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ABSTRACT

INFLUENCE OF TEMPERATURE AND IRRADIANCE ON GROWTH
AND DEVELOPMENT OF CHRYSANTHEMUM MORIFOLIUM
'BRIGHT GOLDEN ANNE'.

By
Meriam G. Karlsson

Chrysanthemum morifolium 'Bright Golden Anne' plants were grown
under 15 combinations of Quantum Flux Density (QFD), day temperature,
and night temperature in a central composite statistical design.
Functional relationships between these three environmental factors and
subsequent growth were developed. This type of knowledge is necessary
for development of growth optimization models. At 20° C temperature,
time to flower decreased 30 days when QFD was increased from 50 to 600
ymol s~lm-2, Increasing day or night temperature from 14° to 26°
delayed flowering. Shoot length increased linearly with day
temperature. Total flower area increased as QFD increased or night
temperature decreased. Final dry weight at flowering ranged from 4.1 g
to 18 g. As QFD increased, partitioning to the roots and leaves
decreased while partitioning to the stems and flowers increased. High
day temperature increased partitioning to the stems but decreased

partitioning to the roots.
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LITERATURE REVIEW

Literature from two different areas has been reviewed. Plant
growth analysis is discussed in the first part and the influence of the
environment, primarily irradiance and temperature on growth and

development of Chrysanthemum morifolium Ramat. is the topic for the

last part of this literature review.

Plant Growth Analysis

Various procedures are used to compare plant growth and
development. Many of the procedures used in growth analysis were first
studied and defined at the beginning of this century as rates and
ratios (30,31,70); these calculated estimators of population parameters
will be called statistics in this review (63). When the statistics
are estimated as a mean value over the time period between data
collection, the calculation method is referred to as the classical
approach to growth analysis. When the statistics are derived from
fitting mathematical functions to the raw data (40,42), the calculation
method is referred to as the functional approach.

Several statistics are described below and some typical values
are presented in Table 1. The classical and the functional approaches
are then discussed followed by mathematical functions typically used in

the functional approach.






Statistics of Growth Analysis

Growth can be described as a function of time:

W= £f(t) (1)

where W is total plant dry weight at time t (16,30,40,42,59). The

absolute growth rate (G) is given by the derivative of this function:

G = dw/dt (2)

Absolute growth rate has often been observed to be approximately
proportional to the size of the plant (15,16,59). Therefore absolute
growth rate isn't necessarily the best way to describe a plant's
physiological performance. Dry matter gain per unit plant weight is
another way to express the production efficiency. This statistic is
called the relative growth rate (RGR and is the absolute growth rate
divided by the existing weight (6,9,15,16,30,31,40,42,59):

RGR = (dw/dt) x (1/W) (3)

Also since, by definition,

d(ln W) /At = (dW/dt) x (1/W) (4)

the first derivative of any total dry weight function expressed as the

natural logarithm of tctal dry weight automatically gives RGR. The mean



relative growth rate (RGR) between two times (T; and T3) can be

expressed:
RGR= (InWy - In W) / (T - Ty) (5)

BEquation 3 gives instantaneous values of RGR. Hunt (42) has shown that
RGR often changes smoothly over time and this drift can often be
followed by deriving mean relative growth rates between harvest
intervals. As the harvest intervals become shorter the mean relative
growth rate gives better and better estimates of instantaneous RGR
The RGR is useful for growth rate comparisons between
experiments and species. But this method implies that all parts of the
plant are equally efficient in producing new dry matter. In most
plants the leaves are the main site for photosynthesis and Briggs et
al. (10) found that the weekly increase in total plant dry weight per
unit leaf area for a particular species and set of environmental
conditions is rather constant throughout plant development. The net
weight gain per unit leaf area seems to be an appropiate index for
plant assimilation efficiency. This weight gain has been called Unit

Leaf Rate (ULR) (10) and the instantaneous value can be expressed:
ULR = (1/Lp) x (dw/dt) (6)
where Lp is the plant total leaf area (9,16,30,40,42). Sometimes the

ULR is called Net Assimilation Rate (NAR (30,40,42,67,70). Before the

term ULR was introduced by Briggs et al. (9) the only existing name for



this statistic was the German word 'Assimilationenergie' and since NAR

can be confused with the term apparent assimilation, which relates to

the photoreduction of carbon dioxide, the term ULR is preferred (30).
The Leaf Area Ratio (LAR) is the ratio between leaf area and

total dry weight:

LAR = Lp W (7)

LAR can be broken into two parts, specific leaf area (SLA) and leaf
weight ratio (LWR). SLA is the leaf area divided by leaf weight (Lp/Iq)
and is a measurement of leaf density or relative leaf thickness
(42). Plant 'leafiness' can either be expressed on an area/weight basis
(SLA) or on a weight/weight basis (Ly/W) as in LWR (42).

The RGR can be expressed with the help of ULR and LAR
(9,16,30,40,42) :

(L/W) x (dW/AT) = ((1/Lp) x (AW/AT)) x(La/W) (8)

RGR ULR b4 LAR

In some experimental analysis the relationship between shoot
dry weight and root dry weight is of interest. The statistics are

simple ratios (16,42):

Rw/Sw or Sw/Ry (9)

ULR is not appropiate when a population of plants is studied.






This is because spacing between plants must be taken into account and
measurements of 'leafiness' in relation to land area gives more
information about a whole crops potential productivity. This ratio
between total leaf area and the occupied land area (P) is called leaf

area index (LAI) (30,42)
IAI = Lp/pP (10)
Only the most common ratios and rates in plant growth analysis
have been discussed here but many others have been defined (16,30,42).
Some statistic values observed in plant growth analysis are presented

in Table 1.

Classical Approach to Growth Analysis

The ratios and rates mentioned above were traditionally
calculated from the raw data without further attempts to find
underlying mathematical functions (16). This procedure of calculation
on raw data is referred to as the classical approach to plant growth
analysis. The main advantage of the classical approach is the ease
with which rates and ratios can be calculated. However assumptions
must often be made. For example, when calculating mean values of
quantities like ULR, weight and leaf area are assumed to be linearly
related over the time period (30,40,42,67). This isn't necessarily the
case for fast growing plants or long harvest intervals (40).

While frequent sampling is necessary for the functional
approach, the classical method can be used with a small number of

sampling periods (40,42,567). Since plant dry weight measurements are
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Table 1. Observed values for absolute growth rate, relative growth rate, unit
leaf rate, leaf area ratio, shoot-root ratio and leaf area index.
Calculation Range of

Statistic method typical values Unit Species References

Mgm‘" ::. %’ 0.01 ] day"l Holcus Hunt (1978)

rate lanata
1.9 Maize Hunt (1978)
0.01 - 10.26 Helianthus
annuus Evans (1972)
0.12 - 0.38 “:l;:?::us Evans (1972)
Relative . -1
growth &1 0.06-0.16 day ©  Phalaris Wi111ams (1946)
ra
0.09 - 0.13 ‘g:j}g‘;n Evans (1972)
0.088 - 0.20 Helianthus Evans (1972)
annuus
0.262 - 0.482 Pigweed Potter, Jones (1977)
0.39 Poa annuus Hunt (1978)
Unit 1 dw <2, -
—_. 5.6 - 10.2 g m “day = Chrysanthemum
l:‘t: Ly " dt mor fol fum Hughes (1973b)
2.07 - 4.72 ‘;::v‘}:',‘:n Evans (1972)
8.47 Helfanthus
annuus Hunt (1978)
9.77 Apple Maggs (1960)
-21.4 - 17.9 Maize Briggs et al. (1920b)
gl La 0 - 0.004 251 callisteph
area facad - 0. m g stephus
rate w chinensis Evans (1972)
0.0044 Pinus syl- Hunt (1978)
vestris
0.0006 - 0.022 Maize Briggs et al (1920a)
0.0177 Helianthus
piridn Hunt (1978)
0.01 - 0.02 Chrysanthemum
worifolium Hughes (1973b)
Shoot-root Sw
ratio Y 2.03 - 2.36 -- H:'l‘:':::hus Evans (1972)
3.5 Impatiens
parviflora Evans (1972)
4,17 - 6.17 Hel{anthus Evans (1972)
debilis
0.48 Sugarbeet Milthorpe,Moorby (1979)

Leaf area L, 0-3 - Sugarbeet Hunt (1982)

fndex [ 0-8 Wheat Hunt (1982)

0.2 - 8.84 Wheat Austin et al. (1980)
2.2 - 12.6 Chrysanthemum Acock et al. (1978)

morifolium




destructive, a plant can only be sampled once. This problem has been
handled for years in the classical approach by pairing plants. The
largest plant in harvest one is paired with the largest plant in
harvest two etc. (16,30,40,42). Differences between plants are reduced
with this method and the experimental error is primarily random.

Rates estimated using the classical approach are sensitive to
sampling errors and environmental variations. Therefore the overall
trend might be hard to interpret (16). Curve fitting as described
below in the functional approach often makes it easier to follow both
the development of the plant and the statistics of interest

(15,16,40,42,59).

Functional Approach to Growth Analysis

Fitting functions to experimental data using regression
analysis is referred to as the functional approach to plant growth
analysis (16,28).

Three statistical requirements must be fulfilled for regressiob
analysis to be valid when fitting functions to growth data. The
independent variable (X) should be measured without errors, the
distribution of measured Y values at each X should be normal, and the
variance of Y at each X should be uniform and not change throughout the
analysis (28,42). Time is usually the independent variable and can be
virtually measured without errors. But the second and third
requirements for regression analysis sometimes cause problems. The
conventional method to satisfy the last two requirements is to
transform the data (28) by taking the natural logarithm (base e) of

each datum point. Transformation using any other base would be equally



efficient to fulfill the statistical requirements (42).

The functional approach has many advantages and computers have
made the method possible to use. Complicated mathematical equations
once avoided can now be quickly and accurately calculated (40,41,42).
Experimental data contain random errors and a fitted function generally
smooths these variations to give a growth curve free from large
fluctuations (16,42). Each point on the curve contains information from
all sampling occasions (40,41,42) and the model with the information
condensed into a few parameters often become more important to the

experimenter than the data from which it was derived (42).

Available Functions

The two types of functions mainly used in the functional
approach to plant growth analysis are polynomial functions and
asymptotic functions.

Polynomial functions have been extensively used in plant growth

analysis. This is not due to any biological significance, but rather
that they are a simple kind of mathematical function (15). Polynomial
functions which have linear parameters or parameters which can be
transformed to a linear form can be fitted to data by exact and well
defined multiple regression techniques (28,63).

A polynomial has the form:

The coefficients 'a, by . . . bp' are estimated in the regression






analysis, and the highest power of the independent variable determine

the name of the polynomial (15,16,42,59).

The first order polynomial or 'linear regression' have the

following form when applied to total plant dry weight (15,16,42).

W=a+DbT (12)

To fulfill the statistical requirements mentioned earlier concerning

regression, transformation before curve fitting to natural logarithms

is often done. The first order polynomial in exponential form will be:

In W=a +DbT (13)

The absolute growth rate (dW/dT) is given by the derivative of equation

12 (42,59):

G=dWw/dT =b (14)

If the natural logarithm is used as in equation 13 the derivative

calculates RGR:

b = RGR = (d(1ln W)) /4T = (1/W) x (dW/AT) (15)

Coefficient 'a' implies the size of the growing system at the

time chosen to be zero, and 'b' is the rate of increase in W (absolute
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growth) or In W (RGR). A constantly increasing W will be the result of
a positive 'b' value and decreasing W with a negative 'b' value. When
'b' is zero, W will be equal to 'a', see Figure la.

The first order polynomials are appr;)piate functions when
growth occurs by equal cell division at regular intervals. But
meristematic tissues cannot keep on dividing for long time periods
without cell differentiation. The use of first order polynomials is
therefore limited to short periods of growth in young plants or parts
of plants (42).

The second order polynomial has the form:

W(or InW) =a + byT + bpT? (16)
As in the first order polynomial the derivative of equation 16 will

give the absolute growth rate when applied to untransformed data and

RGR for transformed data.
dw/dT (or (1/M) x (AW/AT)) = by + 2byT (17)
Coefficient 'a' is the size when T equals zero, 'b;' represent
growth rate at time zero and 'by' the amount of curvature or rate of
change of the growth rate (42). The second derivative of equation 16
is:

a2w/aT2 = 2 b, (18)

and this stands for acceleration or the rate of change of the rate of
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change of W. A sample of second order curves is shown in Figure 1lb.

The second order polynomial is a growth curve where the growth
rate always will be a first order function (Figure lb). This might be a
limitation, since no inflections in the growth data can be illustrated.
But it is a simple growth curve and good fits are often obtained for at
least parts of a growing process (42).

An increase from second to third order polynomial will give the

following equation:

W(or InW) =a+byT + by + byT3 (19)

The growth rates of this function are given by

Aw/dT (or (L/W) x (dW/AT)) = by + 2boT + 3b3T2 (20)

The cofficient 'a' is as in all polynomials the starting size
of the system (42). Growth rate at time zero is given by the
coefficient 'by'. A third order polynomial can take many different
shapes and a few examples are shown in Figure lc. This polynomial can
be considered as a function for relationships which curve in one
direction or change curvilinearity over time (42).

Polynomials with higher order than three have great flexibility

and can describe many biological processes; however the coefficients
don't have any biological significance and the functions are just
empirical equations. This is one limitation for use of higher order

polynomials. Another possible limitation is the size of the computer
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Figure 1. Examples of polynomial curves showing the progression of
dry weight (e=—=) and relative growth rate (ew=wms);
a) first order polynomials; b) second order polynomials;
and c) third order polynomials.
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facility. As the number of coefficients increases, the coefficient's
numerical value usually decrease and more memory space is required for
precision. There also is a risk for overfitting with higher order
polynomials, since a function exactly fitting every point can be
developed (16,42). From a growth analysis stand point this is not
desirable. No 'smoothing' of the data has been done and the overall
trend cannot readily be seen (40,42).

Asymptotic functions are nonlinear in the parameters by means

of multiplication, division or exponentiation with each other
(16,28,42). Because of the nonlinear nature there is no direct method .
for parameter estimations. Arbitrary starting values are usually
assigned to all or some of the parameters and with this starting
equation the best possible statistics are calculated through several
iterations. Good calculating facilities are necessary for fitting of
nonlinear functions and for many years this has been a limiting factor.
Only during recent years with the development of high capacity
computers have the asymptotic functions become reasonable to use in
growth analysis (16,28,40,41,42).

When equation 15 is integrated the result is the so called

exponential equation (42,59):

W=aebT (21)

where coefficient 'a' is the initial system size at the beginning of
the study and 'b' is the rate of increase in growth (42,59).
The monomolecular function was developed to illustrate the

progression of a first order chemical reaction (29,42,48,59). With the
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notations used here for growth analysis the monomolecular function has

the form (42):
W (or In W) = a(l - be~<T) (22)

This function is constantly increasing from the point 'a(l-b)'
at time zero (28) and has no point of inflection (28,42) as shown in
Figure 2a. Coefficient 'a' is the asymptotic value which determines the
range of the dependent axis, 'b' is a measure of where the intercept
will occur and coefficient 'c' is a rate constant controlling the
spread along the independent axis (42,59).

From equation 22 the rate of growth 1is given by the

derivative (42):

dW/dT = abc e—CT (23)

1/W x dW/dT = (bc e<T) / (1 - b e°T) (24)

The growth rate is proportional to the amount of growth yet to occur
(28,42,48,59) and is continuously decreasing (59) see Figure 2a.

The monomolecular growth function has primarily been used for
fitting data from later parts of plant growth (28,59).

A growth function where the rate of growth is proportional to

the present size and tc some assumed final size is called the logistic
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equation (28,29,59), since the original use of this function was for an

autocatalytic monomolecular reaction the name autocatalytic is

sometimes used (28,29,42,58,59).

The form of the logistic function is:

Wr InW = a/(l +b e<T) (25)

The growth curve is S-shaped with an inflection at the point
W= a/2 (16,29,59). This inflection point divides the curve into two
parts which have different directions but otherwise are identical (59).
At time zero W is 'a/(1+b)' and the function is asymptotic to W = 0 and
W = a (29,42,48,59). The constants 'a', 'b' and 'c' have the same
biological significance as in the monomolecular function (42,48,59).
Growth rate or the. slope can be calculated from the derivative of

equation 25:

dW/aT = (abc e<T) / (1 + b e—<T)2 (26)

1/W x dW/dT = (bc e<T) / (1 + b e~<T) (27)

The logistic function is a relatively simple asymptotic
function and it often gives a good fit to growth data. Because of this
the logistic function has been popular in plant growth analysis

(42,59). Figure 2b illustrates the logistic function and its slope.
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A third growth function with three coefficients often used is
the Gomperz function. The three coefficients are arranged in a double
exponent (16,28,29,42,58,59):

T
W(or InW) =a ede (28)

The final size 'a' is approached asymptotically and W equals
zero when T = -o0 (59). At the size 'a/e' (0.3679 a) the point of
inflection occurs (28,29,42,59). Many growth data have their maximal
growth rates somewhere between 'a/3' and 'a/2', and the Gomperz
function will reproduce these growth processes well (59). As in the
monomolecular and the logistic functions coefficient 'b' is a measure
of initial system size and 'c' is a rate constant (59).

Derivation of equation 28 gives the rate of growth (42):

-T
dw/dT = abc e<TDb e (29)

1/W x dW/dT = bc e—~T (30)

The Gomperz function was developed for work with animals and
population studies (16,28,29,59). In plant growth analysis it has often
been adapted to growth of parts of plants, especially to leaf growth
data (42,58,59). Figure 2c gives a graphical representation of equation
28, 29 and 30.

The Richards fuaction is a four parameter function and was
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Figure 2. Examples of nonlinear functions showing the progression
of dry weight (=) and relative growth rate (=mwmw);
a) monomolecular function; b) 1logistic function;

c) Gomperz function.
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introduced by F.J. Richards in 1959 (28,42,58,59). Its form is shown in

equation 31 and the derivatives in equation 32 and 33.

W (or In W) = a(l + elb—cT))-1/d (31)
aw/daT = (ac e(d—<T /3) ((1 : e(b—cT))= (1/d+1), (32)
1/W x dW/AT = (c e(-b—=<T)) / (d(1 * e(b=<cD)) (33)

Two examples of Richards function can be seen in Figure 3.

The Richards function was derived from a function developed by
von Bertalanffy (16,28,29,58,59). This Bertalanffy function was first
used to describe metabolic rates in animals (5 and has the
form (5,28):

W= (al"m -b eCT) 1/1-m (34)

Because of some theoretical considerations about animal growth
von Bertalanffy put limitations on the values 'm' could take (5,16,28).
Richards (58) however, pointed out that Bertalanffy function can be
useful in growth analysis when 'm' is assigned values of a wider range
than originally used (16,28,58,59).

0

Some values for 'm' are of special interest. When m
Bertalanffy function reduces to the monomolecular function, when m = 2
the function will be the logistic function, when m = 1 the equation
cannot be solved, but when m =» 1 the result will be the Gomperz

function (28,58,59). The curve shape will continuously change from
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Figure 3. Two examples of Richards curve showing the progression

of dry weight (=) and relative growth rate (-=mwmw).
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monomolecular into Gomperz form when the 'm' value goes from 0 to 1,
and from Gomperz into autocatalytic form when 'm' increases from 1 to 2
(59), see Figure 4. Where the inflection point is on the growth curve
depends on the size of 'm'. Larger values of 'm' will move the
inflection point to the later parts of growth develcpment. In Richards
function (equation 31) the coefficient 'd' controls where the
inflection point will occur on the growth curve (42). The other
coefficients have the same biological significance as in the three
earlier mentioned growth functions used in nonlinear growth analysis.

Richards function has lately become popular in growth analysis.
It gives a good fit to many plant growth data, especially when parts of
plants are studied. In whole plant studies however the first and the
last part of the development sometimes cause problems, since Richards
function doesn't seem to reproduce the growth pattern well at these
developmental stages (42). Another problem, which might be encountered
is the increased difficulty of estimating and finding starting values
for four instead of three coefficients.

Tables 2 and 3 are a summary of some characteristics for the
growth functions discussed here.

The term modeling is now frequently used for studies applying
the functional approach to data analysis. Thornley (65) described a
model as a set of mathematical equations, which quantitatively
represent the assumptions made about a studied system. When equations
are fitted to experimental data the model is empirical. This type of
modeling is most suitable as a first approach to a problem. It might be
possible with this model as a basis, to look at the mechanism behind

the responses and make a so called mechanistic model (65).
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Figure 4. Shape of the Bertalanffy function when m = 2 (the logistic
function); m =1 (the Gomperz function) and when m =0

(the monomolecular function).
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The main problem with a functional approach is to decide which
function is most suitable to use for the growth analysis in question
(16,40,42,67). Classical estimated parameters often give an indication
of the overall growth trends and the form of the underlying growth
functions can be distinguished easier (30,42). A combination of
classical and functional methods is necessary for successful growth

analysis.



Influence of Irradiance and Temperature on the

Development of Chrysanthemum morifolim Ramat.

Chrysanthemum morifolium Ramat. is one of the most important

crops grown in commercial greenhouses today (2). This review, will
emphasize how irradiance and temperature influence the growth and
development of chrysanthemums grown as pot plants. The influence of
irradiance and daylength on time to flower and plant appearance
(height, number of leaves and flowers, flower diameter etc.) will be
described, followed by the influence of different day and night
temperatures on time of development and final plant appearance.
Partitioning of dry matter will be discussed in the last part of the

literature review.

Introduction

Chrysanthemum morifolium Ramat. has been classified as a short

day (SD) plant (14,24,62). The critical photoperiod was reported in
1939 to be 14 1/2 hours (9 1/2 hours darkness) (54). Later Post (55)
discovered that 14 1/2 hours was the critical photoperiod for flower
bud initiation and that the critical photoperiod for development of the
flower buds was 13 1/2 hours (10 1/2 hours darkness). The time
necessary for flower development after start of short days varies with
cultivar; cultivars are classified into response groups based on the
number of weeks from start of SD to flower (46). Response groups vary

from 6 weeks to 15 weeks (3).

29
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Doorenbos and Kofranek (27) found flower initiation to
initially occur at the same rate after the start of SD in early (9
weeks) and late cultivars (14 weeks) but subsequent flower develcpment
was slower in the late varieties. Critical daylength was shorter for
late cultivars than early cultivars (32). Langhans (46) published the
critical daylengths for different response groups after data by Cathey
(15) (Table 4).

Flower development in chrysanthemum is affected by both
photoperiod and temperature. In 6 to 7 week response group cultivars,
temperature seemed to be the dominating factor, while daylength was
more important for the development of a longer response group (47).
Cathey (12) divided chrysanthemums into three different groups based on
their response to temperature. Qultivars that flowered in a temperature
range of 100 to 27° with the fastest development at 16° and only slight
delay at 10° and 27° were called thermozero cultivars. When a minimum
temperature of 160 was necessary for initiation of flower buds, the

cultivars were called thermopositive. In this group temperatures below

160 inhibited initiation and development of flower buds. The third

group was called thermonegative, since temperatures above 16© inhibited

flowering. Flower buds in this group were initiated at higher
temperatures but failed to develop. Figure 5 shows the response of
temperature on time to flowering for a thermozero, a thermonegative and
a thermopositive cultivar. When the cultivar Lilian Doty was grown at
130, 170 and 219, SD only induced flowering under 21°9. The plants
remained vegetative at the lower temperatures even with SD (60). Post
and Lacey (56) showed that high temperatures during SD also can delay

flowering. It appears that bud initiation and develcpment under SD is
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Table 4. Critical photoperiod for flower bud initiation and
flower bud dexe]opment of 5 varieties of chrysanthemums
grown at a 16 C temperature (from Langhans, 1964 after data
from Cathey, 1954).

Critical photoperiod (hrs)

Response Flower bud Flower bud
Variety group initiation development
White Wonder 6 16 13 3/4
Pristine 8 15 1/4 12
Encore 10 14 1/2 12
Fortune 12 13 12

Snow 15 11 10




Figure 5.
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Number of days from start of short days to flower for
a thermopositive, thermonegative and thermozero variety
planted in early January from stock plants kept -at 16°,
The plants were grown in a night temperature range from
10 to 279, (Redrawn from Machin and Scope 1978 after

data from Cathey 1954a).
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dependent on temperature and optimum temperature varies with
cultivar (47). |

A partially differentiated shoot apex where complete
development is arrested is called a crown bud (14). This kind of bud
has strap-shaped leaves beneath it, while a normal terminal bud has
lobed leaves below it (14). Flowering is often described with criteria
like number of developed leaves, number of days to visible bud or days
to anthesis and a measure for vegetative growth often used is internode

length (14).

Irradiance

Schwabe (62) found that the time required for flower bud
initiation and time to flower under short days to be affected by
seasonal changes in Quantum Flux Density (QFD). As irradiance
increased, the transition to reproductive development as indicated by
earlier appearance of flower buds and less number of leaves below the
bud, began earlier even though all plants were under short days
(19,62). Hughes (34) experimenting with different daylengths and
irradiance found vegetative growth to be primarily dependent on total
daily irradiance, irrespective of photoperiod (8 or 12 hour). Fastest
flower development occured under the conditions of highest irradiance
(95 J em~23-1) and 8 hours daylength. This irradiance corresponds to
150 umol s~1m—2 during the 8 hours light span. An almost linear
relationship between total dry weight and irradiance at constant
daylength was observed (34).

The cultivar 'Bright Golden Anne' flowered after 70 short days
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when grown under either 125 or 250 J cm™2 8-hr d~} (200 or 400 ymol
s™Im=2 for 8 hours) (36). At 31 and 63 J cm™2 8-hr d~1 (50 and 100
umol s~lm=2 for 8 hours) flowering occured after 94 and 87 short days
respectively. Cockshull and Hughes (23) concluded that an irradiance of
125 J cm™2 for 8 hours per day (200 umol s™Im=2, 8 hr da~1), was
adequate for normal flower development.

Transferring plants from an irradiance of 63 to 125 J
em~2 g-1 (from ca. 100 to 200 umol s~1m=2 on an 8 hour basis) during
the first two weeks of short days hasten flower initiation and
decreased time to flowering compared to plants grown continuously at 63
J cm~2d~1 (24). The effect on flower development was greatest when the
high irradiance was provided at the beginning of short days; two weeks
at 125 J em~2@~1 (ca. 200 pmol s~1m~2, 8 hr d~1) were more efficient
(faster flower initiation and development) than one week. A low
irradiance (31 J em~2d~!, corresponding to ca. 50 umol s™Im~2 for 8 hr
d~l) after the two initial weeks at 125 J cm™2 d~1 for 8 hr a~t
did not stop further development of flowers but the final flower
quality was poor (retarded floret initiation and a large variability
in flower development) due to the low average irradiance of 47 J
cm—24-1 (75 umol s7Im=2 for 8 hr da-1 during the whole short day period
(24). Plants grown continuously at 63 J cm~2d~1 had a more variable
development than plants under 125 J cm~2d~1 (24,36). Cockshull and
Hughes (23) showed this increased variability to be due to variable
flower initiation under the lower light at the beginning of short days.
Chrysanthemums under a constant irradiance of 125 J cm~2d~1 developed
similar to plants receiving the same total irradiance but given

alternately as 31 and 219 J cm~2d~l (50 and 350 umol s~im=2 for 8
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hr d-1) (24). This similar ity is not surprising as the reaction of
light in photosynthesis is primarily photochemical (50). The amount of
photosynthetically active quanta absorbed will determine photosynthesis
and the dry matter production would be expected to be similar at the
same average QFD (50).

Stepped irradiance was studied by Hughes and Cockshull (37) in
an effort to resemble diurnal irradiation with higher intensities at
noon and lower intensities at the beginning and end of a day.
Morphology and growth in the range from 31 to 250 J cm~2371 (50 to 400
umol s™Im=2, 8 hr d~l) was found to be a function of total daily
irradiance rather than to changing irradiance during the day.

Schawbe (62) concluded that the seasonal differences in time to
flower was correlated with changes in irradiance. However no seasonal
changes in leaf number were observed. When Cockshull and Hughes (24)
grew plants under 63 and 125 J cm™2 @1 (100 and 200 pymol s™1m™2, 8 hr
a1 they found a higher leaf number at the lower irradiance. Similar
results have been reported by Hughes and Cockshull (36); 15 leaves were
formed at 31 Jcm™2 @1 (50 umol s~Im2, 8 hr @1), 10 at 63 J cm—2
d-l (100 ymol sIm™2) and 7-8 leaves at 125 and 250 J cm~2 -1 (200 and
400 pmol sIm=2, 8 hr d~1). The shoot height was shorter in the highest
and the lowest irradiance (15.8 - 21.7 cm) than in the middle two
irradiance levels (16.6 - 27.4 cm)(36).

Supplemental lighting of flowering pot plants during low light
conditions often result in improved quality (11). Lighting at 5 W ft~2
for 10 hr a1 (270 umol s™Im2, 10 hr d71) of 6-inch pot chrysanthemums

during dark winter months resulted in plants with increased flower



37

number (up to 5 flowers/plant), dry weight (2-4 grams/plant) and stem
diameter. An increase in plant height (13 - 39 % depending on cultivar)
also occured under the increased irradiance (11).

Even under continuous long days, chrysanthemums will eventually
initiate flower buds. The number of leaves initiated under long day
conditions varied both with variety and time of year (17,47). However
when the cultivars were ranked by leaf number, their relative positions
were always the same as shown in Table 5. Flower initiation in long
days was related to an ageing process of the apical meristem
(17,18,47). The time necessary for this process was influenced by
environmental factors. Cockshull (19) found that under continuous
irradiance (24 hours a day) fewer leaves were initiated at 120 W m—2
(550 umol s"lm"z) in the cultivars 'Polaris' and 'Bright Golden Anne'
prior to flower bud initiation than on plants grown under 7.5 Wm2 (35
umol s‘lm‘z). Above 60 W m~2 (280 umol s‘lm'z) the leaf number
approached a minimum and the rate of leaf initiation increased with
irradiance reaching a maximum above 60 W m=2, Temperatures in the
range 16 to 28° had little effect on time to flower initiation in
continuous light (17,18).

Cockshull and Hughes (23) found the number of initiated florets
per flower to be higher when plants were grown at 375 J cm‘zd'l
(600 umol s™1m=2 for 8 hr h'l), than when grown at 31 J cm—2g-1 (50
umol s~Im=2, 8 hr d~1). The irradiance level between the 15th to 2lst
short days was the most important in influencing floret number.

Total dry weight increase was approximately proportional to
increasing irradiance up to 125 J em~2d~l (200 pymol s™Im=2 for 8 hr

dl), while a linear effect of irradiance in the range 63 to 250
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Table 5. Numbers of leaves and bracts initiated before the flower on
five cultivars of chrysanthemum grown in long days (Natural
daylength plus 5 h night break). (After Cockshull, 1974).

Date of Planting

Cultivar

6.13.73 10.10.73 5.29.74 Average
Tuneful 45.3 90.3 56.9 64.2
Gold Crystal 44.0 69.2 49.5 54.2
Polaris 33.5 56.1 40.8 43.5
Bluechip 29.9 48.4 33.8 35.4

Bright Golden Anne 20.3 34.3 18.4 24.3
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J em—2a-1 (100 to 400 umol s‘lm‘z, 8 hr d‘l) on flower dry weight was
observed (24,37,38,39). Carbon dioxide enrichment had a greater effect
on flower dry weight than on total dry weight. Hughes and Cockshull
(36) explained this to faster flower development and greater
partitioning of dry matter to the flowers.

Lowering irradiance (from 375 to 125 J em~231 or from 125 to
31 J em—23-1) during any stage of the short day period generally
reduced both total and flower dry weight (23). Higher irradiance (125
or 375 J cm~23-1) during the first four weeks of short days didn't
result in any detectable increased total dry weight at time of
flowering if plants were shifted to a lower irradiance during the final
6 weeks of development. Transfers after five weeks of short days to
higher irradiance from lower irradiance levels produced a significant
increase in total dry weight. After five weeks maximum leaf area had
developed and a higher irradiance could be used more efficiently by the
plants to produce dry matter (23).

Only a small difference in total dry weight production has been
detected when the same total irradiance (in a range up to 250 J
em—24-1) was given during a day, irrespective of daily timing (34).
For example, the average daily irradiance could be given in a rising
and falling diurnal cycle (37); by alternating days at high and low
irradiance (24) or by exposing plants to different irradiance with
inversely compensating daylengths (34).

There did not appear to be a requirement for a certain leaf
number or area before flower initiation could occur (23). However
flower initiation was delayed under low irradiance (31 and 63 J

cm~2 8-hr d~l), and the number of leaves formed often was larger
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compared to plants grown under 250 J cm~2 8-hr d~1). Total leaf area
per plant was similar for all light treatments and maximum leaf area
was developed by the end of six to seven weeks of short days (23).
Hughes and Cockshull (36) found a smaller total leaf area under low
irradiance (31 J cm~2 8-hr d~1) and COy concentration (325 ul 1L,
than under 125 J cm~2 8-hr d~1 and 900 ul 1-1 co,. The higher
irradiance and CO; combinations generally had a larger leaf area, but
no consistent pattern could be distinguished.

Unit Leaf Rate (ULR) increased with increasing irradiance
(31 - 250 J cm™2 8-hr d~1) and CO; levels (325 - 600 1l 171) from
0.08 to 0.5 mg cm~2 3-1 when the plants were 20 days old (36). When
this experiment was repeated with plants initially smaller, the ULR
was higher for corresponding combinations of irradiance and COj. A
downward trend for ULR occurs on growing and developing plants since
intraplant shading increases as the plant gets larger (36). Leaf Area
Ratio (LAR) decreased with increasing light and flower development
(36) .

The Relative Growth Rate (RGR) when the plants were 40 days old
decreased from 0.042 d~1 under a 12 hour photoperiod with a high
irradianc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>