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ABSTRACT

A NUMERICAL INVESTIGATION OF EXPLOSIVE GENERATED NORMAL

MODES AND LEAKING MODES IN AN UNSATURATED SURFACE LAYER

OVERLYING A SATURATED HALF-SPACE

BY

Ching—nan Kao

Most of the surface waves recorded on exploration

seismograms are characterized by the poorly develOped wave

form. The reasons are due to short recording distance,

near surface inelastic material, etc. On the other hand,

earthquake surface waves have a more complete dispersion

pattern, therefore, they have long been used to interpret

the crust-upper mantle structure. This study is designed

to use the high speed computer to process low quality surface

wave data from small explosions, in the hope that the

geological information contained in the surface waves of

exploration seismograms may be better utilized.

A new moving window spectral analysis method successfully

identified superimposed modes which included M11, M21,

M12, three "pipe organ" type modes, and others. It also

produced a smooth time-varying spectrum, from which the group

velocity dispersion was determined.

Some methods of computing phase velocities were

found to give poor results using available data. Bloch

and Hale's (1968) method1 and a method.deve10ped herein,

that directly integrates the observational group velocity
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Ching-nan Kao

dispersion curve were superior to other methods in

providing good phase velocity dispersion curves for data

recorded at source distances of 1000 feet and beyond.

By assuming a theoretical model--a single surface

layer overlying a infinite half-space, the obtained

dispersion curve of the M11 mode is then inverted to

find the model parameters. The model parameters determined

were shear wave velocities in both surface layer and

half-space, thickness of the surface layer, and the

rigidity ratio of the two layers. One method of inversion

is to solve n non-linear equations in the n unknowns.

The n non-linear equations are formed by substituting

observational phase velocities into the period equation.

After several trials using different sets of observational

phase velocities, the final solutions are obtained by

averaging the results for each trial of n unknowns.

Another approach is to solve for n unknowns for a set

of more than n non-linear equations by minimizing the

sum of squared residues. Both methods have yielded

similar results.

The shear wave velocity in the surface layer was

found to be 603 feet/second. It is in complete agreement

with the result found by direct measurement. The depth

of the surface layer of 22 feet is less than the depth to

the water table at which the compressional wave velocity

increases from 1150 feet/second to 5700 feet/second.

This is because normal modes are several times more
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sensitive to the shear wave velocity profile than to

compressional wave velocity structure. This result

was anticipated. A density ratio of unity and a shear

wave velocity for the half—space of 904 feet/second were

computed. They were all consistent with known information.

A theoretical interpretation of the dispersive pipe

organ type leaking modes was attempted. The depth to

the water table, computed by using these modes, agreed

completely with the results obtained by using the first

multiple of the P head wave from the water table. At

large source distances, both methods were found to be

superior to the standard refraction technique in computing

depth.

lS. Bloch and A. L. Hales, New techniques for the

determination of surface wave phase velocities, Bull.

Seism. Soc. Am., vol. 58, pp. 1021-1034, 1968.
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Chapter I

Introduction

Normal and leaking mode seismic surface waves contain

subsurface geological information as do the body waves.

Because the body waves, in most cases, are predictable by

simple geometrical ray theory, they have long been used in

seismic interpretation. On the other hand, normal modes,

leaking modes, diffraction, etc. cannot be described by

simple theories. Since the advance of the high-speed com-

puter, the surface wave solution computing time has been

tremendously reduced. The use of surface waves in deter-

mining the thickness of the crust and the physical proper-

ties of crust and upper mantle has become popular in the

last two decades.

The surface waves from a small explosion have not yet

been widely utilized in seismic interpretation. They are

usually recorded at short distances from the source, there—

fore, the surface waves are usually not well developed. In

addition, the near surface heterogeneity and departure of

the material from perfect elasticity makes it difficult to

assume a correct theoretical model. These facts inhibit the

exploration seismologist from making practical use of the

surface wave. Our study aims at improving the available

techniques and develOping new methods in order to make use

of the surface wave normal and leaking modes from a small

explosion.
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2

The group velocity and phase velocity dispersion, parti-

cle motion, and amplitude Spectrum are characteristic of a

surface wave. They must be correctly computed before one

can determine the correSponding earth model.

Two methods have been used to calculate the group velo-

city dispersion curve. One is to determine the group velo—

city by dividing the distance to the station by the arriv-

ing time of a particular period. Measurement of the period

by inspection is valid only when a single mode is present.

This is a traditional method of deriving group velocity dis-

persion. Another method is the moving window Spectral analy—

sis technique. It is similar to Landisman, gt alfS method

 

(1969), but was developed without prior knowledge of his

method. There are some differences between his method and

the one used here as will be explained in Chapter III.

The phase velocity dispersion can be determined using

many different approaches. A method first used by Bloch and

Hales (1968) obtained a good result. As an attempt to find

a smoother curve, a method was developed to derive the phase

velocities by direct integration of the observed group velo—

cities. The results obtained were in agreement with the

previous method of Bloch and Hales. Several other methods

we had tried did not yield usable results. It was apparently

due to the short time duration of signals and noises. The

details of various methods will be discussed in Chapter IV.

The refraction records used in this study were kindly

Supplied by Dr. H. F. Bennett of the Department of Geology.
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3

A total of 24 traces were recorded on photographic paper.

The first 8 traces were X component or horizontal in—line

motion. The second 8 traces were Y component or horizontal

transverse motion. The third 8 traces were 8 component or

vertical motion. At each detection position, a three compo—

nent geOphone recorded the X, Y, and Z motions. The geo-

phones used were of the moving coil type. The amplitudes

of the recordings were proportional to the particle veloci—

ties. The natural frequency of the geOphones was 4.5 Hertz

and the damping was 62% of the critical frequency. The

response was essentially flat above 7 Hertz. All the data

used were recorded without Automatic Gain Control and filter

settings. Bandpass was therefore about 7 to 125 Hertz.

A digitizer owned by the University was used to digi—

tize the records for use on digital computer. The digitizing

interval was 0.005 sec. which corresponded to the Nyquist

frequency of 100 Hertz. The frequencies encountered in this

study were well below the Nyquist frequency (i.e., 10—50

Hertz).

The records were recorded in the Udell Hills area of

Manistee County, Michigan. The ground surface in the re-

cording area is essentially horizontal. The topographic

correction, therefore, was not necessary.

This area contains approximately 500 ft. of Pleistocene

glacial drift. It is composed mainly of sand with strips of

Clay. The underlying formation contains sandstone with some

shale layers which is of Mississippian age. The water table
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4

at the location where the records were obtained was located

at a depth of about 32 ft. below the surface. A detailed

description of the geology of this area can be found in

Todd (1971).

In studying surface waves, a particular period equation

correSponding to a particular theoretical model must be

chosen before the study proceeds. The compressional and

shear wave velocity distribution in this area is vital in

selecting a model. Table l is a list of body wave velocities

obtained by direct measurements and from refraction time-

distance curves. It is observed that the water-table acts

as a marked discontinuity for compressional wave velocity.

The critical angle of the compressional wave in the unsatu—

rated layer is about ll%°. If all shots were above water-

table and the shear waves were not taken into account, the

energy trapped in the surface layer would be about 98%.

Therefore, we expect the prominent feature of the seismic

records taken in this area to be composed of signals that

are the transient reSponse of the surface unsaturated wave

guide. Through this study, a single surface layer model will

be assumed. The period equation for this model can be found

in Ewing, gt al.(l957, pp. 193).

A problem exists in assuming the water-table to be the

interface of our single layer model. The leaking mode is

more sensitive to the compressional velocity distribution,

whereas the normal mode is more sensitive to the shear velo—

City distribution (Su and Dorman, 1965, p. 1018). In general,

an increase in compressional velocity accompanies an increase
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Table 1. Body Wave Distribution in Udell Hills Area

Unsaturated Saturated

Glacial Glacial

Drift Drift

Compressional

Wave Velocity

(ft/sec) #1150 *5700

Shear Wave

Velocity

(ft/sec) # 600 ?

# Obtained by direct measurements

* Obtained by time-distance curves

Mississippian

8.8.

*13461
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6

in shear velocity. In this particular case, we can be

sure that the compressional velocity increases greatly

below the water-table, but we hesitate to infer that the

shear velocity also increases substantially at the same

level. This is because several papers (Biot, 1956a, 1956b;

Dobrin, gt 31, 1954; Ewing, gt a1, 1957; Kisslinger, 1959;

Mann, 1960) have reported, using either the theoretical or

the experimental basis, that the shear velocity does not

increase below the water-table. There is no solid ground

to accept or to reject their finding, but it may be safe

to assume that the change in shear velocity at the water—

table is small as compared to the change in compressional

velocity. If this assumption is true, the shear velocity

changes due to the clay layers is possibly of greater magni-

tude than the change at the water—table. Because we have

assumed a single surface layer model, the depth to the inter-

face, found by the inversion of the observed data, may be

different for normal and leaking modes. However, the single

surface-layer model will still be used through the study.

In Chapter II, we will make a theoretical treatment of the

leaking mode based upon the above assumption.

Compressional wave (P-wave) velocities, shear wave

(S-wave) velocities, thickness of layers, and rigidity ratio

of any two adjacent layers are important parameters in

characterizing a horizontal stratified model. Body wave velo-

cities and thicknesses are possibly deduced by a simple geo-

metrical ray theory. The rigidity ratios and their dependent
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7

parameters (i.e., density ratio and Poisson's ratios) can

only be found by using surface wave data.

Two methods were developed to inverse the observed

phase velocity dispersion data. The results from both

methods are in good agreement. The details will be given

in Chapter V. Dorman and Ewing (1962) were the first to

develop a least-square technique to invert the surface wave

data. They derived the normal equations by minimizing the

sum of squared errors which were the differences between

the true phase velocity and the assumed phase velocity. They

also linearized the entire process. The methods in this

study solve a system of non-linear equations directly on the

computer. One solves for exact solutions and another solves

for least-square solutions by minimizing the sum of the

squared residues of the period equation. As before, the

development of these methods were accomplished without know—

ledge of the one explained by Dorman and Ewing (1962). The

methods of this study will not be compared to theirs, but

the results are expected to be in agreement.

The best method to check the correctness of the inver-

sion methods described above is to reverse the process. By

substituting the model parameters obtained into the period

equation of the assumed theoretical model, one can check the

correctness of the inversion methods by comparing the re-

sulting phase and group velocities with the observed data.

The results of the surface wave computation not only

provide an independent check on the information extracted
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8

from the body wave data, but also gives more information con—

cerning the physical properties of the subsurface layers

which are usually not provided by body waves. The calcula-

tions in these processes are laborious, but with the aid of

the high-Speed computer, the time and cost have been con-

siderably lowered. Despite the intrinsic drawbacks of the

use of the surface wave data, such as the limited penetra-

tion, uncertainty in determining layering, inability to de—

termine localized structure, etc., the use of surface waves

still has some advantages that cannot be surmounted by using

body waves only.
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Chapter II

Theory

A single layer over a half—space model is shown in

Figure 1. The symbols (it , g; , and fl in the figure

denote the P wave velocity, S wave velocity, and density

respectively, where the subscript 1 corresponds to the

layer 1 . The transient reSponse of the surface layer

with thickness ii for any component of the motion 11, at

depth 8 and distance r from an impulse point source at

depth b is given by a double integral (Ewing, et a1, 1957)

 

such as:

oo
00

. 9 w k ZLb J kr dk .............(?.1)

u = ReyexPIJthwj
i L LPT\-;3k)£ ) '

-00 --00

where Re denotes the real part of the double integral

w = angular frequency

k = wave number = w/C

C = Phase velocity

Jo = the Bessel function of zero order

a function of w, k, B, and bD

II

P = a function of w and k

347-7.

Evaluation of this double integral can be performed in several

9
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11

ways. One method is to integrate the inner integral by

Cauchy's theorem on the complex plane and the other by the

method of stationary phase. Since we are interested in the

spectral properties of the transient response, only one of

the integrals has to be solved. The contribution to the

solution is from the poles within the contour of integration

and the branch lines. The poles are the zeros to P (w,k)

which may be real or complex. Note that P (w,k) has two

variables, w and k, the zeros being functions in one vari-

able. The locus of a zero is the dispersion curve of a mode.

A. Phase Velocity and Group Velocity

The velocity of wave prOpagation is called the phase

velocity. Assume that a propagating wave is expressible

as A exp(j(wt-kr)) , where A is the amplitude and

w,k,t, and r are defined as before. For this wave, travel—

ing without continuously changing its wave form, the argu-

ment wt-kr must be kept constant. This requirement leads to:

wdt - kdr a O or C a dr/dt = W/K a Phase velocity....(2.z)

For a diSpersive wave train, there is a velocity called

group velocity U which is different from the phase velocity.

Suppose a wave is made up of superposition of an infinite

number of waves with continuously changing wave number k.

It may be expressed as:

00

Mint) =I A'k) €Xp\j\wtk)t-kr)) dk...............(2.5)

oO
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The concept of group velocity applies only to those cases

A(k) which have a significant value in the neighborhood of a

particular wave number, say ka, and becomes vanishingly

small for k outside a small range, denoted by kaiek . Then,

the wave function can be written approximately as:

1“," Ak

u(x,t) z/ik A(k) exp(j(W(k)t - kr)) dk ...........(2.4)

“‘4 a

By expanding w(k) about k = ka,

W\k) = W\ka) + \dW/ak&=Ka(k - Ka) + 0000000000

and neglecting higher order terms, equation (2,4) becomes

h+Ak

u(x,t) ./’ A(k) exp(jf(k,r,t)) exptjgtr,t)) dk’...\2.b)

kg -—Ak

ow .

Where f(k.r,t) =‘k-Ka)(dik§;r) and g(r,t) = Wtka)t Kar-

The quantity A(k) exptjftk,r,t)) is the effective ampli-

tude of the wave. The requirement of constant phase now

leads to

fkk,r,t) 3 O or \dW/dk)k-K 3 r/t 8 U oooooooooooo\zob/

a

for the group velocity. Thus the energy of a wave, which is

associated with the amplitude, travels with the group velocity
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U. Equation (2.6) can be rewritten as:

w d0

U 3 (C/(1- C E;))W=wa and U=Ca'°°°°°°.'°.°'.°°°°‘2'7)

where lca _ wa/Ua . For a dispersive wave train,

C = constant or dC/dw = 0 hence U = Ca°

B. Period Equation

The denominator of equation (2.1) is the period equa-

tion which determines the diSpersion pattern of the model.

A form convenient for computation is given below for refer-

ence (Ewing, 3E.al, p. 193). We will use this form for

computation throughout the study.

all" i1“: 0 ...........................\2.8)

l

where 9- (2- 7;“ )(X cos r, h 4»?! sin r, h)

’ I

+ 2% T" sm s,h -% Z cos s,h)

E
31"(2- 13'— )(é‘hfl cos r,h +11 Z sin r,h)

+ 2%(x sin s,h - 553! cos s‘h)

V I 1 00(209)

‘1'=(2- 7;; )(—EW cos s.h +4.1. Z sin s,h)

+ 219(X sin r,h -—% Y cos r,h)

man (2- {4 )(X cos s,h +§fY sin s,h)

+ 2+(éfw sin r,h -.'rf.z cos r,h)
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2' z

X - E3 116.} -2 [:2 -1) Y = LE! +2(E2-1)

I k2 I“ kl “I

1 l .............. (2.10)

z=29flz-fi;-2(Ei—1) w=2(/‘_‘}-1)
”I k1 It I ”I

r? = k:'—k2 r: = k2 -k;1

........................ (2.11)

82 = k2 2 2 2

rigidity of the layer 1

H
i
\
=

u

 

= frequency

“1 = compressional wave velocity in the layer i

éi = shear wave velocity in the layer 1

_ 2M
kd‘- d;

k = 217
It 7..

A different form of the period equation of a wave guide is

given by Tolstoy and Usdin (1953) as follows:

| N-M = o ...... . ...... . ..... ... ..... . ..... .........(2.12)
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where I I denotes the determinant

= A exp(jr.h) C exp(jr.h) 2 13
N B exp(js' h) D exp(js'h) ooooooooo o oooooooo coco ( o )

= G exp(jr.h) J exp(jr.h)

M (H exp(jS, h) I exp(j8,h) oooooooooooooooooooooo (2.14)

' . .

-._ I exp(js h) J exp(Jr h)- -
M - I;TI i-H exp(js1h) G exp(jr:h)’ inverse of M.. (2.15

A,B,C, and D are reflection coefficients of PP, PS, SP, and

SS respectively at 3:0. G,H,J, and I are reflection co—

efficients of PP, PS, SP, and SS respectively at B = h.

1. Normal Mode Roots of Period Equation

Coming back to equation (2.8), let us discuss some

asymptotic roots of this equation (Ewing, SE 31, 1957,

pp. 193-196). Positive real values of Si’ ri are

obtained when C > «05. and C 4 é< 0K2 . It can be

shown that when the thickness of the layer h approaches

zero, equation (2.8) becomes the simple Rayleigh wave equa—

tion for the half-space. For c:<rF, and kII—* 00 ,

(i.e., high frequencies) the asymptotic form of equation (2.8)

becomes factorable. The zero of the first factor represents

Rayleigh waves at the upper surface of the layer, while the

zero of the second factor represents Stoneley waves at the

interface.

As Tolstoy and Usdin (1953) have shown, there are two
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branches of zeros that exist. One is the M1 branch (M11,

M12,...) and another is the M branch (M2 21, M22,...).

These are also termed symmetric and antisymmetric, respect-

ively. Some interesting features may be found in Figure 10,

Tolstoy and Usdin (1953), p. 860. At long wave limits kh~+c),

the phase velocity of M11 approaches Rayleigh wave velocity

of the half-space and at short wave limits I<h-—e€w , this

velocity approaches the Rayleigh wave velocity of the surface

layer. All other modes, including M21, M12, M22, etc. in-

dicate that phase velocity approaches the shear wave velocity

of half-space at the long wave limit and approaches the

shear wave velocity of the surface layer at the short wave

limit. This is why Rayleigh modes, except the Mllmode, are

termed shear modes (Mooney and Bolt, 1966, p. 45). All

shear modes have cutoff frequencies at long wave limits, be-

low which no unattenuated propagations can occur.

In addition to the conclusions of Tolstoy and Usdin

(1953), it is demonstrated below that two branches, M1 and M2,

unconditionally, exist in the solid surface layer overlying

a solid half-space. By referring to Figure 1, layer 0 is

a vacuum, do :2) :fO‘: O . Some useful relations according to

Tolstoy and Usdin are:

D=-A A1 +BC= 1 .............................. (2.16)

. - 53' -
G= I" epr-J(e+€)l J= p A exe (-36)

....(2.17)

H: A exp(—j6) I “[1 eXp ["j (E-é)]
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where I” is real and positive, and /\ is real for normal modes.

Also, —( 6 +'@ ) is the phase shift of PP at Z = h,

-E is the phase shift of PS and SP at B = h,

and -—(6»-§ ) - U is the phase shift of SS at Z = h.

It can also be shown that at B = h

GI — I'IJ =-exp(-2j6)eooo ooooooooooooooo 00.00000. oooooo (2.18)

FZ+A2..__I';' =1 ............ ..... (2.19)

  

I.$.

c = H B ........................... . ............... (2 20)

ES; . .
BJ - B Ir" /\ exp(—3£:) = CAexp(—je) = CH ...... (2.21)

The period equation (2.12) can be written as

-exp [3(r1+sl)h-Je I EXPIJIr1+Sllh+jé I

+ Ar(exp[j(r1-sl)h-€-jl + eXP[’j(rl“sl)h +6j]

Equation (2.22) can be rewritten as the form shown in Tolstoy

and Usdin (1953) p. 859:

Cos[(r1+ sl)h-(-_‘-] —Ar Cosurl-slm-E] = CA. ..... (2.23)
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It can also be written as:

 

 

 

52 = T + Q/2 .......................................... (2.24)

where S = sin [(I’.+S.)h2—~ €- ]

T = A sin2 [(n:s.)h— 'é ]

L5: 2

Q = l - I<’ BA -Al".

Since all the quantities in this equation are real, the left

hand side is always positive and less than or equal to one.

By equations (2.19) and (2.16), the first term on the right,

T, is also positive and less than or equal to one under all

conditions. The derivation of the M1 and M2 branches is

arrived at by factoring equation (2.24)

[S-(T + Q/ZIK'] [8 + (T + Q/Zya I

which leads to the equation on p. 860, Tolstoy and Usdin

(1953). The factoring requires that (T+Q/2)8 be real, or

the equivalence, (T+Q/2) be positive. As we have seen

previously, T is always positive in normal mode case. If

one is able to prove that Q is also positive under same

conditions the quantity (T+Q/2) will be automatically posi-

tive, hence, the factoring in equation (2.25) will be legal.

In the following we will prove that Q is positive in normal

mode case: In normal mode case, A, B,)N , and I. are real

quantities and r', s,, and k2 are real and positive.
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Therefore, the expression

nsn(A/\ -BI— )2

is no doubt true. By expanding the inequality (2.26) and

adding (ET; I BzAz+ Az[“2 to both sides of the inequality,

we obtain

(Eff )zs‘1 A2 + A r + 21%;; BAA)": (ngslAl

+ Azr‘ + 1%;% (A A + B r” )

or

(figs/(4. Ar)2<=(LI'kS'A W" (5535‘ + A’) ............. (2.27)

The right hand side of the inequality (2.27) is equal one by

using equation (2.16), (2.20) and equation (2.19). Hence

the inequality (2.27) becomes

é
T.E

(~11 BA + Ar”) 1

or

T1 B/\+ A)”: +1,"
A

-1

namely,

r35|

TI
Q 1- B/\ -Ar=o................................ (2.28)

The quantity on the left hand side of the inequality (2.28)

is just the quantity Q defined in equation (2.25). The proof

is complete.
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2. Leaking Mode Roots of Period Equation

In studying the leaking and the normal mode roots of

the period equation there are two simplified approaches that

are convenient for discussion. Gilbert (1964) assumes wave

number k to be real and frequency f to be complex while

Watson (1972) assumes the opposite. Als0p (1970) shows that

both approaches are valid.

Gilbert's (1964) method has been widely quoted. He pro-

ceeds by first finding the initial position of each root at

k=0 and then by following each root as k increases, thereby

generating dispersion curves. For k=0 and f finite, i.e.,

phase velocity(:._, 00 ,«or at normal incidence, the period

equation becomes the product of two factors. The roots to

each factor are shear pipe organ modes and compressional pipe

organ modes. When k increases from zero, these roots gradu-

ally change their properties and split into two or more roots.

Some roots finally become the higher order shear modes. He

also shows that if k—oo and f—oo such that f/k

is finite, the period equation becomes proportional to the

Rayleigh's equation of the half-space. Due to the presence

of the radicals

V 2. ’/

r1 = (k2 - k:1)3' and s‘L = (k2 - sz )1

there are two pairs of branch points, f ='i g; I“; and f =

.I §% k5: , on complex f plane. The Riemann sheets are

formed according to Re r2) 0 and Re s2))0, Re rz<;0 and

Re sz< 0, Re r1 >0 and Re sz< 0, and Re r,< O and Re 51> o.
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Different Riemann sheets have different groups of roots.

The roots on different sheets have different physical

interpretations. For example, Re 32<-° means leaking of

S wave energy into the half-space, and Re r§>o means

trapping of P wave energy in the surface layer.

The roots of this equation according to Gilbert (1964) FBI.

are: S roots on the Riemann sheet (+,+) (i.e.,Re r2)>o,

Re .sz>o)and (-,-) (i.e.,Re r2(0, Re 5240. and 15 roots on (+,-)

and (-,+) sheets. S roots eventually become Ml

 branch of Rayleigh waves and P roots become M2 branch of Lg

Rayleigh waves. The P +- and F-+ , compressional and shear

pipe organ modes, respectively (not the true "pipe organ"

modes) have been identified on earthquake seismograms.

The leaking modes found in our data are similar to

the normal mode propagation in a liquid layer overlying a

liquid half-space in which only P waves enter the problem

(liquid cannot sustain the shear motion) (Ewing, g5 gl,

1957, pp. 126-151; Officer, 1958, pp. 117-145). When C3

approaches (X1 , or equivalently the incident angle ap—

proaches normal, the normal mode equation becomes the equa—

tion for the simple pipe organ modes whose spectral band

peaks at 1, 3, 5, --- times the fundamental frequency

(Ewing, g2 gl, 1957, p. 185). This phenomenon has also

been reported by Grant and West (1965, pp. 104-107).

It is strange to see that the above phenomenon exists

in the solid layer overlying a solid half-space, because in
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solids, both P and S waves in the general case couple to

each other at the interfaces. Two possible explanations

are discussed here. One explanation may be decoupling of

P waves and S waves due to their high angle of emergence in

the surface layer. The critical angle of the P wave in the

layer is 11° 34' and the shear wave generated by the com—

pressional wave impinging at the boundaries has an incident raga

angle of 6° 00'. Both are small. Another explanation is

based upon the assumption that the reflected S wave from

water-table has small amplitude because of the small S wave

 velocity discontinuity at the saturated-unsaturated boundary, L”;

which has already been discussed in some detail in Chapter I.

It is difficult to determine which explanation is correct.

At near normal incidence, impinging SV waves generate

neglegible amplitudes of the reflected P waves at a boundary,

but the impinging P waves generate about equal amplitudes

of reflected P waves and S waves (Muskat and Meres, 1940).

This infers that X component amplitudes must be similar in

magnitude to the 8 component after the arrival of (X1 .

This is not the case we have observed on our records. It

is observed that the X component traces have smaller ampli-

tudes than the 5 component traces after the arrival of the

refracted C£. A portion of record No. 43 is shown in Figure

2. Howeveq,we still have grounds to argue that since S wave

energy is more easily dissipated in the near surface loose

material, the amplitudes of S wave shown on the seismograms

are more severely attenuated than the amplitudes of P wave.



 

 

'

 

T
I
M
E
(
S
E
C
)
—
+

I
!

1
.
0

W
4
3
"
“
‘
I
I
‘
V“
a
”
V
A
A

l
1
,'

I
I
I
II
II
"M
‘
W
‘
M

e
v
i
c
r
i
‘
w
g
g
v

x
”
(
W
V
“
$
5
9
9
9
?i
iA

I
'
m
,V
I
I
I
“

I
)
;
I
~
“
1
4
%
;
,
”

A
f
fi
'
l
.
‘

$
0
»
.
a

N
’
v
.
“
'
3
'
1
'
3
?
"

(
M
-

 

)3?4’:"t

k

\

Y
3
‘
7
1
"
.
»
H
"
‘
M

I
\

”
I
f
?
”

V(
w
.

’
'

"
oA
l
i
y

V

i
.

fi
e
fl
fi
m
5
"
M
’5
!
i
"
.
mI
i
i
/
(
(
1
%
;

N
i
}
;3
1
"
”V
"

I
"

,
‘
w
T
{
H

3
:
0

M
—
o

4
.
0

5
.
”

1
1

F
I
G
U
R
E

2
.

A
P
O
R
T
I
O
N

O
F

R
E
C
O
R
D

N
0
.

4
3

9
“

s
fi
m

Z

V)-

 
23



 

 

 

 

9
‘
-

(
f

(
_
I
)

r
?

T

[
N



24

If the S wave velocity change at the water-table is

assumed to be small and the density change is also assumed

to be not substantial, an interesting result can be derived

from the period equation of the single surface layer over a

half-space model. The existence of the dispersive "pipe

organ" modes in the assumed earth model is then explainable.

The derivation is made possible by simplifying the period .

equation under the assumptions: [9" =fizand f, = fl . r.”

In the following, we want to show that the normal mode equa-

tion of the liquid layers is a possible equation governing

 
the dispersion pattern of the leaking modes propagating in i

an unsaturated layer overlying a saturated half-space if the

above assumptions are true. By substituting

fiffi' WI: ,..d F.

in equation (2. 8), it becomes

(2 - )[Cos (r h) + 3%. sin mm]
2":

+ 4j/C:_| ICE": [—3 Cos (r h) - ssn (r'h)] = o ....... (2.30)

Following Gilbert's (1964) method, we assume f= Ir+’j If ,

thenrh=k’%_: -1h=‘3_“_f g} -1h=
d2

 

C

211(frijj-i) IQ: —1 h = R + jI. Equation (2.30) can be

C cx‘
I

written as:
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1T. 2‘ + “[222 = o .................................. (2.31)

where

 

TT = (2- 9—2)2 Cosh (I) + 4/93-1 _C__z—1 sinh (1).... (2.32a)

fi‘ (3*

 

 

)
(if

2.: C05 (R) + J 1-Cz/dz’ sin (R) .................. (2.3213) F“

; ICz/af~|

V2: (2" E- ) sinh (I) + 4/9-1-4 C... Cosh (I)... (2.32c)

.‘ )5: .1,

:2: WW Cos (R) - sin (R) .................... (2.32a)

C3&:-|
I

 

For equation (2.31)to be satisfied, four possible branches

of roots can be solved from the four sets of equations listed

below:

TR = O and W} = O . . . . . . . . (2.33a)

1T,=o and 22:0 ........(2.33b)

X,= O and W2: 0 . (2.33c)

XI: 0 and 22: 0 . . . . . . . . (2.33d)

These equations may or may not have solutions. Equation

(2.33c) can be explicity written as

tanh( gjLLLh-Cos e) = -4'Q4V4 C/Rffl ................. (2.34a)

DI: (2-Cz/@:)1
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and

‘/C‘/o(::

tan (m C059) =- ‘ ......... (2.34b)

OI, /'-—Cl/o(:

where 6 = incident angle or P wave in the surface layer.

Equation (2.34b) involves only fr which is related to the

dispersion pattern, whereas equation (2.346) involves only

fi which controls the attenuation of the amplitude. Note

that equation (2.34b) is exactly the normal mode equation in m;j

a liquid layer overlying a liquid half-space with a density

ratio of unity. If the above analysis is correct, the

existence of the pipe organ type modes on land will be an

indication of the existence of water-table. More observa-

tional evidence is needed to verify it.



Chapter III

Spectral Analysis and Data Interpretation

Spectrum, dispersion, arrival time, time duration, ampli-

tude, particle motion, cross-spread velocity, etc. are useful

in identifying a signal and in deducing model parameters.

A body wave usually has a definite arriving time and short

signal length. In contrast, the arrival of a normal or a

leaking mode is not as sharp as the arrival of a body wave

and the time duration is always much longer. Therefore, in

studying a body wave, the determination of the arrival time

‘1

G
u
n

.

is important. On the other hand, in studying the normal or ~

leaking mode, the derivation of the dispersion pattern is

stressed. In this chapter, we will discuss methods of iden—

tifying signals or deriving group velocities, and present

the properties of signals identified on our records.

A. Methods Used to Identify Signals or Derive Group

Velocities

Various methods used in identifying signals or deriving

group velocities are introduced below. The discrete Fourier

transform (DFT) and discrete inverse transform which will be

used in these methods are given as follows: (Gold and Rader,

1969)

N-l

F(m(2) = Z: f(nA) exp(—jmnAfl). ..... (3.1)

“:0

l N-(

f(nA) vii-é; F(mf2) exp(jmnAQ) (3.2)

27
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where F(rn(7) = discrete form of the Fourier

transform

{(n A) = discrete form of the time

function

P4 = total data points in the time

window

(A-= sampling time interval

J 2: .—

= 2 )T/(NA)

m = O, l, 2, ...., N-l

n O, l, 2, .000, N-lo

 

The same formulas will also be used in other chapters. Note '

that for a particular data points N and a particular sampling :

interval 43 , there is a particular set of frequencies corres— E

ponding to them. For example, N=4OO and A§=0.005 sec., the Eva

corresponding frequencies are m£V(2fi) = 0, 1/2, 1, 3/2,..,399/2.

1. Moving Window Spectral Analysis Method

A typical feature of a surface wave record is that many

modes are superimposed on each other and the spectral proper-

ties of each mode varies with time at different rates. If

one is able to determine the exact amplitude and phase spec—

tra at each time instance the separation of modes will easily

be made and the group velocity dispersion curve of each mode

will readily be found. Unfortunately, this particular method

is not a feasible task. The uncertainty principle in spectral

analysis states that the product of the spectral bandwidth (a

measure of the bandwidth of the signal) and the time duration

of a signal cannot be less than a certain minimum value (HSu,

1970, p. 229). That is, the shorter the time window the

poorer the frequency resolution, and the converse is also

true. A compromise must be made between the length of the

time window and the frequency resolution.
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a. Parameters Involved in Use of the Method

The parameters considered in designing this method are:

l) the minimum time window for which the discrete Fourier

transform is applicable; 2) the time window that is required

to resolve the spectrum of our available records to the ex-

tent that each signal of interest is visually distinguish-

able; 3) the weighting function; and 4) the increment of

window shift along the time axis.

To determine the minimum time window required, such

that the spectrum, corresponding to a particular frequency

mC2/2TT is derivable by using the discrete Fourier trans-

form, consider the Fourier transform of a time function

f(n.A ). Let us rewrite equation (3.1) as follows:

"1:. 2___Tm) Wm" 3L“)
F(m{2) = >_ f(nA) exp ('3 Nfin = Z: f(n‘° ex? (j“Nfin

w“ nzo n=o

2’" N

‘+ 2 f(n43) exp (-jr3) + ..+'"bh%'f(nA) exp(- j:%r)..(3. 3)

=Nfi" n:(m¢uMhO

Note that the exponential term exp (-j 4%%%;L ) is periodic.

For some i = 1,2, -—- , or m, an arbitrary summation in

equation (3.3) can be written as:

iMhfl-I znn NAn—I

f(n4) eXP(-j W737.) =2 f[(1+(i-1) (N/m)) A]

nan-0(Nm) 211 (:0

exp [ ammo—1) (N/m)))
Nfin-I

= f((1+(i-1)(N/m))4 1 - exp [-313% + 21r (i-lm. . .
L=o

Nfin-l

1:: f [(1 + (1-1) (N/mHALexN- 52%

(=0

l

I
.
.
. 

(3.4)
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because i is an integer. Define

fi(14) = f [(l+(i—1) (N/m))A].

The time origin of fi(lA) differs from the time origin

 

of f[(1+(i-l) (N/m))4] by ('1-1) (N/mM. i.e., fi (14) F».-

is a time-shifted function of f(1A) . Also define }§({23

to be the Fourier transform of fi(LA) for the data points

n=(i-l)(N/m) to n=i(N/m)-l assuming that N/m=integer

We can write LWJ

N/m-) 1

Pi ( Q ) = 2: fi (1A) exp(rjg-l)

L=O Wm

lh-' 2

= fi (14) exp(-jm1A.J-’) . . . (3.5)
NA

[=0

N ‘4 i

= fi (1A) exp(-jmiAQ ).

L=O

/

It is concluded that Q is equal m0 . Therefore

both Fourier transforms, F(mQ) and Fi(m(2 ) , are defined

for the same frequency ’%%2= {14‘ , except that F(m(2 )

is defined for the data points from n=o to n=N-l and Fi(m{2)

is defined for the data points from n=(i-1)(N/m)to n=i(N/m)-l

only. Note that the number of data points in Fi(m(2)

is N/m which corresponds to a time interval of (N/m)43
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This time interval is exact the period of the frequency

m/(NA) defined by both Fi(mfl) and F(m(2) . Thus

Fi(mzs) can be termed One-period Fourier transform.

Equation (3.3) can therefore be written:

F(m(2) = F|(mQ) + F2(mQ) + + mem, .......... (3.6)

namely, a m-period Fourier transform is a sum of m one-

period Fourier transforms. Note that for N/m gt integer,

equation (3.6) is not valid. However, from the practical

point of view, it is possible to approximate it. For example,

N=100, m=3, and A=l, then

0 = 2Tr/1oo

and !§_' 3“L|

F(mQ) = F(3%) 2’: f(n) exp(— BjRTg-g) + f(n) exp(-3j '2—0—0)

... M ”"239a...

+ Z: f(n) exp(33.17%: [Z f(n) exp(--3j’—’3-;7) + 1/3f(33)exp(--3j§--6W)]

+[2/3f(33)exp(-3jffy')+ ff:f(n)exp(--3jf2¥) + 2/3f(66)exp(-3j7;;)]

+[1/3f(66)exp(--3j'—-——3:")+ Z?f(n)exp(-3%)]

"=67

= Fl(3L11') +-F2(3%E) +-F3(3fl ),
I00 [00
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where F,, F2, and F3 are the sums in the brackets [ ].

This approximation was tested on an exponential function.

The maximum phase error observed was i 0.003 radians, or

10.05%. This is negligible in practice. The percentage

amplitude error corresponding to this phase error can be

shown to be [l-Cos(0.0005d)]XlOO , where c1 is the phase

angle. It is a very small amount.

The one-period Fourier transform described above is a

DFT that is defined for the shortest time window, but it

does not guarantee a satisfactory frequency resolution. It

has been verified experimentally in this study that the

five-period Fourier transform is a satisfactory one for our

particular data.

The programming method is as follows: Firstly, N data

points are divided into groups in subsequent order. For a

particular frequency m/(Nzi), the number of points in each

group is N/m, which corresponds to a time duration of N.A./m,

i.e., one period long. For example, N=400 and 43:0.005

seconds, the number of points in each group are 400/m= 00 ,

400, 200, 133 1/3, ..., and 2 for m=0, 1, 2, ..., 200 (the

maximum possible number in the first group is equal the

maximum number of the available data points, i.e., 400).

The corresponding periods are (400x0.005)/m=2/m=co , 2, 1,

2/3, ..., and 2/200, and the corresponding frequencies are

m/2=0, 1/2, 1, 1 1/2, ..., and 100. Secondly, the one-

period complex Fourier transform is performed on each group

of data points. Note that if the number of points in a

group is not an integer, the approximation method mentioned
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previously must be used. A five—period Fourier transform

is then obtained by summing five one-period complex trans-

forms to represent the complex spectrum of the central period

of the five. To find the complex spectrum of the next time

section, the five-period Fourier transform is shifted one

period to the right (i.e., direction of increasing time).

The well known weighting functions such as Bartlett

(triangular), Tukey (hanning), Hamming, Parzen, etc. are

not easily programmed in the above process. A convenient

method is to weight the five one-period transforms by 1/9,

2/9, 3/9, 2/9, 1/9, respectively and then sum them up to  H“222
form the five-period transform. This kind of weighting is

a rough version of the triangular weighting.

b. A Special Method for Improving Time Resolution

Since the shifting of the time window is in increments

of one period, a further improvement in time resolution is

desirable. The concept of Page's (1952) instantaneous power

spectrum was used to accomplish this goal. The intuitive

meaning of the so-called "instantaneous power spectrum" is

the contribution of a single data point to the power Spectrum

of a time function which extends from minus infinity to a

certain prescribed time. In application, it is assumed that

the beginning time of a one-period time section, defined

previously, is the time of appearance of a one—sided, (i.e.,

zero displacement before time of arrival) band-limited signal

and the complex spectrum defined for the same time section

is contributed mainly by this signal.
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The following is the definition of Page's (1952) instan—

taneous power spectrum:

Parseval's theorem for the energy of a continuous signal

may be written as:

oo 00 2

Jg’mdt =J [F(f)] df ...................... (3.7)

~00

~00

where g (t) is the time function,

F(f) is the frequency function, u

t = time,

 f = frequency, I

i ( denotes the absolute value. "

Let /7(t,f) denote the instantaneous power of a particular

frequency f and at certain time t. The energy expanded from

time minus infinity up to time t is

t 2 so I

A

f9 (1,)d/t =f df f(‘t, f)d’t .............. (3.8)

—-oo "°0 -oO

by using the definition of‘F(f,f) and the identity, equa-

tion (3.7). The instantaneous power of all frequency at time

t is found to be

00

g.2(t) =j f(t,f) df...... ......... .................(3.9)

—c»

by differentiating equation (3.8). Define a causal time

function

9(1)=.[g(’13) °<¢§t .......................... (3.10)

t 0 otherwise
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The Fourier transform.of gt(t) is

00 t ,

Ft(f) =j gtVt) eXP(-jW1‘,) d ’L =f g<1>exp(-jwr)df.. (3.11)

..00 o '

The total energy of gt(f) is

0041 2 f o0

gt (1)dt=j1 g (1)d’[ =f d’lj f(f,f)df.... ........... (3.12)

0 - 0 ~00.00

by using equation (3.9). It can also be written as

00.2
no 2

,

Lifl’t’d’t =L|Fuf>| df ..................
...... (3.13)

by using Parseval's theorem. By equating equations (3.12)

and (3.13) we get

fde F(1,£) dT=fiFt(f)'z df ................... (3.14)
.... o w . . _

From equation (3.14), one can write

t , - ~- \ '

[f(t pf) d1 = lFt(f) '1. 0000' 000000000000000000000 (3015)

o .

‘ Differentiating equation (3.15), obtain»

f(t,f) = _2f(t) I Ft-(f), Re [exp(jwt) exp(jut,f)]

= 2f(t) ‘ Ft(f) 1 cos (wt +0(t,f) ......................... (3.15)

where Cit"; denotes the phase of Ft(f) .
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Equation (3.16) was used in computing the instantaneous

power Spectrum. Note that F(t,f) may be negative, but

the cumulative energy iff(1,f)df is always positive at

all frequencies by equation (3.15). A negative f(t,f)

indicates a temporary readjustment to the total energy.

Although the positive fKt,f) does not necessarily indicate

the presence of a particular frequency at time t, a successive "*“3

building up of the positive power is no doubt a good indica- i

tion. With this in mind, the positive densities are reduced

 
by an amount prOportional to the ratio of the negative sum

to the positive sum and the negative densities are reduced by _ W;

an amount proportional to the ratio of the negative sum to

the positive sum and the negative densities are arbitrarily

assigned zero values because they are not associated with

the major signals in the time window. The isolated positive

densities are again eliminated because they are apparently

not associated with long duration normal or leaking modes.

C. Uses of Moving Window Spectral Analysis Method

The moving window spectral analysis method may be used

for two purposes. One is for separating superimposed modes

and for revealing time-varying spectra. Another is for de—

riving group velocity dispersion curves.

Figure 3 shows the second and third "pipe organ" modes,

on a portion of the 2nd 8 trace of record No. 43, being

separated by this method. This figure also indicates that

the first mode (frequency about 10 HTB) does not appear right

after the refracted (X2 arrival. The observed points in
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Figures 4 and 5 are the peaks of the time—varying spectra

of the subsequent time sections of the same record. Two

superimposed modes are identified in Figure 5. The events,

La, Lb, Lc, etc. are defined in Table 3, p. 52.

By the definition of group velocity, introduced in

Chapter II, a curve obtained by connecting the peaks of a

time-varying spectrum is the observed group velocity dis-

persion curve of a particular mode. Figure 6 shows the time-

varying Spectrum of M11 mode. Due to the limited space,

this spectrum is drawn separately on four pages in original

sequence. The circles indicated are the peaks of the Spec-

trum. The group velocity dispersion curve is obtained by

connecting these circles. Figure 7 shows the group velocity

curves of M11 mode found on several records by this method

and also by hand picking.

2. Fixed Window Fourier Transform

The fixed window Fourier transform is used as an auxi-

liary means to the moving window Spectral analysis method.

Occasionally, the latter does not reveal clear spectrum due

to its limited length of time window, the fixed window

Fourier transform must be applied using a longer time window.

The triangular weighting function is used to reduce the side

lobes resulting from truncation. Figures 8 and 9 are the

Spectrum of "pipe organ" modes.

3. Determination of Particle Motion

The particle motion is often a useful means in identi-
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LC

RECORD NO. 33

COMPONENT: z

TRACE NO. 3

DISTANCEzgag ET

WINDOW LENGTl-IIO.75 SEC,

PROMINENT EVENTS SI-IOWN.
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LC RECORD NO. 43

COMPONENT: z
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FIGURE 9. AMPLITUDE SPECTRUM(FIXED WINDOW)
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fying a signal. The determination may be accomplished by

superimposing the X trace on the Z trace and inspecting

the phase lags between two traces. This method is illus-

trated in Figure 10. The particle motion is one of the

prOperties of events identified in Table 3.

B. Interpretation of Data

The refraction records that have been studied are F—T:

listed in Table 2. The spacing between any two adjacent

geophones, charge size, depth of Shot hole, and the dis-

tance between shot and the spread are indicated. These

 
records were recorded without automatic gain control (AGC),

suppression, and filter setting. Because no part of the

spectral band is negligible under theoretical consideration,

any distortion, caused by the artificial means, Should be

avoided. The high frequency noises such as those due to

instrument, wind motion, etc. can be filtered out after a

visual inSpection of the Spectrum is made.

The data used for the study were digitized from the

paper records. The errors introduced by the digitizing

process are not easy to evaluate. To test for errors in

digitization a trace was digitized twice and the average

was determined. There was no notiCeable improvement in the

result, thus we conclude that digitization errors were neg-

ligible. Most of the data used was thus digitized only

once.

The characteristic seismic events having been identi—

fied on seismic records by methods described previously are
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Table 2. List of Refraction Records

 

Record Spacing Charge Hole Depth Distance From End

Number (ft) (lb) (ft) of Spread (ft)

10 25 2 5 725

ll 25 2 5 725

33 10 16 10 969

34 10 4 10 600

42 50 8 10 2000

43* 50 8 10 2000

*Repeated version of record No. 42, except that No. 43 has

lower gain setting than No. 42.
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listed in Table 3 (events on Y component are not included).

La, Lb, ...Le are leaking modes arriving before the

refracted shear wave fa . La, Lb, and Lc are actually mul-

tiple reflections of refracted P wave (x3 . We have dis-

cussed their Spectral properties and the underlying theory

in Chapter II. Ld is a peculiar event. It is dispersive

and has a cross Spread velocity Similar to the P wave velo-

city in the surface layer, i.e., 1150 ft/Sec. It may be

interpreted that when the direct P wave couples to Lc, it

results in a low frequency, high amplitude disturbance

 

which has a cross spread velocity of the P wave in the layer

and also exhibits the properties of a leaking mode. Le, be-

ing interpreted as the continuation of Lc, is solely based

upon the similarity in Spectral bands. That 6; is being

related with the refracted S, can be due to the following

evidences: 1) high amplitudes appear in X component (at

distances, 989' and 2050') indicating a disturbance with

strong Shear motion; 2) cross Spread velocity and group

velocity (more correctly, Shot—receiver distance/arriving

time) are both about 900 to 905 ft/sec, indicating a re-

fracted event from the half-space; moreover, the S velocity

in the half-space is found to be in this range by the inver—

sion of observational phase velocities (discussed in Chapter

V; 3) all normal modes appear after this event (the highest

velocity of normal modes is S velocity in the half-Space).

The normal modes M21, M12, and M11 are identified on the

basis of their time-varying spectra. The particle motion of

 A/—LL.
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M21 and M11 are found to be consistant with the theoreti-

cal calculations made by Mooney and Bolt (1966) for the

alluvium-case.

There are many other events that are possible of

identification on the records, for example, the one identi-

fied by Bennett (1973) to be due to P—S conversion. The

study was limited to those events that are easily detecta-

ble by moving or fixed window spectral analysis, and those

that have apparent relations to our Single surface layer

model. Further discussion concerning the events and their

implications in the assumed model are found in Chapter VI.

 



Chapter IV

Methods of Computing Phase Velocities

From Observational Data

Various methods of computing phase velocities using ob-

servational data are discussed in this chapter. The computed

phase velocities will be inverted to yield model parameters.

The details of the inversion is given in Chapter V.

A. Peak-and—trough Method

Having been mentioned in Chapter II, the phase velocity

is the velocity with which the wave form prOpagates. On a

seismic record, it is possible to correlate a particular

wave form from one trace to another, provided that: l) the

distance between two stations is not excessive; 2) the noise

level is not excessive; 3) no superimposed events are present.

The phase velocity is computed by dividing the distance be-

tween two stations by the time Shift of this wave form on two

traces and the corresponding frequency is determined by mea—

suring the period of this wave form (Officer, 1958). The

phase velocities of M11 mode obtained by this method, is

Shown in Figure 11. This is the oldest and the simplist

method of estimating phase velocities. It is observed on

Figure 11 that the results are poor.

B. Fourier Transform Methods

The underlying theory is the same for all the methods

that will be discussed in this section. Consider that a dis-

persive event observed at station A is fA(t), and the same

55
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event observed at station B is fB(t). The Fourier transform

of fA(t) and fB(t) are FA(w) and FB(w), respectively. The

difference in amplitude spectra between FA(w) and FB(w) may

be due to geometric spreading, and material dissipation, and

the difference between phase spectra is due mainly to the

difference between arriving times, i.e., dispersion. The

phase velocity can be found by the formula given by Sato

(1960):

Ad: 2m“: w At = znf (rB' rA)/C(f)

or

C(f) = 21If (rB-rA)/(Ao(12mfi) ........................ (4.1)

where rA and rB are shot-receiver distances at station A and

station B, reSpectively,A°(= “A - 0(5 = phase difference,

and m=0, l, 2, 3, ---, .At: time shift of the same wave form

in two traces.

1. Fourier Phase Difference Method

This method finds phase difference by subtracting the

phase spectrum of FB(w) from the phase spectrum of FA(w)

directly, and then uses equation (4.1) to find phase velocity.

It was applied to the data of this study, but the results ob-

tained were very poor. The reason is probably due to the

short time duration of signals and to rapid change of spec~

tral properties.

2. Crosscorrelation Method

The crosscorrelation functions of two functions fA(t) and
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fB(t) is defined as: (Hsu, 1967)

00

RAB(‘E) f...) fA(t) fB(t-’£) dt

and

00

RBA(1) = 100135“) fA(t-’[)dt

the Fourier transform of RAB(T) is

FA(W)'FB('W) = 'FA(W)' . ' FEW), exp (jam)

and the Fourier transform of RBA(T) is

PA(-W) . FB(W):1 FA(W)‘. IFB(w)\ exp (-jA°() .

Theoretically, the crosscorrelation can be performed either

in frequency or time domain. Landisman, gt al.(l969) claims

that the phase velocity dispersion curve obtained first by

crosscorrelating two functions in the time domain and then

taking the Fourier transform are smoother than those found

by the Fourier phase difference method described previously.

This method was also used on the data of this study by

means of computer program provided by Dr. R. S. Carmichael

of the Department of Geology. The results did not seem to

.be much better than the results using the Fourier phase

difference method.

3. Fourier Sum-and-difference Method

This method, instead of making use of the phase differ-

ence directly, calculates the amplitude spectrum of the sum
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or difference of the two functions fA(t) and fB(t +zxt),

where zit = time shift with respect to the time origin of

fA(t). The Fourier transform of these two time functions

are FA(f) and FB(f) exp (jw13t) , respectively. The

phase velocity is found by

C= (rB-rA)/At ...................................... (4.3)

and the correSponding frequency is the frequency that ex-

hibits maximum or minimum amplitude spectrum, depending on

the sum or the difference being used.

The details of this method can be found in Bloch and

 

Hales (1968). A brief explanation of how this method works

is given below for reference: Let

S(f)= F5(f) exp (jWAt) + FA(f).

D(f) = F5(f) exp(jwat)-FA(f).

Assume the amplitude Spectra of FB(f) and FA(f) are the same

(in application, this can be accomplished by normalization),

i.e., both equal some constant A. S(f) can also be written as:

S(f) = FB(f) exp(jwat) + FA(f) = A[exp(de)-exp(jw4t)

+ exp(jo‘AH = A [(Cos(o<BI-WAt) + Cos 0% >2 + (sin(°(8+wAt)

'.._sin Lda+w00+smov ]
+ sin (13);]yi’exp [j tan‘

COS (0% + wéf)—+C050<A

=A 2&[1 + Cos (0(8- %+wnt)]y2 .

-I SI‘M‘D’DTWAt-flsmw]"""" ”(4.4)o QX '

“Ha“ CoS(dB+wAt)+C050‘/I -
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When the absolute value of S(f) is a maxima,

Cos (UE- 0(A+ WAt) = l

or

046- aA12mn=Adt 2m11=wAt ....................... (4.5)

It is the same as equation (4.1). Similarly D(f) can be

written as:

D(f) = A25 [1-Cos(0§3 -0//, + w At)]yz

Sin (013 + wat) ~Sin0lA

C05(olB +w4t)- CosdA .

 ‘exp [j tan“

When the absolute value of D(f) is a minimum, the same con-

clusion results.

In application, the ratio [D(f)] /|S(f)) is used

so that the minima is more pronounced. A display of this

ratio vs. time shift (At' is automatically printed out by

the computer. The phase velocity dispersion curve is de-

termined by correlating the minimum points of amplitude

spectra correSponding to different time shifts.

Care must be exercised in determining the dispersion

curve because for any time shift, the corresponding spectral

minima is repeating for each period along the time-shift (or

phase velocity) axis. This can be easily explained by using

equation (4.1):
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C(f) = ZUf (rb- rA)/(Aolj'2m11) = (r8 - rA)/(Atjm-period)o

For m=0,l,2, ---, there are infinite values of phase velo—

cities.’ This ambiguity can be resolved by checking with

the results obtained by the peak—and-trough method described

previously.

There are some additional procedures which were used to

improve the results and to reduce the computing time:

a. Shifting Phase Spectrum

The Fourier transform is a time consuming process.

The method used here was designed to perform the time shift-

ing in frequency domain without resorting to repeating the

Fourier transform. It can be shown that the Fourier trans—

form of fB(t + At) is exp (jwat) FB(w). For a time limited

function, the multiplication of FB(w) by exp (jwat) is

equivalent to the shifting of the time function. It is

schematically illustrated in Figure 12.

This method has two advantages. Firstly, one needs to

perform Fourier transform only once for the two time functions,

fA(t) and fB(t), respectively. The Fourier transforms of

fB(t +At.), fB(t +413) , fB(t +At2) , ...etc. are replaced by

multiplying exp (ijt.), exp (ijt,), exp (jWAtL), ... etc.

to FB(w). The saving in computer time is considerable.

Secondly, the shifting of the windowed time function will not

introduce any additional noise as will the actual shifting in
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Shifted Position Of Samples

Time Increments in Time Domain

0 O 1 2 3 4 5 6 7

1 7 O 1 2 3 4 5 6

2 6 7 O 1 2 3 4 5

3 5 6 7 O 1 2 3 4

4 4 5 6 7 O 1 2 3

5 3 4 5 6 7 O 1 2

Figure 12. An Example of Shifting in Time Domain

  T J ,

1.0

-'H<- T

0.1 sec.

Figure 13. Trapezoidal Weighting Function
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time. Since most of the signals on our records are short

in duration, the introducing of a few noises will distort

the Spectrum substantially.

b. Normalization of Time Functions

This method of computing phase velocity is based upon

the assumption that FA(w) and FB(w) both have the same am—

plitude Spectrum. This is not true in practice. Two time

functions, fA(t) and fB(t), were normalized with respect to

the maximum amplitude in two functions.

c. Trapezoidal Weighting Function

A trapezoidal weighting function Shown in Figure 13 is

used to reduce the effects caused by trancations. Another

reason for using this weighting function is to weight every

sampling point in the window evenly, except for a few points

near the truncations. This is done to avoid the possible

distortion of the Spectrum.

d. Time-varying Filter

All surface waves possess time-varying spectra. To

filter out noises, a filter with time-varying pass-band is

desirable. The principles in designing this filter are the

same as those described in Landisman, gt al.(1969). It was

found that the phase velocity diSperSion curves, determined

by using the filtered data, were better than the unfiltered

ones .

The method of applying this filter is given below:

'
s
a
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Firstly, a fast Fourier transform is performed on the time

function. Using the discrete Fourier Spectrum obtained, one

can compute the amplitudes and phases of the Fourier series

which represents the time function. Secondly, by inspect—

ing the time-varying spectra described in Chapter I, one is

able to determine the pass-band of the signal at different

time instances. Finally, the filtered signal is obtained

by truncating each cosine function of the time series accord-

ing to the shape of the time-varying spectrum and summing over

all truncated cosine functions. The truncations of cosine

functions are smoothed before summing by a half-cosine

weighting function given below:

L.
W (t) = Cos (11 - L/2<t§L/3

0 otherwise

where L = length of the time window.

Having been mentioned in Chapter III, the evaluation of

the one-period Fourier transforms was a first step in the

computation of the time-varying Spectra. This data was

punched on cards by the computer during the computation.

The summation of all the one-period transforms corresponding

to a particular frequency is the Fourier transform of the

time function. Again, a "cleaner" Fourier transform can

be obtained by nulling those one-period Fourier transforms

that fall into the rejecting bands. Figure 14 shows an

F
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example of the filtered and the unfiltered M11 signal.

A phase velocity dispersion curve obtained by the

Fourier sum-and-difference method is shown in Figure 15.

The maximum Spectrum is normalized to 0 decibels. Those

below -50 are set to zero and those higher or equal to

'25 decibels are represented by X. The asterick (*) repre-

sents the lowest and the next lowest points of the spec- {w

trum. The solid curve connecting the low points in the F——

trough is the phase velocity diSperSion curve. There are

several possible curves in this diagram. This one is chosen

 because the phase velocities associated with this curve are

similar to those found by the peak—and-trough method.

C. Computing Phase Velocity Dispersion Curve by Using

the Knowledge of Observational Group Velocities

The use of this method is two-fold. Firstly, it may

be used to check the correctness of the results obtained by

other methods. Secondly, the results of this method is ex-

‘pected to be less scattered because the group velocity dis-

persion curve, obtained by the moving window spectral analy-

sis method, is relatively smooth.

Equation (2.7), which relates the phase velocity to the

group velocity, is a first order differential equation. The

:numerical technique used to solve it is the Runge-Kutta

lnethod of order 4 (Conte, 1965). The details of this method

is given in Appendix A. The group velocity data are those

from the moving window spectral analysis method.

The disadvantage of this method is that an initial value
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of phase velocity is needed before the computation can

start. This is probably one of the reasons that, to the

author's knowledge, this method has not been used pre-

viously. Another reason may be that before the develop-

ment of the moving window spectral analysis method by

Landisman, gt gt (1969), the observational group velocity

data is quite scattered and not suitable for using this

method. To find a good initial value, one could resort to

the results obtained from the Fourier sum-and-difference

 

method. Two examples of the results using this method are

tabulated in Tables 4a and 4b. The closeness between the

 
Fourier sum-and-error method and this method verifies the

success of these two methods.
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Table 4a. Phase Velocities Obtained by Integrating

Observational Group Velocity Dispersion

Curve (Record No. 43 second 8 trace)

Group Velocity Frequency Phase Velocity Phase Velocity

 

(ft/sec) (cps) (ft/sec) *Difference

569.444 8.50 # 740.741 0.000

559.345 8.75

550.336 9.00 727.643 0.370 "*T

542.328 9.25 i‘

534.550 9.50 714.788 0.502

524.297 9.75

514.429 10.00 702.035 0.281

488.677 10.25

482.921 10.50 688.029 -1.626

478.972 10.75

475.638 11.00 674.653 ? -.J

474.537 11.25

473.441 11.50 662.506 ?

470.723 11.75

468.571 12.00 651.454 -4.284

465.909 12.25

463.801 12.50 641.246 ?

461.712 12.75

460.157 13.00 631.804 -3.117

456.062 13.25

452.539 13.50 622.919 ?

449.069 13.75

445.652 14.00 614.424 —0.961

*Phase velocity obtained by integration—-

Phase velocity obtained by Fourier sum-and—difference method.

#This is an initial value selected from the phase velocities

obtained by Fourier sum—and-difference method.

?Difficult to determine the correct phase velocity correspond-

ing to this frequency,
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Table 4b. Phase Velocities Obtained by Integrating

Observational Group Velocity Dispersion

(Record No. 43, Sixth 8 trace)

Group Velocity Frequency Phase Velocity Phase Velocity

’
0

(ft/sec) (cps) (ft/sec) *Difference

572.519 8.50 # 740.741 0.000

563.910 8.75

554.871 9.00 728.047 0.774

547.445 9.25

540.216 9.50 715.621 1 335

533.175 9.75

526.932 10.00 703.592 1.838

502.793 10.25

498.339 10.50 690.739 1.084

487.013 10.75

482.315 11.00 677.943 ?

477.707 11.25

473.186 11.50 665.809 ?

470.711 11.75

468.262 12.00 654.506 -1.232

466.321 12.25

464.396 12.50 644.109 ?

461.066 12.75

457.317 13.00 634.416 -0.505

Phase velocity obtained by integration-—

(Minus) Phase velocity Obtained by Fourier sum-and-

difference method.

This is an initial value selected from the phase velo-

cities obtained by Fourier sum-and-difference method.

Difficult to determine the correct phase velocity corres—

ponding to this frequency.

 



Chapter V

Inversion of Data to Yield Model Parameters

In this chapter, various methods of inverting observa-

tional data and the resulting model parameters will be dis-

cussed. The emphasis will be placed upon the inversion of

normal modes. A comparison of the results determined by

normal mode, leaking mode, and compressional wave data will

be made in the last section.

A. Inversion of Normal Mode Data

The observational phase velocities obtained in Chapter

IV are the data used in the inversion of normal modes. The

period equation which relates the phase velocity data to the

model parameters is equation (2.8).

1. Methods

Equation (2.8) has long been used in generating theo—

retical dispersion patterns corresponding to assumed crust—

mantle models. These dispersion patterns are used in com-

parison with the earthquake surface wave data and to test

the correctness of the assumptions. For a layer over a half-

Space model, there are Six model parameters of which one

could speculate. By a trial-and-error method, it is possible

to get an estimate, but of course, uncertainty remains.

Dorman and Ewing (1962) were the first to inverse the obser-

vational phase velocities directly without assuming model

parameters. They used the linear least-square approach.

71
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Two new methods have been developed here to find the model

parameters directly from the observational phase veloci-

ties. Because these two methods were develOped independently,

without the knowledge of Dorman and Ewing (1962), any compari-

son was not intended.

a. Exact Method

Six model parameters, P wave velocities in the surface

layer and in the half-Space, S wave velocities in the sur-

face layer and in the half—Space, rigidity ratio of the two

layers, and thickness of the surface layer uniquely determine

the dispersion curves of all the leaking and normal modes

correSponding to the single surface layer model. Converse-

ly, these diSperSion curves uniquely determine the Six model

parameters. The first step of the exact method is to arbi-

trarily choose six phase velocity-frequency pairs from any

one or more diSperSion curves. The second step is to solve

for the six model parameter, from the six independent equa-

tions formed by substituting the six phase velocity-frequency

pairs into the period equation.

If the observational phase velocity data were used, the

inverted model parameters would not be correct, due to the

observational errors. A method of solving this problem is

to repeat this process for many times using different combi—

nations of phase velocity-frequency pairs. According to the

author's experience, the phase velocity data obtained by the

integration of the group velocities give model parameters

With relatively small errors. The final results are obtained
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by averaging the results from different trials.

The numerical method used in solving these equations

is Newton's method for a system of non-linear equations

(Conte, 1965). The details of this method is given in

Appendix B. This method converges fast when the initial

values are chosen close enough to the true roots. If the

initial values are out of range it may either converge to

incorrect roots or not converge at all. Also, some of the

results obtained by using the arbitrarily chosen phase

velocity-frequency pairs, may deviate greatly from the op-

timal solution using the entire data set, if these chosen

data points happen to contain greater observational errors.

A careful inSpection of the results from each trial must be

undertaken and the far different solutions must be excluded

before the averaging process is made. Some of the trials

may not converge at all because of the vanishing Jacobian

(Conte, 1965, p. 45). The numerical instability is caused

by an inadequate combination of phase velocity-frequency

pairs.

Two model parameters, the P wave velocities in the sur-

face layer and in the half-Space, are relatively well de-

termined in this study. They are assigned 1150 and 5700

ft/sec, respectively. Therefore, only four unknowns enter

the problem in the Single surface layer model. An example

of results obtained by the inversion of M11 data are listed

in Table 5. The density ratio was computed by using the

relation:
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Table 5. Model Parameters Obtained by the Inversion of M11

Data Through the Use of the Exact Method

(Record No. 43, Second 8 trace)

 

Mean Standard Percentage

 

Value Deviation Error

Rigidity Ratio 2.26 0.27 i11.78

Thickness of Surface Layer (ft) 21.84 1.35 i 6.19

5 Wave Velocity in Surface 603.31 7.61 i 1.26

Layer (ft/sec)

5 Wave Velocity in Half— 904.03 25.67 i 2.84

Space (ft/sec)

Density Ratio 1.02 0.21 i20.30

Poisson's Ratio (Surface Layer) 0.30 -—-- ----

Poisson's Ratio (Half—space) 0.49 ---— ---—

Remarks: i) 20 total data sets are inverted.

ii) only 12 sets of the inverted results are

considered to be good and averaged to

yield the mean values.
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Density of Half-spgge Material 45}

Density of Surface Layer Material = flDensity Ratio

S Wave Velocity in Surface Layer
_ , . 2

‘(S Wave VeIOCity in Halfsspace ) X

Rigidity Ratio,

where the rigidity ratio is defined as:

 

Rigidity of Half-space Material _ IuZ

Rigidity of Surface Layer Material — I“, .

Arui, the Poisson's Ratios were found by the formula:

 

I uZ-2EZ

2
Poisson's Ratio = —— dz 2

where 04

fl

These equations can be easily derived by using the rela-

P wave velocity

S wave velocity.

1lionships between body waves and elastic constants (Grant

and West, 1968, p. 30).

b. Method by Minimizing Sum of Squared Residues

Instead of solving n equation with n unknowns, as does

'trhe method described in the preceeding section, a method

wtlich finds the optimal solutions to m equations in n

unknowns for m) n, will be introduced here. This method is
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similar to the well—known linear least-square technique,

except that the equations are non—linear and the mathemati-

cal method in solving these equations is also non-linear.

The details of this method are as follows: Suppose

that m observational phase velocity-frequency pairs are

available for use in inversion. By substituting them into

equation (2.8) and assuming n unknown model parameters, a

system of m independent equations results:

f1(al' a2, ..., a ) = r1
n

f2(a1, a2, ..., an) = r2.............................. (5.1)

fm(al' a2, ..., an) = rm

where fi's are period equations formed by substituting

different phase velocity-frequency pairs, ri's are resi—

dues of the equations due to the errors in the observational

data (i=1,2,...,m ), and aL's are model parameters to

be determined (L=l,2,...,n ). A method of solving this

system is to reduce the m equations to become n new equa-

tions in n unknowns by minimizing the sum of squared resi-

dues, ri's ; and then solving the new system exactly. Name-

ly, the aL parameters are to be solved subject to the

constraint:
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or

m 2
2: fl = minimum ............... . ................... (5.2)

i=1

Differentiating equation (5.2) with respect to aL'S , one

obtains
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Equation (5.3) is a system of n non-linear equations in n

unknowns. It can be solved by numerical methods. If the input

data were not independently observed this method might not be

valid. Also, this kind of minimization process may not be

valid for some particular mathematic functions. These mathe-

matical problems will not be theoretically treated here. The

closeness of the results by using this method and the one

described in the preceeding section is evidence that this is

a good method for our particular data and particular period

equation.

Some details of solving equation (5.3) by using the
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Newton's method for a system of non-linear equation are

given here. Define:

m

Gl(al' 327 ---r an) = Z fig-L

1:) 0’

Y" I
6(aIaI-oora)=\—_f'Q-J ................... (54)

l=l

m

_ ,C-
Gn(alr a2, ..., an) - Z flialn

 

'The iteration scheme of the Newton's method is:

(0k)?M = (ak), + N/D’ .............................. (5.5)

I

where
.

k = l, 2, 2, ..., n

 

  

 
 

 

P = number of iterations

fiG, 9G1 _-___9Gp “G GGI _____ a(;.1

30. 802 a OK'I ' 3a,“,
an

'2132 ELQL! _ --...adé} __ 59(32 _ __.,_-9<32

aOI 302 50“-. 2 8 aK-H 6 an

N = | I . I . .

I ' I ' I I

I ' ' I ' I

iGneCm_____9§p —G QCm __-___IQQYI

90‘ 901 $62,“, n 391m aqn   
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éfliL §LQl -__________ OCL

a a, a 0.. e an

e G: Q2 5 -
D = --------- - =<9 0. a 02 a 0 Jacobian

.éiiifl. fiugtfl _ _ _<_ _ _ _ _‘__ €9C3n

éDQI '9 £32 (9(2n  
The major difficulty of this method is that the second

derivatives of equation (2.8) with respect to each para—

meter are required in programming. The derivative

 

  

901_ 3 m aa‘I_—m— sis. 91L

.___._ Zf‘ 2"}F‘[ Leg—IH—LJ8(9 é>(3k [490$3610

.
9 Q
/

t
o

is an example.

Although the programming of this method is laborious,

the computer time needed in computation iS surprisingly small

and the results are close to those obtained in preceeding

sections. The model parameters computed by this method are

listed in Table 6. The S wave velocity in the surface layer

was not computed by this method. Because the value 603.3

ft/sec found by the exact method in previouu section is very

close to the value 600 ft/sec determined by Bennett (1973),

it was thought that these two values must be close enough to

the true value.
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Table 6. Model Parameters Obtained by the Inversion of M11

Data Through the Use of the Method of Minimi—

zing Sum of Squared Residues

(Record No. 43, 8 component)

Second

Trace

Rigidity Ratio 2.26

Thickness (Surface Layer) 21.95

S velocity (Half—Space) 902.00

Density Ratio 1.01

Poisson's Ratio (Surface Layer) 0.31

Poisson's Ratio (Half-space) 0 .49

Sixth

Trace

21.34

902.47
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2. Checking the Correctness of Inverted Model

Parameters by Reversing Process

The best method of checking the correctness of the

inverted model parameters is to reverse the process and to

check the differences between these dispersion curves ob-

tained by the reverse process and the observational disper-

sion curves. The reverse process is just the traditional

method of deriving theoretical phase and group velocity

dispersion curves (Ewing, gt gt, 1957). The details are

given in Appendix C.

Table 7 shows a comparison of the theoretical and the

Observational phase and group velocity dispersion curves.

The same data is plotted in Figure 16.

B. A Discussion of the Model Parameters Derived From

Normal Mode, Leaking Mode, and Compressional Wave

Data

The P wave velocity in the surface layer has not been

computed in the study due to the difficulty in determining

the accurate times of the direct P wave arrivals. The value

of 1150 ft/sec has been used throughout the study. It was

determined by Bennett (1973) using short distance refraction

surveys. In his study it was also found that a low velocity

loose sand with variable thickness was present near the free

surface.

The P wave velocity in the saturated layer was computed

by the standard refraction time-distance curves to be 5700

ft/sec. This velocity and the P wave velocity in the

Mississippian sandstone, which was found by the same method,
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Table 7. A Comparison of the Theoretical and the

Observational Phase and Group Velocity

Dispersion

(Mll data taken from Record No. 43, second 3 trace)

Group #Group

Frequency Phase Velo- *Phase Velocity Velocity Velocity

(HTS) city(Ft/sec) Difference (Ft/sec) Difference

8.50 740.6087 -0.1323 582.5392 13.0952

9.00 728.3312 0.7878 554.3113 3.9753

9.50 715.2862 0.4978 528.1900 -6.3600

10.00 701.7815 -0.2535 505.6809 -8.7481

10.50 688.2109 0.1815 487.8027 4.8817

11.00 674.9856 0.3324 474.8996 -0.7384

11.50 662.4602 —0.0458 466.6908 -6.7502

12.00 650.8844 -0.5699 462.4858 -6.0852

12.50 640.3907 -0.8555 461.4311 -2.3699

13.00 631.0123 -0.7912 467.6952 -2.5382

13.50 622.7123 -0.2058 465.5661 13.0571

14.00 615.4122 0.9882 469.4813 23.8293

Theoretical phase velocity minus Observational

Phase velocity (by integration of group velocitiesL

Theoretical group velocity minus Observational

Group velocity (by moving window spectral analysis

method), '
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are believed to be reliable because both arriving times are

accurately determined in the study.

The S wave velocity in the surface layer has been de—

termined to be 603 ft/sec by the inversion of the M11 data.

It is surprisingly close to the value 550 to 600 ft/sec,

which was measured by Bennett (1973) using hammer blows as

sources and at short distances less than 100 ft.

It was also computed, by using M11 data, that the S F‘

wave velocity in the half-Space of the single surface layer

model is 902 ft/sec. It is different from the value of

1200 ft/Sec for the saturated layer by Bennett (1973). In  
Chapter II other evidences that support the existence of

the layer with 902 ft/Sec, have been discussed. Having been

mentioned before, the clay layers in the Pleistocene glacial

drift are possible of causing larger shear wave velocity

changes than the water-table.

The driller's well log indicates that the depth to the

water-table is about 32 ft (Todd, 1971). By applying the

standard refraction technique, it was found to be 46 ft in

Record No. 43, 41 ft on Record No. 10. Todd (1971) identi—

fied eight successive multiple reflections right after the

refracted P wave from the saturated layer and found the

average time lag between two sequential reflections to be

0.056 sec. The depth corresponding to this value is 33 ft.

After examining his record, the first time lag, i.e., the

one between the refracted P wave and the first reflection,

has a stable value of about 0.060 sec. This is equivalent
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to a depth of 35 ft. It is felt that the first time lag

rather than the average value must be used in the calcula-

tion. However, the depth, based upon the first time lag,

seems to be more in error as compared to the one based upon

the average time lag. The low velocity material right near

the surface and the elongated ray path due to velocity gra-

dient may cause this discrepancy. By using the first time

lag, the depths are determined to be 41 ft on Record No. 43,

36 ft on Record No. 33, and 33 ft on Record NO. 10. The

depth can also be determined from the Spectra of the "pipe

organ" modes. The first three modes have peak amplitude

Spectra at 10.000, 23.333, and 35.000 cps in Record No. 43,

10.667, 26.667, and 42.667 cps in Record No. 33, and 11.429,

23.143, and 44.286 cps in Record No. 10. The true "pipe

organ" modes are supposed to peak at frequencies with ratios

of 1, 3, 5, 7, ... The departure of the observed ones from

the true "pipe organ" modes has been discussed in some de—

tail in Chapter II. Since these modes are dispersive, their

frequencies actually vary with time. The frequencies of the

true "pipe organ" modes as their phase velocities approach

the P wave velocity of the saturated layer. The fundamental

frequencies of the true "pipe organ" modes, derived under

this requirement from the observed data, are 7.000 cps for

Record No. 43, 8.533 CpS for Record No. 33, and 8.857 cps

for Record No. 10. These frequencies are equivalent to

depths of 41.9 ft for Record No. 43, 34.4 ft for record No.

33, and 32.5 ft for Record No. 10. The depths to the water-
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table computed by various methods are summarized in Table 8.

The shot-receiver distances and geOphone spacings of the

records used can be found in Table 2, p. 51.

It is observed that the depths based upon the first

reflection and "pipe organ" mode data are very close. Al-

though the exact depths at each station are not known, it

is believed that these two sets of values are slightly higher

than the true values. The small positive errors are due to

the low velocity material near free surface and the elongated

ray paths caused by the velocity gradient. The depths de-

termined from the refracted P wave are obviously in error.

The intercept times used in computing the depths are ob-

tained by extending the time-distance curves to intercept

the time axis. The range of a T-D curve, that is actually

determined from the observed data, is limited by the Spread

of the geOphone array, which is small as compared to the

shot-receive distance for the records studied. The extension

of a T-D curve to intercept the time axis is inevitably sub-

ject to error. .The depths found by using record No. 43 data

are greater than those found by using other records. This

may be due to the descending of the water-table because the

recording site of No. 43 is farther from the source of the

ground water than the recording Sites of other records (per—

sonal communication with Dr. H. F. Bennett of the Department

of Geology).

The thickness of the surface layer of the single surface

layer model, computed from the M11 data of record No. 43, is
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Table 8. The Depths to the Water-table

 

 

Data *Refracted *First # "Pipe Organ" 1

Based P Wave Reflection Mode '

Record
1 1

Number 10 33 43 10 33 43 10 33 43 fi-.&

Depth

(ft) 41.0 ? 48.0 33.0 35.7 41.0 32.5 34.4 41.9

? Difficult to measure the slope of the time-distance

curve

All traces in 8 component were used in computation

# 8 component traces used in computation are: Record

No. 10---4th and 7th, Record No. 33—--1st, 2nd and

3rd, Record No. 43---2nd and 6th, Record No. 42

(results included in No. 43) ---1st, 4th and 7th
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about 22 ft. This value is apparently not the depth to

water-table. The original thinking is that because most

seismic energy is trapped in the unsaturated layer above

the water-table, the W-T may act as the interface of the

assumed surface wave model. By re-examining the tech-

niques used in studying surface waves, no problems that

may introduce errors have been found. In the same evalua-

tion, the 8 wave velocity of the surface layer which has

been mentioned previously, is verified to be correct and

the density ratio at the interface is about 1.0. This in-

dicates that it is not an unsaturated-saturated boundary

 
because the porosity of the glacial sand in this area is

about 25% (Bennett, 1973) and the corresponding density

ratio at the W-T is about 1.1. It has been well estab-

lished that the normal modes are several times more sensi-

tive to the S wave velocity distribution than the leaking

modes. On the other hand, the leaking modes are more sen-

sitive to the P wave velocity distribution (Su and Dorman,

1965, pp. 1008-1009). It is logical to accept the fact

that a S wave velocity discontinuity exists at a depth of

22 ft. This discontinuity may be a result of lithology

change (clay layer), compaction, or cementation. Unfor-

tunately, this result does not contribute anything to the

controversial problem discussed in Chapter II: Does the

S wave velocity change at the water-table or not? One

possible inference is that the S wave velocity change at

W-T is of a magnitude less than the one at the level of
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22 ft, where the velocity increases from 603 ft/sec to

902 ft/sec. If a multi-layered medium is assumed to be

a single layer over a half-space model in surface wave

inversion, the interface of the model will be found at

the level where the maximum change in S wave velocity

occurs. That is because the diSperSion pattern of the

model, using this level as the interface, is close to the

actual diSperSion pattern of the multi-layered medium.

 



Chapter VI

Summary and Conclusions

This study has been centering around the problem of

the utilization of leaking and normal modes from a small

explosion. The difficulties of this problem result from

the presence of a high level of noise, an immaturely de—

veloped wave form, and a short time duration of the sig-

nal. The emphasis of the study has been placed upon the

use of numerical techniques to achieve better results.

Some problems pertaining to the theory, and the particular

data used, have also been studied.

A. Numerical Techniques

All the numerical techniques used in the study have

been carefully examined. To check the correctness of the

results of a newly developed or modified technique, one

or more other methods were used to the same set of data,

and a comparison was made. In some cases, the testing of

techniques was made by reversing the process. Because of

these careful considerations, the techniques used in the

study are believed to be reliable. This study may be help-

ful for other workers who wish to study the seismic data

of similar nature by numerical techniques.

1. Derivation of Time—varying Spectra and Group

Velocities

A special version of the moving window spectral analy-

90
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sis method has been proved to be an effective means of

separating superimposed modes and identifying signals. The

group velocity dispersion curves derived by this method

are smoother than those derived by the traditional, visual

measurement of periods. To save computer time, an approxi-

mation method of the one-period Fourier transform was de—

velOped, and Page's (1952) instantaneous power Spectrum was

implemented in the moving window Spectral analysis method.

 

2. Computation of Phase Velocities

Some methods were found to give poor results using

 
the available data. The Fourier sum—and-difference method L_JE

using the time—varying filtered data gives a good disper-

sion curve. This method uses the shift of the time origin

of one seismic trace with respect to another. By using a

trapezoidal window, and doing the time shifting in the

_
'

frequency domain instead of the time domain, two advanta-

ges result. One is the reduction of time needed in per-

4
1
1
.
.
.
;

forming Fourier transform. Another is that no additional

noises are introduced. The derivation of phase velocities

from the observational group velocity dispersion curves

yields smooth phase velocity diSperSion curves suitable for

the inversion computation.

3. Inversion Methods I

The exact method for the inversion of the phase velo—  
cities to yield model parameters is easy to apply. The

method of minimizing the sum of squared residues is difficult  
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in programming, but the computer time needed is small.

The results of these two methods were compared and a good

agreement was found. To further assure their correctness,

the inverted model parameters were used to compute the

theoretical dispersion curves, and then compared to the

Observational ones. The differences between the theoreti-

cal, and the observational ones are small. There are lar-

ger deviations in group velocities at low and high fre-

quencies. The higher degree of uncertainty in determining

the correct values at the two ends of the observational

group velocity diSperSion curve may be the source of errors.

B. The Use of Normal and Leaking Modes in Data

Interpretation

In all the records studied, M11 mode has the most well

develOped wave form. For shot-receiver distance less than

1000 ft, the time duration of this mode is still too short

for the accurate phase velocity dispersion curve to be

easily determined. This is why only the results, computed

from the M11 data in record No. 43 are Shown in previous

chapters. The M12 and M21 data may be possible to utilize

when the shot-receiver distance is longer than 2000 ft.

The use of normal modes not only gives an independent check

on the results obtained by using body wave data, but also

gives lithological information.

The dispersive "pipe organ" modes found in the data

studied, can be used to find the depth to the water—table.

The results agree with those obtained by using the time
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lags between the refracted P wave and the first reflec-

tion. The depth determined from the "pipe organ" modes

may be more reliable than the ones determined from the

refracted P wave arrivals when shot—receiver distance is

large as compared to the spread of the geophone array.

A theoretical derivation was made in Chapter II to Show

the possible existence of the dispersive "pipe organ"

modes in the unsaturated layer overlying the saturated

half-space. This theoretical treatment was not done in

rigorous manner. An actual numerical calculation must

be made and more observational data must be collected to

verify its correctness. If the dispersive "pipe organ"

modes are verified to appear only in this particular

Situation, their appearance will be a good indication of

the existence of a water-table.

In the assumed model, the boundary with large S

wave velocity change becomes the interface of the model

for normal modes, and the boundary with large P wave velo-

city change becomes the interface of the model for leak-

ing modes. This is in agreement with the conclusions of

Su and Dorman (1965). In this study the 8 wave velocity

change at the water-table was not detectable. This does

not exclude the existence of this velocity discontinuity.

In future study, the Haskell's matrix must be used

in the surface wave computation. It is more flexible in

shifting from the single-layered half-space model to the

Imulti-layered model. A more accurate result may be

FT

 
LJ
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obtained.

C. Miscellaneous Conclusions and Recommendations

In addition to the conclusions of Tolstoy and Usdin

(1953) regarding the existence of the symmetric and anti-

symmetric modes in a solid layer overlying a solid half—

Space model, a theoretical derivation was made to prove

that they exist under all conditions.

Only X and 8 components of the records have been

carefully studied. The spectra of the Y component was

only lightly studied. It was found that the spectral

prOpertieS of the Y component are different from X and Z

components. This is because the theory underlying the

SH motions of the Y component is independent from the one

for the other two components. Additional information may

be obtained through the study of this component.

Although linear filters are not suitable for studying

dispersive wave trains, they are recommended for use in

the detection of direct, refracted, and reflected body

wave arrivals and to add more information to the study.



APPENDICES

 



 

E—



Appendix A. Runge-Kutta Method of Order 4 Used in Computing

Phase Velocities

The problem here is to solve a first order ordinary

differential equation of the form

dC(f) ___ C(f)

df fu(f)

 

[U(f) - C(f)] = F(f,C) ....... . ..... (A1)

with initial condition

CCM.) 0

where C = Phase velocity

U = Group velocity (an implicit function of f)

f = Frequency

fo = Initial value of f

Co = Initial value of C.

In computer computation a value observed on the observa-

tional group velocity dispersion curve is substituted for

U. Co is a phase velocity chosen from the results of

Fourier sum-and-difference method. Note that equation (A-l)

is the same as equation (2.7). Here, w = wa and C = Ca are

understood.

The recursion formula for numerical computation is:

(Conte, 1965, p. 223) Cn+|= Cn + 1/5 (Kl + 2K2 + 2K3 + K4)
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where K1 h F (fn, Cn)

K2 = h F (fn + h/2, Cn + 1/2 K1)

K3 = h F (fn + h/2, Cn + 1/2 K2)

K4 = h F (fn + h, Cn + K3)

n = 0, l, 2, ... = Iteration step

h = Step size of frequency.



Appendix B. Newton's Method for Simultaneous Non-Linear

Equations

The Simultaneous non-linear equations

Fl (X1, X2, 0.. xn) = o

0F2 (X17 X27 ... Xn)

II

0PD (X1, X2, ... Xn)

are to be solved. Assuming that F1, F2, ... F and all their
n

derivatives through second order are continuous and bounded

in a region containing the true solutions (Al, A2, ..., An)

and the initial approximation (a1, a2, a3, ..., an) is

chosen sufficiently close to (A1, A2, ..., An). By expand—

ing F1, F2, ... Fn about (a1, a2, ..., an), one gets

Fl ( X1, X2, ..., Xn) = F1(a1, a2, ..., an)

+

eF1(al’ 32, coo, an) ( Xl-al)

€9X1

 

+

.9 F1(a1, a2, ..., an) (Xz-az)+ ;;Fl(al, a2, ..., an) (Xn-an)

ia’xz E3 Xn

 
 

+ Higher-order Terms

F2 (X1, X2, .00, Xn) = F2(al,a2' 0.0, an) +aF2(a1'a21 '0'! an)

 

axl

"Xl‘a1)
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+ .e‘Fz(al,a2, ..., an) (XZ-az)

EDXi

+- .aF2(al, a2, ..., an) (Kn-an)

9X11

+ Higher-order Terms

+ --..___
 

 

Fn (X1, X2, ..., Xn) = Fn(al,a2,..., an)

+ F
-9 n (a1,a2,...,an) (Xl a1)

6X.

 

+9Fn(al, a2,...,an)

 

+ 9F (a1,32,..., an)

ex“ (Xn - an)
 

+ Higher-order Terms.

By neglecting the higher-order terms, the above equations

can be written as:

 

a . ,
GE (Xla')+ 2:- (X1. a).)")’ -— — ‘1’ :—%(XH an):-'F-

F2 1 z

3 .(X’a') I 3L.“=—’¢'z>* -- — +3f;(x.-an):- I1.

I

I
I

I

I

a 6 n

5%(X'T'al) T). 5%(X1—az)‘r s —— .. TéiF—(Xfi—an):’ Fr]
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Therefore, a recursion formula is: (Conte, 1965, pp. 45-46)

   

  

   

    

 

- _ _. .. .. it).
—FI a )(2 9X"

I I .'

I I I

I : I

I: 9E" _____ Q Fn

" 9X; 9 X
0 . = a . + _1____---_--.----.. “ xea.»

III+I "t

j<FI)F3-) TTTTTT2 F") 1:.)z'zh"n

55;. -F o); ____ .35.

5X, ' 9X3 9X1“!

5 f I 3

91.1 “F 39.1.". --- OJ;

ex, " e X; e Xw

0). "+1: 02" “1"
XL: a“;

)L I
-](F')F2)__--—-,Fn)

1:52,»n1

' a VI §_Y_-_ _- - --- _. F

ex. ex. |'

5E" 6.En ___---_.‘Fn

9 X) 6X2

a - ..f—
-_ szabji:

751+): an); 3 (Fun, ...... J17") I.=I.2,-~u“

where

at. at - - 26‘
9X, 9X2. axh

3(FI)FJJ"‘)FH)Z '2‘ : : jacobian #5—0

at» sin if."

ex. ex; 3X?)  
I: '1‘- TIUW'Iber Of IICYOT'I‘OY'IS.



Appendix C. Numerical Methods of Computing Theoretical

Dispersion Curves

The period equation of a solid surface layer overly-

ing a solid half-space, equation (2.8), is used in the

I I <

computations herein. For (A? < C = fl} , the real

solutions of this equation exist and represent the un-

attenuated prOpagation. The existence of the real solutions

is not affected by

04' >62 .. °"<F= .

To derive the phase velocity dispersion curves, the

Newton's method is used. An initial value of phase velocity

Co must be estimated at the beginning. The iteration

scheme is: (Conte, 1965, p. 31)

_. Co c2) C) a)

CT+I-CI-(P( I /a—E-(§’C"’£‘) [

where i = 0, l, 2, ... = number of iterations

P(C, fa) is the period function in equation (2.8)

fcz is a particular frequency of interest.

The iteration stops when the successive values differ by

less than 10"? . The estimated value of C for ft» =

fa + 43f, where Af is a finite increment of frequency, is

derived as follows: Denote the period equation (2.8) by

P(C,k) = o .. ......... . ........... ................... (A2)

 



101

w/C = wave numberwhere k

21)f = ZTIX frequency,W

By differentiating equation (A-2), yields:

dP(C3k) = IQJE (Kli- 2%; dk = o

3C

or

dC_ 2E ax: F
27:..-(5k )/(3C)° ............................. (A3)

Equation (A-3) can be rewritten as:

 dc =-adk = -a 3:1: (Cdf-de) t

C

or

dC = -217 adf/(C-ak) ................................. (A4)

where a = (%E)/(%%)'

An estimation of C at fb can be found by an approximated

version of equation (A-4) as follows:

(C)f=fb = (C)f=fa -[21Ia4f/(C—ak)]f =
fa.

To find group velocities from phase velocities, the

following relationship is used:

_ dC __________________
U-C+kaK. (A5)

The direct numerical differentiation of C with respect to k

often leads to significant errors. Mooney and Bolt (1966)
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found that using equation (A 3) instead of direct numerical

differentiation, a better result was achieved. Their method

is used in our study.
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