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ABSTRACT

A NEW METHOD FOR CASCADE SYNTHESIS OF l-PORT PASSIVE

NETWORKS WITH RECIPROCAI. AND NONRECIPROCAL LOSSLESS

2-PORTS DESCRIBED BY SCATTERING PARAMETERS

by Chih- yu Kao

The synthesis procedure presented in this thesis can be

considered as an extension of the Darlington and the Talbot syn-

thesis procedures. However, the synthesis procedure makes use

of the scattering parameters and nonreciprocal elements are

admitted in the realization. An existence theorem is stated and

proved in the thesis, which serves as the basis for the synthesis

procedure. This theorem states that given a reflection coefficient

the corresponding l-port network (R LCTI") can be realized in

terms of a lossless 2-port network (LCTF), N , called the ele-
1

mentary section, terminated on another l-port network (R LCTF),

N2. The proof of the theorem is such that it establishes the

existence of this configuration and also describes a new synthesis

procedure. The principal features of this synthesis method are:

(1) One simply deals with real polynomials rather than real

rational functions.



(2)

(3)

(4)

- Z - Chih-yu Kao

In each cycle of the procedure both the networks N1 and N2

are characterized simultaneously and it is not necessary to

realize Nl for the application of the synthesis procedure to

the next cycle.

All the computations require only the division of real poly-

nomials which can be accomplished by means of the modified

Routh's array described in the thesis. Due to the existence

of such a simple algorithm it is feasible to carry out the actual

computation by digital computers.

All the elementary lossless 2-port networks are fully charac-

terized and given in a table. By referring to this table, the

parameters obtained for N in each synthesis cycle yield an

1

immediate realization of N1.
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CHAPTER I

INTR ODUCTION

The problem of cascade synthesis of passive electrical

networks has been studied by several authors [DA 1, TA 1, HA 1,

YO 1, RU 1, BE 4]. However, the formulation of the problem as

well as the techniques developed by these authors differ from each

other. In Darlington's synthesis method [DA 1], a driving- point

immittance function is assumed to be given and this function is

realized as a reciprocal lossless 2-port network terminated in a

resistance. The reciprocal lossless 2-port network is then realized

by cascade connected combinations of four different kind of sections,

:5

o——-—————o 0 <5 0 T 4)

called type A, B, C and D, as shown in Fig. 1.1.

o—ETJ—o

  
   

Type A Type B Type C Type D

Fig. 1.1

The branches in the first two types consist of either a sin-

gle inductance or capacitance, or a series-tuned circuit or a

parallel-tuned circuit. Type C is called the Brune section which





realizes either pair of purely imaginary or purely real transmission

zeros which are symmetrically located with respect to the origin.

Finally, type D is called the Darlington section which realizes com-

plex transmission zeros. If the numerator of the even part of the

immittance function is not a perfect square, the numerator and the

denOminator of the immittance function are multiplied by a suitable

Hurwitz polynomial, the so-called surplus factor. Such a factor,

however, is always avoided if gyrators are admitted in the realization

[HA 1]. Talbot [TA 1], on the other hand, used a chain matrix

approach, as Piloty did, and presented a method for synthesizing

reactance 2-port networks by factorizing the chain matrix into the

product of two such matrices of desired degrees. Youla [ YO 1]

generalized Richard's theorem and defined a set of indexes and a

polynomial chain matrix which are related to the real and imagi—

nary parts of the given immittance functions. The element values

of the various sections are obtained in closed form in terms of

three or six indexes depending upon the complexity of the section.

In this method, the gyrator is also included to take the nonrecipro-

cal realization into consideration.

The scattering parameter formulation of passive n-port

electrical networks and the properties of the scattering matrix

have been treated in the literature by several authors [BE 1, BE 3,

OO 2 and others]. The scattering parameters describe the



performance of a network under any specified terminating conditions.

The power transferred from a generator with a finite internal im-

pedance to a resistive load is frequently best handled by scattering

matrix [CA 2]. However, there are networks which are called

degenerate or double degenerate which do not possess either an

impedance or an admittance matrix or both [BE 1].

Rubin and Carlin [RU l, RU 2] presented a cascade synthe-

sis procedure for lossless reciprocal and nonreciprocal Z-port

networks. ”Nonreciprocal" transmission zeros are realized by

four canonic nonreciprocal 2-port networks which are analogous

to Darlington's A, B, C and D networks. Belevitch [BE 4] utilized

the fact that the product of two passive scattering matrices is a

passive scattering matrix. The corresponding n-port network is

realized by interconnecting the component n- port networks by

gyrators.

The synthesis method presented in this thesis can be con-

sidered as an extention of the Darlington and the Talbot synthesis

procedures and utilizes the scattering parameters. In this pro-

cedure nonreciprocal sections are also allowed.

Each elementary section is analyzed on the basis of the

necessary and sufficient conditions for a 2 x 2 matrix to be the

scattering matrix of a lossless 2-port network and formulas are

obtained for the determination of its element values. Since gyrators



are allowed, the Darlington type D section can be considered as

cascade connected two Brune sections each of which is series-

series connected with a gyrator. This enables us to avoid surplus

factors which may be needed in Dariington's procedure. Note that

the degrees of the numerator and the denominator polynomials of

the entries of the scattering matrices corresponding to these elemen-

tary sections do not exceed 2. This gives great simplification in

actual computations.

The synthesis procedure is based on an existence theorem

and the division algorithm described in the thesis. The existence

theorem simply states that given a reflection coefficient, the para-

meters of a 2 x 2 scattering matrix corresponding to a lossless

elementary section and the reflection coefficient for the remaining

l-port network do in fact exist. The division algorithm yields a

simple computation for the determination of the said parameters.

Once these parameters (polynomials) are established, the

corresponding elementary section as well as the characterization

of the remaining 1-port network are obtained simultaneously.



CHAPTER II

SCATTERING MATRICES OF PASSIVE 2-PORT NETWORKS

2. 1. Introduction
 

The scattering parameter formulation of passive n-port

electrical networks and the properties of the scattering matrix have

been treated in the literature by several authors [BE 1, BE 3, OO 2

and others]. Procedures for realizing the scattering matrices

with reciprocal and nonreciprocal passive n—port networks are also

available. However, the realization procedures for reciprocal and

nonreciprocal passive n-port networks were considered separately.

Recently, all of these procedures have been integrated in a book by

Newcomb [NE 1].

In this chapter, the well known results on the necessary and

sufficient conditions for a given matrix of a passive lossless n-port

network containing positive inductors (L), positive capacitors (C),

ideal transformers (T) and gyrators (F) are summarized. Since

our primary interest in this thesis is the cascade realization of

2-port LCTI" networks, the relations among the entries of the

corresponding 2 x 2 scattering matrix are emphasized and these

basic relations are expressed in terms of real polynomials in a

complex variable X = O + ju).
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At the end of this chapter, a table of elementary 2-port sections

together with their scattering matrices is given. Some of these sections

are to be used as the basic sections in the cascade synthesis procedure

presented in this thesis.

2. 2 Scattering Matrix of a Passive Lossless N-Port Network

VConsider the n-port network in Fig. 2.2.1. Let v1, v2, . . , n

and i1, i2, . . , in be the port voltages and port currents, respectively.

The scattering matrix S of the n- port network is defined by

    
 

 

 

 
     

S(V+I) = v-1 (2.2.1)

where

.1 H

v: V2 and I: 12 (2.2.2)

v 1

n n

:— ____________ ‘I
i _._ .19 I

+ 1 . { O4—N\,——O———I :

' I

V1 , I I

O————‘I
I Cr‘r Crv :

I
. I

. N 77—» : N :

i ' I

+o '—'- o: M 0 ° , In . :

I

n I i C |

t“*———2 0: 3N
I _______________ J

Fig. 2.2.1 Fig. 2.2.2

The network Nau in Fig. 2.2.2, obtained from the n-port network

N by augmenting each of its ports by a unit resistance, has a termi-

nal admittance matrix 7'), which is related to S by



- 7 ..

S = Un-Zn (2.2.3)

where Un is a unit matrix of order n. This relation can be derived

easily by a direct inspection of Fig. 2.2.2. If the original n- port has

the terminal impedance matrix Z, then the following relations are

immediate,

s = (z - Un)(Z + Un)‘1 (2.2.4)

-1 -1
z = 77 -Un = (Un+S)(Un-S) (2.2.5)

Similar relations hold for the terminal admittance matrix for the

original n- port network.

The power input to the n- port network is given by

T >:<

(v +1T"‘)(Un .. sTRe(vT*I) = *S)(v +1) (2.2.6)l
4

where Re denotes “the real part of, ” the superscript asterisk and

T denote the complex conjugation and the transposition, respectively.

Also, as will be used later, the subscript asterisk is defined as

5*(k) = S(-)\).

The terminal admittance matrix 17 , of the augmented network

is a positive real matrix, whose entries are necessarily finite on

the imaginary axis, because of the unit terminal resistances. There-

fore, by Eq. (2. 2. 3), the entries of S are analytic in the right half

plane, including jw-axis, i. e. , the denominators of these entries

are strictly Hurwitz polynomials. Such matrices are called Hur-

witzian [BE 1 ]. The power input to the passive network can not be

negative, hence, as implied by Eq. (2. 2. 6) the Hermitian matrix



_ 8 ..

T’i‘ . . . . . * .
Un - S S is non-negative definite. Since S (X) = SAX) for X = 30),

T . . . . .

then Un - 5*5 is also Hermitian for k 2 y». In general, a matrix

having this property is called para-Hermitian and is said to be

non-negative definite if the associated Hermitian form is non-negative

. . . T . . .

definite on k = 300. Hence Un - S*S lS para-Hermitian and non-

negative definite.

For a passive lossless network, since the power input is

zero, Eq. (2.2.6) implies

o s I >3

i.e. , S is a unitary matrix for k = jw. However, k = ->\ for

. . T . . . .
X = fig and the relation Sks = Un holds on the entire imaginary axis.

T .

Hence S*S 2 Un holds everywhere. Therefore, S is also called

para-unitary. The realizability conditions for the scattering matrix

S by means of a passive lossless n- port network containing positive

inductors, capacitors, ideal transformers and gyrators can now be

stated as in the following theorem.

Theorem 2.2.1: [BE 3, OO 1, NE 1] The necessary and
 

sufficient conditions for a matrix S to be the scattering matrix of

an n-port network containing positive inductors, capacitors, ideal

transformers and gyrators are:

1. S is Hurwitzian.

2. S is para-unitary

Only a sketch of the proof of this theorem will be given here.

The well known theorems listed in Section 2. 5 are needed for the
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proof. The necessity of the conditions has been shown in the pre-

ceding discussion, therefore, only the sufficiency of the conditions

will be demonstrated.

. . . . . . . T*

Since S is Hurw1tzian and unitary for k = 30), i. e. , Un = S

(jw)S(j(i)), then Un - ST*()\)S(X) _>_ 0 for O > 0, hence S is bounded-real.

By Theorem 2. 5.1 it can be seen easily that (S + Un) and (Un - S)

are both positive-real.

If (Un - S).1 exists, then Z 2 (Un + S)(Un - S).1 is positive-

real (Theorem 2. 5. 2) and is realizable as the terminal impedance

matrix of an n- port network. Since S is para-unitary, we have

T

\‘o
to

-l T T"
Z=(U +S)(U -S)=-(U +s‘,,)(U -s,,)=-z

n n n r n >-

which implies that Z is actually the impedance matrix of a lossless

n-port network.

If Un - S is singular and has a normal rank r, r > 0, then

there exists a real constant orthogonal matrix N such that

T
NSN= S'f‘U

n-r

with 8' being bounded-real and (Ur - S') 1 existing. For 8', there

exists 2' which is positive-real and has a network representation.

By similar reasoning as before, we have

which implies that the realized network is lossless. The transfor-

mation matrix N corresponds to the turns-ratio matrix of an ideal

transformer network of Zn- ports.

As a result, S can be realized by a Zn-port ideal transformer

with n-r of its ports being open circuited and the remaining r ports
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being terminated with an r-port network with a terminal impedance

matrix 2'. This proves that the conditions 1 and 2 are sufficient.

2. 3 Scattering Matrices of Passive Lossless Z-port Networks
 

It was‘ shown in the foregoing section that the necessary and

sufficient conditions for an nxn matrix S to be the scattering matrix

of a passive lossless n-port network are:(1) S be Hurwitzian, and

(2) S be para-unitary. Condition (1) merely states that the denomi-

nator of each entry of S is strictly Hurwitzian and the degree of the

numerator can not exceed that of the denominator.

From condition (2), for the 2-port case, further relations on

the entries of S follow. If

s = 11 12 (2.3.1)

S21 S22

where Si.'s are real rational functions of Mi, J = l, 2), then

S S S «I S :'<

55:: 11 12 11' 21 = U2 (2.3.2)

S21 822 S12 ‘ S22 ‘

01'

511511>I< I 312512: ___

s s , +5 5 = o
11 214 12 22. (2.3.3)

s‘Zisiich'SzzSirk : 0

s 8 +5 3 = 1
21 21* 22 22*

Let Sij = sij/S’ where s is the least common denominator, then we

have
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(2.3.4)

.3.5a)

.3.5b)

.3.5c)

S’11511=:< + Sizs1z=z= ” 55

811521* + 81252295 I O

s2151M I Szzslze “ 0

521621==< + Szzszze : 53*

Also by considering 8:8 = U2 the following relations can be obtained.

5115119. + 512512.: = 35* (2

812811=I< + Szzszm : 0 (2

Sllsll==< _ 522322=I<
(2

SIZSIM : 521521=I<
(2

From Eq. (2. 3. 5b) we have

S22 2 “Smells/821*

If f0 = GCD(le, 521*), i.e. , s = f09* and s 2 £045 and GCD

12 21*

(2.

. 3.5d)

3.6)

(9*, 4)) = 1, then fo cancels in Eq. (2. 3.6) and the remaining factor

of 321* must diVide 511*. Therefore we have

311* : ho>¥<¢

= 9

812 f0 *

521 = fo>¥=¢>k

Now, Eq. (2. 3. 5d) yields the following relation.

f e f e = fo*¢*f0¢
O 3:: 0 >:<

01'

q:

Since GCD (9,.,.¢) ; 1, it follows that

9.9 = ¢*¢ (2.3.7)

4) : i9 (2.3.8)
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Therefore,

S12 : foe»: _—_ ifo¢.,.
(2.3.9)

821 = ifoees = forts (2.3.10)

811 : ihoe>i< = halt). (2.3.11)

S22 : -ho*e* z ¥h0*¢*
(2.3.12)

As a conclusion, than: is a common factor of s“, 312, 521 and 322,

and by Eq. (2. 3. 5a) ¢¢$ must divide 55w As <1>* and s can not have

common factors, (otherwise 3 would not be the least common denomi-

nator) ¢* must divide 5*. Therefore, ct divides s and is a strictly

Hurwitz polynomial. Let s = ¢go, then

S : bod) :1: :- f0¢>k

_1_

¢go f ":¢:' ; h0:'<¢ >‘<

 

._ __L_ Ph «In, if 4’45]

’ ¢2g ° " ° “ (2.3.13)

0 f O*¢¢ :k ¥ h0*¢¢ >k

or

1 p iR

S = 6 (2.3.14)

R T- P

In this expression, 0 is a strictly Hurwitz polynomial. Note

that, due to Eq. (2. 3.5a), the polynomials P, Q and R satisfy the

relation

PPk + RR), = 00* (2.3. 15)
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2.4 Elementary Lossless 2-Port Networks
 

In this section, the elementary lossless 2-port networks which

constitute the basic sections for a cascade realization are tabulated

together with the corresponding scattering matrices. As can be seen,

these matrices are of the form

1

5‘s

  
with

00* - szk : RRrs

Note that any more complicated section can be obtained by

cascading some of these elementary sections. Hence it is not

necessary to include such complicated sections in the tabulation.

For example, the Darlington-D section does not appear in the fol-

lowing list for it could be obtained by cascading two elementary

sections NC3.
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2. 5 Appendix to Chapter II
 

The definitions and theorems used in the foregoing sections

are stated in this section. The proofs for these theorems and the

statements of the definitions are found in [NE 1].

Definition 2.5. 1. Bounded-real Matrix: (Def. 4.1 in [NE 1])
 

An n x 11 matrix S(X) is called bounded-real if it satisfies all

the following conditions:

1. S(X) is holomorphic in O > 0.

2. S*(X) = 500*) in o > O.

T* .
3. Un - 5 (>450): o m o> 0.

Definition 2. 5. 2. Positive-real Matrix: (Def. 4. 2 in [NE 1])
 

An 11 x 11 matrix A(X) is called positive-real if it satisfies

all of the following conditions:

1. A(X) is holomorphic in O > O.

2:: a

2. A (X)=A(X )inO>O.

3. AH(X)Z O in O> 0.

where AH(X) is the Hermitian part of A(X).

Theorem 2.5. 1 (Theorem 5. 12 in [NE 1])
 

If an n x n matrix S is bounded-real, then the two matrices

B and C defined by

S = U - 2B = 2C - U
n n

are both pos itive-re a1.

Theorem 2.5.2 (Theorem 5.14 in [NE 1])
 

If an n x n matrix S is bounded-real, with Un-S of rank r I: 0,
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then there exists a reaLconstant,orthogonal matrix N such that

NTSN = S' 1Un

with S' bounded-real and Ur-S' non-singular. Further,

I 1-1
A = (Ur+s)(Ur-S)

is po sitive-real.



CHAPTER III

REALIZATION OF TRANSMISSION ZER OS

3.1 Transmission Zeros
 

If the reflection coefficient of a l-port RLCTF network is

written in the form

_ PM)
51m _ _Q(>\) (3.1.1)

then the transmission zeros of this network are defined as the zeros

RR):<

of the real rational function— , where RR* = 00* - PP*. In other

QQ

words, the zeros of RR*, after the cancellations of common factors

with 00. and 2(GQ-OR) zeros at infinity are called transmission

zeros, where 5 denotes "the degree of. ”

Consider the scattering matrix of a lossless Z-port LCTF

 

network,

”-5 s _ F‘i + :13-
11 12 Q1 — C21

= R p (3.1.2)

12* — 1*

S21 S22 (21 + ‘51—     

The transmission zeros of this lossless Z-port network are defined

as the zeros of the real rational function $12821. Thus, the trans-

mission zeros consist of 2(501-5R12) zeros at infinity plus the zeros

-20-
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of RlZRlzfs’ except for possible cancellation with Q: . When this

2—port network is terminated in a l-port RLCTF network with the

ELL-l- : i , then the reflection coefficient

g+1 Q2

of the resultant l-port network is

reflection coefficient S2 =

 

   

S S S

2 12 21
5:8 +

(3Lm
1 11 1 - 52522

or

.13 _ 13102—01»: 2
(3 1 4)

Q QIQZEPMPZ

Since

RR* - (20* - pr. _ R12R12*(QZQZ*
- PZPZ’“)

(3 1 5)

- _ + P 2
. .

QQ
QQ (0102— P1* 2)

the transmission zeros of the original lossless Z-port network, in

general, are contained in those of this l-port network.

The transmission zeros of a l-port RLCTI" network can also

be defined by considering the even part of the given driving-

point impedance (or admittance) function Z1 (or Y1). Indeed, since

  

Z_1+Sl _o+p (316)

1‘1-.sl ”0-13 "

and

Ez—i(z +2)
V1’2 1 1*

RR,
>,<

: 2(o - P)(o* - 11,) (3’1'7)

 

it becomes evident that the transmission zeros of a l-port RLCTT‘

network are the zeros of Ev Zl except those of RR» which are also

the zeros of Oz.
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For a lossless 2-port network, if (U2 + S) and (U2 - S)

non-singular, the corresponding terminal impedance matrix Z

  

  

  

  

  

  

are

and admittance matrix Y exist and have the following forms.

le Z12

z =

Z21 Z22

71+5 5 s 5 +5 5 2 s .-
11 22 11 22 12 21 12

1'511'5221511522'512521 1‘511'5224'511522'512521

: (3.1.8)

1- + - _

2’521 S11 S22 S11522 S12521

- -. + ... .. .. -

1 S11 S22 S11522 S12521 1 S11 S221511522 S12521

Yll le

Y :

1Y21 Y22

r_ _

l”511+522'5115221512521 '2 S12

- + + + -

1+S1115221511522 S12521 1 S11 s22 S11522 S12521

.‘ (3.1.9)

- - - +

2 821 1+511 S22 S11522 S12521

+ -

1+S111522 S11522 S12521

 

 
+ + -

1+S11 S22 S11522 S12521 
It is clear from the above equations that the zeros of 212 (Y12) and

and S , respectively.Z21 (Y21) are contained in S12 21

In order to give a physical interpretation of transmission

zeros, consider a lossless 2-port network, with the terminal impedance

matrix Z, terminated in a l-port RLCTI‘ network g, called load, as
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shown in Fig. 3.1.1 The following relation is evident.

 
 

  

       

Z
21

i = --————— i (3.1.10)

3 g + Z22 1

1 i i

+

V1 2 V2 V3 4

0-—-—— 13-

Fig. 3.1.1

If Z21 vanishes at a real frequency (1)0, i.e. , X0 = 3030, then 13 = 0

for a sinusoidal excitation with an angular frequency of (1)0 applied at

port 1. This indicates that the average power transmitted to the

load is zero at frequency (1)0. Similarly, when a load is connected

to port 1 and a sinusoidal excitation with an angular frequency of (1)0

is applied at port 2, if 212(jw0) = 0 no power is transmitted to the

load. Same discussion can be applied to the terminal admittance

matrix of the lossless 2-port network. Therefore, the physical mean-

ing of the transmission zeros for real frequencies is that the power

transmission from one port to the other is zero.

3. 2 Two Useful Theorems and the Division Algorithm
 

In this section, two theorems and a division algorithm are

presented which are important for the synthesis procedure discussed

in the several later sections. These theorems deal with the exis-

tence of a second and a first degree polynomials passing through

some fixed points given in the complex plane. On the other hand,

the division algorithm provides computational facilities in the
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synthesis procedure. Although the proofs of these theorems as

well as the proof of the procedure for division algorithm are ele-

mentary, because of their importance, this section is devoted to

a fairly complete discussion of these proofs.

Theorem 3. 2. 1. Let E- be a real rational function in which
 

Q P

P *

513 < 50 and Q is strictly Hurwitz. If—'-— = l at X = X =

" Q 0* 0

(To + jcoo, where 0’o > 0 and 0110 > 0 are finite, then there exist

and C21 with 6P1 _<_ 601 = 2 such thatpolynomials P1

F110) mo) 131,00) 13,00)
—— = —— and ——-—-—-- :—.————

(210.0) one) 01*(10) 0,110)

Proof: Part 1, 0'0 > 0.

Assume

P(X):aX2+aX+a
1 2 1 o

2

Q(X):bX +bX+b

1 2 o1

and

X = 'P( o) 0.1 +351

one) = a2 +sz

where c , <12, 81, (32, a0, a1, a , b , b , andb are real.

 

l 2 o 1 2

Since

P1(XO) : P(Xo) and P1(—Xo) : P(-Xo)

—5?ol(0') one) —ol(-'Xo”) "o('-' No”)

(3. 2. 1)

(3.2.2)

(3.2.3)

(3.2.4)

taking X0 = 0'0 + jmo, from Eq. (3. 2. l) and Eq. (3. 2. 2), we have
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2 2

= .. + O' + 'P1(Xo) (0’0 (100 )a2 Ca1 + a0 3(20’0w0a2 +woa1)

= (0.1 +5131)(k1 +ij)

= (alk1 - (311:2) +j(oIlk2 + 1311(1) (3.2.5)

2 2
: _ + 'Ql(Xo) (00 (1)0 )b.Z + (rob1 b0 +J(Zooa)ob2 + wobl)

=(<12+1'132)II<.1 +jk2)

= (azkl - szkz) +j(u2k2 + (321(1) (3.2.6)

2 2 .

P1( X0) (C70 000 )a2 Goal ao “200°0an (coal)

= (a2 +1132)“ 1 +112)

= (0.211 - (3212) +J(a.2£2 + (3211) (3.2.7)

_ 2 2 .

01040) - (Go - 000 )b2 - 00b + bo +J(20000013 - wobl)l 2

=(a1 +1slx11 +122)

= (0111.1 .. (3112) +j(11112 + (3111) (3.2.8)

where k1, k2, f 1, and! 2 are real constants. Equating the real and

the imaginary parts in each of the above equations, we have

 

- - -

(OZ-(1)2) 0 1 0 0 O O O -a (3 a I]

o o o 1 l 2

20 (1) <1) 0 0 0 0 0 0 -13 -o. 3'1

o o o 1 l

a

o o 0 (02-012) 0 1 o 0 -a2 (32 °

° 0 b2 (3.2.9)

0 - -O O 0 200(110 (1)0 0 0 (32 e2 b1

(02.402) .0 1 o o o -a. s o o b
o o o 2 2 o

1

20 co -0.) 0 0 0 0 ~43 -o. O O 1

o o o 2 2

f

2 2 2

0 0 0 (co—(1)0) -c 1 -c11 (31 0 0

k

1

0 O 0 200000 -coo 0 ..[31 -c11 0 0 k  
After elementary row operations, Eq. (3. 2. 9) can be reduced to
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)
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The normal rank of the coefficient matrix in Eq. (3. 2.10)

is 8 and the number of unknowns is 10. It is clear from Eq. (3. 2.10)

that a0, b0, a2, b2, a1, b1 and two out of £1, 12, k1 and k2 can be

expressed in terms of the remaining two variables.

Consider the following matrix formed by the last two rows

and the last four columns of the coefficient matrix in Eq. (3. 2. 10)

(woaz-OopZ) -(wo(32+00az) 403001-0051) ((1)0131+0'oa1)

(3.2.11)

(“Joni-00131) -((1)o(31+000.1) -(woa2-Oofi2) (wofi2+ooa2)

The determinants formed by any two columns of the above matrix

are given as follows.

1) columns 1 and 2.

(000112- 00132) -1wop2+ 0002)

= (Oimiflulfiz-filuz) (3.2. 12)

(woal-oofll) -(wofil+000.1)

2) columns 3 and 4.

-(c1)a-UB) ((1)13 +00)

0 1 ° 1 ° 1 ° 1 - -(Ozmzflalfiz-Bluz) (3.2.13)

-(wu-OB)((1)(3+0’0.) 00

o 2 o 2 o 2 o 2

3) columns 1 and 3.

(con 419) «ma 41(1)
o 2 o 2 o 1 o 1 2 2

= (weal-00131) -(wan. 0052) (3.2.14)

(wood-10.0131) -(woa2- 0.062)

4) columns 2 and 4.

-1mo‘32+ooa2) (“1013110311 2 2

((1) 13 +00. ) -(co (3 +00.) (3.2.15)

0 1 o 1 o 2 o 2

-(wofil+ooal) (wOBZHIan)
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As will be seen in the following discussion that the other

two possible cases are actually not necessary for further con-

siderations. However they are also listed for completeness.

5) columns 1 and 4.

(w a
o 2

2 2 2 2

(Local-00131) ((1)0132+O’Ou2) + Oowo(uz-al+fil-BZ) (3.2.16)

2

"001321 111101311031) - (wo' 0:11azfi2'a11311

6) columns 2 and 3.

-(w 13 +001) -(w a we) =(m2-oziIa (3 +a. (3)
0202 0101 002211

2 2 2 2

-(w0131+00a1) -(c1)0c12- 00132) + Oowo(az-(32-al+fil) (3.2.17)

In order to show that 601:2, we must have b2 1*- 0 for a set

  

of f 1, f 2, k1 and k2. Thus it has to be shown that

+

(3121 0.112 +132k1 +02ka5 0

or

1111 “1 132 “21 11

l2

1: 0 (3.2.18)

k1

k2—J

A) If

CL1132 ‘ 131‘12 ’£ 0

then both Eq. (3. 2. 12) and Eq. (3. 2.13) are not equal to zero.

1 and f can be obtained in terms of k and k or vice versa.

1 2 1 2

Further, left hand side of Eq. (3. 2.18) becomes
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1

2 2

(00+wo)(a1132-81a2)

 

[ 2010(00132-ODOQZNO'1fizufilazHmowofil- (1100.1 )X

2 2 2 2

x1°1+111'°2'1521

2°01wofizwoazmifiz'fli“2111110100011+wo13111°11131'“2‘13211 1

2

(3.2. 19)

k

k

Now, we have to show these two entries do not vanish simulta-

neously. If first entry vanishes, then

 
 

2 2 2 2

(Oofiz-woaz) wo(a2+sz-al-sl)

(as-ma) . zo(ap-pa) (31-2-20)
0 1 o 1 o 2 1 2

1

Since 0. B -(3 a. )1: 0 and 0.2+(32-uz-(32 < O similarly if second

1 2 1 2 1 l 2 2 ’ '

entry is zero, we have

  

2. 2 Z 7-
(“oazw’ofiz’ . wo1QZ+132'°1‘1311

(3 2 21>
(ooalmopl) 200(a1s2-s1a2)

From Eqs. (3. 2. 20) and (3. 2. 21) we now have

(00132-400112) _ (Goa2+wo132)

(oofil-woal) - (0011111110131)

  

which is equivalent to

2 2

1°o+wo)1“152'131°21 ' 0

This result contradicts the assumption ulflz-Blaz # 0. Therefore,

the entries in Eq. (3. 2. 19) can not vanish simultaneously and this

proves that b2 can be chosen to be nonzero.
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B) If

-00131 16 O

(11132-131112 = O and (1000.1

then Eqs. (3. 2. l4) and (3.2.15) should be considered. If Eq. (3. 2. 14)

is equal to zero, then we have

weal-05131 = :(moaz-Oofiz) (3.2.22)

. C11 131 “liaz 131i152
Since ulfiz-Blaz = O or — = —- or —— = _— ,

“2 132 “2 132

Eq. (3. 2. 22) becomes

+ = +(1) (<11 02) 0 (F31 [32)

or

O u o.

..2 z .53. = _1 (3.2.23)

(1)0 2 131

Similarly, for Eq. (3. 2.15) we have

(1) o. a

62 = __7- = -51 (3.2.24)

o 62 1

As a result, Eq. (3.2. 14) does not vanish and l 1 and k1 can be

expressed in terms of! 2 and k2. In this case, the left hand side

of Eq. (3. 2.18) becomes

000 2 2

[(al +131) (“1‘12 +1315,” 12 

(1)001 - 00131

k2

2

It is evident that b2 can be taken as non-zero, since of + 131 it 0.

— 00132 = 0'

If 01132-13102 2 O and (000.1- 0051 = 0, which implies (000.2

+ 0, . . . ' h(1)0131 coal at 0 and wofiz+ooa2 f- then Eq (3 2 15) does not vanis
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and 1 and k can be expressed in terms of f and k . The

 

2 2 l 1

left hand side of Eq. (3. 2.18) becomes

-(D

o 2 2
- l

o l o 1

k1

and it is evident that bZ has non-zero solutions. Since the

above cases are sufficient to have b2 11 0, the vanishing deter-

minants in Eqs. (3. 2. l6) and (3. 2.17) need not be considered.

Part II, 0 =0 ands) > O.

o o

In this case, Eq. (3.2. 9) becomes

  

41): 0 l O O O 0 O -<11 (31 raz

0 (130 0 O O O 0 O 431 -0.1 a1

0 O O 41): 0 l 0 0 -a2 (32 a0

0 O O 0 (no 0 O O 432 --0.2 bZ = 0 (3.2.25)

«1): 0 1 O 0 0 -0.2 (32 0 0 b1

0 -(1)o 0 O O O 432 -a2 0 0 b0

0 O 0 41): O l -111 81 0 0 f 1

L O 0 0 0 «no 0 431 -0.1 0 O— f 2

k1

k2  
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After the elementary row operations, we have

  

F- 2 -’[- '1

..(1) 0 O O 0 0 -al 81 1 0 a2

0 (1)0 O O O 0 -Bl -o.l O 0 al

2
O O -600 O O 0 -<1.2 (32 O 1 b2

= O (3. 2. 26)

0 O 0 (1)0 O 0 -(32 -0.2 O 0 b1

0 O 0 0 --0.2 (32 0.1 431 O 0 £1

0 0 0 O -i32 «.0.2 431 -o.:l O 0 £2

0 O 0 O «0.1 (31 0.2 432 O 0 k1

O 0 O O -(31 --0.1 -(32 -0.2 0 0 k2

a
o

b
o   

Similar to the case where 00 > O, the coefficient matrix of

Eq. (3.2.26) has a normal rank 8. Therefore, a2, a1, b2, b1' 2 1,

f , k and k can be expressed in terms of a and b if

2 l 2 o o

"°‘2 132 Cl1 ”131

-B -a -B -a

Z 2 1 1 x: 0 (3.2.27)

  
. . _ * . . . . 2 2 _ 2 2

Since P*(on) - P (we) which implies 0.1 + (31 — 0.2 + (32, the above

determinant equals to
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'°2 132 a1 -fi1

-s -a -s -a

2 2 1 1 =-[(a:-+B:)-(cf-15:)fz= 0
-a B a -s

1 1 2 2

'B1 ‘“1 "pz ““2  
Hence the rank of the coefficient matrix is at most equal to 7.

Now, let us assume 0.2 f O and perform some elementary row

operations on the matrix formed by the last 4 rows of the co-

efficient matrix; the last 4 equations become

F

    

”Q2 132 a1 '51

o (a2+pz) (a 5 +5 a ) a s a a
2 Z 12 12 12 12 :0 (3.2.28)

0 0 O 0

0 0 O 0

L _ -I

Since 0.2 and (32 can not both be equal to zero, if, e. g. , 0.2 = 0,

then (32 )5 0 and we have

0 132 “1 -B1 21

2

-13 0 [3 (3 -u 13 f

2 1 2 1 2 z = 0 (3.2.29)

0 0 0 0 k

1

L. 0 0 O 0 _,_k2_    
From Eqs. (3. 2. 28) and (3. 2. 29) we can see that the rank of the

coefficient matrix is 6 and a2, a , b , b , f and 1 2 can be

1 2 l 1

found in terms of k1, k2, a0 and b0. The third equation in

Eq. (3. 2. 26) gives
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2

wobz - -o.2k1 + 13sz + b0

and since a , 132 and b0 are not simultaneously equal to zero, b

2 2

has a non-zero solution.

As a conclusion, the polynomials P and Q1 of the forms

1

given by Eqs. (3. 2. 1) and (3. 2. 2), respectively, exist and the

leading coefficient of (21 can always be made non-zero. Q.E. D.

Theorem 3. 2. 2 Let E- be a real rational function in which

Q 

 

PP
'<

6P < (SO and Q is strictly Hurwitz. If >. = 1 at X = X =

- 00* o

00 where 00 Z O (000:0) then there exist polynomials P1 and

Q1 with 6P1: 601 = 1 such that

P1(Xo) _ P(Xo) and P1*(Xo) _ P*(Xo)

011110) Q(Xo) 01*(Xo) 0*(XO)

Proof:

Assume

= 3. .30P1(X) alX + a0 ( 2 )

Q(X) = bX+b (3.2.31)

1 1 o

and

P(Xo) = 0.1 (3.2. 32)

00.0) = a2 (3.2.33)

then

P(-Xo) = mo.2 (3.2.34)

Q(-Xo) = mo.1 (3.2. 35)

where a , a , b , b , u , o. and mare real numbers. In

1 o 1 o 1 2

Eqs. (3.2. 30) and (3.2.31), if we let X = 1: 0'0, then



= +P1(O'O) aloo a0

01100) = b10.0 + b0

131(410) = -a1

011-00) = -b1

O+a

o o

O'+b

o o
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f

Cl1

10.

= k0.2

ko.1

where 1 and k are real constants.

These can be written in a matrix form.

  

 —  _1

Equation (3. 2.40) can be simplified as

 

H00 1!: 0, then a1, b1, a0

1 and k.

and b0 can be solved in terms of

021—

 

  

(3.2.36)

(3.2.37)

(3.2.38)

(3.2. 39)

(3.2.40)
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a1 a1 -0.2

b1 1 a2 -0.1 f

= -- (3.2.41)

a 2(To 0 a O a k

0 o l o 2

b0 Ooaz Goal

1.- 4 _ ._

Hence nonzero b1 can be obtained.

Ifoo=0,thena zio.1 and the only condition to be satis-

2

fied is

b = +a 14 0 (3.2.42)

0 — 0

b1 and a1 can always be chosen arbitrarily.

If 00 = 00, then 0. = + (1 also and the only condition to
1 2

be satisfied is

=+ ..Io1 _al 11 o (3243)

Therefore, it is always possible to find polynomials P and Q1

1

of the forms given in Eqs. (3. 2. 30) and (3. 2. 31) such that the

leading coefficient of Q1 is non-zero. Q.E.D.

Division algorithm:
 

The division algorithm described here is essentially the

Euclidean algorithm which has identical steps as the Routh
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algorithm. More specifically, each cycle of division is exactly

the Euclidean algorithm for polynomials [B1 1]. For each cycle,

the coefficients of the quotient and the remainder polynomials

are obtained by cross multiplication as in the Routh algorithm.

Let P and Q be real polynomials of degree m and n,

respectively, with GCD(P, Q) E 1 and n 2 m > 0, where GCD

denotes "the greatest common divisor of. 1' Let P and Q be

written in the following forms.

II
I

p 7 + 11
1

>
’

+ + 1
»

>
’

+ n
)

P(X)

Q(X)

"
I

U 7 + U 7 + + O
‘

7 + U

0

where a )6 0 and b )1: 0.
m n

By the application of the Euclidean algorithm, from the

polynomials P(X) and Q(X), we obtain a set of identities.

000 E qo(X)P(X) + r100

P(X) E qumlm + r200

r1(X) E q2(X)rZ(X) + r3(X) (3.2.44)

”p.11” 5 qpmrpm + rp+1
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where 5P > rl(X), 6ri > (Sri+1 for i = 1, 2, ..... , p and rp+1 is

a nonzero constant.

The above identities can also be written as

r10) 5 cm - qoewm

r20) 5 -ql(X)Q(X) + [1 + (101111111111 P00 (3- Z- 45)

r3m E [I + q1(>~)q2(>~)]Q(M - [qom + qzm + qOIqulumznn Pm.

By using the bracket symbol notation introduced by Stieltjes

[ST 1], which is defined by

[01 = I

[<10] = <10

[qo.ql] = 1+C10ql

and the recurrence formula

[qo,ql, ..... ,qn]=[qo,ql,....,q
n_1]qn+ [qo’ qlsoooogqn

-Z] (302046)

the identities given in Eq. (3. 2. 45) take on the forms

r ,0) -=- [010m - [40(1)] Pm

r ,0) E-[qlenom + mom. quum (3. 2. 47)

r30) -=- R110). qzmmm - [40(1).q1m.q2m1Pm

rim 5 (-1)i+1{[q1(7\).q2(>\).....qi_1(>~)] om

- [qom.q1m. . . ..qi_lIM] P(X)}
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To obtain r's and q's, a modified Routh's algorithm is used.

This algorithm deals with two polynomials instead of one which is

used in the original Routh's algorithm. Arrange the coefficient of

Q(X) and P(X) so as to form the first two rows of the array,

b boooooo’b 19 O29

a ,a. ,am-2,oo ..... .....’a2’a1’ a0

The coefficients in third row of the array are obtained by

cross multiplication exactly as in the Routh algorithm as follows.

  

 

ambnol -bnam-l a'mbnu Z-bnam- 2

C = ’ C = g o o o o o 9

n-l a n-2 a

m m

0- a

C .- mn-i nm-i ’.

n-i a

m

If the degree of the polynomial corresponding to the third

row is greater or equal to that correSponding to the second row,

a new row is generated similarly. This is repeated until the

degree of the remainder polynomial becomes less than that of the

divisor which corresponds to the second row of the array. This

cycle yields the pair (r(X), q(X) ). Note that r(X) is formed by

summing the coefficients of the last row each of which is multi-

plied by the re Spective degree of X. Similarly, q(X) is obtained by

first dividing each leading entry of the rows by am, then summing

the leading coefficients of each row in the cycle, except those

rows which are replica of the second row, which is multiplied by

respective degree of X.
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The above cycle now is repeated, if necessary, several times

for the last two rows of the array. Since at the end of each cycle,

the inequalities 6r1 > 6r2 > 5r3 . . . hold, there will be a final cycle

for which a zero remainder is obtained. Thus, r's and q's used in

the Euclidean algorithm or Eq. (3. 2. 47) can be constructed easily

by the help of the array.

3. 3 Existence of Scattering Parameters CorreSponding to a
 

Selected Simple Set of Transmission Zeros
 

Darlington [DA 1] has shown that the driving-point impedance

or admittance function, F(X), of an RLC 1-port network can be

realized by a lossless 2-port network terminated in a unit resis-

tance. However, in this realization procedure, it may be necessary

to multiply the numerator and the denominator of F(X) by the same

strictly Hurwitz polynomial, called the surplus factor. Augmen-

tation of F(X) by such a polynomial will necessarily increase the

number of reactive elements to be used in the realization of F(X).

Hazony extended Darlington's synthesis procedure to non-reciprocal

l-port networks which eliminates the use of such surplus factors.

Consider a lossless Z-port network N terminated in an

impedance 1; as shown in Fig. 3. 3.1. Let

s = (3.3.1)
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be the scattering matrix of N and let S and SWithS =iS 1 2

21 12*'

be the reflection coefficients,respectively, of N at port 1 when

port 2 is terminated in g and of 1; . Then

 
 

 

 

     
 

 

_ Li
52 — (4+1 (3.3.2)

and

S S S

S1 = 5111 Iz—flsTZ'SZ—l 13‘3'31
2 22

o——— 0

SI S2

Fig. 3.3.1

If the terminating impedance 2; =1, i.e. , 32: 0, then Eq.

(3.3.3) becomes

S = S (3.3.4)

1 11

which implies that the reflection coefficient corresponding to a

driving-point impedance can be considered as the entry in 1x1

position of a 2x2 scattering matrix corresponding to the network

obtained by the Darlington synthesis procedure for this driving-

point impedance.

Let

s = _ (3.3.5)

where P and Q are real polynomials in X and Q is strictly Hurwitz.

By Eq. (2. 3.15), we have
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which gives all the transmission zeros other than those at infinity.

It is evident that the number of transmission zeros at infinity is

2(0Q - 5R).

Consider Eq. (3. 3. 3) and let

F1
511 = 5- (3.3.7)

1

R
12

512 = Q— (3.3.8)

1

R
21

521 - 6?- (3.3.9)

then from Eq. (2. 3. 14), we have

P1*

522 = + 6]"— (3.3.10)

where S22 assumes the negative Sign 1f R21 = R12* and the p061t1ve

1f R21 3 -R12*. Further, let

P2

82 = 5; (3.3.11)

Note that in Eqs. (3. 3. 7) through (3.3.11), P's, 0'8 and R's are

real polynomials in X.

Substituting Eqs. (3. 3. 7) through (3. 3.11) into Eq. (3. 3. 3),

the following relation can be obtained.

 

 

R12R21P2

_13 _ :1 + Q1 Q1 Q2

Q (21 l-P—ZGPH

Q Q
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PQ+QP

 

1 2 — 1* 2

= (3. 3. 12)
+

Q102 - 131’1132

where again, the upper or lower signs are used if R21 ERlZ* or

R21 5 -R12*, respectively. From Eq. (3.3.12), we have

5 + P . .P PlQZ-Q1* 2 (3 3 13)

E + P
- -Q QIQZ—Pl* 2 (3 3 14)

Although for the most general decomposition of Eq. (3. 3.12) the

left hand side of Eqs. (3. 3.13) and (3. 3.14) should contain an

arbitrary real polynomial, as will be seen in the proof of Theorem

3. 3. 1, without loss of generality, this polynomial can always be

considered as unity. Substituting Eqs. (3. 3.13) and (3. 3.14) into

Eq. (3.3.6), we have

RR QQ*- PP
* *

(QIQ1*- P1P1*HQZQZ*- PZPZ*) (3 $15)

On the other hand, for 52’ since

0202*” P2p2==< : R2112*

then the following relation can be obtained immediately.

RR* = R12R12*R2R2* (3.3.16)

Equation (3. 3.16) clearly shows that the transmission zeros of the

original driving-point impedance can always be split into two parts;

the first part, R12R12*, corresponds to a lossless 2-port net-

work and the remaining part, RZR 2*, corresponds to the terminating

RLC network. In particular, the first part R12R12"< can be taken



-44-

in a relatively simple form as to correSpond to an elementary

section discussed in Section2. 4. Therefore, the synthesis pro-

cedure requires the proof of the fact that a simple set of trans-

mission zeros can be realized by an elementary section and the

information on the remaining transmission zeros are contained in

a terminating impedance 1, (X), or the corresponding reflection

coefficient 8 . In other words, the cascade synthesis is justi-
2

fied if, after the selection of R R the existence of the real

12 12*'

polynomials P1, Q], P2 and Q2 is shown such that

_1_ F1 1 R12

Q _
1 R12* + Pl*

132
is para-unitary while 5 is a bounded-real function. To this

2

end, we shall now consider the following theorem.

Theorem 3. 3. 1 Let S1 = g be a real rational function
 

in a complex variable X = O + joo with the properties that QQ* -

PP* = RR* and GCD(P, Q) E 1. If Q is strictly Hurwitz and

 

I E I < 1 on jw-axis, then there exist polynomials P . Q . R ,

Q - 1 1 12

P2, 02 and R2 satisfying the relations

(1) .13 — P1QZ'tQ1’1‘PZ (3 3 17)
Q Qlei-PH‘P‘2

(2) R R E Q Q - P P (3.3.18)

12 12* l 1* 1 1*
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(3) R212” 5 0202* - P2P” (3.3.19)

(4) 1111* '5 R12R12*R2R2* (3.3.20)

where in (1) only the upper or only the lower signs are to be used,

 

such that

5Q1 = 1 1f 5R12-<—1

001 = 2 if 0R12=2

Pl

—— <1 for h : jg)
Q _

1

P2

— <1 for X = jw

Q2 —  

with C21 and 02 being strictly Hurwitz polynomials.

 

Proof: Since Q is strictly Hurwitz and g I: 1 for

X = jw , S is a reflection coefficient for a driving-point impedance.

1

By Eq. (3.2.6)

RR* 5 QQ* - PP]: (3.3.21)

is an even polynomial whose zeros are the transmission zeros which

lie symmetrically about both the real and the imaginary axes as

shown in Fig. 3. 3. 2. All the jw-axis zeros are necessarily of

even multiplicity including those at infinity which will exist when

jco

GO > 5R .

o o X-plane

 C
)

C
D 11 q

Fig. 3.3.2
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Since RR* is obtained directly from 00* - PP*, once

R12R12* is selected, R2R2* follows immediately. Note that if

5Q > 6R, then R12R12* can be selected as a constant (polynomial

of zero degree). Due to the distribution of the zeros of RR* in

the complex X-plane, RRk can be factored as follows.

= 2! 2 2 2 22 2 2

RR K(-X ) 11' (-X +am) 11' [(X +bn) -ch ]
3'5

m n

(3.3. 22)

where 1 , m and n are non-negative integers and K is a positive

constant. Therefore, it is always possible to take R12 as of

degree two, one or zero.

By Theorems 3. 2.1 and 3. 2. 2, there exist polynomials

P and Q1 with 0P1 _<_ 0Q1 : 2 such that

  

l

P (11 ) P(X )
1 o o

= (3.3.23)
01030) 0&0)

and

P SAX ) PMAX )

1' ° ' 0 (3.2.24)

01,80) 0,110)

where X is a zero of R R , which is also a zero of RR .

o 12 12* *

Equation (3. 3. 23) implies that PQl - PIQ is divisible by R R
12 12*°

Let the quotient be P2, i.e. ,

R12R12*P2 = i(PQ1- PlQ) (3.3. 25)

Since Q1Q1* - PIP”: = O at X : X0. we have

P1(Xo) — 01*(XO) (3 3 26)

k -' (A O 0

C21( 0) P1,. 0)
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By substituting Eq. (3. 3. 26) to Eq. (3. 3. 23), we obtain

 

 

Q1*(1\O) _ P1110] (3 3 27)

- {x O O

131,00) Q. 0)

This implies that 01*0 - PHcP is diViSible by R12R12*. Calling

the quotient Q2, we have

R12R12*Q2 = : (Q1*Q - P1>§<P1 (3.3. 28)

Equations (3. 3. 25) and (3. 3. 28) can be rewritten as follows.

PQl - PlQ

P = i (3.2.29)

2 R12R12=i<

Q + 01*0 - PHCP (3 3 00)

:3 o 03

Z " R12R124<

From these eXpressionS the following relation can be established.

= 1

QZQZ* - PZPZ’i‘ - W (QlQl‘i‘QQik + Plplfi‘prfi - PlQPkP’i‘Q

12 1211‘1

- PlflchpQfic - Pp’i‘QlQl’k - P1P1*QQ*

\+ PIQI*P*Q + p1=2<01PQ=2<’

_ l , q

= E“;- {QIQW - P1P1>I<’(QQ* " 1313*) (3. 3. 31)

12 12*

By Theorems 3. 2.1 and 3. 2. 2, Q1 and P1 can be obtained to

satisfy

E - P P

R12111231c QIQH‘ l 1*

Since

QQ. -PP;,, ‘R R RR

\
.

7
"



-48...

Eq. (3. 3. 31) becomes

0202* -prM = R2122)?

which is essentially that in Eq. (3. 3.19).

From Eqs. (3.3.18) and (3.3.19), we have

  

p1

— <1 for ijQ
Q _

1

p2 .

— 1 for ijw

Q2 '-
  

To show that Q1 and 02 are strictly Hurwitz polynomials,

we multiply Eq. (3. 3. 25) by P and then add it to Eq. (3. 3. 28)
1 J;

. "N

multiplied by 01' i. e. ,

iR12R12=I<10102 ip1+=p21 = 10101.3: " P1P1=:<1Q

= 111211121:Q

or

E ' 3
o 0Q 110102 i PMPZ" (3 3 32)

Similarly,

P = _+_ (p102 1 01,332; (3.3. 33)

It is to be noted that the signs appearing in front of the parentheses

in Eqs. (3. 3. 32) and (3. 3. 33) are to be taken so that both are

positive or negative. Similariy, the signs appearing in the paren-

theses must be taken to be both either positive or negative, or

finally



P 1'2- 1* 2

Q QQ +p:1:p

 

In Eq. (3. 3.32), since Q QZ is regular in the right half

X-plane and Q does not vanish on yin-axis, hence by Rouché's

theorem (2le has the same number of zeros in the right half

X-plane as Q does. Therefore, Q1 and Q2 are strictly Hurwitz

polynomials. Q. E. D.

3.4 Construction of the. Polynomials P 01' P2 and 02
1’

As is seen in the previous section that Theorem 3. 3.1

Q,Pandestablishes the existence of the polynomials P1, 1 2

02. However, the computation of these polynomials require

further considerations. For this: reason we shall first consider

the following pair of equations which are obtained in the proof of

Theorem 3. 3.1.

R12R12>é<p2 '=' PQl - PlQ (3.4.1)

R12R1231<Q2 5 01:50 - PltkP (3.4.2)

Since for a give :1 pair of polynomials (P, Q) there exist

unique polynomials X-(X) and Y(X) with 6X < 60 and (SY < 5P

[BO 1] such that

xnwzx) - upon) a 1 (3.4.3)

then Eq. (3. 4.1) can be mosiriied by using the identity in

Eq. (3.4. 3) as follows,
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R P IXP- .

R1.2 12* 2‘ QY) 1 1

H
i

"
U

D l "
U

0

or

R .. PE YP ..p 3. .
(R1212=:<XP2 Q1) (R12R12>:= 2 1)Q ( 44)

Since by assumption GCD(P, Q) E l, the polynomials (R12R12:,<

- - '. YP - ‘3 ' ' ' lXP2 Q1) and (RlZRlZ’i‘ 2 Pl) mu t be d1v131b e by Q

and P, respectively, hence the quotients are equal to a poly-

nomial, say I. Therefore,

II
!

R XPZ - QJ Q (3.4.5)

1

R'12R12=:<Yp2 _ PJ’ P1 . (3.4.6)

12R 1 2*

IX and Q (R R ’Y and P) areWhen the polynomials R 121(12):; 12 12:.

given, a pair of polynomials P2 and J satisfying the identity in

Eq. (3.4. 5) [(3.4.6)] can. be determined. To see this, consider

the polynomials Rllezfix and Q. Applying the division algorithm

described in the previous section to this pair of polynomials, we

have

X E . +

R1.2R12,>:~< qu r1

Q E qlrl + rZ

r E + r

r. E r. r. + r
i-& 1i--l 1-l 1

r. ‘=’ ,r. + r.

1-1 q]. 1 1+1

: '=' . r, +

1 q1+1 1+1 1+Z

r E o r + r
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with6Q>6r1>6rz>...>6ri>6ri >6r. >...>6r

+1 1+2

Assume that one of the remainder polynomials, say ri,

has the degree which is equal to that of 01’ i. e. ,

Gri = 601

0+1

0

(3.4.8)

Also consider the following expressions for the remainder poly-

nomials r. r, and r, .

1' 1+1 1+2

1+1

1'1 ‘ ('1) {[ql’qz"°°’qi-1]R12R12*X

- [(10, ql, .. .’qi-1]Q}

r1+1 ('1) {[qi’qz’""‘11]R12R1.2*X

- [qo’ q1”"9qi]Q}

r1+2 : ('1) {[q1’ qz’"”qi+1]R12R1.2*x

'[qo’ qi”"’q1+1]Q}

If ri is a strictly Hurwitz polynomial, we take

where k is a real constant. From Eq. (3. 4. 9) we have

 

i+1

P2 — ('1) qu1:q2:-o-:qi_ll

Note that

r .

i-l

Q " ri[q1’q2"”’q1-1' r. 1

and therefore-

OQ
+

5P2 bri-l

Since

51‘. = qu + Gri

(3.

(3.

(3.

(3.

(3.

(3.

(3.

.9),

.10)

.ll)

.12)

.13)

.14)

.15)
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we have

(SQ 6P2 + qu + bri

6P2 + qu + 501 (3.4.16)

On the other hand,

602 = (SQ - 601

and Eq. (3.4. 16) implies

602 = 6P2 + (Sq.1

> 6P2 (3.4. 17)

If ri is not a strictly Hurwitz polynomial, then a linear

combination of ri with r.1+1 18 required to obtain 01. Note

that, in general, several remainder polynomials will be necessary

for the construction of 01' However, as stated in a theorem from

algebra which is given in the following without proof, it will be

sufficient to consider only 601 + 1 remainder polynomials of

different degrees.

Theorem 3.4.1 Consider the set of real polynomials
 

{Ai(X)| 5A1: i, i: 0, l, . . . , n}. Then there exist real numbers

ai such that every polynomial B0.) of degree m 5 n can be ex-

pressed as a linear combination of the fir st m polynomials in

the set, i.e.,

B()\) 5 3.01400.) + a1A1()\) + . . . + amAmu).

In particular, when 601 5 2, in general, consideration

, and r '1 ' , .,of ri ri+l 1+2 w1 1 be required where the degrees of r1
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ri+l and r1+2 are assumed to be 2, l and 0, respectively. How-

ever, it will be shown in the following that the strictly Hurwitz

polynomial Q1 can be constructed from the polynomials ri and

r. alone. The linear combination of r. and r. implies that

1+1 1 1+1

the degree of P is given by

2

6P2 : 6[q1’q2'°°"qi_l'qi]

= 6[q1.q2,...,qi_1] +6qi (3.4.18)

Since

60 = 6[q12q29° 0°9q1_1]+ Gri-l

= 5[q19q29 - --.qi_l] + qu ‘1' Ori

= 5P2 +501 (3.4.19)

hence

6P2 = 6Q - 501 = 60 (3.4.20)

2

On the other hand if we consider the linear combination of three

remainders ri, r.1+1 and ri+2, then

5P2 = 6[q1,qz,...,qi.qi+l] (3.4.21)

and consequently we have

6P2 + 601: 6[q1.q2. . . °'qi'qi+1]Jr Gri

6[q1' q2’ ‘ ’ ’ ’ qi] + éq1+1 + 5’1

(SQ + 6qi+1 (3.4. 22)

which implies

6P2 > GQZ (3.4.23)
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This is a contradiction to the existence theorem stated in the

previous section.

As a conclusion we state that, if ori = 601, then the

strictly Hurwitz polynomial 01 can always be obtained as a linear

combination of the polynomials ri and r.
i+l°

In Eq. (3.4.7), if Gri > 601 and 51-1 < 501’ then (5in 2
1

for 601 = 2 or 1.

1) If 601 = 2 and Gri = 1, then Eq. (3.4. 16) becomes

OQ = (5P2 + qu + 5ri

> 6P2 + OQI (3.4. 24)

By multiplying the remainder polynomial ri by X, the

corresponding degree of P2 is increased by l, i. e.,

5P2 = 5[q1,q2, . . . , qi_1] + l

5 60 - (BQl (3.4.25)

Therefore, by considering the linear combination of ri and

Kri, the strictly Hurwitz polynomial Q1 can be constructed.

2) If 601 = 2 and 53:1 = 0 which implies qu Z 3, then in order

to construct the second degree polynomial ql’ ri has to be

multiplied by X2. In this case, however, the degree of the

corresponding P will exceed that of 02' This contradicts
2

the existence theorem given in the previous section, hence

the case under consideration cannot occur.

3) If 601 = 1 and Ori = 0, then ri must be multiplied by
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X and the degree of the corresponding P2 becomes

6P2 = 6[ql,qz, . . .,qi_1] +1

Since 5‘11: 2, then

6Q : 6[q19q21 o o o ,qi—1]+ 6q1+ 61.1

3. 6P2 + 501 (3.4.26)

Thus the strictly Hurwitz polynomial 01 can be obtained

from the linear combination of ri and Kri.

When the polynomials P and J obtained from Eq. (3. 4. 5)

2

are substituted into Eq. (3. 4. 6) we obtain

PQl- R12R12*P2=QP1 (3.4.27)

a) If 5(PQ1) > 6(R12R12*P2), then 6(PQI) = 5(QP1) and since

GO 3 GP, we have

601 _>_ (5P1 (3.4.28)

b) If 6(PQ1 )—- 6(R12R12*P2), then 6(QP1)_<_ {5(PQl ) and conse-

quently

601 Z 5P1

c) If <‘5(PQ1 )< 6(R12R12*P2), then 6(QP1)= 6(R12R12*P2)

and since 6R12 _<_ GQl and 6Q: 6P2 + 601: 6(R12PZ), we

have

6P1< 6R12_<_ 6Q1

Thus the polynomial P1 obtained from Eq. (3.4. 6) satisfies the

degree condition for the elementary section to be realized.

It is then demonstrated that the polynomials P1, 01'

P2 and Q2 can be obtained from Eqs. (3.4.1) and (3.4. 2) by the
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application of the division algorithm.

3. 5 Further Discussion on ”Construction of the Polynomials

ll
P1, Q1, P2. and Q2

_—

The polynomials P and Q1 obtained in the previous section
1

are based on the conditions that C21 is strictly Hurwitz and

501 ibPl. This does not guarantee that PI and Q1 will be of

the forms as those corresponding to the elementary sections given

in Section 2. 4. However, it will become apparent from the follow-

ing discussion that the polynomials P and Q1 of the desired forms

1

can always be obtained provided that an additional condition is

imposed to the linear combination of the remainder polynomials

used to generate P and 01. Note that this approach has a simple
1

network interpretation and the following discussion is actually

based on this interpretation.

Consider a lossless Z-port network N such that the degree

of the least common denominator of the entries in the correspond-

ing scattering matrix S' does not exceed 2. Let N be cascaded

with an ideal transformer of turns ratio ltn as shown in Fig.

 

 

  

     

 

N N

I" ‘‘‘‘‘‘a"""I I- ------ b’""l
I I I I

' lzn ' 01 m:l :

' N : I v I

: I l : I L :

I : I :

L. _________ .1 L__....._ ......1

S S'

(a) 2 (b) 2
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The scattering matrix S' of N is of the form

 

w

I

12

I

1

-Pi*

0'1

D

(3.5.1)

 d
A simple analysis yields that the scattering matrix S of the

augmented network Na is given by

P1

01

w

21
fl

01 b

(1+n21Pi - (l-nleoi

 

 

2nR'

(1+n2)Qi - (l--n2)(:l--P'1

 

 

R12

0

1 (3.5.2)

.2?”

1

r

*) ans!”

) (1+n2)o'r (1 21(115' )
>1: 1' 'n 1*

 

 

2 , 2 - ,
(n -1)Ql + (n +1)(+P1*)

 

 
21

(who; - (1-n2)(¥Pi,,) (anmi - (1-n2)(¥Pi,)

(3.5.3)

Thus.

Q — 1 2 . 1 2 “PI 31 -( +n )ol -( -n )(+ 1*) (.5.4)

P1 = (14ml)?!1 - (1-nz)($ovl*) (3.5.5)

R12 = 2:112)12 (3.5.6)

R = ZnR' (3.5.7)
21 21
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From Eq. (3. 5.4), Q1 can be rewritten as

2

Q1 =(Q'11P'1*)+n (01:11,) (3.5.8)

The driving-point impedance at port 2 of N when port 1 is termi-

nated in 1 ohm resistance is equal to the ratio of the polynomials

(Q'1 1 P'l*) and (Q'1 i P'1*). (These are, respectively, the numerator

and the denominator polynomials of this impedance function.)

These polynomials are Hurwitz. Furthermore, when one of

them vanishes at a point jwo on job-axis, the other does not vanish

there. Therefore, the denominator polynomial given by Eq.

(3. 5.4) is strictly Hurwitz.

On the other hand, due to the bounded-real property of

I

g—il- , the absolute values of the coefficients of P'l do not exceed

the corresponding coefficients, all positive, of (21. Therefore,

by proper selection of the parameter n, one of the coefficients of

P1 in Eq. (3. 5. 5) can be made zero which yields the forms

appearing in the eXpressions for the elementary sections dis-

cussed in Section 2.4.

Consider now a l-port network g augmented by an ideal

transformer of turns ratio m: 1 as shown in Fig. 3. 5.1-(b). If

P!

the reflection coefficient for g, is denoted by 5'2 2 6-? then it

2

follows that the reflection coefficient of the augmented network

Nb is given by
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P (1+m2)P'z - (l--mZ)Q'2

S :: — : 2 2 (3.5.9)

2 (1+m )Q'2 - (l-m )P:2

 

For the above reasoning S2 is also a bounded-real function, as

it should.

Now with the aid of foregoing discussions it becomes

clear that in the realization of a given reflection coefficient

S1 = g we may first extract an elementary section which is in-

cluded in Table I and the remaining l-port network will now have

a reflection coefficient S2 and is still bounded-real. Indeed, when

the procedure described in this thesis is applied, 51 is first

realized as in the form given in Fig. 3.5. 2-(a). However, in-

serting two cascade connected ideal transformers of turns ratios

lZn and nzl between the networks N and g, Sl remains unaltered.

Considering the above discussions, now n can be selected so that

the network Na in Fig. 3. 5. 2-(b) becomes identical to one of the

    

          

  

 

Na Nb

[- -------- 1 t—“""‘l

0 I

o——— -—o—— 0—1— :

N 1; : N 2', l

o— , i

L--- ----J
I

SI (a) $2 1 '2
Fig. 3.5.2

elementary sections of Table I which is terminated on a new l-port

network Nb whose reflection coefficient is bounded-real and com-

pletely known.
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In numerical computation of the polynomials P , Q1, P

l 2

and Q2 it is advantageous to consider both division arrays corres-

ponding to the pairs of polynomials, (R R X, Q) and (RlRl 1* *Y, P).

1

Since both arrays yield the same P and J, they contain the same

2

quotients up to a certain step. Note that, when only one division

array is used, the step at which one should stop and determine

the desired polynomials is actually the step where both division

arrays deviate to having identical quotients. Therefore, simul-

taneous consideration of two division arrays yields the information

as to where one should stop. Once this final step is determined.

the polynomials P , Q1, P2 and Q2 are constructed as described
1

in the previous section.





CHAPTER IV

SYNTHESIS PROCEDURE AND EXAMPLES

4. 1 Synthesis Procedure
 

The synthesis procedure described in this section is based

on the result of Chapter III. As is indicated, one always has the

liberty of ordering the transmission zeros. This synthesis pro-

cedure can be applied to a given reflection coefficient as well as

to the driving-point immittance function of a l-port RLCTI" network.

If an immittance function is given, it is first converted into the

reflection coefficient and then the transmission zeros are deter-

mined by Eq. (3. 3. 6). Following is the step by step description

of the synthesis procedure.

1. Obtain the reflection coefficient S : This step is

l

omitted if S1 is given. However, if l-port RLCTI‘ network is

characterized by the immittance function, then the reflection co-

efficient of the network is

- 1-

5-1.1- Y1-
_ +1— + —l Z1 lY1

(4.1.1)

D
l
r
u

where 21 and Y1 are, respectively, the driving-point impedance

and admittance functions of a l-port RI-CTF network. Since the
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numerator and the denominator polynomials of Zl or Y1 are assumed

to be relatively prime, the polynomials P and Q are also relatively

prime.

2. Determine the transmission zeros: By using Eq. (3. 3. 6),

which is repeated here for convenience

RR = QQ -PP (4.1.2)
>:< 9.: >.'<

the finite transmission zeros are determined since these are the zeros

of the even polynomial RR*. The multiplicity of the transmission

zero at infinity is given by 2(5Q - 6R). Thus the locations and the

multiplicities of all transmission zeros are determined. Further,

RR”: can be factored such that each factor corresponds to an ele-

mentary lossless Z-port network described in Section 2. 4. More

specifically, we shall take each factor to be in one of the following

forms:

2
212, (x +d2)2, (4.1.3)1, -12, (42+ a2), (12+ b2)?” - c

where a, b, c and d are real and non-zero constants.

3. Obtain polynomials X and Y: From P and Q, by using

the division algorithm, the polynomials X and Y with 5P > <5Y and

5Q > 6X are obtained uniquely which satisfy the identity,

XP- YQ 1.

4. Select the transmission zeros corresponding to an ele-

mentary section to be realized: Select RIRI‘? as one of the factors

of RR* given in Eq. (4. l. 3).
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5. Perform the division algorithm for R1R1*X and Q; and

also for R1R1*Y and P: Two division algorithms are continued

until different quotients show up.

6. Obtain the polynomials P Q1 and P : Take the linear

1' 2

combination of the remainders obtained in step 5 with their proper

degrees. Then, together with the relation

R1R1>z< = 0101* ' p1p1>:<

the polynomials P Q1 and P are obtained.

1' 2

7. Obtain the polynomial Q2: The polynomial Q2 is

obtained from the following identity,

R R Q E Q1*Q- P *P (4.1.4)

11*2 1

since all other polynomials are already known.

This completes a cycle of realization of an elementary sec-

tion. Repeating the above cycle for other selected transmission

zeros, in the final cycle either both P and Q2 become constants

2

or in the cycle before the last, P and Q2 are in the forms which

2

correspond to an elementary section. For the latter case, the

terminating resistance is 1 ohm.

4. 2 Example I
 

Realize the driving-point impedance Z given by
l

_i4+2>.3+6>.2+8>.+4

1 x4+2x3+6xz+2x+4
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in cascaded 2-port LCTl" networks terminated in a resistance.

Solution:

1. The corresponding reflection coefficient is

 

 

P 21" 1 3).

SI = Q = Zl+1 = X4+ 2X3+ 6Xz+ 5X + 4 (4.2.1)

2 Let

P = 31 (4.2.2)

Q = 14+ 213+ 612+ 5). +4 (4.2.3)

then the transmission zeros are given by

RR = 00 — PP = (12+ 2)4 (4.2.4)
>1: >1: *

i. e. , the transmission zeros are located on the imaginary

axis at i j ~12 with the multiplicities of 4.

3. To obtain polynomials X and Y for the given polynomials P

and Q, we have the following division array.

Q 1 2 6 5 4

P 3 0

3 0

6 5 4

3 O

5 4

3 O
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From the above array we have,

_1 3 2 2 5
qo—3X+3X+2X+3

(402-5)

r1: 4 (4.2.6)

Hence

X - < 1) ~11 ]
- - 4 q0

= -1i2(>.3+212+6>.+5) (4.2.7)

Y=<-1>-l-[01
4

= .% (4.2.8)

For the first cycle of realization, an elementary section with

2

R1R1* = (X + 2)2 will be extracted.

Since R R is selected, we consider

1 1*

R R x: ...1_().7 +216 +10),5 +1314 +28X3 +28).2
1 1* 12

+ 24>. + 20) (4. 2. 9)

1 4 2
: .—X - - . .R1R1*Y 4 i 1 (4 210)

The division arrays for R1R1=:<X and Q; and for RlR 1"<Y and

P are given in the following.

-1 -2 —10 -13 -28 -28 -24 -20

RIRMX 12'1—2'T2T1—‘1—T'1—

Q 1 Z 6 5 4



r
b
u
.
-
.
5
v
a
m
a
m
:
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which gives

1 3 l

: -— x -—>\ . .

qo 12 3 (4 2 11)

2 2 2 5

= -— X -—)\-— . .r1 3 3 3 (4 2 12)

and

R R Y -1- O 1 0 1

1 1x ‘ 4 " '

P 3 0

O -l O -1

3 O

O -1

which gives

1 3 l

= — -—X

po 12 X 3

t = _1
(4.2.13)

In the above arrays, the quotients for the next steps are

different. Since r is strictly Hurwitz and of desired degree,

1

then Q1 and P1 can be expressed as follows.

Q1 = kr1 (4.2.14)

P1 = kt1 (4.2.15)

Further, since

2 4 2 2

0101*.- FIE-31* — k 9.01 +2) —R1R1* (4.2.16)

then

(4.2.17)

Q = 1 14+; (4.2.18)
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p = % (4.2.19)

Therefore,

A 3 3

: -— 0 : -—
O O1?2 Z[] 2 (4220)

The polynomials Q2 is

A 1

Q = —— (Q ~.52.. 13,13)
2 R1R1* 1'1 1'

= xz+x+g (4.2-21)

The elementary section described by P1, Q1 and R1, and the

remaining network described by P and Q2 are shown in

  

   

 

   

 
 

 

2

Fig. 4.2.1. 1

1"2'
0 cs

T4
_- £2

1

C;P CL

s -2 s 932
1‘0 2'6—

Fig. 4.2.1 3

A A

For the remaining section, since P2 and Q2 correspond to

an elementary section with

526 1’5? -(>\2+2)2-RR
2 2* 2 2* — " z 2:):

the terminating resistance is 1 ohm.

Thus, the complete realization is now given in Fig. 4. 2. 2.



 

  

  

 
4. 3 Example II
 

Synthesize a cascade network whose reflection coefficient

is given by

2X3+8x2+3X—1

= 3 2 (4.3.1)

6). + 121 +7>\+1

 

P

51 ’ 6

Solution:

Without indicating the steps of the synthesis procedure ex-

plicitely we first consider the transmission zeros. Since

3

P 2). +8)\Z+3>\-1 (4.3.2)

2

Q 613+12>i +7x+1 (4.3.3)

then the transmission zeros are determined from

RR* = QQ - PP, = 814(1 -412) (4.3.4)
3:: 2,:

It can be seen easily that the transmission zeros are located at

the origin With mult1p11c1ty of 4 and on the real am at i 2- With

multiplicities of 1. To obtain X and Y, we form the following division

array.



which gives

Therefore,
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6 12 7 1

2 8 3 -1

-12 -2 4

23 11

7 5‘ "1

-12 -2 4

22 ii

18 9

250
-——— 4
43

22 ii

18 9

4'99

432

3

1 23
-—)\-—

6 36

_ 1:;18 X + 18-250

43

4-99

432

3 1

{-1) ;-[qo:<hg qZ]

3

3.43 2 174 79
-.____ 1 ..——_-i..——- . .

11 11 22 (4 3 5)

3 1

3

4
-._§i?..353- -51 (4.3.6)
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Take RIRH‘ = l - 4X2. Since (1 - 4X2) can be factored in two

different ways as (l - 2X)(l + 2M or (-1 - ZR) (-1 + 2M, there are two

different elementary sections corresponding to these transmission

zeros: one factorization corresponds to the relation R21 = R

 

12*

and the other to R2.1 = - R1293 These two cases will be considered

separately.

2 .0 o, = " X,1) If R21 R12*, 1 e R12 1 2 then we have

1243 4 4-17 3 29 2 174 79
= x —— X — x - ——>\ - — . .

R1R1*x 11 + 11 + 11 11 22 (4 3 7)

4°43 4 4°l44 3 71 2 144 57

  

 

= -— —— X —— >1 .. —-X - — . .

R1R1>13Y 11 + 11 +11 11 22 (4 3 8)

The division arrays for R1R1>'<x and Q, and for R1R1*Y and P

are given as follows.

1243 4-174 29 -l74 -79

R1R1>kX 11 11 Ti 11 22

Q 6 12 7 1

-8«42 -573 -260 -79

ll 11 ll 22

6 12 7 l

3

9 12 2-

4 6 l

3

9 12 2

2 l

3 3

1.5. .3.
2 2

E l

3 3
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which yields

9X2 +12>\ +-:-

 

  

2 4
ql : Eh'i'g

2 1
= ..x _

r2 3 +'3

27
= ——-1\

q2 2

15 3
: —>\+—

r3 2 2

4-43 4:144 -157 -144 57

R1R14Y' 11 11 11 11 22

P 2 8 3 -1

-7-16 -415 -29-2 g1

11 11 11 22

2 8 3 -1

-5
3 10 E—

4 14
_ .—— -1

3 3

-5
10 -——

3 2

E. l

9 9

ll. :2
2 2

E. .1

9 9

whichyields

_ 2-43 x 22

p6 " 11 ' 11

2 5
X X —1 3 +10 +2
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912%“;

t2 = 7731+?)-

Pz = 3'21).

t3 = .121)”;

Since the constant terms of qZ and p2 would be different if the

divisions were carried one more step, both division arrays are

stopped. Next, we consider the linear combinations of the remainder

, r , t and t to satisfy the strictly Hurwitz characterpolynomials r3 2 3 2

of Q1 and the relation R1R1* = Q1Q1* - Plpl’k' Let

Q1 = n(r3 - krz)

= n[(l-2§-%k)x+(%-%k)] (4.3.9)

P1 = n(t3 - ktz)

= nulzl -%k)>.- (%+%R)] (4.3-10)

Then

0101* - P1P1* = nz(§8T k2 - -1§%-k - 4)(1- 412) (4.3.11)

For Ql to be strictly Hurwitz, the bounds for k are

9 45
k<2 and k> 4 (4.3.12)

Referring to the corresponding elementary section and noting that

P1 has only X term, we have k : - 225- which is in agreement with

the bounds. Thus from

2 8 2 14
n(81k --§-k-4)-1 (4.3.13)
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wehave

2-_1_
n. - 81

or

1
n: +— (4.3.14)

-9

1
Ifweletn=-§-,wehave

P —i(t 14)-3). (4315)
1'9 3‘ 2 ‘2 "

Q —l(r kr)--5-i+1 (4316)
1‘9 3 2‘2 "

On the other hand,since

 

n(r3 - krz) : n{R1R1*X[ql’q2]- Ql: qo’ ql’qz]

= - - . . +niR1R1*X[q1.(qz+k)] Q[qo <11 <42 k)]}

(4.3.17)

hence

f9 =n[q.(q +k)] = 12-1-1 (4.3.18)
2 1 2

Q = 1 [(1-21)(6>\3+12>\Z+7x+1)

2 R R 2
1 1*

+% M213 + 812 + 3). .. 1)]

= 312 + 31. +1 (4.3.19)

Thus, the realization for the first cycle is shown in Fig. 4. 3.1



 

  

   

. .._J ——D-

-:1

G?
v—

  
 

  
s 3 5 .P2
1’Q 2‘52

Fig. 4.3.1

In the following realization cycles, the notations X, Y, qi's,

pi's, ri's and ti's are repeatedly used. To obtain X and Y from P2

and Q2, we again form the division array for P2 and 62.

Q2 3 3 1

P2 1 -l -1

6 4

5
-3 _1

6 4

_1_

9

which gives

q0 = 3

l 5
: — X - —

q1 6 18

r. _ 1
2 9

and

2 l 9 3
= _ —— , : — X +— . 3. 0x (uriqoqll2 Z (4 2)

2



R =For R2 2*

Then form the division arrays for RZR

A

R R *Y and P

2 2

RR

2 2

which gives

R2

R2

-)\2, we have

1 3 5

(-1) r—[qll-EX-E (4.3.21)

2

= Lin-3-912 (4.3.22)

3 3 5 2
= -—>. —K ..2 +2 (4 3 23)

2*X and Q2, and for

-3

—2 0 0

3 l

3

2 0

3 l

-l

1

-l

3

—)\+1

2

3

—>\-l

2

21

+1



and

which gives

Let

then

Referring to the corresponding elementary section in Table I , P

is either a constant or it has only the X term. However, when P
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-3 5

— — 0

2 2 0

l -1 -l

-3

1 -—Z O

l -1 -l

-l
7 1

l -l

-l
_2. 1

3

p0 --2->\ +1

l

-—X

t1 2

p1 - 2X

X -t2 1

02 = n(-rZ +krl)‘

= n[(-1--:—k)>\-(l+k)] (4

P2 = n(-t2 +kt1)

= n[(-1--;-k)7\+(l+k)] (4

Q Q P P = -n2(2k + 2kz)>\Z (4

2 2*” 2 2*

2

2

. 3.24)

. 3.25)

. 3.26)



-77-

has only X term, then Q2 would not be strictly Hurwitz due to the

vanishing constant term. Therefore, P can only be a constant.

2

With this conclusion, we have

k : -2 (4.3.27)

which yields a strictly Hurwitz polynomial Q2. From Eq. (4. 3. 26),

wehave

.2 -1
- 4

01‘

n- +—1-

’—2

Ifwe take nzéu we have

R - i (4328)
2 ‘ ‘2 "

Q - x+-l- (4329)

2 ‘ 2 "

R3 = 1+1 (4.3.30)

A

Q3 : 3i+1 (4.3.3.1)

The realization, after the second cycle, is shown in

 

  
 

   

  
 

   

Fig. 4.3.2.

A

0—725 V T

1 Y,

o o A

R R

s -E s — 2 s - 3
1 Q 2 6—2 3 6'3
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To obtain X and Y for P3 and Q3, form the division array for

A A

P and Q3, and we have

3

A 1Q3 3

R 1 1
3

-2

which gives

q0 = 3

r1 = -2

and

3

X - 2

1

Y - '2'

= -XFor R3R3* , we have

3 2

: -—)\ . .R3R3*X 2 (4 3 32)

l 2
: -— X . .R3R3*Y 2 (4 3 33)

Consider the division arrays for R3R3>,<X and Q3, and for R3R3>EY

d Ran 3.

R R x "—3 0 0
3 3* 2

A 1Q3 3

1

— 0

2

3 l

which yields



1
= —1

r1 2

and

RR LL 0

33* 2

R 1 1
3

1
— o
2

1 1

which yields

1
= - —- h

Po 2

1
= —i

t1 2

Let

Q — RES
3 -nU1- 9

n[ (% - 31o). - k]

P RR
3’ Mh' 3)

Mtg-MX-k]

(4. 3. 34)

(4. 3. 35)

The constant term of P can not vanish, otherwise the constant term

3

2 D

l

of Q3 would vanish too. Hence it is necessary to take k = — for

which Q3 is strictly Hurwitz. Since

(2303* - p3p3* = n2(2k - 8kz)>\2

we have

n = i 1.

Taking n = -l, we further have

P3: 2

Q3: 1+2

= R R (4.3.36)



Z)

..80-

R14-

Q-34_

Thus the final realization is as shown in Fig. 4. 3. 3.

 

 

   

‘ ‘ 111

T1
. . s

5:3 szpz s—p3 54:35:1
1 Q 2 Q; 3 Q; 4

Fig. 4.3.3

If R21 = -R12*, i.e., R12 2 -l + 2X, then the diViSion arrays

for the first cycle are the same as those in case (1). In this

case Pl has a constant term only, hence we have

9'17 1
: ———-— : +—k 4 and n _ 9

Taking n = - % and from Eqs. (4. 3. 9) and (4. 3.10), we have

P - 3 (4 3 37)1 - 4 O I

5
: A - . .Q1 2 +4 (4 3 38)

A 2 7
2: X + — X + Z . . 3P2 2 (4 3 9)

A 2 9

Q2 2 3x + 2 x + 2 (4. 3.40)

By repeating the steps in case (1), one will have the

realization as shown in Fig. 4. 3. 4.
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Fig. 4.3.4
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CHAPTER V

CONCLUSION AND FURTHER PROBLEMS

A method for cascade synthesis of l-port passive networks

by means of successive extraction of 2-port elementary sections of

Table I is fully discussed. Each of the elementary sections is

characterized by scattering parameters. The use of nonreciprocal

elements enables us to consider each of the elementary sections

with not more than two reactive elements. For this reason, it is

sufficient that the existence theorem stated in Section 3. 3 (Theorem

3. 3. l) is to be restricted for 6Q E 2.

The synthesis procedure is based on the step by step reali-

zation of the simple sets of transmission zeros of a given reflection

coefficient. In each step, the realization consists of simple mani-

pulation on polynomials, viz. , the division algorithm and the

linear combination of certain polynomials. At the end of each

step, informations are. obtained which are sufficient for the deter-

mination of elementary section to be extracted (whose element

values can be determined later), and for generating the reflection

coefficient for the remaining l-port network.
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The procedure described in this thesis is useful in the

filter synthesis. In general, the filter synthesis is reduced to the

realization of the reflection coefficient S1 with specified trans-

mission zeros. The computation of the key polynomials are

accomplished by the use of the division array in a straightforward

manner.

It is suggested as a further problem that one may consider

complicated elementary sections. In this case, however, the

existence theorem (Theorem 3. 3.1) must be extended and such

an extension should follow a different approach than that con-

sidered in this thesis.

Another area of investigation is the extension of the present

method to the n-port cascade synthesis by essentially using the

idea of Belevitch [BE 3] but carrying the computation by the method

described in this thesis.



[131:1]

[BE 2]

[BE 3]

[BE 4]

[811]

[1301]

[CA1]

[CA2]

[DAI]

[HA1]
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