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ABSTRACT

An outline of the Onsager theory of conductance is presented as an
introduction to the study of this difficult treatment.

Higher order concentration dependent terms of the electrophoretic
effect, which are neglected in the usual treatment, have been evaluated,
using a digital computer, for 1-1 salts in water and in 10% to 70%
dioxane-water mixtures. Significant differences are found to occur
between the Onsager and the extended electrophoretic expressions.
These differences increase rapidly with decreasing ion size and with
decreasing solvent dielectric constant.

The electrophoretic calculations are applied to equivalent con-
ductance data in several dioxane-water mixtures for tetraisoamyl-
ammonium nitrate and tetra-n-butylammonium bromide taken from the
literature. For these data it is found that deviations from the Onsager-
Fuoss conductance equations, which previously have been attributed to
ion-pair formation, can be interpreted instead using two constant dis-
tance parameters; the minimum distance of approach, and the cation
hydrodynamic radius. It is concluded that much of the deviation from
theory, heretofore ascribed to electrostatic aggregation of ions, arises
from an incomplete treatment of the model used rather than from
physical phenomena which cause the model to be inaccurate., The pro-
gram developed to compute the electrophoretic higher terms is also
applicable to other charge types.

In addition to these theoretical considerations, experimental data
are presented for aqueous solutions of tris-(ethylenediamine) cobalt
(III) chloride: transference number values obtained by the moving
boundary method and activity coefficients determined from the electro-
motive force of concentration cells with transference. Deviations from
the predictions of theory occur for both ion mobilities and activity co-

efficients.
ii
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PART I

THE ELECTROPHORETIC CONTRIBUTION TO EQUIVALENT
CONDUCTANCE USING THE COMPLETE EXPONENTIAL
DISTRIBUTION FUNCTION: 1-1 SALTS IN
DIOXANE-WATER MIXTURES

I. INTRODUCTION

Solutions of ionophores (1) or ''strong' electrolytes consist of
ions dissolved in dielectric media. The electrical conductivity of
such solutions clearly indicates that the ions are free to move more
or less independently. For completely independent ions, the equiva-
lent conductance should be independent of concentration for a given
electrolyte and solvent. Actually this quantity varies markedly with
concentration. This behavior has been the subject of intense experi-
mental and theoretical study for over sixty years.

The modern theory of electrolytic solutions is based on the
interionic attraction theory of Milner (2) as formulated by Debye and
Hiickel (3). According to this view, coulombic forces between ions
cause any chosen reference ion to be surrounded by an excess of ions
of opposite charge, and this ion excess can be treated as a uniform
charge cloud or "atmosphere.'" Using the Debye-Hiickel theory
together with statistical and hydrecdynamical considerations, Onsager
(4), and Onsager and Fuoss (5) proposed a general theory for irrevers-
ible processes in electrolytic solutions and derived a limiting expression
for the equivalent conductance as a function of concentration and other
pertinent variables. The recent extension of this theory by these
same authors (6, 7, 8, 9) has resulted in an expression which accurately
predicts the conductance of symmetrical salts under conditions which

satisfy the physical and mathematical assumptions and approximations.







Rather large differences between observed and calculated con-
ductances appear when the theory is applied to solutions whose solvents
have low dielectric constants. Following the idea of Bjerrum (10) who
postulated the existence of non-conducting "ion-pairs, ' Fuoss (11, 12)
has extended the range of utility of the theory,

The Onsager-Fuoss treatment does not take into account the
possible dependence of conductance upon higher powers of concentration
than the first. It is demonstrated in this thesis that complete neglect
of higher order terms, even at very low concentrations can be extremely
hazardous and can indeed lead to very questionable conclusions regarding
the nature of certain solutions., This is shown by an extensive study of
the higher order terms of the electrophoretic correction to conductance
for symmetrical univalent salts in a variety of solvents. The significance
of these terms for the case of unsymmetric electrolytes in water has
been pointed out by Dye and Spedding (13).

A number%fxcellent reviews and expositions of the many-faceted
development of the theory ionic solutions are available in the literature
(14, 15, 16, 17). Accordingly only a brief account of the most recent

contributions to the theory of conductance will be presented.

II. THE INTERIONIC ATTRACTION THEORY
OF CONDUCTANCE

A. Introduction

The equivalent conductance ()‘j) of a given type of ion in solution
may be defined as the current, at a potential gradient of one volt per
centimeter, produced by one gram equivalent of the ion. The ionic
equivalent conductance is simply related to the average ionic velocity

-_\;j through the average mobility uj by the equations






and

RN —_
vy = vj/300 X (2)

where X is the electric potential gradient in volts per centimeter. The
total equivalent conductance (/\) or simply the equivalent conductance
is obtained by summing ionic conductances over all types of ions in a
given solution.

N = = %= (96,500/300 X) = 7 (3)

J J

The central problem in conductance theory is, therefore, to find the
average ionic velocities through the statistical equations of motion.
In order to find the average velocities it is necessary to know the dis-
tribution of the ions relative to one another and the electrical potential
at any point in the solution. These quantities, together with the hydro-
dynamic equation of continuity are sufficient to derive the Onsager
conductance equation.

The Debye-Hiickel model and the resulting distribution function
and electrical potential between ions are used as a starting point and
the average ionic velocities are found by considering the perturbing
effects of an external electric field. From the Debye-Hiickel concept
two major factors affecting conductance are recognized: the electro-
phoretic effect and the time of relaxation effect. A third effect, kinetic
in nature, has recently been recognized by Onsager (9). Before dis-
cussing these three terms, the treatment of Debye and Hiickel for the

equilibrium case will be briefly presented.

B. The Equilibrium Distribution Function and Potential

The general interionic attraction theory initially assumes that
known numbers of hard spherical, uniformly charged particles are
present, in a ratio preserving charge balance, in a dielectric medium.

This medium is assumed to be structureless and non-interacting.






The average configuration of the entities in such a solution can
be described by an average distribution of the ions. Since the
equations of motion for the system are ultimately desired, the logical

choice for this description is the time average distribution. A reference

volume element of the solution, located in space by the vector 21 from a
fixed origin, is considered to contain, on the average (over a
"sufficiently'" long period of time), n; ions of type j. A second volume
element, located by EZ from origin and —_1;1 from the reference element
then contains an average of njj ions of type 1 and the desired distribu-
tion function is defined by equation (4).

— —

fji = njnji(rh r21) (4)
The quantity nj5 gives the number of i-ions per unit volume at the
distance r,, from a single reference or 'central'" j-ion. This distri-
bution of i -ions about a central ion is called the ionic "atmosphere."
Since njj has this meaning, the symbol fjj is read as the time average
distribution of i -ions in the vicinity of 1 central j-ions. An expression
similar to equation (4) may be written for fijv the distribution of j-ions

about central i-ions, and since material must be conserved in the

system equation (5) must hold.

— —d —_ -
fji = njnyi (11, r21) = £35 = ninjj(ry, 1) (5)
For the equilibrium case (denoted by superscript zero) Debye and

Hiickel assumed that the quantity njj is governed by the Boltzmann

law and is given by
fo) (0]
njj = nj exp[-Uji/kT] (6)

o
where Uji is the potential energy of an i-ion when it is located in the
solution at a distance r;, from a j-ion, and nj is the average concen-

tration of i-ions computed assuming completely uniform distribution.



If the approximation

U;i = ei\yjo (7)
is made, where g; is the charge on an ion of type i and gjo is the time
average electrical potential at a distance rp from the jrion-for the un-
perturbed system, the equilibrium distribution function_f_;-)i, can be

written as equation (8).

f; = njnj exp[-e;¥;”/kT] (8)

The expression (7) is known as the linear superposition of fields approxi-

mation and is tantamount to assuming that a partially complete assembly

of i -ions about a central j-ion will not rearrange as the remainder of

the atmosphere ions are brought into place. It is this assumption which

seriously limits the range of validity of the final Debye-Hiickel expression.
The Poisson equation from electrostatics relates the electrical

potentiallgto the charge density p through the dielectric constant D

according to equation (9).
VY = -4 np /D (9)

For the case at hand the charge density may be written in terms of nji.

p = ? njjej (10)

A series of straightforward substitutions gives a second order non-linear

differential equation in the potential \PjO.
o o
vz \ijj = -(4 m /D) ? nje; exp[-ei\l}j /kT] (11)

No general solution of this equation is known. Furthermore it is mathe-
. . . . . . O .
matically inconsistent in that equation (7) requires that \l/ be a linear

function of &5 while equation (11) is linear in_ej on the left hand side



and exponential inﬁj on the right hand side. These difficulties may be

circumvented by expanding the exponent in equation (11).
o o o .
ViV;s = (4‘”/D)§3 nje, [(e; V5 /kT) - 1/z(ei\+’j /KT + - - -] (12)

The leading term of the expansion vanishes since electrical neutrality

requires that

Z ne. =0 (13)
If the condition

ei\{"jo > > kT (14)

is met, the terms in equation (12) other than the first may be neglected

and one may write

VW= ks’ (15)

where

[ 4 S %—
DkT 7§ ?

K e;®] (16)

It should be noted that _/S_ has the units of reciprocal length and is pro-

portional to the square root of the concentration through nj. Because of

the symmetrical nature of the equilibrium distribution, Lljjo depends
only onr = | EZII . The general solution of equation (15) is then

\4} o AenKr BeKr
. = +
J r r

(17)

s o .
The boundary condition W —> 0 as r —>o9orequires that B = 0. To
maintain charge balance, the total charge outside the central j-ion must
be equal and opposite to its own charge. This statement may be

formulated as






o0
...ejzaf 4nr? ) dr (18)

where a is the distance of closest approach of the ions. A comparison

of equations (9) and (15) gives

p=-Dk* ¥4 (19)
Combination of (18) and (19) with equation (15) yields
o K
ey = ADK?* [ e r dr (20)
a

Integration of this expression serves to evaluate the constant A as
Ka o
A=zeje /D(i + Ka) = e;/Dp (21)

The final expression for the potential then becomes

\+J o e:e Ka e nr

i = gy ] —7 (22)
D(1 + Ka)

The physical significance of K can best be illustrated for the simple

case in which the ions are considered as point changes (a = o).

Equation (22) becomes, upon expansion of the exponent
\V_o ~ e./Dr - e; K/D
J J J

This is the simple expression for the potential due to two point charges
€j and -ej, at distances r and (_I_L)(,_) from origin. Accordingly, (l/i)
has been called the ''radius'" of the atmosphere. A more refined
analysis shows that the charge density is a maximum at this distance.
A useful form of the distribution function_fjio can be obtained by

expansion of the exponential equation (8) using \i',jo from equation (22)

- P -2
eieie Ka . e KT + eieize 2 K2 s e X
DkT(1l + X a) r 2DKT4(1+ K a)” r?

(o]
fji = njni [ 1

(23)
This expression for the equilibrium distribution function is the one used

by Onsager in his treatment of the conductance problem.






With these background considerations completed, a discussion of

conductance theory itself will now be presented.

C. The Form of the Conductance Equation

From a qualitative discussion of the two major effects considered
by Onsager, the conductance equation can be written in symbolic form.
This result helps to clarify the logic of the detailed development.

If an unsymmetrical force, suchk as an electric field, is applied
to a solution of an electrolyte, the average velccity of all ions of a given
type becomes non-zero. An ion, which is "wet' by the solvent, moving
through a solution will drag solvent with it. The ions of opposite charge
in its atmosphere will be moving in the opposite direction and will, in
effect, be moving against a local solvent flow, The effect is reciprocal
and the net result is a lowering of the average speed of all ion types.

This is known as the electrophoretic effect.

A second effect is produced when the external force is an electric
field. The tendency of a given central ion and its oppositely charged
atmosphere to move in opposite directions leads to an asymmetric
distribution about the central ion. A {inite time (the '"relaxation time'")
is required for the atmosphere to build up and decay about the moving
ion. The net result may be pictured as an excess of oppositely charged
ions behind a given ion. This effect can be treated as a small restoring
force opposite in direction to the applied force. In the case of conductance,
the applied force on an ion is just the product of the charge of the ion
and the potential gradient X. The small restoring force is described

in terms of a correction to the field, AX, called the relaxation field.

A symbolic conductance equation may now be formulated. If a
force l(j were applied to an isolated j-ion in a solvent, the ion would

. -
assume a velocity v;.






Here wj; is the reciprocal of the coefficient of friction of the ion. In
the case of conductance the force is given by equation (24)

Kj = er (25)
In a solution of many ions, the average force felt by the j-ions is

(X + AX)ej and the average velocity is

V3

7 vis (X + AX)ejw; (26)

where the term Yis is the retarding velocity of the solvent in the
neighborhood of the j-ions which results from the electrophoretic
solvent drag by atmospheric i-ions. The above velocity expression is
easily converted to an equation for equivalent conductance through

equation (3) to give

_ 96,500
i~ 300

96, 500

NS
L+ 50) lejloy - =55%

A Ivigl (27)

Js
Since the solvent velocity (Ljs) deperds upon the velocity of ions of

type i, which in turn depends upon the field (X + AX), the last term

on the right mavy be written as

96,500 |vigl e AX
js .
300 X A)\J (1 + X ) (28)

where A)\je is the electrophoretic contribution to the conductance. If

only non-interacting j-ions were present in the solution (an infinitely

dilute solution) the equivalent conductance would be

o _ 96,500

N 300 1 eile (29)

o
where )‘j is called the equivalent conductance at infinite dilution.
Equation (27) may now be written as

AX

N = (xjo - ije) 1+ 55 (30)

J
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or, for all types of ions in the solution

N = (/N A/\e)(1+45()5) (30a)

The explicit evaluation of the electrophoretic term é&_/_\e, different

from that of Onsager, is the major concern of this work, The
derivation of an expression for the relaxation term (AX/X) is both
difficult and lengthy. Accordingly, only an outline of the Onsager pro-
cedure will be presented here. For anyone seriously interested in

the details it is recommended that the following presentation be regarded
as an introduction to be read prior to the study of the original papers of

Onsager and Fuoss and their amplification by Fucss and Accascina (19).

D. The Onsager Conductance Equation

1. General Approach

g
In order to find the ionic velocity vy and from this the equivalent
—
v

conductance, it is necessary to find wv; the lecal sclvent velocity,

Ljse
P

and the relaxation field AX. The first of these quantities, v

Vs involves

the solution of a hydrodynamic problem and may “e found either by use
of Stokes Law (ar integration treatment) or through the general hydro-
dynamic equations of motion (a differential treatment).

The relaxation field AX is more difficult to evaluate. This field
is obtained from the negative gradient of the asymmetric potential ij
evaluated at the surface of the ion, or more properly, at the distance

of closest approach of the ions

ax = - (VW), (31)

It is assumed that the potential function Wj can be written in terms
of an asymmetric distribution function _i_Jl through a Poisson equation
analogous to equation (9, 10). In order to find fjiv a general expression

>
for Yii the velocity of an i~ion relative to that of a neighboring j-ion is
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written. This expression contains _fji and Ejs (which can be evaluated
by hydrodynamic equations). The final link in the chain is provided

by the equation of continuity which relates —-‘?ji andiji. Solution of the
resulting differential equation with suitable bcundary ccnditions gives._fji,
Integration of the Poisson equation leads to the evaluation of the potential

\f- from which the relaxation field AX is easily found.

The general expression for the relative velocity v;; may be written

ji
as

—_ — - —

vii(ty, Ta) = vjs(rs) + wi(Kji - KTV, In £55) (32)
where

-

Vis = the solvent velocity in the neighborhood

w; = reciprocal of the coefficient of friction of ions of type i

Kji = total force on an i-ion in the neighborhood of a j-ion

The last term on the right of equation (32) arises from the Brownian
motion of the ions which tends to restore symmetry to the ionic distri-
bution. It was this term whick was overlocked in an early attempt by
Debye and Hiickel (20) to solve the conductance problem. The subscript
on the gradient operator is due to the use of two volume elements with
different sets of coordinates in defining the distribution function. A com-
-
v

pletely analagous expression for ijs

the average velocity of a j-ion near

an i-ion may be written,
vij(rz, r12) = vis(r) + wj(Kjj - kT V1 In f35) (32a)

It is assumed that the distribution functions and potentials may be treated
as the sum of a symmetric part (denoted by superscript zero) and a

perturbation term (denoted by primes) due to an external force,
v

o
fji = fji + fji

AR OER (34)

(33)
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The asymmetric (primed) quantities are then related through Poisson

equations, for example

S L
VZ\{/J.- = - (47/D) = £33 ei/nj (35)

i=1

The total force -Rji can be specified in terms of external and internal

forces.

A

Ki=eX T - WY @- V¥ @ 7 (36)

The first term on the right is the external force and is chosen to have
only an X component (? is the unit vector in the x direction). The
second term represents the force on an i-ion due to its own atmosphere
and third term is the force on the i-ion due to the neighboring j-ion and
the atmosphere of this j-ion. The symmetric part of vz Wi(a) cancels
out since it represents a balanced force and can produce no net motion,

Combination of equations (32) and (36) gives

S .

vji(rz, ry;) = Vis (rz) + wi[e;X @ - e Vz\Vi'(a) - & vz\yj(rlrzx)

-kT V; In F] (37)

- DD
A companion expression for Vii (ry r;;) may also be written. To relate

the relative velocities and distribution functions, the hydrodynamic

equation of continuity for stationary states is used in the form
VZ - (f

When integrated, this is merely a statement of charge conservation:

) v —
the net flux of charge through the system is zero for a system in a steady
state. The complicated expression which results upon combination of
equations (37) and (38) may be greatly simplified by using the Onsager

symmetry relations. If the solution as a whole is fixed in space, the

potentials and distribution functions can be described by the relative

PN
distance between any chosen pair of ions. Accordingly r, is chosen as a
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—_—

new origin and the system is described by the vector r.

. N

rl = O

- _ -

T = Ty = - Iy

Py AN

r, = r (39)

Since the applied field is in the x-direction, the perturbed potentials
and distribution functions will be symmetric about the x-axis and can

—
be written in terms of the variable r witkout complication:

Yeen=-Yy @

- = N
fij' (;r) = - fij' (r)
ik () = 44yt (x)
fji' (r) = - fij' (r) (40)

The operators can also be simrglified:

V.V. vV
vl" v1: vz' vz = VZ (41)

The array of terms which arises from the combined equations (37) and
(38) are then taken pair-wise (one from each of the two terms in equation
38 and simplified by the symmetry relations (40) with the aid of equations
(39) and (41). Further, all terms which are quadratic in the field are

of

neglected; for example, terms such as ;s . Vf’ Z.nd X ( g—
Terms which are completely symmetric such as f VW can have no
effect on the asymmetry properties and therefore vanish. Assembling
all the terms, the continuity equation may be written in the form of

equation (42).
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X (o5 - ejus) ( afjio/bx) Ty
- kT(wl + wj)vz f_]l’ Tk
- £ (ei; V2V - 5 V2, T,
= (eiwiv\l'/j' - ejij \l/i') : iji° Tg

+ £ (equy V* Vi° o+ ej0; V2 \Pjo) T,

t+ (eiin\Vf + ej“’jv""/io) ) iji' T

- [eiwiW'(a) - ejij'(a) ] 'ijio Ta

[0}
+ (vig - vis)' V53 Ty (42)

The column of symbols on the right indicates the origin of the terms in
the nomenclature of the original paper (§). The terms Ty are called

the field terms; Zk’ the Boltzmann terms; T the velocity field terms;

v
'
and Ty, the terms containing V\P (a) . The remaining terms
are designated by Tg.
The quantity which is ultimately sought, the relaxation field, will

be given by

]
AX = =YY @)= - ( 5—) (43)

Dependence upon x only arises for the conductance case since the dis-
tribution function and potential are axially symmetric with respect to

the direction of the field.

2. The Boundary Conditions

Inspection shows that equation (42) is a fourth order non-linear,
non-homogeneous differential equation in the asymmetry potentials EIJ_‘,
since the quantity Ef._’ appears and f' itself is proportional to m
The solution of the differential equation therefore requires four boundary

conditions. Three of the conditions are simple electrostatic requirements:
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1. The field of the central ion must vanish at infinity

oW
(327,70

o0

2. The potential must be continuous across the boundary at r = a '

\|Jj' (a-0) =\|Jj' (a +'/o)

3. The field strength must be continuous at r = a

Rk DU &

ara-o a

a+o

The:fourth condition is hydrodynamic in nature and while simply stated

is very complicated when put into useful mathematical form:

4. The radial components of the relative velocities of any two

ions must vanish on contact

— =N

- - -
[ (flj VlJ - le v_]l) . T ]a (Y . r)a =0

i

By further defining the function Z(r) by
P —y -
Z(r) = (Y-r) /x= |Y| /cos® (44)

This condition may be stated as a scalar equation.

Z(a)=0 (45)

To be of use, equation (45) must be expanded in the same manner as

was the equation of continuity. A complicated eight-term expression
containing io, g and \li as well as the local solvent velocities 2 and
zjs results. The second and third (electrostatic) boundary conditions

may be conveniently combined. If the ions are considered as conducting

spheres, then for r < a the asymmetric part of the solution of the LaPlace

equation (/2 \Vj = 0) gives

¥y, (46)

\{/j'(a-o)lercos-Gla_C):[r 3 a
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Rearrangement with use of the second and third conditions

[\Vj' (a - ¢) = \lf’j' (a + 0)] gives equation {47)

S <}
[ r er -

Y5 Jaso =0 (47)

The four boundary conditions may be summarized by the three

equations (48)

( ()WJ'/ dr) =0
v Q¥ / D1 - Wy 1, = 0

Z(a) =0 (48)

3. Order of Terms and Method of Solution cf the Continuity
Equation

The differential equation (42) has been arranged so that the terms
of higher order in the charges are collected on the right. The reason
for this division can be clearly shown only after an approximate solu-
tion is obtained. Initially it assumed that the primed potentials are
proportional to the first power of the corresponding charges. Since

Y_fjio starts proportional to i€ the terms on the right are all of
order eizej2 ., €4 i3’ eisei . The last term on the left is of order ii_el
and is assumed to give the leading term of the solution. The problem

is now specified to a solution of a single electrolyte giving only two
kinds of ions. Accordingly leti= 1; j= 2. [Equation (42) can then be

written as

X(eww) - exw;) (Qf/ dx) - kT(w + wz)vz fa'

- fuo(elwlvz \Pz' - ezwzvzkl‘/l') = 213 T, (49)
where Z T, denotes the higher order terms. An approximate solution

i E—
for the asymmetric distribution function is then found ignoring the

higher order terms. Let
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\Vz' = (q’z + P2 (50)
and

fa'=Futga (51)

where (Yand F are the first order approximate asymmetric potential
and distribution function obtained by solution of equation (49) without

the terms X T;. The contributions of these terms are denoted by p and
g respectiv%ly._The potentials and distribution functions are assumed

to be related by Poisson equations:

V& qu = -41F,/Dn (52)
and
vz pPz= -47gu/Dn (53)

From equation (49) making use of equation (52) and rearranging terms,
the differential expression to be solved for F,,, the first order approxi-

mation to the distribution functions, becomes

o
; 41 f e, %w e,%w
2 21 1 Wy 2 W2
v FZI - [ DkT(Q)1+ (.L‘Z) ] [ nz + nl ] FZI
o
X(eyw; - ezw,) ( d fa ) (54)
kT (U.)l + wz) ax

Having obtained F,;, the potential "ir"z is found by solution of the

Poisson equation (52). Differentiation of __z gives the first order approxi-
mation to the relaxation field, AX;. Then, the expression for F, is
substituted, with equation (51), into the differential equation (49) keeping
the higher terms T;. This gives a differential equation, the solution

of which is g,;. The potential p, is then found from the Poisson equation
(53). A correction to the first order relaxation field is then obtained

from p,. A glance at the form of the higher terms (shown in equation

42), clearly indicates that the second order solution is not easy to find.

The method actually used by Onsager consists of splitting g, into four
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parts and treating each part as a separate problem. Further comments
about the higher-order terms will be reserved until after the first

order solution is set down.

4. First Order Approximation to the Distribution Function
and Relaxation Field

To obtain the first order solution F,, from equation (54) it is
necessary to know _f_uo, the equilibrium distribution function. The com-
plete function was derived above and is given by equation (8). Onsager
and Fuoss, in stressing consistency of the order of terms, used the
expanded forms of f_z_lo given by equation (23) to various degrees of
accuracy. For example, for the derivative term of equation (54), two

terms ofi—uo are used:
- X
£, = nmny(l - ejese” ' /uDKTr) (55)

where

= (1+ xa)le ¥ (56)

To this approximation ( bfalo/ dx) ~ e, and the term of the right of

2

equation (54) begins proportional to €;°. The second term of the left

is already proportional to e;?

so that in this term the approximation

(o]
le = nyn, (57)

is used. Making these substitutions and the electrical neutrality

requirement (equation 13), equation (42) to first order reduces to

2 XT
2 2 _ o omeyyX d ,e”
VFa - vFa= [3ong 153 5 ) (58)
where
4
v* =q% %2 = i ] [nyer%w; + nye’w, | (59)

DkT( Wy + wz)
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Subject to the first boundary condition (b'\:[f'/a r) = 0, this equation

has the solution:

e“"r Ae“yr

. e’ d
Fa= ooy lox (& - &+ ) (60)

Substitution of this expression into the Poisson equation (52) and sub-

sequent integration gives the potential

(‘?\ ) ereg®X D)) [e' xr ' Ae YT +_B;_ ( 11 )]
~ )pDkT(1-q%) Ix xS r yér r N Xz

(61)
where A and B are constants of integration. Since this solution contains
the charges only as the product e,e,, the solutions for ‘\I,l and E are
identical and are denoted by “1/' The combined form of the second and
third boundary conditions serves to evaluate A in terms of B. The
constant B is obtained from the fourth boundary condition in which

higher-order terms are neglected. The relaxation field is found from

the relation

ax=- V Way=- (W 3, (62)

For the simple case of point charges (a = o) A and B are both unity.

The field for point charges, AX,, is given by

AX, = [ e;e,g’X 1 Lim [ e’ ‘Kr.(l + Xr) e "Yr(l + yr)
° DkT(1 - qz) r—>o we r’ ¥4 r¢
1
+ v v ]

(63)
Expansion of the factors e T Xr and e " to order 12, and taking the
indicated limit (triple differentiation of numerator and denominator)

leads to

AXo e1€,9°
X 3 DRT(1 +9) (64)

This is the classic result obtained by Onsager in 1927 and is usually
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written as

b3 1
A_TXO = -ac 2 (64a)

o,

where ¢ is the normality of the solution and a is a constant.
For the case in which the ions are represented by hard spheres with
minimum distance of approach a, the constants A and B of equation (61) are

complicated functions of ¥a . From equations (61) and (62) an expression for

AX for this model is obtained. The result may be expressed as a correction,

-AXp4;, to the solution for point charges. Accordingly A, is defined by the

relation
AX = AX, (1 - 4)) (65)
So that
Ay = 1 - (AX/AX,) (66)
The ratio (AX/AX,) is found to be
1
AX 1+ () aeay[1 - =22
AX,
0 (1+ xa)ps (67)
where
b= |ee,| /aDkT (68)
and
P3=1l+qgquxa+t qz)'(zzaz/3 (69)
The quantity A, may be written
xa(l +q) Xa(l +q) , x? a® 2
= —— : + 3 0
& pa(l + xa) 2bps ps3(l +ica) la +d°/3] (70)

At this point Onsager and Fuoss specialize to the case of symmetrical
electrolytes, for whichq?® = 1/2, and to the approximation that

(1 + 6g)/3 (1 + q) w2 1, The expression for A; can be written in the much

simpler form of equation (71).

Ay = MKa(l+ q)(1+Db)/2bps (71)






21

It should be pointed out that with equations (65) and (70), the relaxation field
to first approximation may‘ be calculated for any electrolyte charge type.
The result is consistent to terms of order &f The guantity of interest
(AXi() can now be written to first approximation as

AXy _ erepdd (1 - 4y) * 5
X - T 3DkT (l+q = = %€ (1-a) (72)

5. The Second Order Approximation to the Relaxation Field

The second order approximation to_fji' and AX /X is now found by
returning to the continuity equation (42), (49) including higher terms.

Substitutions of equation (51)
fa1' = Fai+ ga1 (51)

into equation (49) gives a differential equation in g;,. Expansion of the
higher terms, T;, leads to a multiplicity of inhomogeneous terms of unknown
order insofar as they will effect the solution of the equation. An ingenious
method of classifying these terms was devised by Onsager and Fuoss. It
consists of writing the unknown solution of the differential equation in g,

as a product of an unknown dimensionless function U and a determinable

power of #. The part of the complete solution which will result from each

n .
term can then be expressed as X U where n is the lowest power of X

which will appear in the solution from the term in question, When the method
is applied to the single inhomogeneous term retained in the first order solu-
tion, it is found that F,;~ )-_(‘*_U. For the second order solution all terms
which give _Jﬁill are retained and those giving _).(,_EH and higher are neglected.
The terms I_i.’ when examined in this manner, are all of order if This
justifies the initial separation of terms according to equation (42). It should
be noted that while this procedure separates terms of higher order, no
information is obtained concerning the relative magnitude of the terms.

When the distribution function in the T terms is expressed as (F; + g;),

all the terms in g, are, by definition, of higher order in M than those in Fy
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and may be neglected., This tremendous simplification has the effect of

changing the form of the equation to be solved from

Vg - Y%ga = ? G;j (r, cos ) (73)
in which the G; are unknown functions, to the form

Vzgn - vga = ? 'H. (r,cos @) (74)

in which the 'F'i involve only known functions of the variables evaluated

through the use of ¥, and_?_. The equilibrum distribution function is
again used in various approximate forms, the number of terms used always
being one more than was used in the corresponding location in the first
order solution. It is important to note that this requires retension, in

one instance, of the quadratic term in the distribution function. In all
cases, the equilibrum potentials are represented by the Debye-Hiickel
expression,

If the radial functions h, (r) and E (r) are defined by

F,(r,®) = hy(r) cos &
"@'(r, &) = § (r) cos €& (75)

The expanded equation in g,; is

vzgu - Y8 =

2. 2
) nzelez Y X a e
+ SWDHZkZTY ax ( rz ) (TX7 gB)
- XT - KT
_ eezy’e Fa eje K e Fau (T )
uDKTT uDKTr g 8z
2 - Kr
nye,y d e a§
* 4mpkT [ dr ( r NI c)x] (Tg: 823)
oI
_&1e2 4 e’ _dhy
2 - KT
_( D2y d € B§
(4TI‘ pkT ) dr ( r N1 X ]a (Ta, ga)
- AT
mnye e, (vig - vps) d e
[ pDKAT%(w, + w,) I dr ( r )] (Ty &v) (76)
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The boundary conditions applied to this equation becomes
VPJ'(°'°) =0
[r dp;/ 07 - pjla=0
Z'(a) = 0 (77)

The function Z'(r) is obtained from the expression for Z(r) in the same
manner in which the differential equation for g,;, was obtained from the
continuity equation.

Rather than attempt to solve equation (76) directly for g,), Onsager
and Fuoss have devised a method whereby the result can be obtained from
the particular solutions found for certain groups of inhomogeneous terms.
They therefore divide g;, into the sum of four terms.

g1 =8Bt 82,3t 8at gy E? 8; (78)

The first symbol to right of the inhomogeneous terms of equation (76)
indicates the origin of the term in the continuity equation (Tj) and the
second indicates the part of g;; to which each term gives rise.

The problem then is divided into four simpler ones. Rather than
finding the potentials Pj from Poissan equations in gj and differentiating
to get the second order parts of the relaxation field (_A_}S), the latter are
found directly from the boundary conditions. In order to find the solution
gv, it is necessary to first find the radial components of the local solvent
velocities vy and v,r. These quantities also appear in the boundary

condition [Z'(r)], .

6. Solvent Velocities and the Electrophoretic Effect

It may be well, at this point, to recall that vjg is the velocity produced
in the solvent at a distance r from an i-ion by a j-ion, and that these veloci-

ties have come into the equation from the velocity field terms.

(vis * V fij - vjs £ji)
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BN
When reduced to the single variable r, and the problem is specified to

i=1, j= 2, these terms are denoted by

P N -
(vir = vor) - vaI

These solvent velocities describe the very important electrophoretic
effect as well as being necessary for the evaluation of part of the relaxa-
tion field. Insofar as electrophoresis is concerned, a rather simple
method based on the integration of Stokes Law in differential form is
sufficient. This method is presented later.

In order to find suitable expressions for__l;lr and _X,ZT for use in
finding the potential gy and the part of the relaxation field AXy, it is

necessary to start with the general hydrodynamic equation of motion

-
nV:v = Vp-F (79)
where
n = viscosity
.\-; = solvent velocity at distance r from a selected ion

p = pressure

F = volume force (force per unit volume of solution)

The ionic subscripts are dropped for convenience. A scheme for separat-
ing the pressure and force terms of equation (79) is then devised. Since

the solvent velocity must satisfy the continuity equation,
V' v =0 (80)

equation (79) may be written as

S

S
anva=F-Vp (81)
By defining the axial vector u by

= (7 W) -V u (82)

- -
and constructing VX VX v in terms of u, equation (81) becomes

<L

n
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—
ViyrE - V(V-gru=F- Up (83)
The form of equation (83) allows the identifications

- —

ViVéu=rF (84)
V(V-V2a) = Vp (85)

- -
The problem is now reduced to finding u from a knowledge of F . The
- >
desired quantity, v, is then constructed from u according to equation

(82). Since the force may be expressed as

—n

F.-_-x)o‘i‘ (86)

where 0, the charge density, is approximately given by the Poisson

equation

p = - /AT Y (57)

The differential equation in u hezomes
= ¥ - .
ViVeuw = -(DXi/4am)V2Y° (88)

A part of \Vo is due to the central ion and part is due to its atmosphere,
It is expect—ed that the resulting velocity, z;, will contain a term describ-
ing the local disturbance of the solvent due to the central ion as well as
the comparatively long range effect of its atmosphere. In relation to the
relaxation field, the use of the equilibrium potential \|J° is justified since
the solvent velocities enter as a part of the second order solution (g,,),
and \V' would lead to an even higher-order term. The effect on the
elec-t:ophoretic term is negligible by hypothesis since this leads to a
term which is quadratic in the field.

Integration of equation (66) gives
-~ SEN -~
Vzu = -(DX 1/4n )\Po +V? w (89)

LN =
where VZ w is the general solution of the homogeneous equa.tionvzvZ u = 0,
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Through rather subtle reasoning concerning symmetry and boundary

-S> -~
conditions, it is concluded that the vector w and VZ w may be disregarded.
The potential \IJO is then split into two terms representing the contribution

from the atmosphere
- - Xr
Y, = (e/D) (e ™/ pr - 1/r) (90)
and one representing the central ion
Y.= e/Dr (91)

- ~—
The solutions u, and u_ are found from equation (89), and the velocity
- - -
vector v = vp + vc is constructed according to equation (82). The

>
integration constants that appear from the solution for up are found by

S
requiring that up and its first derivative be continuous at r = a
du du S
YA - 9A
(a0 laFlaro (92)

. . ~ -
One of the two constants disappears upon differentiation of construct Va-

is found by requir-

>
and its evaluation is not necessary. The solution u.

N
ing the disappearance of the radial component of u. at r = R, where R

—

is the hydrodynamic radius of the ion., The radial component of the

solvent velocity in the neighborhood cf an ion is simply found from the
- -

relation v, = r, . v (where ry is the unit vector in the r direction) and is

X ecos 6

v
r 4 7

[2(1 + »a + x%a%/2 + x? a3/6]

2e (@ =TV ) L 4y R2
K3 (14 xa) T 3r°

(93)

In the 1957 treatment of Onsager and Fuoss (8), the hydrodynamic radius
];:{_ is, very reasonably, set equal to 3_/_2 , thus eliminating an added dis-
tance parameter. A more recent modification by Fuoss and Accascina
(19) uses R = a. This seemingly contradictory choice comes about through

=
a consideration of the expression for v evaluated at r = a,
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-~ Xe ) R? 1 2 K S 1 R?
v = TN tlgm tm c Sua et nlees el - 5o ]

(94)

N
Since one of the boundary conditions used to obtain v requires the

radial component to vanish at r = a and cos @ not always zero, it must

be concluded that R = a in order that the radial term of equation (94)

vanish unequivocally., This same requirement can be shown to be mathe-
matically necessary in several similar ways. While this result is
operationally satisfying, physical justification necessitates a modification
of the model. If it is assumed that the kinetic entity called a '"free ion"

is really the ion plus a solvation sheath (22), the dilemma can be rational-
ized by allowing that the solvent malecules are ''squeezed out' upon

contact of the ions so that two solvated ions of radii R; and Rj, upon
contact, have a minimum distance of approach a;+ a,=a ., Ifa;=a;=a/2

] i
and if the solvation sheath is assigned a thickness a/2, the desired

result R = a is obtained. This explanation is not altogether satisfactory
since it requires a ''thicker'" solvation sheath for larger ions--a condition
which is hardly a general truth? It should be pointed out that this difficulty
arises from the boundary condition which requires the vector ; to have a
continuous derivative at r = & (equation 71). The only alternative is to
require continuity at r = R and to proceed under the aesthetically distress-
ing circumstance of requiring two distance parameters. Fortunately it
turns out that the value of R used in the relaxation term affects the final
calculated conductances only slightly.

If it is conceded that R = a, the x-component of_:\f? (a) (equation 94)
becomes

X e Xe X

v(a) = brna ~ bun(l + Ka) (95)

This expression gives the velocity of the solvent at the surface of the

ion, which must also be the velocity of the ion itself. The first term is
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Jjust the velocity of an isolated ion of radius R = a as given by Stokes Law
S
6mn R (96)
The second, concentration dependent, term must then be a2 slowing effect
produced by other ions in the vicinity. This is exactly the description of
the electrophoretic effect given previously; hence the second term of
equation (74) is identified with the electrophoretic velocity correction

. -XeX
i Bt G (1 +xa) o7

The contribution to the equivalent conductance becomes

ISVE -96500 |e.] 3
1800 ™ n 1 +Kxa (98)

For the simple case a = o (point charges), the correction may be written

-96500 |e;lK  — *
W o UL A TIL S SR
Ak 1800 m n By ©

NS

(99)

This is the limiting form obtained in the original Onsager treatment (4)
while the result expressed by equation (98) is used in the new treatment.
A different derivation of the electrophoretic correction, based on
Stokes Law is presented below in section (8) of this chapter.
Having obtained the expression for the radial component of the local
solution velocity (equation 93), the part of the relaxation field due to these

and other terms of higher order in the continuity equation are found.

7. Higher Terms in the Relaxation Field

The final step in the evaluation of the relaxation field is the solution
of equation (76) for second order correction to the asymmetric distribution
function g;;.

Integration of the Poisson equation (53) would give the corresponding
potential p,, from which the higher order correction to the relaxation

field could be found. As described above g, is divided into four parts
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according to equation (78), and each part is found separately. Rather
than integrating the Poisson equation gj in Pj and to expressions for Pj
and then differentiating to find A_z(_j, a method was devised whereby the
parts of the relaxation field were expressed directly in terms of the
boundary conditions and particular integrals of equation (76). The details
of the method have been presented by Fuoss and Accascina (23).

The results are summarized by the following formulae:

é_)_(B - e1840 bxa _1_ 1 +Ka T_z_
x ° G ) gurxalls - Tt 7! (100)
T,=Tr [ (2 +qg) xa]
X(>o -t X
Tr{x)= e [ e /t= e Ei(x)
x
AX - r&1€2 K b Xa g
o2A o 1-2 2 _8
X [5DKT [pp3 (1+Ka)7][q 5 | (101)
- gxra . glx?a’ ¥ ka K2 a?
Py= L+ 25—t 27— = 1+ —H— + 75
1
- 22 pa X% a?
pz= L+ > + )

AX, 3 - e, X bAa éi()(a)
—x ° DEprrll ] (102)

Paps(l +K2)

1
_ 2% 9-9 3p53T, PyP5T, N
§5 =716 TT1e Y T 16 T PiPePs s
2_2
P,=1+xa+ x Z
To = Tr(xa) = ¢’*% Ei (xa)
T, = Tr[(l + g) Xa]

Since each of these three terms contains the factor AX,, they are

conveniently combined

AXB + AXy + AX, 3 = AXeA, (103)
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The value of A, is then

1
_ . b(ltQ) Ka 2211-3 1
A= ieay W Zasy, * 35, © F 2]
- (1+qg9YXa
2p, (1 + X a) (104)

where

F (xa) = (71 T, + P, Ty - 4P,.9,To)/8P,

It should be remembered that this equation (104) is valiid only for sym-
metrical electrolytes (qz = 1/2). The relaxation field, except for the

part due to the velocity field, may be written as

AX <

1
Y = ac ? (1 - Al + AZ) (105)

The part of the relaxation term due to the velocity field (using R = a)

is given by

1
AX, _ pabx? ] 13 +3.2% F(Xa) \
X 6mn (1 + K a)* (wy + wp) 48 p’; 2
X2y
- _ 106
[ 36mn P, (1 + Xa) (w; + wp) ] ( )
1
Factoring the quantity B C*T/ N,
where
1/(w + wp) = 96,500 |e] /300 A° (107)
and

o 1 o 1
* g g 96,500 ( le; | + lel) X
Be "= (Br+fde °= 1800 71 (108)

one obtains

1
AXy _| bra [13+3-,27 , F(xa) ]
X (1 +xa) 96, 4

-0 K ]}50*“1’:

12 p,(1 + K a) /\ (109)
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The term in braces is defined as Aj'

so that i
AXy - L' P C::T (1092)
% A

The complete relaxation term is expressed as
A—;( e (1 4a; - Ayt Ay /) (110)

Further discussion of this expression will be reserved until after an

alternate treatment of electrophoresis is presented.

8. The Electrophoretic Effect

The electrophoretic effect is usually treated by the following method

based on the integration of Stokes Law.
Consider a volume element, dV, near a central j-ion. The number

of ions in excess of the stoichiometric average is
s
= (nJl - Ill) dav
i=1

and the net force on the volume element is

s
X =z (1’131631 - niei) dv
i=1
Similarly, the force on a spherical shell at a distance r from the

central ion, and of thickness dr, is
s
dF = 47 r* X iZ___ 1(njiei - nje.) dr (111)

This force is in the direction of the field and is distributed evenly over
the surface of the shell. According to Stokes Law, the force dF will
cause the spherical shell to move with a velocity dv, opposed to the
directionognotion of the central ion.

dF
6mn r (112)

dv =

The solution inside the shell will then move with this velocity also,
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imparting it to the central ion so that dv = d_vJ . To obtain the total
decrease in velocity Avj equation (92) is integrated from the distance
of closest approach a to infinity. Combination of equation {111} and

(112) gives

[z}

X (S
ATy d T T e tiom)dr (3

or, with njj obtained from equation (23)

Ka

. .e.2 o0
av = e Fmete T ey
J 3n DkT (1 + Ka) a

Xei (2 njei?)e? X ® ‘}° e 2T

30 [DKT (L+K2))? 4 r ' (114)
The integration yields:
pype TEE meNe X (zaed gt L
37 DKT (1 +Xa) T [ DT +;@)] (2 Ka)
(115)

In the cases treated by Onsager, the presence of the second term is
purely formal; for point charges it was ignored as being small and

-1 =)
Using the definition of & given by equation (16), the first term gives

Av, = - XK

J 6mn (1+Ka) (116)

for symmetrical salts it vanishes because e; = “e: and &' niei3 = 0.
i

which is seen to be identical with the relation obtained above (equation 97)
in the discussion of the velocity field.
The correction to the equivalent conductance is given by equation
(98) and is repeated here for clarity.
AN = -96,500 Iele,
(1 +xa) (98)

J
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For two kinds of ions, the expression is

-96,500 (le,] + le,| ) X

J—l
* ==
T+ xa -Bc 4/ (1+Ka)

(117)

AN, =

It will be noted that in equation (111) the force on each i-ion was
taken to be ejX . Stokes and Robinson (24) have pointed out that it should
be more correct to use ej(X + AX) since the force actually felt by the ion
is the external force ‘ﬁ(_ diminished by an amount ¢;AX because of the
relaxation effect. This leads to the conclusion that Xis_'v(x + AX)
which was assumed in obtaining the symbolic conductance equation (30).
This is equivalent to introducing the cross-term, A)\]-e(AX/X), into
conductance equation.

The terms of the symbolic conductance equation (30a) are now
known, and the equation in the form presented by Onsager and Fuoss in
1957 can be written. Two additional terms have since been recognized

and evaluated, however, and the writing of the explicit conductance

equation will be postponed until after their discussion.

E. Recent Modifications of the Onsager Equation

1. The Kinetic Effect

As discussed above, an applied electric field produces an asym-
metric distribution of ions of opposite charge about a chosen central
ion. There is, in essence, a larger number of atmosphere ions "behind"
the central ion so that thermal motions will cause the central ion to be
struck from behind, more often than from the front, by these ions (9).
The result is an increase in the velocity of the central ion. This effect
is described by a small virtual force in the direction of the field or as
an osmotic pressure on the reference ion which moves it with the field.

The osmotic pressure 7_7:, due to the field, is given by equation

(118).
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o 0 ’
M= (ny, - ny, ) kT = (5 - f5y / ny) kT {118)

If the approximation f, = f,,° + F,, is used, the pressure is

T = F, kT/n, (119)

The force on the central ion, due to this pressure is found by integrating
_7Tover the surface of a sphere of radius a corresponding to a region into
which no ions can penetrate.

The resulting force, AP, in the direction of the field is

K*a® (b - 1)

AP =X | 55 ]

(120)

The conductance equation (30a), with the inclusion of this effect, becomes

A= (N -aA) (1+ AX/X + AP/X ) (121)
The AP/X term is clearly linear in concentration through x?a®.

2. Einstein Viscosity Correction

It has been shown above that the electrophoretic term A/\e is
inversely proportional to the viscosity. Similarly, if an isolated ion
obeys Stokes Law, _/\_0 has the same dependence. It is concluded then

that
N\~ 1/n

The original model used in conductance theory considers the
solvent as a continuum. At finite concentrations, an ion moving with
the field through the (assumed) structureless solvent will ""'see'' ions
of opposite charge as obstacles to be passed if it is to continue its
course. This effect can be treated as a correction to the viscosity (11).
The Einstein viscosity expression (25, 26), serves to evaluate this

correction.

n=mno (1 +59/2) (122)
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where
n = '"'solution" viscosity
no = solvent viscosity
$ = ion volume fraction

The volume faction is given by

_ 4mR3 (NC ) =
90" 3 1000 -

where N is Avogadro's number and c is the molarity of the ions which

Fc (123)

contribute to this effect. Since, in reality, many ions are not much
larger than the solvent molecules, Fuoss recommends that only '"bulky"
ions (such as quaternary ammonium cations) be considered as ''contributing"

ions.

The problem of distance parameters is again introduced. Consistent
with the choice made in the velocity field terms, the value R= a is taken.
The effect of this term on the calculated conductance is, in some cases,
much larger than is generally supposed. The eifect of the value of R on
the course and shape of some phoreograms (1) (plots of Nvs. c‘l"‘—) will be

shown in Chapter 4.

3. The Effect of the Relaxation Field on the Electrophoretic Term

In the discussion of the electrophoretic effect, it was noted that the
assumption that the force per atmosphere ion in a spherical shell about

a central ion is given by e;(X + AX) leads to the cross-term (A)\ie)(AX/X)

in the conductance equation. If, however, the atmosphere is represented
as a charge cloud, as is the case, Dye (27) has taken the view that the
correction to the force e;:AX should not be treated as constant but as a
function of r and @. The term AXis regarded as shielding of an ion by
its atmosphere and changes as r and 0 are varied. This effect can be
expressed as a correction to the cross-term and is, of course, very

small. Using the asymmetric potential for point charges (28) to obtain

AX(r, € ), the cross-term correction is shown to be
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- 1 (Ay) (AN%) (AX/X) | (124)
where
e Ka
A, = S5—  Eil(1+a) xa] - Ej[2 Ka]

(125)

F. The Complete Onsager Conductance Equation and Its Limitations

The complete conductance equation may be written in the form

A (A - AN L) 1+ AX/X + AP/X)
- (l1+Fc)

(126)

Values of A may be calculated using the various expressions for the
terms of (126) given above. A more convenient expression is obtained

by expansion of this equation. The relaxation field through the terms Lo
and A;' contains several transcendental functions all of which are related

to the function
oo

Ei(x) = [ (e ¥ t)at (127)
For small values ofix, this function may be approximated by

Ei(x) = [ -lnx+x... (128)
in which r= 0.5772. Using this approximation and

(l+Fc)'' = Fec (129)
the conductance equation may be written
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