501], [ENl], [ETl], [FUZ], [H11], [K01], [MUl], [NEZ], [p11],

[8A1], [8A2], [VUl], a successful result has not been reported. The

transverse solid-state device has also been studied with the application

of do longitudinal magnetic fields [BAl], [302], [Hus], [TUl].

2.3 Physical Description of Mathematical Model
 

In describing any physical phenomenon on some object, either a

microscopic or a macroscopic approach is in general used. The micro-

sc0pic treatment, which uses Maxwell's equations with the microscopic

Boltzmann equation, puts emphasis on each individual particle quantum

mechanically. On the other hand, the macroscopic approach treats the

particle system collectively. That is, a large number of particles can

be dealt with statistically, using the same Maxwell's equation with the

transport equation.

Although the same result from both treatments is obtained in the

long wavelength range, the first approach is usually much more difficult

mathematically and requires serious physical restriction be placed on the

model to make the problem tractable.
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In a semiconductor a large number of carriers interact with their

self-created or externally applied electromagnetic field or both. The

characteristics and behavior of such a system are experimentally

determined by the average behavior of the ensemble. Therefore, the

appropriate theoretical model description may be statistical and it

should be in general a quantum-statistical description. The macro-

scopic attack of the hydrodynamic model will be used throughout.

The behavior of the hydrodynamic model is characterized by several

parameters, such as mean velocity v, mean plasma frequency mp, mean

collision frequency V and pressure p (or mean thermal velocity Vt). The

phenomenological expressions describing the interaction of the circuit

wave and electromagnetic wave can be obtained combining the equation of

the charged stream of Maxwell's equations, with boundary conditions.

Also, in the model the dispersion relations of the medium for different

excitations will be derived.

The interaction of carriers with lattice and thermal vibration in

solids is taken into account in the model by including the collision

effect of carriers, v = 13 and the environmental effect by considering

2 2 -l . .

carrier effective mass, m* = n (315—) . 1n the model. It 15 assumed

that the semiconductor is heavily doped such that the change in number of

carriers due to generation of recombination, usually referred to as

"source" or "sink" terms, can be neglected.

Furthermore, the wave length of any disturbance is comparatively

larger than the Debye length, A so that one may treat the electron stream

D

hydrodynamically.
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2.4 Fundamental Equations
 

When the electric field E (f, t) is applied, it builds a magnetic

field B (E, t) and charge density p (f, t) which are functions of position

and time. Simultaneously, a current with density 3 (f, t) will flow

through.

Similarly, a charged carrier in solid-state posseses a charge

density p (f, t). These densities will produce an electric field

intensity E (f, t) and a magnetic field intensity H (E, t). Therefore,

it is necessary to interrelate all quantities in the rf circuit and in

the solid-state. In order to describe the relationship, Maxwell's

equations, continuity equation, force equation and Boltzmann's equation

are needed. Conveniently, M.K.S. rationalized units are used throughout

all chapters except for describing carrier densities and small sample

dimensions.

Maxwell's equations are given by:

315
VXE--'a-£'B (2.4.1)

vitii=3+9— (2.4.2)
at

+

v - 0 = 0 (2.4.3)

v - I = 0 (2.4.4)

If the medium is isotropic, the B and B field vectors become:

3 = nil (2.4.5)

B = tii (2.4.6)

where u is the permeability and e is the permittivity of the medium and

all vector quantities are functions of space and time.

In addition, the carrier and rf waves are related by the

continuity equation and the equation relating current density, velocity,

and charge density:
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V°Zi+§%=o (2.4.7)

3:. p 3 (2.4.8)

+ O o o

where v is velocrty of particle.

Note that charge density p and current density 3 generally are

due to densities of electrons and holes. Only heavily d0ped semiconductors,

however, will be used for the devices here, therefore one type of carrier

(electrons here) will be considered.

The Lorentz force equation is:

g%=—§;(I€+i7x§) (2.4.9)

where q and m* are the charge and effective mass of a particle respectively.

Performing the analysis in Eulerian variables, the dependent variables

are velocity, charge and current density at a fixed position within the

electron stream [B03].

In Eulerian variables the Operator, d/dt in Eq. (2.4.9), is given

by:

dV 3 + +
R’ .3? ., V . v) v (2.4.10)

Therefore, the Lorentz force equation can be rewritten for most microwave

devices as:

(-—+V'V) Y=9—(E+-\7x—B) (2.4.11)

provided that collision and pressure terms are not involved.

The zeroth moment of the Boltzmann equation (i.e., o = 1) leads

to the equation of continuity for carriers

an

51-1. vr-(nii) = 11 (vi - v - v) (2-4-12)
a r

where vi, Va’ vr represent the collision frequency due to ionization,

attachment and recombination. Usually one assumes vi — Va - Vr = 0

which reduces Eq. (2.4.12) to a simple continuity equation.
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However, the collision effect in solids is more complicated than

in the gas. That is one of the most important differences between solid-

state and gaseous plasmas. The collision mechanism in solids which

results in randomizing the carrier distribution must be associated with

impurities, structural imperfections or aperiodicities of one sort or

another in the crystal. The presence of an impurity atom in a crystal

will usually alter the electrostatic potential in the neighborhood and

create an aperiodicity in the potential field within the crystal which

can act to scatter conduction electrons. This impurity scattering process

depends upon the nature of the impurity atom, its ionic size, its valence,

and the way it is bonded into the crystal lattice. The impurity

scattering mechanism is dominant in crystals which are relatively impure,

or even in very pure samples at very low temperatures.

Another scattering mechanism is due to the thermal vibrations of

the atoms in a very pure material. At any given time, a slight

aperiodicity of the potential exists within the crystal which serves to

scatter the conduction electrons, dissipating whatever drift velocity

they might have acquired from externally applied fields and retaining them

to the thermal equilibrium state. Obviously the higher the temperature

is, the stronger the lattice vibrations and the higher the probability

of scattering per unit time become. This lattice scattering mechanism

is the dominant scattering process in relatively pure and structurally

perfect crystals, especially in the higher temperature ranges.

One more important scattering parameter due to the material

permittivity is the dielectric relaxation frequency which is defined by

1

Va = ER'
(2.4.13)

where R is the resistivity of the material.
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Of several scattering mechanisms, if three scattering factors

(i.e., lattice, impurity and dielectric relaxation) operate simultaneously

to thermalize the carrier distribution function, then there will be

, associated with the lattice,three collision frequencies, v , v , v

t p d

the impurity, the dielectric relaxation, scattering mechanism

respectively. Under these conditions the collision term of the Boltzmann

equation becomes

3f

(——- = (-v - v - v ) (f - f ) = -v (f - f ) (2.4.14)

at coll t p d o o

w r v = + +

he 3 vt vp ”d (2.4.15)

and f0 represents the equilibrium state of the distribution function f.

If more than three scattering mechanisms are involved, the

effective collision frequency can be written by a single collision

frequency v given by

  

v = §\In (2.4.16)

The first moment of the Boltzmann equation becomes

+

d<v> 5* + 1 +

dt = %;-(E + xv> x B)-v<v>-nm* Vr'p (2.4.17)

+

where <v> average veloclty of carriers

intrinsic pressure tensorand p

nmtfv (<T> - T) - (<T> - T) fdvxdvydvz

Assuming that‘p*is isotropic and can be expressed as p = nykt

where k is Boltzmann's constant, T is the absolute temperature of the

carriers (°K) and y = l'b3, then

H

V - p = Vp = V(nykt) = yktVn (2.4.18)

One may rewrite Eq. (2.4.17) by conveniently dropping the bracket <> and

applying Eq. (2.4.10).

2

a + -+ q E + g Vt ~
(fi— +V.V+ \j) v=-m-Tk— ( +Vx )-fi-Vfl (2.4.19)
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where vt =J’%Eii = mean thermal velocity of carrier.

If an electron stream is considered to be under an isothermal condition,

y = 1. For higher frequencies Y = 3 since the environmental circumstance

appears in the adiabetic state.

In semiconductors the resistivity can be expressed in terms of

the electron charge density n and the mobility u.

l
 

 

R = -nue (2.4.20)

where - e

“ ‘ vm* (2.4.21)

2.5 Linearized Small Signal Analysis and Wave Theorems Relevant to

Slow-wave Circuit

 

 

Unfortunately most equations are nonlinear in nature and hence,

exact solutions are very difficult to obtain. In order to simplify the

equations, a small signal analysis is introduced in linearizing a given

system. All quantities are broken up into a dc part (or time average

part) and an ac part (or time varying part). Further the ac part is

assumed to be very small in magnitude compared with the dc part, so that

all products of second or higher order in ac quantities can be neglected.

Only one frequency needs be considered, and the general time varying

problem can be solved using the Fourier transform technique.

According to the small signal simplification, all various

quantities can be written in the following form:

K (;’ t) = Ko (¥) +‘Xl (;’ t) = K0 (5) + K1 (f) eth (2.5.1)

where the subscript "0" refers to the dc component and "l" to the ac

component.

When the above equation is substituted into the equations given

in Section 2.4, one obtains the dc equations:
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v x ab = 0 (2.5.2)

v x H - 3 ’ 5 3
0 - o

(2 . )

v 3 - 2 5 4O - °o ( . . )

v 5 - 0 2 5 5- o - ( . . )

v . 30 = 0 (2.5.6)

+ +

Jo - povo 2 (2.5.7)

I v? - 3- (E’ + 3 S ) V‘ v T 2 s 8
v0 ° 0 -nfi' o o x o - IT' no - Wo ( ° ' )

and ac equations

v x E, = -jmuH1 (2.5.9)

+ , +

V x H1 = 31 + deil (2.5.10)

v . B, = pl (2.5.11)

v . E, = 0 (2.5.12)

V . 31 = -jwpl (2.5.13)

+ +

31 - oov1 + plvo (2.5.14)

jw-Jl + (I; o V)-\71 4’ (III . V)I/> + VIII =q‘; (Eli-T; xgl +

O 2 0 III 0

31x35) - XE. VH1 (2.5.15)

n

All products of ac quantities have been neglected in the ac

equations; thus, the ac equations are linearized. However, the dc equations

are still nonlinear. To solve the linear ac equations, the dc equations

must first be solved. Various artifices are used to circumvent the non-

linear nature of the dc equations. These will be cleared later in specific

cases. For the moment, merely assume that they have been solved so that

$0 and 00 are known functions to be used in the ac equations. From this

point on, in most cases, one needs only be concerned with ac equations of

interest.

The wave form traveling along an axially periodic structure is

described by the concept of space harmonic functions commonly known as
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Floquet's theorem. This theorem actually constitutes a generalization

to linear partial differential equations of a theorem in ordinary linear

differential equations with periodic coefficients established by the

French mathematician Floquet. Such a generalization has been carried

out by Bloch. Accordingly, waves that pr0pagate along a periodic structure

are often called Bloch waves by analogy to the quantum-mechanical electron

waves that propagate through a periodic crystal lattice in solids.

Floquet's theorem is stated as follows:

[Theorem 2.5.1] Floquet's Theorem: "For a given mode of

propagation and at a given steady state frequency, the fields

at two points on a transmission system, separated by one

period, differ by a complex constant."

In other words, the waves regardless of the choice of origin differ from

period to period only in phase and not in wave-form or magnitude. The

proof of the theorem is shown in Appendix A.

The general complex Floquet wave number k = B - ja is referred to

as the fundamental pr0pagation constant where B and a represent the

corresponding phase and attenuation constants. For lossless circuits the

attenuation constant a is zero. The wave propagates with a phase constant

znn
B + -B—-where the n'th term is called the n'th space harmonic or Hartree

harmonic. For a lossless system, since k = 80 we define

n' o p (2.5.16)

where 8n is termed the phase constant for the n'th space harmonic.

To understand the wave characteristics of slow waves in given

media, a diagrammatic representation of their properties, similar to the

one by Brillouin, is required. This plot shows the functional relation-

ship between the Operating frequency w and the phase constant B. The

diagrammatic representation is called a Brillouin diagram or w-B diagram.
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If a Brillouin diagram for any specified medium or circuit can be prepared,

either experimentally or theoretically, then there is enough information

to predict the possible outcome of the interaction with carrier streams,

except for a knowledge of field distribution and power. Many other forms

give similar information, but the Brillouin form is the most commonly

used. Another common diagram is the dispersion curve which is plotted

as a function of frequency or wavelength. The dispersion equation will

be derived for the given problem and utilized in the analysis of wave

interaction. The Brillouin diagram is sometimes referred to as a

dispersion curve.

In regard to power flow there is a theorem pertaining to systems.

[Theorem 2.5.2] Power Flow Theorem:

"The time average power flow in the passband is equal to

the group velocity times the time average stored electrical

and magnetic energy per period divided by the period."

The proof of this statement is shown in Appendix A.

2.6 Negative Resistance Effects and Two Valley Instability in Solids

It is well known that nonconvective (or absolute) instabilities

lead to oscillator devices which can be represented as one-port devices

with negative internal resistance, and that convective instabilities lead

to traveling wave amplifiers which are generally used as two port devices

with separate input and output ports. However, any amplifier can be

converted to an oscillator by applying positive feedback. First, look at

voltage-controlled negative effects due to negative effective mass.

The earliest proposal for such an effect involved negative

effective masses for electrons. In solids, the energy E vs. wave number

k curve in the conduction band is shown in Figure 2.6.1 (3). The energy
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Figure 2.6.1 Energy, velocity and effective mass vs. wave number for

electrons in conduction band.
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of the electron is given by

E ‘— v —=.£
2 2 (2.6.1)

where p = mv

Since the electron momentum is related to the wave number k, the

above equation can be rewritten as

hzkz

E = 2m (2.6.2)

 

where 5 = 2““ Planck's constant

First and second differentiations of Eq. (2.6.2) yield electron velocity

and effective mass respectively as follows:

BT’T'ET =fiv

01'

V = l.§§.

fi dk (2.6.3)

or dZE _ 53

dkz’- n1

2 .

m. = 52 (it?) -1 (2.6.4)

The electron velocity and effective mass are plotted in Figures 2.6.1 (b)

and 2.6.1 (d). For energies greater than B m* is negative, and the1.

velocity decreased with increasing energy. If enough electrons can be

driven in energy levels with the application of external electric field,

a velocity versus electric field intensity curve is obtained, like the

one shown in Figure 2.6.2. Therefore, for energy greater than 5', the

device exhibits negative resistance effects.

+ +

v (or J)

E
 

I

I

l

I

I, 1-.

E

Figure 2.6.2 Velocity (or current density) vs. energy curve for voltage

controlled negative resistance.
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In bulk semiconductor material the effective mass may be expressed

as[HAS]

912,;
dB 1 (2.6.5)

me = mo* +

where m0* is effective average carrier mass at the dc bias field E0.

The average carrier mass m* varies with ac electric field E1 as shown in

Eq. (2.6.5).

Another type of instability in solids was predicted by Ridly and

Watkins [R11] and Hilsun [H12] theoretically and was demonstrated

experimentally in 1963 by Gunn [cuz], as indicated in Section 2.2.

Consider a semiconductor having a conductive band with two minima

separated by an energy difference AE as shown in Figure 2.6.3. The

lower valley has electrons with a low effective mass and high mobility

(T = ug), while the upper valley electrons have large effective mass and

low mobility. Initially all electrons occupy the lower state, in L valley.

As the electric field increases, some electrons gain energy and get into

the upper valley if the energy supplied to the lower valley is greater

than AE. When this situation happens, the electron velocity in the U

valley decreases sharply due to the low mobility there. This reduces

current flow in the U valley, and hence the semiconductor exhibits a

negative resistance in the bulk material.

fi \\\\\_‘///0 valley

Lvaley ___. -__

  
Figure 2.6.3 Two valley model separated by an energy difference AB.
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The instability induced by the negative conductance effect can be

explained as follows:

From the continuity equation and Poisson's equation, we have

 

30 - _ + = _ ‘T ._-. _ p
at . J V . (0E) 02 (2.6.6)

The solution of p (F, t) has the following form:

1

p('{-, t) = p0 (f, o) e f (2.6.7)

where T = _1:1 and po (F, o) is the initial charge density.

It can be seen from Eq. (2.6.7) that a negative conductance makes

the charge density p grow exponentially. This growth can lead to

amplification, and with the preper feedback, to oscillators.

In solids the conductivity 0 can be expressed as

o = qnu (2.6.8)

The maximum growth of p is at t = T where T is the transit time of the

device. The growth factor is equivalent to the sample length 1 divided

by electron velocity v .
O

T e— i—
1’ = .2.‘ V0 = £3911- (2.6.9)

6 73' EV
_ __ O

O qnp

For a group of charge to form and grow, the growth factor should be

greater than unity, i.e., ;'> 1. In other words, the n2 product is

defined for fixed constants n, u, a, q and v0 as:

ev

n2 > o

qu (2.6.10)

For a typical Gunn device material such as GaAs, the n1 product is greater

than 1012/cm2.
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CHAPTER III

FIELD DISTRIBUTION IN SOLID-STATE MATERIALS

3.1 Introduction
 

This chapter deals with the general sample configuration, wave

interpretation, wave equation and field analysis in general, collision

dominated and collisionless cases. Every field solution is too complicated

to figure out the wave picture at a glance. Appropriate approximation

is required to understand the propagating wave —— keeping the typical

range of parameters in mind.

The electron density (n) in solids is determined by doping

concentration and limited by materials, though the density can be varied

with a technical manner. The density of typical solids, GaAs and InSb,

is order of magnitude 1613 m 1016 electrons/ems. 'For other materials

the doping concentration is over the range of 101“ electrons/cm3 for Ge

and Si, and in the range of 1022 electrons for Cu. The plasma frequency

(up) is a function of the dielectric constant and effective mass of a

material with a range of 105 m 1012 c/sec for typical semiconductor and

101“ c/sec for materials. Besides microwave frequency, collision frequency

(v) plays an important role in solids, ranging over 107 m 1013 c/sec as

temperature increases from liquid nitrogen (77°K) to room temperature

(300°K). Because the crystal lattice is polarizable the permittivity of

the solid is determined by the constituents and the lattice configuration

of any specific materials. The relative dielectric constant range is 4 m

16. For 810 Er = 4, for mica er: 6for InSb cr = 15, and for GaAs Er =
2

22
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12.5. Since the bunching and debunching effects in most microwave devices

are indispensable, whenever these effects occur, the diffusion effect (D)

is consequently involved. For typical materials its magnitude is D =

10.3 m 10"1 mZ/sec. Another factor for solids is debye length (AD),

defined as AD = 10.8 m 10'5 m and for metals, AD = 10'10 m 10.6 m. Some-

times the AD can be replaced by Bv = cup/vt (/ m) in semiconductors, since

most parameters for solids are interrelated functions.

If a propagating system is unstable such that the disturbance

grows but is prepagated away from the origin, this system has convective

instability. On the other hand, if the disturbance grows in amplitude

and in extent but always embraces the original point of origin, this

system has nonconvective instability. The convective instability can

support amplifying waves while the nonconvective instability can only be

used as an oscillator, as mentioned earlier.

3.2 Method of Solution and Configuration of Sample

Recently several authors investigated the wave amplification due

to the coupling between the space charge wave and the circuit wave in

solid-state materials, as was mentioned in Section 2.2. In most cases

many important aspects of the analysis such as the limiting conditions

for wave interaction and the way of finding roots of the dispersion

relations are not clearly justified. The approaches used were either

oversimplified or theoretically unfounded. Furthermore, the physical

mechanism of wave interaction and the energy conversion scheme were not

clearly revealed. For instance, the reflected waves and surface charges

on the semiconductor were totally ignored in spite of the finite

dimensions of the slab. In a simple one-dimensional analysis, these
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approaches are adequate as far as the transverse direction for wave

propagation is neglected.

The difficulty lies in the fact that for any practical devices

the slow-wave structure and the semiconductor active region have finite

physical dimensions, i.e., finite boundary conditions which make the

problem more complicated. Consequently, to obtain a better understanding

of the principle of operation and the physical insight of a given inter-

action a two or three dimensional analysis should be carried out.

As was previously mentioned, the n-type bulk semiconductor such

as InSb, GaAs, InP, and CdTe, have negative conductances above threshold

voltage. It was verified theoretically and experimentally that different

types of semiconductors have different threshold potentials due to the

physical structure of the material. This kind of convective instability

arises from the negative differential conductance and has been utilized

to generate or amplify microwave signals in the past few years.

The solid-state traveling-wave amplification is similar to the

ultrasonic wave amplification which has been developed in the early

1960's, especially in the wave coupling mechanism. The ultrasonic

amplification in CdS observed for the first time by Hutson and McFee

[HUl] in 1961 was an example of traveling-wave amplifications in solids.

The one dimensional analysis of the ultrasonic and traveling-wave

amplifiers has been developed, and the results are in satisfactory

agreement with experimental work. In most cases the use of one dimen-

sional analysis in traveling-wave and ultrasonic wave amplifiers are

justifiable. The former device generally uses a strong focusing static

magnetic field and as a result there exists a negligible transverse

motion of charged particles. In the latter device, if the wave propagates
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longitudinally, a variation in the transverse dimensions -— where they

remain larger than the acoustic wavelength - makes no change in the

coupling of carrier waves with the rf circuit waves. Therefore, both

types of wave interaction mechanism were essentially treated as a one

dimensional problem.

On the other hand, the coupling through a slow wave circuit

deposited on semiconductor by the integrated circuit technology is of

two or three dimensional nature, and requires two or three dimensional

analysis for the right solution of wave interaction phenomena.

A two dimensional problem of wave interaction in solids will be

analyzed through this chapter. The two dimensional structure considered

is shown in Figure 3.2.1. This is one of the possible structures used

to obtain coupling between semiconductor space charge wave and external

microwave. The device configuration consists of mainly four parts:

slow wave circuit, two insulating layers at top and bottom of the circuit,

and semiconductor.

The meander line is adopted for the slow wave circuit in which

the adjacent tape elements are coupled capacitively or continuously.

If the capacitively coupled type of slow wave circuit is used, one

insulating layer between solid-state and meander line may be excluded.

The more descriptive detail will be given in design consideration.

Using integrated circuit technology the circuit is deposited on

the insulating layer or directly on the semiconductor. The exclusion of

an insulating layer in capacitively coupled circuit, might give slowly

propagating-waves a better chance to interact strongly with moving

charged carriers if the rf wave propagation and carrier drift velocities

are approximately synchronous. Energy is also easily transferred from
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Figure 3.2.1 One possible structure for solid-state traveling-wave

amplifier. (a) Sketch showing coupling between space

charge waves and external microwave fields (b) Schematic

planar layout of (a).
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the drifting carriers to the slow wave, resulting in wave growth with

distance along the device.

Such a circuit structure could be made from metal layers of over-

lapping bars separated by a capacitive material such as SiO2 or mica.

For general purposes, the insulating layer will be considered in a field

analysis which includes the effect of the dielectric constant and the

distance d between the rf circuit and solid-state material, i.e., a slow

wave circuit is located at x = d. A semi-infinite region x<o is occupied

with the insulating material of dielectric constant 51 and another semi-

infinite region x<o extends the semiconductor of dielectric constant 82

with substrate of 54. The top insulating layer may be either the same

insulator as the bottom one, or a different material, or an air dielectric

surface.

The three layers can be deposited successively with the metal

layers being etched after deposition. The more detailed description of

the structure will be explained in Chapter VII.

The necessary condition for active coupling between the electro-

magnetic wave and carrier wave in solids is that the drift velocity of

the carrier should be equal to, or slightly greater than, the phase

velocity of the electromagnetic wave. The maximum mean drift velocity in

a semiconductor such as InSb is on the order of 107 cm/sec. Whereas, the

velocity of an electromagnetic wave traveling along the slow wave circuit

10 cm/sec when the dielectric constant of the semiconductoris roughly 10

and the insulating layer are taken into account. This means that the

slow wave structure should have a transverse-to-longitudinal ratio of one

thousand to one.

Assuming that the slow wave electric field in the semiconductor

underneath the circuit is mainly in the longitudinal direction, fringe
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fields are at the edge of the slow wave structure which is negligible due

to the fact that the transverse dimension is longer than the longitudinal

dimension. The normal component of the circuit field can, however, not

be neglected since it is very important to the coupling between circuit

and carrier waves. As a result, two dimensional analysis, which y is

assumed to be independent of all variables, will be considered.

This analysis is similar to those for traveling wave tubes in

vacuum. The problem is broken into two parts, one is the determination

of the electromagnetic fields in the semiconductor region and the other

is the determination of the electromagnetic fields about the slow-wave

circuit. Field solutions will be used to find a dispersion relation for

the coupled system by equating two admittances in the circuit and in the

solid-state at the boundary plane, or by equating the determinant of the

coefficients matrix to be zero for a nontrivial solution. The coefficients

matrix is an expression in a matrix form of linear equations determined

by applying boundary conditions to all of field solutions. The fields in

all regions of the configuration are assumed to vary with eJ(wt-kz) type

where k = B - ja. Hence, the solution describes a wave with a phase

velocity equal to the drift velocity in the longitudinal direction.

The effects of collision, diffusion, insulator thickness and the

substrate material are included in general analyses.

In this chapter the electromagnetic field for the semiconductor

region (i.e. x50) will be determined. The solutions in circuit region

(i.e. x20) will be considered in the next chapter.

3.3 Wave Equation of Charged Carriers in Solids
 

In this section the wave equation will be derived in semi-

conductors with permittivity e as shown in Figure 3.2.1. The semiconductors
2
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used for solid-state devices are usually extrinsic. Therefore we will

treat one type of charged particle, say electrons only, as majority carriers.

A dc electric field E0 is established in the semiconductor along the long-

itudinal direction by a bias voltage supply. Because of the applied E0

the carriers are drifting at velocity 30 which is in the same direction

as E6. A dc carrier density no is assumed to be uniform throughout the

sample.

For nonuniform mobility, the average carrier effective mass m*,

varies with ac electric field E1 as shown in Eq. (2.6.5). In most

analyses the negative bulk effect and the nonuniformity of electron

mobility are neglected. To take these into account replace m* in all

equations by Eq. (2.6.5) and u by u (EB)(§E)-

u BE
0

In solid—state plasma the magnetization density R can be neglected

because electron spin around the nucleus is ignored, and hence the

permeability "0 may be used instead of general u. If the exp [j (wt - kz)]

type of variation for the propagation is recognized, the ac equations in

Section 2.4 may be rewritten as follows:

v x E1 = -jquII1 (3.3.1)

v x h, = 31 + jwengl (3.3.2)

n e

v . £1 = - 71:; (3.3.3)

v .31: 0 (3.3.4)

31=-e(n631+ “130) (3.3.5)

V 2

-+ +

(in W) 31 + 671 .V) v1 = n*El - KEV n1 (3.3.6)

o
e . . .

where n* = hE;'= effective charge to mass ratio of electron carrier

From Eq. (3.3.3) the gradient of the rf carrier density is written

as

Vn1=--é—V V ° El (3.3.7)

Substitution of Eq. (3.3.7) into Eq. (3.3.6) yields
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* 2

+ ° t

v1 = ill (15’, - :0—2 v v-El) (3.3.8)

V P

where wv = w — kuo - JV (3.3.9)

and uo is the 2 component of 30

Under the normal environmental temperature the thermal collision

frequency is the dominant scattering process in most semiconductor

materials and the thermal collision frequency may be used for the

effective collision frequency. In semiconductor the Einstein relation—

ship for the diffusion constant is

o = (lg-)1. (3.3.10)

where u is the mobility of electron carriers, which is, at the present,

2 iv

to be an independent variable. Since vt = gg-and u ='%7 , the diffusion

constant can be defined in an alternate form in the thermal diffusion

dominated circumstance

V 2

t

The rf velocity is now rewritten in terms of the diffusion constant as,

{1’1 = {Tr-1* (El - 332 v v-El) (3.3.12)

V I)

If collision is considered in solids such that Im-kuO |<<v, then Eq.

(3.3.12) can be reduced to:

C

{71 = 45', + 13—2—2— vv-E1 (3.3.13)

0

Even though the collision dominant solution doesn't give a clear wave

picture, it is true for some solids. Therefore, two types of solutions

are required to clarify wave phenomena in solids, i.e., general and

collision dominated solutions.

Taking the curl of Eq. (3.3.1) and using Eqs. (3.3.2), (3.3.5),

(3.3.7), (3.3.11), (3.3.8), and (3.3.13) and performing some subsequent

algebraic manipulation, the wave equations of both cases can be obtained

as:
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2 83v BZVZ

v2E, + 82 (1 - 1 - (1 - w;— t)v v-E1= 0 (3.3.14)

Wu v

and 2

2 2 w 2,
. _ ._p_’ + _ . > . _ _ j _BZD =

v E1+ 32 (1 3w ) £1 JBZVO v E1 (1 ——-)vvE 0 (3.3.15)

where ci = 33:. = speed of electromagnetic wave in medium:i

o i

8i = g- = wave number in medium i.

(3.3.14) and (3.3.15) are called the general wave equation and the

collision dominated wave equation of a majority carrier in solid-state

with dielectric constant 82. As seen in the two equations, both equations

include collision and diffusion constants.

The more general form of Eq. (3.3.15) can be derived in terms of

the ac velocity and dc velocity for the analysis of transverse wave

device. A little algebraic manipulation leads to:

22 2

2 2 B w

v E1+32E1+j—:Eg— {71 -j%?-vo (v-ia’l) =0 (3.3.16)

where

2 2 32 t‘ 32

V E1 = X(5—2' f 5—2951x + Y (5’2' 5—29 E1y + Z(5-2'5‘29E12

* 32 ' + “ 32

= x (3.2? - kzieix + Y (a2— - k2)Ely + z(537 - k ) E12 (3.3.17)

351 .
o .-_-_ .__X .. 4vEl ax Jkfiiz

(3.3.18)

A 2 . A

wo-El) = x (SEEM — jk 23—5—12.) + z (41(ng - 18512) (3.3.19)
0

3.4 Boundary Conditions in Semiconductors
 

The finite solid substance (or waveguide) which are bound to a

dielectric material are used in various microwave components. A typical

configuration is an example which is shown in Figure 3.2.1. The propagating

modes in dielectric substances of this type are not, in general, TE or TM

modes but hybrid modes. In other words, a finite structure of the

substances containing mobile charged carriers cannot support independent

TM and TE modes. This inability results from the coupling between two
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types of waves brought about by the motion of the charges. Such coupling

between TM and TE waves vanishes when B0 = O or B0 = e3, and also for

waves with infinite phase velocities (cutoff points in the dispersion

diagram), [8T2]. The coupling can be also neglected if the carrier

density is very small. For the traveling wave amplifier tube, the analysis

falls into the category of pure TM and TE waves since an infinite dc

magnetic field is assumed.

In our structural configuration, TM and TE waves can exist

independently because dc magnetic field is not applied to the device.

Then, the wave solution of the carrier wave equation can be subdivided

into two types, namely TE and TM modes.

According to the two dimensional boundary, the TE wave has only

the transverse component of the electric field and hence cannot couple

with the drifting carriers. Therefore we are not interested in the TE

solution where interaction is concerned. We will only consider the

TM mode since a longitudinal electric field exists which couples the

circuit and the carriers. However, to understand the complete motion

of the charged carrier and to determine unknown coefficients of field

solutions in a coupled circuit system, the TB solution is also necessary.

From the two dimensional assumption we made earlier, §%-= 0.

Hence the TM wave consists of E , E , and H and the TE wave E ,
1x 12 1y 1y

H12, and H1x in solids. Field solutions will be derived in the following

three sections.

Just as the diffusion constant in wave equations was included,

the diffusion effect of the carrier in semiconductor should be taken into

account. Further, the conductivity of semiconductor is finite. Therefore,

no surface current flows and the tangential component of magnetic field
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veCtor fl is continuous at the boundary. In addition, the rf velocity

vanishes at two semiconductor boundaries.

The boundary conditions used can be summarized as:

1. The tangential electric field component is continuous at the boundary

x=-5.

2. The tangential magnetic field component is also continuous at the

boundary x = -5.

3. The normal rf velocity vanishes at the boundaries x = o and x = -5.

These three conditions will be used in formulating the field

coefficients matrix and in determining the admittance functions in solid-

state region. Another five conditions about slow-wave circuit will be

presented in Section 4.2.

3.5 Field Interpretation in the Solid-State
 

From Eq. (3.3.14) a general wave equation for a charged carrier

stream is:

 

2 2 :3: 831’. + 83v. ..
v 61+ 32 (1 — “’“o )31 - J m ”$1411.37” v-El =0 (3.5.1)

Using algebraic operation of' 2 Eq. (3.3.17) through Eq. (3.3.19) the

wave equation is split into three component form. Since the direction

of a bias potential is easily varied, the direction of carrier velocity

may be adjusted such that V0 = no 2 for convenience.

A. The wave equation for x-component:

2

8251 mm 2 up 2 . wmv 3 1z _

.._._.. 4, __ [82 (l ’35—) " k JElx ‘ JR (1 --B'Z—v—) 3X—- - 0 (3.5.2)

6x2 Bgvt2 V 2 t

B. The wave equation for the y-component:

EEEI. 2 2 sz
3x ' [k - 82 (1 - $d‘9] E1x = 0 (3'5'3)

V
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C. The wave equation for the z-component:

 
 

2 2 . 2 2 U 82v2 E

325,; 82 “p 2 vt . 82 o 2 t a 1x _

8x I m (m - w - kuO - k mv ) E12 + Jk (1 -m k - mm ) 3x - 0

(3.5.4)

For simplicity, let

(I)

a2 = k2 - 82 (Li) (3.5.5)
2 mwv

w w2 kZVZ

bZ=——‘3-(-w+k ._P_____*t) (3.5.6)
2 0 wvt v

and

WV8 = j 8 v.
(3.5.7)

2 t

Then the three wave equations are reduced to simple form as:

32 3512

(5;: + 3832) Elx = jk (1 + jg) 5x—

 

(3.5.2)

3 2 1
(5:7" a ) Ely = 0 (3.5.3)

and 2

BE

32 . b2 _ . 82110 1 1X

(3x2 - J Y) E12 - Jk (1 — wk + 3—8" ax (3.5.4)‘

Before obtaining the solution one may compare this analysis with

a previous simple one-dimensional analysis [VUZ]. For one dimensional

a 3 2 2 .
—=——= = = 3:case 3x 3y 0. Hence, a b 0 Since E1x . 0, E1), 5 O and Elz # 0

even for the one dimensional analysis. Therefore,

2
2 w

2=w_ -_E_

k '5? (1
2 v

and

w2

ku = w --JB-
0 mwv

The last equation holds under the assumption that D = 0. If we can

further assume Im-ku0|<<D and w;/ (wv) <<1, we may obtain the same

solutions

k = i 19.

c

and
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U) “)2

u VU

O O

which were Vural and Bloom's equations.

The right hand side of Eq. (3.5.4f is further simplified by

solvinguo in terms of a2 and b2 from Eqs. (3.5.5) and (3.5.6) and

substituting 110 into the right hand term as follows:

From Eq. (3.5.6)

m2 k2 v2 v2

 

 

= $1.- p - t t 2

u0 k kw + kw b
v v

Putting w of Eq. (3.5.5) in the above equation gives

P ma2 wk RV: Vi 2

“ow—33%? .. *nu—b (3-5-8)
2 2 \I \)

Then 2

Bzuo 1 33 b
+—

2

+2-—

wk 18 k2 is

 

Thus three partial differential equations of second order are rewritten

in the form.

32

. 2 ' . .
(5;§-+ Jga ) U = (J-g) W (3-5-9)

2

(§_§._ 32) v = 0 (3.5.10)
8x

2 2
32 .b . 2 b

(..__... - — W: -3 -—-—— U, 3.5.113x2 38) (J g) ( )

where

_ 1

U - k Elx

v = Ely

w = I31z

and prime variables represent their x-derivatives.

First we are trying to derive the TM solution by using Eqs. (3.5.9) and

(3.5.11). In order to solve two simultaneous partial differential

equations both coupled equations may be expressed in a matrix form:
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"b ‘1 _— o o 1 o.“ —b-7

w o o o 1 w

it U’ = -jgaz o 0 (j_g) U, (3.5.12)

um _ 0 1‘3:— (-ja2- 3;) 05 (w;

The characteristic equation of the 4 x 4 square matrix is easily derived

by letting the determinant of hI—S be zero where S is the square matrix of

Eq. (3.5.12).

2 2
IAI - SI = A”- (32+b2) AZ + a b = 0

or

( n2-a2) (AZ—b2) = 0

Hence, the characteristic roots are given by

A = ta, 1b (3.5.13)

As was mentioned earlier, interest is in the longitudinal wave, which can

be coupled with drifting carrier. Therefore, first the longitudinal wave

B will be obtained, then B from E .

12 1x 12

The solution type of W is of the form

_ _ ax -ax bx ~bx
W - Elz - Ale + Aze + A36 + A4e (3.5.14)

where A1’ A A3, and A are all constants to be determined from the
2’ 4

given boundary conditions, and a and b are defined in Eqs. (3.5.5) and

(3.5.6).

Substituting Eq. (3.5.14) into Eq. (3.5.11) and integrating the

equation from x = -a> to x give E1x l

= j_k_ ax _ -ax jbk(l-j‘~'_) bx _ -bx
Elx £1 (A1 6 Aze ) + —;§:3—§5 (A36 A4e ) (3.5.15)

5'

For the TM wave the only nonvanishing component of the magnetic

field is Hly while H1x = Hlz = 0 due to the two dimensional geometry.

The evaluation of H1), is done by substituting the relations Eqs. (3.5.14)

and (3.5.15) into the curl equation of E1, Eq. (3.3.1)-
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2 2 2 .1 2 2
6 c 2 2 (a -k )-J-(b —k l

_ 2 2 a -k ax -ax g bx -bx

Hly - jw [ a (Ale -A2e ) + 32 - jbz b (A3e -A4e )] (3.5.16)

8’

Similarly the solutions of TE mode is obtained from Eqs. (3.5.10)

and (3.3.1) as

 

 

Ely = Ble + Bze (3.5.17)

-k€2c2 ax -ax

H1x = m (Ble + Bze ) (3.5.18)

E2c2a ax -ax

“12* i w (Ble — Bze ) (3.5.19)

where 81 and B2 are all constants -— noting that the eJ(Wt-kz)is suppressed

in all field equations of Eqs. (3.5.14) through (3.5.19).

All fields in solid-state are obtained in terms of x- and z-coordinates.

Next fields in the substrate region should be found to determine unknown

coefficients. The conduction current in the insulator region is zero, so

the wave equation is reduced to

02 51+ '1 251 = 0 (3.5.20)

3x7 u

where

Y 2 = k2 .- (1)211 CL. (3.5.21)

5 0

Keeping in mind that Y has a principal real positive value and

that fields vanish at x = -w , the electromagnetic fields in the substrate

region of dielectric permittivitys:4 are:

TM wave

Elz = F4eth (3.5.22)

Elx = Jy—k thew!“x (3.5.23)

H1y = If“ 4&4)‘ (3.5.24)

TE wave

51), = 6464" (3.5.25)

1x ='k_€:)_ca 264.94" (3.5.26)

= jump” eh." (3.5.27)
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where

3 1

c4

Vuo€u

All of unknown coefficients will be interrelated in Section 4.5.

 

Waves can be interpreted by investigating the wave equation, Eq.

(3.5.1). PuttingV- E = 0 in Eq. (3.5.1) produces the solution of eaxand e-ax

therefore this wave associated with a is called the solenoidal wave or

+

transverse wave. Similarly, since V x E = 0 yields the solution of ebx

bx, the wave with b is named as the irrotational wave or longitudinaland e-

wave. The longitudinal wave is associated with space charges in the

semiconductors and this wave is originated from diffusion in the equation

of motion of the carriers. According to the device structure both of

the fundamental modes must be excited. It is also noted that without

the carrier motion, two modes cannot be coupled at all in the solid-state.

3.6 Field Analysis in the Influence of Collision Effect
 

In the previous section general electromagnetic fields in solids

are derived without any simplifying assumptions. Practically, a large

amount of collisions in solids exists due to the ever-present thermal

vibrations of the lattice. Besides photon scattering of the carriers,

scattering effects are from ionized impurities and neutral impurities

which let the collision frequency incarese. The analysis in some collision

effective materials may be assumed to be Iw-kuol<<v since the quantity

of Iw-kuol is small even in asynchronous case while it is zero in

synchronous.

Under that situation the wave equation is, from Eq. (3.3.15),

given by:

2 2+ 2
(1)

v2E1+ 322 (1 - j 35—) E1 - j EEJQ-Vofi, - (1 - j gfiflw v-El = 0 (3.6.1)
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One can get three separate equations in component form by using Eq.

(3.6.1) and operation of V as follows:

321; Q
)

E
lx . m m)? . . m 12

527’ * Jg‘z's [*2 ‘ 8220115)] Elx ‘ WWW) in?“ = 0
2 2 2 (3.6.2)

3 El w 2

- 2 - 2 --_P__ ._.ax [k 32(13w)]131y 0 (3.6.3)

32131 82 2 C2,, B2D 31:1

2 .4; _ _ - _B_. 2 - - :2:9.- -_2_. ._3.

3x2 + w [0” kuo) “ v + k 0)] E12 + 3k (1 km 36 )3x (3.6.4)

Similar to the previous analysis, define

2
U)

2 = 2 - 2 -'_£_31 k 82 (13W ) (3.6.5)

b 2 = .10 (1) 2

1 31) [(m- kuo) — j (—§— + 018)] (3.6.6)

From the above two equations the drift velocity can be expressed in terms

of a2 and b2.

1 l 2 2

31 . b1
U0 = ng (k - T) -3 (k - T) D (3.6.7)

where

= w

81 627-5

Combination of Eqs. (3.6.2) through (3.6.8) yields three partial

differential equations of second order.

32 c 2 _ 0 )

(-§;z'+ J 8131 ) U - (J - g1) W (3-6-9)

2

(_%§2.- 312) v = 0 (3.6.10)

32 .b 2 . 2 b 7—
———z- 4— w= -a -—L— U’ 3.6.11

Three equations above are the same equations derived in Section

3.5, namely Eqs. (3.5.9), (3.5.10), and (3.5.11) by replacing a by a1,

b by b1, ang g by g1. Throughout the similar argument to the Section

3.5, the same solution form is obtained like Eqs. (3.5.14) through (3.5.19).

Therefore, all electromagnetic field solutions in the general case are

applicable to the solution where collisions are dominant.
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Also, the solution form may be simplified by calculating the terms

a: - k2 and bi - k2 from the definition of a: and bf and then fields in

collision dominated semiconductor materials are written as:

  

 

TM wave

alx -a1x blx -blx

Elz = Ale + Aze + A32 + A4e (3.6.12)

.1
. a x -a x b k(l-J—-) b x -b x

= 13. 1 l . g l _ l

Elx a1 (Ale - Aze ) + J g (A3e A4e ) (3.6.13)

a1 - 521

2

81

_ EACZ a2 - k2 a x -a x (a2 - k2)-j—1--(b2 - k2) b x -b x

H1y -[ ‘ 2 1 (A e 1 - A e 1 ) + 1 g 1 b(A e l - A e 1 )]
j w a l 2 2 - 2 3 4

1 a1 - Jb1

.3-

31 (3.6.14)

TE wave

alx -alx

Ely = 816 + Bze (3.6.15)

2
-k6 C a x -a x

H = 2 2 l 1
1X —T—(Ble + Bze ) (3.6.16)

2 a x -a x
.6 C a l l

g 2 2 1 -Hlz J m (Ble Bze ) (3.6.17)

Note that all coefficients in this case are not the same as in the previous

section, even if same notations are used.

3.7 Electromagnetic Field Description for Streaming Carriers in the

Absence of Collisions

 

 

The collisionless solution can be obtained from the general wave

equation, Eq. (3. 3. l4) letting v = 0. 2n

(1)

szi + a; (1 - 1 - j —$—9-vE1 - v vE 0 (3.7.1).IL______9 E

w(w- Ru0)

Eq. (3.7.1) is decomposed in three component form as

. k as
51x - 3 a: ailz-= 0 (3.7.2)

825
- 1y 2 -
ax azsly - 0 (3.7.3)

329
2J

5:2- - 625” + jk(l - ~2:—)_ - 0 ( - - )
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where

2 2 ”p2
= k .. —

z"2 2 3%; l (w-kuo] (3.7.5)

2 . m

b2 = £34.}... -( w - 1010)] (3.7.6)
m w- ku

O 2 2 BE
Expressing 110 in terms of a2 and b2, and substituting of'5;—} from

Eq. (3.7.2) into Eq. (3.7.4) yield

32512 _ 2E _
5;?“' 32 12 - 0 (3.7.7)

According to arguments similar to Section 3.5, electromagnetic fields can

be obtained as:

TM wave

E = A e32x + A 6.82X
12 1 2 (3.7.8)

. a X -a X

= 15. 2 251x 32 (Ale - Aze ) (3.7.9)

2
. LU a X -a X

H = 1&2— _ .__._2__ 2 __ 2

1Y 32 (1 w(w- kuo)) (Ale A29 ) (3.7.10)

TE wave

E = B eazx + B -a2x

a X -a X
= -kC C2 2 2

H1x ——63;—-(Ble + Bze ) (3.7.12)

- .8 C-a2 82X -32X

le - 3—254——-(31e - Bze ) (3.7.13)

It is noted that for one dimensional analysis by putting %;-= 0, this

solution can be reduced to the wellknown Hahn-Ramo space charge wave

solution [vu1].

In this chapter the semiconductor slab is assumed to be so thin

that reflected waves should be considered. However, if the slab is
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thick enough such that the reflected waves (e-ax and e'bx) may be

neglected for electromagnetic field solutions, all equations can be

reduced to the simple forms, which are tabulated in Appendix B after

applying boundary conditions.



CHAPTER IV

FIELD ANALYSIS OF SLOW WAVE CIRCUIT AND

FORMULATION OF LINEAR EQUATIONS FOR THE COMPLETE SYSTEM

4.1 Introduction
 

In the preceding chapter the complete field solution was obtained

in the region of the solid—state medium. This chapter will be devoted

to the field solution of a periodic array of slow-wave tape structures

by symmetrically spaced fingers. It is of course impossible to obtain an

exact solution to such a complicated geometry; however, by idealizing

the circuit it is possible to get a closed form of the solution for the

model depicted in Figure 3.2.1. The analysis is restricted to idealized

tapes of uniform width and zero thickness. An idealized model of the

meander line circuit is then constructed by introducing electrical shorts

between tapes at appropriate positions along the tapes although the

model may not be easily fabricated practically.

It is desirable at this point to review several typical slow-wave

structures before analyzing the main subject. Figure 4.1.1 shows a

variety of slow-wave tape structures which can be used for solid-state

traveling wave amplifier. Figure 4.1.1 (a) is a helix tape line, which

is a popular structure for a travelling wave amplifier tube and Figure

4.1.1 (b) an interdigital tape line. Figure 4.1.1 (c) represents meander

tape line which is used for our purpose of the analysis and Figure 4.1.1

(d) tape ladder line. The two structures illustrated in Figure 4.1.1 (b)

and (c) are complementary or dual structures. At millimeter wavelengths

43
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a heix has too small a diameter to be a useful slow-wave structure and

various forms of interdigital lines, meander lines, and ladder lines are

preferred.

  

  

 

mm // // .

2 2 2

//////l///////

\
“

    

 

////.

(C) (d)

Figure 4.1.1 Several typical tape slow-wave structures.

(a) tape helix line (b) interdigital tape line (c) meander

tape line (d) tape ladder line.

In general, a periodic array of uniform tapes can propagate a

variety of TM and TE waves corresponding to arbitrary excitation of

individual tape elements. The power of various modes is delivered in

the direction of group velocity of the system, which was shown in theorem

2.5.2.

In a general slow-wave structure, there are Hatree spatial

harmonics associated with wave propagations as indicated in Eq. (2.5.16).

For simplicity, only a fundamental harmonic will be treated in the
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analysis. One more remark on evaluating the gain and the field

distribution of the output is important. The values of the gain and

the field at the output terminal can be determined by applying the

Floquet theorem that the output signal is different from the input

signal in phase by the length of the active region of the slow-wave

circuit.

In this chapter, fields about the circuit structure are analyzed

and then fourteen linear equations are also formulated by applying all

conditions, while unknown coefficients are interrelated in the ratio of

the first unknown coefficient, namely A1.

4.2 Boundary Conditions about a Slow—wave Circuit Structure
 

For a tape structure type of slow-wave circuits, two specific

boundary conditions are used to obtain unknown coefficients of the field

solution. Those conditions were originated by Chu [CH1] and afterwards

were used by several authors [C02], [HUS], [P12]. Boundary conditions are:

1. Along the direction of the tape-line, the tangential electric field

at the edge of the tape must vanish since the tape is considered to be

a perfect conductor.

2. The component of magnetic field intensity E1 tangent to the tape-line

must be continuous since no current flows perpendicular to the tape.

In addition to these two conditions some typical boundary

conditions are also used in this case.

3. The tangential component of electric field intensity E1 at the

boundary surfaces x = 0 and x = dgis continuous.

4. The tangential component of magnetic field intensity El at the

boundary x = 0 is continuous under the assumption that there is no surface
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current, which is the same as the second boundary condition in Section

3.4.

One more condition should be added up according to the chosen

geometry with the top insulating layer (or free space) in the positive

space.

5. In transverse direction, the electric field intensity at positive

infinity will vanish since no growing field exists in the passive chosen

circuit geometry.

These five boundary conditions about the slow-wave circuit region

and another three boundary conditions in the solid-state region will be

used together to evaluate unknown coefficients of field solutions and

to construct the field coefficients matrix for the coupled system.

4.3 Electromagnetic Field Solutions in the Slow-wave Circuit Region when

the Permittivities of Two Insulating Layers are the Same

 

 

Here, the problem will be solved in the case of same permittivities

of two insulating layers surrounding the slow-wave tape structure. The

geometry of the structure is illustrated in Figure 4.3.1. The infinitely

thin meander tape line is located in the direction with an angle 4 to the

y-axis between two insulators with the same relative diolOCLric

(iii)

/ /:/ /
 

  

 

 

p——n————-———--———--———--———-—4-- Z

O

“2 (11)

y x=-(§ E4 (IV)

 
Figure 4.3.1 ueometry or the device structure with the same

dielectric constant around the circuit

permittivity 61- Then the circuit phase velocity in the medium I

becomes c1 tan w where c is the medium wave velocity.
1
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The wave equation of the electric field E1 in the insulating layer

with permittivity El becomes

VZEI + BIZEI = 0 (4.3.1)

2

or %;§1-- YIEI = 0 (4.3.2)

where yf = k2 - sf: 1.2 _ wzu 6 (4.3.3)
0 1

Eq. (4.3.2) was obtained on the basis that the wave is traveling

in the positive z-direction of the type ej(wt’kz) and that the Laplacian

v2 is separated into gig-~183for a two-dimensional analysis.

In the analysis of the traveling-wave tube amplifier, the

helix circuit can be approximated as the helical sheath model and its

result is in quite good agreement, but the meander circuit model is a more

complicated structure. The complexity of the meander model may be deduced

if the meander tape can be reduced by taking an infinite radius in the

helical tape. The quasi-helix model will then be chosen for our structure.

The TM and TE modes can be determined by the fact that they are

coupled by the boundary conditions of the meander circuit tape. It means

that both the TB and TM waves must be excited in the actual device due to

the meander circuit structure, but these modes in the semiconductor need

not be strongly coupled. This will be discussed later.

The electromagnetic field in various regions can be obtained by

solving the second order partial differential equation, Eq. (4.3.2) with

the given boundary conditions. In rectangular corrdinates, the electro-

magnetic fields in circuit regions are:

A. Region III (xzd)
 

TM wave

- ‘Y x 4.3.4

Elz Fl8 1 ( )

. = .13 -‘Y x 4.3.5
EIX Y1 F10 1 ( )

H = 1331: 6‘le (4.3.6)
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TE wave

_ ‘le

E1y - Gle 2 (4.3.7)

H =-__J__chc G e-le
4 3 8

1x w 1 ( ° ° )
2

=-j)r) 6)“ -le
Hlz w Gle (4.3.9)

8. Region I ( Ofixid )
 

TM wave

= ’Y x Y x
Elz er 1 F30 1 (4.3.10)

=’_j_k_ ”le _ le

E1x Y1 (er F36 ) (4.3.11)

=.E_€_L . -Y X __ YX
H1y Y1 (F20 1 F3e1 ) (4.3.12)

TE wave

_Yix Y x
Ely - Gze + G30 1 (4.3.13)

=‘KF1C12 ‘Y'X Y_<
H1x w (Gze 1 + Gsel ) (4.3.14)

—°Y g 2 ..

: 4.13.1. Y X _ X-le w (626 1 5386 ) (4.3.15)

where F1, F2, F3, 61’ G2 and G3 are all unknown coefficients, and

eJ(wt-kz) is suppressed in all solutions.

4.4 General Field Analysis in the Circuit Region
 

In the preceding section, the electromagnetic fields were solved

when the same insulating materials are used on both the top and bottom

of the slow-wave circuit. In general, different materials with different

permittivities are used on different parts of the structure. The other

insulator (or free dielectric) with permittivity £3 for various

generalizations is assumed in Region III as shown in Figure 4.3.1.

Similar to the previous steps, the field solutions in Region III

can be written as follows:
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TM wave

.1 'Y,—XElz Fle J (4.4 l)

E =13. p e'Ya" (4 4 2)
1x Y3 1 ' °

Hly = 11321 Fle 1’3" (4 4 3)

3

where

2

73 = k2 - a: = k2-w2u063 (4 4 4)

TE wave

= ’Y3x

Ely Gle (4.4.5)

- 2 -

HI" = LES—3— Gle Y2." (4.4.6)

. ~ 2 _

Hlz {lg—27391 Gle Ya“ (4.4.7)

The solution type of electromagnetic fields in Region I is identical to

those in Eq. (4.3.10) through Eq. (4.3.15). Field solutions around the

circuit region are listed in Appendix B.

4.5 Formulation of Linear Equations and Determination of Unknown

Coefficients for the Coupled System

 

 

We have discussed field solutions for the whole system in Chapters

III and IV, but we have not dealt with the determination of unknown

coefficients in the field solutions. Now we are in a position to apply

all boundary conditions in Section 3.4 and 4.2, to formulate linear

equations for the coupled system and then to interrelate all coefficients

in terms of Al.

For convenience, let us consider the boundary conditions for the

lower half region of the system, including the semiconductor slab.

The noraml rf velocity vahishes at the semiconductor boundaries,

accordingly two linear equations are obtained,



SO

 
 

 
 

 

 

(Al-A2) - (As‘A4) R = 0 (4.5.1)

(Ale-aé- A2636) - (Ase-bé- A4eb6) R = 0 (4.5.2)

_ l-jl/g Vt 2 b2(1 - j 1/g)
where R - (ab)[ - 52: j bZ/g + (6;) ( 32- j bz/g 1)] (4.5.3)

Further, the tangential boundary condition of electric and

magnetic fields at x = -6 gives four equations. For the TM waves one

has

:a6 a6 -66 66 _ -Y,6
Ale + Aze + A36 + A46 - F4e (4.5.4)

£2C22 a2- k2 -36 a6 32— k?. j (b - k2)/g -66 66
jw a (Ale - A2e ) + 32- j bZ/g b(A3e - A4e )

_ 123.}? e-YQG

y 4

1,

or

-a6 a6 -66 66 _ —y 6
hl (Ale - Aze ) + h2 (A30 - A4e ) - F4e 6 (4.5.5)

where

62 Eg_2 Yu 2 2
111 - (C?) (m) ("g-Mk - a) (4-5-6)

‘ 2 k2

E C k2— a2) + ' b -
-2 _22 ( J

“2 * (cu) (m ) (l,b) 2 g (4.5.7)

aZ— jb

8'

and for the TE waves

-a6 a6 _ -y 6
Ble + Bze - G4e a (4.5.8)

2 2 2

' C - 'Y . ..

2E£f334(81e 35 - 82836) = l_sEaE&—G4e Via (4.5.9)

Thus, for the semiconductor region, six equations have been formulated,

which determine the characteristics of a carrier stream in solid-state

materials.

By manipulating Eqs. (4.5.4) and (4.5.5), the set of six equations

can be written in two simple forms



 L
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._

l R -R A2 1

- ad

1 Re-(a+b)6 Re(-a+b)6 A3 = e 2 A1 (4.5.10)

- 6 5 - 5

(1+h1)ead (1-h2)e b (1+h2)eb A4 thl-l) e a

.‘ h J A

and for the TB waves

e-ad ea6 B1 1 _ 6

a6 36 - Y e Y“ 64 (4.5.11)

- _ — .3.
e e B2 [.8 i

  
After a few algebraic operations Eq. (4.5.10) leads to a coefficient

expression in terms of A1, namely

    

  

 

 

A2 n2

A3 = "3 Al (4.5.12)

A4 I H1,

is J n. A

where

a6 .

e - (h2 + R(h1-1)). SlHJ b6 - cosh b6 - a6

H2 = -ad ' . ._., e

e - (62 + R(hl+l))osinh 66 - cosh 66 (4.5.13)

e(-2a+b)5 (1 + 62 + R(h1-1)) - eb6 (1 + 62 + R(h1+l) + 2Re'35

113 = -

2R [e a5 - (62 + R(hl+1) sinh 66 - cosh 66] (4.5.14)

e(.2a+6)6 (61-1 + R(hl-l)) - e'b6 [(62-1) + R(h1+1)] + 2Re'35

H6 =

2R[ e‘ a5 - (h2+R (h1+1) sinh 66 - cosh 66] (4.5.15)

Similarly, all relations in case of a collision dominated stream

are reduced to little simpler forms, replacing a by a b by b and g
l’ l

by g1 in the above equations. The collisionless case is also obtained

even if it is not realistic in most semiconductors.

The expression for F may be obtained directly from Eqs. (4.5.4)
4

and (4.5.12), in the ratio of A1,

E4 = champs, H2e(a+yu )6 +
A1 H3e(-b+Yu)6+ H6e(b+yu)5 (4.5.16)
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Up to this point, four unknown coefficients in the ratio of A1

have been determined. The remaining coefficients can be obtained by

supplementing linear equations about the slow-wave circuit.

Around the slow-wave circuit, the first condition is that the

tangential component of the electric field is continuous. Hence

-Yd ~Yd Yd
= 1 .

Fle 3 F26 + F30 1 (4.5.17)

Gle'Ysd = GZe‘YId + G3eY1d (4.5.18)

The next condition is that the electric field perpendicular to the

direction of conduction is continuous; thus

Gle-Y3dcos 4 + F1043d sin V = 0 (4.5.19)

01‘

G1 = - F1 tan W

and that the tangential component of the magnetic field parallel to the

direction of conduction is continuous, which yields

w c1Y3 (F2 - F3 e a ) + Cl clyiy3 (G2 - 636 . ) tan W

e(Y1'Y3)d + Y3 G e(Y1-Y3)d tan W (4.5.20)
= 2
w 5171 F1 1c3 CsYl

Finally one applies the condition that the tangential component of

fields at the semiconductor slab x = o is continuous and hence four more

equations are obtained, for the TM waves

A1 + A2 + A3 + A4 = F2 + F3 (4.5.21)

th1 (Al-A2) + Alh2 (AS-A4) = FZ—F3 (4.5.22)

where

A =?.‘£.L

o e y

1 H

and for the TB waves

B + B = G + G (4.5.23)

B - =--E} (62-63) (4.5.24)



53

Fourteen independent homogeneous equations for fourteen coefficients have

been obtained for the configuration sample.

Algebraic manipulation of the above equations determines general

forms of the rest of unknown coefficients, with the result

2(1 * H2"“34'“4)

- 31+ 32 (4.5.25)
 

21
2° I
I

where

N = (13:12-6236 cosh y d + 3-(1 — 3113- e'236)sin6 y d (4.5.26)
1 ‘ l

  

 

  

  

 

1 a+Yh 1+y

d

2 = N1 6Y1 _ QYld

l m— (l + C ) (4.5.27)

-288

_ l. -3. ‘3 u-Ya. .3_
K1 2 (1 Y1) + 2 a+Y l + Y ) (4.5.28)

2:15 1

- l 9. <__ a-YH 3.. .
K2 —22 (1+Y ) + 2 3W“ (1 - Y1) (4.5.29)

2 . d
c C t. Y Y Y Y

32 [ijr——(K2e K1) + QQEf—L_“ }] tan €1Y3 tan W

-Zyld

(l - e ) (4.5.30)

22. = 0.236 a -Y“ 1+n25'nl+'nk

A1 ° 3 +y1+ ° '31 + 22 (4.5.31)

El. = ZNl 6’Y3 d 1+H2;+H3-+Hq

1 tan W ' 21 - 22 (4.5.32)

E; = 1+HL+ (13441;, L -__.__._ - Z 1‘ -

A -3 + 3 - ( ;2, (, —J—:;;Y 6“) (4.5.33)

1 1 2 l-e 1 l+e 1

 
£3. ___ 1+H2: 1134-111, (Z ‘1 + £1

. —27W

 

 

 

A1 -31+ 32 1 _1 C'EV]J+1 (4.5.34)

2N 1 Y3 d91 = 1( +n2+n3+ng 6 (4.5.35)
A1 '21 + 32

92_ = 2K1(1+H2f“3Hha 4 .
A1 -31 + 22 ( .5 36)

91’ = 2K2(1+H2+H3flhp
A1 -31+ 22 (4.5.37)

and
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9!. = 4a (1+H2+ 113+ UL, ) 6(Y4-a)5 (4 5 38)

A1 ('31+ Z2) (a +Y6) ' '

Therefore, there are fourteen unknown coefficients in field

analysis of the system and they are all interrelated as shown in this

section.



CHAPTER V

DISPERSION AND GAIN CHARACTERISTICS OF INTERACTION

BETWEEN CARRIER WAVES AND SLOW CIRCUIT WAVES

5.1 Introduction
 

In order to investigate the behavior of the coupling effect of a

tape circuit with carrier waves, it is necessary to have a detailed

description of their dispersion characteristics. In the characteristic

equation most of the important information of the waves is obtained. As

was mentioned in Section 2.5, all quantities are assumed to be separated

+ + + J.(mt-kz)

into dc and ac terms of the form A = A0 + A e . The effective

1

mass of carriers m* is considered to be a scalar constant. In addition,

the carrier collision frequency is assumed independent of carrier

velocity.

The dispersion characteristics can be obtained by matching the

wave admittance functions of two systems at the circuit-semiconductor

boundary. Another alternative of deriving the dispersion relation is to

set the determinant of the coefficients matrix equal to zero for a non-

trivial solution. This chapter deals with two ways of finding

characteristic equations, compares these equations, and afterwards gain

relations are derived. Numerical solutions will be plotted using a CDC

6500 computer.

Dispersion characteristic equations for some cases are derived in

Section 5.2. Section 5.3 is concerned with some appropriate approximations

made for some typical cases, and dispersion and gain relations are

accordingly obtained. Section 5.4 introduces normalized constants. The

55
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last two sections investigate the effects of collision frequency, slow-

wave circuit velocity, carrierdrift velocityand insulating layer thickness.

5.2 Dispersion Relations for Carrier Wave Interactions

In this section, we first try to formulate a general dispersion

equation relating to solid-state traveling-wave amplifier devices. To

achieve that, two methods are used, namely, the field coefficients matrix

method and the wave admittance matching method. As has been discussed

earlier, in connection with the method of solution, these two methods

are based upon the fact that the slow circuit waves are propagating with

a phase velocity equal to the carrier drift velocity (i.e., they are

synchronized).

Following that we consider the special case of carrier interaction

from the point of view of a collision dominated stream.

5.2.1 General Dispersion Relation
 

A. Field Coefficients Matrix
 

As was derived in Section 4.5, application of the boundary

conditions to the structure configuration produces fourteen homogeneous

linear equations subject to fourteen coefficients. These linear equations

may be written in a simple matrix form.

[A] [X] = 0 (5.2.1)

T
where [x] =[ A1,A ,A ,A ,B ,B ,F ,F ,F ,F G 62,6 ,6 ] and

2 3 4 l 2 l 2 3 4’ 1’ 3 4

[A] is the field coefficients matrix defined in Figure 5.2.1.

A necessary and sufficient condition for a nontrivial solution to

Eq. (5.2.1) is that the determinant of the field coefficients matrix [A]

be zero.
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det

58

Using row operations of the matrix algebra to reduce the size of

a 14 x 14 square matrix, we obtain the following 9 x 9 matrix, after long

algebraic rearrangement,

 

1

1 -l -R R

1/f2 -1 -R/fg Rg/f

(1-61)/f (1+hl)/f (1-h21/g (1+h2)/8

thl -th1 thz -th2 -1 l

l l 1 1 -1 -1

'1 1 “2 (5.2 2)

Kl+u2K2 -1

tan ¢ 1

A1(K1-u2K2) -A2 1 -u2 -A3

where f = e36, g = eba, and u = eyld.

This equation does not seem to be appropriate in taking it as a

final form for the characteristic equation and hence further reduction

should be carried out. Reducing the sixth column and the ninth column

in order and taking the determinant the matrix yield a comparatively

simple 7 x 7 matrix of the form,

- l -l -R R T

1/f2 -1 -R/fg Rg/f

(1-611/f (1+hl)/f (1-h2)/g (1+h21/g = 0

1 -1 hz/hl -h2/h1 -1/th1 1/th1

1 l l l -1 -1

31/(1+ié) 1 u2

32/(1-12) l -u2   
II
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Applying the Laplace expansion theorem to Eq. (5.2.3), this

determinant can be expanded as follows:

  

  

  

  

Dl . D2 - 03 . D4 = 0 (5.2.4)

where

1 -1 -R R

l/f2 -l -R/fg Rg/f

h= = r _ _2. _

Dl (1-h1)/f (1+h1)f (1-h2)/g (1+hz)g det B 51 II2+h1U13 H4)]

1 -1 62/61 -h2/h1

-1 -R R

det B = -1 -R/fg Rg/f

(1+hl)f (1-h21/g (1412):;

o -1 -1/4

_ zu2/ 2 1 1 _ I~31 z 3 3

02’1““) -_.. 162*???)‘(5157'1‘3‘571

2 -zzu /(1-u2) 1 1

1 -1 -R R

03 = I/f2 -1 —R/fg Rg/f = det B (1+n2+n3+n()

(l-h11/f (1+hl)f (l-h2)/g (1+h2)g

1 1 1 1

and

2
_ A A0 1/ Ohl l/ ohlu

_ 2 2 _ 1 _ 2 z 3 £1. _ 3

D4 ' Z1“,/(1*“ ) 1 1 ‘thl E ” (1+uz + 1-u2)+(1+07' l-u2)]

2
Zzu/(l+u2) l -l

  
Since Eq. (5.2.4) is a result of det [A] = 0, it is clear that

this equation represents the dispersion relation of the system. We now
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substitute four determinants, D1, D2, D3’ D4 into the dispersion equation

then the corresponding expression is

thl(1-H2) + AOhZUI3- UL.) - K3(I‘l+tanh Yld) - K4(I‘2-tanh Yld)

  

 

- _ (5.2.5)
1 +IIZ+II3+II., -K3(I‘ltanh Yld 4' 1) +K4(F2 tanh .Yld I)

where

_2Y1d Y _. Y _ _2a6

K3=(l+c )(__1_‘.1__._li__§.e )

Y +a Y +8
1 1.

2Y1d _ _ _ _2a6

K = (1 + e ) (1 (YHA?) (Yl-a)
4 (We) (y +a)

Y - e y c
p .J.+ _fl_l_.i._l__

5: Y1( 2 82 L1 E'1Y3)

51 S3

- ...m_..: -_.L..= ° ' - . .

851 - v91 Cltanw Circuit propagation constant 1n medium I

853 = -9-= -&L—-= circuit prepagation constant in medium III
v53 c3tanw

and V51, v53 represent circuit phase velocities in each medium. Eq.

(5.2.5) is an exact final form which has been derived without making any

approximations.

The dispersion equation can be simplified by arranging the left

hand side of Eq. (5.2.5). Hence, one has

K3(F1+tanh ydd)-K4(F2-tanh yld) Yubl

-K3(F1tad1 yld)-K4(F2tanh Yld:l) Y1€u

 

= (h1+h2/R)cosh 66 + R(h1+h2/R)(h1+h2/R+1) sinh b5

 

-8e'a6+(hith2/R+2)cosh b6+[R+l/R+R(h1+h2/R)]sinh 66

provided that a5<<l.

Eq. (5.2.6) is almost an exact expression giving the nature and

propagation characteristics of waves in the coupled system.

B. Admittance Matching Method
 

Equating the carrier wave admittance to the circuit wave

admittance leads to the dispersion relation whose details are shown in
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Appendix C. The relation obtained from Y5 = Yc yields Eq. (5.2.5).

Therefore, the dispersion characteristic equation resulting from the

admittance matching method is identical to that expressed by the field

coefficients matrix method.

We conclude that two methods lead to the same dispersion equation

in any cases and must be rigorous at the same time if one way or another

is right.

5.5.2 Dispersion Relation in a Collision Dominated Stream
 

The dispersion relation, Eq. (5.2.5), as it shows now, is quite

complicated and some reasonable approximations, which are discussed in

Appendix C, are required in permitting an investigation as to the

possibilities and the general trend of growing waves. Taking these

approximations such as yléy3éyu=k, a i k and b imp/Vt, we may arrive at

the simple form of the dispersion equation.

If v>>|w-kuol, the dispersion relation is obtained by letting

wv -jv. With the same type of insulating layers on the top and bottom

of the slow-wave circuit, the dispersion equation becomes

 

 

(1+e2kd)k2 — 8:1 e de E cosh (mp/Vt) + j S sidi (mp2vt)

kd 2 2 2kd = K . w 5 . . (u 6__ (5'2'7)
(l-e )k + 851 e T cosh ( p /Vt) + 3 W Sinh ( p /vt)

where

C

K =31- (5.2 8)

2

E = EO + Elk + Ezk (S 2 9)

s = so + 31k + 52k2 (5.2.10)

'r = To + le + 1*sz (5.2.11)

W: W +w1< + Wk2 (5.2.12)
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and e u 2 w v v ” w v 3w
2 B t . 2

N2 = (1+ 5 )2 3 - v t(l-(%9 (c ) ) + 32 VZCE
N p t 2 2

It is, however, a wellknown fact that the wave can best be amplified

when the drift velocity is nearly equal to the velocity of the rf slow

circuit wave. When this occurs, it is usually referred to as synchronous

coupling. Therefore, if a device is used under this situation, the value

of Im-kuol may not be a significant quantity. Actually the collision

frequency in most cases could always be considered as much higher than

Iw-kuol and thus a general case might be reduced to the case of collision

dominated stream.

5.3 Relations of Dispersion Characteristic and Gain
 

In practice, when the device is fabricated it is much easier to

choose a single material for the insulating layers. Therefore, this case

will be taken for our analysis hereafter.

The bottom insulating layer of the circuit is not also required when

the ideal capacitively coupled circuit is to be used. Hence, with d = 0,

the dispersion relation becomes

‘§__’ K.E+jS tanh (wpdlvt)

B )2 ' 1 = w 5 v
51 T+jW tanh ( p / t)

In actual device fabrication, the insulating layer, d, is a few

 

2( (5.3.1)

microns thick and then one may use the approximation of exé 1+x for small

x (x<<l). Therefore, the characteristic equation for dispersion is

2

851 - 2k2(l-kd) = K.E+jS tanh (“pd/Vt)
  

2k3d-sgl T+jw tanh (“pd/Vt) (5'3'2)

and in polynomial form it can be rewritten as

5 4 3 2 l _
Ask +A4k +A3k +A2k +A1k +Ao - 0 (5.3.3)

where

AS = 2d(T2-KE2)+j2d(W2-K52)tanh(wp6/Vt) (5.3.4)



64

- 2[d(Tl-KE1) -T2)] + j 2[d(w1-Ksl) -W2]tanh(wp6/vt) (5.3.5)>

|

>

I
3 - 2[d(rO-kEo) -T1) + j 2[d(wo-Kso) - Wl]tanh(wp6/vt) (5.3.6)

. 6 V

= 2 . - ° 2 - (1)A2 351(T2+r52) 2T0 + )[esl(w2+K52) 2Wo]tanh( p / t) (5.3.7)

6 v
= 2 - ' 2 “3

Al 851(T1+KEI) + J 851(W1+Ksl)tanh( p / t) (5.3.8)

and

A0 = 82 (T +KE ) + j 82 (W +KS )tanwa 5/vt) (5 3 9)
51 o o 51 o o p ' '

For better approximation one expresses the exponentials in their

continued fraction approximation

ex = l + 12x

12—6x+x2 provided that x 5 l.

and then the sixth order polynomial is obtained as:

2d2k4+(6-d23§1)k2—3d5§1k-3s§1 E+jStanh(wp6/vt) (5.3.10)
3 _
  

-6dk +d23§1k2+3ds§1k+3s§1 T+thanh(wp6/vt)

It can be easily seen that Eq. (5.3.10), of three dispersion relations,

gives the best result in the frequency range of x-band, for our chosen

semiconductor materials, InSb, Ge, Si, GaAs.

In general, an explicit analytical solution for fifth or sixth

order polynomial may not always be feasible. Even if it is possible, it

is too complicated to derive the final form. One way of solving higher

order equation is to approximate with the aid of a computer, using

numerical methods.

Once complex roots of k are obtained, in any way, the gain is

also computed from the imaginary roots of k and is expressible as:

Gain (db) = 20 log e(Im k).z

Since loglo e = 0.434 and Im k = -a, it becomes

Gain (db) = 8.68-(-a)-z (5.3.11)
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The gain in db per mm becomes

Gain (db/mm) = 8.68 x 10‘3-(-a) (5.3.12)

where<1 is the metric unit.

This gain expression can also be expressed in db per wavelength.

2H
 Gain (db/Y ) = - Gain (db/mm) x 103 (5.3.13)

0

Instead of using db unit, the gain per micrometer is also used for the

microwave devices in an exponential form such as

Gain (.nm) = Exp (-a x 10‘6) (5.3.14)

In each expression, the gain is proportional to the imaginary part of the

propagation constant k.

5.4 Wave Interaction Analysis with Numerical Method
 

The dispersion relation of Eq. (5.3.10) will be solved by a CDC

6500 computer. It is useful to introduce normalized quantities for

computer programming. The propagation constant is chosen as a dependent

variable and the other constants as independent variables. The dispersion

equation can be put in terms of normalized constants.

The normalized Operating frequency and collision frequency are

defined as

(1)

q = ;— (5.4.1)

P

— AL
5 - w (5.4.2)

P

Also the normalized drift velocity and slow circuit wave velocity

are defined as

c
:

O
p _ V; (504.3)

I. _ "s (s 4 4)- Vt o 0

With the use of these normalized constants, the independent variables for

device parameters will be manipulated as required in calculation.
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The purpose of solving the equation is to find the complex roots

of the propagation constant k with arbitrary complex coefficients. Each

root is located approximately by the Lehmer method and then improved upon

by Newton-Raphson method. Then a reduced polynomial is obtained by

removing the first root. This process is repeated until all of the roots

are removed. The detailed explanation of this method is given in Appendix

D. Some typical values pertinent to the description of solid-state

materials that will be used for the numerical analysis are illustrated

in Table 5.4.1.

Redefining coefficients of k in Eq. (5.2.9) through Eq. (5.2.12)

in terms of real and imaginary coefficients as

E0 = Eor + JEoi

E = E + jE
1 1r 11

E2 = EZr * jEZi

S0 = Sor + jSoi

S1 = Slr + 3.811

S2 = Szr + jSZi

To = Tor + jToi

T1 = T1r * jT11

T2 = T2r + jTZi

wo = wor + jwoi

wl = w1r + jwli

and

N2 = w2r + iji

we arrived at the best approximate form of the dispersion characteristic

equation with complex coefficients, which are rearranged by
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6 3 -
86k + 85k + 84k + 83k + 82k + Blk + BO - 0 (5.4.5)

where

_ 2 - _ 2 2 _ 2
X0 - 3851, X1 - dxo, X2 -6-(d351) , X4 = 2d , X5 = 6d, X6 - ((1851)

Q = tanh(m 5/”t)
p

Eol = Eor - Soi.Q’ E()2 = 13oi + Sor “1

E11 = Klr ' Slj'Q’ K12 = K11 + Sir “2

E21 = E2r - S21 Q’ E22 : E2r + S2r 41

T01 = Tor - woi Q’ T02 = Toi + wor 42

T11 = Tlr ' "li'Q' T12 : T11 + wzr-'Q

T21 = T2r ' ”21°Q’ T22 = T21 * ”21°Q

B6 = x4(T21 * 3 T11)

B5 ‘ x4(T11 * 3 T12) * Kx5(521 * J 522)

B4 ‘ x2(T21 * 3 T22) * x4(T01 * 3 T02) + K[xsmn + 3 512) ‘ X6KE21 I 3 522)]

B3 ='x1[(T21 + 3 T22) I K‘EZI * J 522)] + x2(T11 * J T12) + KKX5(E01 + 3 £02)

' x6 (511 + J 512)]

B2 = 'xo[(T21 K J T22) + K (E21 + 3 522)] ' X1[(T11 K 3 T12) + K

(E11 + j 512)] + x2 (T01 + j T02) ' K X6KE01 + j 502)

Bl = “x6 [(T11 * J T12) * K (511 + 3 E12)] ’ x1[(T01 + 3 T02) + K (E01 * 3 E02)]

Bo =’xouTol + 3 T02) + K (E01 + 3 E02)]

Eq. (5.4.5) is the approximate dispersion relation which satisfies

the boundary conditions of the device structure chosen.
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5.5 Solution of Dispersion Equations for Different Materials
 

Numerical results of the dispersion equation in the previous

section are presented and discussed in this section. Solid-state

materials chosen for that analysis are InSb, GaAs, Ge and Si. The

wave propagation and attenuation characteristics corresponding to the

structure configuration should be investigated numerically for several

materials. The f-B diagram is useful in interpreting the behavior of

a wave propagation and the attenuation curve is helpful in determining

whether growing modes exist.

Both wave propagation and attenuation characteristics are

determined by finding complex roots of the dispersion equation in k

where k =[3- ju. The thickness of the semiconductor slab will be

assumed 6 = lxlO-4m throughout the numerical analysis.

5.5.1 Continuous Type of Tape-circuit Model
 

In connection with the sample configuration, if a continuous

tape-line is used instead of a capacitively coupled tape-line, an

insulating layer between the semiconductor and the circuit line should

be deposited to prevent the dc field from being bypassed. This implies

that the characteristic equation remains an infinite order polynomial

in k since the thickness of the insulating layer d can not be neglected

in the range of high frequencies. For the thickness of the insulator

between the slow wave circuit and the semiconductor slab, d = 1 micron

is used in the continuous tape model.

Figure 5.5.1 shows the functional dependence of B vs. f, determined

by Eq. (5.2.5) and Eq. (5.4.5) for a device of InSb wafer. The drift

velocity was taken as u0 = 6 x lOSm/sec, the relative permittivity as €2r

= 15.7, the carrier density as n = 1014/cm3, the normalized collision
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frequency as = v/mp = 1.0, the normalized circuit velocity as vs/uo = 1.0

and the carrier temperature as T = 77°K.

Real roots of the exact equation are obtained by taking six roots

of the approximate equation as starting solution of the numerical

iteration method. Then both the exact and approximate solutions of

the possible six modes are plotted for comparison. As can be seen

from the graph, both solutions have the same general shape of variation,

except that the exact solution indicates a slight faster phase velocity.

The exact dispersion equation requires tremendous computing time and

preparative effort to obtain the solution for each operating frequency.

However, as far as two dispersion equations for an amplifying mode

exhibit similar general trends in the nature of wave propagation and

considering only the amplifying wave, the approximate equation may be

used in order to investigate effects of material parameters for convenience.

Figure 5.5.2 illustrates the variation of attenuation constant

corresponding to the phase constant of Figure 5.5.1. Here, both the

approximate and exact solutions of the attenuation constant are plotted.

Since the attenuation constant is attained from the imaginary part of

the wave propagation constant k, for forward propagating waves a negative

value implies growing wave. It is noted that the exact dispersion

equation gives a smaller growing factor than that of the approximate

dispersion equation and only one mode indicates amplification. The

results showed that the rest of the five modes are highly attenuated.

In order to understand the wave propagation phenomena and to

identify the growing wave, it is necessary to investigate the nature of

the propagating modes from the f—B diagram. By comparing the phase

velocities of the waves with the carrier drift velocity, one can identify
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which mode is actively coupled to the carrier stream. The growing mode

should be approximately synchronized (the same phase velocities)

with the dc drift velocity of the carriers. As can be seen in Figure

5.5.1, the phase velocity of the forward propagating mode is approximately

equal to the stream velocity of carriers. Therefore, the forward

propagating mode which produces amplification is traveling along the

device in the same direction and with approximately the same velocity f

as the carrier stream.

Using Eq. (5.4.5), also shown in Figure 5.5.3 is the variation of

attenuation constant for four different semiconductor wafers, those are,

 
InSb, Si, Ge, and GaAs. Parameters are chosen to have T = 77°K, n = E

1014/cm3, q = l, s = l and p/r = 1. Typical values for the silicon are

l x 104 m/sec, cu0 = 2r = 11.8 and m* = 0°33"b and for the germanium

u0 = 6 X 104 m/sec, K2r = 16 and m* = 0.04me while for the gallium

arsenide, u0 = 6 x 104 m/sec, le = 12.5 and m* = 0.072me are used.

5.5.2 Capacitively Coupled Tape—circuit Model
 

As was presented in Figure 3.2.1, if capacitively coupled tape

lines are used ideally for a slow—wave circuit, the insulating-layer

thickness between the circuit and the solid-state in the device can be

reduced to zero because a bottom insulating layer may be removed.

Under such a structure the dispersion equation is then reduced to a

fourth order polynomial from Eq. (5.4.5). The fourth order equation

jpredicts four possible waves to be traveled along the device. Two

additional modes due to the effect of the insulating layer, and turned

out a pair of forward and backward traveling modes.

Figure 5.5.4 contains the results for the forward growing mode

when the layer does and not exist. The upper curve indicates the gain
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of the InSb model without the insulating layer while the lower curve

indicates the layer effect of one micron thick. For high frequencies

the insulating layer makes a big difference in the growing rate but

for lower frequencies it approaches a small 1055. As a result of

increasing the frequency of operation, the decrease of the net gain

corresponds to the increase of the dielectric loss. A comparison of

the continuous tape model and the capacitively coupled ideal tape

model shows that although the insulating layer significantly affects

the coupling of carrier waves with the rf waves, the behavior of the

growing mode is nearly identical.

5.6 Gain Characterisitcs as a Function of Collision Frequency, Circuit

Velocity and Carrier Drift Velocity

 

 

In this section the effects on gain due to various collision

frequencies, circuit velocities, and carrier drift velocities will be

examined. For the purpose of this analysis a heavily doped N-type

material is used with a majority carrier n = lOlS/cm3 and the lattice

temperature T = 77°K. Gain will be plotted for various parameters of

four semiconductor materials, InSb, Ge, GaAs and Si.

The plot of gain as a function of the normalized collision

frequency v/wp is presented in Figure 5.6.1, where the normalized

circuit velocity for the continuous circuit model is unity.

In gaseous plasmas the higher collision frequency causes gain to

decrease. There are, however, two hypotheses for the effect of collision

frequency in solid-state plasmas: Birdsall, Brew, Whinney, Haeff and

Misawa argued that collisions would induce instability in solids and

that collisions are another mechanism of a solid-state amplification

[MIZ],[BI1],[BI2]. On the other hand, Vural and Bloom proposed that
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collisions tend to decrease the amplification while collisons may lead

to amplification in the presence of a magnetic field [VUl].

The first hypothesis does not physically interpret amplification

phenomena. Even in the case of no collisions, the instability is due to

interaction between the positive-energy-carrying circuit wave and the

negative-energy—carrying slow space-charge wave supported by a stream of

carriers. It is seen that the plot of gain has analoguous shapes for

inaterials, Si, GaAs, Ge and InSb, and that with collision effects alone

the gain tends to decrease, which supports second hypothesis.

The effects of the normalized circuit velocity vS/uo is displayed

in Figure 5.6.2, where the capacitively coupled model is used and f = 1x109

112. A larger value of the normalized circuit velocity indicates lower

.gain. Therefore, the circuit velocity, for the optimum operation, should

always be smaller than the carrier drift velocity.

The relative gain for InSb, Ge, GaAs and Si as a function of the

inormalized drift velocity is shown in Figure 5.6.3. The highest gain was

obtained as the normalized drift velocity varied between 2.9 and 3.2.

'This statement disagrees with Sumi's simplified approximate analysis [SUI]

in which the maximum gain occurs at uO/vt = 7.3. In reality, the highest

possible value of the normalized drift velocity uO/vt is limited due to

the hot-carrier effect [GL1]. The attainable highest normalized drift

velocity in the liquid nitrogen temperature is around 2.0 for the indium

antimonide and 0.5 for the gallium arsenide. Therefore, it can be

concluded that for a good solid-state traveling-wave amplifier device,

the lower collision frequency and higher carrier drift velocity material,

and the lower temperature operation are all desirable.
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5.7 The Functional Dependence of Device Gain Upon the Variation

of Insulating:layer Thickness

The carrier wave is supported by the applied dc field. As was

mentioned in the continuous type model, the degree of coupling is a

strong function of the insulating layer thickness which separates the

tape-line and the solid-state material. In the tape-line circuit structure

the field configuration of the slow-wave circuit decreases transversally

to zero in a finite depth. Consequently the excited field intensity in

the tape-line becomes very weak, which results in weak coupling.

Numerix:ally, extensive calculations were performed for four materials at

several values of the thickness d.

The functional dependence of gain is plotted in Figure 5.7.1 for

the variation of the thickness of an insulating layer. From the result

it cari be seen that a rather high gain is obtainable at a thickness of

d = 167m. With today's integrated circuit technology, depositing such a

thin layer on the semiconductor surface is difficult. Besides that, the

other problem is in practically achieving a reasonable uniformity of a

thin layer.

The gain decreases drastically as the layer thickness increases as

illustrated in Figure 5.7.1. The possible fabricated thickness ranges

10-6n.10’4m.

Judging from the theoretical and practical point of view, the best

result: of the device does not heavily depend upon materials themselves

bUt hCHn to fabricate the device and to maximize their drift velocities.

As £31? as the drift velocity is concerned, indium antimonide seems to

be thfia favorable material for this type of device. It is also interesting

to “Ote that the solid-state type of device is a potential device for high

fre(Ilalency applications, which may be an attraction feature, as seen in
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the analysis of this chapter. However, the circuit and semiconductor

losses are a serious problem, and as a result a high gain as anticipated

in the curve should not be expected.



CHAPTER VI

TWO STREAM INSTABILITY IN SOLIDS

6.1 Introduction
 

The theory of traveling-wave amplification in a thin semiconductor

layer and a slow electromagnetic tape line deposited on the layer was

treated in Chapter III through Chapter V. As was mentioned in Section

2.6, instability can also be obtained between the upper and lower valley

electrons without using a rf circuit.

The instability mechanism in solid-state materials is explained by

'the concept of wave interaction which has been successfully used in

(electron beam devices. Kino [K11] described the charged carrier motion

in semiconductor by a space charge wave concept, referring to them as

"carrier waves." The kinetic power carried by these carrier waves were

given by Vural and Bloom [VUZ].

Assume that a Gunn sample of length 1 has been biased with a constant

‘voltage so that the net internal electric field reaches a negative-

sloPe region which starts from a little over threshold voltage. Ridley

[R11] [R12] proposed that this condition is unstable and leads to a theory

«of lower and higher valley model. This type of transferred-electron device

is completely different from the established devices such as transistors,

tunnel diode, or varactor. The mechanism comes from the bulk property of

GaAs and is not based upon the ordinary p-n junction theory. The device

structure consists of an electrically uniform doping and geometrically

regular semiconductor with two ohmic contacts for the application of a

'bias voltage. The instability occurs during a transit time between two

85
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contacts; thus, the higher operating frequency is,the thinner the sample

length becomes. Consequently, the power output for a given device

decreases as the Operating frequency is raised.

Several parameters such as material resistivity, temperature, and

the low conversion efficiency induce a high power loss throughout the

device which requires efficient heat sinking. Although, for continuous

wave Operation, heat sinking is possible for small size devices, the

limitation restricts practically the lowest operating frequency to

around 4 GHz and the total active length limitation restricts the output

jpower to several hundred milliwatts. However, the pulsed operation lets

the power loss be reduced with the reduction of the duty cycle. Hence,

the low frequency restriction is removed and pulsed output power can be

increased by enlarging the sample length and thickness. Unfortunately,

there is a limit to the pulse width to protect the danger of overheating

(during the pulse period. The existing pulse widths and duty cycles are

vdthin these limits for systems such as mobile radars, aircraft direction-

and height-finding equipment and aircraft identification. This type of

solid—state device can be designed to Operate in any part of the micro-

'wave equipments and it is small in size and simple. For these reasons

the solid-state device coupled with the newly developed integrated circuit

technology in electronics is compatible with the high voltage microwave

devices.

A simple configuration for transferred electron devices is

illustrated in Figure 6.1.1. Since the reactance of the device is usually

capacitive, an inductive reactance must be provided to obtain resonance

at the Operating frequency. This mechanism is obtained by using waveguide,

coaxial or microstrip cavities which are wellknown in conventional methods.
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The reactance may be supplemented by constructing the inductive iris in

the waveguide. In addition, tuning can be accomplished either electronically

or mechanically using varactors or YIGs. Typical varactor-tuned and YIG-

tuned devices covers a 10 m 20% range for the frequency of 1 m 10 GHz.

This chapter is devoted to describing the formation of two-valley

model and to developing the two-stream instability analysis. Finally, a

computer solution will be carried out, based on the theoretical analysis.

6.2 Formation of Two-Valley Model
 

The transferred electron mechanism of some semiconductors such as

GaAs, InP, CdTe and InSb was predicted theoretically by several workers.

The Gunn effect is a typical example found in GaAs by Gunn in 1963. This

effect has not been observed at room temperature and normal pressure

in Si and Ge, mainly due to not being able to get a sufficient number of

carriers to populate the negative effective mass states.

When a large enough potential is applied across the sample,

negative differential conductance is obtained. When this occurs, a

phenological transfer mechanism of carriers from one energy band to the

other is followed up in the physical sense. Once they are separated in

two energy states, these carriers in two different states have completely

different physical characteristics. Thus, two distinct groups of

carriers moving across the sample can be considered, namely the upper and

lower valley carrier. Then it is possible to explain the instability by

two stream formation.

The two valley structure in GaAs is illustrated in Figure 6.2.1

The energy gap separation between the conductance band minimum and valence

band is 1.53 ev. Carriers are distributed between light-mass lower valley

and heavy-mass upper valley whose minima are separated by an energy

displacement of 0.36 ev. As shown in Figure 6.2.1, the mass of a carrier
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in the lower valley is m; = 0.08 1118 at the minimum of conduction band

and the mass of a upper-valley carrier m; = 1.2 m8 at the bottom of the

upper valley. Subscripts 2 and u refer to the lower valley and upper

5000 cm2/valley, respectively. Carrier mobility in lower valley (“1

100 cm2/volt-volt-sec) is much greater than that in the upper valley (nu

sec). The numerical values used here pertain to GaAs. GaP has a similar

band structure to GaAs material but its upper-valley mass is lighter than

the lower-valley mass (AE<O).

Inside a semiconductor there always exists a slight nonuniform

field distribution, which can cause a transition of carrier to a slightly

higher energy state. It was proposed by Ridley that the space charge

distribution would have a narrow region of high field intensity, which

is called a domain. Such distribution arises from material in homogeneity

in doping and polishing or from a noise fluctuation. At the front-and

back-edges of this higher field region there are temporarily charge

accumulation and depletion layers, respectively. This is because the

lower-field upper stream leads to an increased rate of feeding electrons

into the region around high field and the higher-field lower stream to

a decreased rate of removal from there.

The domain travels from the negative contact to the positive

contact with a uniform drift velocity in the order of 107 cm/sec. The

formation of domain starts when the applied potential is above the

threshold voltage. Field induced transfer of carriers between two valleys

in the conduction band is directly related to the differential conductance.

Alternatively, a two valley model may be formed by raising the

lattice temperature in semiconductor materials at low field and then a

llegative differential conductance can be produced. LawILAI] proposed the
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possibility of achieving the negative conductance by joule heating in the

semiconductor. As the electric field is increased, the temperature of

semiconductor is raised above the temperature at zero by joule heating.

Then the carrier density and mobility will change with changing joule

heating rate. Hence, a two valley model forms. However, this mechanism

doesn't seem to be possible for Gunn devices because the joule heating

produces tremendous collision and thermal effect.

Whenever transfer of carriers occurs, carrier interactions exist

between two types of carriers in the lower and upper valley. The carrier

interaction mechanism will be discussed later.

Figure 6.2.2 shows the theoretical and experimental v vs. E

characteristic [BUZ], [RUl] for a typical GaAs material. A negative

differential conductivity exists for electric fields exceeding the threshold

field ET = 3.4 KV/cm. Above the threshold field, the drift velocity of the

carrier decreases as the electric field increases.

6.3 Population Densities of Carriers in Two-valley Model

In a two valley semiconductor there are n carriers per unit volume

I

in the lower valley of the conduction band and nu carriers per unit volume

in the upper valley, and ng + nu is a constant. The population density in

two energy bands strongly varies with the applied bias field and environ-

mental temperature. The number of carriers in the lower energy level of

the conduction band will decrease as the bias electric field is increased.

The decrease comes from a transfer of some carriers from a lower to a

'upper valley within the conduction band at the microwave frequency or to

ionized traps in the forbidden band at the lower frequency. When the

'transfer rate of carriers between the two valleys exceeds a certain value,

a.material exhibits differential negative conductance.
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Under the assumption of Maxwell-Boltzmann distribution of carrier

densities, McCumber and Chynoweth [MCl] calculated the carrier densities

of lower valley and upper valley as

 

 

n = n {l - (1+§§9 exp (-éE)} (6.3.1)
2 AE F T

1 + “ exp (' TFO

AE

“ exp (' Tr) AE
n = (1 + a + ——) (6.3.2)
u AE T

L +<reXP (- —-)
T

where T = average carrier temperature (ev)

AB = energy separation between the upper and lower valley (for

GaAs, AB = 0.35 ev)

Z

.11

N

a: = the dimensionaless ratio of the upper—valley to lower-

g
o

valley density of states (for GaAs, « = 60)

n = n + nu = carrier doping concentration rate (carriers/cm3)

This calculation of the simple temperature model was compensated

by expressing the average carrier temperature as a function of the bias

fields relevant to the Gunn effect.

6.4 Carrier Interaction in a Two-valley Semiconductor
 

Whenever carriers of the lower valley are transferred to the

upper valley, interaction between valley carriers is anticipated. As

indicated in previous sections, the carrier mass in the upper valley

is much heavier than that in the lower valley, while velocity in the

upper valley is slower than that in the lower valley. Consequently,

the lower-valley carriers can be considered relatively mobile while the

upper-valley ones can be considered at a standstill. Then the upper

valley can be treated as a statiOnary plasma or a circuit and the lower

valley as an electron stream. This is primarily based on the fact that

carrier waves resemble to the space charge wave in an electron beam.
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This type of approach has been used by Pierce [P12] for the

traveling-wave tube. The approach which seems likely to yield the

best results is that of writing the appropriate partial differential

equations for the interactions between two valleys. This analysis

enables evaluation of certain quantities which can be estimated, and

the numerical results do not differ qualitatively and are in a fair

quantitative agreement with Perlman's experimental result [PEI].

The modulation produced in the upper-valley carriers can be

represented by an equivalent lumped transmission line, having series

impedance and shunt admittance. The circuit is uniformly distributed

with series resistance, inductance and capacitance, and shunt inductance

and capacitance. Recently Ho [H02] calculated equivalent series

impedance Z5 and shunt admittance Ysh of an upper valley carrier stream

in solids which are given by

w 2 Vt 2 v u 2 v
01 {pu + ~u.___ ou u

 

 

 

z = j - ( +T—) - o ——-} (6.4.1)

S pru2 (02 uOu2.vtu2 3w uouz'vtu2 4oz

mew uz

Y = j ——-L--—— (6.4.2)

sh uouz-vtuz

where

wpu = plasma frequency of upper valley carriers

vtu = thermal velocity of upper-valley carriers

uou = drift velcoity of upper-valley carriers

on = collision frequency of upper—valley carriers

It is noted that the transferred electron devices indicate capacitance

property since the drift velocity is usually greater than the thermal

velocity, as seen in Eq. (6.4.2). Thus, inductive tuning must be

constrimxed to resonate it with the capacitance of the device in Figure

6.1.1,
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Physically, the coupling of the stream and the circuit is due to

the displacement current originated from the carrier stream. When

carriers transfer to the upper valley, a displacement current from the

lower valley will be flown to the circuit. Summarizing the mutual

movement of two valley carrier, the equivalent over-all lumped represent-

ation can be approximated as illustrated in Figure 6.4.1.

 

/ >Jl£ a carrier stream of lower valley

 

 

J

B 12
#0

Z
   

  

         

    

      

 

Figure 6.4.1 An over—all equivalent representation

of two valley model. A displacement

current is flown to the circuit.

The sum of the lower valley convection current J 2 and the
1

displacement current J in a volume of a carrier stream should vanish,

1d

because the total current flowing out of the volume of a carrier stream

is zero.

In a stream

 

3” + 31d = 0 (6.4.3)

Over the surfaces of a stream,

SJ
—> — 12, ->

fsd 31d°dA‘ 'fsr, ["f12+(312+—5‘i—dz)] dA

011% K

= - - 6.4.4

’36 I 82 dz) d ( 1

Eq. (6.4.4) may be rewritten as

OJ 31

1d _ 12
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6.5. Circuit Equation of Carriers in the Upper Valley
 

A one dimensional analysis will be assumed for simplicity through-

cnrt this chapter. In Figure 6.4.2 a set of circuit equation can be

written as

  

8V1 Z

—7§?—-'- s Jlu (6'5'1)

3.} aJ
lu _ V 12

az _ -Ysh 1 - 82 (6.5.2)

where

VI = rf induced voltage

Jlu rf upper circuit current

J19.
rf lower-valley convection current.

. j(wt_kz) . . . . .

Since e type of var1ation for all quantitles is assumed, the

above equations become

-jkvl = Zleu (6.5.3)

-Jleu = YSh V1 + JkJ

the following circuit equation is obtained,

11 (6.5.4)

Eliminating J

 

lu’

2

J12 = k + Yshzs (6 5 5)

V1 ijS

In Eq. (6.5.5) series impedance Z5 and shunt admittance YSh were defined

in Eqs. (6.4.1) and (6.4.2). Note that the convection lower valley

current produces the circuit voltage in the equivalent transmission line.

6.6 The Electronic Equation of the Lower Valley Carriers
 

Rfom force equaqgon, rf velocity of lower valley carriers is:

—» "g + Vtg +
v” = 3;)— ( - El + T7 v V-El) (6.6.1)

02 pg

where
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I1) = - - 'V8 w knot 302

v8 = collision frequency of lower-valley carriers

1102 = drift velocity of lower-valley carriers

02* = effective charge to mass ratio of lower-valley carriers

vtg = thermal velocity of lower-valley carriers

mp2 = plasma frequency of lower-valley carriers

E1 = rf E field due to rf potential V

'The continuity equation is written as

1

-JkJ12 + prl E 0 (6.6.2)

where 012 refers to lower valley rf charge density. The lower valley

convection current is written in terms of charge density and velocity

of carriers.

3:6"
u)

11 OIL V12 I p152.1‘01 (6°6’3)

where pol stands for lower valley dc charge density.

From Eqs. (6.6.2) and (6.6.3), rf charge density and current

density are given by

.3

 

 

-kp V

912 =W (6.6.4)

‘*’ oz

_wp

_ 08 e
312 - Wku v” (6.6.5)

0

Substituting Eq. (6.6.1) into Eq. (6.6.5) yields

'wpotnI + Vtiz
3” =-.———1—(——) (.131 + ._.—2- v v-El) (6.6.6)

360- not wot mp2

For one dimensional analysis V VoEl = -k2E12 and

+ _ 3V A A _ , . .

El - 321 z = jkvlz.where e3(wt-kz) lS recognized.

Hence, Eq. (6.6.6) is reduced to a simple scalar equation as

_ * V 2 2

kwpoznz (“Byl- k ) V1

p12
J = . (6.6.7)
12 (w- kuog) (m-kuog - 3V2)
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Therefore, the electronic equation can be obtained as

2

vt

J Be19HR”*k(1+mLiZRZ)

12 P1 (6.6.8)

v1 "otIK'Bez)(K’Bei+ijg)

 

6.7 The Dispersion Characteristic Equation in Carrier Wave Interaction
 

Equating the circuit, and electronic equation, Eqs. (6.5.5) and

(6.6.8) gives the following characteristic equation.

 

k2¥Y z 8 k (1 + -33? k2 )
shs=ci ””628 Mp2 (671)

szs 1bRKk Bel) (R‘set+JBv£)

The characteristic equation is a fourth order polynomial in k with

complex coefficients.

The normalized velocity and operating frequency are defined as

 

u

p =—J51 (6.7.2)
U V

tu

Q = ‘” (6.7.3)
u w

pu

Collision frequency is also normalized in the following way,

v

S = _2.

u w
pu

The thermal prOpagation constants are,

(l)

Btu = 322' (6.7.4)
I111

and

B = m 2 (6.7.5)
t8 v

t9.
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With these definitions, the equivalent series impedance Z5 and

shunt admittance YS of the upper valley carrier stream may be rewritten

 

 

 

h

as

z = 1. (if): _ 3L .4(1-Qu2) + Puzcsuz-o (6 7 6)
s we p2-1 we 4(P 2_1)

u u

UZ

Y z jflfi (6.7.7)
sh p 2_1

u

and

2 2 2 2 —.i

Y Z = 4(1.Qu )+Pu (Su 4) B 2 + .(Eusuetu 6 7 8 r

sh s 2 2 tu J 2 2 ( ' ' )
4(Pu -1) (Pu -1)

The characteristic equation is obtained after combining Eq. (6.7.1)

with Eqs. (6.7.6) through (6.7.8).

0  

 
 

 

a 4 O 3 O O O 2 O O

(l-EZE) k - (b +86%) k + (b8CR + C - a) k - (b + 862) C k

0 O

+ Beth c = 0 (6.7.9)

Where 0 n * 411-0 2) + P 2 (s 2-4) Q 8
° _ 02 2 2 ~ u u u . u u

a - 7.7::— Bell 2 *3 2 (6-7-1")
4 (P -1) P -1

u u

0

b = 8e2 - 1 ng (6.7.11)

- 2 2 2- 2

° 4K1 Qu ) + pu (Su 4) 2 . QuSuBtu

C = 2 Btu + J -——7?———§' (6.7.12)

4 (Pu -1) (Pu -1)

As mentioned in Chapter V, an analytical solution for a fourth

order equation cannot easily be, in general, obtained. Computer solution

of such an equation is more practical. Complex roots of k with complex

coefficients will be solved by both Lehmer method and Newton-Raphson

method.

With these roots, the gain of a device is obtained.

Gain (db/mm) = 8.68 x 10'3 (-a) (6.7.13)

and
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Gain (db/1e) = if 3

where k = B - ju and a is the metric unit.

 

° Gain (db/mm) x 10 (6.7.14)

Note that the device length of a typical Gunn device is on the

order of ten microns for x - band frequencies. The operating frequency

of a Gunn diode can be extended to the range of millimeter wavelength.

6.8 Solution of the Dispersion Characteristic Equation for Gunn Devices
 

The device material chosen for this analysis is GaAs. The applied 1_

electric field E is taken as E = 7KV/cm, the mobilities of the upper

stream and the lower stream as “u = 100 cmz/v.sec and 02 = 5000 cmZ/v.sec,

 
respectively and the relative dielective constant is er = 12.5.

Various doping concentrations are considered in investigating the

effect of various levels. The frequency dependence of the propagation

constant B and the attenuation constant a will be plotted. The drift

5
velocities of the lower and upper stream are assumed to be110£=2.2x10

m/sec and“ou = 9x104 m/sec respectively.

6.8.1 Collisionless Analysis
 

The collision frequency of the upper valley is neglected here,

considering the fact that the upper-stream density is much smaller

than that of the lower stream.

The functional dependence of f - B are displayed in Figure 6.8.1,

Figure 6.8.2 and Figure 6.8.3 for three different carrier densities

n = 1013, 1014 and lOls/cm3 as determined by Eq. (6.7.9) when Vu = 0.

From these figures, it can be seen that four possible waves are

propagating along the device. It is also noticed that the f - 8 curves

are slightly shifted by carrier densities, although the wave forms

remain almost the same.
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In addition to the f - 8 curves the variations of attenuation

constant are illustrated in Figures (6.8.4), (6.8.5), and (6.8.6). By

comparing the f - B diagrams with the f - a curves, one forward wave can

be used for amplifier devices and one backward wave for oscillator

devices while the other two waves drastically attenuate. The lattice

temperature of semiconductor materials restrict the amplification rate

of devices due to the diffusion and the collision effects, as shown in

figures. The dotted line for room temperature of 300° K is shifted down

from the liquid-nitrogen temperature line of 77°K.

As pointed out in connection with the solid-state traveling-wave

devices, the transferred electron device also has better response of

 
the gain at the higher frequencies.

6.8.2 General Analysis
 

The general solution will be obtained by including the effect of

collision frequencies in both the upper-and lower-valley from Eq. (6.7.9).

The normalized collision frequencies at both valleys are assumed to be

unity. In Figures (6.8.7), (6.8.8) and 6.8.9) the numerically computed

phase constant is plotted as a function of operating frequency in the

range of l m 10 GHz for three different carrier densities. Four waves

correspond to the solution of fourth order equation.

As discussed earlier, the wave shapes for several doping levels

are nearly identical while the phase curves are slightly shifted. Three

figures are similar to the curves shown in Figures (6.8.1), (6.8.2) and

(6.8.3) which were calculated by neglecting the upper-valley collision

frequency.

Numerical solutions of the attenuation constant are plotted in

Figures (6.8.10), (6.8.11) and (6.8.12). Seeing the possibility of
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operating the device as either an amplifier or an oscillator, one has

to investigate two curves shown in the upper quadrant. In order to

find out which curve is fit for an oscillator or an amplifier - device,

the dispersion curce is required to search the direction of wave

propagation. In other words, the distinction between the amplifier and

the oscillator can be determined from the B vs. f curves. Again higher

carrier density sample shows higher amplification as anticipated. For

oscillator devices the 1013 and ION/cm3 sample is more stable than the

lOls/cm3 sample, while for amplifier devices the lOls/cm3 sample is

suggested. This statement supports the basic criterion of n2 product

described in Eq. (2.6.10).

The results of the analysis may be checked with the calculation

of gain by using Eq. (6.7.13).

For a frequency of 10 GHz and an active length of approximately

15 microns, gain is calculated directly from the curve as follows:

(i) lOls/cm3 sample

Gain (db/mm) = 8.68 x 10’3 (-«)

Gain = Gain (db/mm) x 15 x 10‘3

For amplifier: Gain = 1.74 x 103 x 15 x 10‘3 = 26 db

For oscillator: Gain = 4.68 x 102 x 15 x 10'3 = 7 db

(ii) ION/cm3 sample

For amplifier: Gain = 1.86 x 103 x 15 x 10'3 = 28 db

For oscillator: Gain = 1.13 x 103 x 15 x 10‘3 = 17 db

(iii) lOlS/cm3 sample

For amplifier: Gain = 4.21 x 103 x 15 x 10"3 = 63 db

For oscillator: Gain = 3.61 x 103 x 15 x 10-3 = 54 db
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Perlman showed [PEI] the evidence of microwave amplification

experimentally with GaAs device and measured gain of the device. If a

typical noise figure of 15 db for the amplifier devices, which was

suggested by Perlman, is taken into consideration, the above gain

calculations is in good agreement with his experimental results, which

confirms the validity of this approach of analyzing transferred electron

devices.

 



CHAPTER VII

DESIGN AND FABRICATION CONSIDERATIONS

OF PRACTICAL DEVICES

7.1 Introduction
 

The theoretical analysis based on the computer simulation has

revealed a possibility of a high-gain solid-state amplifier in the micro-

wave frequency range. Several important factors must be taken into

account when the experimental device is fabricated. Of these the most

important are the tape lengths, tape pitches, semiconductor materials and

the slowing factor. In addition, other factors may be essential in

designing and fabricating the device.

The criterion stated in Eq. (2.6.10) for wave amplification will

be followed in the subsequent design procedure. Here solid-state

traveling-wave amplifiers will mainly be treated.

Finally, some guidelines will be established after the design

factors are qualitatively discussed.

The design of transferred electron devices is rather simpler than

the solid-state traveling—wave devices. The Gunn devices are comprised

of an active gallium arsenide layer, with or without a GaAs substrate,

and two ohmic contacts. The thickness of the solid-state material is the

major factor which determines the optimum operating frequency. The output

power is a function of the cross sectional area of the wafer and the

conversion efficiency. Usually the ohmic contact on the active layer is

an evaporated film of silver tin alloyed in at several hundred degrees of

celsius.

116
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In designing the traveling-wave solid-state devices, extra care

must be taken in selecting the slow-wave circuit and insulating layer

since they are critical to the device operation. The Operating frequency

in Gunn devices is tuned by using waveguide techniques mechanically such

as iris tuning or an adjustable short. The tuning can also be obtained

electronically with the use of YIGs or varactors. However, the range of

operating frequencies is limited. In solid-state traveling-wave devices .31

the operating frequency is quite broad and generally such a tuning is

not required.

7.2 Effect of the Insulating Layer Between Circuit and Semiconductor
 

 The purpose of using an insulating layer between the slow-wave

circuit and the semiconductor slab is to prevent a short circuit for the

applied drift field.

In the capacitively coupled circuit, such a layer is not required

but a similar layer must be deposited between the fingers of the slow-wave

structure. As was mentioned in Section 5.7, the total gain of the device

is greatly influenced by the insulating layer whose thickness, limited

by integrated circuit technology, should be minimized. A thickness of 1

micron can be achieved by putting the wafer on the high-speed rotating

disk but it is questionable how precise a degree of uniformity can be

obtained in an average laboratory setup.

Besides the effect of the layer thickness, the dielectric constant

of the insulating layer influences the circuit velocity which becomes a

factor in determining the device size. The permittivity of several

insulating materials are given in Table 7.2.1. As can be seen from the

table, the permittivity of most materials for this type of device ranges
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between 3 and 10. Fortunately, the effect of permittivities does not

significantly affect the net gain.

TABLE 7.2.1

DIELECTRIC PERMITTIVITY

 

 

 

Material Dielectric

permittivity

Si02 3 5

Alumina silitate 4.8 THE.

Muscovite mica 7 7.3

Synthetic mica 6.3

Alumina 8.1 10.2

Methylethacrylate 3.6

Kodak KMER 3.8 4.5  
 

It can be concluded that the use of high permittivity material reduces

the transverse dimension of the circuit structure and hence eliminates some

difficulties in the circuit fabrication. In the photo—etching process, if

the tape length is too long, compared with its width dimension, the tape

width lengthens into a concave form due to lense effect and results in the

disconnection of the tape line.

7.3 Selection of Solid-state Materials
 

Many factors are involves in choosing an appropriate semiconductor

material, which affects the performance of the solid-state traveling-wave

devices. Selection of the solid-state material is basically concerned

with the semiconductor losses, the carrier drift velocity and the carrier

concentration density. In addition, the conversion efficiency losses,

circuit losses, contact losses and transmission losses should not be

overlooked. Most of these losses can be minimized if an appropriate

material together with an excellent technique of fabrication is selected.
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Further, cryogenic operation such as at liquid helium (4°K) or

liquid nitrogen (77°K) temperature plays an important role in reducing

some losses.

Solymer expressed the semiconductor loss [801] as:

L5. = 4'35 9:633 [db/m] (7.3.1)

E:0 VCt

where L5 is the loss of semiconductor materials with relative permittivity

Cr, in db per meter and 0t the transverse conductivity in the presence

of the applied drift electric field intensity, i.e. a material which has

the characteristic of a sharp saturation, as far as the transverse

conductivity is concerned. However, when 0t is reduced the longitudinal

conductivity is possibly reduced simultaneously in themetallurgical process

and therefore extreme care must be taken in such a treatment.

Secondly, a material with high relative permittivity would give low

loss, as indicated in Eq. (7.3.1). Referring to Table 5.4.1, Ge is the best,

considering this aspect. For optimum operation the carrier drift velocity

to the thermal ratio is 3.1 as discussed in Section 5.6. This range does

not fall into that of most solid-state materials even under cryogenic

operation. Therefore, the problem is in choosing a reasonable material

which has a nearly close ratio and in deriving a maximum carrier drift velocity.

The carrier density or the carrier resistivity should be considered

since they are related to each other. Theoretically Eq. (5.2.3) indicates

that the gain is saturated at a high doping level. Due to the debunching

effects of carriers in physical sence, too high doping concentration will not

increase the net gain. The appropriate resistivities of semiconductor

materials range from 1 O-cm to 20 O-cm.

Finally, the physical dimensions of the semiconductor wafer must be

minimized to reduce the losses.



120

7.4 Design of Slow-wave Circuit Structure
 

The main function of the periodic structure is to provide an adequate

slowing factor of the propagating waves to match the carrier velocity in a

reasonable length of structure. The slowing factor (s.f) in the construction

of the slow-wave circuit is expressed by the ratio of the light velocity in

the medium to the carrier drift velocity:

 

C.

s.f=

KC: Vg (7.4.1)

where c is the velocity of the light and vg the group velocity of the circuit.

The slowing factor for the traveling-wave amplifier ranges from 103 to 104.

In selecting a slow-wave circuit, qualitative estimates of the slowing

factor can be made by checking the permittivity of the medium and the drift

velocity of the material. In order to overcome the difficulty in constructing

such a large slowing-factor, the permittivity of the material and the carrier

drift velocity should be increased. However, the drift velocity is limited

and therefore increasing the medium permittivity to a maximum is desirable.

Under any circumstances the slowing factor must always be large enough to make

the circuit traveling-wave synchronize with the drifting carrier stream and be

fairly constant over the circuit length.

Also, the complete system of the slow-wave structure should be matched

to a usual transmission line over thr broadest possible frequency range. A

50 0 transmission line is commonly used for the micro-strip line structure.

Here, a meander-line or a helix-tape line will be convenient to match the

microstrip-line. The effect of a ground plane is negligible if the groumiplane

spacing is much greater than the tape spacing. If the circuit is very close

to the ground, some field lines will terminate on the ground plane, and such

effects must be taken into account.

The meander-tape line is shown in Figure 7.4.1. The longitudinal

velocity down the tape-line is written in terms of the circuit dimensions as:

_ d+s . c

V8 h E (7.4.2)

 



121

Since the dispersion curve is not generally a straight line the

dispersion factor fs also should be accounted for in an actual design.

Then the slowing factor can be rewritten as:

h

s°f=deT' fs (7.4.3)
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Figure 7.4.1 A meander-tape line

In practice, fS ranges from 1 m 3 since it varies with the circuit

condition. When 5 = d, the value of f5 is approximately 2. Furthermore,

Butcher suggested that the field distribution down the tape-line is

maximum when s = d and h = 1/41, where A is the wavelength of the

Operating frequency [BU3]. From this statement the optimum relation

between the tape length and the operating frequency can be obtained as:

3
"

I
I

A
l
i
—
I

5%: (7.4.4)

r

One more consideration is the effect of surrounding dielectric

materials around the tape surfaces. When two different types of

dielectric materials are used for the upper and lower surfaces of the

tape-line for insulation, the effective dielectric constant can be

defined by:

 

(7.4.5)
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The above relation holds provided the dielectric deposition of finite

regions is treated.

The connecting devices between rf connectors and the tape-line

use an exponentially or linearly increasing tape until the final width

of the increased sides equals that of the microstrip line.

The meander-tape line is designed in accordance with the above

criteria. A design example of the meander line is given as:

 

Parameter Design value

conductor thickness t = 2m10u

conductor width 5 = lSu

conductor spacing d = 15u

pitch p = 60p

conductor length h = 75000

total width of conductor g = 12000

material used InSb

optimum frequency 2.5 GHZ

The above example was calculated on the basis that u0 = 6 x 107

cm/sec, fg = 2, Cr = 15.7. Similar calculations will be done when

different semiconductors are used.

7.5 Fabrication Considerations of Devices
 

The first step of constructing the slow-wave circuit consists of

drafting a large scale version of the desired circuit, reducing it to a

proper size by a reduction camera and etching an image of the circuit

onto a piece of glass. For constructing a capacitively coupled slow-wave

circuit, one side of the fingers of the meander-line is required for

the first layer of deposition on the semiconductor, and then the other

side of the fingers can be deposited by turning the mask glass upside

down -— making a complete slow-wave structure.
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The semiconductors are cut in a (111) crystal surface orientation and

polished by several grades of sandpaper on rotating disc. The possible

size of the semiconductor slab of InSb is 9x3i<0.l mms. The surface

damage layer is also removed by an ordinary etching technique with the

solution of CP4a ( HNO CH CO H; HF = 5:3:3).
3’ 3 2

The wafers are evaporated with gold of 24:5u thickness in a

vacuum chamber. Then a uniform photoresist pattern is formed on them

with Kodak Shirpley 1350. The photoresist pattern is uniformly deposited

when the disc is rotating at a rate of about 3000 rpm. First meander

type of circuit is manufactured by the photo etching process. To make

a capacitively coupled meander circuit, some dielectric material (mica,

 
SiO2 or Kmer) is deposited on the first type of fingers. The thickness

of the dielectric material is approximately one-half to one micron, which

gives C = .02aa.05 PF/sq.mil.

Another gold evaporation is made to form the other side of the

meander circuit. Such structure can be made from two metal layers of

overlapping bars separated by the dielectric material. Actually three

layers are deposited successively with the metal layers being etched

after deposition. One side of the circuit pattern is shown in Figure

7.5.la and the small portion of the complete circuit is taken by the

enlargement of a microscope as shown in Figure 7.5.1b.

A final assembly of the wafer is connected through a commercial

microstrip line with 50 Q OSM fixture. The circuit is then placed onto

the middle part of the wafer to make carriers flow parallel to the

direction of slow-wave propagation. The substrate under the wafer is

made by alumina. One of the final test structures is presented in

Figure 7.5.lc.



(b)

(c)

Fig 7.5.1
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Slow-wave circuit and test structure of a Solid-state

traveling-wave amplifier. (a) One side of the meander

circuit. (b) A small portion of the complete circuit

after fabrication. (c) A final assembly of the test

structure.
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To establish the optimum drift field ohmic contacts at both

ends of the wafer are formed by evaporating a film of silver tin which

is alloyed in at 600 degrees celsius. Indium ohmic contacts may be

substituted at both ends of semiconductor.

Unfortunately fabricated samples of the InSb, Ge and Si did not

give qualitatively reasonable results as anticipated from the theoretical

analysis. Under the liquid nitrogen temperature, only several dbs of

electronic gain have been recorded. Physically, the result showed the

evidence of coupling between rf circuit waves and carrier waves in the

circuit. For better results several carefulness should be taken into

account and they will be outlined..

Sandpaper polishing is not adequate for this type of device which

requires a high degree of precision. The rough surfaces might be

resulted in non-uniform circuit and be broken at several places. The

input impedance will be high at most frequencies - making a highly

mismatched circuit. However, minor circuit imperfections are unavoidable.

The other factor comes from point contacts for the drift field, which

make a weak coupling of a carrier stream with the rf wave, since the

point contact induces the carrier waves along a thin line between two

contacts. For a stronger coupling the contacts of dc potential would

be better extended -— covering the contact surfaces with silver plates.

Practically, regardless of design or preciseness of fabrication

technique, it is almost inevitable in the laboratory to expect a flat

and ideal characteristics without the accompanying reactive component.

Reactive effects are largely asSociated with the gap and tape widths,

connections of the system and discontinuity at the junction, with

additional reactance being due to the capacitively coupling of the
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meander-tape line in the original design. However, some reactive

elements can be eliminated by adjusting the input and output double-stub

tuners. To improve the mismatch, an additional modification of the

device circuit is suggested. The modification might be made by

utilizing a tapered region at each end of the meander line. The

tapering raises the impedance of the line to a nominal value close to

50 ohms and further reduces the dispersion in the end regions; thus the

impedance is nearly constant over the operating frequency. This technique

can be employed empirically.



CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER DEVELOPMENT

The purpose of this study is to investigate the carrier wave

interactions in solids. Two types of interactions are considered:

the first type of interaction is between the carrier wave in solids and

the circuit wave propagating along the surface of the solids, and the

second type of interaction is due to carrier waves in two adjacent

streams propagated in the same direction.

In these analyses, the effect of lattice vibrations in solids

are taken into account by introducing carrier effective mass and thermal

diffusion. The main work embodied here can be divided into three parts:

theoretical analysis, computer simulation, design and fabrication

considerations.

The general theory of two stream instability was developed ——

leading to a clearer description of Gunn devices. The dispersion and

attenuation curves are presented. This two stream analysis given here

was checked closely with the experimental results published recently.

The results show that the gain of the interaction is proportional

to the doping level of the semiconductor, which was expected since a

higher power output is possible with more charged carriers taking part

in the interaction. However, it is also expected that the gain will

level off as the dOping reaches a high level, which means the collision

effect will be dominated.

Also, investigated was the second type of wave interaction due to

the coupling of a drifting stream of carriers with the rf circuit
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attained by evaporating gold on the solid-state materials. The slow wave

circuit used was a capacitively coupled meander-tape line. Such a

complicated structure is advantageous because the dc drift field will.

not be disturbed by the presence of the slow-wave circuit. As a result,

the drift velocity of the carriers will be reasonably uniform.

A two dimensional boundary problem of slow-wave circuit has been

carried out. Numerical solutions for commonly used materials such as

Si, Ge, GaAs and InSb were obtained. Based upon dispersion equations,

derived from the two dimensional boundary conditions, instability

characteristics of carrier waves propagating along the semiconductor were

obtained for continuous type of tape circuit model and capacitively

coupled tape circuit model. It has been demonstrated that an optimum gain

of the device is a strong function of insulating layer thickness, circuit

velocity, collision frequency and carrier drift velocity. The insulating

layer impairs operation drastically because the electromagnetic field of

the tape line decreases rapidly in the transverse direction. The

variation of the net gain as a function of circuit velocity was anticipated.

It was also found that the ratio of carrier drift to thermal velocity is

3.0 for the highest attainable gain. The collision frequency dependence

of the gain confirmed the Vural's hypothesis which collisions tend only

to decrease the amplification.

Theoretically, traveling-wave interaction in solids shows good

gain-frequency characteristics, compared to most of the classical micro-

wave active device. This is an attractive feature for the solid-state

traveling-wave amplifier device, which may be a potential application

for space communication. In reality, however, the inevitable circuit loss,

fabrication loss and the reduction of carrier mobility in the surface will

reduce the gain significantly. Under optimum conditions, both InSb and
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Ge give highest gain. Furthermore, InSb has the best velocity vs. field

characteristic which is crucial in design criterion concerning device

fabrication.

As has been mentioned, the device has potential possibilities in

broad band high frequency operation. Therefore, solid-state devices

appear promising as a means of improving the operation efficiency when

considering its future applicability.

At the present stage of development a few outlines are suggested

for further improvement based upon the analysis. Primarily the best

result of this type of device will heavily depend upon prOper design

and fabrication. Further work in fabricating comparatively perfect

 meander circuit lines may be developed with electron-beam scanning

techniques. This method will reduce the tape size in length and width,

and then increase the optimum Operating frequencies of the device up to

nearly 40 GHZ. It is also desirable to have a smoothly lapped semi-

conductor surface before evaporating gold for making fine circuit

structure. Matching the device structure to the external circuit system

is also a serious problem.

The gold bond wire technique presently used is definitely not an

ideal method. The ohmic contact for the dc supply should be made as broad

as the wafer in a vacuum chamber so that a uniform dc field can be

established across the sample. If such a contact can be made, then a

broader active region will result, which in turn will give better inter-

action. The group velocity of propagating carrier waves varies with

operating frequencies, which means the slowing factor should be adjusted

with frequencies. Therefore, a modification on the circuit part should

be also developed to represent a close correlation between wave propagation

and slowing factor of the circuit.
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APPENDIX A

PROOFS OF WAVE THEOREMS IN THE PERIODIC STRUCTURE

A.l Floquet's theorem
 

The theorem is true whether or not the structure contains losses

j(wt-kz)
as long as it is periodic. If the wave function e is assumed

for the solution of wave propagation, the electric or magnetic field is

written as

+ (wt-k2)

K(X.y.2.t) = A(x,Y.Z)eu (A-l)

 

where the z-dependence in the factor A (x,y,z) is restricted to a function

with periodic translational symmetry of a period. Suppose the field

at the starting point zl is Al. The wave moves to 22 = z1

is pitch of the periodic structure such that fp = 1. Then, if A2 is the

+ p where p

field at zz, A1 and A2 become

j(wt-kz1)

A1(X.y.2.t) = A1(x,y.2)e (A-Z)

A2(x,y,zl+np,t) = K2(X,Y,Zl+np)e3{wt
'k(zl+np)}

where n = 0, il, :2, :3, ..........

From the periodic translation symmetry condition, A (x,y,zl) =

A (x,y,z1 + np) which implies that:

-J' knP
K21x.y.zl+np) = Kl1x.y,zl)e (3.4)

The field vector A at two points on a periodic transmission line

separated by n periods differs by the complex constant e-sz

q.e.d.
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A.2 Power flow theorem
 

Consider the structure to be divided by a series of planes

perpendicular to the axis spaced by the periodic distance p. These

surfaces extend perpendicular to the axis to infinity for an unbounded

structure or terminate on perfectly conduction boundaries if the

structure is so bounded. Over these surfaces

+ +* ->

jExH - ds = 0 (A.5)

s

where the superscript * denotes complex conjugate. The integral is zero

on any metal boundaries where the tangential component of E is zero or

at infinity the fields fall off at least as fast as %-.

Substituting Eq. (2.5.9) into Eq. (A.5), and applying the

divergence theorem, one obtains

if Ennis”) - 11‘s? =Jv ~ [Ex(VxE*)]dv

S V

J{.[(ng*)'(VXE) - E ' (VxVxE*)]dv

v

['ijH ' (jwuH*) - E ' (wzucE*)]dv

V
(A.6)

. 2.

D1V1d1ng the above equation by Wm 0 gives

* *

%j%ufi-de=%jEE-Edv (A.7)

V V

It can be seen that in the pass band the time average stored

electrical energy per period is equal to the time average stored magnetic

energy per period, from Eq. (A.7). Based on the statement, the wave theorem

will be shown. Applying Maxwell's equations, Eq. (A.7) is rewritten as,

1107113") . (Vx‘E’) - 3 - (wzueE*)]dv = 0 (A.8)

v

Differentiate Eq. (A. 8) with respect to w.

J(Vx§*)-(ang-a—)dv
+fv (mg—E ) mm, _ 13Zuefgg , ydv (A.9)

V

V

Rewriting Eq. (A.9) gives

+

2 ReLJr (nggd ' (VXE*)dv - EE-° (VxVxE*)dv}

v v

 

 l .
1
1
7
:
:

"
‘
1
‘
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l
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'ZNUEJI E - E* dv = O

v

Using vector identity B~VxA-A-VxB = V-(AxB), 2Re£JrV- a

v

           

- Zwue E3E* dv = 0

v

and using the divergence theorem on the first term,

2Re{j g—E— x (VxE*) d5 - 23101:} E°E* dv = 0 (A.10)

s v

Neither metal walls nor surface at infinity contribute to the

surface integral term, so only consider the surface integral over the

two surfaces perpendicular to the axis bounding one cell of the structure.

Let subscript 1 and 2 designate the quantities at these two surfaces.

From the Floquet theorem the following relations hold:

 

._) _'

132 = E1 e 3“? (3.11)

.1)

313 315 . .

2 .. ___1_ -JBp - d8 1 -JBp

d0) - 301 e - J p d0) 1:1 e (A.12)

Separating the surface integral of Eq. (A.10) and using Eqs. (A.11)

and (A. 1%).

a *

2Re{ -,-—x(VxEl*1+)-d§ sz—xwxfi;) 1132-21331; E-E dv=0

S‘1

03’ 3'31

ZRBJI;E__X(VXEI *°) l+f:—w1— x(VxE1*-)-2dSj—p—j$2El x

528

117111251") °dS2-2wue-f E-E’k dv (A.13)

V

Since SI and S2 are in opposite directions, the first two integrals cancel

‘ *

out. From Eqs. (A.11) and (A.12) E1 x (VxE1*) = E2 eJBpx (VxE2 )

e-j8p_-E2 x (VxE2 )

Then Eq. (A.13) is rewritten as:

,dB -> .+* +_ .->*

2Re{- Jp 35;]; E2 x (Jmqu ) dS2 - 2003 V E E dv

*

2133: 313’ dv (A. 14)

V
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Multiplying Eq. (A.14) by 4m: p gg-and applying Eq. (A.7) leads to:

i * *

%33f§xfi ~2=d§-v%lgjv(—eE-E +%ufi°fi)dv (A.15)
s P

2

where

V = §2_= group velocity (A.16)

g d8

which shows the main wave theorem.

 



 

APPEND IX 3

TABLE OF ELECTFHHACHETIC FIELD SOLUTIONS FOR ALL REGIONS

 

 

 

 

 

  

 
 

  
 

 

 

     

 

 
 

Region case-s TH Modes
TE Myles

ax 111x (wt-k2) ,. ax. jhrt-kz)

x - 13 General F A(e re )r‘] 1 ' [L )0

12 Y

H

[- ‘ I '11 i C 21'
r, . ”5“” ‘77 . . .. 2 '2 ax (wt-k7.)

:3. ,1-. arm E fir! nay. ‘ .1 bit 93 (at. kz) H : -k Ce 2)

h-‘ul-Lin 1x a 1 5 12 1x w

,‘ nt-J; i

I. J

1 2 2 2

2 f -k — -— -' C r a

s, C ‘ r2 J: a ) )0": K ) jun-kt) 2 2 ax Mart-112)

H 2 ;‘ 1 -K :11: t 21 bx e H - ] Ce

1'; -—-—:‘s ._._1, ——————T—-‘ e 12 U

‘ )w a 2 ,b

a - j-

9

. , 51" r1". jlwt-kz) 1: ‘ 31" (just-112)
. _ .~ ; 3 . _ I" 1.. e '.[w kuaK . £12 A11: r e j: 1y 1

r 1 ,
nab 1.1-j—J . . e.

' — C t a )1

1x 1" 1 l l (11 b1" 33‘“ k“ 2 2 1 ' jun-32.1
F e + e H - -k——1‘ e. e

111 a 1. I; ‘ 11: w l

1 L a 2 j 1

1

1

\ wzax 'kuw2 1x iczra ax

1'2'1 1' 1 1 3 o r 1 tht-kz) 2 2 1 1 _jtwt-kz)
H 111—; {e - —————-—«.~ (1 H = ————c1e 1..
1y a . , .2 12 w

1 (w-ku -].-. 11)
o 2

01115101113,“ T'- a2 . ‘(wt-kz) 2 flat-k2)

Eu ‘ ”‘2" I" 1y - '2 c4

(v-o) L.

‘ 2

r'k ‘1’ -' k 1 C2 "2 2 wan-321
E 1—A e L 13’ (Ht 2 H = -k———-C e e1 I

1x a 2 1 w

L2 J

r, 2 '
11‘ 2’ a d X1H! H a X -_ l._ .

’ « '1 2 ‘ - ‘ ‘ J 2 2 2 (Vt-kl)

H -——12 11 - ——_‘)I e e'JWt k2, H - ————v"'- e. 93

1y 3 2 12 a 2

2 wtw-ku_)

U

“’X\d General '- ‘l x T i . -le ‘11)! j(Vt-kz).,_ _ . - E F o 1 + 1‘ e 1 ejhrt-kz) E E 678 + 53,3 9

1: 2 3 _ 1y -

Circuit

Fegicn m -V x . x

‘ -, x ’1 X . '1 1 1 . j(ut-kz)
. I . . vt-kz) .. —— k[ t ” I =

-2551" e 1 - F e 1 e](
H — - G e u e . L.

E111 L1 2 3 ' 11: ;‘~. 2 2 3

1 1

' _ V X jVL ‘y' —! X

)ch '1x '1 . j(wt-kz) H . _ 1110 e l _ 0
H - ——- r e - r e 1 e 12 2 2 3

lY Y 2 3 =

1 1

- X , _.' . ‘ —k'

de General B F e ‘3 ejlwt-Kz)
.2 [a e 3jej1vt a)

Circuit - j

_ HE k -] x ,

Region 13 11M j(wt-kz) H .. - 3 G e. 1 ejhrt-kz)

I51x - I:1” 0
1x , 2 1

1} d3

F 'we ij 1. *1 X _
l - 13 j(wt-kz) H _ - 3 3 c e 3 ejhvt kt)

H1 - Fle e 12 2 1

Y 13 33

NOTE: Field solutions in solid-state region are obtained under the assumption of the thick semiconductor slab for

convenience. However, these solutions are not used in the numerical analysis.
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APPENDIX C

DERIVATION OF DISPERSION RELATION BY ADMITTANCE MATCHING METHOD

First, the admittance functions in the solid-state and the

circuit regions will be obtained from solutions of coefficients inter-

related in Section 4.5. The admittance functions in both spaces are

connected on the boundary surface x = O and will determina a dispersion

characteristic equation of the complete coupled system.

By manipulating Eq. (4.5.11), one can find the ratio of B2 to 81’

 

3 a+y e (0.1)
4

In the solid-state region the general admittance function for the TE

waves evaluated at the semiconductor surface x=o- is, as the ratio of H12

a tanh a6 +74

 

YTE = quo . a +Y4 tanh a6 (C.2)

By using Eq. (4.5.12) the corresponding admittance function for

the TM waves is then, as the ratio of H1y to Elz

 

  

 

 

2 2
. b -k

2 2 (32’k2)'3 T

a -k (1 - H ) +

C c2 a 2 a2_.b2

= 2 2 . 32"

J0) 1+ “2+ 113+ II“ ((3.3)

and by simplifying

Y5 = 3311;“ E

y D (C.4)
1,

where

-233 h2 2 “2
N = (e -1)[(31+§—) cosh 33 + (2h1h2*Rh1 +§—) 5133 33] -

(1+e’235)(331+32) sinh 33
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3

0 = e 35+(2e'235-1)[(31+§3) cosh 33 + (3+é) sinh 33]—(23’236+1)

[2 cosh 33+(331+32) sinh 33]

Eq. (C.3) may be reduced to

32 32

Y5 = chu . (hl+E—)cosh b6 + R(h1+§— + l) 51nh b6

Y4 -33 h2 1 h2
- e +(hl+§—-+2)cosh 33+[(3+§)+3(31+§—)] sinh 33 (C.4)

previded that a6>>1 which is practically true.

Similarly, the admittance function of the circuit region at the

boundary x = 0+ can be obtained. Accordingly, from Eqs. (4.5.33) and

(4.5.34) the admittance of the circuit region is, for the TE waves,

 

a-y1+ _
. 1_(;:__) e 2a6

Y9 = 1:1.(2_9 Y“
TE mu Y a'Yu _

o 1 1+( ) e 2ad (C.S)

3+7“

The circuit propagation constants are simplified by yléyaéyué k

2 2 2

since for slow waves kzé>81, k >>B§ and k >>83. From definitions of

a2 and b2 they may be approximated by a 5 k and b écup/vt where

2

2 w

32: kz[1-(§Ez) (1-1;f§p

2

2 92_ 2 w 2

b = (- ) [1 + k / p ]

Vt (T)
t

The last statement can be justified as:

 

  

 

 

m + K V

[p t >> -w+ku

(1)

v

i9_.= .23.: 10 3«.10 4

C2 C2

and

k
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With these assumptions, notice that the TE admittance in the

solid-state region and circuit region are exactly the same and are not

affected by the presence of either the circuit or the semiconductor,

hence there is no discontinuity of the TB fields at x = 0.

The corresponding admittance function for the TM waves in the

circuit region is, in straightforward manner, calculated with the

. . . . c .
coeff1c1ents solutions. At the boundary surface the admittance Y 15

  

 

. . _ _ Y

yc = chl . K3(Fl+ tanh Yld) KH(F2 tanh 1d) (C.6)

Yl -1<3(I‘l tanh Yld +1) +KQ(F2tanhyld)

The admittance, where the same dielectric materials surrounding

the meander line are used, can be obtained from a special case of the I

general solution with cl=c and yl=y3, which are reduced to

3

  

 

 

. 2 d 2 2 2 d0 0 Y Y
ye: chl . -K3+KuF(1+C 1 )Yl/BlsA-e 1

Y1 -Kg‘*K2[(1-e2Yld)v12/B:l + eZYId] (C.7)

where

y -a
_ 1 -2a6

K3 — Y1+3 (l-e ) (C.8)

2
Y -a

o _ 1 -236

K3 -1- (Y +a) e (C.9)

1

In practice, when the device sample is fabricated it is easier

either to choose a single material for the insulating layers or to leave

the top region as a free space.

Eq. (C.l3) can be more simplified, depending upon the following

situations:

(1) Case 1: d = O

 

1 .k
~[2(—-B ) -1] (0.10)

51
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(2) Case 2: lyld|<< 1

For small x, exp(x) é 1+x, then the admittance becomes

2
. le - 2k (l-kd)jmc

k

C

Y = 1  

2333-3:1 (0.11)

(3) Case 3: IYldlf 1

This case may be better approximated exp(x) by

1 2

1+—x + 5—-
2 12

l x}.

1'2" I 12

Hence the admittance is

 

 

 

.- 2 4 2 2 2 2

YC _ chl . 2d k +(6-d le)k '3d851k-3851

_ k 3 2 2 2 2 2
_6dk +d 851k +3d851k+38 $1

._"7

(4) Case 4: extremely large yld such that e 5Y1d<<1

jmc

YC =' k 1
(0.13)

The case 4 implies that very thick thickness of insulating layer are

involved, and hence there is no chance for the carriers to interact with

the circuit.

The admittance of the slow-wave circuit space and the solid-state

space must be connected at the interface of x=O, and thus Eqs. (C.3)

and (C.6) yield the general dispersion relation.

 



APPENDIX C

THE COMPUTING METHOD FOR THE COMPLEX ROOTS

OF A DISPERSION EQUATION WITH COMPLEX COEFFICIENTS

As a matter of fact, all classical methods require a large amount

of skill and judgement for isolation and separation of complex roots of

a polynomial equation. Quite often one encounters an unexpected

difficulty in taking a root as a starting interaction solution. With

these difficulties in mind Lehmer has constructed a method which can

easily capture approximate locations of roots. Therefore, Lehmer's

method is used to find approximate values of the roots and then the

faster successive interaction by Newton - Raphson method is used to

locate the roots within the specified convergence criterion.

Let a function P (k) be analytic inside and on a closed contour

C except for at most a finite number of poles interior to C. Also, let

P (k) have no zeros on C and at most a finite number of zeros interior

to C. Then, if C is described in the positive sense, it is a well-

known fact that

 

2H P(k)

1

1. I p——(—k)—dk=N-N (0.1)
J c 0 P

where No is the total number of zeros of P (k) inside C, a zero of order

1110 being times, and Np is the total number of poles inside C if a pole

of order mp is counted mp times. As shown in the dispersion equation,

N = O and then the integral gives the number or roots for the polynomial

function.
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To capture a root of the polynomial P (k) = O by Lehmer's

method, first remove zero roots, c.f. flow chart, P (O) = 0. One

starts with the unit circle and begin to process in doubline (or having)

the radius at each step. Since the roots are bounded, one soon finds

an annulus R<|k|<2R where the circle of radius 2R contains a root of

P (k) while the inner circle is free of roots. This annulus can be

completely covered by eight overlapping circles each of radius R1 =

SHR C2Hnj/
SR/6 with centers at —3—-

these circles in turn, one soon finds a circle containing a root of P (k).

, (n=0(l)7). Repeating the process on

This completes step 1. Calling the center of this circle C1, one finds

2, such that 2R2 contains a root of

P (k) but whose inner circle is free of roots. Eight smaller circles

as before, an annulus R2 <Ik-C1I< 2R

 

of radius 5R2/6 at center C2 cover this annulus and find a circle

containing a root. This completes second step.

After n steps one has a circle of radius not exceeding 2R (S/lZ)“,

and probably smaller containing a root. This procedure gives the small

roots first. In this routine one obtains roots as a first approximation,

upon completion of 8 steps with Lehmer's method.

Newton-Raphson's method is applied to improve our estimation of

the root obtained by Lehmer's method, Taylor series expansion is then

used to a polynomial.

h h2
P(k+h) = P(k)+P'(k)—l-! + woof + (0.2)

LGt a ToOt of the polynomial be k = kl’ which can be obtained by the

Lehmer method. Suppose, however, that the root is actually k1 + h.

Then, in the Taylor expansion of P (k) becomes P(kl+h) = P (k1) +

hP' (k1) + (0.3)
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The deviation in the real root is h. If h is small, h can be written

as

h = P(k1)

01(k1) (0.4)

 

Then the iteraled approximation to the actual root gives the general

formula

_ p(k2)

1+1 ' k1 ' 

Pl(ki) (D S) ‘—

Iteration steps will be continued until Relkz-ki_l| f DELTA 2 and 1m]

ki—ki-IA f DELTA 2 where DELTA 2 is a permissible error which is

taken 10-7in our computer program.

 This new approximation determines one root of the polynomial and p

P(k)

1
k-k

same fashion where k1 is a first root of p (k). Continuing the procedure,

 

a reduced polynomial P1(k) = is then computed and solved in the

all roots are finally obtained. The flow chart explaining the procedure

is illustrated in Figure D.1.
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C Stait D

FR,FI,NORDER

RR,RI, DELTAZ

 

 

Set by calling

program

Remove zero

roots, set I: P(k)= P (k)

number of zero k-(RR(I-l)+jRI(I-l))

roots +1

I

 

 
 

 

 

      

 
 

Scale polynom-

ial so that

highest order

coefficient is

equal to 1

Obtain first

approximation

for root I by

completing 8

steps of Lehmer

method

Improve root I with

Newton-Raphson method

until _7

DELTAZ 10

 

 

 
 

 

  
 

 

    
 

 

 

 

Figure D.1 Flow chart for computer solutions of a polynomial.
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