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ABSTRACT

INVERTING AND MONOTONE PROPERTIES OF COMPLEXES

by Shashichand Fatehchand Kapoor

Doyle and Hocking introduced the concept of inverti-

bility for topological spaces and then applied this idea to

finite geometric simplicial complexes. Characterizations

of l- and 2-complexes with a single invert point were given

by Doyle and Klassen respectively. Hocking proved that if

K is a complex with O s dim 1(K) s dim K, then K is a

multiple suspension.

In Chapter II we show that if a complex K has

dim {I(K)} 2 1, then CI(K) = I(K). For a complex K with

I(K) f C or SO and p e I(K) we show that there exists

an inverting homeomorphism which fixes p and that K-p

I
l
l
-
3

. w

18 an open monotone union l IZLi where each 1L1

i=1

Lkr>x El. For products of complexes it is shown that if

K1 and K2 are non-degenerate connected complexes and

I(K13<K2) % C or SO, then K1’ K2 and K13<K2 are con-

tractible provided leK2 is not a (dim K11<K2)-sphere.

In Chapter III we discuss complexes with a single

invert point by restricting the number of orbits under

isotopy and by imposing the Brouwer Property on the com-

plex. An interesting characterization of a 3-sphere is

obtained in Theorem 3.6 when we show that a 3-complex with
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Brouwer Property and dim {I(K)} 2 1 is necessarily a

3-sphere. A 3-complex with Brouwer Property and a single

point invert set turns out to be a suspension of a closed

2-manifold with the suspension points identified.

In Chapter IV we discuss invert sets of suspensions

of complexes with a single invert point. It is conjectured

that if K is any complex with I(K) = {p}, then

1(4fCKl> = SO. For a l-complex, we prove that this is

true, and for 2- and 3—complexes we get the invert set as

a O-sphere if the complex has two orbits under isotopy.

The uniqueness of the open cone neighborhood is used to

show that local homology groups are invariant under trian-

gulations of any complex. For any complex K with

I(K) = {p}, we prove that if I(Af(K)) % SO, then

dim {I(QI(K)) } 2 2. A result of Doyle on suspension rings

in a double suspension is generalized to show that for any

complex K, I(4fk(Kl) 2,8k-l for k = 1,2,3,

In the last chapter we introduce the concept of an

expanding n-star graph E(n) as a monotone union of star

graphs and show that all such graphs can be embedded in a

plane. This concept suggests a possible generalization of

the self—avoiding walks discussed by Kesten and generalizes

a result of Doyle on complexes which are monotone unions of

l—cells.
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CHAPTER I

INTRODUCTION

The concept of invertible spaces was introduced by

Doyle and Hocking in [:3]. This lead to the investigation

of such concepts as continuous invertibility, dimensional

invertibility and local invertibility in [u l, [ 5] and

[(5]. These papers discussed the above concepts with ref-

erence to general topological spaces. For manifolds they

gave rise to some very interesting and useful results. We

give below the relevant basic definitions and results.

Let 'X be a topological space. The symbol ‘3*(X)

denotes the group of all homeomorphisms of X onto itself

and ’5}(X) denotes the subgroup of '1¥(X) consisting of

all maps in 23%(X) which are isotopic to the identity map

on X.

 

D i i Let p E X. Then p is an 1ng3:§_pgin£

of X if and only if for each open neighborhood U of p

there exists h e MX) such that h(X-U) c: U.

Here h is an inygrting_map for U. The collec-

tion of all invert points of X is called the in1e11_1et

of X and is denoted by 1(X). X is called inygztible

if and only if I(X) = X.



Wm Let p e X. Then p is aW-

xext_ng1nt of X if and only if for each open neighborhood

U of p there exists g e f;(X) such that g(X-U) c U.

The set of all continuous invert points of X is

called the continuous Luger; set of X and is denoted by

CI(X). Clearly, CI(XJ c I(X). X is said to be QQQLlflr

uggsly igyeztible if and only if CI(X) = X.

In [ll] Doyle discussed the invert set in a finite

geometric simplicial complex. He proved that if K is a

complex, then I(K) carries subcomplexes of each triangu-

lation of K. In other words, I(K) is invariant under

triangulations of K in this sense. He also showed that

if K is a complex, then I(K) is null, a point, or a

finite simplicial sphere. The next two theorems give char-

acterizations of l- and 2-complexes with a single invert

point.

Ekugugijgl_12gylel Let K be a l-complex. Then

I(K) = {p} if and only if K is a set of r (22) simple

closed curves meeting in p but otherwise disjoint in

pairs (an r-leafed rose).

Theorem 1,2 SKIEESEDZ Let K be a 2-complex. Then

I(K) = {p} if and only if

.. m 2 n 1
K-(Iglci)U(jL=Jisj)’
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where (1) CE is a 2-cell, a 2-sphere, a pinched annulus

or a pinched torus for l s i s m such that C: n CE = {p}

or a union of l-spheres containing p for all s f t and

l
l s s s m, l s t s m; and (ii) 83 is a l-sphere which is

disjoint from

for l s j s n.

In [12] Klassen gave the characterization of a

l-complex with a O-sphere as its invert set. For the pur-

pose of simplicity, Sn will denote an n-sphere for

n = 0,1,2, --- and .45k(K) will denote the k-fold suspen-

sion of K with 451(K) written as 400. The cardinal—

ity of a set A will be written as |A|.

T m . K se Let K be a connected l-com-

plex. Then I(K) = S0 if and only if K =jAI(F) where

F is a set of finite number of points with IFI f 2.

In [$9] Hocking generalized a result of Klassen

and proved the following:

Theprem_lifi_iflcskingl A complex K is a suspension

if and only if I(K) contains a O-sphere.

The next result discusses complexes K with

dim I(K) = dim K.



I+

Th em . Let K be an n-complex where

n 2 1. Then I(K) = Sn if and only-if K 2 Sn.

Proof. Klassen proved the result for n = l in

[12]. Moreover, if K = Sn, then I(K) = Sn (See [22]

and I 3]). So let K be an n-complex with I(K) = Sn.

Then Sn is a subcomplex of K. Let p 6 Sn such that

p 6 Int on where on is a principal n-simplex in Sn.

Let U be an open neighborhood of p in on and h the

corresponding inverting map such that h(K-Ul c U. Now

U 2 ED and it can be so arranged that K-U 2 En. Then

K is an n-manifold. Using the characterizations in [:2]

and [:3], we get K 2 Sn.

In a recent unpublished work, Hocking proved the

following result which shows that all complexes K with

O s dim I(K) s dim K are multiple suspensions. First we

state a lemma whose proof is omitted.

Lemma 1.6 Let Ak

A; be a k-simplex in the barycentric subdivision of Ak.

be a k—simplex in a complex K and let

T
Then Lk(A§,K') = Lk(Ak,K).

T . H in If the n-complex Kn has

T

I(K) = Sk, O s k s n, then Kn = 4fk+l(L)-

P1991. Let Ak be a principal k-simplex in 1(Kn).

k
Choose p 5 Int A such that p lies interior to a k-sim-

plex in each barycentric subdivision of Ak. This is pos-
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sible since a barycentric subdivision introduces finitely

many points of the subdivision leading to a countable set

of points by successive barycentric subdivisions.

Let UO be a closed neighborhood of p in Int Ak

such that the boundary of U0 relative to Ak is Bd UO =

k-l~ k—l k-l
s and U0 = poBd UO = poS . Now poS °Lk(Ak,Kn)

is a closed neighborhood of p in Kn. Choose q 6

I(Kn)-Ak. Then there exists hO e 3*(Kn) such that

ho(q) = p and

hO ( Kn - Int (posk‘leLk(Ak,Kn)))

c Int ( pcSk—loLk(Ak,Kn))

This may be rewritten as h;1(p) = q and

Kn-Int < poSk-luLkIAk,Kn;)

hgl (Int ( pesk‘1.Lk(Ak,Kn)))

k
Passing to the barycentric subdivision, let p 6 Al

0

where A? is a k-simplex in K'. Keeping p and Bd Ak

pointwise fixed, shrink 81‘"1 to lie in Int A? and then

Ul = posi'l is a closed neighborhood of p in A; and

poSE-IULK(AE,K') is a closed neighborhood of p in Kn.

By Lemma 1.6, puSE—lULk(A§,K') g peSk'loLk(Ak,Kn). Also,

there exists hl e 31(Kn) such that hl(q) = p and

k-l ' k
hl (Kn-Int (p051 oLk(Al,K')))

c Int (p.s11<-1.Lk(A1{,K'>) .

or hil(p) = q and



6

Kn-Int ( poS§-loLk(A§,K'))

-l k-l k

Let gl 6 3*(Kn) such that

g1 < pesk'loLk(Ak,Kn))

poSE-loLk(A§,K').

Consider hil gl ( Int ( poSk-loLk(Ak,Knll) as an open

cone neighborhood of q. By construction, we get

Q

n _ -l k-l k n
K _p — lIzIO hi gi (Int (p08 oLk(A ,K D) .

By uniqueness of the open cone neighborhood (see [13]) we

get

T _

Kn-p = Int ('poSk loLk(Ak,KnZ) .

Then Kn is the 1-point compactification of

k'loLk(Ak,Kn), or Kn is homeomorphic to

k—l

poS

SOoS oLk(Ak,Kn). The induction on k is now obvious,

and we get

r
K = SkoLk(Ak,Kn) =Jk+l(L),

where L = Lk(Ak,Kn) is an (n-k—l)—complex. Also, Theorem

l.% and Theorem 1.5 correspond to k = O and n respec-

tively. This completes the proof.

The next theorem is due to Klassen (Theorem H.l of

[12]). We present a simplified version of the proof.

Th . K Let K be an n-complex with

I(K) = {p}. Then p e CI(K) and consequently CI(K)==I(K).
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mg. Let V = StL p be the open star of p.

Let h E 3¥(K) be an inverting map for V. Then

h(K-V) c V' and h(p) = p since I(K) = {p}. Also,

K- ’c h(V) implies that h'l(K-V) c V. By uniform con-

tinuity and h(p) = p, there exists a neighborhood U of

p such that U c V' and h(U) : V.

Let r E 3*(K) such that r is the identity out-

side IV and rh'l(K«-V) c U. Then hrh'l(K-V) c h(U)<: V.

Now r can be accomplished by an isotopy rt, 0 s t s l,

-1
such that = r. Then gt = hrth is an inverting map

r1

for V with gO = id and gl(K-V) c V. Thus gl e‘§;(K)

and p e CI(K). Since CI(K) c I(K), we get CI(K) = I(K).

Remark. Let K be any complex with I(K) = {p,q}. We

assert that CI(K) = C. If not, let p e CI(K) and U

be any open neighborhood of p which excludes q. There

exists an inverting map g E €;(K) such that g(q) 6 U.

But every point of the arc gt(q), O s t s l, is an in-

vert point of K. This is a contradiction. However,

Hocking proved the following theorem in [$9].

Thggzgm 1,9 QHnging2 Let K be a complex such that

dim I(K) 2 l and CI(K) f O. Then CI(K) = I(K).

Hocking conjectured in [‘9] that dim I(K) 2 l

is enough to imply CI(K) = I(K). We prove this in the

next chapter. The next theorem is also due to Hocking.



T O H ‘ For complexes. P and Q, let

P =,4JIQ). If dim I(P) 2 1, then (i) I(Q) c Q n I(P) and

(ii) CI(Q) c Q n CI(P).

It was mentioned in.[ 9] that if equality could be

proved in Theorem 1.10, other well known results may then

be used with this to prove the Poincare Conjecture in die

mension four. In other words, the concept of an invert set

and some current problems in combinatorial topology are re-

lated.

Unless otherwise specified, we will follow the

standard terminology of [10].



CHAPTER II

GENERAL RESULTS

Th§92§m_2&1 Let K be a complex with

dim I(K) 2 1. Then CI(K) = I(K).

Egggf. By Theorem l.% we can write K = 45(L)

with p and q as the vertices of suspension. Let

s 6 L n I(K) and h €-3¥(K) such that h(p) = 5. Let

gt (0 s t s 1) be an isotOpy such that gth(p) moves away

from s. This is possible since there is a product neigh-

borhood of s in K. Let ft = h’1gth. We use this to

move p. Since fo = h’l(id)h = id and ft is a homeo-

morphism, ft is isotopic to the identity map. Also

h'lgth(p) f p.

 
Figure 2.1

9
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Let U be an open set in K containing p. For

our purpose it will be enough to take U'c Stla. Also,

Lk1> is bicollared in K. Choose a collar C of LkI)

in Sty) such that U n C = O. Let ft 6 j;(K) such that

itlis fixed outside St;>- C and moves p to ft(p) = p'

with p' E U.

Since K is a suspension, there exists at E :éiK)

such that al(K-Stp)c V and at|Stp= id, where V is

a sufficiently small open neighborhood of q such that

V c: Stq. Let St E €(K) such that Btl (K-St q) = id

and is such that it slides V away from q. This is done

by arguments similar to that used above to construct ft’

Let Yt e ’9’“) such that y tI (Stp-C) = id and slides

B1(V) inside C. Finally, let 5t 6 é;(K) be such that

6t|(K-Stpfl = id and 61(p') = p.

Now define fit = bt‘vt St at ft’ 0 s t s 1. Then

¢o = id and

¢l(K-Stp)= blYl 51 cl fl (K—Stp)

c olvl BI :11 (K-Stp)

c bl'Yl 51 (V)

c 61 (C)

o

c Stph

This shows that Cl is the required inverting map for

9

Sty) and is isotopic to the identity map on K. Hence

p e CI(K). By Theorem 1.9, CI(K) = I(K). This completes

the proof.
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Tnggpgm 2,2 Let K be a complex with

I(K) f'fl or SO. If p e I(K), then there is an inverting

homeomorphism f E 3*(K) such that f(p) = p.

2199:. If I(K) = {p}, then every inverting homeo-

morphism fixes p. So let dim I(K) = k 2 1. Without any

loss of generality we may assume that p 6 Int ck, where

0k is a principal k-simplex in I(K). Let U be any

k k
open set containing p such that U n a = V c Int 0 .

Choose q E V and p # q. Let W<: V, p z W, q E W such

that an open set A in K containing q has A n ck = W

and A.c U.

Since q 6 I(K), there exists h €.§+(K) such that

h(K- A) c A and q ,1! h(p) 6 W. Choose 8 6 3*(K) such

that (i) gh(p) = p and (ii) g(A) c U. Define f = goh.

Then f e §4(K). Also,

f(K-U) = gh(K-U) c: gh(K-A) c g(A) c U

and f(p) = gh(p) = p.

CQIQJJQII 2,3 Let K be a complex with I(K) % U or SO.

Let p e I(K) and U be an open set containing p. Then

there exists an open set V": U and p 6 V such that some

inverting homeomorphism fixes V pointwise.

2199:. As in the proof of Theorem 2.2, assume

that p 6 Int ck. Since there is an inverting homeomorphism

f which fixes p, by uniform continuity there exists a

symmetric ball V in U, with p as center and such that

f|V = id.



l2

TDQQIQQ 2.h Let K be a complex with

dim I(K) 2 2. Then I(K) is continuously w-homogeneously

embedded in K.

Proof. By Theorem 2.1, CI(K) = I(K). Let

An:{al,a2’ coo, a

and B
n {bl’b ..., b

2’ n}

be any two sets of distinct points in I(K). We can choose

a triangulation T of K fine enough to ensure that there

is a principal simplex o in I(K) such that

(An u Bn) n Ste: 91. Let p 6 Int 0 c Sta. Since

p e I(K), there exists f e.3$(K) such that

f(K-Sto): St 0. Thus f(An) and f(Bn) are contained

in Int 0.

If n = l, we use Lemma 0 of [1.] to obtain

g E j§(K) such that g|(K-—Int a) = id and gh(al)==f(bl).

Define h = f'lgf. Then h 6 éiiK) and h(Al) = Bl'

As induction hypothesis, assume that for all i

such that l < i < n, there exists h e fi;(K) such that

h(Ai) = Bi’ Let A.n = n-1 U an and En = n-l U bn'

Then there exists h e jaéK) such that h(An-l) = Bn-l’

If h(an) = b we are done. Otherwise, let D be an’

closed set containing Bn-l and if needed, attach a col-

lar C to D. Now there exists an isotopy 9t which

moves an to bn in o-(C u D) leaving D fixed.

Then at = et-h is the required isotopy.
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Remark. When dim I(K) = l, a similar result may be proved

if we disregard the order of points in An and Bn.

Theorem 2.5 Let K be a complex with

I(K) f U or SO and p E I(K). Then K-p is an open

T

monotone union Qiruq, where 211 = LkIDX El.

- i=1

Proof. Let U be an open cone neighborhood of p

and C be any compact set in K-p. Then there exists an

inverting homeomorphism h E 3*(K) such that h(C) c.U.

Consider U = Lkgax [0,1) with kaax 0 identified with

p. Then every compact set in K-p is contained in a pro-

duct space Lklax E1. Thus K-p is the monotone union

LNJUi, where u, g Lkpx El.

i=1

We observe that if_ K is a l-complex with I(K) f

U or SO and p e I(K), then K-p E FJcEl, where F is

a finite set of points such that |F| = l for I(K) = S1

and |F| 2 2 for I(K) = {p}. If K is a 2-complex with

I(K) f U or SO and p e I(K), then

E1 x E1 if I(K) 32

K-p = l

sB xEl if I(K)

where B is a one point union of b (23) semi-open inter-

vals. If I(K) = {p}, the cases are more complicating in

view of Theorem 1.2. It may be possible to show that

K-p 2 leE1 where G is a graph. 1



1%

Let G be a graph and consider U = LE)U1 where

‘U% E GJCEl. The l-point compactification of U gives only

one spaCe K which is invertible at a point p. Thus mono-

tone union property gives rise to a unique space in this

sense and the failure of this property may not yield unique—

ness. The following example is illustrative of the first

part and serves as a counter example for many intuitive con-

jectures for complexes with a single point of invertibility.

Example. Let G be a graph which is a one point union of

a l-sphere and an open interval. Then the one point com-

pactification of L§)ui, where 1(1 3 anEl and L is a

union of two l-spheris joined by an arc, is a pinched torus

with a spanning disk. If we call this complex K then

I(K) = {p}. We note that K-p g G)(El and K is not a

pinched suspension.

G: r—O 1gp; GxEl

 

           

Figure 2.2
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If G is a connected graph, consider 211 2 GJcEl.

We note that G can be embedded in E3. Let v be a

vertex in G of maximum degree d. We claim that 211

can be embedded in a d-book if G is a tree. In order to

see this, note that vertices in G of degree 2 present no

problem. The same is true for the open end of a l-simplex.

Since G is connected, let a vertex x of degree a be

joined to a vertex y of degree B. Construct a- and

B-books at x and y respectiVely. Let B s a. Since

these books have one page in common, they can be embedded

in an a-book. A repeated application of the same argument

yields the result. Since GJcEl contains a copy of

@211, we conclude that the monotone union @ui can be

embedded in a d-book. If G is not a tree,1the number of

pages in the book may have to be increased.

In [12] Klassen proved that if K is a 2—complex

with I(K) = {p}, then K g Lx[0,l] where LxO U Lxl U

Mx [0,1] is identified with p and M is a finite set

of points in a l-complex L. This leads to the following

result.

Exgpgsijjgn_2‘§ Let K be a l-complex with I(K) f'fl.

Let F be a finite set of points with |F| = f. Then

(a) I(K) = {p} if and only if K E FJ{[0,1] where

f 2 2 and FxO U Fxl is identified with p,

(b) I(K) = S0 if and only if K 2 F3c[O,l] where

f 7! 2 and FxO and in are identified with
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p and q respectively

T

1 if and only if K = F]([O,l] whereand (c) I(K) = S

f = 1 and FxO U Fxl is identified with p or

f = 2 and F)(O and F](l are identified with

p and q respectively.

Proof. Obvious from Theorems 1.1, 1.3 and 1.5.

Similarly it is possible to write down the corre-

sponding result for a 2-complex in view of the earlier

theorems. So far it has not been possible to factor higher

dimensional complexes with a non-empty invert set in this

fashion. The aim of the last proposition is to exhibit a

factorization with [0,1] as one of its factors, as com-

pared to Theorem 2.5 in which K-p can be written as a

monotone union UEHXi where 111 has a factor (0,1).

i=1

Proposition 2,2 Let K be a l-complex such that

I(K) = so. If I(K/I(K)) # {p}, then K = D1 (l-cell).

Ezoofi. I(K) = so implies that K =,A((F) where

F is a finite set of points with |F| # 2. Then K/I(K)

is a rose with |F| leaves. [F| # 1 implies that

I (K/l(K)) = {p}. Hence |F| = l and K = D1.

Expansiiign_21§ Let K be a 2-complex such that

I(K) = S31. If I(K/I(K)) 7" Ipl’ then K = D2 (2-cell).

Proof, we have K = 452(F) where F is a finite

set of points with |F| # 2. Clearly, |F| 2 3 implies

that K/I(K) is a one point union of IFI 2-spheres.
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Thus I (K/I(K)) = {p}. For [F] = 1, K = 120?) = D2

and I (K/I(K)) = I(SZ) = s2.

Next we quote from [1.] a general theorem in this

context.

T Do Let K be an n-complex which

is not a point and let I(K) flfl. If K/I(K) is invertible,

then K is a sphere or a cell if K is a manifold or has

a free (n-1)-face.

In.[ 6] it was proved that if I(SlcT) % C, then

I(S) xI(T) ; I(SxT), and that the product of two invert-

ible spaces is either invertible or has empty invert set.

This, when applied to complexes gives some interesting re-

sults. For instance, if K1 and K2 are complexes such

that I(Kl) # a, I(K2) y! p and I(leKZ) ;£ 93, then

C 7! I(Kl)xI(K2) ; I(KIXK2)' If I(leK2) = (p,q),

I(Kl) #,U, and I(K2) fyfl, then I(Kl) = {p} and

I(K2) ={q}. We note that this may be vaccuously satisfied.

Moreover, if I(Kl) 2,80 and I(KQ) 2 SO, then

I(leKZ) ;! p implies that dim I(leKZ) 2 1.

k1 k2
Let Kl = S , K2 = S where kl 2 1 and k2 2 1.

kl+k2
S . Then we assert that

and I(K2) = K

Assume that Kl xK2 ,11

I(leKZ) = 325. Note that I(Kl) = K1 2.

If I(leK2) 7525, then leK2 5; I(KIXK2)’ But

I(leKg) ; leK2 implies that I(KIXK2) = leK2. By

- kl+k2
Theorem 1.5 this implies that Klch2 = S This is a
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contradiction.

Tgoorgg 2,]0 {Doyloz Let K be an n-complex with

dim I(K) = k 2 O and n > k. Then Hi(K) and ni(K) are

trivial for O < i s k.

Eroof, For the groups under consideration it is

enough to consider continuous cycles or singular spheres

that lie in the k-skeleton of, K. First note that their

homotopy classes are all represented by maps having I(K)

as carrier.

Let 0k be a k—simplex of I(K). Since n > k,

k k+1 ok+l
0 lies on the face of a (k+l)—simp1ex o If

has more than one k-simplex in I(K)~ then use its bary-

center to ensure that ok+l n I(K) = ok. This means that

each map with I(K) as carrier can be homotoped away from

I(K) leaving Int 0k uncovered. This completes the proof.

Erooooition_2oll Let K1 and K2 be kl- and k2-complex—

es respectively with dim I(KlJcKZ) = k 2 0. If k<<k1-tk2,

then ni(K) is trivial for O < i s k, where K is Kl,K2

or KlchZ. Moreover, Hi(Klch2) = O for O < i s k.

Proof. Note that wi(leK2) = Tri(Kl) e Tri(K2)

for O < i s k1 + k2. Now apply the last theorem.

Thoorom_2o12 ‘Let K = K12<K2 where K1

and K are non-degenerate connected complexes with
2

dim K = k. If I(K) f U or SO and K f Sk, then K,Kl

and K2 are contractible.

Proof. Select p2 e K2 such that K13<p2‘£ I(K)
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and then choose q 6 I(K) such that q K Kllcp2. Let U

be a neighborhood of q in K such that U n Kllcp2 = U.

By Theorem 2.1 there exists an isotopy ht e j;(K) with

o s t s 32- and such that hl(lep2) c U.

2

By selecting U to be an open cone neighborhood

and extending the isotopy ht to a homotopy :Et we get

~

ht :KxI->K such that Ostsl and hl(lep2) =q.

This shows that K1 and K2 are contractible. Since

there is a retraction g of K onto Kllcp2, 'htog gives

the required contraction of K into a point.

For example, let Kl = fake 3-cell and K2 = 2-disk.

Then leK2 is a 5-cell with I(KlJcKZ) = H—sphere. By

the last theorem, K is contractible. The result of the
1

theorem is more effective in a negative sense. Thus,if P

is a non-contractible complex such that it is a factor of

another complex K. Then I(K) = U or SO.

Bomork. Let Kn be an n-complex with dim I(Kn) = k. If

k = n, then Kn E Agn(F) with |F| = 2; and if k = n-1,

then Kn E jn(F) with |F| # 2, where F is a finite set

of points. This follows from Theorems 1.5 and 1.7. When

k = O, we can prove the following.

EIQDQ§2L12n_Zill Let K be an n-complex and I(K) = SO.

Then K =j(L) where I(L) = p or {p}.

Proof, Under the hypothesis, K = 4f(L) by

Theorem l.h. Assume that I(L) 2 So. Again by Theorem 1.H,
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we get L =j(M). But then K = 1201) and I(K) con-

tains at least a l-sphere, namely the suspension ring

(Theorem h of [l.]). This is a contradiction.

The next two results complete the discussion of 2-

complexes in view of Theorems 1.2 and 1.5. A part of the

result is obtainable from Theorem 1.7; but we present an

intuitive and independent proof.

Proposition 2.14 Let K be a 2-complex. Then I(K) = S1

if and only if K = A32(F), where F is a finite set of

points with |F| % 2.

m. If |F| = 2, then 1207‘) = 52 and we get

an immediate contradiction by using Theorem 1.5. So let

F be a finite set of points with |F| # 2. Since

K = A¥2(F) is a double suspension, by Theorem M of [1 ],

l
S ; I(K) where S1 is the suspension ring. Clearly

2
I(K) # S2, otherwise K = S and we can write K = 4f2(F)

where |F| = 2. Hence I(K) = 81.

Let K be a 2—complex with I(K) = 81. By Theorem

1.H, K =.4/(L) where L is a l-complex and the vertices

of suspension belong to I(K). Since I(K) is a l-sphere,

there exist x and y in L such that {x,y} c I(K). A

small product neighborhood of x in K is an n-book for

some n. Since all points on the back of this n-book are in

I(K), it follows that K is locally euclidean except at

points of I(K) and hence L is locally euclidean except

at x and y. This shows that {x,y} ;_I(L). We cannot
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have I(L) as a l-sphere otherwise L, becomes a l-sphere

by Theorem 1.5 and consequently K is a 2-sphere. Then

I(L) = {x,y} implies that L =,2V(F), where F is a

finite set of pOints with |F| # 2 (Theorem 1.3). This

completes the proof.

Proposition 2.15 Let K be a connected 2-complex. Then

I(K) = S0 if and only if K = ‘f(L), where L is a l-com-

ples which is not a suspension of a finite number of points.

Eroof. If I(K) = S0 we can write K ="V(L)

where L is a l-complex. Assume that I.=g‘f(FU where

F is a finite set of points. If |F| = 2, then L = s1

and K =I‘f(L) = 82, whence I(K) = S2. If |F| # 2, by

Theorem 2.1% we get I(K) = 81. This proves the necessary

part of the theorem.

For the sufficiency we note that if K =’4((L)

where 1.2/fol), then I(K) #51 or 32. But K =/<L)

implies that s0 ; I(K). Hence I(K) = so.

We may also interpret the last result as follows.

If K is a 2-complex with I(K) = $0, then K =,4f(L)

l as inwhere L is a l-complex. Now I(L) # S0 or S

the proof. Hence I(L) = U or {p}. The case I(L) = {p}

is covered by Theorem 1.1 and for I(L) = fl we note that

L is a graph which is not homeomorphic to a two point

union of arcs.

Finally, we note that as a consequence of Theorem
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1.7, the nature of an n-complex K with O s dim I(K) s n

is determined as a multiple suspension. The general problem

of investigating suspensions of complexes with an empty in-

vert set gets involved with the Generalized Poincare Conjec-

ture. In this connection we refer to a paper by Edwards

on Pseudo Cells. Let K be a five dimensional pseudo cell.

Then chl = I6 and ,2F(K) = I6. This means that

I(K) = fl, since K is a manifold with boundary, and

I (X(K)) = 85.

So we turn our attention to complexes with a single

point invert set. Theorems 1.1 and 1.2 give characteriza-

tions of l- and 2-comp1exes of this variety. The general

problem appears to be quite complex. In the next two chap-

ters we discuss some of the properties of such complexes

with a single invert point.



CHAPTER III

ORBITS AND BROUWER PROPERTY

Doflinition 3.1 Let x E X. Then the orbit of x under

homeomorphisms is the set of all images of x under ele-

ments of §$(X), and this is denoted by' {Ofi(X). The num-

ber of orbits of X under the action of §¥(X) is denoted

by NOH(X).

Dofiinition 3,2 For x E X, the orbit of x under isoto-

pies is the set of all images of x under elements of

é;(X) and is denoted by CI(X). The number of orbits of

X under the action of é;(X) is denoted by NOI(X).

The following proposition is obvious.

Prooooirion_3ol, Let K be an n-complex with p E I(K).

Then (i) NOI(K) = 1 if and only if K 2 sn for n 2 1

or K = {p}.

(ii) NOI(K) = 2 and I(K) = {p} imply that K-p

is locally euclidean of dimension n.

(iii) I(K) = 80 implies that NOI(K) = o.

EIQDQSiLiQn_322 Let K be a connected n-complex with

p K I(K). If dim {I(K)} = k, then dim {OI(p)} > k.

Eroof. The proof is by induction on k. When

k = —1, I(K) = p and dim {01(p)} 2 o. For k = o, I(K)

is a point or a O-sphere. But p l I(K) implies that p

23
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is not a singularity of K and dim {OI(p)} 2 1.

Assume that the result is true for all k < m.

Let K be a connected n-complex with dim {I(K)} = m,

where m 2 1. Let p 2 I(K) and dim {01(p)} s m. Under

some triangulation T of K, let CI(p) be written as a

union of open simplices. Then L = OEIET' is a subcomplex

of K under T and dim L s m. Now I(K) = Sm and each

simplex of I(K) is principal. Also, Sm n L fi C. Let

M = SIn U L be a subcomplex of K under T. Then

dim M = m and Sm‘c:I(M). This implies that M 2 3m and

L = E. This is a contradiction. Hence dim {01(p)} > m

and the proof is complete.

Proposition 3.3 Let K be a l-complex. Then

(i) I(K) = Ip} implies that NOH(K) = NOI(K) = r-tl,

where r 2 2 is the number of leaves in K.

(ii) I(K) = 80 implies that NOI(K)=() and

NOH(K) = f3-2, where f is the number of

points over which K is a suspension and

f # 2.

(iii) I(K) = 81 implies that NOI(K) = NOH(K) = l.

Proofi. Follows from the definitions of orbits and

earlier theorems.

Efigungflgfirurgigi Let K be a 2-complex with I(K) = {p}.

Then (i) NOI(K) = 2 implies that K is a pinched torus

and (ii) NOI(K) = 3 implies that K is one of the fol-

lowing: one point union of two pinched tori,
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two 2-spheres, a pinched torus and a 2-sphere,

a 2-sphere and a l-sphere or a pinched torus

and a l-sphere.

Proof, For (i) we note that one orbit is necessary

for p since I(K) = {p}. This implies that we cannot

have free l—simplices in K. .80 K = 3?] C? as in Theorem

i = {p} for i # jl—lotherwise it is a

l-sphere and needs one orbit. Then clearly m < 2, other-

1.2. Also, Ci n c

wise NOI(K) 2 3. This shows that m = l and a pinched

torus is the only possibility for K.

m n

When NO (K) = 3, we write K = U C? U U St

I i=1 1 j=l J

as in Theorem 1.2. If CE is a 2-cell, we get K = c?

and I(K) f {p}. If C? is a pinched annulus, then

NOI(K) 2 A. This leaves C? as a 2-sphere or a pinched

torus. Clearly we must have m = l or 2, n = O or 1

2

j

orbits exceed 3. With m = 2 we get the first three pos-

and C? n C = {p} for i f j otherwise the number of

sibilities. If m = l, we must have r = 1 otherwise

I(K) # {p}. This yields the remaining possibilities.

For higher dimensional complexes with a single in-

vert point, the restriction on the number of orbits under

isotopy does not simplify the problem to any significant

degree. It is useful to impose some extra restriction on

the complex. For a 3-complex K with I(K) = {p}, the

imposition of Brouwer Property and the restriction of

NOI(K) leads to the following results. First we need the



26

definition of Brouwer PrOperty.

Dofioitioo 3.3 A topological space X has Brourer prop-

orty_if and only if homeomorphic images in X of open sub-

sets of X are also open subsets of X.

This definition follows G.T. Whyburn in [1A]. The

following results by Duda appear in [‘7]. By Brouwer's

Theorem on the Invariance of Domain, Euclidean Spaces and

manifolds have the Brouwer Property, whereas manifolds

with non-empty boundary do not. If K is an n-complex

with Brouwer Property, then every r-simplex or, r s n-1,

is the face of an n-simplex, every‘ on-1 is the face of

exactly two n-simplices, and if as belongs to St(or)

then St(or)--oS cannot contain the homeomorphic image of

an open n—cell intersecting or. If K is an n-complex

with n < 3, then K has Brouwer Property if and only if

K is an n-manifold. Also, there exist non-manifolds with

Brouwer Property in all dimensions greater than 2.

lgmmmrriri (a) Let K be an n-complex with I(K) = {p}.

If K has Brouwer Property then so does Llcp.

(b) Let K = ‘f(L) have Brouwer Property.

Then L has Brouwer Property.

Proot. If not, consider LlcthEl.

Romark. Let K be an n-complex with I(K) = {p}. Let

«£(K) be the subcomplex of K determined by the closed

(n-l)-simp1ices which are faces of none, one, three or
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more n-simplices of K. Klassen proved that if’ JéKK) = fl,

then p e I(,{(K)) (Theorem ’+.ll of [12]). Moreover,

&C(K) was used to effect a separation of K useful for

characterizing a 2-complex with a single invert point.

Clearly £(K) = U if and only if I (9((K)) = D'. Also,

Jfi(K) = U is a necessary condition for a complex K with

I(K) = {p} to have Brouwer Property.

Thoorom 3,6 Let K be a 3—complex with

Brouwer Property and dim {I(K)} 2 1. Then K 2 S3.

Eroof. Since dim {I(K)} 2 l, we can write

K = A!(L) where L is a 2-complex which has Brouwer Prop-

erty since K has the same. Then L is a 2-manifold.

Also, there exist x and y in L such that

{x,y} : L n I(K). Since L is a manifold, L«;_I(K).

Thus K = 1(L) ; I(K). Consequently K = I(K) and by

Theorem 1.5 we get K 3 S3.

Romark. Let K be a 3-comp1ex with I(K) = S0 and having

Brouwer Property. Then K = 4((L) where L is a 2-complex

with Brouwer Property by Lemma 3.5 and hence it is a 2-man-

ifold M2. It is possible that M2 may be a disjoint

union of m (21) 2-manifolds. From such a complex it is

easy to obtain another with a single point invert set by

identifying the two suspension points of ,JF(L) as is the

case in the next result.

W Let K be a 3-complex with
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Brouwer Property and I(K) = {p}. If NOI(K) = 2, then K

is a suspension of a closed 2-manifold M2 with the sus-

pension points identified at p. I

Proof. We note that Llcp has Brouwer Property by

Lemma 3.5. Since dim {Llfp} = 2, Llcp is a closed 2—man-

ifold. Out of the two orbits under isotopy, one orbit is

necessary for ‘p. This shows that K does not contain any

simplex of dimension less than or equal to (i-l) which is

not a face of an i-simplex in K ‘for O s i s 3. Moreover

Llcp must have precisely two components, for if it has one,

then I(K) ;_{p}. Then K is a suspension over one of the

components of Llcp with the suspension points identified

at p.

Ccrcllarx 3,§ Let K be a 3-complex with Brouwer Property

and I(K) = {p}. Suppose that NOI(K) = 3. Then

(i) K = Kl U K2 where Kl n K2 = {p} and for

i = 1, 2 K1 is a suspension of a 2-manifold

with the suspension points identified at p or

a cone over a 2—manifold from p,

or (ii) K is a suspension over a 2-manifold with the

suspension points identified at p.

Proof. The proof proceeds as in the last theorem.

However, since we have NOI(K) = 3, it is possible to have

two 3-complexes K1 and K2 with Kl n K2 = {p} and each

K. behaving as in Theorem 3.7. This gives the first part
1

of (i). But it is possible that Llcp n Ki may be connect—
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ed, in which case we get a cone over a 2—manifold from p.

This completes case (i). The proof of (ii) is similar to

that of the last theorem.

Let K be an n-complex with I(K) = {p}. Let

x e K — p such that dim {01(x)} = k is minimal. If

0 = CI(x), then ’6 = o u p and p 6 01(6). Also, '6—p

is a k-manifold Mk with Ed Mk = C. By an earlier re—

mark, Mk has Brouwer Property and consequently Lk(p,O)

has Brouwer Property.
F
3

If k = 1, then 6: 81. If k = 2, then Lk(p,O)

has dimension one and Brouwer Property. Thus it is a l-

manifold without boundary and so it is a collection of

disjoint l-spheres. If Lk(p,O) is a l-sphere then

6': S2. If Lk(p,65 is a collection of two disjoint l—

spheres, then IO 2 a pinched torus. If k = , then

Lk(p,O) has dimension two and Brouwer Property, and is a

2-manifold without boundary. All this leads to the next

result.

PIQDQEIELQD 3,9 Let K be an n-complex with I(K) = {p}.

Let x e K-p such that dim {01(x)} = k is minimal.

Then (i) k = 1 implies that W2 s1.

(ii) k = 2 implies that Lk(p{5;7;7) is a col-

lection of disjoint l-spheres

and (iii) k = 3 implies that Lk(p,5ET§€I) is a 2-

manifold without boundary.
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In particular, the last proposition is useful for

a 3—complex where the possible values of k are l, 2 and

3, from which the nature of Lk(p,OI(x)) is available.



CHAPTER IV

SUSPENSIONS

W Let K be a complex with

I(K) = {p}. Then p e I (I(K)) if and only if

dim {I (A3(K)) } 2 1.

Prgmf. Let u and v be suspension points for

$00. Then {u,v} g I (I(K)) . If p e I (I(K)) ,

then [I (I(K)) | 2 3. This means that dim {I(j(K)) } 21.

On the other hand, if dim {I (I(K)) } 2 1, then

I(K) ; K n I (j (K)) (by Theorem 1.10). This shows that

pe I(j(K)) .

Corollary 4,2 Let K be a complex with I(K) = {p}.

Then p e I “(K0 if and only if CI (,J (K)) = I( (K)) .

Proof, If p e I(j(K)) , then dim {I(j(K)) } 21

by the last result. Using Theorem 2.1 we get

CI(X(K)) = I(1(K)) . If CI(j(K)) = I(j(K)) ,then

|I(X(K)) | 2 2 since f(K) is a suspension. But

|I([(K)) | = 2 implies that 016/ (K)) = O. This gives

dim {I(AYCK)) } 2 1. Now use Theorem h.l.

Proooottion H,3 Let K be an n-complex with

dim {I(K)} = k 2 1. Then dim {I(L)} s k-—1 where

K =X<L>.

Proof. We use Theorems 1.h and 1.10 to write

K = [(L) with I(L) g; L n I(K). This shows that

31



32

I(IJ :,I(K). It is evident that equality is not possible

as the vertices of suspension lie in I(K) but not in

I(L). The result is now obvious.

Thoorom H.h Let K be an n-complex with

I(K) = {p}. If I([(K)) ,f 3°, then dim {I(j(K)) } 2 2.

Proof, Let Iw(K)) a S0 and assume that

dim {I(}{(K)) } = 1. Let u and v be the vertices of

suspension used in obtaining ‘AfKK) from K. By Theorem

h.l we note that p e I(Af(K)) . Also, there exists

q gK such that q s I(J(K)) and p 7! q. Let U be an

open neighborhood of p in k. Then there exists

h e.§F(K) such that h(K-U) g,U. In particular,

h(q) e U. Now we can construct a sequence [hi(q)} con—

verging to pI in K and hi(q) e U for i = 1,2, "°

By suspending each hi’ we can show that hi(q) e I(j(K)) .

By compactness and uniform continuity, this cannot happen

unless dim {164((K)) } 2 2.

CQIQJJEIX h,§ Let K be an n-complex. If dim [I(K)}==l,

then K =X(L) where I(L) is empty or a O-sphere.

Proof. We use Theorem 1.4 to write K =‘4((L). By

Proposition H.3, dim I(L) s 0. Again, I(L) {p} is not

possible by the last theorem.

Remark. We may compare the last result with that of Propo-

sition 2.13.
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From the standard results in topology, we note that

if a complex K is a suspension of a complex L, then K

is simply connected if and only if L is connected. Now

let K be a complex such that dim {I(K)} 2 2. Then we

assert that nl(K) = 1. This is obvious in view of Theo-

rem 1.7. For if dim {I(K)} = k, then K =jk+l(L) where

k 2 2. Hence K is the suspension of a connected complex.

In other words, if K is an n-complex such that nl(K) f 1,

then dim {I(K)} s 1. Moreover, if K is an n-complex

, i-w’i'th dim {I(K)} 2 2, then rl(K/I(K)) = 1.

Let K be an n-complex with I(K) = S1 and

nl(K) # 1. Then K =.X?(L) and L is not connected. Let

S1 =/A?(x U y) where x,y e L. Then L has just two com—

ponents. If u is a suspension vertex for K, u is a

local cut point of K. Since I(K) consists of local cut

points of continuous invertibility (see Theorem 2.1), we

must have dim K = l and K = $1. This result can also be

stated as follows. If K is an n-complex such that

I(K) = S1 and K # 81, then wl(K) = 1. Alternately, if

K is an n-complex such that K # S1 and nl(K) # 1, then

I(K) is empty, a single point, or a O-sphere. We collect

these results in the following proposition.

Proposition H.o (a) K =,A?(L) is simply connected if and

only if L is connected.

(b) dim {I(K)} 2 2 implies that Trl(K) =1

and Trl(K/I(K)) = l.
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(c) I(K) = S1 and nl(K) % 1 implies

that K = $1, or I(K) = s1 and K # Sl implies that

nl(K) = 1, or K f s1 and nl(K) # 1 implies that

I(K) = O, {p} or SO.

Next we discuss a few results on double suspensions.

Let K be an n-complex with I(K) = {p}. Let a1, bl be

the vertices of suspension for ‘((K) and let a2, b2 be

the vertices of suspension fer ‘¥2(K). We will write the

double suspension of K as D(K). The suspension ring is

b U b b2 U b2a1 and is written as R = <ala2blb2> .
a182 U 82 1 1

Doyle proved in [1] that R 4; CI (D(K)) .

Figure H.l
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Proposition thz (i) dim {I (D(K)) } 2 1

(ii) I (D(K)) = c1(p<K))

(iii) l(,J(K)) ;; I(D(K)) and

CI(J(K)) c; CI (D(K)) .

Proof. Since R ; CI (D(K)) ; I (D(K)) , we get

(i) and (ii) by Theorem 2.1. For (iii) use Theorem 1.10.

Doyle proved in [1] that if R c; I(D(K)) , then

dimt{1 (D(K)) } 2 2. We can now note the following results

in view of the earlier theorems of this chapter. If

p e I(J(K)) and R 9; I<D(K)) , then

CI(4f(K)) I(4f(K)) and has dimension 1 or more, and

CI ( D(K)) I(D(K)) with dimension 2 or more, If

p g I([(K)) and R gI(D(K))‘ , then fl = CI(j(K>) a

I(,J(K)) = {al,bl} and CI (D(K)) = I (mm) with

dimension 2 or more. If p g I(J(K)) and R = I ( D(K)) ,

then $2! = CI(1(K)) g I(j(K)) = {al,bl} g R = CI(D(K))=

I (D(K)) . We assert that it is impossible to have

p e I([(K)) and R = I (D(K)) . Assume to the contrary.

Then CI(1(K)) = I(j(K)) with dimension 1 or more by

Theorems 2.1 and 4.1. Using Proposition H.7 we get

R = Clam) = I([(K)) = CI (D(K)) = I (D(K)) . But

the disk spanned by R U are (alpbl) U arc (a2pb2) must

be contained in I (D(K))I . This is a contradiction.

This leads to the next result.

P 'ti H. Let K be an n—complex with I(K) = {p}.

Then (i) p 6 I(/(K)) implies that R 55 I (D(K)) and
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then

dim’II (I(K))l 2 l and dim[1(D(K))I 2 2,

(ii) p E I(X(K)) and R S, I (D(K)) implies that

I(D(K)) : k22’

o = CI(j(K)) g I(jm) = so 3 CI (D(K))

and (iii) p g I([(K)) and R = I (D(K)) implies that

a = CI(J(K)) s, I(j(K)) = so 5 CI (D(K)) I (D(K)) = sl.

In connection with double suspensions, we quote a

theorem due to Doyle which provides a scheme for constructing

complexes with precisely one invert point. For example,

if K is a non-simply connected compact n-manifold, then

D(K)/R is precisely this type of complex.

T e D Let K be a triangulated

compact n-manifold. Then. I.(LKKJ) = R, unless D(K) is

a sphere. Further, if I (D(K)) = R, then D(K)/I ( D(K))

is locally an (n+2)-manifold except at one point.

IDSQI§m_E12 Let K be an n-complex with

I(K) = {p} and NOI(K) = 2. If dim {I(jm» } 2 1,

then I(K) Z Sn+l.

Proof. Since NOI(K) = 2, K-p is locally euclid-

ean of dimension n. Also, dim {I(Q!(K)) } 2 1 implies

that there exists x e K-p such that x 6 I(j(K)) . By

homogeneity, K - p c: IM(K)) and K c Iw(K)) since
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p e ICAV(K)) in view of Theorem 4.1. Since dim K = n,

we get dim [TC/(KD } = dim {I(K)} = n+1. Now by

Theorem 1.5 we get ’JV(K) = Sn+l.

Coro]lo 1 b.10 Let K be an n-complex with I(K) = {p}

and NOI(K) = 2. If p e I(Af(K)) , then Lk(p,K) has

Brouwer Property.

Proof, By Theorem H.l, dim {I(AF(K)) } 2 l. The

last theorem gives [4((K) = Sn+1 and this has Brouwer Pro-

perty since it is a manifold without boundary. By Lemma

3.5, both K and Lk(p,K) have Brouwer Property.

Let K be an n-complex with I(K) % O. Assume

that p e I(K) and St}: embeds in En. Now let ,27(K)

have Brouwer Property and dim {I(,J(K)) } 2 1. As noted

Sn andearlier, K has Brouwer Property. Then K

,4F(K) Z Sn+l. Consider the case when I(K) = {p}. If

AfKK) has Brouwer Property, then we must have

dim {I(j(K)) } < 1 or I(j(K)) = SO. We have the fol-

lowing:

ETQDQEALAQE_E111 Let K be an n-complex such that

n 2 l, p E I(K) and St;) embeds in En. Then

(i) I(K) has Brouwer Property and dim [Iw(K)) } 2 1

imply that K 2 Sn,

(ii)/JQ(K) has Brouwer Property and I(K) = C, {p}

or SO imply that I(‘f(K)) = 30:

and (iii) "I(K) = So" and ”I(K) has Brouwer Property"
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are mutually exclusive.

Proof. We need show only (iii). Assume that

I(K) = S0 and ”XKK) has Brouwer Property. Then K =Af(L)

by Theorem 1.4, and ‘AICK) = A!2(L)' By Doyle‘s theorem,

we get dim {I(”F(K)) } 2 1. Using (i) we get K 3 Sn and

this contradicts I(K) = $0.

Propooitioo b.12 Let K be a 2-comp1ex with I(K) = {p}

_ _ O

and NOI(K) - 2. Then I(j(K)) — s .

Proof. Assume that dim {I(j(K)) } 2 1. By

T
Theorem H.9, AfIK) = S3. Now we use Theorem 1.2 to get

the result.

It may be useful to remark that NOI(K) = 2 does

not imply that NOIw(K)) = 2. We can only say that

l s Nol(j(K)) 5 LI.

Let n > 1 and identify two antipodal points of

Sn in a nice way to obtain an n-complex K. This may be

called a generalized pinched torus. It is evident that

I(K) = {p} and NOI(K) = 2. Moreover, IM(K)) = S0

since 147(K) # Sn+l. This suggests the next set of results.

EIQDQ§1319D_5213 Let K be an n-complex with I(K) = {p}

and NOI(K) = 2. If K is not a homotopy n-sphere, then

I(jmv = so.

21:99.2. Let dim {I(j(K)) } 2 1, Then j<K>=Sn+1

and K is a homotopy n-sphere. This proves the result.
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Let K be an n-complex (n2:2) such that

,2FCK) = Sn+l. Then K is a homotopy n—sphere. Let v

be any vertex of K in the given triangulation. Then K

and Lk(v,K) have the Brouwer Property. Since

Lk(v,j(K)) =j(Lk(v,K)) and I(K) = so”,

,‘F(IMKV,K)) has the integral homology groups of an

n-sphere. Moreover,

o : Hi-1( Lk(v,k)) —> Hi (JLk(v,K))

is an onto isomorphism for 2 s i s n with H0(Lk(v,K)) = Z.

Thus

0 for l s k s n—2

Hk (Lk(v,K)) = z

for k = o, n-l

Pomork, The fact that the local homology groups are in-

variant under all triangulations of K can be justified

by using the uniqueness of the open cone neighborhood (see

[13]). Let v be any vertex of K under any triangulation.

Consider Stir-— v. There exists a deformation of this onto

Lk\A Now Stxl is an open cone neighborhood of v. By

Kwun's theorem, we get the result that the links of v are

homeomorphic under all triangulations of K. This proves

the desired result.

PEQDQEILiQQ b.1h Let K be an n-complex with n 2 2,

I(K) = {p} and N0I(K) = 2. Let v be any vertex of K



to

under the given triangulation such that either (i)

Hk (Lk(v,K)) ; o for some k such that 1 s k s n-2 or

(ii) Bk <1k(v,K)) f Z for k = 0 or n-l. Then

I(j(K)) = so.

Proof. If we deny the assertion, then “f(K) = Sn+1

by Theorem H.9. This contradicts preceeding remarks.

Thoorom_&rlfi Let K be a 3-complex with

_ _ _ o
I(K) - {p} and NOI(K) — 2. Then Iw(K)) — s .

Proof. Assume that dim {I(A((K)) } 2 1. Then by

T

Theorem n.9,“f(K) = 8”. Also from earlier remarks, we get

for i 1

Hi ( Lk(p,K)) =

Z for 1 0,2

Moreover, Lk(p,K) has Brouwer Property by Corollary H.10.

Then it is a 2-manifold without boundary with the prescribed

2 and K = p-Lk(p,K) ishomology groups. Thus Lk(p,K) = S

a 3-cell with a 2-sphere of invert points. This contradicts

I(K) = {p}. If Lk(p,K) is connected and simply connected,

we get an immediate contradiction.

Theorom_&rlo Let K be a l-complex with

I(K) = {p}. Then Twat» = so.

Proof. By Theorem 1.1, K is an r-leafed rose with

r 2 2. Assume that I(A((K)> # SO. Then by Theorem h.h,

dim {I(4((K)) } = k 2 2. So there exists at least a l-sphere

of invert points of',da(K) in K. Since K is a l-complex,

it can contain only a l-sphere in it. Thus k = 2. Let
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I(jflfi) =/(Sl) where 81 c: K. Now K is an r-leafed

rose. Hence Sl must be one of the petals of this rose.

Then p e I(‘f(K)) and the symmetry of the figure shows

that every point of K 'is an invert point of /dV(K). This

is easily seen to be impossible.

Pomork. A more direct proof of the last theorem can also

be given. Let q 6 K-p. Let U be an open neighborhood

of q in ,AF(K). We can take U to be an open 2-cell.

Clearly there does not exist any h.e.§$(4((K)) such

that h CJKK)-U) c U. In particular, we cannot have

h(p) e U. Hence q 6 K-p implies that q z I(j(K)) .

This means that [K n I(j(K)) | s 1. But dim [I(j(K)) }2 2

implies that [K n I (I(K)) | 2 2. This shows that

K n I(‘f(K)) = O. By Theorem H.l we get

0 s dim [I(1(K)) } < l, and the result is now obvious.

Let R be an r-leafed rose, r 2 2. We now inves—

tigate I(Jk(R)) for k 2 l. The result for k = l is

given in the last theorem. For k = 2, we note that ’dV(R)

is topologically the union of r 2-spheres with an are com-

mon to all of them. Then “f2(R) is the union of r 3-

spheres with a common 2-disk D2. It is also easy to see

that IU2(R)) = Ed D2 = 81. j3(R) may be considered

as a double suspension of ‘ofKR). Let Iai’bi} denote the

Set of vertices of suspension for obtaining ‘fi(R) from

‘fi'l(R) with the obvious restrictions on i. Then

I 13“”) contains the suspension ring <a2 a3 b2 b3 >.
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Also, I<Qf2(R)) = <a1a2blb2>. Moreover, ’4F3(R) is a

union of r H-spheres with a common 3-disk D3. We claim

that Iw3(R)) = Ed D3 = S2, The suspension of

<ala2blb2>. In order to see this, we observe that

2 _ 3
CI(j (R)) — <a1a2blb2> and <a2a3b2b3> ; Clj (31)) .

Then points of <ala2blb2> are equivalently embedded in

4f3(R) and we are finished. The induction on k is now

obvious. We have the following:

Prooooitioo H.1Z Let R be an r-leafed rose (r2:2) and

let K =jk(R). Then I(K) = $1"1 for k 2 l.

The last result suggests a generalization of a re-

sult of Doyle in [1.].

Proposition H,1o Let K be an n-complex. Then

I (jk(K)) 2 SI"1 for k = 1,2,3,

Proof. The result is true for k = l and 2 by

Theorem 1.H and Theorem H of [1.] respectively. So assume

that the result is true for k 2 3. Let ak+1’ bk+l be

the vertices of suspension for getting jk+l(K) from

jk(K). By induction hypothesis, Sk-l ; I(jk(K)) .

Clearly, dim {I(A{k+l(K)) } 2 1 and by Theorem 1.10 we

8913 IUkIKU C. lab-I(K)) . By homogeneity, the sus-

. k—l . .
pen51on of S from vertices ak+l and bk+l lles 1n

Iwk+l(K)) . Then Sk ; law-I(K)) , and the proof is

complete.
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Remark. In view of the earlier theorems, we note that if

k 2 2 and K =l4fk(L), then CI(K) = I(K). This result,

together with the last proposition, gives a simplified

proof of a similar result in [S9]. It is also clear that

by taking successive suspensions, the dimension of the in-

vert set is raised by at least one. By Proposition H.17,

we note that the dimension is raised precisely by one when

we take the successive suspensions of a rose R, and in

this sense the result is the best possible. Let K be an

n-complex. Then

. k
k—ls dlm I(AI (K)) sn+k,

where k 2 l; and K = R, K = Sn respectively give the

equality at the extremes.

Let F be a finite set of points. Then

dim {1km} = k for k 2 1. By Proposition 4.18,

Sk'l t; I(jk(F)) . Now either (i) Sk-l $- Iwk(F)) or

(ii) Sk-l = lwk(F)) . In case of (i) we get

I(jkm) = Sk since jk(F) has dimension k. By

T

Theorem 1.5 this means that Jk(F) = SR and this is im-

possible unless |F| = 2. The following remark is now

obvious and appears to be converse of the remark preceding

Proposition 2.13.

Romork. Let F be a finite set of points and k 2 l.

_ k _ k _ k
Then (i) |F| — 2 implies that I(‘f (F) -,4( (F) - S

and (ii) |F| 7! 2 implies that WINE?) = sk‘l.
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Let K be a complex such that dim {I(K)} 2 1.

Then write K =‘A((L) with p and q as the vertices of

suspension. Clearly there exists v e L n I(K). Now

I(‘St(v,L)) gives a proper suspension neighborhood N

of v. Without any loss of generality we may assume that

I(K) ¢'N, otherwise a smaller open set may be chosen in

St(v,L) to get the desired result.

Choose w e (K-N) n I(K). Let Ul be an open

set containing w. There exists an inverting map hl such

that hl(K"Ul) c U In particular, choose diameter of1'

U1 < 1. We get h1(N) c U1. Since I(K) is continuously

homogeneous, we get hl(v) = w. By uniform continuity,

w 6 Int hl(N). Let U2 be an open set containing w

such that U2 c Int hl(N) and diameter of U2 <-% . Then

there exists h2 e WK) such that h2(K-U2) c U2.

Again,we get h2(N) c U2 and h2(v) = w 6 Int h2(N).

Proceeding inductively we get a sequence of inverting maps

{hi}I=l with the property that w = 1E1 hi(N) and dia-

meter of hi(N) < %-. Then w e I(K) and has arbitrarily

small suspension neighborhoods, and this shows that every

point in I(K) has this property. In particular, if C

is an open cone neighborhood of v in L, then ,47(C)

embeds in C x I .

We can obtain the same result by the following

argument. Let w e (K-N) n I(K). Let Nl be an open

cone neighborhood of w such that Nl n N = U and
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diameter of N1 < 1. Then there exists hl €.?¥(K) such

that hl(N) c: Int N1. Now hl(v) e I(K). In Int hl(N),

select an open cone neighborhood N2 of hl(v) with dia-

meter <'%. Inversion about hl(V) yields an inverting

map h2 such that h2(N) c Int-N2. Proceeding inductiVely

we get a sequence {hi}I=l of inverting maps such that

Z = n hi(N) 6 I(K) and has arbitrarily small suspension

i=1

neighborhoods. We now state the next result.

Theorom h,19 Let K be an n-complex with

dim {I(K)} 2 1. Let p e I(K). Then p has arbitrarily

small suspension neighborhoods.

Pomork, Following the arguments leading to the last theo-

rem and using Theorem 1.7, it is evident that if

dim {I(K)} = k 2 1, then every invert point has arbitrarily

small k—fold suspension neighborhoods.

Let K be an n-complex with I(K) = {p}. It was

remarked earlier that if equality could be established in

Theorem 1.10, the Poincare Conjecture could be proved in

dimension 1+. Thus, the equality I(K) = K n I(I(K))

for dim { I(Af(K)) } 2 l is stronger than the Poincare

Conjecture. If we use this for the complex K with a

single invert point, the following result is obtained. Let

dim {I(X(K)) ] 2 1, Then

{p} = I(K) = K n'I(,f(K)) .
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But dim {I([(K)) } 2 1 implies that 1KnI(,J(K)) I 2 2.

This is a contradiction. So we must have I(A{(K)) = SO.

Moreover, Theorem 4.16 for n = 1, Proposition 4.12 for

n = 2 and Theorem 4.15 for n = 3, the last two with the

additional hypothesis of two orbits under isotopy, indicate

that the following result may be true. We end this chapter

with this conjecture.

Coojooturo. Let K be an n-complex with I(K) 3 IPI°

Then I(j(K)) = SO.



CHAPTER V

AN APPLICATION TO GRAPHS

In a recent study, Doyle extended to a class of

spaces called monotonic complexes, the result that every

open connected set in En is a monotone union of closed

n-cells. The relevant definition and the statement of his

unpublished result are as follows.

Dofioitioo 5,1 A simplicial complex Kn is monotonic if

P

and only if Kn = I.) Ki where each K1 is a subcomplex

i=1

of Kn, K1 is an n-simplex, and for l s i s p-l, Ki+l

is obtained from Ki by adding just one n-simplex L1 to

Ki such that L1 and K1 have an (n-l)—simp1ex in common.

EZEEHEELJUTDLURL If Kn is a monotonic complex

T a

of dimension n (2 2), then Kn = U Ci where C1 is a

1:1

closed n-cell and C1 c Ci+l for i = 1,2,3:

For n s 1, it was mentioned that a monotonic

0-complex is a point and that every connected l-complex is

monotonic.

Pomork, Doyle proved that if K is a monotone union of

l-cells, then K is homeomorphic to one of the six figures

47
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listed below.

‘I

=0 (5.. Q o—o

Figure 5.1

It was also remarked that five of these configura-

tions represent the termination of a self-avoiding walk

discussed by Kesten in [11]. These considerations lead to

the following definition.

Dofinitioo 5.2 If E(n) is a graph such that it can be

1 no

written as A.) Si(n) where Si(n) is a closed star graph

i=1

‘ of order n (2 2) and Si(n) c: Si+l(n) for i = 1,2,3,

then E(n) is said to be an oroooofog_n;otor_grooh,

Then a monotone union of l—cells may be written as

E(2) and has the non-homeomorphic forms given in Figure 5.1.

Also, the generalization of self-avoiding walks of Kesten

is immediate. By a direct counting process, it was possible

to obtain the 30 configurations of E(3) as given in

Figure 5.2.
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Remark. The collection of all expanding n-star graphs for

n 2 2 contains examples of all l-complexes with a nonempty

invert set. Moreover, we also obtain many examples of com-

plexes with an empty invert set.

D i i ' . Let G be any graph. Then D(k,G) will

represent the number of vertices of G whose degree is

greater than or equal to k.

Theorom 5.; Let E(n) be an expanding n-

star graph. Then

D(k,E(n)) s 1 + [E{}§j

for 3 s k s 2n and n 2 3.

Proof. Let E(n) = (:I Si(n) where each Si(n)

i=1

is a star graph with a vertex p such that n s p(p) 2 Zn.

The maximum number of vertices in the graph with degree

2 3 is obtained if every end point of an arc meets the

interior of that arc. Thus

D(3,E(n)) s l + [%3.

For obtaining the maximum number of vertices of

degree 2 4, the n ends of the arcs from p can be paired

in such a way that every pair meets on the interior of an

arc to produce a vertex of degree 4. Then

D(4,E(n)) s 1 + [23. In general, k-2

ends have to meet on the interior of an arc to produce a

vertex of degree k. But the n ends can be paired to

produce at most [E{?§] vertices with degree k. This

completes the proof.
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Corollary 5.2 Let E(n) be an expanding n-star graph

and n 2 3.

(a) If n4-3 s k 5 2n, then D(k,E(n)) s l.

(b) If k = ni-l or ni-2, then D(k,E(n)) s 2.

(C) If n 2 5 and k = n, then D(k,E(n)) s 2.

Proof, Parts (a) and (b) follow from the last

theorem. For part (c) we note that n 2 5 implies

._1L_ :

[n-2] 1’

Pomorko. The preceding results show that we cannot have

too many vertices of high degree in an expanding n-star

graph. In fact, an expanding n-star graph is locally

euclidean everywhere except at (n+1) points at most.

Moreover, if E(n) is an expanding nestar graph and x

is any vertex of E(n) then 1 s 9(x) s 2n, and if

P(x) > ni-2 then x must be the center of Sl(n) where

o

E(n) = 32% Si(n).

Theorem_523 Let E(n) be an expanding

n-star graph and n 2 3. Let p = max {p(x)}. Then

er(n)

(k-—2) (D(k,E(n))-1) s n s p for 3 s k s 2n.

Proof. By Theorem 5.1 we get

D(k,E(n)) s 1 + [E%}Efl s l + k-2 .

This gives (k-2) (D(k,E(n))-l) s n. Obviously p 2 n.

Using the standard terminology of graph theory, let

K denote the complete graph on n vertices and let K

n m,n
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denote the complete bipartite graph on m and n vertices.

From previous remarks and results we note that K1’ K2, K3,

K4’ K1,n and K2,n are expanding r-star graphs for a

suitable r. This naturally leads to the investigation of

K5 and K3,3.

Thoorom_5gi I K5 and K3,3 are not expand-

ing n-star graphs.

Proof, For K5 we note that p = 4. If k = 4

then D(4,K5) = 5. These values give (k-2) (D(k,K5)-l> =

and there is no n which can satisfy the inequality in

Theorem 5.3. Then K5 cannot be an expanding n-star graph.

For K3,3 we have p = 3. Taking k = 3, we get

3.3)

conclude as before that K3 3 is not an expanding n-star

’

D(3,K 6. Now (k-2) <D(k,K3,3)-1) = 5 and again we

graph.

For K”, it is evident that the inequality of

Theorem 5.3 is satisfied for p = 3 and 3 s k s 2n. The

case with k = 3 is particularly interesting since it

gives n = 3 and we note once again that K4 occurs in

E(3). The preceeding theorem shows that Kuratowski's prim—

itive skew curves are not expanding n-star graphs. In the

next result we show that they cannot occur even as sub-

graphs of expanding n-star graphs.

Thoorom 5,5 Every expanding n-star graph

is planar.

Proof. Assume that an expanding n—star graph can be
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skew. Select the least n for which skewness occurs and

O .

write this graph as E(n) = (_) Si(n) where each Si(n)

i=1

is a star graph of order n.

Let f : Sl(n) -—> E(n) be a mapping which is one

to one except on the end points of Sl(n). Let 'Sl(n) be

a star graph of order (n-—l) obtained from Sl(n) by

deleting a semi—open branch of Sl(n). Then (E(n-l) =

f(Sl(n)) is an expanding (n-l)-star graph. By the mini-

mality of n, (E(n-l) is planar.

This shows that every proper subset of E(n) is

planar. By Kuratowski's theorem, a graph is planar if and

only if it has no subgraph homeomorphic with K5 or K3,3.

Consequently, E(n) must be K5 or K3,3. But this is

impossible in view of Theorem 5.4 and the proof is complete.
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