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ABSTRACT

An outline of the Onsager theory of conductance is presented as an

introduction to the study of this difficult treatment.

Higher order concentration dependent terms of the electrophoretic

effect, which are neglected in the usual treatment, have been evaluated,

using a digital computer, for 1-1 salts in water and in 10% to 70%

dioxane-water mixtures. Significant differences are found to occur

between the Onsager and the extended electrophoretic expressions.

These differences increase rapidly with decreasing ion size and with

decreasing solvent dielectric constant.

The electrophoretic calculations are applied to equivalent con-

ductance data in several dioxane-water mixtures for tetraisoamyl-

ammonium nitrate and tetra-E-butylammoniurn bromide taken from the

literature. For these data it is found that deviations from the Onsager-

Fuoss conductance equations, which previously have been attributed to

ion-pair formation, can be interpreted instead using two constant dis-

tance parameters; the minimum distance of approach, and the cation

hydrodynamic radius. It is concluded that much of the deviation from

theory, heretofore ascribed to electrostatic aggregation of ions, arises

from an incomplete treatment of the‘model used rather than from

physical phenomena which cause the model to be inaccurate. The pro-

gram developed to compute the electrophoretic higher terms is also

applicable to other charge types.

In addition to these theoretical considerations, experimental data

are presented for aqueous solutions of tris-(ethylenediamine) cobalt

(III) chloride: transference number values obtained by the moving

boundary method and activity coefficients determined from the electro-

-motive force of concentration cells with transference. Deviations from

the predictions of theory occur for both ion mobilities and activity co-

efficients .
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PART I

THE ELECTROPHORETIC CONTRIBUTION TO EQUIVALENT

CONDUCTANCE USING THE COMPLETE EXPONENTIAL

DISTRIBUTION FUNCTION: 1-1 SALTS IN

DIOXANE-WATER MIXTURES

I. INTRODUCTION
 

Solutions of ionOphores (1) or ”strong" electrolytes consist of

ions dissolved in dielectric media. The electrical conductivity of

such solutions clearly indicates that the ions are free to move more

or less independently. For completely independent ions, the equiva-

lent conductance should be independent Of concentration for a given

electrolyte and solvent. Actually this quantity varies markedly with

concentration. This behavior has been the subject of intense experi-

mental and theoretical study for over sixty years.

The modern theory Of electrolytic solutions is based on the

interionic attraction theory Of Milner (2) as formulated by Debye and

Hiickel (3). According to this View, coulombic forces between ions

cause any Chosen reference ion to be surrounded by an excess of ions

Of Opposite charge, and this ion excess can be treated as a uniform

charge cloud or ”atmOSphere. " Using the Debye-Hii.c1<el theory

together with statistical and hydrodynamical considerations, Onsager

(4), and Onsager and Fuoss (5) pr0posed a general theory for irrevers—

ible processes in electrolytic solutions and derived a limiting expression

for the equivalent conductance as a function Of concentration and other

pertinent variables. The recent extension of this theory by these

same authors (6, 7, 8, 9) has resulted in an expression which accurately

predicts the conductance of symmetrical salts under conditions which

satisfy the physical and mathematical assumptions and approximations.

 



 



Rather large differences between observed and calculated con.»

ductances appear when the theory is applied to solutions whose solvents

have low dielectric constants. Following the idea of Bjerrum (10) who

postulated the existence of non-conducting "ion-pairs, " Fuoss (11, 12)

has extended the range of utility of the theory.

The Onsager-Fuoss treatment does not take into account the

possible dependence Of conductance upon higher powers of concentration

than the first. It is demonstrated in this thesis that complete neglect

Of higher order terms, even at very low concentrations can be extremely

hazardous and can indeed lead to very questionable conclusions regarding

the nature of certain solutions. This is shown by an extensive study Of

the higher order terms of the electrophoretic correction to conductance

for symmetrical univalent salts in a variety of solvents. The significance

of these terms for the case Of unsyrnmetric electrolytes in water has

been pointed out by Dye and Spedding (13).

A nurnberyefxcellent reviews and expositions of the many-faceted

develOpment of the theory ionic solutions are available in the literature

(14, 15, 16, 17). Accordingly only a brief account Of the most recent

contributions to the theory Of conductance will be presented.

II. THE INTERIONIC ATTRACTION THEORY

OF CONDUCTANCE

A . Introduction
 

The equivalent conductance (M) of a given type Of ion in solution

may be defined as the current, at a potential gradient of one volt per

centimeter, produced by one gram equivalent Of the ion. The ionic

equivalent conductance is simply related to the average ionic velocity

2 through the average mobility Ej by the equations

Ij = 96, 500 uj (l)



 



and

7.3 2 23/300 x (2)

where X is the electric potential gradient in volts per centimeter. The

total equivalent conductance (A) or simply the equivalent conductance

is Obtained by summing ionic conductances over all types Of ions in a

given solution.

/\ : E IJ- 2: (96, 500/300 X) 2. VJ. (3)

J J

The central problem in conductance theory is, therefore, to find the

average ionic velocities through the statistical equations Of motion.

In order to find the average velocities it is necessary to know the dis-

tribution of the ions relative to one another and the electrical potential

at any point in the solution. These quantities, together with the hydro-

dynamic equation Of continuity are sufficient to derive the Onsager

conductance equation.

The Debye—Hiickel model and the resulting distribution function

and electrical potential between ions are used as a starting point and

the average ionic velocities are found by considering the perturbing

effects Of an external electric field. From the Debyea-Hiickel concept

two major factors affecting conductance are recognized: the electro-

phoretic effect and the time Of relaxation effect. A third effect, kinetic

in nature, has recently been recognized by Onsager (9). Before dis-—

cussing these three terms, the treatment Of Debye and Hiickel for the

equilibrium case will be briefly presented.

B. The Equilibrium Distribution Function and Potential
 

The general interionic attraction theory initially assumes that

known numbers of hard spherical, uniformly charged particles are

present, in a ratio preserving charge balance, in a dielectric medium.

This medium is assumed to be structureless and now-interacting.



 



The average configuration Of the entities in such a solution can

be described by an average distribution of the ions. Since the

equations of motion for the system are ultimately desired, the logical

choice for this description is the time average distribution. A reference
 

volume element Of the solution, located in space by the vector :1 from a

fixed origin, is considered to contain, on the average (over a

"sufficiently" long period of time), Ej ions of type j. A second volume

element, located by :2 from origin and :21 from the reference element

then contains an average of 2] ions Of type i and the desired distribu-

tion function is defined by equation (4).

._.S

fji : njnji(1‘1, 1'21) (4)

The quantity Eji gives the number Of i—ions per unit volume at the

distance _r_12 from a single reference or "central" j-ion. This distri-

bution of _i_-ions about a central ion is called the ionic "atmosphere. "

Since Eji has this meaning, the symbol _f_ji is read as the time average

distribution of _i_-ions in the vicinity of _n_j central j-ions. An expression

similar to equation (4) may be written for fij: the distribution of j-ions

about central i-ions, and since material must be conserved in the

system equation (5) must hold.

A .3. _) __\

fji : njnji (1'1. 1'21) = fij = ninij(r2, r12) (5)

For the equilibrium case (denoted by superscript zero) Debye and

Hiickel assumed that the quantity 351 is governed by the Boltzmann

law and is given by

0 O

nji : ni exp[— Uji/kT] (6)

o

where Uji is the potential energy Of an i-ion when it is located in the

solution at a distance r12 from a j-ion, andlii is the average concen-

tration of i-ions computed assuming completely uniform distribution.



If the approximation

0 ~ 0

. . . . 0 . .

15 made, where 2i Is the charge on an Ion Of type 1 and Wj Is the time

average electrical potential at a distance r21 from the j-Iiion-ifor the un-

o

perturbed system, the equilibrium distribution function fji’ can be

written as equation (8).

f3: = njni exp[meiKij/kT] (8)

The expression (7) is known as the linear superposition of fields approxi-

mation and is tantamount to assuming that a partially complete assembly

of i_-ions about a central l—ion will not rearrange as the remainder of

the atmosphere ions are brought into place. It is this assumption which

seriously limits the range of validity of the final Debye-Hiickel expression.

The Poisson equation from electrostatics relates the electrical

potentiallgto the charge density p through the dielectric constant}?

according to equation (9).

V“? =-4wp/D (9)

For the case at hand the charge density may be written in terms of _n_ji°

p = 347 njiei (10)

A series Of straightforward substitutions gives a second order non-linear

differential equation in the potential w-O.

v Wj - -(4 IT/D)213 niei exp[-ei\yj /kT] (11)

NO general solution of this equation is known. Furthermore it is mathe-

matically InconSIStent In that equation (7) requires that ‘11- be a linear

function Of 21’ while equation (11) is linear in_e_j on the left hand side



and exponential in_e_j on the right hand side. These difficulties may be

circumvented by expanding the exponent in equation (1 l).

O
O o .

v2 \Ijj : (41T/D) .2 niei “€in /kT) — 1/2(°i\Ijj /kT))‘ + . . .] (12)

1

The leading term of the expansion vanishes Since electrical neutrality

. requires that

2 me = O (13)

If the condition

einO >>kT (14)

is met, the terms in equation (12) other than the first may be neglected

and one may write

vzvj°= K2 41." (15>

where

[41T Z n eff;-
DkT i 1 1

 

K (16)II
I

It should be noted that K has the units Of reciprocal length and is pro-

portional to the square root of the concentration through nj. Because of

the symmetrical nature of the equilibrium distribution, on depends

only on}; = I 321]. The general solution of equation (15) is then

Kr
Be

2 +
I‘ I“

  

-Kr

0136 A8 (17)

. . O .

The boundary condition W- ——-> O as r ——->oorequ1res that B = 0. To

maintain charge balance, the total charge outside the central j-ion must

be equal and opposite to its own charge. This statement may be

formulated as



 



00

-ejzaf 41Trzpdr (18)

where a is the distance of closest approach of the ions. A comparison

Of equations (9) and (15) gives

p : .. DKZ ij/4‘IT (19)

Combination of (18) and (19) with equation (15) yields

°° JCr

ej = ADKZ’I e r dr (20)

a

Integration of this expression serves to evaluate the constant A as

A = ej e [ca/DU + Ha) “=5 ej/DH (21)

The final expression for the potential then becomes

0 . e'e Ka e m xr

wj 2' I L” I “7“" (22)
D(1 + Ma)

The physical significance of l_(_ can best be illustrated for the simple

case in which the ions are considered as point changes (a 2 0).

Equation (22) becomes, upon expansion of. the exponent

\IJ-O 5:5 e-/Dr .- e- jC/D
J J J

This is the simple expression for the potential due tO two point charges

fj and :ej, at distances _r_ and (_1_[_)_(,_) from origin. Accordingly, (1_/_I_£,_)

has been called the "radius" of the atmosphere. A more refined

analysis shows that the charge density is a maximum at this distance.

A useful form Of the distribution functionfjio can be Obtained by

expansion of the exponential equation (8) using on from equation (22)

Ha - Kr 2 aka -_2xr

_ egeie . e .+ eiei e . . e

DkT(l + Ka) r 2D1€3T2(1+ Kay! r2

O

fjl ‘-‘-‘ njni [ I
 
 

(23)

This expression for the equilibrium distribution. function is the one used

by Onsager in his treatment of the conductance problem.



 



With these background considerations completed, a discussion of

conductance theory itself will now be presented.

C. The Form of the Conductance Equation
 

From a qualitative discussion of the two major effects considered

by Onsager, the conductance equation can be written in symbolic form.

This result helps to clarify the logic of the detailed development.

If an unsymmetrical force, such as an electric field, is applied

to a solution Of an electrolyte, the average velocity of all ions of a given

type becomes non—zero. An ion, which is "wet” by the solvent, moving

through a solution will drag solvent with it. The ions of opposite charge

in its atmosphere “£3.11 be moving in the Opposite direction and will, in

effect, be moving against a local solvent flow. The effect is reciprocal

and the net result is a lowering of the average speed Of all ion types.

This is known as the electrophoretic effect...
 

A second effect is produced when the external force is an electric

field. The tendency of a given central ion and its oppositely charged

atmosphere to move in opposite directions leads to an asymmetric

distribution about the central ion. A finite time (the ”relaxation time”)

is required for the atmOSphere to build up and decay about the moving

ion. The net result may be pictured as an excess of oppositely charged

ions behind a given ion. This effect can be treated as a small restoring

force opposite in direction to the applied force. In the case of conductance,

the applied force on an ion is just the product Of the charge of the ion

and the potential gradient 3:. The small restoring force is described

in terms of a correction to the field, AX, called the relaxation field.
 

A symbolic conductance equation may now be formulated. If a

force _I:_(j were applied to an isolated j-ion in a solvent, the ion would

. .5

assume a velOCIty v-.



 



Here (3.1 is the reciprocal of the coefficient of friction of the ion. In

the case of conductance the force is given by equation (24)

Kj = eJX (25)

In a solution of many ions, the average force felt by the jnions is

(X + AX)eJ- and the average velocity is

\rj 7:: VjS “I' (X 'I" AX)€jwj
(26)

where the term ijs is the retarding velocity of the solvent in the

neighborhood of the juions which results from the electrophoretic

solvent drag by atmospheric i-—ions. The above velocity expression is

easily converted to an equation for equivalent conductance through

equation (3) to give

_ 96, 500 AX 96, 500

,~— ‘37.?“ “I 32') 'ej'wj ‘ m “738' (37’
A

Since the solvent velocity (113) depends upon the velocity of ions of

type _i_, which in turn depends upon the field (X + AX), the last term

on the right may be written as

AX96,500 IVisI _)

X300 X' (28)

 

= AXje (1 +

where AkJ-e is the electrophoretic contribution to the conductance. If

only nonwinteracting j—ions were present in the solution (an infinitely

dilute solution) the equivalent conductance would be

0 96,500

)‘J " 300 lBJWj (29)

o . . . .

where Xj is called the equivalent conductance at infinite dilution.

Equation (27) may now be written as

AX

N = (A "5(— ) (30)

0 8

J '“AXJ)(1+

J

 

 



 



10

or, for all types of ions in the solution

/\ 2 (A0 .. AA.) (1+- 9515-) (30a)

The explicit evaluation Of the electrophoretic term .A_/§e, different

from that of Onsager, is the major concern of this work. The

derivation of an expression for the relaxation term (AX/X) is both

difficult and lengthy. Accordingly, only an outline of the Onsager pro---

cedure will be presented here. For anyone seriously interested in

the details it is recommended that the following presentation be regarded

as an introduction to be read prior to the study of the original papers of

Onsager and Fuoss and their amplification by Fuoss and Accascina (19).

 

D. The Onsager Conductance Equation
 

1. General Approach
 

A

In order to find the ionic. velocity X)" and from. this the equivalent

.m-b

conductance, it is necessary to find Vi the local solvent velocity,
”‘11

.x

and the relaxation field AX. The first Of these quantities, v55,

8’

involves

the solution Of a hydrodynamic problem and may he found either by use

Of Stokes Law (an integration treatment) or through the general hydro~

dynamic equations of motion (a differential treatment).

The relaxation field AX is more difficult to evaluate. This field
 

is obtained from the negative gradient of the asymmetric potential W)-

evaluated at the surface of the ion, or more properly, at the distance

of closest approach of the ions

AX = — (VWIa (31)

It is assumed that the potential function Wj can be written in terms

of an asymmetric distribution function iii through a Poisson equation

analogous to equation (9, 10). In order to find fji? a general expression

A

for 3,11 the velocity of an imion relative to that of a neighboring jwion is
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written. This expression contains _fji and Ejs (which can be evaluated

by hydrodynamic equations). The final link in the chain is provided

by the equation of continuity which relates E31 andiji. Solution of the

resulting differential equation with suitable boundary conditions givesiji.

Integration Of the Poisson equation leads to the evaluation of the potential

\f- from which the relaxation field AX is easily found.

The general expression for the relative velocity v~ may be written.
jI

as

_: .5 A .5. .4.

mm. r...) = vase...) + «(K31 ., kTV. 1n f,.) (32)

where

._S

Vjs : the solvent velocity in the neighborhood

“’i : reciprocal of the coefficient of friction of ions of type i

Kji = total force on an inion in the neighborhood of a jmion

The last term on the right of equation (32) arises from the Brownian

motion of the ions which tends to restore symmetry to the ionic distriu

bution. It was this term which was overlooked in an early attempt by

Debye and Hiickel (20) to solve the conductance problem. The subscript

on the gradient operator is due to the use of two volume elements with

different sets of coordinates in defining the distribution function. A com-

.3

pletely analagous expression for Vij, the average velocity of a j-ion near

an i—ion may be written,

ViJ-(r... 1'12) = VisII'1)+ ijKij - M V. In 11,) (32a)

It is assumed that the distribution functions and potentials may be treated

as the sum of a symmetric part (denoted by superscript zero) and a

perturbation term (denoted by primes) due to an external force. '

I
O

fji :: fji + fji

\IJj ‘3 \I/jo + \Ijj' (34)

(33)
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The asymmetric (primed) quantities are then related through PoiSSOn

equations , for example

8

qu/j. = - (4 Tr/D) 2 ii; ei/nj (35)

i=1

The total force Rji can be specified in terms of external and internal

forces.

7
“

.Aji : ei X 1A - ei vzwi' (a) «=- ei v2 W3“ (:1, 1:2!) (36)

The first term on the right is the external force and is chosen to have

only an 3: component (i is the unit vector in the x direction). The

second term represents the force on an imion due to its own atmosphere

and third term is the force on the iuion due to the neighboring j-ion and

the atmosphere of this j-ion. The symmetric part of V2 Wfla) cancels

out since it represents a balanced force and can produce no net motion.

Combination of equations (32) and (36) gives

A.)

Vji(rz, r12) : VjS (1.2) + wi[eix L. "° ei quji' (a) *- ei V2Wj(rlr21)

wkT V2 ln Fji] (37)

_> A .5

A companion expression for Vji (r1 r21) may also be written. To relate

the relative velocities and distribution functions, the hydrodynamic

equation of continuity for stationary states is used in the form

V2 - (f

When integrated, this is merely a statement of charge conservation:

__\ v _\

the net flux of charge through the system is zero for a system in a steady

state. The complicated expression which results upon combination of

equations (37) and (38) may be greatly simplified by' using the Onsager

symmetry relations. If the solution as a whole is fixed in space, the
 

potentials and distribution functions can be described by the relative

.3

distance between any chosen pair of ions. Accordingly r1 is chosen as a



 



l3

._3

new origin and the system is described by the vector r.

.3

r1 3 O

.3 A .3

1‘ 3* r12. ~ a 1"2.1

.3 .3

r2 '5 1° (39)

Since the applied field is in the x—direction, the perturbed potentials

and distribution functions will be symmetric about the x-axis and can

A

be written in terms of the variable r without complication:

411' (5:) 2 1% (3‘?)
.3 .. A

iii. (‘1’): “‘ iij’ (17°)

fji' (r) 2 fij' (’1')

.3 .3

fji’ (r) - fij' (r) (40)

The operators can also be simplified:

V: V2: - V1

V1~ V: V. V. V2 (41)

The array of terms which arises from the combined equations (37) and

(38) are then taken pairs-wise (one from each of. the two terms in equation

38 and simplified by the symmetry relations (40) with the aid of equations

(39) and (41). Further, all terms which are quadratic in the field are

neglected; for example, terms such as :7; . Vf’ and X ( gi—

Terms which are completely symmetric such as fovwme no

effect on the asymmetry properties and therefore vanish. Assembling

all the terms, the continuity equation may be written in the form of

equation (42).
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X (eiwi - ejooj) ( bfjiO/a x)
Tx

.. kT(wi + wj)v2 fji' Tk

- fjio(eiwivz%' - ejijZq/i' Tg

: (eiinWj' _, ejwjv Vi.) . ijio
Tg

+ fji'(eiwi' V2 Wjo + eij-Vz Wjo) Tg

+ (eiwiva'o + ejwjvwio) ' iji' T

" [eiwiW'(a) - eij-VLVj'M) ] °ijio Ta

0

+ (vis - Vjs)°iji TV (42)

 

The column of symbols on the right indicates the origin of the terms in

the nomenclature of the original paper (9‘). The terms 2X are called

the field terms; :k: the Boltzmann terms; '_I‘_v, the velocity field terms;

I

and la, the terms containing VW (a) . The remaining terms

are designated by Eg°

The quantity which is ultimately sought, the relaxation field, will

be given by

 

. a

AX=-v\y(a)=—< ax) (43)
a

Dependence upon x only arises for the conductance case since the dis-

tribution function and potential are axially symmetric with respect to

the direction of the field.

2. The Boundary Conditions
 

Inspection shows that equation (42) is a fourth order non-linear,

non-homogeneous differential equation in the asymmetry potentials it,

since the quantity 23' appears and_f' itself is proportional to V235. .

The solution of the differential equation therefore requires four boundary

conditions. Three of the conditions are simple electrostatic requirements:
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1. The field of the central ion must vanish at infinity

5‘?” _.

‘7?“ *000

2. The potential must be continuous across the boundary at r = a '

\Pj' (a-o) :Wj' (a +"l/o)

3. The-field strength-must be continuous at _r_ = _a_

(M) = (a?)
Bra-o a

 

a+o

Thetfourth conditionis hydrodynamic in nature and while simply stated

is very. complicated when put into usefulmathematical form:

4. The radial components of the relative velocities of any two

ions must vanish on contact

A A .5 .3 _s

[(fijVij-fjivji).r]a
(Y. r)a:0I

“

By further defining the function Z(r) by

.3 .A .3

Z(r) = (Y- r) /x = IYI /cos-9 (44)

This condition may be stated as a scalar equation.

Z(a) = O (45)

Tobe of use, equation (45) must be expanded in the same manner as

was the equation of continuity. A complicated eight-term. expression

.3

v.

.15 and

. . 0 . .

containing i , _f_¥ and 11: as well as the local solvent veloc1t1es

A

lie-results. The second and third (electrostatic) boundary conditions

may be conveniently combined. .If the ions are considered as conducting

spheres, thenfor r_< a the asymmetric part of the solution of the LaPlace

equation (V2 Wj ‘= 0) gives

Wj'(a-o)=|Brcos-9|a_o=[r 35““!111'3'] o (46)
a-
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Rearrangement with use of the second and third conditions

[Wj' (a — O) = W1” (a + 0)] gives equation (47)

- D‘Vfi
[r a?) _ 

W3" ] a + o I: O (47)

The four boundary conditions may be summarized by the three

equations (48)

(AWj' / bl“) = O

[1' (AW/JV 31") a Wj' la '~‘ 0

Z(a) :: O (48)

3. Order of Terms and Method of Solution of the Continuity

Equation

 

The differential equation (42) has been arranged so that the terms

of higher order in the charges are collected on the right. The reason

for this division can be clearly shown only after an approximate solu»

tion is obtained. Initially it assumed that the primed potentials are

proportional to the first power of the corresponding charges. Since

ijio starts proportional to eiej the terms on the right are all of
~

order ale-3 e.e,3 e-3e. , The last term on the left is of order as
1 J a l j 7 1 l 1 J

and is assumed to give the leading term of the solution. The problem

 

is now specified to a solution of a single electrolyte giving only two

kinds of ions. Accordingly let .i_:=_l; j -_: _2_ Equation (42) can then be

written as

X(elwl ‘ 62.902) (ale/ 5X) " kTWl + Q32)V2 £21t

‘ f210(61‘91Vz Wz' " ezwzvzW1') '3 2 Ti (49)

1

where 2 T1. denotes the higher order terms. An approximate solution

_.L___‘

for the asymmetric distribution function is then found ignoring the

higher order terms. Let
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W2' 2 $2 + P2 (50)

and

f 21' 2 F21 + 821 (51)

where (\Ipand E are the first order approximate asymmetric potential

and distribution function obtained by solution of equation (49) without

the terms 23 Ti‘ The contributions of these terms are denoted byp and

_g_ respectiv'éTyT—The potentials and distribution functions are assumed

to be related by Poisson equations:

V2 q}, : —4 n Fu/D nl (52)

and

v2 P2 = " 4 1T gal/D n, (53)

From equation (49) making use of equation (52) and rearranging terms,

the differential expression to be solved for F21, the first order approxi-

mation to the distribution functions, becomes

 

4w f 0 e 2w e Zoo
2 21 1 1 2 2

o

X(€1w1 '“ e2992) afzi
 

( ) (54)
kT (031 + (02) 3x

Having obtained 521, the potential W2 is found by solution of the

Poisson equation (52). Differentiation of _2 gives the first order approxiu

mation to the relaxation field, g1 . Then, the expression for {‘21 is

substituted, with equation (51), into the differential equation (49) keeping

the higher terms Ti. This gives a differential equation, the solution

of which is g2]. The potential B; is then found from the Poisson equation

(53). A correction to the first order relaxation field is then obtained

from 22- A glance at the form of the higher terms (shown in equation

42), clearly indicates that the second order solution is not easy to find.

The method actually used by Onsager consists of splitting_g21 into four
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parts and treating each part as a separate problem. Further comments

about the higher-order terms will be reserved until after the first

order solution is set down.

4. First Order Approximation to the Distribution Function

and Relaxation Field

 

 

To obtain the first order solution 15:21 from equation (54) it is

necessary to know £210, the equilibrium distribution function. The com-

plete function was derived above and is given by equation (8). Onsager

and Fuoss, in stressing consistency of the order of terms, used the

expanded forms of £330 given by equation (23) to various degrees of

accuracy. For example, for the derivative term of equation (54), two

terms of_f_210 are used:

.. X.

£210: n1n3(1 _ eleze I'/,U.DkTr) (55)

where

(u. a (1+ Xa)/e 34a 8 (56)

To this approximation ( bfmo/ ax) ~ el and the term of the right of

equation (54) begins prOportional to 312. The second term of the left

is already proportional to e12 so that in this term, the approximation

0

£21 :1, nlnz (57)

is used. Making these substitutions and the electrical neutrality

requirement (equation 13), equation (42) to first order reduces to

XI

 

 

2

2 2 _, 111317 X a e“

VF21‘7F21"‘["T41THT][—ax( r )] (58)

where

4

'Y2 = C12 X2 =[ Tr l [nielzwl + nzezzwz l (59)
DkT( 0.)} + (Dz)
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Subject to the first boundary condition (fig/Vb r) :2 0, this equation

has the s olution:

  

__ nlelqzx A erxr Ae" yr

F21 _ [41Tka(l_qZ)] [ 6X ( I" .. I" )] (60)

Substitution of this expression into the Poisson equation (52) and sub-

sequent integration gives the potential

 

W elezng a [ e“ xr Ae—yr + B ( 1 1 )1
: ———-—-———-2— a , — ——2- .. ——z-

uDkT(l-q) 3x x; r 'y\2r r y X

(61)

where A and B are constants of integration. Since this solution contains

 

the charges only as the productm the solutions for “If! andEare

identical and are denoted by W. The combined form of the second and

third boundary conditions serves to evaluate A_ in terms of B The

constant B is obtained from the fourth boundary condition in which

higher-order terms are neglected. The relaxation field is found from

the relation

AX = «- VX'Qfla) = ~ (3‘17 3 x)a (62)

For the simple case of point charges (a 2: 2) A and B are both unity.

The field for point charges, 9350, is given by

   

AX = [ elezqzx ] Lim [ e'-Kr'(1 + Kr) _ e ”719(1 + yr)

0 DkT(l - q?) r——) o 34,2 r3 yz r2

+ l l ]

TS"— "' T?

V r x r (63)

. " I“ '“ I' ' .

Expan31on of the factors e X and e 7 to order re, and taking the

indicated limit (triple differentiation of numerator and denominator)

leads to

Axe __ (318qu X.

x ‘ 3DkT(1+q) (64)

This is the classic result obtained by Onsager in 1927 and is usually
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written as

3:: 1

AYXO = - o. C T (64a)

where c,“ is the normality of the solution and a is a constant.

For the case in which the ions are represented by hard Spheres with

minimum distance of approach a, the constants A and B of equation (61) are

complicated functions of )ca . From equations (61) and (62) an expression for
 

AX for this model is obtained. The result may be expressed as a correction,

-AX0A1, toythe solution for point charges. Accordingly" _A_1 is defined by the

r elation

AX =.- AK, (1 — A1) (65)

 

So that

A1 = 1 — (AX/Axe) (66)

The ratio (AX/AXO) is found to be

 

l

AX 1+(E)(1+q)[1_
+xa]

AX 3 2 b

0 (1 + Na) P3
(67)

where

b : lelegl /aDkT

(68)

and

P3=1+qxa+ qZK/zaZ/3
(69)

The quantity 9.1 may be written

xa(1+q-) xa(1+q) )6?‘ a2 2

A : ..__...___._. _.__._..._.... r—-—---—-- + 3 70

1 p3(1 + K8.) pr3 P3(1+){a) [C1 Cl/ ] ( )

At this point Onsager and Fuoss Specialize to the case of symmetrical

electrolytes, for whichq_‘2 : 1/2, and to the approximation that

(1 + 6g)/3 (1 + g) 251 , The expression for 91 can be written in the much
 

simpler form of equation (71).

A1: Ka(1+q) (1+b) /2 bp3 (71)
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It should be pointed out that with equations (65) and (70), the relaxation field

to first approximation may‘ be calculated for any electrolyte charge type.

The result is consistent to terms of order E. The quantity of interest

(flC) can now be written to first approximation as

AX] €16qu (1 '- A1) * “.1?
-——- : ‘ :2 - l -

X 3DkT (1 + q) a C ( A1) (72)

 

5. The Second Order Approximation to the Relaxation Field
 

The second order approximation to_fji' and AX1X is now found by

returning to the continuity equation (42), (49) including higher terms.

Substitutions of equation (51)

f21‘ = F21+ 821 (51)

into equation. (49) gives a differential equation in gm. Expansion of the

higher terms, _T_i leads to a multiplicity of inhomogeneous terms of unknown

order insofar as they will effect the solution of. the equation. An ingenious

method of classifying these terms was devised by Onsager and Fuoss. It

consists of writing the unknown solution of the differential equation in gal

as a product of an unknown dimensionless function E and a determinable

power of ii. The part of the complete solution which will result from each

n .

term can then be expressed as K U where n 1S the lowest power of )6
 

which will appear in the solution from the term in question. When the method

is applied to the single inhomogeneous term retained in the first order solu-

tion, it is found that Ellvfl. For the second order solution all terms

which give iii are retained and those giving .5152 and higher are neglected.

The terms Ii, when examined in this manner, are all of order l_6_:. This

justifies the initial separation of terms according to equation (42). It should

be noted that while this procedure separates terms of higher order, no

information is obtained concerning the relative magnitude of. the terms.

When the distribution function in the EL terms is expressed as (£21 +821):

all the terms in 821 are, by definition, of higher order in M than those in F31
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and may be neglected. This tremendous simplification has the effect of

changing the form of the equation to be solved from

V2321 - 72521 = § 61 (1”,COS 9) (73)

in which the C'i are unknown functions, to the form

V2821 “‘ 72821 3 213 'F‘i (1‘, COS 9) (74)

in which the W1 involve only known functions of the variables evaluated
 

through the use of F21 and?. The equilibrum distribution function is

again used in various approximate forms, the number of terms used always

being one more than was used in the corresponding location in the first

order solution. It is important to note that this requires retension, in

one instance, of the quadratic term in the distribution function. In all

cases, the equilibrum potentials are represented by the Debye-Hiickel

expression.

If the radial functions 1121(r) and E (r) are defined by

F21(r,0) = h21(r) cos -G~

”FR, 9-) = E (r) cos 9 (75)

The expanded equation in 821 is

vngI " 72821 :

 

  

 

 

  

  

2 2 ~2 Kr

1" n,.,., 7 X —-"> (——2——e ) (T )
8nDuzsz2 ax r x: gB

-Xl” .. )cr

_ elezyze F21 _ elezxze F21 (T )

uDkTr uDkTr g, 823

2 - K r
d+ nzez.’Y [ ( e )l [Q—i] (T , gas)

41TukT dr r C) x g

._ Kr

._..._._..elez [.9— (8 )][__a_.}}.é_1. (T a)

uDkT dr r O x g: 829

Z .1413

_ nzez’Y d 8 BE

(41"ka ) [ dr ( r )] [ bx ]a (T3,, g8.)

.. )(r

nlnzelez (V13 " V35) Cl e .

+ [ HDkTTZ(wl + .02) 1 [ dr .( m1.) 1 (TV. gv) (76)
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The boundary conditions applied to this equation becomes

VPJ(°°) -‘-‘ 0

[r bpj/ 6r - lea: 0

Z'(a) = O (77)

The function girl) is obtained from the expression for Z(r) in the same

manner in which the differential equation for _g_21 was obtained from the

continuity equation.

Rather than attempt to solve equation (76) directly for gm, Onsager

and Fuoss have devised a method whereby the result can be obtained from

the particular solutions found for certain groups of inhomogeneous terms.

They therefore divide gal into the sum of four terms.

821:8B+82,3+ga+8v £233 gj (78)

The first symbol to right of the inhomogeneous terms of equation (76)

indicates the origin of the term in the continuity equation (’31) and the

second indicates the part of __g_21 to which each term gives rise.

The problem then is divided into four simpler ones. Rather than

finding the potentials £1 from Poissan equations in_g_j and differentiating

to get the second order parts of the relaxation field (£335), the latter are

found directly from the boundary conditions. In order to find the solution

gv, it is necessary to first find the radial components of the local solvent

velocities 391‘ and X21” These quantities also appear in the boundary

condition [Z' (r)]a .

6. Solvent Velocities and the Electrophoretic Effect
 

It may be well, at this point, to recall that Vis is the velocity produced

in the solvent at a distance _1; from an i-ion by a j-ion, and that these veloci—

ties have come into the equation from the velocity field terms.
 

(Vis ' V fij - Vjs fji)
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3

When reduced to the single variable r, and the problem is Specified to

i = 1, j = 2, these terms are denoted by

(V... - 1?...) vle

These solvent velocities describe the very important electrophoretic

effect as well as being necessary for the evaluation of part of the relaxa—

tion field. Insofar as electrophoresis is concerned, a rather simple

method based on the integration of Stokes Law in differential form is

sufficient. This method is presented later.

In order to find suitable expressions £0133”. and 37:21. for use in

finding the potential gv and the part of the relaxation field 935v: it is

necessary to start with the general hydrodynamic equation of motion

.3

nvzv :VP‘F (79)

where

n = Viscosity

R7 2‘ solvent velocity at distance}: from a selected ion

p '3 pressure

F = volume force (force per unit volume of solution)

The ionic subscripts are dropped for convenience. A scheme for separat-

ing the pressure and force terms of equation (79) is then devised. Since

the solvent velocity must satisfy the continuity equation,

V°?= 0 (80)

equation (79) may be written as

.3.3

nVXva=F-Vp (81)

By defining the axial vector if by

7):: V(V u) ~-v?‘u-é (82)

.J .3

and constructing Vx VX v in terms of u, equation (81) becomes



 



25

—-\ .3

vzvz u -- V(V°VZ u):F-z Vp (83)

The form of equation (83) allows the identifications

.3 .3

VZVZ u = F (84)

V(V"Vz :3) = Vp (85)

The problem is now reduced to findingii from a knowledge of F . The

.3 .3

desired quantity, v, is then constructed from u according to equation

(82). Since the force may be expressed as

.3 .3

szpi

where E , the charge density, is approximately given by the Poisson

(86)

equation

9 - (D/4w1VZ‘V" (87)

The differential equation inu- becomes

_3 .3 .

17217Z u = ~-<DXi/4n)V‘\(J° (88)

A part of W0 is due to the central ion and part is due to its atmosphere.

It is expected that the resulting velocity, 3, will contain a term describ»

ing the local disturbance of the solvent due to the central ion as well as

the comparatively long range effect of its atmosphere. In relation to the

relaxation field, the use of the equilibrium potential W0 is justified since

the solvent velocities enter as a part of the second order solution (gv),

and ‘1' would lead to an even higher-order term. The effect on the

elect-irophoretic term is negligible by hypothesis since this leads to a

term which is quadratic in the field.

Integration of equation (66) gives

3 .3 .5

V2“ 2 ~(DX 1/46 W0 +172 w (89)

.3 .3

where v2 w is the general solution of the homogeneous equationvzv2 u z: 0.
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Through rather subtle reasoning concerning symmetry and boundary

.3 .3

conditions, it is concluded that the vector land V2 w may be disregarded.

The potential W0 is then Split into two terms representing the contribution

from the atmosphere

.- .. KI'
WA ~ (e/D) (e /}.1r =- l/r) (90)

and one representing the central ion

WC 2 e/Dr (91)

_> .3 1

The solutions EA andmuC are found from equation (89), and the velocity

.3 .3 3

vector X 2: V9. + vc is constructed according to equation (82). The

.3

integration constants that appear from the solution for 11A are found by
A —

requiring that uA and its first derivative be continuous at r : a

d" d"
U‘A UIA

(‘6?)aw o _ (‘3'?)a+o (92)

, A. f 3

ne w c n n 1, " e r u on i- eren it 1... ‘ .' :15: u v ,O of the t o o sta ts d sapp a S p d ff t a 1on or cor ‘r ct A

.3

and its evaluation is not necessary. The solution tie is found by requirr»

.3.

ing the disappearance of the radial component of 11C at I. s R, where

.—

is the hydrodynamic radius of the ion. The radial component of the

solvent velocity in the neighborhood of an ion is simply found from the

.33 A

relation VI. = r1 . v (where r1 is the unit vector in the r direction) and is

__Xecose

~ 4177)

 Vr [2(1+ )ca +X2aZ/2 + )(3 a3/6]

2e x,(a ' Iu)(1 ~ )Cr) RZ
no

SK} rT(1+-)(a) 3r”

 

(93)

In the 1957 treatment of Onsager and Fuoss (8), the hydrodynamic radius

R is, very reasonably, set equal to _a_/_E , thus eliminating an added dis-

tance parameter. A more recent modification by Fuoss and Accascina

(19) uses R 2: _a_._. This seemingly contradictory choice comes about through

.3

a consideration of the expression for v evaluated at r :2 a.
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Xe 5. 3 1 274, —> . 1
R2

... _— .. _——_._———- 4: : -—— . —-—-,,

4m) [ 6a? + 2a 3(1+ )4 a) ] ' r1 [cm a ( 2a 2.19) ]

 

v(a):

(94)

.3

Since one of the boundary conditions used to obtain v requires the

radial component to vanish at}: :2 a and cos 9 not always zero, it must

be concluded that 13. r: a in order that the radial term of equation (94)

vanish unequivocally. This same requirement can be shown to be mathe-

matically necessary in several similar ways. While this result is

operationally satisfying, physical justification necessitates a modification

of the model. If it is assumed that the kinetic entity called a "free ion"

is really the ion plus a solvation sheath (22), the dilemma can be rationale

ized by allowing that the solvent. molecules are "squeezed out” upon

contact of the ions so that two solvated ions of radii RJ' and R1, upon

 

contact, have a minimum distance of approach a-L+ ai r: a .. If ai .-_-. ai 2 a/2
 

and if the solvation sheath is assigned a thickness 3.12, the desired

result R 7: a is obtained. This explanation is not altogether satisfactory

since it requires a "thicker" solvation Sheath for larger ionsuma condition

which is hardly a general truth'. It should be pointed out that this difficulty

arises from the boundary condition which requires the vector E to have a

continuous derivative at _r; 2: 3 (equation 71). The only alternative is to

require continuity at _r_ = I: and to proceed under the aesthetically distress-

ing circumstance of requiring two distance parameters. Fortunately it

turns out that the value of I: used in the relaxation term affects the final

calculated conductances only slightly.

If it is conceded that R r: a, the xucomponent of}; (a) (equation 94)

becomes

 

Xe XeJC

6nn(lV(a) : 61Tna _ + Ka) (95)

This expression gives the velocity of the solvent at the surface of the

ion, which must also be the velocity of the ion itself. The first term is
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just the velocity of an isolated ion of radius I: 2 a as given by Stokes Law

; ._E_
61m R (96)

The second, concentration dependent, term must then be a slowing effect

produced by other ions in the vicinity. This is exactly the description of

the electrophoretic effect given previously; hence the second term of

equation (74) is identified with the electrophoretic velocity correction

_. .. X e}(,

VS ‘ 6m (1 +){a) (97)

The contribution to the equivalent conductance becomes

ij: —96500le-I . H.

1800 n n 1 +Ka (98)

For the simple case a 2 0 (point charges), the correction may be written

—96500 le~|x _ 96%
.2 ———————.J— = _ .

m) 1800 n n 51 C (99)

This is the limiting form obtained in the original Onsager treatment (4)

while the result expressed by equation (98) is used in the new treatment.

A different derivation of the electrophoretic correction, based on

Stokes Law is presented below in section (8) of this chapter.

Having obtained the expression for the radial component of the local

solution velocity (equation 93), the part of the relaxation field due to these

and other terms of higher order in the continuity equation are found.

7. Higher Terms in the Relaxation Field
 

The final step in the evaluation of the relaxation field is the solution

of equation (76) for second order correction to the asymmetric distribution

function g“.

Integration of the Poisson equation (53) would give the corresponding

potential p2, from which the higher order correction to the relaxation

field could be found. As described above $21 is divided into four parts
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according to equation (78), and each part is found separately. Rather

than integrating the Poisson equation gj in Ej and to expressions for pi,

and then differentiating to find A38, a method was devised whereby the

parts of the relaxation field were expressed directly in terms of the

boundary conditions and particular integrals of equation (76). The details

of the method have been presented by Fuoss and Accascina (23).

The results are summarized by the following formulae:

A353 : -(ele2;c )[ cha 1 1+K,a T2

X 3DkT .p.<1+xa)2][ 8' ‘ T + 7r] (100)

T2=Tr[(2+q)Ka]

 

 

 

 

 

 

 

x 00 —t X

Tr(x) '2 e f e /t r: e Ei(x)

x

AX — e e g, b J-(a g__A : .J...§.._ 3--— 1 l

x [3DkT 13,353 (1 +1973 ] [q 3 ] ( O )
1

81661 82x2 aZ 2714a ’02 32
:: -—-—— “—— : 1

1

__ 2712a 16‘ a":
pa -- 1+ "-7—— + 4

AX; 3 : - [6132.“ [bjta _§5(}(a) ]
(102)

x 3DkT P2P3(1 Heal)Z
'

1

_ 22- 9-9 3P3T2 p’l?p3T1 - - - T0§5_ 16 +T+T - Pl-Pz-P3‘4—

2 2

P1 : 1+ 16a + K:

To =- Tr(JQa) = eKa Ei (JCa)

T, 2 Tr[(l + q))<a]

Since each of these three terms contains the factor AXO, they are

conveniently combined

AXB + AXa + AXZ, 3 : AXoAz (103)
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The value of A; is then

 

 

l

_ b(l+g)j£a 2711-3 . 1 _

A2 '7 [ (1+)‘aTZ' ][ 24 P2P3 + 4132 + F (Ka)]

'- magma
2p»Z (1+ )Ca) (104)

where

F (1(a) = (7 T2 1" P1T1 ’ 4P1-P2T0)/8P2

It should be remembered that this equation (104) is valid only for sym-

metrical electrolytes (qz 2 1/2). The relaxation field, except for the

part due to the velocity field, may be written as

$.1—

3(— = G. C 2(1- A1 + A2) (105)

The part of the relaxation term due to the velocity field (using 5 2 a)

is given by

 

 

 

 

1

gv .. [abKZ
][13+3'ZT+ M]

X - 61m (1 + K802 (<01 + C02) 48 p’2 2‘

Xza
_ _

106

[361W P2(1+)<a) (“1+wz) ] ( )

=:=—L

Factoring the quantity (3 C 2/ A0 1

where

1/(8l + .62) = 96, 500 |e|/300 A0 (107)

and

.,1 . 1
96,500 e + Ie I x

(3 c 77: (Bufiz) c T: 1830'“? Z) (108)

one obtains

1

AX": bica [13+3-2T,r F(Ka)]

X (1 +Ka)z 96:92 4

:kl

- [ 14a ] “"11“";3C T

 





31

The term in braces is defined as A3'

 

so that

1

TI

AXX : A3 if?)
(1093-)

The complete relaxation term is expressed as

X >;< l

A—X : (1C T(l+A1—A3+ BA3'/C1/\o) (110)

Further discussion of this expression will be reserved until after an

alternate treatment of electrophoresis is presented.

8. The Electrophoretic Effect
 

The electrophoretic effect is usually treated by the following method

based on the integration of Stokes Law.

Consider a volume element, (iy, near a central j-ion. The number

of ions in excess of the stoichiometric average is

s

23 (nji — ni) dV

i: 1

and the net force on the volume element is

s

i r: 1

Similarly, the force on a Spherical Shell at a distance _r_ from the

central ion, and of thickness _d_r_, is

S

dF : 411 r2 X 12; 1(njiei - niei) dr (111)

This force is in the direction of the field and is distributed evenly over

the surface of the shell. According to Stokes Law, the force d_F_‘will

cause the spherical shell to move with a velocity _d_\_r, Opposed to the

directionoznotion of the central ion.

dF

61an (112)

 dv=

The solution inside the shell will then move with this velocity also,
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imparting it to the central ion so that dv : £113- . To obtain the total

decrease in velocity 933- equation (92) is integrated from the distance

of closest approach a to infinity. Combination of equation (111) and

(112) gives

2X
00

AVj : 3? 31“ r ? ei (nji «- ni) dr (113)

or, Withfifii obtained from equation (23)

 

. . .3 K8” 00

Av. = 2X63 ( T n1e1)e f e - Kr dr

J 3n DkT (1 +x.a) a

 

Xejz (E7 niei3)eZKa ‘3? e-axr

 

 

3n[.DkT (1+Ka)]2 a “—17“- ' (114)

The integration yields:

Avj : _ 2)“? niei2)ej + X i? nieirs) [ e-e Ka E" 2

3nDkT (1+)(a) 3n . DkT(1 +1611] 1( Ma)

(1151

In the cases treated by Onsager, the presence of the second term is

purely formal; for point charges it was ignored as being small and

for symmetrical salts it vanishes because ei : "ej and Z; nieiz‘ = O.

- - 1
 

Using the definition of 5— given by equation (16), the first term gives

Avr-EL

J 61177 (1+Ka) (116)

which is seen to be identical with the relation obtained above (equation 97)

in the discussion of the velocity field.

The correction to the equivalent conductance is given by equation

(98) and is repeated here for clarity.

AX-e 2» -96, 500 1(3le

(1 +Jca) (98)

 

J
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For two kinds of ions, the expression is

"96,500 (1311 + 1821 )K

4,1

“‘7.-
1+.)Ca -[3c /(l+,l(a)

(117)

 

l
l
l

AAe=

It will be noted that in equation (111) the force on each i-ion was

taken to be 313;. Stokes and Robinson (24) have pointed out that it should

be more correct to use ei(X +. AX) since the force actually felt by the ion

is the external force 8.135. diminished by an amount fl because of the

relaxation effect. This leads to the conclusion that m~(x + AX)

which was assumed in obtaining the symbolic conductance equation (30).

This is equivalent to introducing the cross-term, ije(AX/X), into

 

c onductanc e equation.

 

The terms of the symbolic conductance equation (30a) are now

known, and the equation in the form presented by Onsager and Fuoss in

1957 can be written. Two additional terms have since been recognized

and evaluated, however, and the writing of the explicit conductance

equation will be postponed until after their discussion.

E. Recent Modifications of the Onsager Equation
 

l. The Kinetic Effect
 

As discussed above, an applied electric field produces an asyrn—

metric distribution of ions of opposite charge about a chosen central

ion. There is, in essence, a larger number of atmosphere ions "behind"

the central ion so that thermal motions will cause the central ion to be

struck from behind, more often than from the front, by these ions (9).

The result is an increase in the velocity of the central ion. This effect

is described by a small virtual force in the direction of the field or as

an osmotic pressure on the reference ion which moves it with the field.

The osmotic pressure TI, due to the field, is given by equation

(118).
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O 0 ,

TT : (n12 ‘- n12 ) kT : (£21 " £21 / n1) kT 2‘118)

N

_

If the approximation f2, ._ £210 + F21 is used, the pressure is
 

77' = F21 kT/nl (119)

The force on the central ion, due to this pressure is found by integrating

Fover the surface of a sphere of radius a corresponding to a region into

which no ions can penetrate.

The resulting force, £13, in the direction of the field is

2a2 (b - 1)

APZXV‘ 12b ]

 

(120)

The conductance equation (30a), with the inclusion of this effect, becomes

 

/\= (N - A/\e) (1+ AX/X + AP/X ) (121)

The AP/X term is clearly linear in concentration through K2212.

2. Einstein Viscosity Correction
 

It has been shown above that the electrophoretic term AAe is

inversely proportional to the viscosity. Similarly, if an isolated ion

obeys Stokes Law, A0 has the same dependence. It is concluded then

that

/\~1/n

The original model used in conductance theory considers the

solvent as a continuum. At finite concentrations, an ion moving with

the field through the (assumed) structureless solvent will "see” ions

of opposite charge as obstacles to be passed if it is to continue its

course. This effect can be treated as a correction to the viscosity (11).

The Einstein viscosity expression (25,26), serves to evaluate this

correction.

n = no (1 + 5 SV/Z) (122)
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where

n "—' "solution" viscosity

solvent vis c osityl
.

T70

30 2 ion volume fraction

The volume faction is given by

,_ 411113 NC 2

9°--'—3—(m) " Fe “23’

where 1_\I_ is Avogadro's number and 2 is the molarity of the ions which

contribute to this effect. Since, in reality, many ions are not much

larger than the solvent molecules, Fuoss recommends that only "bulky"

ions (such as quaternary ammonium cations) be considered as ”contributing"

ions.

The problem of distance parameters is again introduced. Consistent

with the chpice made in the velocity field terms, the value 11: a is taken.

The effect of this term on the calculated conductance is, in some cases, .

much larger than is generally supposed. The effectof the value of R on

the course and shape of some phoreograms (1) (plots of Avs. 613') will be

shown in Chapter 4.

3. The Effect of the Relaxation Field on the Electrophoretic Term

In the discussion of the electrophoretic effect, it was noted that the

assumption that the force per atmosphere ion in a spherical shell about

a central ion is given by ei(X + AX) leads to the cross-term (AkieHAX/X)
 

 

in the conductance equation. If, however, the atmosphere is represented

as a charge cloud, as is the case, Dye (27) has taken the view that the

correction to the force e-IAX should not be treated as constant but as a

function of 3; and Q. The term éXis regarded as shielding of an ion by

its atmOSphere and changes as i and 2 are varied. This effect can be

expressed as a correction to the cross-term and is, of course, very

small. Using the asymmetric potential for point charges (28) to obtain

AX(r, 6 ), the cross-term correction is shown to be
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- 1 MM (Axe) (Ax/X) I (124)

where

e K8.

A+= 1 Ei[(1+<:.1) wal-Eflzxa]
‘q

- ' (125)

F. The Complete Onsager Conductance Equation and Its Limitations
 

The complete conductance equation may be written in the form

A = ( /\0 - AAe) (1+ AX/X + AP/X)

( 1+ F c) (126)

Values of A may be calculated using the various expressions for the

terms of (126) given above. A more convenient expression is obtained

 

by expansion of this equation. The relaxation field through the terms A;

and A3' contains several transcendental functions all of which are related

to the function

00

Ei(x) = f (e’t/t)dt (127)

. x

For small values of 5, this function may be approximated by

Ei(x) 3:" r-lnx+ x . . . (128)

in which F: 0.5772. Using this approximation and
 

(1 + Fe)" 3 F c (129)

the conductance equation may be written

*1 a}: :k a): 0

/\ =/\°- Sc T+Ec logc + Jc -F/\ c (130)

where all terms of orderij and higher have been dropped. The

expressions for the constants S, E, g and E are summarized by Fuoss

and Accascina (29). The first two terms of equation (130) give the Onsager

limiting law . The higher terms give theoretical justification for the long-

standing practice (30, 31) of fitting conductance data with empirical terms

of the form Dclogc and E2.
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The conductance equation (126, 130) is completely consistent to

terms linear in the concentration. Higher order concentration dependence

is ignored. The results are limited to solutions of completely dissociated

symmetrical salts. Mathematical approximations limit the range of

applicability to values of xa < O. 2 or approximately 0. 1 normal for 1-1
  

electrolytes in water. This limit is also physically reasonable since the

representation of the ionic atmosphere as a charge cloud certainly becomes

invalid at higher concentrations. The equation contains at least two para-

meters, _/_\_O and the distance of closest approach a. The relationship

between the hydrodynamic radius R, and _a_., should be clarified by extensive

studies of viscosity effects as suggested by Stokes (32).

G. Ion Association and Conductance
 

The idea of ion-association was first suggested by Bjerrum (10) as a

means of explaining observed deviations from the Debye-Hiickel expression

for activity coefficients. The postulation of an equilibrium caused solely

by electrostatic interactions between "free" ions and neutral ion—pairs

according to the scheme

(3+ + A” $3.. (chr A')°
V‘

leads to an expression for the association constant K
 

K: (1- v) /c 72,; (131)

where l is the fraction of ions which are free and _f_ is the ionic activity

coefficient given by the Debye-Hfickel expression. The activity coefficient

of the neutral species is assumed to be unity. Bjerrum obtained a theo-

retical value for If. by considering the probability of finding an anion in a

spherical shell of thickness _<_i_r_ and radius 3 around a reference cation.

The resulting expression for the association constant is

4TrN

K 2 1000
(ab)3 Q(b) ' (132)
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where

Q(b) = 21)— {e2 - 131(2) + Ei(b) — (eb /b)(l + l/b + 2/b2)} (133)

andb has been previously defined by equation (68) as 18132.,1 /aDkT .
 

This expression suffers from the mathematical necessity of considering

ions which are not in physical contact , (less than the distance ab/Z apart),

as pairs. Furthermore it predicts abrupt cessation of ion pairing at a

critical value of the dielectric constant. For large values of b

b
3

v 4w a N . e

V

1000 b

 

(134)

Using a thermodynamic approach, Denison and Ramsey (33) and Gilkerson

b

(34) conclude that E is proportional to e_ . The Gilkerson expression is

= [G exp (--ApS/kT)]eb (135)

where G and A are constants and P3 is the dipole moment of a solvent

molecule. The quantity Aps represents the difference in solvation energies

of the ions and the ion pair. In a mechanistic treatment, Fuoss (35) has

also reached the conclusion that

K ~ e .

The application of the concept of ion pairing to conductance is

obvious. The concentration termsin the Onsager expression refer to ion

concentrations. The presence of a pairing equilibrium means that the

average concentration of ions is less than the stoichiometric amount and

>1:

that c everywhere, except in the viscosity correction, in the conductance

equation should be replaced by the ion concentration ci ='.,*yc The

observed conductance for 1-1 electrolytes where c = _c_ , is given by

A: y A calc or in the expanded form of equation (130)
 

 
A“ Ao-Scj—+Ecilogci+Jci-KcifzA(1+Fc)

1+Fc (136)
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Unfortunately, the theoretical expressions for I_{_ prove to be unreliable.

For solutions of low dielectric constant, the best numerical values are

given by the Bjerrurn equation (132). However, recent careful exami-

nation (12) has shown that IE is more nearly proportional to e: than31:_[_b .

As a result the ion pairing constant is now treated as a parameter chosen

to give the best fit to the data. Fuoss (36) has outlined several graphical

methods for the selection of the parameters _/_\ 0, a, and E of equation

(136).

It should be noted, that through the linear superposition of fields

approximation, (equation 7), only approximate expressions for the ionic

potential and distribution function are obtainable. If. exact expressions

were known, and the model of nonmpolarizable spherical ions represented

real ions accurately, there would be no need for consideration of ion

pairing. Since, in reality, ions _a_5_e; polarizable, the introduction of ion-

pairing equibria must be considered to represent in part real phenomena

and in part a device to hide inherent mathematical inadequacies.

In the hope of bringing to light the effect of some of the mathematical

approximations, the following study of the higher terms of the electro-

phoretic effect is presented.

III. The Effect of Higher Terms in the Distribution

Function on the Electrophoretic Effect for

1—1 Salts in Dioxane-Water Mixtures

 

A . Introduction

When the Onsager equation is applied to aqueous solutions of multiple-

charged ions or to nonaqueous solutions of univalent ions, large discrepa-

ancies between observed and calculated values of conductances often occur.

Much better agreement was obtained for aqueous solutions of certain

multivalent ions, whose activity coefficients obey the Debye-Hiickel equation,
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when the complete electrophoretic effect was employed by Dye and

Spedding (13). This treatment of electrophoresis uses an exponential

distribution function. Since the extended Onsager expression for the time

of relaxation effect is specialized to symmetrically charged ions, it seemed

desirable to study the complete electrophoretic effect for symmetrical

salts for which a suitable account of the relaxation contribution to con-

ductance may be taken. Accordingly, an examination of the magnitude of

the higher terms of the electrophoretic effect of "uni-univalent" salts

in dioxane-water mixtures has been made and is presented after a brief

rationale of the Dye~Spedding treatment.

B. The Extended Electrophoretic Effect
 

1. The Exponential Distribution Function
 

Onsager (37) has shown that the statistically correct expression for

the equilibrium distribution function fjjo is

fjio 2 njni exp [ .... Ujio/kT] (137)

where Ujio is the timeHaverage energy required to charge an iwion at a

distance r from a j wion, less the time average energy required to charge

the i-ion at an infinite distance from the j—ion (but still in the solution).

The linear superposition of fields approximation

Ujio = 61 Wjo (7)

gives

fjio = ninj [8Xp(~-ei\|/j°/kT) 1 (138)

It is not until the Poisson equation (11) is used to obtain Wjo that it be-

comes mathematically necessary to expand the exponent in equation (138).

Consistency requires the retension of the first two terms only.

fjio = ninj [142:in 0/1<T] (139)
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A comparison of the forms of equation (137), (138), and (139) suggests

that much of the difficulty may lie in the use of the Poisson equation rather

than in the linear superposition of fields "approximation. " It should be

emphasized that the latter is a statement about time-average energies and
 

time-average potentials, and while instantaneous values may differ greatly,
 

the time average potential energy Ujiu may be very closely approximated

by equation (7). The Poissan equatgn, on the other hand, is known to be

valid only for static systems and may also be regarded as an approxima-

tion when applied to non-equilibrium processes in electrolytic solutions.

While these statements do not really help the mathematical situation, the

conceptual distinction allows one to adOpt the best (even though approximate)

 

expression available for the energy Iii-i0. This "best" expression is

obtainable through the Poisson equation.

e - Kr

Xa

0 _‘ . .0 2.: 6.8.6

Ufi “‘aqh Dflixa)° r u4m

For point charges

Ujio : eieje' 'K'r/DI‘

which, as r becomes small, approaches the simple expression for the

pairwise energy between two charges:

U .
,0

J1
———> eiej/Dr as r—> 0

a a f n

Comb1nation9equat1on (140) and (137) give the "complete” distribution

function

a ..

eje,elc e Kr

"Dkfu+xa)° "“r ]

 f~0 = n-n- exp [)1 13 u4n

An alternative argument for the use of this expression has been made by

Kirkwood (38) who pointed out that, while the Poisso :1 equation may be

an incorrect ex ression for the second derivative of the otential 2 -°,p p V'Wfi

the resulting value of the potential itself may be only slightly in error.
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It is interesting to compare the exponential distribution function

(equation 138) and the linearized form (equation 139) with the function

fjio Z? ninj exp [ - eiej/DrkT]

which was used by Bjerrum (19) in his treatment of ion pairs. Figure l

is a sketch of the radial function (fjiO/ni) 4 1T r2 for various distribution
 

functions. The plot refers to a 1-1 electrolyte at _c_ = O. 01 with the contact
 

distance a z 4. 0 I? . It is clear from the figure that the linearized function

ignores a large interaction force between oppositely charged ions at closed

distances. The Bjerrum function accounts for these forces at small

distances but diverges at large values of _r_. The exponential function,

however, gives the correct limiting behavior at both large and small dis—

 

tances. It is this distribution which is used in the Dye—Spedding treatment

of electrophoretic theory.

2. Formulation of the Electrophoretic Term
 

In the preceding treatment of the electrophoretic effect, the expression

for the ionic velocity correction due to this effect is given by equation (113)

2x:°°
Av- 2 —— r .... . . 11J 3% [gnfl n11e11dr 1. 3)

The correction to the conductance is, then

96 500 °°
Ahj :2 m af 1' |_ Ei(nji - ni)ei ] dI‘ (14:2)

Using the value of 9.11 given by the exponential distribution function

(equation 141) (Eji = fjio/nj) , one obtains

0° . K‘a - Kr
Ax- : 96, 500 f e e-e

- r Zn~e- ex --1r ~—-—-—
J 450 n a 1 1 1[ p( DkT(LH%a) r

 )--1] dr

(143)

For convenience, the following quantities are defined:

 P =- Jacr

x 2: )ca

e.'—‘-Z-€
1 1
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where e is the charge on the electron and Z1 is the signed number of

charges carried by an ion of type_i_.

Equation (143) then becomes

x ~p

96 500 e 52’ e
u 2 —,—~ l I l n I m- 0 —— - 1

AM 450 77 2 XI P? nle1 [ exp(ZIZJ DkT(1+fa) p ) ]df3

(144)

00

For an electrolyte which dissociates into only two kind of ions according

to the scheme,

Z Z_

Mv+ Av,“ ———) v+M 1” + v_A

equation (144) may be specialized to

__ 96,500 0° 2 _p

+_ 4507,7“2 XI{n+e+f[€Xp(-vz+ P8 /p)_1]
Ax

+ n_e_P [exp (-Z+Z_Pe_p p ) - 1]} dp (145)

where E is defined as

P 22.. )(ex /DkT (1 + x) (146)

U sing the r elationships

 

n e : v+Z+ CNE n-e : v-Z_cNe

+ + 1000 " 1000 (147)

and

v+Z+ = -v_,Z_.

|v+Z+ I: I v-2- I (148)

where c is the stoichiometric molarity and N is Avogadro’s number, one

obtains

96,500 cNe v+Z+ 00

AN). 2 z " P

103.450nlvtZ xfp {ex}? [ "2+ P e ‘/‘O 1.

 

+ exp[ I Z+Zw I P8. 0/ p] dp

(149)
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The definition of M is given by equation (16) and may be written as

 

411,62 n-Z-Z" 41T€ZNC2- , .. , 2. 2

M " DkT § 11 “ lOJDkT [141+ IV-Z-] (150)

Combination of equations (149) and (150), making use of (148), gives

 

 

 

<><>

AX+ :: M fpiexp [ - Z+2Pe p/ p ] — exp [ Z+Z_Pe p/ M} dp

x

(151)

where

96,500 DkT

MS . .
1800 “IT 1’) 6 (12+) + ) Z_I) (152)

A similar expression foruA)\_ is

co

Ax_ :: M fp{exp [ - Z_2Pe p/p] -. exp [I Z+Z_I Pe p/p]} dp

x

(153)

Equations (151) and (153) are the final expressions obtained by Dye and

Spedding. These integrals are functions of the charge type, dielectric

constant, viscosity, temperature, concentration and, the minimum

distance of approach _a_. It should be noted that i appears alone through

the exponential coefficient E (equation 146) so that several values of an

integral can occur for a given xa .

3. The Evaluation of Extended Electrophoretic Effect for Univalent

Electrolytes in Dioxane-Water Mixtures

 

 

In order to evaluate the electrophoretic integrals (equations 151, 153),

a program was written for the Michigan State University MISTIC high speed

digital computer. A description of this program is given in Appendix I.

Tables 1 through 9 give the electrOphoretic correction 9A.? to the

equivalent conductance of. 1-1 salts in water and dioxane-water mixtures

from 10 to 70 weight percent dioxane. The dielectric constants and

viscosities are taken from several sources and have been summarized
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by Fuoss and Accascina (19)° The computational accuracy of the AAe
 

values is O. 004 conductance units. For 1—1 salts _.A_7‘_+: A__X.. = AAe/Z.

Because of the method used in computing these values, the single ion

conductances are accurate to i 0. 002 units. (See Appendix I.) The

extended term is compared with the Onsager electrophoretic term

1 .1.

((3 cT/1+)(a) and the ratio [AAeU +Ka)/(3 c2 ] is given for a series of
  

concentrations at each of several values of the distance parameter a.

Figure 2 shows the change in the ratio of the extended term AAe to the

1

Onsager term 8 c 271 + Ma with the square root of the normality for
 

various values of a in 60% dioxane (D =2 27. 21). Plots for the other

solvent mixtures exhibit the same features. In all cases for which values

were obtained, the extended term is larger than the Onsager term. The

l

T

 

ratio of the terms rapidly increases from unity at c =2 0 and passes

through a maximum in the neighborhood of )ca 7., O. 3_5.

1

Figure 3 is a plot of AAeU +}(,a)/(3 c 7 v_s_._ a_ for several values

 

 

1

of cTin 60% dioxane -- 40% water. The extended term becomes larger
‘

as a decreases. Evidently the ratio approaches unity as a approaches
_ 1 _

infinity. As a —>- O, the Onsager term approaches (3 7, while the

extended term and ratio become infinite. For the model of hard spheres

used in the theory, however, a can never be zero.

Figure 4 shows the increasing importance of the higher terms of

the electrOphoretic effect as the solvent dielectric constant is decreased.

1 1

The ratio AAe(1 +K,a)/(3 c T ‘E’ dielectric constant is plotted at _c_ 7' :
 

O. 07 for water (D = 78. 54) and dioxane—water mixtures from 10%

(D = 70. 33) to 70% dioxane (D :2 19. 07). Curves at_a_ values of 4. 0, 5.0

o

and 6. 0 A are shown. Below D 2: 7O (10% Dioxane), the curves increase

smoothly with decreasing dielectric constant. In the region 80 >D > 40 ,
 

(3 decreases since the drop in dielectric constant is overpowered by an

1

increase in the viscosity. As a result both [3 cT/(1+J(a) and AAe
 

decrease with decreasing D. The extended term decreases more slowly,
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TABLE 1

THE EXTENDED ELECTROPHORETIC CONDUCTANCE TERM

FOR 1-1 ELECTROLYTES AT 250C. :WATER

 

 

 

 

 

D = 78.54 0 2 0.8937 8 = 60.19 IO‘BJCN c = 0.3286

0 BR] C AA (1 +}(,a)

a N} C AA ___..__ e

e 1+)Ca. ‘3‘] c

.0 0.07 3.678 3.629 1.014

0.04 2.228 2 205 1.010

0.02 1.160 1,151 1.008

0.01 0.592 0.588 1.007

.0 0.07 3.764 3.702 1.017

0.04 2_258 2.232 1.012

0.02 1.168 1.158 1.009

0.01 0.594 0.590 1 007

,0 0.07 3.862 3.778 1.022

0.04 2.294 2.260 1.015

0.02 1.178 1.166 1 010

0.01 0.598 0.592 1.010

.5 0.07 3.914 3.818 1.025

0.04 2.313 2.274 1.017

0.02 1.182 1.169 1.011

0.01 0.598 0.593 1.008

.0 0.07 3.974 3.858 1.030

0.04 2 335 2.288 1.021

0.02 1 191 1.173 1.015

0.01 0.600 0.594 1.010

.5 0.07 4.040 3.899 1.036

0.04 2 361 2.302 1.026

0.02 1.197 1.177 1.017

0.01 0.602 0.595 1 012
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TABLE2

THE EXTENDED ELECTROPHORETIC CONDUCTANCE TERM FOR

1-1 ELECTROLYTES AT 25°C.: 10% DIOXANE-90% WATER

 

 

 

 

 

 

:D = 70.33 7): l 073 6 = 53.08 10-8)(fiJ c = 0.3275

g \f—C— AA BN1 C AAe(l+Xa)

e 1+)(a. 5N] c

7.0 0.07 3.224 3.202 1.006

0.04 1.958 1.944 1.007.

0.02 1.021 1.015 1.0052

0.01 0 522 0.518 1.003

6.0 0.07 3.308 3.280 1.072

0.04 1.989 1.968 1 010

0.02 1 031 1.022 1.008

0.01 0 522 0.520 1.003

5.0 0.07 3.400 3 333 1.020

0.04 2.023 1.992 1 015

0.02 1.038 1.028 1.009“

0.01 0.525 0 522 1.005

4.5 0.07 3.452 3.368 1 024

0.04 2.043 2.004 1.019

0.02 1.046 1.032 1.013

0.01 0.527 0.522 1.009

4.0 0.07 3.512 3.403 1.032

0.04 2.063 2.017 1.022.

0.02 1.050 1.035 1.014

0.01 0.529 0.523 1 011

3.5 0.07 3 581 3.439 1.041

0.04 2.089 2.030 1.029

0.02 l 057 1.038 1.018.

0.01 0.529 0.524 1.009
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TABLE3

THE EXTENDED ELECTROPHORETIC CONDUCTANCE TERM FOR

1-1 ELECTROLYTES AT 25°C.: 30% DIOXANE~70% WATER

 

 

 

 

 

 

I): 53.28 0 = 1.505 s 2 44.69 lo-tx/xlcz = 0.3286

6 1'1 KB. [3N] C

7.0 0.07 2.613 2.548 1.026

0.04 1.598 1.565 1.021

0.02 0.835 0.824 1.013

0.01 0.427 0.423 1.009

6.0 0.07 2.699 2.608 1.035

0.04 1.632 1.588 1.028

0.02 0.845 0 830 1.018

0.01 0.429 0.425 1 009

5.0 0.07 2.800 2 672 1.048

0.04 1.669 1.611 1.036

0.02 0.856 0 837 1.023

0.01 0.431 0.426 1.012

4.5 0.07 2.861 2.705 1.058

0.04 1.692 1.623 1.043

0.02 0.862 0.840 1.026

0.01 0 433 0.427 1.014

4.0 0.07 2.934 2.739 1.071

0.04 1.721 1.636 1.052

0.02 0.868 0.851 1.020

0.01 0.436 0.428 1.019

3.5 0.07 3.025 2.774 1.090

0.04 1.755 1.648 1.065

0.02 0.879 0.846 1.039

0.01 0.438 0.429 1.021
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TABLE 4

THE EXTENDED ELECTROPHORETIC CONDUCTANCE TERM FOR

1.21 ELECTROLYTES AT 25°C.: 45% DIOXANE-55% WATER

 

 

 

 

 

I): 40.20 0 = 1.830 8 = 41.17 10~fixyd c 2 0.4593

0 ___

a 51 c AAe (ix/c AAe(l+Ka)

1+xa F3x/c

6.0 0.10 3.458 3.227 1.071

0.07 2.578 2.415 1.067

0.04 1.562 1.483 1 053

0.02 0.808 0.780 1 035

0.01 0.410 0.400 1 025

5.0 0.10 3.700 3.348 1.105

0.07 2.720 2.482 1.095

0.04 1.620 1.508 1.074

0.02 0.824 0 780 1.056

0.01 0.414 0.402 1 029

4.5 0.10 3.858 3.411 1.131

0.07 2.812 2.518 1.117

0.04 1.656 1.521 1.088

0.02 0.836 0.791 1.057

0.01 0.416 0.403 1.032

4.0 0.10 4.064 3.478 1.168

0.07 2.932 2.553 1.148

0.04 1.072 1.534 1.109

0.02 0.842 0.794 1.068

0.01 0.420 0.404 1 039
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TABLES

THE EXTENDED ELECTROPHORETIC CONDUCTANCE TERM FOR

1-1 ELECTROLYTES AT 25°C.: 50% DIOXANE-50% WATER

 

I): 35.85 17: 1.913 8: 41.700 10-91/0 c = 0.48635

 

 

 

 

3. xi (2 AAe BN/C AAe(1+)€a)

1+Xa 5J7:

7.0 0.07 2.510 2.356 1 065

0.04 1.548 1.467 1.055

0.02 0.810 0.780 1 038

0.01 0.413 0 403 1 025

6.0 0.07 2.638 2.423 1.089

0.04 1.600 1.492 1 072

0.02 0.826 0.788 1 048

0.01 0.417 0.407 1 025

5.0 0.07 2.813 2.494 1.128

0.04 1.672 1.520 1.100

0.02 0.847 0.795 1 065

0.01 0.421 0.407 1.034

4.5 0.07 2.931 2.531 1.158

0.04 1.720 1.533 1.122

0.02 0.861 0.799 1.078

0.01 0.426 0.408 1.044

4.0 0.07 3.092 2.569 1.204

0.04 1.786 1.547 1.154

0.02 0.880 0.803 1.096

0.01 0.432 0.408 1.059

3.5 0.07 3.326 2.666 1.248

0.04 1.880 1.582 1.188

0.02 0.902 0.811 1.112

0.01 0.441 0.411 1.073
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TABLE 6

THE EXTENDED ELECTROPHORETIC CONDUCTANCE TERM FOR

1-1 ELECTROLYTES AT 25°C.: 55% DIOXANE-45% WATER

 

 

D: 31.53 17: 1.964 8: 43.37 10”8)(./\/ c = .51861

 

 

 

 

 

3 dc AAe wa?“ AA£U+)®J

1+}Ca fiN/C

7.0 0.10 3.457 3.177 1.088

0.07 2.626 2.417 1.086

0.04 1 625 1.513 1.074

0.02 0.852 0.807 1 056

0.01 0.432 0.418 1.034

6.0 0.10 3.714 3.303 1.124

0.07 2.787 2.489 1.120

0.04 1.693 1.540 1.099

0.02 0.869 “0.815 1 065

0.01 0 436 0.420 1 038

5.0 0.10 4.086 3 439 1.188

0.07 3.018 2.566 1.176

0.04 1.791 1.569 1.142

0.02 0.899 0.823 1.092

0.01 0.444 0.422 1.052

4.5 0.10 4.360 3.511 1.242

0.07 3.187 2.606 1.223

0.04 1.862 1.584 1.175

0.02 0.919 0.827 1 111

0.01 0.450 0.423 1.064

4.0 0.10 4.744 3.596 1.323

0.07 3.423 2.647 1.293

0.04 1.958 1.599 1.224

0.02 0.949 0.831 1.141

0.01 0.458 0.424 1.081

3.5 0.10 5.341 3.665 1.457

0.07 3.791 2.689 1.409

0.04 2.113 1.614 1.309

0.02 0.997 0.835 1.194

0.01 0.472 0.425 1 111
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TABLE?

THE EXTENDED ELECTROPHORETIC CONDUCTANCE TERM FOR

1-1 ELECTROLYTESAT 25°C.: 60% DIOXANE-40% WATER

 

 

D = 27.21 0 = 1.980 8: 46.24 10-8x/~/_c"= .55827

 

 

 

 

 

g. «\/c AAe [SN/c AAe(1+Ka)

1-+)Ga 8 0‘;

7.0 0.10 3.727 3.324 1.121

0.07 2.852 2.541 1.123

0.04 1.770 1.600 1.106

0.02 0.923 0.858 1.076

0.01 0.465 0.445 1.048

6.0 0.10 4.068 3.463 1.175

0.07 3.070 2.622 1.171

0.04 1.868 1.631 1.146

0.02 0.953 0.867 1.100

0.01 0.473 0.448 1.059

5.0 0.10 4.600 3.615 1.272

0.07 3.413 2.707 1.261

0.04 2.018 1.664 1.213

0.02 1.001 0.875 1.144

0.01 0.487 0.449 1.085

4 5 0.10 5.015 3.695 1.357

0.07 3.681 2.752 1.337

0.04 2.136 1.680 1.271

0.02 1.038 0.880 1.180

0.01 0.497 0.451 1.103

4.0 0.10 5.640 3.780 1.492

0.07 4.082 2.799 1.458

0.04 2.314 1.697 1.364

0.02 1.090 0.885 1.232

0.01 0.512 0.452 1.130

3.5 0.10 6.703 3.784 1.771

0.07 4.767 2.847 1.674

0.04 2.614 1.715 1.524

0.02 1.185 0.890 1.331

0.01 0.538 0.453 1.187

 



TABLE 8

THE EXTENDED ELECTROPHORETIC CONDUCTANCE TERM FOR

1-1 ELECTROLYTES AT 25°C.: 65% DIOXANE—35% WATER

 

 

 

 

D = 23.14 17: 1.962 0 = 50.60 10-8M/0—c: .60537

g. '\/—c_ AAe 80c AAe(1+x3-)

1+Ka W c

7.0 0.10 4.168 3.554 1.172

0.07 3.219 2.732 1 178

0.04 2.011 1.730 1.162

0.02 1.042 0.933 1.117

0.01 0.521 0.486 1.072

6.0 0.10 4.662 3.712 1.256

0.07 3.552 2.824 1.255

0.04 2.169 1.768 1.227

0.02 1.094 0.943 1.160

0.01 0.537 0.489 1.099

5.0 0.10 5.506 3.885 1.417

0.07 4.121 2.923 1.410

0.04 2.435 1.805 1.349

0.02 1.183 0.950 1.245

0.01 0.561 0.491 1.144

4.5 0.10 6.225 3.977 1.565

0.07 4.610 2.974 1.550

0.04 2.663 1.825 1.459

0.02 1.258 0.959 1.312

0.01 0.584 0.493 1.184

4.0 0.10 7.425 4.074 1.822

0.07 5.411 3.028 1.787

0.04 3.041 1.846 1.648

0.02 1.379 0.965 1.363

0.01 0.618 0.494 1.251
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TABLE 9

THE EXTENDED ELECTROPHORETIC CONDUCTANCE TERM FOR

1-1 ELECTROLYTES AT 25°C.: 70% DIOXANE-30% WATER

 

 

 

 

 

 

 

I): 19.07 77: 1.914 13: 57.11 10-%¢WJ<:: .66660

3 dc: AAe 80c AAeU+KM

1+X.a [3(5—

7.0 0.10 4.934 3.896 1.266

0.07 3.874 3 014 1.285

0.04 2.447 1.925 1.271

0.02 1 261 1.045 1.206

0.01 0.617 0.546 1 130

6.0 0.10 5.756 4.079 1.411

0.07 4.469 3.123 1.431

0.04 2.751 1.970 1.397

0.02 1.367 1 058 1.291

0.01 0.649 0.549 1 182

5.0 0.10 7.365 4.284 1.719

0.07 5.641 3.241 1.740

0.04 3.355 2.016 1.664

0.02 1.579 1 071 1.474

0.01 0.713 0.553 1.290

4.5 0.10 8.916 4.394 2.029

0.07 6.782 3.329 2.037

0.04 3.948 2.040 1.935

0.02 1.788 1.077 1.660

0.01 0.776 0.544 1.400
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Figure 2. The ratio of the extended and Onsager electrophoretic terms

versus the square root of concentration at several values of

a: 60% dioxane-40% water solution of a 1:1 salt at. 250C.
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Figure 3. The ratio of the extended and Onsager electrophoretic terms

versus a at several values of the square root of concen-

tration: {60% dioxane-40% water solution of a 1- 1 salt at 250C.
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Figure 4. The ratio of the extended and Onsager electrophoretic terms

versus dielectric constant for 1-1 salts in dioxane-water

mixtures at 250C.: '\/ c = 0.07; a = 4.0 B1,, 5.0 31, 6.0 21.
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however, giving a slight increase in the ratio. Below D2.“ 40 (45% dioxane),

the viscosity increase is less important than the decrease in dielectric

constant, and both terms become larger. The extended term increases

very rapidly in the region 40 > D > 20 (45 to 70% dioxane), giving rise
 

to the large slopes seen in Figure 4.

1

For a = 4. 0 X and CT: 0. 07 in 70% dioxane, the extended term is
 

more than twice the Onsager term-~a difference of 4. 5 conductance units

between the two values. This difference in electrOphoretic terms repre-
 

sents about 50% of the total change in conductance with concentration which

is usually observed with this solvent!

The differences in the magnitudes Of the Onsager and extended

 

electrophoretic terms having been established, some comparisons of

calculated conductances with experiment follow.

C. Applications and Conclusions
 

In order to test the utility of the extended electrophoretic correction,

equivalent conductances were computed with the aid of MISTIC according

to equation (154).

/\ 2 (/\° - AA...) (1 + AX/X + AP/X) - lAtAAejAX/X + AP/X)|

(1 + (10/3)11 N Rfc)

(155)

using AAe values from the above tables. The relaxation expression of

Fuoss and Onsager,

AX _- 3- % 0
-)-C --~ ac (1-A1+A2) —A'3 [Sc/A (156)

was employed. The expressions for _/___\.1 A} and 9'3 are given by

equations (71), (104), and (109). The kinetic term 93132 has been defined

by equation (120). The denominator of equation (155) represents the

Einstein viscosity term which corrects for the presence of ”bulky" ions

of hydrodynamic radius 12: and concentration _c_. The term

[ATAAGJAX/X + AP/XH is the correction to the cross—term discussed
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above. In the calculations discussed in this thesis, this term was never

larger than 0. 01 conductance units and could well have been dropped.

A description of the MISTIC program for the computation of conductances

is given in Appendix 11.

Before presenting a comparison of conductance values calculated by

equation (155) with some observed values, it is of interest to briefly note

the relative importance of some of the terms in the theoretical expression.

For illustrative purposes, partial conductance functions have been calcu~

lated for 60% dioxane-40% water as the solvent (1D 2: 27. 21) withl_\O 2 39. 75,

_a_ = 5. 0 A) at 3%: 0. 07 and 0. 04. Table 10 gives a summary Of these

calculations and the various functions are sketched in Figure 5. A com-

parison of the simple limiting law relaxation correction (Curve B),

A°(1 - a. CT), with the extended relaxation and kinetic effect function
 

A°(1 + AX/X + AP/X), (Curve E), shows that the simple function accounts

for nearly 75% of the change in conductance due to these effects. For

1

2fl: 0. 07 it is found that

- (AX/X + AP/X) : 0. 08685

The velocity field contribution to AXV/X is

AXV/X : 0. 00524

or approximately 6% Of the total. Under the conditions of this example,

the velocity field term increases the calculated conductance by about 0. 028

units. The change from E = flto R represents a change in conductance of

only +0. 004 units, so that no serious Operational difficulties are introduced

by this modification. The difference between the Onsager and the extended

electrophoretic contributions (Curves g and 2), while not extremely large,

is certainly significant. Curves 13 and 1:: show that the extended electron

phoretic term and relaxation-kinetic term contribute approximately equally

to the total calculated change in conductance. Curve A shows the viscosity

correction term for R r: 7. 5 X. This contribution increases rapidly above
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TABLE 10

CONTRIBUTION OF VARIOUS PARTIAL CONDUCTANCE

FUNCTIONS TO A CALCULATED PHOREOGRAM FOR

A 1:1 SALT IN 60% DIOXANE~40% WATER SOLVENT

 

 

D:27.21 /\°=39.75 21:50.8 R:7.5

 

Function AA N} c DA (A0 - A/V Description

 

 

/\°/(1+ 2. 5 9)) .07 39.. 33 0.42 Viscosity cor--

rection

(R:7.5X) .04 39.61 0.14

0(1 - c1 \/ c ) .07 37.26 2.49 Limitin relaxa—/\ g
. 04 38. 33 l. 43 tion correction

A0 — (N c /l+)£a .07 37.04 2.71 Onsager electro-

. 04 38. 09 l. 66 phore tic cor—

rection

A0 - AAe . 07 36.43 3. 32 Extended electro-

. 04 37. 73 2. 02 phoretic cor-

rection

A°(1 + 9% + 921—: . 07 36. 30 3. 45 Relaxation and

. 04 37. 49 2. 26 kinetic terms
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Figure .5. The contribution of several terms to the calculated conductance

of a l--l salt in 60% dioxane~~~40% water solution versus the

square root of concentration: a 2 5.. 0
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1

a radius value of Rt: 6. 0 18. At c T: 0. 07 the term amounts to about 0. 4

conductance units and cannot be dismissed as a small correction.

Conductance data for salts in dioxane-“water mixtures are available

in the literature. While limited in quantity, these data are of high quality

and, in general, are accurate to about 0. 01 conductance units. Martel

and Kraus (39) have reported values of the equivalent conductance of

tetraisoamylammoniurn nitrate (iwAm4NN03) in water and in 10% to 50%
 

dioxane-water mixtures. These data have been treated by Fuoss (12)

using the expanded Onsager equation (with R : a/Z) and including a con:-
 

sideration of ion pairing (equation 136). The data were fit with one con»

stant parameter (a 2 5. 83 A) and three variable parameters: R values of

7. 3 X in water to 8. 4 X in 50% dioxane (D 2 35. 85); association constants

 

from Lito 21.2.; and the best value of A0 for each solution. Conductance

values for this salt have been calculated for water, 10%, 30% and 50%

dioxane—water mixtures using the complete equation (155). All four sets

Of data can be reproduced using a variable A0 for each solvent mixture and

two constant distance parameters: a '1 4.. 50 X and E: 2 7. 50 28. Table 11

 

gives Observed and calculated values of /_\ for these cases. The "observed"

values were Obtained from large plots of the original data. A parenthesis

around the "observed” value at £217: 0. 07 indicates that a rather long

extrapolation was necessary. The average deviation for the twelve

compared points of water, 30% and 50%, is d: 0. 03 conductance units.

The deviation for 10% data is +0. 06 units, the calculated curve lying

slightly above the experimental data. The Fuoss treatment experiences

the same difficulty in that a larger association constant was required

for the 10% dioxane data than for the data in water. Figure 6 shows the

phoreograms for water and 1.0% dioxane. Similar plots for 30% and 50%

dioxane are given by Figure 7. The broken. curve above the 30% data

represents the calculated conductance values with I: :.- 0 . This curve
~1—

lies above ,the limiting law slope while the data are below. The importance  
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TABLEll

COMPARISON OF CALCULATED AND EXPERIMENTAL

VALUES OF THE CONDUCTANCE OF SOLUTiONs OF

i--Am4NNO3 1N DIOXANE-WATER M1XT11REs AT

250C.:a : 4.50 X; R : 7.50 X
_.‘

 

 

 

 

 

 

 

 

 

Water 10% Dioxane

D : 78.54 A0 : 89.30 D 70.33 A0 74. 55

" C Aobs. Acalc. "j C Aobs. Acalc.

0.01 88.45 88. 47 0.01 74.12 74.. 10

0.02 87.60 87.62 0.02 73.31 73.32.

0.04 85.79 85.85 0.04 71.69 71.73

0.07 82.95 83.06 0.07 69.09 69.25

30% Dioxane 50% Dioxane

D: 53.28 A0: 74.85 D2: 333.85 A0: 4255

4 C A0138. A calc. N/ C A obs. ACaIC.

0.01 53.34 53.33 0.01. 41.77 41.77

0.02 52.65 52.64 0.02 40.96 40.94

0.04 51.24 51.25 0.04 39.30 39.27

0.07 49.07 49.11 0.07 36.94 36.91
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Of the viscosity term is evident. At first glance, the distance para-

meters R = 7. 5 .8 and a = 4. 50 X seem rather contradictory. Molecular
 

models (Stuart-Briegleb type) show, however, that the outer radius of

the cation is about 7. 3 X. Further, the ion is not completely spherical

but a shorter anion-cation contact distance of about 3. 6 18 is possible.

If all anion-cation collisions are random, an average a of 4. 50 .8 is only

slightly smaller than one would expect. The "planer" nature of the

nitrate ion may cause some unusual effects.

A more critical test Of the conductance equation (155), using the

complete electrophoretic term, is provided by the data of Mercier and

Kraus (40) for tetraun-butylammonium bromide (BuéNBr) in water and

10% to 70% dioxane-water mixtures. The original analysis Of these data

by Fuoss (12) was performed in two parts. The data for 0% to 45%

dioxane were fit with a constant _a_ of 5. 5 X; variable association constants

from 0.6 to 3.16; and variable values of R from 6. 0 .8 to 7. 2 X. The data
  

for the same salt in 50% to 70% dioxane were fit with If values from 4. 6

 

to 103; Bwas held constant at 6. O .8 and‘_a_ varied from 5. 22 X to 8.12 X.

 

In a more recent analysis (41), using 3 = a in the velocity field term Of

3

the relaxation effect and ignoring all terms of higher order than c Tin

the expanded equation, the data from 0% to 55% dioxane were fit with

a = R 2 4.8 X and l_{_ varies from 1. 3 to 6.9. In the 60%, 65% and 70%

solutions, a = R values are 5.4, 4. 88 and 5. 00 respectively, while the
 

K's are 12. 7, _2_4, and 82. By allowing a = I: to vary in the latter
  

solvents, the values of I_(_ for 15% to 70% dioxane can be expressed as

K = Koeb. The water and 10% data require larger 15 values than expected.

In all cases A0 is treated as an adjustable parameter for each solvent.

Conduc-t-ances for Bu4NBr have been calculated for water and

seven dioxane-water mixtures from 10% to 70% dioxane using the com-

plete electrophoretic effect. With a ”best" value for each solvent all

eight sets of data can be reproduced with two constant distance parameters:
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O

a : 5. 00 A and R : 7. 00 .8. T211516 12 shows "Observed" and calculated
 

 

1

values of A. The observed values at round c "s were Obtained

“" 1

graphically as described above. Excluding the point at c7: 0. 07 for

 

60% dioxane, the average deviation between the Observed and calculated

values for thirtymone points in eight different solvents is only :1: 0. 023

conductance units. Models of the ambutylammonium ion give R = 6. 7 R

and a shortest ion contact distance of about 3. 7 18. An average a value

of 5. 0 28 seems quite reasonable. Figures 8 through 11 show the phoreow

grams for these solutions. Figure 12, pertinent to the data in 60%

1

dioxane, is a plot of several conductance functions vs. c: ‘5 for A0 = .39. 75.
 

The broken line is the limiting Onsager tangent: the upper curve (A)

represents the calculated conductances using the Onsager electrophoretic

term [ 8 c 971+ )fia)] witha 2’ 5. 00 X and Ii :: 0; 1 the lower curve (B),

with the same parameters, uses the extended electrophoretic term.

The effect of the viscosity correction with R 1: 7. 0 X is inferred by the

experimental points which are reproduced by the complete conductance

expression including the Einstein term.

While these applications are by no means comprehensive, they

serve to illustrate that it is unnecessary to invoke ion pairing to explain

all deviations from the Onsager theory in its present form. The advan-

tages Of using constant parameters directly related to the dimensions of

the ions rather than variable ”association constants" is Obvious.

It is not implied that ion association never occurs, but that properly

"pairing" should describe only non-«coulombic interactions which are not

considered by the hard sphere model. Data for Bu4NI (39) in dioxane—

water mixtures cannot be fit by the above treatment using reasonable

and constant values Of _a_ and Ii. Undoubtedly the highly polarizable

iodide ion (42) gives rise to ion-induced dipole interactions which cause

some "pairing. " It is expected that sodium 'bromate (39) solutions would
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TABLE12

COMPARISON OF CALCULATED AND EXPERIMENTAL

VALUES OF THE CONDUCTANCE OF SOLUTIONS OF

Bu4NBr IN DIOXANE-WATER MIXTURES AT

25°C.:a. : 5.00 X, R : 7.00 R

 

 

 

 

Water 10% Dioxane

D: 78.54 A": 97.45 D: 70.33 /\°: 80.85

‘1 C Aobs. Acalc. ‘1 C Aobs. Acalc.

0.01 96.64 96.61 0.01 80.09 80.08

0.02 95.75 95.75 0.02 79.29 79.31

0.04 93.97 94.00 0.04 77.68 77.74

0.07 91.3 91.31 0.07 75.4 75.35

 

30% Dioxane 501% Dioxane

 

 

I): 53 28 /\0: 57.25 I): 35.85 /\0: 43.70

‘1 C Aobs. Acalc. 1 C Aobs. Acalc.

0.01 56.57 56.57 0.01 42.90 42.92

0.02 55.88 55 88 0.02 42.10 42.10

0.04 54.51 54.50 0.04 40.48 40.50

0.07 52.50 52.49 0.07 38 30 38.31

 

5 5 % Dioxane 60% Dioxane

 

 

I): 31.53 fif:=41.56 [)2 27.21 /\o: 39.75

1 C Aobs. Acalc. " C Aobs. Acalc.

0.01 40.71 40.69 0.01 38.75 38 75

0.02 39.77 39.78 0.02 37.65 37.66

0.04 37.98 37 98 0.04 35.54 35 54

0.07 35.60 35.59 0.07 32.65 32.82

 

6 5% Dioxane 70% Dioxane

 

 

 

I): 23.14 [0): 38.30 I): 19 07 [0): 37.05

“I C Aobs. Acalc. “ C Aobs. Acalc.

0.01 37.05 37.07 0.01 35.43 35.43

0.02 35.69 35.64 0.02 33.48 33.55

0.04 33.03 33.08 0.04 29.97 29.97

0.07 29.70 29.74 0.07 25.90 25.94
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also require pairing considerations since the bromate ion possesses a

permanent dipole which Should give rise to ionradipole interactions.

The only other accurate data available over a sufficiently large range

of dielectric constant in dioxanenwater mixtures are for tetramethylammoniurn

picrate (40). An analysis by Fuoss (12) indicates that no ion pairing takes

place in 0% to 70% dioxane. The necessary a values ranged from 8. 0 X

to about 7. 0X, systematically decreasing with decreasing solvent di--

electric constant. The average 3 value was about 4. 5 18 for each ion.

Although the calculations using the extended electrophoretic effect were not

performed, it is certain that these data can be treated successfully. For the

large value Of_a_1_ : 8. 0 X the difference between the extended and Onsager

electrophoretic terms is negligible in water, and although it remains

relatively small, increases as the dielectric constant decreases. This

behavior is exactly the form that would be required to fit all the data for

the picrate with a constant value of 3.

Many more data must be gathered and examined to assure the

generality of the above results. Studies of simple spherical ions should

help one decide at what radius ions can be considered "sufficiently bulky"

to require the use of the Einstein viscosity correction. Tests of the

correction by viscosity measurements would be of some help. The relation-

ship between the minimum distance Of approacha and the hydrodynamic .

radius R should also be clarified. Until the generalization of the Onsager

relaxation expression to unsymmetrical salts can be made, work with

symmetrical 2-2 and 3—3 salts should be of great help along these lines.
 

Finally, the above calculations are not considered to be exact, since

higher order terms in the relaxation field of unknown magnitude resulting

from the complete exponential distribution function, remain unevaluated

and also because of errors introduced by the linear superposition approxi—

mation. In View of the complexity of the Onsager treatment outlined above,

it would seem that a fresh approach is needed.
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At the very least, this study shows that the terms in the electro:

phoretic effect which are usually neglected are not negligible, and, indeed,

their inclusion can in some cases eliminate the need for introducing an

association constant.

IV. Summary

An outline of the Onsager theory of conductance has been presented

which, it is hoped, will be Of value as an introduction to the study of this

difficult treatment.

Higher order concentration dependent terms of the electrophoretic

effect, which are neglected in the usual treatment, have been evaluated

for 1-1 salts in water and in 10% to 70% dioxanenwater mixtures. Significant
 

differences between the Onsager and extended electrophoretic expressions

occur which increase rapidly with decreasing ion size and with decreasing

dielectric constant. The complete term is always larger than the simpler

function and in extreme cases is more than twice the value of the Onsager

correction.

The electrophoretic calculations were applied to equivalent con:

ductance data for tetraisoamylammcnium nitrate and tetrawnu-butylammoniurn

bromide taken from the literature. In both cases significant deviations from

the previous theoretical expressions have been attributed to ion pair form»

ation. The present work shows that, if higher electrophoretic terms are

included, the i~Am4NNO3 data for the four solvents (0% to 50% dioxane in
 

water) can be interpreted without the concept of ion pairing using two

constant distance parameters: the minimum distance of approacha 7: 4. 50 X,

and the cation. hydrodynamic radius R r: 7. 5 18.1n a similar manner the

data for Bu4NBr in eight solvents (0% to 70% dioxane in water) require no

association constant and involve the constant parameters, a 2 5. 00 A

andR: 7.0K.
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it is concluded that much of the deviation from the Onsager theory,

heretofore ascribed to electrostatic aggregation of ions, arises from

incomplete treatment of the model used rather than from physical phenomena

which cause the model to be inaccurate.



PART II

TRANSFERENCE NUMBERS AND ACTIVITY COEFFICIENTS

OF TRIS—(ETHYLENEDIAMINE) COBALT (Till) CHLORIDE

IN WATER AT 250C.

1. Introduction
 

The interionic attraction theory of electrolytes, as formulated by

Debye, Hiickel, and Onsager and Fuoss has met with great success in

aqueous solutions of 1-1 electrolytes. in solution of higher Charge types,
 

however, theoretical predictions often deviate from experiment. TO permit

an adequate evaluation of the cause of these discrepancies, an extensive

study of the properties Of multicharged electrolytes has been undertaken

in this laboratory (43, 44, 4.5, 46, 47).

As a part of this program, the transference numbers and activity

coefficients of solutions of tflsvhethylenediamine) cobalt (III) chloride

have been measured.

11. Transferenc e Number 8
 

A. Introduction
 

The transference number of an ion is defined as

(158)

where i_j_is the current carried by ions of type :1. and §ii is the total

current carried by all types of ions in the solution. Alternatively the

transference numbers may be expressed as

T- :3 2.1— : .51.... 3 32.1..

.J Eu, ' Exj /\ (159)

1 i '
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so that. a correct theory of conductance should also yield the correct trans—

!

ference number. From equations (30) and (30a) for )‘j and A it is seen

that the relaxation terms cancel and T" is given by

(160)

A“ ~ AA.

transference measurements, then, help to provide a critical test Of the

electrophoretic: part of conductance theory but suffer the disadvantage

that they must be measured at concentrations which are higher than would

be desirable for a test of the theory.

Experimentally, transference numbers may he Obtained in three ways:

(1) The Hittorf method, (48, 49, 50, 51, 52), which depends upon

concentration changes in a cell during electrolysis.

(Z) The electrornotive force method, (53, 54. 55, 56), which

requires measurement of the potentials of cells with and

without transference.

(3) The moving boundary method.

The Hittorf method is tedious, inaccurate, and today, is rarely used. The

electromotive force (E. M. F.) method is less accurate and not generally

applicable since it requires electrodes which. are reversible to both anion

and cation, or else independent activity measurement. The moving

boundary method, while limited in concentration range, is capable of a

high degree of accuracy and is now in general use. This method was used

in the present work and is described below.

B. The Moving Boundary Method
 

Since several excellent; reviews of the history and theory of the moving

boundary method (57, 58, 59) are available, only the most important

features Of the theory will be presented.
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The method consists in forming a boundary between two solutions

which may or may not have an ion in common. For the purpose of the

present work it is sufficient to consider the case of solutions of two

electrolytes C+A- and B+A — with the common anion é; . Let the two
 

solutions be placed in an electrolysis ce11.r.:

."A line (J: 4.1.x). gi‘yes the initiallpOSitiQn .o'fithe boundary. between.

the solutions. If a steady current i_ is passed through the cell for a given

time, and the mobility of ions 9: is greater than that of ions at, the

boundary between the solutions will move to. the filial p:°O;Sition1asirepres‘ented

by (Eli: Thoughvallnegativeions move toward the anode, and all positive

ions toward the cathode, the two solutions remain separated since the 9:

ions move faster. If the E: ions lagged far behind, the solution would

become more dilute and the increased resistance and (at constant current)

+ . . .
increased potential gradient would cause the B ion veloc1ty to increase.

In this way the boundary is "self— sharpening. " The C+A- solution is
 

designated the "leading solution, " and B+A-the "indicator" or "following
 

solution. " If the boundary moves a distance d cm. in t seconds, the

+

average velocity of positive C ions, v,+, is d/t. Since v+ = Xu+ Where 11+

is the mobility and X is the potential gradient in volts/cm. ,

u+ = d/Xt (161)

Further,

X = i/AL (162)

where i is the current in amperes, A the cross-sectional area of the

cell and I__._ the specific resistance of the solution. Since

A: 1000 L/c’“ = F (1.1+ + u_) (163)

where F is the Faraday, then

L = 6* F(u+ + u_)/1000 (164)
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Combining the s e statement 3

dAc* F(u+ + u_)
11+ 2 d/Xt = dAL/it 2 1000 it
 

(165)

The quantity (dfi) is just the volume Y_, swept out by the boundary, and

since

i+ 11+

T =. .- ——
+ 1++i_= u++u_

 

we Obtain for the transference number Of leading solution cation

C*F V

T+ : 1000 it (166)

In the first theoretical treatment of moving boundaries, Kohlrausch

(60) deduced that, in order to obtain a stable boundary, the condition

c T+

"‘ (T+)f (167)

  

must be met. Here, ca‘f is the normality of the following solution and

 

(T+)f its cation transference number. This relationship is known as the

Kohlrausch ratio. According to the Kohlrausch treatment, the concen~

tration of the indicator solution will automatically adjust. to that given by

the Kohlrausch ratio under the influence Of an electric field. In an ex-

tensive study by MacInnes and Smith (61), it was found that the following

solution concentration must be within three to eight per cent of the Kohl-

rausch ratio in order that the concentration adjustment can take place

properly. The necessary properties of an indicator solution may be

summarized as follows:

(1) The solution must not react with the ion under investigation.

(2) The transference number of the indicator ion must be less than

that of leading ion.

(3) The density of the following solution must be less than that of

the leading solution for falling boundaries and greater for

rising boundaries .
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(4) There must be sufficient difference in some prOperty Of

the two solutions, such as color or refractive index, to permit

the Observation of the boundary motion.

In the above discussion Of the moving boundary method, no mention

was made of the electrode processes which necessarily occur. Equation

(166) gives the transference number with respect to a fixed mark on a

transference cell. Any change in volume caused by an electrode reaction

will necessitate a correction to volume swept out by the boundary since

the bulk of the solution moves to accommodate the volume change. The

necessity of this correction was recognized by Miller (62) and first calcu-

lated by Lewis (63). The computation is greatly simplified (64, 65) if one

side of the cell is left Open to the atmOSphere and the other side is closed

since only the volume changes which occur between the closed side and

boundary need then be considered.

As an example of the computation of the volume correction, consider
 

a cell employing a descending or "falling" boundary between lithium

chloride and tris-(ethylenediamine) cobalt (III) chloride (abreviated
 

Co(en)3Cl3). Let the side of the cell containing silvernsilver Chloride

cathode be closed, and side with a cadmium anode be Open to the atmOSphere.

The volume changes which take place between the boundary and closed

cathode during the passage of one Faraday of electricity are:

 

(1) Loss Of one mole of AgCl(s) AV : '"VAgCl

(2) Gain of one mole of Ag AV 2 + VAg

(3) Gain of one mole of (_L_‘_l:ions AV .2 + VCI“

(4) Gain Of TI /3 moles of Co(en)3+++ ions AV : + T+(VCOgen)3+++

(5) Loss Of T_ moles of 21: ions AV : QT_VCI_

Summing the volume changes (1) through (5) the total volume Change between

the closed side and the boundary is

+ T+ (VCO(en)3+++ )
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If this volume change A}! turns out to be positive (as indeed it does), this

means that, effectively, the boundary has swept out a volume (V + AV)

rather than the smaller Observed volume \_/'_ so that the corrected transference

number is larger than the "Observed" value. For the passage of one Faraday

equation (166) becomes

  

cv _(vv+AV)c"_ T,+C*AV

+ 1000 1000 — + 1000 (169)

A similar analysis,, takihgthecadrnium anode as the closed side, shows

that for this case

AV: VCdCIz - VCd — T+ ( vCo(en)}Cl3)

2 2 3 (170)

 

An additional correction has been pointed out by Longsworth (64).

Realizing that a small fraction of the total current passed through a cell

is carried by conducting impurities in the solvent, he derived the

expression

AT+ = T+ (L ) (171)
s Olvent/ Ls olution

where AT). is the correction to the transference number 2+; Lsolvent

 

is the specific conductance of the solvent; and Lsolution is the specific

conductance of the solution. The final expression for the transference

number becomes

>'< >',<

_ £__s_'___-V_ 2......41 Lsolvent
T+‘ 1000 it ‘ 1000 + T+( ) ”72)

solution

C . Experimental
 

l. Ldaterials
 

Tris-(ethylenediamine) cobalt (III) chloride was prepared according
 

to the method of Work (66). The crude product was recrystallized three
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times from ethanol and dried in a vacuum oven at 550C. Chloride

analysis of the semi-pure product gave 30. 59 :1: 0. 01% compared ‘to the

theoretical value of 30. 78%. A four step fractional recrystallization of

the salt by dissolving in a minimum volume of water and adding an equal

volume of ethanol, was then undertaken. - Solutions of constant molali‘ty

were prepared as the recrystallization progressed and their conductivity

measured. Constant conductances were found for the third and fourth

fractions. Chloride analysis of the pure salt gave 30. 79 d: O. 02% chloride.

Solutions were made by weight dilutions of a stock solution.

Potassium Chloride, used for secondary calibration of the trans-
 

ference cell was prepared by recrystallizing Baker C. P. salt twice

recrystallized from conductivity water followed by fusion in platinum

ware under an atmosphere of nitrogen.

VA Lithium Chloride stock solution was prepared according to the
 

method of Scatchard and Prentice (67). The necessary following solutions

were prepared by volume dilution of this stock solution.

Conductivity water, used in the preparation of all solutions, was
 

obtained by distillation of demineralized water from alkaline permanganate

and subsequent redistillation. The specific conductance of ‘the water was

never greater than 2 x 10'6 ohm"1 cm'l.

Z . Apparatus
 

The transference numbers reported in this thesis were obtained

using the sheared boundary technique (59).

The equipment used is a modification of that of Spedding, Porter

and Wright (68, 69) and is described in the literature (43).

A diagram of the transference cell is shown in Figure 13. The

cell was constructed of Pyrex. The measuring tube was constructed

from a two millimeter pipette (Corning "redline"). Fine semi-circular



Figure 13 . Moving Boundary Transference Cell
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grooves were cut in the tube at constant intervals using a diamond stylus

with the tube mounted in a milling machine. Gaps were left in the mark—

ings to facilitate timing of the boundary. The tube was twice calibrated

with mercury as recommended by Longsworth (64)., This tube was

connected to a hollow bore stopcock at which the boundary was formed.

The electrodes are connected at the bottom of the cell by a second

hollow bore stopcock to permit use with rising boundaries. The anode

and cathode compartments were equipped with female ground glass joints

to accommodate the male joints into which the electrodes were sealed.

Side tubes with stopcocks which could be closed were attached to the

electrode compartments for ease in filling the cell. Removable electrode

cups were used to prevent the products of the electrode reactions from

reaching the measuring tube.

The anode consisted of a copper wire sealed into a ground glass

joint. The copper Wire was immersed in a small test tube of cadmium

metal which was melted under a stream of nitrogen. Upon cooling, the

test tube was broken away leaving a smooth cadmium plug electrode.

The silver-silver chloride cathode was made by sealing a platinum

wire into a ground glass joint. Corrugated silver sheet was then fused

to the wire and cylindrically wrapped to a diameter of about one-half

inch. The electrode was ”plated" with silver chloride by electrolyzing

in a one normal solution of hydrochloric acid.

The position of the boundary was detected by means of. a narrow

slit of light placed behind the transference tube with a telescope focused

on the tube from the front. The light source was a vertically mounted

fluorescent lamp, covered vertically by a movable, slotted cloth blind.

The blind was raised and lowered by attachment to the drive shaft .f a

110 volt reversible D. C. motor. Motor power was provided from the

A. C. line voltage, converted by selenium rectifiers.
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The motion of the boundary was timed with two stopwatches mounted

in a stand with a hinged lid. The lid extended over both watches so that

one watch could be started and the other stOpped by pressing down on the

lid. The watches were checked with the standard w signal and were

accurate to three seconds over a twenty—four hour period.

A large aquarium-type water both, into which the cell was placed

during experiments, was maintained at 25. 00 :i: 0. 053°C.

Constant currents were obtained with an electronic controller and

balancing motor. The current was determined from the potential drop

across a standard resistor in series with the cell. Compensation for

minor fluctuations not eliminated by the electronic apparatus was made by

feeding the unbalance from a Leeds and Northrup type K-l potentiometer

to a Brown "electronik" 356358-1 amplifier which was used to drive a

Brown 76750-3 balancing motor. A diagram of the current controlling

apparatus is given in Figure 14.

The entire apparatus was checked at intervals by measuring the

transference number of potassium chloride followed by lithium chloride.

These results agreed with published values to within 0. 05%.

3 . Procedure
 

The transference cell was "quick-rinsed” with warm alkaline

cleaning solution followed by acid-chromate cleaner. The cell was

thoroughly rinsed and filled with distilled water and allowed to stand for

twenty-four hours to insure complete removal of acid from the glass.

The dried hollow-bore stopcocks were uniformly coated with a silicone

grease and carefully seated. Since only falling boundaries were used,

the stopcock at the bottom of the cell was always Open. With the upper

stopcock Open, the cathode compartment was rinsed at least five times

with the solution to be measured. The cell was then filled with the

solution; the electrode cup, and the silver-silver chloride cathode were
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inserted, and the side arm stopcock and upper hollowr-bore stopcock.

were closed. The anode compartment was rinsed with water and, at

least three times, with the lithium chloride following solution. The

following solution was made up to the concentration given by the Kohlrausch

ratio with an estimated value of the transference number of the complex

cobalt cation. The anode compartment was then filled with the lithium

chloride solution; the electrode cup and cadmium anode were inserted;

and the cathode side arm was opened.

The cell was placed in the water bath and checked for electrical

leaks to the bath with an ohrnmeter. The cell was then aligned vertically

and the light and telescope arranged so as to form a straight line with the

cell. After waiting thirty minutes for temperature equilibrium, one side

arm was closed to the atmosphere, the other left open. The Leeds and

Northrup potentiometer was then balanced against a standard cell, the

leads to the cell were connected, the Hollow-bore stopcock was opened,

and the current turned on. The current was adjusted to such a value

that the boundary required from 200 to 250 seconds to traverse the

distance between each pair of tube makings (AV 1: 0. 1 ml. ). The time

required for the boundary to pass each mark was measured with the st0p~

watches.

The Co(en)§Cl3 solutions were made up by weight dilution of a stock

solution. In order to calculate the normality of the solutions, the densities

of the solutions were measured with a 50 ml. pycnometer. The densities

were also used to calculate values of the partial molar volume of the salt.

which were necessary for the evaluation of the volume correction to the

observed transference number .

4. Results

The cation transference numbers of tris~(ethy1enediamine) cobalt

(III) chloride solutions were measured using lithium chloride following
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solutions. The concentration of the following solution was determined

by an estimate of the transference nurn'ber of the leading ion and

transference numbers of the lithium ion. given by Longsworth (64). The

following solution concentration was found to be within the prescribed

limits by changing the concentration by several per cent and repeating

the determination.

Volume corrections were calculated according to equations (168)

and (170) using the following values:

VCd: l3. 0 ml. (Reference 64)

VClClz 2: [23. 24 + 8. 8 (Inolalityfi- ] ml. (Reference 70)

VAg 2' 10. 3 ml. (Reference 64)

VAgCl = 25. 8 ml. (Reference 64)

The densities of the Co(en)3C13 solutions were determined using a

50 ml. calibrated pycnometer. The results are described by the

expression

P = 0. 99707 + 0.1555 (Inolality)

The average deviation of five points from. this straight line was 2!: 0. 00001

\

g. / cc. Partial molar volumes were calculated from the expression.

——~ _ 1000 , M2

V”¢v '“ WHO” F0 (173)c100

  

where

V- : partial molar volume of Co(en)3Cl3

49V : apparent molar volume

c = molarity of the solution

P0 = 0. 99707

f): density of the solution

M2 = molecular weight of Co(en)3Cl3
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The average value 189 :t l cc./"mole was used for the partial molar

volume of Co(en)3Cla in calculating the volume corrections. Solvent

corrections were calculated from measured conductances whichsupple—

ment those in the literature (71). A Leeds and Northrup "Type A" cell,

platinized according to the recommendations of Jones and Bollinger (72),

was used. The A. C. bridge employed was designed by Thompson and

Rogers (73). The resistances, measured at 400 to 2000 cps. , were

independent of frequency and the oil bath employed was maintained at

25. 00 :I: O. 029 C. The results are summarized in Table 13.. Figure 15

is plot of transference number versus ciké'r, extrapolated to 0.4939, the value

calculated from the conductance data of Jenkins and Monk (71). Curves

calculated using the OnsageruFuoss and the extended electrophoretic

terms are also shown. Further discussion of the deviation from theory

is reserved until after the presentation of activity coefficient data.

In View of the disagreement between theory and experiment, it is

difficult to estimate the accuracy of these transference data. The four

factors which influence the accuracy of the data are: (1) the timing of

the boundary; (2) current; (3) volume of the tube; (4) concentration of the

solution. The average precision of observed transference numbers and

the maximum current fluctuation within each run was :1: 0. 04%. In view

of the agreement of transference number arising from the various com-

ponents of the apparatus is estimated to be a: 0. 05%. Since the salt

was carefully purified and the solution conductances form a smooth extension

to literature data, the total maximum error in the reported transference

numbers is estimated to be i- 0.1%.

III. Activity Coefficients
 

A . Definitions
 

The concept of activity was introduced in 1907' by G. N. Lewis

(74, 75) as a means of precisely treating the thermodynamic behavior of
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Figure 15. Cation transference number of t_1;i_§.-(ethylenediamine)

cobalt (III) chloride versus the square root of normality in

aqueous solution at 25°C.



 



94

non-ideal solutions. The activity a); of component i in a solution may be

defined through the relation

Hi = .15," + RT ln ai (174)

where iii is the ”chemical potential” of the i—component, and H10 the

chemical potential in the standard state. Clearly, the value of the activity

depends on the standard state chosen. The chemical potential is a

measure of the escaping tendency of the species and

 

a. = ( 3333- = < 9 F 1
ani s,v,nk7_£i ani T’pnkfi

(175)

where

E = The internal energy of the system

F = The Gibbs free energy

S = The entrOpy

P, V, T, = The pressure, volume and absolute temperature of the

system

ni = The number of moles of component _i_ in a system of 15.

components

An ideal solution is defined as one for which the activity is equal to the
 

mole fraction at all concentrations. Accordingly, the activity coefficient

_f_i is defined as

f. 2 EL

1 X1 (176)

where Xi is the mole fraction of component i. The chemical potential

becomes

ui=uio+RT1nXi+RTlnfi

: Ii (ideal) + RT ln fi (177)

It is found that in very dilute solutions the activity approaches the

concentration. It is, therefore, customary to chose the standard state
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in such a way that

£1: 32%: —> 1 ain——->-0.

The thermodynamic pr0perties of solutions of electrolytes are

determined by the properties of the ions and of the solvent. Since the

principle of electrical neutrality forbids the forming of solutions of single

types of ions, the thermodynamic prOperties of a single type of ion can

never be measured. Theoretically, however, it is advantageous to

define hypothetical individual ionic quantities which are related to

measureable properties. Consider an electrolyte which dissociates

according to the scheme:

2+ Z-

Individual ionic activities, 3+ and 3-, are defined by the relation

_ 1).). v_ = v

a = (a+ a- ) .. a :1: (178)

where

v = v+ + v_

a is the activity of the salt; and ai is called the mean ionic activity.

 

On this basis, the rational activity coefficient, fi, is defined as
 

f E (ai)x

* X4 (179)

where

V+ v_ 1

X:,:‘;"-;(X+ X ) /V

The standard state is chosen so that

fi——>0 ain—éo

Since mole fraction is not always a convenient concentration unit for
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ionic solutions, activities and activity coefficients are defined for molal

concentrations:

(a l V V... 1/12 v- vw 1/"

vi = :.n?- .; mi = (m. + m.-. 1 mlv+ . v- 1

mi

(180)

and molar concentrations

(ailc V.) v 1/V v.1. p 1/v
.

f» " —- rya Ci c: (H, c ) .4 (2(1),. 1 )

(181)

The respective standard states are chosen so that

y:t --—-—>l as C1 ---> 0

Since the chemical potential. must have the same value, regardless of

the standard state cl-csen,

+~ vRT 111(7i Ini )1I : “x0 Jr vRT in (fi Xi) :.- 110m

-:. (1C0 + vRT In (yi Ci)

 

 

 

(182)

At infinite dilution

fi- = Vi = Vi "-’ 1

With introduction of the limiting values Xi/ mi =4 M1 / 1000 and

Xi/ Ci -‘-' Ml/1000 p0 , one obtains

uxo = (11.1.10 + v RT 1n 13100- : (18 + vRT 1n 19937-191482

(183)

where}? 0 and M1 are the density and molecular weight of the solvent

respectively. By combining equations (184) and (185), the various
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activity coefficients may be related:

1n fi = 1n 7i + 1n (1 + m 01/11/1000)

In fa: :2 1n yd: +ln (p/Po + c(vM1~M2)/1000p0)

1n 7i :- 1n yi+ln ()O/(ooa cMZ_/1000}OO) (184)

where f: is the density of the solution and M2 is the molecular weight

of the solute.

The theoretical expression of Debye and Hiickel (3) for ionic activity

coefficients is obtained by assuming that all deviations in the chemical

potential of electrolyte solutions arise from the charges of the ions. By

considering the difference in the energy necessary to charge an isolated

ion, and the energy necessary to charge an ion in a potential field \l/jo

(Equation 22) the result is

,2

1n f- = e; X’

J 2DkT(1+ )La)
 

(185)

whereij is the activity coefficient of ions of type j. For an electrolyte

which dissociates into two kinds of ions, combination of the individual

ionic activity coefficients given by equation (185) leads to

-S£ N] c

f =2 _.

i 1+ :1). B N] c (186)

 

log

where

Sf ‘-‘-‘ 0.5091 to’

313: a/r\( c 108 “0.3286810

and

l

= 1.1— : v.25)?1 _
1
 

3

01' = (z V.z.z) 77

1A} 2 i 1 1

o

The symbols; denotes 108a, or a in Angstrom units.
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The various methods of experimentally determining activity

coefficients are adequately reviewed in the literature (75, 76, 77, 78).

Accordingly, only the use of E.M. F. cells with transference will be

discussed below.

B. Activity Coefficients from the E.M. F. of Cells with Transference
 

The early theoretical work of Helmholtz (79) and Nernst (80) concern-

ing the nature of the E. M. F. of concentration, received partial confirm-

ation from the experiments of Moser (81, 82), Miesler (83, 83) and Jahn

(85). With the introduction of the concept of activity by G. N. Lewis

(74), the calculations were brought to their modern form. The first

adequate treatment of the junction potentials involved in this type of cell

was made by Brown and MacInnes (86), using transference numbers

obtained from moving boundary measurements. Thus, the accurate

evaluation of activity coefficients was made possible.

The calculations involved in the determination of activity coefficients

from E.M. F. measurements using cells with transference may be illus-

trated by considering the following general cell:

Z+2. Z— ; z
J‘ X,_ (c1) : A X..- (C?) I MX-MM—MX I Av+ 12+

(187)

where M-MX represents an electrode which is reversible to X- ions,
 

and the molarity c_1 is greater than c_2_z. Consider the changes which

occur in left hand side of cell (anode) when one Faraday of electricity

passes through the cell: 1;: equivalents of AZ+ will be lost by migration

across the junction; T_.._ equivalents of XZ' will be gained by migration;

and one equivalent of lg: will be removed by the electrode reaction.

 

The sum of all the changes is a loss of T: equivalents of A3: XVZ' .

A similar analysis of the right hand side gives a net gain of T‘,

Z+ Z- . .
Xv , so that the total "reaction" is a transfer ofequivalents of Av+ _
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Id: equivalents of salt from the more concentrated to the dilute solution.

The free energy change for this process, if_c_;_ and_<_:_z_ differ infinitesimally

is

T+
dF = nRT (1 (1n a) 2' RT d (In a)

V+Z+ (188)

where n is the number of moles of salt transferred and da is the change
 

in the activity of the electrolyte. Since (1E :2 -anE where E is the
 

potential of the cell

 

 

d8 RT “
—— 2‘ - [ ] (1 (1n a)

T+ V+Z+F (189)

For a finite difference in concentration Equation (189) becomes

E (C : C2)

RT a

d8 :- . —— 1n —-2—

I 7+ [ v.2,F ] a. (190)

8(C=C1)

The integral on the left cannot be evaluated analytically since the trans-

ference number is a function of concentration. In order to evaluate the

integral, the function

5:_L____1_

T+ T+ (ref) (191)

is defined.

If gLis taken as the concentration of the reference solution, Cref’ for

which the cation transference number 153+(ref)’ then

 

 

E.
10g yd: : 10g Cref _ V+ZfFE _ 1):le J- (Sd€

C 2. 303 VRTT-l-(ref) Z. 303 VRT

Y:I:(ref) 0

(192)

since E at c 2' Cref is zero. Converting a to ai by equation (178),

 

equation (192) may be written as

E
Cref _ viZ+FE _) 1’4;th ISdE

2. 303 vRTT+(ref) 2. 303 vRT

log 3,55 = log

Yd:(ref)

 

 

(193)
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For Co(en)3Cl3; 12+ :- 1, v = 4, 2+ = 3.

Equation (193) shows that, with the aid of accurate transference data, ratio

of the activity coefficients Yi/Yi(ref) may be calculated from the E.M. F.

 

of cells with transference. The ratio fii/fflref) may be calculated

 

from equation (184) .

Individual activity coefficients fa: may be obtained using the

Debye-Hiickel expression (186). By subtracting log fi(ref) from both

sides of equation (186) and multiplying both sides by (l + g. B N] c ), one
 

 

obtains

fa
lo + S N] c = -— 10 f

1 g aref) f ] g :1:(ref)

o __ £5:

-a B [ N/ c (log fi(ref) + log )]

f:1:(ref)

(194)

If the left side is denoted by I and the bracketed term on the right by 2:,

the intercept of a plot of X vs. 3f gives - log fi(ref) providing the solu-

 

tions obey the Debye-Hiickel equation. In order to obtain this value, a

successive approximation method must be used since _)£ contains l_o_g

fi(ref)' The value ofg, the minimum distance of approach may be

obtained from the lepe of the plot.

The requirements for the successful determination of activity of

coefficients by this method may be summarized as follows:

(1) No changes take place in the cell without passage of current.

(2) Every change which takes place during the passage of current

may be reversed by reversing the direction of the current.

(3) The measured potential must depend only on the concentrations

of the solutions in contact with the electrodes and not upon

the distribution of concentration gradients at junction of the

solutions .
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Extensive studies of the third criterion have been made (53, 54, 87, 88,

89). It has been found that reproducible potentials are obtained provided

the area of junction is at least 12 mm. 2 and that the concentration of the

solution in contact with the electrodes remains unchanged.

C . Experimental
 

1. Materials

Solutions of Co(en)3Cl3 were prepared in the manner described in
 

the section of this thesis on transference numbers.

Traces of bromide in potassium chloride were removed by the
 

method of Pinching and Bates (90). The salt was then recrystallized

 

three times from hot conductivity water and fused in platinum ware

under a nitrogen atmosphere. Hydrous silver oxide was prepared by '
 

the addition C. P. silver nitrate to a boiling solution of potassium hydroxide.

The resulting precipitate was washed fifty times with hot conductivity

water to remove any potassium carbonate present.

Baker reagent grade hydrochloric acid was used without further

purification.

2 . Apparatus
 

The cell and electrodes used in this work were essentially the same

as those used by Spedding, Porter and Wright (68). The cell (shown in

Figure 16) consisted of two compartments joined by a high-vacuum

hollow-bore stopcock (H. S. Martin Co. ). Each compartment was equipped

with two female ground glass joints to hold the electrodes. A trap was

placed between one of the compartments and the stopcock to prevent

diffusion. The silver-silver chloride electrodes were prepared by the

thermal-electrolytic method of Smith and Taylor (91). About three inches

of number 26 C. P. platinum wire was sealed into a standard 12,/30 male

taper. The wire was then coiled by tightly winding it on a two millimeter



Figure 16. Concentration Cell with Transference

  About 3/4"
.—

d

1H

 

1
"
-
A
l
“
\
-
_
~
W
m
m
“
m
_
‘

m
-
‘
L
‘
l
b

 
 

(I:  
 

102



 



103

glass rod, and cleaned by heating to redness, plunging into concentrated

nitric acid, and rinsing with conductivity water. This cleaning process

was repeated several times.

The electrodes were then coated with a paste of silver oxide which

was ignited to silver at 4000 C. Three or four coats of the oxide, and

subsequent ignitions, produced a complete covering of silver. After fill 5

ing with mercury, the electrodes were "plated" with silver chloride by

electrolyzing in a one normal solution of hydrochloric acid for forty-five

minutes at a current of eight milliamperes per electrode. A convenient

source of current was provided by a six volt battery eliminator and a

3, 000 ohm rheostat.

A Leeds and Northrup type K-2 potentiometer was used to measure

the potentials developed in the cells. The null point was determined with

a Leeds and Northrup type R galvanometer (catalog number 2284C) which

had a sensitivity of 0. 077 (W /mm. The potentiometer was checked against

a calibrated Eppley type standard cell.

3. Procedure
 

After electrolysis, the silvernsilver chloride electrodes were

connected in parallel and allowed to stand in 0. 1 normal bromidec-free‘

potassium chloride solution until they reached a nearly constant potential

when measured against one another. If the potential of any electrode in

a set of ten differed from the mean of the remainder of the set by more

than 0. 02 mv. , it was discarded. Three to four days were usually

required for this equilibration.

The electrodes were soaked in conductivity water for eight hours

followed by three two—hour soakings in the solution to be measured

before being placed in the cell.

The electrode compartment containing the trap was rinsed four

times and filled with the more dilute of the solutions to be measured,



 



104

and the electrodes were inserted. The remainder of the cell was rinsed

and filled in the same way with the more concentrated solution. No stop»

cock grease was used, the ground glass plug being tight enough to prevent

diffusion. The cell was then placed in a large water bath at 25. 00 :1: 0. 020

C. One hour was allowed for temperature equilibration. The stopcock

was then opened and the E.M. F. measured with the potentiometer. To

correct for possible differences, between electrodes each determination

was repeated using the electrodes in the more concentrated solution which

were originally in the more dilute solution and vice versa. Since each
 

compartment contained two electrodes, eight values of the E.M. F. were

measured for each pair of solutions. All dilutions were measured against

the same reference solution.

4. Results

The potentials of cells with transference were measured for solum

tion of tris-(ethylenediamine) cobalt (III) chloride. A typical set of data

is shown in Table 14. Values of log [y :1: / (yi)ref ] were calculated from
 

equation (192) in the form

Vi ._. 10g Cref _ 3FE

c 9. 212 RT(T+)

8

f 5 drE

log
 

 

(Vi)ref ref

3F

9.212 RT (195)

Values of log [ f: /(fi)ref] were obtained from equation (184). In
 

order to determine log (fi)ref, the Debye--Hiicke1 equation in the form
 

(194) was employed.

fi __

lo — 5 ~/ c = — 10 f
1 g (fi)ref f 1 g ( i)ref

f.
O :1:

- a B [N] c (log (fi)ref +log-(—f—-)- ]

:1: ref

(194)



(
_
a

C
)

U
)

TABLE 14

A TYPICAL SET OF DATA FOR A CONCENTRATION CELL

WITH TRANSFERENCE. TRIS-=‘(ETI—IYLENEDIAMINE)

COBALT (111) CHLORIDE

Conc entration: 0. 0014805 molar

Reference Concentration: 0. 0033735 molar

 

 

 

Electrodes EMF Average E. M. F.

(millivolts) (millivolts)

2vs 12.502 12.496

4 vs 12. 491

.Q ' 1 .2v... 12.50 12.494

3 vs 12. 486

1 . .. 1 o F
.

VS 2 48¢ 12.475

3 vs. 12. 468

1 .‘ 12. ‘73 .

VS 4 12 467

4 vs 12.461

Average: 12. 48.3 mv.

Average deviation: 0. 012 mv.

Maximum deviation: 0.. 016 mv..
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Figure 17 is a plot of the left side of this equation versus the bracketed

term on the right. The smooth extrapolation to zero absissa requires

the unreasonably small value of g 2 2. 0 A . A larger 3.- causes the curve

to drop abruptly in the region corresponding to very small concen-

trations. The curvature of the plot indicates that solutions of Co(en)3Cl3

do not Obey the Debye~Hiickel theory. Attempts to fit the data using

larger values of g. and an ion-pairing constant were unsuccessful. The

method used, however, may be of interest.

Consider the following pairing scheme:

CO(en)3+3 + C1- _..__>- [Co(en)3C1]+ 2 (195)
T”.

The association constant, K, for this "reaction" is

 K = -i——a2 :. Ciz ~ 196
a+3 a_l c+3 c-) (Yi)R ( )

where the signed subscripts denote the species of corresponding charge,

a their activities and c their molar concentrations. The symbol yR

denotes the activity coefficient ratio

3

(Y41R lit-— = (Vi).-. (197)

3'1

where (Vi)i—j is the stoichoimetric mean ionic activity coefficient of a

”salt” of charge type i-j. Let a be the fraction of the salt associated,
 

and c be the stoichiometric concentration Co(en)3Cl3. The concentrations

of the various species are, then,

C+3 3: C (1 - O.)

C+z '—' C G. (198)

3c(1- c1)
C"l

and the association constant is given by

(J.

K : 3c(1-(1)2 ' (Vi)R (199)
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Figure 17. Debye-Hiickel plot of activity coefficient data for aqueous

tris--(ethy'lenediamine) cobalt (111) chloride solution at 250C.
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The ionic strength, _I:, of the solution is defined as

1'1 -.-. r ciziz (200)

1

which, for this system becomes

F: 8c(3/Z-a) (201)

Further, the Observed mean activity coefficient, (yi), is related

to the value calculated by the Debye-Hiickel theory for a 3--1 salt,

(Vi)DH’ by equation (202).

(Y4) = (1 - 9 1 (VilDH (202)

0r

‘1 = 1 - (Yi1/(Yi1DH
(202a)

The quantity (Vi)DH may be obtained from

1

log (Vi)DH = - SF 1: T

1+5B'r%

 (203)

A method of successive approximations was then carried out. Choosing

a concentration _<_:_, at which the activity coefficient was experimentally

Obtained, and g for the salt and a trial value of g, (yi )DH was calculated

from equation (201) and (203). A second approximation to E. was then

Obtained from equation (202a), using the experimental value of (Va: ). This

cycle Of calculations (equations 201, 203, 202a) was repeated until a

constant value ofg was obtained. Equations (200) and (204)

1

T

[ 4(s )3_1 - 3(0 )2—111“
(204)

[1+3B' FT]

 

serve to evaluate (Vi)R’

 

, O

To facilitate calculation, a for the salt and the ion pair were considered

to be equal. Using this scheme, then, a K was Obtained to ”force-fit"

o . . .

the data for the chosen a at the first concentration cons1dered. With
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the value of I: so obtained, (Vi)ref was calculated by estimating (y QR,

 

calculating 9_ref using equations (199) and (204), and iterating until a

constant 9_ref was Obtained. Equations (202) and (203) yield (yi)ref°

Points at other concentrations were calculated in the same manner so

that several values of y:t /(y :1:) ref were compared with experiment.

 

As E1: and 12 were decreased, the calculated values more closely approxim

mated the observed quantities. Though unsuccessful, this calculation

points out the difficulties involved in the application of the ion pair

concept to solutions of unsymmetrical salts.

A second attempt was made to explain the data using the extended

equation of LaMer, Gronwall and Grieff (92). This expression for the

activity coefficient of unsymmetrical electrolytes, arises from the

solution of the PoiSSOnuBoltzmann equation (12) with retention of terms

to order Y;’. The calculation proved to be completely unsatisfactory

when apIE—md to the data for Co(en)3Cl3 solutions.

Since no theoretical expression adequately explains the data,

the value of log (fi)ref from the intercept of the DebyeeHiickel plot was

 

used to calculate fi for each solution the mean molar (111:) and molal

(vi) activity coefTiCients were calculated from equation (184). Table

1-5_—gives the Observed E. M. F. and calculated quantities for the solutions.

The measured potentials were precise to dc 0., 1% or better. With

the lack of a suitable theoretical function with which to compare the

results, it is difficult to obtain a good estimate of the accuracy of the

data, however, the values of Vi/(Yi)ref are probably accurate to about

:t 0.2%.

 

IV. Discussion of Results
 

Activity coefficients of Co( en)3Cl3 in concentrated solutions have

been measured by Brubaker (46) using the isopiestic method. These data
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TABLE 15

E. M. F. DATA AND ACTIVITY COEFFICIENTS OF

TRIS-(ETHYLENEDIAMINE) COBALT (III)

CHLORIDE AT 250C.

 

 

 

:E.14.rn

(MOlarity) 1 04 (Millivolts) yi fi

6.7897 22.830 .8019 .8022

13.805 12.483 .7318 .7319

19.718 7.428 .6933 .6934

33.735* 0.000 .6328, .6328,

46 677 44.253 .5908 .5404

77.330 -10.732 .5268 .5263

153.37 _18.869 .4344 .4333

236 10 ~23.793 .3802 .3787

 

Reference Solution



111

were fit with fa: 2 3. 5 A and an empirical linear concentration term.

A large plot of log 7' vs. _r_n_ for the E.M. F. and isopiestic data

indicates that the chosen reference values are compatible, since, as

nearly as one can tell, the two sets of data form a smooth curve.

As indicated above, both transference number and activity coefficient

data deviate from all available theoretical expressions. The lack of

agreement with theory of the activity coefficients is the more funda—

mental discrepancy. Since the theory of ionic mobilities is based upon

the Debye-Hfickel theory, it is not surprizing that differences between

observed and calculated transference numbers occur. It is interesting

to note that the transference number calculation improves somewhat as

larger 3 values are used and that the extended electrophoretic correction

gives a closer fit than the Onsager expression. The activity coefficient

data, however, are best approximated with an a value which is certainly

too small. A consideration of multiple ion aggregation might improve

the situation, however, it seems more likely that the observed deviations

are due to other unknown, non-coulombic interactions of the complex

cation.

Although the interionic attraction theory is limited, it has met

with considerable success when applied to systems which more closely

approximate the model of hard spherical ions. Solutions of rare earth

chlorides serve to illustrate this behavior. The activity coefficients of

such salts obey the Debye-Hiickel theory. Further, the difference in

observed conductance, and that calculated by the limiting law (usually

designated as_/_\__I9 , shows monatonic dependence upon the square root of

the concentration. This behavior is anomolous, in the sense that for

a great many other unsymmetrical salts of high charge type, including

1 , 1

Co(en)3Cl3 solutions, A0 versus c'T plots exhibit a pronounced

minimum. The more usual behavior, then, is deviation from the

simple theory which is currently available.
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V. Summary

Experimental data have been presented for aqueous solutions of

t_1;i_s-(ethylenediamine) cobalt (III) chloride. Transference numbers were

obtained by the moving boundary method and activity coefficients were

determined from the electromotive force of concentration cells with

transference. Both properties show marked deviations from the pre-

dictions of theory. Unknown Specific interactions Of the complex cation

are believed to be the cause of the discrepancies.
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APPENDIX 1

A DESCREPTTON OF THE PROGRAM FOR THE EVALUATJON

OF THE COMPLETE ELECTROPHORETIC EFFECT

The expressions for the electrophoretic contncrution to the equivalent

conductance are given by eqxiations (151) and (1.53) and are: of the form

00

A)”, r: M _( p{exp (~B+ .D/p) .. exp (B:t ewp/p‘, } dp (a)

'14

(>0

AN, M j P{exp (wBu, e (If/p) -. exp (Bi (7' p “>11 dp

X J (b)

where

B113 2,} P

B, 2: Z?” P

and 13, l\_/I_‘, , and 3:... ax 2 defined in Chapter 11.1. Tim: quantities A 1+

A1,: and A1,. are defined as

—— _ ()0

AM. M f P16Xp1Bi 8'“ '0/ p1 1 1 d9
.x.

+- °l.° ~ 9 ..
AX <3 1 M J p[exp(-‘B+ e ,/p ) .- .1. ] dp

.. . m \ .
m.“ :2 ~M j p(exp(~~Bm e [/10 1 -1 j (if: (d)

x

so that

+

Aha. 1 A‘Ai. + AA+

A).-. .: A1,. + Ax:

AAb A)... + AN, (e)

.1-

The program accepts, as parameters, ten. values of £5, six values of

l.

a, the quantities M_, 1123:, IZ+ I, and (Z_( and prints out a, c ‘2,

+ .- , .,.. “” _.._.

A). :1:? AM... Ax”, tor each com bination of a and c.
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The followingmethod was used to evaluate the integrals (e).

Taking the expression for Axi as an example, one may expand the lower

exponent in the integrand

-p 2

f(p) = (JIexpmie‘p (1)—11% -B.e +31%" ”/2.-.

(1)

so that for some large value of P E R

 

00 R 00

f 1m) dp I fwd - I B. e“" dP
x x R R

_ ..R

-« XI f(p) dp+ Bi 6 (g)

The finite upper limit is chosen such that the ratio of the second

and the first terms in the expansion (f) is less than some small number

Satflr-R .

Be~R/ ZR < .- (h)

The integrals of f( p) dp are thus reduced to forms with finite limits.

For each integral the value of B is calculated. With this and 6: 10‘3,

the upper limit R and the "tail" Be"R are determined. The major portion
 

of the integral

R

1:1- = f (9 [eXp(Bie'p/p)-1]d,0
X .

(1)

is then numerically integrated using a MISTIC library subroutine which

employs the Newton-Cotes quadrature formula "Q66" (93). For small

values of p , f(p) becomes very large and changes very rapidly with p .

In order to insure "fitting" of function, the integral is re-evaluated using

successively smaller increments (with a larger number of points) until

M[1(Ii)n+1'-1(I:l:)nl] < e :10-3

The accuracy of the results is limited by this step. The choice of e = O. 001

:1:

implies an error of :1: 0. 001 conductance units in each Axi, or :t 0. 002
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in Ax+ and A)._ , and finally :I: 0. 004 units in AAe. The convergence of

the integral is also a time—consuming operation, the average integral

requiring about three minutes of machine time. Because of the magnitude

of f(p) at small values of p , the routine is written in binary floating point
 

. . i3 . .
form, wh1ch accommodate numbers 1n the range 10 7, and 13 subject to

restriction

12+ z_| /aDT < 5x104

The routine was code checked with values of fl+ and A_)\_ which had been

graphically evaluated and others which were calculated with an IBM 604

calculator.

Copies of the complete program are available from Professor

James L. Dye, Department of Chemistry, Michigan State University,

East Lansing, Michigan.



 

 



APPENDIX II

A DESCRIPTION OF THE PROGRAM USED TO CALCULATE THE

RELAXATION FIELD AND THE EQUIVALENT CONDUCTANCES

The equivalent conductances, A, of symmetrical electrolytes

reported in this thesis were calculated according to equation (155)

/\— (/\O — AA.) (1 + X/X + AP/X) - I A+ AAe (AX/X + AP/XH

(1 + (10/3)n NR3 c)

by the MISTIC computer. The various symbols are defined in Chapter II.

A binary floating point routine was written, which, given the parameters

a,_c 21_ and R, printed out values of a, c_71,(AX/X + AP/X) the cross-

term correction - ( A+ (A Ae) (AX/X + AP/XHthe equivalent conductance

with R = O; and the complete value of {\— according to equation (155).

Computations were executed in blocks with the following imput parameters:

a) Up to ten values of A0

b) Up to six values of a_

1

c) Up to ten values of c T

 
(:1) Up to sixty values of A/\e corresponding to the combinations

1

ofaandc T

e)Zz (=IZ+Z_|)

f) DT

h)

i)

J)

A built in alarm was provided so that the calculation is performed only

if Ma: 0.50.

— 1

g) Me 7

06_

E

R3

Since exponential integrals related to Ei(x) occur frequently in the

calculation of the relaxation term, a closed binary floating point subroutine

120
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was written to evaluate these functions. The subroutine uses the formula

00
f

Ei(x) = f (e “/t) dt -o.57722 - In x

x

+ x(1-O. 2500 x (1-0. 2222 x(l—O. 1875 x”) + 6

where e _<_ x5/600, and operates in connection with the MISTIC library

arithmetic and logarithm routines. Quantities calculated by this routine

were found to agree with careful hand calculations to at least four signifi»

cant figures. Complete copies of the routine are available.
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