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ABSTRACT
A NUMERICAL INVESTIGATION OF EXPLOSIVE GENERATED NORMAL

MODES AND LEAKING MODES IN AN UNSATURATED SURFACE LAYER
OVERLYING A SATURATED HALF-SPACE

By

Ching-nan Kao

Most of the surface waves recorded on exploration
seismograms are characterized by the poorly developed wave
form. The reasons are due to short recording distance,
near surface inelastic material, etc. On the other hand,
earthquake surface waves have a more complete dispersion
pattern, therefore, they have long been used to interpret
the crust-upper mantle structure. This study is designed
to use the high speed computer to process low quality surface
wave data from small explosions, in the hope that the
geological information contained in the surface waves of
exploration seismograms may be better utilized.

A new moving window spectral analysis method successfully
identified superimposed modes which included M;,, M21’

Mj5, three "pipe organ" type modes, and others. It also
produced a smooth time-varying spectrum, from which the group
velocity dispersion was determined.

Some methods of computing phase velocities were
found to give poor results using available data. Bloch
and Hale's (1968) methodl and a method, developed herein,

that directly integrates the observational group velocity
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Ching-nan Kao

dispersion curve were superior to other methods in
providing good phase velocity dispersion curves for data
recorded at source distances of 1000 feet and beyond.

By assuming a theoretical model--a single surface
layer overlying a infinite half-space, the obtained
dispersion curve of the M1 mode is then inverted to
find the model parameters. The model parameters determined
were shear wave velocities in both surface layer and
half-space, thickness of the surface layer, and the
rigidity ratio of the two layers. One method of inversion
is to solve n non-linear equations in the n unknowns.

The n non-linear equations are formed by substituting
observational phase velocities into the period equation.
After several trials using different sets of observational
phase velocities, the final solutions are obtained by
averaging the results for each trial of n unknowns.
Another approach is to solve for n unknowns for a set

of more than n non-linear equations by minimizing the

sum of squared residues. Both methods have yielded
similar results.

The shear wave velocity in the surface layer was
found to be 603 feet/second. It is in complete agreement
with the result found by direct measurement. The depth
of the surface layer of 22 feet is less than the depth to
the water table at which the compressional wave velocity
increases from 1150 feet/second to 5700 feet/second.

This is because normal modes are several times more
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sensitive to the shear wave velocity profile than to

compressional wave velocity structure. This result

was anticipated. A density ratio of unity and a shear

wave velocity for the half-space of 904 feet/second were

computed. Tﬁey were all consistent with known information.
A theoretical interpretation of the dispersive pipe

organ type leaking modes was attempted. The depth to

the water table, computed by using these modes, agreed

completely with the results obtained by using the first

multiple of the P head wave from the water table. At

large source distances, both methods were found to be

superior to the standard refraction technique in computing

depth.

ls. Bloch and A. L. Hales, New techniques for the

determination of surface wave phase velocities, Bull.
Seism. Soc. Am., vol. 58, pp. 1021-1034, 1968.
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Chapter I
Introduction

Normal and leaking mode seismic surface waves contain
subsurface geological information as do the body waves.
Because the body waves, in most cases, are predictable by
simple geometrical ray theory, they have long been used in
seismic interpretation. On the other hand, normal modes,
leaking modes, diffraction, etc. cannot be described by
simple theories. Since the advance of the high-speed com-
puter, the surface wave solution computing time has been
tremendously reduced. The use of surface waves in deter-
mining the thickness of the crust and the physical proper-
ties of crust and upper mantle has become popular in the
last two decades.

The surface waves from a small explosion have not yet
been widely utilized in seismic interpretation. They are
usually recorded at short distances from the source, there-
fore, the surface waves are usually not well developed. 1In
addition, the near surface heterogeneity and departure of
the material from perfect elasticity makes it difficult to
assume a correct theoretical model. These facts inhibit the
exploration seismologist from making practical use of the
surface wave. Our study aims at improving the available
techniques and developing new methods in order to make use
of the surface wave normal and leaking modes from a small

explosion.
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2

The group velocity and phase velocity dispersion, parti-
cle motion, and amplitude spectrum are characteristic of a
surface wave. They must be correctly computed before one
can determine the corresponding earth model.

Two methods have been used to calculate the group velo-
city dispersion curve. One is to determine the group velo-
city by dividing the distance to the station by the arriv-
ing time of a particular period. Measurement of the period
by inspection is valid only when a single mode is present.
This is a traditional method of deriving group velocity dis-
persion. Another method is the moving window spectral analy-

sis technique. It is similar to Landisman, et al.'s method

(1969), but was developed without prior knowledge of his
method. There are some differences between his method and
the one used here as will be explained in Chapter III.

The phase velocity dispersion can be determined using
many different approaches. A method first used by Bloch and
Hales (1968) obtained a good result. As an attempt to find
a smoother curve, a method was developed to derive the phasc
velocities by direct integration of the observed group velo-
cities. The results obtained were in agreement with the
previous method of Bloch and Hales. Several other methods
we had tried did not yield usable results. It was apparently
due to the short time duration of signals and noises. The
details of various methods will be discussed in Chapter IV.

The refraction records used in this study were kindly

Supplied by Dr. H. F. Bennett of the Department of Geology.
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3
A total of 24 traces were recorded on photographic paper.
The first 8 traces were X component or horizontal in-line
motion. The second 8 traces were Y component or horizontal
transverse motion. The third 8 traces were 8 component or
vertical motion. At each detection position, a three compo-
nent geophone recorded the X, Y, and 8 motions. The geo-
phones used were of the moving coil type. The amplitudes
of the recordings were proportional to the particle veloci-
ties. The natural frequency of the geophones was 4.5 Hertz
and the damping was 62% of the critical frequency. The
response was essentially flat above 7 Hertz. All the data
used were recorded without Automatic Gain Control and filter
settings. Bandpass was therefore about 7 to 125 Hertz.

A digitizer owned by the University was used to digi-
tize the records for use on digital computer. The digitizing
interval was 0.005 sec. which corresponded to the Nyquist
frequency of 100 Hertz. The frequencies encountered in this
study were well below the Nyquist frequency (i.e., 10-50
Hertz).

The records were recorded in the Udell Hills area of
Manistee County, Michigan. The ground surface in the re-
cording area is essentially horizontal. The topographic
correction, therefore, was not necessary.

This area contains approximately 500 ft. of Pleistocene
glacial drift. It is composed mainly of sand with strips of
clay. The underlying formation contains sandstone with some

shale layers which is of Mississippian age. The water table
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4
at the location where the records were obtained was located
at a depth of about 32 ft. below the surface. A detailed
description of the geology of this area can be found in
Todd (1971).

In studying surface waves, a particular period equation
corresponding to a particular theoretical model must be
chosen before the study proceeds. The compressional and
shear wave velocity distribution in this area is vital in
selecting a model. Table 1 is a list of body wave velocities
obtained by direct measurements and from refraction time-
distance curves. It is observed that the water-table acts
as a marked discontinuity for compressional wave velocity.
The critical angle of the compressional wave in the unsatu-
rated layer is about 11%°. If all shots were above water-
table and the shear waves were not taken into account, the
energy trapped in the surface layer would be about 98%.
Therefore, we expect the prominent feature of the seismic
records taken in this area to be composed of signals that
are the transient response of the surface unsaturated wave
guide. Through this study, a single surface layer model will
be assumed. The period equation for this model can be found
in Ewing, et al. (1957, pp. 193).

A problem exists in assuming the water-table to be the
interface of our single layer model. The leaking mode is
more sensitive to the compressional velocity distribution,
whereas the normal mode is more sensitive to the shear velo-
City distribution (Su and Dorman, 1965, p. 1018). In general,

an increase in compressional velocity accompanies an increase
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Table 1. Body Wave Distribution in Udell

Unsaturated Saturated
Glacial Glacial
Drift Drift

Compressional

Wave Velocity

(ft/sec) #1150 *5700

Shear Wave

Velocity

(ft/sec) # 600 ?

# Obtained by direct measurements
* Obtained by time-distance curves

Hills Area

Mississippian
S.S.

*13461
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6
in shear velocity. In this particular case, we can be
sure that the compressional velocity increases greatly
below the water-table, but we hesitate to infer that the
shear velocity also increases substantially at the same
level. This is because several papers (Biot, 1956a, 1956b;
Dobrin, et al, 1954; Ewing, et al, 1957; Kisslinger, 1959;
Mann, 1960) have reported, using either the theoretical or
the experimental basis, that the shear velocity does not
increase below the water-table. There is no solid ground
to accept or to reject their finding, but it may be safe
to assume that the change in shear velocity at the water-
table is small as compared to the change in compressional
velocity. If this assumption is true, the shear velocity
changes due to the clay layers is possibly of greater magni-
tude than the change at the water-table. Because we have
assumed a single surface layer model, the depth to the inter-
face, found by the inversion of the observed data, may be
different for normal and leaking modes. However, the single
surface-layer model will still be used through the study.
In Chapter II, we will make a theoretical treatment of the
leaking mode based upon the above assumption.

Compressional wave (P-wave) velocities, shear wave
(S-wave) velocities, thickness of layers, and rigidity ratio
of any two adjacent layers are important parameters in
characterizing a horizontal stratified model. Body wave velo-
Cities and thicknesses are possibly deduced by a simple geo-

metrical ray theory. The rigidity ratios and their dependent
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2
parameters (i.e., density ratio and Poisson's ratios) can
only be found by using surface wave data.

Two methods were developed to inverse the observed
phase velocity dispersion data. The results from both
methods are in good agreement. The details will be given
in Chapter V. Dorman and Ewing (1962) were the first to
develop a least-square technique to invert the surface wave
data. They derived the normal equations by minimizing the
sum of squared errors which were the differences between
the true phase velocity and the assumed phase velocity. They
also linearized the entire process. The methods in this
study solve a system of non-linear equations directly on the
computer. One solves for exact solutions and another solves
for least-square solutions by minimizing the sum of the
squared residues of the period equation. As before, the
development of these methods were accomplished without know-
ledge of the one explained by Dorman and Ewing (1962). The
metnods of this study will not be compared to theirs, but
the results are expected to be in agreement.

The best method to check the correctness of the inver-
sion methods described above is to reverse the process. By
substituting the model parameters obtained into the period
equation of the assumed theoretical model, one can check the
correctness of the inversion methods by comparing the re-
sulting phase and group velocities with the observed data.

The results of the surface wave computation not only

provide an independent check on the information extracted
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8
from the body wave data, but also gives more information con-
cerning the physical properties of the subsurface layers
which are usually not provided by body waves. The calcula-
tions in these processes are laborious, but with the aid of
the high-speed computer, the time and cost have been con-
siderably lowered. Despite the intrinsic drawbacks of the
use of the surface wave data, such as the limited penetra-
tion, uncertainty in determining layering, inability to de-
termine localized structure, etc., the use of surface waves
still has some advantages that cannot be surmounted by using

body waves only.
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Chapter II
Theory

A single layer over a half-space model is shown in
Figure 1. The symbols di ’ E‘ » and p in the figure
denote the P wave velocity, S wave velocity, and density
respectively, where the subscript i corresponds to the
layer i . The transient response of the surface layer
with thickness h for any component of the motion u, at
depth % and distance r from an impulse point source at

depth b is given by a double integral (Ewing, et al, 1957)

such as:
] o0
. O(WyKyZgb)J (KL)AK evvevnnnossaal(?l)
u = ReS—exp(Jwt)dw)’ (W, L;fwgk)( ) '
- oo - 00

where Re denotes the real part of the double integral
w = angular frequency
k = wave number = w/C
C = Phase velocity

Jo = the Bessel function of zero order

O
I

a function of w, k, &, and b

P = a function of w and k

y=l-1

Evaluation of this double integral can be performed in several

9
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Layer 0 oL,y Go’ Po
Z =0
Layer 1 X, 5,, P,
Z=h
Layer 2 A,, ﬂz, P2
)
Z—> oo

Figure 1. Layered Model
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11
ways. One method is to integrate the inner integral by
Cauchy's theorem on the complex plane and the other by the
method of stationary phase. Since we are interested in the
spectral properties of the transient response, only one of
the integrals has to be solved. The contribution to the
solution is from the poles within the contour of integration
and the branch lines. The poles are the zeros to P (w,k)
which may be real or complex. Note that P (w,k) has two
variables, w and k, the zeros being functions in one vari-

able. The locus of a zero is the dispersion curve of a mode.

A. Phase Velocity and Group Velocity

The velocity of wave propagation is called the phase
velocity. Assume that a propagating wave is expressible
as A exp(j(wt-kr)) , where A is the amplitude and
w,k,t, and r are defined as before. For this wave, travel-
ing without continuously changing its wave form, the argu-

ment wt-kr must be kept constant. This requirement leads to:
wdt - kdr = 0 or C( =.dr/dt = w/x = Phase velocity....(2.¢)

For a dispersive wave train, there is a velocity called
group velocity U which is different from the phase velocity.
Suppose a wave is made up of superposition of an infinite
number of waves with continuously changing wave number k.

It may be expressed as:

oo
u‘x,t) = J' A'k) exp\j\W\k)t-KI‘)) dkoooooocoooooo-o\205)
- 00 .
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12
The concept of group velocity applies only to those cases
A(k) which have a significant value in the neighborhood of a
particular wave number, say ka, and becomes vanishingly
small for k outside a small range, denoted by kaltﬂk. Then,

the wave function can be written approximately as:

k.-q- ok
ulx, t) =J’ Alk) explj(wilk)t = Kr)) dK eceeeeeceeesll.4)

a~ ak o

By expanding w(k) about k = kg,

wik) = wik ) + \dW/akﬁzxa(k - K,) * eeceecnnns

and neglecting higher order terms, equation (2,4) becomes

katak
u\x,t) -j A(k) exp\jfik,r,t)) expljgir,t)) dk ...\2.5)
ka-dk

aw
where f(k,r,t) =\k-xa)(aik3;r) and g(r,t) =:W\ka)t -k, T,

The quantity A(k) exp(jrik,r,t)) is the effective ampli-
tude of the wave. The requirement of constant phase now

leads to
f\k.r't) = 0 or \dW/dk)k-K = r/t = U oooooooooooa\zob)
a

for the group velocity. Thus the energy of a wave, which is

associated with the amplitude, travels with the group velocity
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U. Equation (2.6) can be rewritten as:
w dC
Ug (C/(1--C-a;))w=wa and Ugca.‘.l0....00'.....0\2.7)

wh ; . i i in
ereka - wa/ba For a dispersive wave train,

C = constant or dC/dw = 0 hence U = C,.

B. Period Equation

The denominator of equation (2.1) is the period equa-
tion which determines the dispersion pattern of the model.
A form convenient for computation is given below for refer-

ence (Ewing, et al, p. 193). We will use this form for

computation throughout the study.

g,'\l- ;zv\'- U eececsocsocssscsosscsscscscocselle8)

k A
where 5 = (2=~ *éL)(X cos T h +-L¥ sin r, h)
)

+ 2—-(-;—\1 sin 8 h -%_ Z cos s, h)

2

¢, = (2- _{!;_ )(Tw cos r, h +J§' Z sin r h)

+ 2"(x sin s,h - $'Y cos 8, h)

M = (2- k")( W cos s,h +£ Z sin s, h) -+ (2.9)
+ Z—E(X sin r,h --—;fY cos r, h)
N,= (2~ -%!')(X cos 8, h +-f-¥ 8in s, h)

+ 22— (5‘w sin r h -k Z cos r h)



MR

3 differe



x_-_’_‘.z_’:(_'-_z(ﬁ‘ -1) Y-"ﬁ- +2(’“ 1)
oK £ < | (2.10)
2 T e 0
z—E-’_k_{-_k_i'-Z(E—‘—l) w=2(M -1
)l. k? k M W
£l o=k -k’ r; =k -kia
........................ (2.11)
s* = k;| -k s. =K -kg,

rigidity of the layer 1i

T
I

= frequency
o ; = compressional wave velocity in the layer i
ﬁi = shear wave velocity in the layer i
27§

k , =

ol &,
k = 27

[}
b7 2

A different form of the period equation of a wave guide is

given by Tolstoy and Usdin (1953) as follows:

|N-M—' =0 ® ®e o 00 00 0 0 oo c.o.‘ooo.c‘-c.cncoo.oo.ooooooo.(2.12)
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where | | denotes the determinant
= [ A exp(jr,h) C exp(jr, h) 2.1
N Bexp(jslh) Dexp(js'h) ® © 0 ¢ 0 0 0 0 0 00 0 0 00 0 00 00 0 0 ( -3)
- G exp(jr, h) J exp(jr, h)
M (Hexp(js.h) I exp(js'h) ----- e e e e e e 0000000000 e (2-14)
' . .
-1 _ I exp(js,h) J exp(jr,h)_ .
M = [;;I -H exp(js:h) G exp(jr:h)" inverse of M . (2.15

A,B,C, and D are reflection coefficients of PP, PS, SP, and
SS respectively at %8=0. G,H,J, and I are reflection co-

efficients of PP, PS, SP, and SS respectively at & = h.

1. Normal Mode Roots of Period Equation

Coming back to equation (2.8), let us discuss some
asymptotic roots of this equation (Ewing, et al, 1957,
pp. 193-196) . Positive real values of S;r T, are
obtained when (> o> B, and (C < ﬁz< oA, . It can be
shown that when the thickness of the layer h approaches
zero, equation (2.8) becomes the simple Rayleigh wave equa-
tion for the half-space. For C:<'F, and kh— oo,
(i.e., high frequencies) the asymptotic form of equation (2.8)
becomes factorable. The zero of the first factor represents
Rayleigh waves at the upper surface of the layer, while the
zero of the second factor represents Stoneley waves at the

interface.

As Tolstoy and Usdin (1953) have shown, there are two
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branches of zeros that exist. One is the Ml branch (Mll’
MlZ"") and another is the M2 branch (M

217 M22"")’

These are also termed symmetric and antisymmetric, respect-
ively. Some interesting features may be found in Figure 10,
Tolstoy and Usdin (1953), p. 860. At long wave limits kh—o,
the phase velocity of My, approaches Rayleigh wave velocity
of the half-space and at short wave limits kh-—e<w , this
velocity approaches the Rayleigh wave velocity of the surface
layer. All other modes, including le, M12' M22, etc. in-
dicate that phase velocity approaches the shear wave velocity
of half-space at the long wave limit and approaches the

shear wave velocity of the surface layer at the short wave
limit. This is why Rayleigh nodes, except the M, mode, are
termed shear modes (Mooney and Bolt, 1966, p. 45). All

shear modes have cutoff frequencies at long wave limits, be-
low which no unattenuated propagations can occur.

In addition to the conclusions of Tolstoy and Usdin
(1953), it is demonstrated below that two branches, M, and M,,
unconditionally, exist in the solid surface layer overlying
a solid half-space. By referring to Figure 1, layer 0 is
a vacuum, &, :g :-fo?— o0 - Some useful relations according to

Tolstoy and Usdin are:

D=—A A +BC=1 oooo-ou.o--co-n--c-o-oou-coooo(2-16)
G= T expl-j(e +€)] J =" AN exp (-je€ )

cee.(2.17)
A exp(-je ) I =-[exp [-] (€-€)]

oot
]



It can .

u.'HJ
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where [ is real and positive, and A is real for normal modes.
Also, -( € + € ) is the phase shift of PP at & = h,
-€ is the phase shift of PS and SP at & = h,

and -(€ -€ ) - T is the phase shift of SS at & = h.

It can also be shown that at 8 = h

GI - HJ =-exp(-2]J€ ) eeeeeerecnceaccncnen ceesterscessssas (2.18)
2 27 5 -
r +A kz 1' oooooooooooo © © 06 0 0606 a0 e 0000 000000000 (2.19)

TS
C = kz B... e o . ® & & & 0 & 0 ° o o 0 0 0 0 0 o ® @ ® & & o & 0 & o 0 0 0 o (2 20)
r:S) . .
BJ = B = N exp(-je) = CAexp(-je) = CH........ . (2.21)

The period equation (2.12) can be written as

-exp [j(r1+sl)h-je ] exp[j(r1+sl)h+je ]

+ A[ (exp[j(r;-s;)h-¢ jl + exp[-j(ry-s;)h +¢ j]

+ 2 LT(-E-'B/\=0........... ........ et cee. (2.22)

Equation (2.22) can be rewritten as the form shown in Tolstoy

and Usdin (1953) p. 859:

Cos[(ry+ sy)h-¢ ] -A[ Cos[(ry-s;)h-€1 =CA ........ (2.23)
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It can also be written as:

s2 =T + Q/2

where S

sin [(ri+sl)h— € ]
2

T =A sin? [(L-soh- € ]

2
\'-Su
7 BA AT,

Q=1-

Since all the quantities in this equation are real, the left
hand side is always positive and less than or equal to one.
By equations (2.19) and (2.16), the first term on the right,
T, is also positive and less than or equal to one under all
conditions. The derivation of the M; and M, branches is

arrived at by factoring equation (2.24)

b/
[S-(T + Q/2)1 ] [S + (T + Q/ZYH ] = 0ttt (2.25)

which leads to the equation on p. 860, Tolstoy and Usdin
(1953) . The factoring requires that (T+Q/2);5 be real, or
the equivalence, (T+Q/2) be positive. As we have seen
previously, T is always positive in normal mode case. If
one is able to prove that Q is also positive under same
conditions the quantity (T+Q/2) will be automatically posi-
tive, hence, the factoring in equation (2.25) will be legal.
In the following we will prove that Q is positive in normal
mode case: In normal mode case, A, B, A , and r are real

quantities and X,» S, and k2 are real and positive.
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Therefore, the expression

r_";..'(A/\-B\" 2 2 0, e (2.26)

is no doubt true. By expanding the inequality (2.26) and

2
adding (Eé2 ) B*A' + A2 to both sides of the inequality,

we obtain

3

+ A+ ﬁf; (A* A + B*[?)
or
(ZBp+ary s (L) L PRI (2.27)

The right hand side of the inequality (2.27) is equal one by
using equation (2.16), (2.20) and equation (2.19). Hence

the inequality (2.27) becomes

T, S <

(—17 BA + A) 1

or

namely,
= n5 2
Q= 1- -PB/\—AF- ................ Cetecscseseaannn (2.28)

The quantity on the left hand side of the inequality (2.28)
is just the quantity Q defined in equation (2.25). The proof

is complete.
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2. Leaking Mode Roots of Period Equation

In studying the leaking and the normal mode roots of
the period equation there are two simplified approaches that
are convenient for discussion. Gilbert (1964) assumes wave
number k to be real and frequency f to be complex while
Watson (1972) assumes the opposite. Alsop (1970) shows that
both approaches are valid.

Gilbert's (1964) method has been widely gquoted. He pro-
ceeds by first finding the initial position of each root at
k=0 and then by following each root as k increases, thereby
generating dispersion curves. For k=0 and f finite, i.e.,
phase velocity ([ —» o0 , or at normal incidence, the period
equation becomes the product of two factors. The roots to
each factor are shear pipe organ modes and compressional pipe
organ modes. When k increases from zero, these roots gradu-
ally change their properties and split into two or more roots.
Some roots finally become the higher order shear modes. He
also shows that if k—o and f-—o such that f/k
is finite, the period equation becomes proportional to the
Rayleigh's equation of the half-space. Due to the presence

of the radicals

7
r, = (x* - x2)7

Z
x2) and sy = (K - kp )

there are two pairs of branch points, f = i g% kdl and f =
't %% k@; , on complex f plane. The Riemann sheets are

formed according to Re r,> 0 and Re s, >0, Re r, < 0 and

Re 5, < 0, Re r, >0 and Re s5,< 0, and Re r,< 0 and Re s, > o.
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Different Riemann sheets have different groups of roots.
The roots on different sheets have different physical
interpretations. For example, Re s, < 0 means leaking of
S wave energy into the half-space, and Re r,> 0 means

trapping of P wave energy in the surface layer.

The roots of this equation according to Gilbert (1964)
are: S roots on the Riemann sheet (+,+) (i.e.,Re ry>o0,
Re spo)and (-,-) (i.e.,Re ry){0, Re s,<0h and P roots on (+,-)
and (-,+) sheets. § roots eventually become M;
branch of Rayleigh waves and P roots become M, branch of
Rayleigh waves. The P +- and P-+ , compressional and shear
pipe organ modes, respectively (not the true "pipe organ"
modes) have been identified on earthquake seismograms.

The leaking modes found in our data are similar to
the normal mode propagation in a liquid layer overlying a
liquid half-space in which only P waves enter the problem
(liquid cannot sustain the shear motion) (Ewing, et al,
1957, pp. 126-151; Officer, 1958, pp. 117-145). When C
approaches (Xl , Or equivalently the incident angle ap-
proaches normal, the normal mode equation becomes the equa-
tion for the simple pipe organ modes whose spectral band
peaks at 1, 3, 5, --- times the fundamental frequency
(Ewing, et al, 1957, p. 185). This phenomenon has also
beeﬁ reported by Grant and West (1965, pp. 104-107).

It is strange to see that the above phenomenon exists

in the solid layer overlying a solid half-space, because in
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solids, both P and S waves in the general case couple to
each other at the interfaces. Two possible explanations
are discussed here. One explanation may be decoupling of

P waves and S waves due to their high angle of emergence in
the surface layer. The critical angle of the P wave in the
layer is 1l1° 34' and the shear wave generated by the com-
pressional wave impinging at the boundaries has an incident =
angle of 6° 00'. Both are small. Another explanation is r__
based upon the assumption that the reflected S wave from

water-table has small amplitude because of the small S wave

velocity discontinuity at the saturated-unsaturated boundary, _vJ
which has already been discussed in some detail in Chapter I.
It is difficult to determine which explanation is correct.

At near normal incidence, impinging SV waves generate
neglegible amplitudes of the reflected P waves at a boundary,
but the impinging P waves generate about equal amplitudes

of reflected P waves and S waves (Muskat and Meres, 1940).
This infers that X component amplitudes must be similar in
magnitude to the 8 component after the arrival of &, .

This is not the case we have observed on our records. It

is observed that the X component traces have smaller ampli-
tudes than the % component traces after the arrival of the
refracted 09. A portion of record No. 43 is shown in Figure
2. However, we still have grounds to argue that since S wave
energy is more easily dissipated in the near surface loose
material, the amplitudes of S wave shown on the seismograms

are more severely attenuated than the amplitudes of P wave.
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If the S wave velocity change at the water-table is
assumed to be small and the density change is also assumed
to be not substantial, an interesting result can be derived
from the period equation of the single surface layer over a
half-space model. The existence of the dispersive "pipe
organ" modes in the assumed earth model is then explainable.
The derivation is made possible by simplifying the period
equation under the assumptions: /3' =/31and f = A .
In the following, we want to show that the normal mode equa-
tion of the liquid layers is a possible equation governing
the dispersion pattern of the leaking modes propagating in
an unsaturated layer overlying a saturated half-space if the

above assumptions are true. By substituting

ﬁr=ﬁl' P.=}A1 ,and P =P,

in equation (2.8), it becomes

2

) [Cos (r, h) + _‘%- sin (r, h)]

2 - S

2

[}
+ 43 BCL‘_l V/_C_“_| [+ Cos (r,h) - sin(r,h)] = o....... (2.30)
A !

Following Gilbert's (1964) method, we assume f=§{ .+ j §.

= C _ _ aTf P _
then r,h k,;"; 1 h =2" C_E';‘ l1h

C

2T (fr+3 £;) _C_f -1 h R + jI. Equation (2.30) can be
C o
1

written as:




B Dttt e e 2.31
M +im,s, (2.31)
where
11, = (2- ©)* cosh (1) + 4/_C_’ -1 [C'-1 sinh (1) (2.32a)
A’ 2 ot 2
$, = Cos (R) + L 1-CYo2 Sin (R)eueeeeennnneennnns (2.32b)
. JC/o(“"
T,= (2- £y simn (1) + 4/ C*_, cosh (I)... (2.32¢c)
g o
[
T,= LLoCA cos (R) - sin (R)eeuuniennneennnnnnns (2.32d)
Cler =~

For equation (2

of roots can be

below:
T =0 and T, =0
M =0 and S,=0
Z,=0 aad T,=0
> =0 and £,=0

These equations may or may not have solutions.

(2.33c) can be explicity written as

tanh( 211'!"] Cos B) = 4"/ @ll JC/’( -l
o, (2 - ‘/(;' )

.31) to be satisfied, four possible branches

solved from the four sets of equations listed

(2.33a)
(2.33b)
(2.33¢c)
(2.334)

Equation
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and
/670(;:
tan (ZJI_U\_ CosB) = - _ ... ceeeeeeaae (2.34Db)
ol J1—=C/xt
where © = incident angle ot P wave in the surface layer.

Equation (2.34b) involves only f, which is related to the
dispersion pattern, whereas equation (2.34&) involves only
f; which controls the attenuation of the amplitude. Note
that equation (2.34b) is exactly the normal mode equation in
a liquid layer overlying a liquid half-space with a density
ratio of unity. If the above analysis is correct, the
existence of the pipe organ type modes on land will be an
indication of the existence of water-table. More observa-

tional evidence is needed to verify it.



Chapter III
Spectral Analysis and Data Interpretation

Spectrum, dispersion, arrival time, time duration, ampli-
tude, particle motion, cross-spread velocity, etc. are useful
in identifying a signal and in deducing model parameters.

A body wave usually has a definite arriving time and short
signal length. 1In contrast, the arrival of a normal or a
leaking mode is not as sharp as the arrival of a body wave
and the time duration is always much longer. Therefore, in
studying a body wave, the determination of the arrival time
is important. On the other hand, in studying the normal or
leaking mode, the derivation of the dispersion pattern is
stressed. In this chapter, we will discuss methods of iden-
tifying signals or deriving group velocities, and present
the properties of signals identified on our records.

A. Methods Used to Identify Signals or Derive Group
Velocities

Various methods used in identifying signals or deriving
group velocities are introduced below. The discrete Fourier

transform (DFT) and discrete inverse transform which will be

used in these methods are given as follows: (Gold and Rader,
1969)
N-)
FIMQ) = 3 £(na) exp(-jmn AQ) ceeeiiiiennnnnneaas (3.1)
N=0
N-|

f(na) FmR) exp(jmn &2 )eeeeeeeeeeaaeeas (3.2)

z|-
-

27

Y



28

where F(m Q) = discrete form of the Fourier
transform
f(n o) = discrete form of the time
function
N = total data points in the time
window
A = sampling time interval
j =/J=
=2T7/(NA)
m=0’ l, 2' e e e o N—l
n 0o, 1, 2, ...., N-1.
The same formulas will also be used in other chapters. Note
that for a particular data points N and a particular sampling
interval A , there is a particular set of frequencies corres- i
ponding to them. For example, N=400 and &£=0.005 sec., the B

corresponding frequencies are m&(2y) = o, 1/2, 1, 3/2,..,399/2.

1. Moving Window Spectral Analysis Method

A typical feature of a surface wave record is that many
modes are superimposed on each other and the spectral proper-
ties of each mode varies with time at different rates. If
one is able to determine the exact amplitude and phase spec-
tra at each time instance the separation of modes will easily
be made and the group velocity dispersion curve of each mode
will readily be found. Unfortunately, this particular method
is not a feasible task. The uncertainty principle in spectral
analysis states that the product of the spectral bandwidth (a
measure of the bandwidth of the signal) and the time duration
of a signal cannot be less than a certain minimum value (Hsu,
1970, p. 229). That is, the shorter the time window the
poorer the frequency resolution, and the converse is also
true. A compromise must be made between the length of the

time window and the frequency resolution.
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a. Parameters Involved in Use of the Method

The parameters considered in designing this method are:
1) the minimum time window for which the discrete Fourier
transform is applicable; 2) the time window that is required
to resolve the spectrum of our available records to the ex-
tent that each signal of interest is visually distinguish-
able; 3) the weighting function; and 4) the increment of
window shift along the time axis.

To determine the minimum time window required, such
that the spectrum, corresponding to a particular frequency
m(2/27 is derivable by using the discrete Fourier trans-
form, consider the Fourier transform of a time function
f(na ). Let us rewrite equation (3.1) as follows:

F(mQ) = hﬂ’i' f(na) exp (-j ’N"/r"") =N§f-' £(ns) exp (- JZN‘/':)

n=0 n= o
2 ok

+ 2’: f(nd) exp (- ] ) + ..+ 0 f(na) exp(- J '3..(3 3)

=N/m n= (m)(Nin)

. . 2mM . ..
Note that the exponential term exp (-j N ) is periodic.
For some i = 1,2, --- , or m, an arbitrary summation in

equation (3.3) can be written as:

LN - 2mn N&n—
£(na) exp(-3 J7m) =2 _ £0(1+(i-1) (N/m)) =]
Na(i-1)(Nm) 27 l=0
) oxp [ -3 g (1+(i-1) (N/m))]
N/m-—=i
= £{(1+(i-1) (N/m)) & ] + exp [- 3(72“ + 27 (i-1))1. . . (3.4)
L=0
N/m~—I|

Y L1+ (i-1) (N/m)al.exp(-52mt
L=0
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because i is an integer. Define

fi(la) = £ [(1+(i-1) (N/m))a],

The time origin of fi(14) differs from the time origin

of £[(1+(i-1) (N/m))a] by (1-1) (N/m)a, i.e., £i (1a)

is a time-shifted function of f(14) . Also define F‘-(Q’)
to be the Fourier transform of fj (14) for the data points
n=(i-1) (N/m) to n=i(N/m)-1 assuming that N/m=integer .

We can write

N/m=) l
Fi (Q) =¥ fi (14) exp(-j 2
=0 N/m
fn—1 ’
= fi (14) exp(-jmla 2T . . . (3.5)
Na
=0
N/m-—! ‘
= fi (18) exp(-jm1a$ )
L=0
”
It is concluded that {2 is equal m Q2 . Therefore
both Fourier transforms, F(mQ) and Fi(m2 ) , are defined
for the same frequency 7_"2_%2= T\JY% ., except that F(m(Q2 )

is defined for the data points from n=o to n=N-1 and Fi(m(2)
is defined for the data points from n=(i-1) (N/m) tc n=i(N/m)-1
only. Note that the number of data points in Fi(m(2)

is N/m which corresponds to a time interval of (N/m) &

L
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This time interval is exact the period of the frequency
m/(NA) defined by both Fi(mQ) and F(mQ) . Thus
Fi(ma) can be termed One-period Fourier transform.

Equation (3.3) can therefore be written:

F(mR) = F, (mQ) + F,(mQ) + ... + Fm(mQ), ..ccveeo... (3.6)

namely, a m-period Fourier transform is a sum of m one-
period Fourier transforms. Note that for N/m £ integer,
equation (3.6) is not valid. However, from the practical
point of view, it is possible to approximate it. For example,

N=100, m=3, and a =1, then

Q = 2T/100
and ’3;-' 300_
F(mQ) = F(3'3£) =9 f(n) exp(- 332'_:%") + f(n) exp(-BJ%:;T)
=0 n= 122
100-1 3
+ Z £(n) exp( 33 '"VS [Z f(n) exp(- 339"") + 1/3f(33)exp(- 33%)]
=2 n=o
+[2/3f(33)exp(-33 loo ff f(n)exp(- 3]‘7527) + 2/3£(66) exp(- 331—53)]
+[1/3£(66)exp (- 33'32" f £(n) exp(-3j 2 ]

n-67 Joo

Tr1(33T) 4+ F2(3 ) + F3(32L),

{oo 00
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where F, , F,, and F, are the sums in the brackets [ J.
This approximation was tested on an exponential function.
The maximum phase error observed was + 0.003 radians, or
¥0.058. This is negligible in practice. The percentage
amplitude error corresponding to this phase error can be
shown to be [1-Cos(0.0005«) ]X100 , where & 1is the phase
angle. It is a very small amount.

The one-period Fourier transform described above is a
DFT that is defined for the shortest time window, but it
does not guarantee a satisfactory frequency resolution. It
has been verified experimentally in this study that the
five-period Fourier transform is a satisfactory one for our
particular data.

The programming method is as follows: Firstly, N data
points are divided into groups in subsequent order. For a
particular frequency m/(NA), the number of points in each
group is N/m, which corresponds to a time duration of N 4 /m,
i.e., one period long. For example, N=400 and A4 =0.005
seconds, the number of points in each group are 400/m= o0 ,
400, 200, 133 1/3, ..., and 2 for m=0, 1, 2, ..., 200 (the
maximum possible number in the first group is equal the
maximum number of the available data points, i.e., 400).
The corresponding periods are (400x0.005)/m=2/m=00 , 2, 1,
2/3, ..., and 2/200, and the corresponding frequencies are
m/2=0, 1/2, 1, 1 1/2, ..., and 100. Secondly, the one-
period complex Fourier transform is performed on each group
of data points. Note that if the number of points in a

group is not an integer, the approximation method mentioned
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previously must be used. A five-period Fourier transform
is then obtained by summing five one-period complex trans-
forms to represent the complex spectrum of the central period
of the five. To find the complex spectrum of the next time
section, the five-period Fourier transform is shifted one
period to the right (i.e., direction of increasing time).

The well known weighting functions such as Bartlett
(triangular), Tukey (hanning), Hamming, Parzen, etc. are : r—~
not easily programmed in the above process. A convenient
method is to weight the five one-period transforms by 1/9,

2/9, 3/9, 2/9, 1/9, respectively and then sum them up to

form the five-period transform. This kind of weighting is

a rough version of the triangular weighting.

b. A Special Method for Improving Time Resolution

Since the shifting of the time window is in increments
of one period, a further improvement in time resolution is
desirable. The concept of Page's (1952) instantaneous power
spectrum was used to accomplish this goal. The intuitive
meaning of the so-called "instantaneous power spectrum" is
the contribution of a éingle data point to the power spectrum
of a time function which extends from minus infinity to a
certain prescribed time. 1In application, it is assumed that
the beginning time of a one-period time section, defined
previously, is the time of appearance of a one-sided, (i.e.,
zero displacement before time of arrival) band-limited signal
and the complex spectrum defined for the same time section

is contributed mainly by this signal.
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The following is the definition of Page's (1952) instan-
taneous power spectrum:
Parseval's theorem for the energy of a continuous signal
may be written as:

ol

o 2
J’ g?(t)dt =I R G2 Y I . (3.7
— o0 -0

where g (t) is the time function,
F(f) is the frequency function,
t = time,

f

Il

frequency,

l | denotes the absolute value.
Let /D(t,f) denote the instantaneous power of a particular
frequency £ and at certain time t. The energy expanded from

time minus infinity up to time t is

t s oo T
A
fg(l,)d’t =f df [ LT, D)AF ceiniinnaan.., (3.8)
- &0 -0 /oo
by using the definition of F(T,f) and the identity, equa-

tion (3.7). The instantaneous power of all frequency at time

t is found to be

00
g2(t) =j P(t,£) dfvevnnnn.. P o -3
~ 00
by differentiating equation (3.8). Define a causal time
function

gt(’t) ={géf:) o<t st ... e ....(3.10)

otherwise .
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The Fourier transform of gt(t) is

oo t | .
Ft(£f) =j gt('t) exp(-jw{) 4 7 =f g(T)exp(-jwg)df.. (3.11)
— o0 (o) ¢

The total energy of g _(f) is

ooz_ > 2 + 0
g, (f)at =J g (’C)d’[ =j d'Lj LU B)af e, (3.12)
0 . o —od

by using equation (3.9). It can also be written as

by using Parseval's theorem. By equating.equations (3.12)

and (3.13) we get

jdf} F (1.5 dT=ﬁFt(f)|z Qf.uniieinieiininnnns (3.14)
—00 /o 00 '

From equation (3.14), one can write

t -
ffq £) df = | P [T e (3.15)
4 o . ’
£
Differentiating equation (3.15), obtain
Ple,f) = 2£(8) | FE(£)| Re [exp(jwt) exp(30(t, )]
= 2f(t) l Ft(f) | Cos (Wt +XE,€) iinriiinrnnnnronnsennnes (3.16)

where C*t,f denotes the phase of Ft(f).
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Equation (3.16) was used in computing the instantaneous
power spectrum. Note that F(t,f) may be negative, but
the cumulative energy Lff(f,f)df is always positive at
all frequencies by equation (3.15). A negative p(t,f)
indicates a temporary readjustment to the total energy.
Although the positive f%t,f) does not necessarily indicate
the presence of a particular frequency at time t, a successive
building up of the positive power is no doubt a good indica-
tion. With this in mind, the positive densities are reduced

by an amount proportional to the ratio of the negative sum

to the positive sum and the negative densities are reduced by
an amount proportional to the ratio of the negative sum to
the positive sum and the negative densities are arbitrarily
assigned zero values because they are not associated with

the major signals in the time window. The isolated positive
densities are again eliminated because they are apparently

not associated with long duration normal or leaking modes.

c. Uses of Moving Window Spectral Analysis Method

The moving window spectral analysis method may be used
for two purposes. One is for separating superimposed modes
and for revealing time-varying spectra. Another is for de-
riving group velocity dispersion curves.

Figure 3 shows the second and third "pipe organ" modes,
on a portion of the 2nd 8 trace of record No. 43, being
separated by this method. This figure also indicates that
the first mode (frequency about 10 HTZ) does not appear right

after the refracted ©(, arrival. The observed points in
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Figures 4 and 5 are the peaks of the time-varying spectra
of the subsequent time sections of the same record. Two
superimposed modes are identified in Figure 5. The events,
La, Lb, Lc, etc. are defined in Table 3, p. 52.

By the definition of group velocity, introduced in
Chapter II, a curve obtained by connecting the peaks of a
time-varying spectrum is the observed group velocity dis-
persion curve of a particular mode. Figure 6 shows the time-
varying spectrum of My, mode. Due to the limited space,
this spectrum is drawn separately on four pages in original
sequence. The circles indicated are the peaks of the spec-
trum. The group velocity dispersion curve is obtained by
connecting these circlés. Figure 7 shows the group velocity
curves of My, mode found on several records by this method

and also by hand picking.

2. Fixed Window Fourier Transform

The fixed window Fourier transform is used as an auxi-
liary means to the moving window spectral analysis method.
Occasionally, the latter does not reveal clear spectrum due
to its limited length of time window, the fixed window
Fourier transform must be applied using a longer time window.
The triangular weighting function is used to reduce the side
lobes resulting from truncation. Figures 8 and 9 are the

spectrum of "pipe organ" modes.

3. Determination of Particle Motion

The particle motion is often a useful means in identi-
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fying a signal. The determination may be accomplished by
superimposing the X trace on the & trace and inspecting
the phase lags between two traces. This method is illus-
trated in Figure 10. The particle motion is one of the

properties of events identified in Table 3.

B. Interpretation of Data

The refraction records that have been studied are

listed in Table 2. The spacing between any two adjacent
geophones, charge size, depth of shot hole, and the dis-

tance between shot and the spread are indicated. These

records were recorded without automatic gain control (AGC),
suppression, and filter setting. Because no part of the
spectral band is negligible under theoretical consideration,
any distortion, caused by the artificial means, should be
avoided. The high frequency noises such as those due to
instrument, wind motion, etc. can be filtered out after a
visual inspection of the spectrum is made.

The data used for the study were digitized from the
paper records. The errors introduced by the digitizing
process are not easy to evaluate. To test for errors in
digitization a trace was digitized twice and the average
was determined. There was no noticeable improvement in the
result, thus we conclude that digitization errors were neg-
ligible. Most of the data used was thus digitized only
once.

The characteristic seismic events having been identi-

fied on seismic records by methods described previously are
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Table 2. List of Refraction Records

Record Spacing Charge Hole Depth Distance From End
Number (ft) (1b) (ft) of Spread (ft)

10 25 2 5 725

11 25 2 5 725

33 10 16 10 969

34 10 4 10 600

42 50 8 10 2000

43%* 50 8 10 2000

*Repeated version of record No. 42, except that No. 43 has

lower gain setting than No. 42.
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listed in Table 3 (events on Y component are not included).

La, Lb, ...Le are leaking modes arriving before the
refracted shear wave ;i . La, Lb, and Lc are actually mul-
tiple reflections of refracted P wave o{, . We have dis-
cussed their spectral properties and the underlying theory
in Chapter II. Ld is a peculiar event. It is dispersive
and has a cross spread velocity similar to the P wave velo-
city in the surface layer, i.e., 1150 ft/sec. It may be
interpreted that when the direct P wave couples to Lc, it
results in a low frequency, high amplitude disturbance
which has a cross spread velocity of the P wave in the layer
and also exhibits the properties of a leaking mode. Le, be-
ing interpreted as the continuation of Lc, is solely based
upon the similarity in spectral bands. That @; is being
related with the refracted S, can be due to the following
evidences: 1) high amplitudes appear in X component (at
distances, 989' and 2050') indicating a disturbance with
strong shear motion; 2) cross spread velocity and group
velocity (more correctly, shot-receiver distance/arriving
time) are both about 900 to 905 ft/sec, indicating a re-
fracted event from the half-space; moreover, the S velocity
in the half-space is found to be in this range by the inver-
sion of observational phase velocities (discussed in Chapter
V; 3) all normal modes appear after this event (the highest
velocity of normal modes is S velocity in the half-space).

The normal modes M21, M12’ and Mll are identified on the

basis of their time-varying spectra. The particle motion of
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My, and M,, are found to be consistant with the theoreti-
cal calculations made by Mooney and Bolt (1966) for the
alluvium- case.

There are many other events that are possible of
identification on the records, for example, the one identi-
fied by Bennett (1973) to be due to P-S conversion. The
study was limited to those events that are easily detecta-
ble by moving or fixed window spectral analysis, and those
that have apparent relations to our single surface layer
model. Further discussion concerning the events and their

implications in the assumed model are found in Chapter VI.




Chapter 1V
Methods of Computing Phase Velocities
From Observational Data

Various methods of computing phase velocities using ob-
servational data are discussed in this chapter. The computed
phase velocities will be inverted to yield model parameters.

The details of the inversion is given in Chapter V. e

A. Peak-and-trough Method
Having been mentioned in Chapter II, the phase velocity

is the velocity with which the wave form propagates. On a

seismic record, it is possible to correlate a particular L.
wave form from one trace to another, pro?ided that: 1) the
distance between two stations is not excessive; 2) the noise
level is not excessive; 3) no superimposed events are present.
The phase velocity is computed by dividing the distance be-
tween two stations by the time shift of this wave form on two
traces and the corresponding frequency is determined by mea-
suring the period of this wave form (Officer, 1958). The
phase velocities of M;; mode obtained by this method, is
shown in Figure 11. This is the oldest and the simplist
method of estimating phase velocities. It is observed on

Figure 11 that the results are poor.

B. Fourier Transform Methods

The underlying theory is the same for all the methods
that will be discussed in this section. Consider that a dis-
persive event observed at station A is fao(t), and the same

55
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event observed at station B is fB(t). The Fourier transform
of f5(t) and fg(t) are Fp(w) and Fg(w), respectively. The
difference in amplitude spectra between Fp(w) and Fp(w) may
be due to geometric spreading, and material dissipation, and
the difference between phase spectra is due mainly to the
difference between arriving times, i.e., dispersion. The
phase velocity can be found by the formula given by Sato

(1960) :

Adt 2mT = w 4t = zﬂf (I'B— rA)/C(f)

or

C(f) = 2T¢ (rs-rA)/(Ao(‘jZZm“) ........................ (4.1)

where ra and rp are shot-receiver distances at station A and
station B, respectively,&x= O, - 013 = phase difference,
and m=0, 1, 2, 3, ---, At= time shift of the same wave form

in two traces.

1. Fourier Phase Difference Method
This method finds phase difference by subtracting the
phase spectrum of Fg(w) from the phase spectrum of Fp(w)
directly, and then uses equation (4.l1l) to find phase velocity.
It was applied to the data of this study, but the results ob-
tained were very poor. The reason is probably due to the
short time duration of signals and to rapid change of spec-

tral properties.

2. Crosscorrelation Method

The crosscorrelation functions of two functions fA(t) and
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fB(t) is defined as: (Hsu, 1967)

o
Rag(T) = f_w £,(t) fo(t-1) dt

and

o0
RBA(‘t) = [_“fs(t) £,(-T)dt

the Fourier transform of RAB(T) is

FA(W)'FB('W) = ,FA(W)' . IFB(w)I exp (j o)

and the Fourier transform of Rpa (T) is
FA(—w)~F5(w):lFA(w)\.lFB(w)\ exp (-jad).

Theoretically, the crosscorrelation can be performed either
in frequency or time domain. Landisman, et al. (1969) claims
that the phase velocity dispersion curve obtained first by
crosscorrelating two functions in the time domain and then
taking the Fourier transform are smoother than those found
by the Fourier phase difference method described previously.

This method was also used on the data of this study by
means of computer program provided by Dr. R. S. Carmichael
of the Department of Geology. The results did not seem to
be much better than the results using the Fourier phase

difference method.

3. Fourier Sum-and-difference Method
This method, instead of making use of the phase differ-

ence directly, calculates the amplitude spectrum of the sum
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or difference of the two functions fA(t) and fB(t +At),
where At = time shift with respect to the time origin of
fa(t) . The Fourier transform of these two time functions
are FA(f) and FB(f) exp (jwat) , respectively. The

phase velocity is found by
C= (rg=rp) Sotecccce..... e e (4.3)

and the corresponding frequency is the frequency that ex-
hibits maximum or minimum amplitude spectrum, depending on
the sum or the difference being used.

The details of this method can be found in Bloch and
Hales (1968). A brief explanation of how this method works
is given below for reference: Let

S{£)= Fg(f) exp (jwat) + Fy(f),

D(f) = Fp(f) exp(jwat)-F,(f) .
Assume the amplitude spectra of FB(f) and FA(f) are the same
(in application, this can be accomplished by normalization),

i.e., both equal some constant A. S(f) can also be written as:

S(f) = Fg(f) exp(jwat) + F,(f) = Alexp(j%B)- exp(jw At)

+ exp(i%A)] = A [(Cos(otafwAt) + Cos 0%y )2 + (sin(o(s+wAt)

+ sin ds)z]y?exp [j tan b 3N (cpfwot)45in Fa ]
Cos (olg + Wwat) + Cos XA

= A 2"’[1 + Cos (0(8- (>(A+wot)]y2 .

-1 sin(prwat) T “"d“J -------- (4.4)

. QX f
Pl fan Cos (clg+wat) TCosop .
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When the absolute value of S(f) is a maxima,

Cos (015' D(A+ wot) =1

or
g — o, ¥ 2mU =8+ 2mT = wot..... ceeececcoccecenone (4.5)
B A — : .
| —
It is the same as equation (4.1). Similarly D(f) can be
written as:
= ao% Yo g
D(f) = A2 [l-Cos(dB 'O/A + w Aat)] 5

sin(og +wat)-sin oy
COS (ot +wat)- cosxXp .

‘exp [jJ tanq

When the absolute value of D(f) is a minimum, the same con-
clusion results.

In application, the ratio ID(£) ) /|S(£)) is used
so that the minima is more pronounced. A display of this
ratio vs. time shift At is automatically printed out by
the computer. The phase velocity dispersion curve is de-
termined by correlating the minimum points of amplitude
spectra corresponding to different time shifts.

Care must be exercised in determining the dispersion
curve because for any time shift, the corresponding spectral

minima is repeating for each period along the time-shift (or

phase velocity) axis. This can be easily explained by using

equation (4.1):
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C(f) = 2T £ (rg- r))/(4xT2mT) = (rg - rA)/(At‘l’m-period).

For m=0,1,2, ---, there are infinite values of phase velo-
cities. This ambiguity can be resolved by checking with
the results obtained by the peak-and-trough method described
previously.

There are some additional procedures which were used to

improve the results and to reduce the computing time:

a. Shifting Phase Spectrum

The Fourier transform is a time consuming process.

The method used here was designed to perform the time shift-
ing in frequency domain without resorting to repeating the
Fourier transform. It can be shown that the Fourier trans-
form of fB(t + 2 t) is exp (jwat) Fg(w). For a time limited
function, the multiplication of Fp(w) by exp (jwat) is
equivalent to the shifting of the time function. It is
schematically illustrated in Figure 12.

This method has two advantages. Firstly, one needs to
perform Fourier transform only once for the two time functions,
fa(t) and fg(t), respectively. The Fourier transforms of
fg(t +4ot,), fg(t +aot), fg(t +4t), ...etc. are replaced by
multiplying exp (jwat,), exp (jwdt,), exp (jwat,), ... etc.
to FB(w). The saving in computer time is considerable.
Secondly, the shifting of the windowed time function will not

introduce any additional noise as will the actual shifting in
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Shifted Position of Gamples
Time Increments in Time Domain
0] O 1 2 3 4 5 6 1
1 T 0 1 2 3 4 5 6
2 6 7 0 1 2 3 4 5
3 5 6 7T 0 1 2 3 4
4 4 5 6 7 0 1 2 3
5 3 4 5 6 7 0 1 2

Figure 12. An Example of Shifting in Time Domain

Q
N

=
1

0.1 sec.,

Figure 13. Trapezoidal Weighting Function
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time. Since most of the signals on our records are short
in duration, the introducing of a few noises will distort

the spectrum substantially.

b. Normalization of Time Functions
This method of computing phase velocity is based upon
the assumption that Fp(w) and Fz(w) both have the same am-
plitude spectrum. This is not true in practice. Two time F=
functions, fp(t) and fg(t), were normalized with respect to

the maximum amplitude in two functions.

I I S B~ e

c. Trapezoidal Weighting Function

A trapezoidal weighting function shown in Figure 13 is
used to reduce the effects caused by trancations. Another
reason for using this weighting function is to weight every
sampling point in the window evenly, except for a few points
near the truncations. This is done to avoid the possible

distortion of the spectrum.

d. Time-varying Filter
All surface waves possess time-varying spectra. To
filter out noises, a filter with time-varying pass-band is
desirable. The principles in designing this filter are the
same as those described in Landisman, et al.(1969). It was
found that the phase velocity dispersion curves, determined
by using the filtered data, were better than the unfiltered

ones.

The method of applying this filter is given below:
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Firstly, a fast Fourier transform is performed on the time
function. Using the discrete Fourier spectrum obtained, one
can compute the amplitudes and phases of the Fourier series
which represents the time function. Secondly, by inspect-
ing the time-varying spectra described in Chapter I, one is
able to determine the pass-band of the signal at different
time instances. Finally, the filtered signal is obtained
by truncating each cosine function of the time series accord-
ing to the shape of the time-varying spectrum and summing over
all truncated cosine functions. The truncations of cosine

functions are smoothed before summing by a half-cosine

weighting function given below:

W (t) = {Cos 1—1-:! -LActeLs

0 otherwise

where L = length of the time window.

Having been mentioned in Chapter III, the evaluation of
the one-period Fourier transforms was a first step in the
computation of the time-varying spectra. This data was
punched on cards by the computer during the computation.

The summation of all the one-period transforms corresponding
to a particular frequency is the Fourier transform of the
time function. Again, a "cleaner" Fourier transform can

be obtained by nulling those one-period Fourier transforms

that fall into the rejecting bands. Figure 14 shows an
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example of the filtered and the unfiltered M;j signal.

A phase velocity dispersion curve obtained by the
Fourier sum-and-difference method is shown in Figure 15.
The maximum spectrum is normalized to (0 decibels. Those
below -50 are set to zero and those higher or equal to
25 decibels are represented by X. The asterick (*) repre-
sents the lowest and the next lowest points of the spec- —
trum. The solid curve connecting the low points in the [_-
trough is the phase velocity dispersion curve. There are

several possible curves in this diagram. This one is chosen

because the phase velocities associated with this curve are t_'
similar to those found by the peak-and-trough method.

C. Computing Phase Velocity Dispersion Curve by Using

the Knowledge of Observational Group Velocities

The use of this method is two-fold. Firstly, it may
be used to check the correctness of the results obtained by
other methods. Secondly, the results of this method is ex-
pected to be less scattered because the group velocity dis-
persion curve, obtained by the moving window spectral analy-
sis method, is relatively smooth.

Equation (2.7), which relates the phase velocity to the
group velocity, is a first order differential equation. The
numerical technique used to solve it is the Runge-Kutta
method of order 4 (Conte, 1965). The details of this method
is given in Appendix A. The group velocity data are those
from the moving window spectral analysis method.

The disadvantage of this method is that an initial value
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of phase velocity is needed before the computation can
start. This is probably one of the reasons that, to the
author's knowledge, this method has not been used pre-
viously. Another reason may be that before the develop-
ment of the moving window spectral analysis method by
Landisman, et al (1969) , the observational group velocity
data is quite scattered and not suitable for using this
method. To find a good initial value, one could resort to
the results obtained from the Fourier sum-and-difference
method. Two examples of the results using this method are

tabulated in Tables 4a and 4b. The closeness between the

Fourier sum-and-error method and this method verifies the

success of these two methods.
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Table 4a. Phase Velocities Obtained by Integrating
Observational Group Velocity Dispersion
Curve (Record No. 43 second B trace)

Group Velocity Frequency Phase Velocity Phase Velocity

(ft/sec) (cps) (ft/sec) *Difference
569.444 8.50 # 740.741 0.000
559.345 8.75

550.336 9.00 727.643 0.370
542.328 9.25

534.550 9.50 714.788 0.502
524.297 9.75

514.429 10.00 702.035 0.281
488.677 10.25

482.921 10.50 688.029 -1.626
478.972 10.75

475.638 11.00 674.653 ?
474.537 11.25

473.441 11.50 662.506 ?
470.723 11.75

468.571 12.00 651.454 -4.284
465.909 12.25

463.801 12.50 641.246 ?
461.712 12.75

460.157 13.00 631.804 -3.117
456.062 13.25

452.539 13.50 622.919 ?
449.069 13.75

445.652 14.00 614.424 -0.961

*Phase velocity obtained by integration—

Phase velocity obtained by Fourier sum-and-difference method.
#This is an initial value selected from the phase velocities
obtained by Fourier sum-and-difference method.

?Difficult to determine the correct phase velocity correspond-
ing to this frequency,
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Table 4b. Phase Velocities Obtained by Integrating
Observational Group Velocity Dispersion
(Record No. 43, Sixth 8 trace)

Group Velocity Frequency Phase Velocity Phase Velocity

(ft/sec) (cps) (ft/sec) *Difference

572.519 8.50 $# 740.741 0.000

563.910 8.75

554.871 9.00 728.047 0.774

547.445 9.25 o
540.216 9.50 715.621 1 335 t
533.175 9.75 A
526.932 10.00 703.592 1.838

502.793 10.25

498.339 10.50 690.739 1.084

487.013 10.75

482.315 11.00 677.943 ?

477.707 11.25

473.186 11.50 665.809 ?

470.711 11.75

468.262 12.00 654.506 -1.232

466.321 12.25

464.396 12.50 644.109 ?

461.066 12.75

457.317 13.00 634.416 -0.505

Phase velocity obtained by integration —

(Minus) Phase velocity obtained by Fourier sum-and-

difference method.

# This is an initial value selected from the phase velo-
cities obtained by Fourier sum-and-difference method.

? Difficult to determine the correct phase velocity corres-

ponding to this frequency.



Chapter V
Inversion of Data to Yield Model Parameters

In this chapter, various methods of inverting observa-
tional data and the resulting model parameters will be dis-
cussed. The emphasis will be placed upon the inversion of
normal modes. A comparison of the results determined by
normal mode, leaking mode, and compressional wave data will

be made in the last section.

A. Inversion of Normal Mode Data

The observational phase velocities obtained in Chapter
IV are the data used in the inversion of normal modes. The
period equation which relates the phase velocity data to the

model parameters is equation (2.8).

1. Methods

Equation (2.8) has long been used in generating theo-
retical dispersion patterns corresponding to assumed crust-
mantle models. These dispersion patterns are used in com-
parison with the earthquake surface wave data and to test
the correctness of the assumptions. For a layer over a half-
space model, there are six model parameters of which one
could speculate. By a trial-and-error method, it is possible
to get an estimate, but of course, uncertainty remains.
Dorman and Ewing (1962) were the first to inverse the obser-
vational phase velocities directly without assuming model

parameters. They used the linear least-square approach.
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Two new methods have been developed here to find the model
parameters directly from the observational phase veloci-
ties. Because these two methods were developed independently,
without the knowledge of Dorman and Ewing (1962), any compari-

son was not intended.

a. Exact Method

Six model parameters, P wave velocities in the surface
layer and in the half-space, S wave velocities in the sur-
face layer and in the half-space, rigidity ratio of the two
layers, and thickness of the surface layer uniquely determine
the dispersion curves of all the leaking and normal modes
corresponding to the single surface layer model. Converse-
ly, these dispersion curves uniquely determine the six model
parameters. The first step of the exact method is to arbi-
trarily choose six phase velocity-frequency pairs from any
one or more dispersion curves. The second step is to solve
for the six model parameter, from the six independent equa-
tions formed by substituting the six phase velocity-frequency
pairs into the period equation.

If the observational phase velocity data were used, the
inverted model parameters would not be correct, due to the
observational errors. A method of solving this problem is
to repeat this process for many times using different combi-
nations of phase velocity-frequency pairs. According to the
author's experience, the phase velocity data obtained by the
integration of the group velocities give model parameters

with relatively small errors. The final results are obtained




73
by averaging the results from different trials.

The numerical method used in solving these equations
is Newton's method for a system of non-linear equations
(Conte, 1965). The details of this method is given in
Appendix B. This method converges fast when the initial
values are chosen close enough to the true roots. If the
initial values are out of range it may either converge to
incorrect roots or not converge at all. Also, some of the
results obtained by using the arbitrarily chosen phase
velocity-frequency pairs, may deviate greatly from the op-
timal solution using the entire data set, if these chosen
data points happen to contain greater observational errors.
A careful inspection of the results from each trial must be
undertaken and the far different solutions must be excluded
before the averaging process is made. Some of the trials
may not converge at all because of the vanishing Jacobian
(Conte, 1965, p. 45). The numerical instability is caused
by an inadequate combination of phase velocity-frequency
pairs.

Two model parameters, the P wave velocities in the sur-
face layer and in the half-space, are relatively well de-
termined in this study. They are assigned 1150 and 5700
ft/sec, respectively. Therefore, only four ﬁhknowns enter
the problem in the single surface layer model. An example
of results obtained by the inversion of M;; data are listed
in Table 5. The density ratio was computed by using the

relation:
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Table 5. Model Parameters Obtained by the Inversion of My
Data Through the Use of the Exact Method
(Record No. 43, Second 8% trace)

Mean Standard Percentage

Value Deviation Exrror

Rigidity Ratio 2.26 0.27 t11.78

Thickness of Surface Layer (ft) 21.84  1.35 t 6.19

S Wave Velocity in Surface 603.31 7.6l T 1.26
Layer (ft/sec)

S Wave Velocity in Half- 904.03 25.67 t 2.84
Space (ft/sec)

Density Ratio 1.02 0.21 *20.30

Poisson's Ratio (Surface Layer) 0.30 ———- -———-

Poisson's Ratio (Half-space) 0.49 —_——— -_—

Remarks: i) 20 total data sets are inverted.
ii) only 12 sets of the inverted results are
considered to be good and averaged to
yield the mean values,
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Density of Half-space Material _/il
Density of Surface Layer Material = A

Density Ratio

S Wave Velocity in Surface Layer , X
(S Wave vVelocity in Half-space

Rigidity Ratio,

where the rigidity ratio is defined as:

Rigidity of Half-space Material _ ﬂz
Rigidity of Surface Layer Material =~ M.

And, the Poisson's Ratios were found by the formula:

«-28%

Poisson's Ratio = L
2 o<3_'81

where ol

I

These equations can be easily derived by using the rela-

P wave velocity

S wave velocity,

tionships between body waves and elastic constants (Grant

and West, 1968, p. 30).

b. Method by Minimizing Sum of Squared Residues

Instead of solving n equation with n unknowns, as does
the method described in the preceeding section, a method
Which finds the optimal solutions to m equations in n

Unknowns for m> n, will be introduced here. This method is
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similar to the well-known linear least-square technique,
except that the equations are non-linear and the mathemati-
cal method in solving these equations is also non-linear.
The details of this method are as follows: Suppose
that m observational phase velocity-frequency pairs are
available for use in inversion. By substituting them into
equation (2.8) and assuming n unknown model parameters, a

system of m independent equations results:

fl(al, yr eeey an) =r,
fz(al, az' e o o g an) =rzo.ooooocooonoooncooooco.-oo-oo (5.1)
fm(al' a2’ e o o g an) =rm

where fi's are period equations formed by substituting
different phase velocity-frequency pairs, rj's are resi-
dues of the equations due to the errors in the observational
data (i=1,2,...,m ), and aL'S are model parameters to

be determined (L=1,2,...,n ). A method of solving this
system is to reduce the m equations to become n new equa-

tions in n wunknowns by minimizing the sum of squared resi-

dues, r.

i's i and then solving the new system exactly. Name-

ly, the a parameters are to be solved subject to the

constraint:

m
z: r; = minimum
=
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MiINIMUM. ¢« ceeeeeeceoocosecncooesseos ceeoceees (5.2)
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Equation (5.3) is a system of n non-linear equations in n
unknowns. It can be solved by numerical methods. If the input
data were not independently observed this method might not be
valid. Also, this kind of minimization process may not be
valid for some particular mathematic functions. These mathe-
matical problems will not be theoretically treated here. The
closeness of the results by using this method and the one
described in the preceeding section is evidence that this is

a good method for our particular data and particular period
equation.

Some details of solving equation (5.3) by using the
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Newton's method for a system of non-linear equation are

given here. Define:

m
Gl(al' a2' e e oy an) = Z fi%
1= !
m {_
G(a'a, ---’a) = v- f"a’-—“ ® e 0o 00 06 00 00000000 00 0 (5.4)
2'¢1 2 n / J.an

™3
\D

Gn(al' Aoy eeey an)

"The iteration scheme of the Newton's method is:

(ak)""' = (ap)p + N/D .i.iii..... teetescsscscaacsss (5.5)
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296G, 2 G, e _____ _ 9.G

2a, @2 AQ, S an

> Ga 9 G S G2 :
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Sa > 0 5 a, Jacobian
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o0, ©° Q, 9 On

The major difficulty of this method is that the second
derivatives of equation (2.8) with respect to each para-

meter are required in programming. The derivative

2
SGi: ) ;”D_; 3, :Zm 3 i Qf(+)c D f.
S Q, S Lo Sa, 20; ' oa9q
: =

is an example.

Although the programming of this method is laborious,
the computer time needed in computation is surprisingly small
and the results are close to those obtained in preceeding
sections. The model parameters computed by this method are
listed in Table 6. The S wave velocity in the surface layer
was not computed by this method. Because the value 603.3
ft/sec found by the exact method in previouu section is very
close to the value 600 ft/sec determined by Bennett (1973),
it was thought that these two values must be close enough to

the true value.
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Table 6. Model Parameters Obtained by the Inversion of Mjp;
Data Through the Use of the Method of Minimi-
zing Sum of Squared Residues I I
(Record No. 43, 8 component)

Rigidity Ratio

Thickness (Surface Layer)

S velocity (Half-space)

Density Ratio

Poisson's Ratio (Surface Layer)

Poisson's Ratio (Half-space)

Second
Trace

2.26

21.95

902.00

Sixth j
Trace AR

21.34

902.47

0.31




81

2. Checking the Correctness of Inverted Model
Parameters by Reversing Process

The best method of checking the correctness of the
inverted model parameters is to reverse the process and to
check the differences between these dispersion curves ob-
tained by the reverse process and the observational disper-
sion curves. The reverse process is just the traditional
method of deriving theoretical phase and group velocity
dispersion curves (Ewing, et al, 1957). The details are
given in Appendix C.

Table 7 shows a comparison of the theoretical and the
observational phase and group velocity dispersion curves.
The same data is plotted in Figure 16.

B. A Discussion of the Model Parameters Derived From

Normal Mode, Leaking Mode, and Compressional Wave
Data

The P wave velocity in the surface layer has not been
computed in the study due to the difficulty in determining
the accurate times of the direct P wave arrivals. The value
of 1150 ft/sec has been used throughout the study. It was
determined by Bennett (1973) using short distance refraction
surveys. In his study it was also found that a low velocity
loose sand with variable thickness was present near the free
surface.

The P wave velocity in the saturated layer was computed
by the standard refraction time-distance curves to be 5700
ft/sec. This velocity and the P wave velocity in the

Mississippian sandstone, which was found by the same method,
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Table 7. A Comparison of the Theoretical and the
Observational Phase and Group Velocity
Dispersion
(Mll data taken from Record No. 43, second % trace)

Group #Group
Frequency Phase Velo- *Phase Velocity Velocity Velocity
(HT8) city(Ft/sec) Difference (Ft/sec) Difference
8.50 740.6087 -0.1323 582.5392 13.0952
9.00 728.3312 0.7878 554.3113 3.9753
9.50 715.2862 0.4978 528.1900 -6.3600
10.00 701.7815 -0.2535 505.6809 -8.7481
10.50 688.2109 0.1815 487.8027 4.8817
11.00 674.9856 0.3324 474.8996 -0.7384
11.50 662.4602 -0.0458 466.6908 -6.7502
12.00 650.8844 -0.5699 462.4858 -6.0852
12.50 640.3907 -0.8555 461.4311 -2.3699
13.00 631.0123 -0.7912 467.6952 -2.5382
13.50 622.7123 -0.2058 465.5661 13.0571
14.00 615.4122 0.9882 469.4813 23.8293

* Theoretical phase velocity minus Observational
Phase velocity (by integration of group velocities),

Theoretical group velocity minus Observational

Group velocity (by moving window spectral analysis
method), :
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are believed to be reliable because both arriving times are
accurately determined in the study.

The S wave velocity in the surface layer has been de-
termined to be 603 ft/sec by the inversion of the M;, data.
It is surprisingly close to the value 550 to 600 ft/sec,
which was measured by Bennett (1973) using hammer blows as

sources and at short distances less than 100 ft.

It was also computed, by using M;, data, that the S I
wave velocity in the half-space of the single surface layer
model is 902 ft/sec. It is different from the value of
1200 ft/sec for the saturated layer by Bennett (1973). 1In ?
£

Chapter II other evidences that support the existence of

the layer with 902 ft/sec, have been discussed. Having been
mentioned before, the clay layers in the Pleistocene glacial
drift are possible of causing larger shear wave velocity
changes than the water-table.

The driller's well log indicates that the depth to the
water-table is about 32 ft (Todd, 1971). By applying the
standard refraction technique, it was found to be 46 ft in
Record No. 43, 41 ft on Record No. 10. Todd (1971) identi-
fied eight successive multiple reflections right after the
refracted P wave from the saturated layer and found the
average time lag between two sequential reflections to be
0.056 sec. The depth corresponding to this value is 33 ft.
After examining his record, the first time lag, i.e., the
one between the refracted P wave and the first reflection,

has a stable value of about 0.060 sec. This is equivalent
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to a depth of 35 ft. It is felt that the first time lag
rather than the average value must be used in the calcula-
tion. However, the depth, based upon the first time lag,
seems to be more in error as compared to the one based upon
the average time lag. The low velocity material right near
the surface and the elongated ray path due to velocity gra-
dient may cause this discrepancy. By using the first time
lag, the depths are determined to be 41 ft on Record No. 43,
36 ft on Record No. 33, and 33 ft on Record No. 10. The
depth can also be determined from the spectra of the "pipe
organ" modes. The first three modes have peak amplitude
spectra at 10.000, 23.333, and 35.000 cps in Record No. 43,
10.667, 26.667, and 42.667 cps in Record No. 33, and 11.429,
23.143, and 44.286 cps in Record No. 10. The true "pipe
organ" modes are supposed to peak at frequencies with ratios
of 1, 3, 5, 7, ... The departure of the observed ones from
the true "pipe organ" modes has been discussed in some de-
tail in Chapter II. Since these modes are dispersive, their
frequencies actually vary with time. The frequencies of the
true "pipe organ" modes as their phase velocities approach
the P wave velocity of the saturated layer. The fundamental
frequencies of the true "pipe organ" modes, derived under
this requirement from the observed data, are 7.000 cps for
Record No. 43, 8.533 cps for Record No. 33, and 8.857 cps
for Record No. 10. These frequencies are equivalent to
depths of 41.9 ft for Record No. 43, 34.4 ft for record No.

33, and 32.5 ft for Record No. 10. The depths to the water-
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table computed by various methods are summarized in Table 8.
The shot-receiver distances and geophone spacings of the
records used can be found in Table 2, p. 51.

It is observed that the depths based upon the first
reflection and "pipe organ" mode data are very close. Al-
though the exact depths at each station are not known, it
is believed that these two sets of values are slightly higher
than the true values. The small positive errors are due to
the low velocity material near free surface and the elongated
ray paths caused by the velocity gradient. The depths de-
termined from the refracted P wave are obviously in error.
The intercept times used in computing the depths are ob-
tained by extending the time-distance curves to intercept
the time axis. The range of a T-D curve, that is actually
determined from the observed data, is limited by the spread
of the geophone array, which is small as compared to the
shot-receive distance for the records studied. The extension
of a T-D curve to intercept the time axis is inevitably sub-
ject to error. The depths found by using record No. 43 data
are greater than those found by using other records. This
may be due to the descending of the water-table because the
recording site of No. 43 is farther from the source of the
ground water than the recording sites of other records (per-
sonal communication with Dr. H. F. Bennett of the Department
of Geology).

The thickness of the surface layer of the single surface

layer model, computed from the M;; data of record No. 43, is
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Table 8. The Depths to the Water-table

Data *Refracted *First # "Pipe Organ"
Based P Wave Reflection Mode

Record

Number 10 33 43 10 33 43 10 33 43
Depth

(ft) 41.0 ? 48.0 33.0 35.7 41.0 32.5 34.4 41.9

? Difficult to measure the slope of the time-distance
curve

* All traces in % component were used in computation

# B component traces used in computation are: Record
No. 10---4th and 7th, Record No. 33---1lst, 2nd and
3rd, Record No. 43---2nd and 6th, Record No. 42
(results included in No. 43) ---1st, 4th and 7th
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about 22 ft. This value is apparently not the depth to
water-table. The original thinking is that because most
seismic energy is trapped in the unsaturated layer above
the water-table, the W-T may act as the interface of the
assumed surface wave model. By re-examining the tech-
niques used in studying surface waves, no problems that
may introduce errors have been found. 1In the same evalua-
tion, the S wave velocity of the surface layer which has
been mentioned previously, is verified to be correct and
the density ratio at the interface is about 1.0. This in-
dicates that it is not an unsaturated-saturated boundary
because the porosity of the glacial sand in this area is
about 25% (Bennett, 1973) and the corresponding density
ratio at the W-T is about 1l.1. It has been well estab-
lished that the normal modes are several times more sensi-
tive to the S wave velocity distribution than the leaking
modes. On the other hand, the leaking modes are more sen-
sitive to the P wave velocity distribution (Su and Dorman,
1965, pp. 1008-1009). It is logical to accept the fact
that a S wave velocity discontinuity exists at a depth of
22 ft. This discontinuity may be a result of lithology
change (clay layer), compaction, or cementation. Unfor-
tunately, this result does not contribute anything to the
controversial problem discussed in Chapter II: Does the

S wave velocity change at the water-table or not? One
possible inference is that the S wave velocity change at

W-T is of a magnitude less than the one at the level of



89

22 ft, where the velocity increases from 603 ft/sec to
902 ft/sec. If a multi-layered medium is assumed to be

a single layer over a half-space model in surface wave
inversion, the interface of the model will be found at
the level where the maximum change in S wave velocity
occurs. That is because the dispersion pattern of the
model, using this level as the interface, is close to the

actual dispersion pattern of the multi-layered medium.




Chapter VI
Summary and Conclusions

This study has been centering around the problem of
the utilization of leaking and normal modes from a small
explosion. The difficulties of this problem result from
the presence of a high level of noise, an immaturely de-
veloped wave form, and a short time duration of the sig-
nal. The emphasis of the study has been placed upon the
use of numerical techniques to achieve better results.
Some problems pertaining to the theory, and the particular

data used, have also been studied.

A. Numerical Techniques

All the numerical techniques used in the study have
been carefully examined. To check the correctness of the
results of a newly developed or modified technique, one
or more other methods were used to the same set of data,
and a comparison was made. In some cases, the testing of
techniques was made by reversing the process. Because of
these careful considerations, the techniques used in the
study are believed to be reliable. This study may be help-
ful for other workers who wish to study the seismic data
of similar nature by numerical techniques.

1. Derivation of Time-varying Spectra and Group
Velocities

A special version of the moving window spectral analy-
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sis method has been proved to be an effective means of
separating superimposed modes and identifying signals. The
group velocity dispersion curves derived by this method

are smoother than those derived by the traditional, visual
measurement of periods. To save computer time, an approxi-
mation method of the one-period Fourier transform was de-
veloped, and Page's (1952) instantaneous power spectrum was

implemented in the moving window spectral analysis method.

2. Computation of Phase Velocities

Some methods were found to give poor results using

the available data. The Fourier sum-and-difference method
using the time-varying filtered data gives a good disper-
sion curve. This method uses the shift of the time origin
of one seismic trace with respect to another. By using a
trapezoidal window, and doing the time shifting in the
frequency domain instead of the time domain, two advanta-
ges result. One is the reduction of time needed in per-
forming Fourier transform. Another is that no additional
noises are introduced. The derivation of phase velocities
from the observational group velocity dispersion curves
yields smooth phase velocity dispersion curves suitable for

the inversion computation.

3. Inversion Methods
The exact method for the inversion of the phase velo-
cities to yield model parameters is easy to apply. The

method of minimizing the sum of squared residues is difficult
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in programming, but the computer time needed is small.
The results of these two methods were compared and a good
agreement was found. To further assure their correctness,
the inverted model parameters were used to compute the
theoretical dispersion curves, and then compared to the
observational ones. The differences between the theoreti-
cal, and the observational ones are small. There are lar-
ger deviations in group velocities at low and high fre-
quencies. The higher degree of uncertainty in determining
the correct values at the two ends of the observational
group velocity dispersion curve may be the source of errors.

B. The Use of gormal and Leaking Modes in Data

Interpretation

In all the records studied, M;; mode has the most well
developed wave form. For shot-receiver distance less than
1000 ft, the time duration of this mode is still too short
for the accurate phase velocity dispersion curve to be
easily determined. This is why only the results, computed
from the M;; data in record No. 43 are shown in previous
chapters. The M;, and Mj; data may be possible to utilize
when the shot-receiver distance is longer than 2000 ft.
The use of normal modes not only gives an independent check
on the results obtained by using body wave data, but also
gives lithological information.

The dispersive "pipe organ" modes found in the data
studied, can be used to find the depth to the water-table.

The results agree with those obtained by using the time
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lags between the refracted P wave and the first reflec-
tion. The depth determined from the "pipe organ" modes
may be more reliable than the ones determined from the
refracted P wave arrivals when shot-receiver distance is
large as compared to the spread of the geophone array.
A theoretical derivation was made in Chapter II to show
the possible existence of the dispersive "pipe organ"
modes in the unsaturated layer overlying the saturated .“?
half-space. This theoretical treatment was not done in |
rigorous manner. An actual numerical calculation must
be made and more observational data must be collected to J
verify its correctness. If the dispersive "pipe organ" e
modes are verified to appear only in this particular
situation, their appearance will be a good indication of
the existence of a water-table.
In the assumed model, the boundary with large S
wave velocity change becomes the interface of the model
for normal modes, and the boundary with large P wave velo-
city change becomes the interface of the model for leak-
ing modes. This is in agreement with the conclusions of
Su and Dorman (1965). In this study the S wave velocity
change at the water-table was not detectable. This does
not exclude the existence of this velocity discontinuity.
In future study, the Haskell's matrix must be used
in the surface wave computation. It is more flexible in
shifting from the single-layered half-space model to the

multi-layered model. A more accurate result may be
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obtained.

C. Miscellaneous Conclusions and Recommendations

In addition to the conclusions of Tolstoy and Usdin
(1953) regarding the existence of the symmetric and anti-
symmetric modes in a solid layer overlying a solid half-
space model, a theoretical derivation was made to prove
that they exist under all conditions.

Only X and % components of the records have been
carefully studied. The spectra of the Y component was
only lightly studied. It was found that the spectral
properties of the Y component are different from X and 2
components. This is because the theory underlying the
SH motions of the Y component is independent from the one
for the other two components. Additional information may
be obtained through the study of this component.

Although linear filters are not suitable for studying
dispersive wave trains, they are recommended for use in
the detection of direct, refracted, and reflected body

wave arrivals and to add more information to the study.
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Appendix A. Runge-Kutta Method of Order 4 Used in Computing
Phase Velocities

The problem here is to solve a first order ordinary

differential equation of the form

dc(f) _ c(f)

At T fu(n) [U(f) - C(£f)] = F(£,€) «e.eeennaen.. (A1)

with initial condition

C(fy) = C

o

where C = Phase velocity
U = Group velocity (an implicit function of f)
f = Frequency
fo = Initial value of f

Co = Initial value of C.

In computer computation a value observed on the observa-
tional group velocity dispersion curve is substituted for
U. Co is a phase velocity chosen from the results of
Fourier sum-and-difference method. Note that equation (A-1)
is the same as equation (2.7). Here, w = w, and C = C, are
understood.

The recursion formula for numerical computation is:

(Conte, 1965, p. 223) Cn+|= Ch+ 1/6 (K + 2K2 + 2K3 + Ky)
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where Ky h F (£n, Cn)

=
N
"

h F (fn + h/2, Cn + 1/2 Kl)

Ky = h F (fn + h/2, Cn + 1/2 K2)

K, = h F (fn + h, Cn + K3)
n =0,1, 2, ... = Iteration step
h = Step size of frequency.



Appendix B. Newton's Method for Simultaneous Non-Linear
Equations

The simultaneous non-linear equations
Fl (XI, x2' e o Xn) = o

0

F, (le Xos ... Xn)

Fn (x1, x2' ® o 0 X

]
o

n’

are to be solved. Assuming that Fy, F, ... Fyp and all their

n
derivatives through second order are continuous and bounded
in a region containing the true solutions (Al, Ay oeey An)
and the initial approximation (al, gy A3 e an) is

chosen sufficiently close to (A, Ay, ..., A). By expand-

ing Fy, Fo, ... Fp about (a;, a3, ..., ap), one gets

Fq ( X10 Xo0 ooy Xn) = Fl(al, yr eeey an)
+
SF,(ay, L YARERY" ay) ( X;-a,)
2 X;
+

a Fl(al' az’ e e oy an) (x2-82)+ aFl(al’ a2, e e ey an) (Xn-an)

axz o X,

+ Higher-order Terms

F2 (xl, xz, ooy Xn) = Fz(al,az, ooy an)-rafb(al,az, ceey an)

> x;
"(X-ay)
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+ e (a ,32 oo o g an) (xz-az) + o
o X2
+ an(al, s ooy an) (Xn n)
S Xp
+ Higher-order Terms
Fn (Xl, xz, .oy Xn) = Fn(al,az,..., a)

+3Fp (a,sa
3 X,

2,...,an) (Xl- al)

+;Fn(al, az,...,an)

+ aF (al,az,..., an)
< X, (X, - ap)

+ Higher-order Terms.

By neglecting the higher-order terms, the above equations

can be written as:

9 ) '
F - (xi-a) + %—E:(xl—a;)* R j—%(,n An) = - F
an ()( a)+ %)%(X:."az)'r -—— *%}F{:(Xn"an)Z— Fl
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Therefore, a recursion formula is: (Conte, 1965, pp. 45-46)

_p 2E . ___. °F
' 9 X2 S Xn
S 'i
N ! I
[ 9Fn  __ _ __ S Fn
n 9)(; o )(w X
Q= Gni + — o - = i
! J (F')Fl) ‘‘‘‘‘‘‘ P) Fn) l.:|)2')"~’n
_GL __'F ) F} o 5_3_&
aXp l o X3 an
i : | ;’
S fn ~Fy 20 2w
S ¥, "9 X, S Xn
QAa,in= 02, + Xz Qi
' ) (F.)Fz , ~ =TT ")Fn) L=1,2,--,n
a FJ_ =) .Fl e — - —_— F
3 X, S Xa '
2 Fn e‘Fn -—---- —F
o X) eXz n
. X,zQ,,.
a A — ) L L)
i = O ¥ TR, s F) o
where
Q_E-I aFu - _a_F_L
oX, °Xu °© Xn
](F»;Fz,"-)Fn): : ‘ = Jacobian # 0
oFn 9Fn . 3fn
X, 9 X 3 Xn

L = Number of iterations.



Appendix C. Numerical Methods of Computing Theoretical
Dispersion Curves

The period equation of a solid surface layer overly-
ing a solid half-space, equation (2.8), is used in the
. . <
computations herein. For /$‘< C < /?z , the real
solutions of this equation exist and represent the un-
attenuated propagation. The existence of the real solutions

is not affected by

o, >ﬁ‘ or oL.<ﬁ, ’

To derive the phase velocity dispersion curves, the
Newton's method is used. An initial value of phase velocity
Co must be estimated at the beginning. The iteration
scheme is: (Conte, 1965, p. 31)

_ C) fa) C,fa)
C~.~C;-(P( f /a—‘P—(gE"L)

L+ [
where i =0, 1, 2, ... = number of iterations
Pa:'fa) is the period function in equation (2.8)

fo 1is a particular frequency of interest.

The iteration stops when the successive values differ by
less than 10”7 . The estimated value of C for fp =
f. + af, where af is a finite increment of frequency, is

derived as follows: Denote the period equation (2.8) by

P(C,k) =0 .ceeveeeennnnns cececsne ceccsececsssaccs ceee. (A2)
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where k w/C = wave number

27 £ = 2T X frequency,

w

By differentiating equation (A-2), yields:

dp(C,k) = 2P dc + %ﬁ? dk = o

S C
or
dc 2P op )
d_l<_=-(ak )/(aC)-"""""""""""" ..... (A3)

Equation (A-3) can be rewritten as:

dc =-adk = -a %ﬂ{ (Caf-£4C) ..
C

or

dC = =2T adf/(C-ak) ccieeiieeeeeeecnocccccccoscccnnns (A4)

where a = (%F)/(Qa_g)

An estimation of C at f|, can be found by an approximated
version of equation (A-4) as follows:

(O pogy = (g g, -12Tadg/(C-ak)l, _ oo

To find group velocities from phase velocities, the
following relationship is used:

u=c+k 3 - - - - - oo (A 5)

The direct numerical differentiation of C with respect to k

often leads to significant errors. Mooney and Bolt (1966)
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found that using equation (A 3) instead of direct numerical
differentiation, a better result was achieved. Their method

is used in our study.
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