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ABSTRACT

EMPIRICAL BAYES WITH SEQUENTIAL COMPONENTS
by

Rohana Jith Karunamuni

We consider the empirical Bayes decision problem where the
component problem is an m-truncated sequential decision problem.
The Bayes risk envelope of this component is smaller than that
of the fixed m-sample size component when there is a cost for
each observation. Empirical Bayes methods are presented that
result in empirical Bayes risk approaching envelope risk as the
number of components increases.

Consider an empirical Bayes decision problem with fixed

sample size components. Let (8,X), (el,ﬁlm)...(en,ﬁn )... be

m

i.i.d. with the common distribution being 6 ~ G, with
X - PexPex...xPe = Pgm) conditional on 8 . An empirical Bayes

decision procedure is a sequence ({t } where t = tn(llm""’znm)
is a function taking values in the set of component decision rules
and EL[e,tn(élm,hm,...,gnm)(z)] is its nthstage risk for making
a decision about 6 . The convergence of this risk to the com-
ponent envelope risk whatever be G 1is termed asymptotic optimality
(a.0.).

With the sequential components, tn selects both a stopping
rule function and a terminal decision function for use in the
component with parameter 6 . This results in the observations

available at stage n being 11N1,52N2,..‘,X , where Nl’ NZ""’Nn

—nN'1







are the numbers of component observations taken in the first n
components. The random sample size feature adds a degree of
complexity to the development of a.o. of empirical Bayes procedures.
Our results include the demonstration of a.o. procedures for some
finite state components and an empirical Bayes approach to one-
step lTook ahead procedures for some infinite state multiple

decision components.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

This thesis is concerned with empirical Bayes decision theory
with a sequential statistical decision problem as the component.
Robbins (1949, 1956) introduces empirical Bayes decision theory,
and Robbins (1964) summarizes results for certain components and
develops some general methods in regard to estimation of the prior
(mixing) distribution. Our development is reasonably self-
contained but does presuppose that the reader is somewhat familiar
with both sequential analysis and empirical Bayes decision theory.

The components to which empirical Bayes methods have been
applied are, with few exceptions, given fixed sample size identical
statistical decision problems. Exceptions are the varying (non-
stochastic) sample size components considered by 0'Bryan (1972,
1976), 0'Bryan and Susarla (1975, 1976, 1977) and Susarla and
0'Bryan (1975). Another exception is found in the works of Laippala
(1979, 1980, 1983, 1985). In his case the varying sample sizes
are random.

In this thesis we define a construct within which we can treat
both the random sample size and the usual fixed sample size cases.
We believe that the somewhat informal style with which this is
accomplished will expedite understanding of a fairly complicated
mathematical construct which mixes sequential analysis and

empirical Bayes decision theory.
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In Section 1.2 we introduce the sequential component problem
which is the kernel of the empirical Bayes decision problem. In
Section 1.3 we give a brief introduction to Robbins' empirical
Bayes decision problem and develop new results for some finite
parameter space component problems. Finite action linear loss
testing and multiple decision component problems are treated in

Chapter 2.
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1.2. The Component Problem

The component problem we consider is the m-truncated sequential
decision problem with constant cost per observation. This problem
is described in detail in various books concerning decision theory,
e.g., Berger (1980, Chapter 7). However, in order to make this
presentation reasonably self-contained, we will use this section
to develop notations to describe the component problem that is the
kernel of the empirical Bayes decision problem that is the subject
of our investigation.

The parameter space is the measurable space (0,A) and the class
of all (prior) probability distributions on A is denoted by G. The
parameter 6 indexes transitions; specifically, Pe is a distri-
bution on (X,B) where X 1is the real line and B is the Borel

o-field. Conditional on 6, the observable random variables

XpseoonXy are iid Pgs for k= L2,....m x = (xpheeonx) e XK,
X~ PK =P, x...x P, (k tines) and BX denotes the Borel o-field
in xK,

Suppose that the component decision problem has (terminal)
action space A and loss function L > 0 defined on © x A. Let
c > 0 denote the constant cost per observation.

For k =0,1,...,m, let Dk denote a set of mappings & from
x™ into A that are constant with respect to the last m-k
coordinates and are such that L(e,s) is A x B" measurable.

0

D~ consists of constant functions. We will regard the domain of

S e Dk as Xk when it is convenient to do so, k = 1,2,...,m.
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We are to sample the Xk sequentially. The observations are
taken one at a time, with a decision being made after each observa-
tion, to either stop sampling and choose an action in A or to take
another observation. Therefore, a sequential decision procedure
consists of two components, a stopping rule and a terminal decision
rule.

The stopping rule T is a sequence 1t = (TO’TI""’Tm) where
T is a constant function representing the probability of making a
decision without sampling and, for k = 1,2,...,m e 5 [0
is an 1k - measurable function representing the conditional
probability of stopping at stage k given that sampling did not
stop at stages 0,1,...,k-1 and given the observation gk. With
the m-truncated sequential problem, T = 1. For a nonrandomized
stopping rule 1, Ty takes values in {0,1} for k = 0,1,...,m.
Associated with t is the stopping time variable N.

We will be concerned only with nonrandomized 1 and will
take N = min {k: T 1}. Such =t partition ™ into {[N=0],
[N=1],..., [N=m]} where [N=k] is a function of 1‘( only. If
g = 1, then [N=0] = ™ and N=0. If 1g=0, then [N=0]=¢ .

The terminal decision rule § 1is a sequence § = (50,

0 X 171 X...x D™, The interpretation is that the

61,...,5m) eD =10
decision function ék is used on the set [N=k], k = 0,1,...,m.

A sequential decision procedure is a pair (r,8), where =z

is a stopping rule and & 1is a terminal decision rule. We will

restrict consideration to the class of procedures T x D, where




s

T denotes the class of all nonrandomized stopping rules =t such
that T = 0. (The reason for working with stopping rules such
that N > 1 will be made clear in the next section.) Thus, we
may drop first coordinate functions and take =t = (11,...,1 s

)e

For a sequential procedure (z,8) the risk (including cost

m
8= (61,...,6"‘
for observations) given o is
m
R(e,(x,8)) =/ T [N=kl(L(8,5,) + ck} Pg(dx")
k=1
(1.1)
= it K, k )
= I J L(6,8,)Pg(dx") + cEN;
k=1 [N=k]

the Bayes risk of (1,8) with respect to GeG is
(1.2) R(G,(1,8)) = / R(8,(x,8))G(d6);

and the (infimum) Bayes risk at G is

(1.3) RB(G) = inf{R(G,(1,8)): (1,8)eTxD}.

Under certain conditions, the Bayes envelope value RB(G) is
achieved by a choice (lB(G),g(G)) where the components of the
Bayes stopping rule lB(G) are defined by backward induction and
the components of the Bayes decision rule §(G) are Bayes in the
respective fixed sample size problems. (cf. Berger (1980, Chapter
7).)

In the typical empirical Bayes problem, the decision-maker

is faced with a sequence of independent, identical component problems




with a common (unknown) G. The.idea is to pool sample information
from the components in the sequence to estimate G, or the Bayes
procedure with respect to G, so that as the number of components
increases, the empirical Bayes decision procedure has risk approach-
ing the envelope value, whatever be G, i.e., is asymptotically
optimal.

Our formulation of the component problem enables one to produce
the fixed sample size and other component problems by restricting
1. Gilliland and Hannan (1974, 1976, 1985) have introduced the
idea of producing different envelopes by restriction of the class

of decision procedures. For example, if we define

(1.4) Tp = {zeT: 1 constant}
and
(1.5) Rp(6) = inf (R(G,(z,8)): (2,8)eTpxD},

we have the envelope risk for fixed sample size procedures. We refer

to (1.5) as the optimal fixed sample size risk. If we define Ty

to be a subset of T, consisting of rules 1 where ;j =1 if j=k
and =0 if j < k, then the corresponding envelope Rk(G) is that
of the fixed sample size k component. We refer to Rk(G) as the

optimal fixed sample size k risk. Note that for each G,

(1.6) RF(G) = inf {Rk(G): k =1,2,...,m}.
Since
(1.7) RB(G) < RF(G) < Rk(G), k = 1,2, oM,



achieving the Bayes envelope risk for the m-truncated sequential
component is preferred to achieving envelope risk in either the
optimal fixed sample size or given fixed sample size component.
However, the construction of empirical Bayes procedures that achieve
the most stringent envelope is the most difficult construction.

We will also be dealing with a sequential procedure which
in the literature is called a one-step look ahead procedure. Here
the decision to continue or to stop the sampling is made after

observation X, by comparing the conditional on 5k

(posterior)
Bayes risk of stopping and making a decision with that of making
a decision after taking one more observation and playing Bayes.
(See Berger (1980, §7.4.6) for details.) The one-step look ahead
stopping rule is much simpler than the Bayes stopping rule. (The
latter can be defined by backward induction; the decision to
stop is based on a comparison of the conditional on 5k Bayes
risk of stopping and making a decision with that of not stopping
and playing an optimal sequential strategy from that point.)
Formally, the one-step look ahead stopping rule is defined
as follows. For k = 1,2,...,m, Tlet Gk denote a posterior
distribution of 6 given 5k in the component with 6 ~ G and,

conditional on o, Xl""’xk iid Pe‘ (We assume such Gk exist

for each 5k e X, k=1,2,...,m.). We suppose that

(1.8) r(G) = inf{sL(6,a)G(d6):acA}



is attained at each G and that a Bayes decision function ék(G)

attains the infimum posterior Bayes risk, i.e.,

(1.9) r(G,) = sL(e,5,(G)) G (de)

for all 5k and k = 1,2,...,m.

The one-step look ahead stopping rule is 1L(G) = (r%(G),...,r;(G))

where r;(G) =1 and, for k =1,2,...,m-1,

*

1 if Er(6,y) *c-r(6) 20

L
(1.10) 1. (6) = .

0 if E r(Gk+1) +C - r(Gk) <0

*
with E denoting conditional expectation on Xk+1 given lk = 5k.

The one-step look ahead sequential decision procedure is

(IL(G), 8(G)); i.e., it uses the Bayes terminal decision rule with
the stopping rule (1.10). If m = 2, IL(G) is a Bayes stopping rule.

The Bayes risk of (z"(G), 6(G)) is denoted by R (6). This
is not an envelope risk, rather, the Bayes risk associated with a
particularly tractable sequential decision rule. We will consider
the empirical Bayes approach to achieving risk RL(G) in Chapter
2 for particular classes of sequential components.

We now give three examples to illustrate some of the concepts
introduced to this point. The examples are sequential m-truncated

components with testing simple versus simple, testing with linear

loss and estimation with squared error loss.

Example 1.1 (Testing Simple vs. Simple). Let o = {0,1}, A = {0,1}
and L(0,0) = L(1,1) = 0, L(0,1) = L(1,0) =L > 0, a constant. We







identify a prior G on © by the mass = it puts on the state
1 so that G can be identified with the unit interval. Let PO
be N(-1,1) and P1 be N(1,1). (This example is the sequential
version of that used by Robbins (1951) to introduce the idea of

compound decision theory.) The posterior probability of 6 =1
k

given 5k is m = mexp (i xj)/{v exp (i xj) + (1-7) exp (-z% Xj)}
and a Bayes decision rule is
1 if m > 1/2
(1.11) 6k =
0 if L 1/2
The event T > 1/2 1is equivalent to ZT X5 2 c(m) where c(w) =

(1/2) In ((1-7)/w).

Consider the case of truncation at m = 2. In this case, the
one-step look ahead procedure is Bayes with respect to m so that
RL(w) = RB(n), 0 i‘w < 1. Let the Toss for misclassification be
L =1 and the cost per observation be c¢ = .05.

The one-step look ahead stopping rule =(m) (cf. (1.10)) is
defined by Tz(n) =1 and

1 if rl(nl) + .05 - ro(nl) >0

(1.12) Tl(n) =
0 if rl(ﬂl) + .05 - ro(vl) <0

Here

=alr < 1/2) + (1 - n) [n > 1/2],

=
(en]
——~
El
N
]

and

Y‘l(n) = 7o(c(w) - 1) + (1 - w){1 - ¢(c(m) + 1)}
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where ¢ denotes the standard normal cdf. Calculations show that
(1.12) is equivalent to
1 if |n1 - .5] < .361567

(1.13) tl(w) =
0 if Iﬂl - .5 > .361567

and
1 if |x1 - c(m)| < c(.138433)

(1.14) rl(w) =
0 if |x1 - c(m)] > c(.138433).

The envelope risk RB(r) resulting from the Bayes procedure

d(t) = (z(r),8(r)) was calculated for selected values of = and

is plotted below along with the fixed sample size envelopes

Ro(n) = ro(n) and Rk(n), k =1, 2, where
(1.15) Rk(ﬂ) = 7o((c(n) - k)/VK) + (1 = n){1 - o((c(w) + k)/V/k)} + .05k.

Of course, the optimal fixed sample size risk envelope is
RF(") = min{Rl(n), Rz(n)}. Note that RB(w) is considerably less
than RF(n) for priors = near .5 . Also note that for n's near

0 and 1, RO(W) < RF(N).
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Theorem 1.1 of the next section shows that the Bayes envelope
risk RB(") for the truncated sequential component is achieved in

the Timit by empirical Bayes decision procedures g" = (<",s"

where 3" and gn are Bayes with respect to consistent estimates

of w. The theorem as stated and proved subsumes the usual fixed
sample size component case and the optimal floating fixed sample

size case through restriction of the class of component stopping

rules.

In the next two examples, Pe = N(6,1), 6 ¢ © = (-»,») and
the prior on © s G = N(O,oz). In this case the posterior
distribution 6 of o given XX =xX is N(o%S./(1 + ke®),
02/(1 + koz)) where S = thj, k =1,2,.... In the following

examples, " denotes the conditional mean.

Example 1.2 (Testing with Linear Loss). Let 0y € 0.
Let A= {ao,al}, where a and a; correspond to actions
"decide 6 < eo" and "decide 6 > 64", respectively. Let
+ -
L(e,ao) = (o - eo) and let L(e,al) = (o - eo) . Let
8(G) = (61,...,5m) be the Bayes terminal decision rule where

8y is a Bayes decision rule with respect to G for the fixed

sample size k decision problem. If ¢ = Pr(aollk = 5k), then
we take

1 if o < 6
(1.16) 8 =

-12-

We now derive the one-step look ahead stopping rule. Posterior

minimum Bayes risk at stage k(k > 1) 1is given by
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r(G

k) = inf s L(6,6) G (de)

" fe L(e,sk) Gk(de)

(6 - eO)Gk(de) if e <8
(eo - e)Gk(de) if W > 89 -

Define y(t) = s5(x = t)e(x)dx = ¢(t) - t(1 - &(t)), where ¢

£
denotes the density function and ¢ denotes the cdf of the standard

normal distribution. Then

-1/2 1/2 .
ak ' (ak (90 - Uk)) if My < 90
(&) - 12 ,.1/2
a; / '] (ak/ (Uk - 90)) if le > eo
2., 2
where a = (1 + ke®)/o" . In other words,
- .=1/2 1/2
(1.17) Y‘(Gk) = ak v ( Ieo = Ukl

*
The conditional Bayes risk E r(Gk+l) from taking X, .,

ko

given X is (see DeGroot (1970) p. 28b)

* - -1/2 1/2
E r(Gk+1) = r(Gk) - b, v ( leo - “kl

where

Therefore, in defining the stopping rule (1.10),

* 1/2 1 2
E'r(Gyy) *+ ¢ - r(6) = ¢ - b2y (0 %oy - ul)

Thus, the stopping rule lL for the m-truncated problem stops

sampling for the first k(k = 1,2,...,m-1) for which

/2., (/2

c > by |6g = wl) or k =m, whichever is smaller.
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Example 1.3 (Estimation with Squared Error Loss). Let A =6 and
let L(e,a) = (6 - a)2. Then the Bayes terminal decision rule

§(G) = (61,...,6 ) for the m-truncated problem is given by the

m
estimators Gk = W k =1,2,...,m.

Posterior minimum Bayes risk is the posterior variance

)%6, (do) = o%/(1 + ke®).

r(Gk) =/ (8 - My Therefore, r(Gk) depends

only on the number of observations that have been taken and not on
= o2/(1 + (k+1)o?).
2

)

*
the observed values Xl""’xk' Thus E r(Gk+1)

Therefore E*r(Gk+1) +C - r(Gk) = 02/(1 + (k+1)o 2).

+c - 02/(1 + ko
Then the stopping rule lL for the m-truncated problem stops

sampling for the first k (k = 1,...,m-1) for which

¢ > o7/(1 + ka®)(1 + (k+1)a®) or for k = m, whichever is smaller.
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1.3 The Empirical Bayes Problem

In the last section, we introduced the basic idea behind
Robbins' empirical Bayes formulation after defining the sequential
m-truncated component problem. This component has envelope risk
which is no greater than that of any fixed sample size k version,
k =1,2,...,m. By suitable restriction of the class of stopping
rules, the component specializes to the customary fixed sample size
component.

In its full generality, the sequential component presents some
unique problems when it 1; the kegne] of the empirical Bayes

1

decision problem. Let X 7,...,X N,... be the observation vectors

from the sequence of independent repetitions of the component. For
each n, the stopping rule In used in the nth component can

N N
depend on (X 1,...,[ n-l)_

Thus, the sequence of observed random
vectors is not the usual iid sequence.

This fact raises interesting problems in regard to the
efficient use of such random vectors in estimating stopping rules
and decision rules for the empirical Bayes application. This
thesis will not address these problems. Rather, it will address
the issues of the convergence of empirical Bayes risk to envelope
risks such as RB(G) and RF(G) and to one-step look ahead risk
RL(G) for selected empirical Bayes decision procedures based on
SORY

(assumed) consistent estimators of G or of = G),

L(

G)al
G) and §(G).

I
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We will now indicate the reason why we restrict T to 1 such
that Ty T 0. Consider the empirical Bayes problem with the
sequential m-truncated component and envelope RB. For specificity,
take o = {0,1,...,a} and G to be the a-dimensional simplex of
probability vectors on © with norm and Borel o-field that induced

a+l

from X For certain component loss structure, transitions P

8
and cost c¢, there will exist an open set Gy G such that, for
GeGpys TO(G) = 1, i.e., G such that a Bayes stopping rule with
respect to G in unrestricted T calls for taking no observations.
(See Example 1.1.) Hence, if Gn is an a.s. consistent estimator
of GeG and if GeGO, then the empirical Bayes strategy based on
the estimate Gn will a.s. cause sampling to terminate after a
finite number of repetitions of the component and, therefore,

will not enable consistent estimation of the mixing distribution.
Hence, it will not be possible to achieve the envelope risk RB(G).
For this reason, we have restrictéd consideration to the class of

stopping rules T which take at least one observation, i.e., such

that 9 = 0. (In this case note, that the first coordinates of

N N
the observation vectors X 1,...,1 N,... are iid so that the

decision-maker does have standard data available with which to
construct consistent estimates of G.)
Suppose that the stopping rules are restricted to a class

Te < T. The envelope risk associated with T, is

Ry (G) = inf {R(G,(1,8)): (1,6)eT, x D}

(1.18)

inf {R(G,(7,8(G)): 1eT,}
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*
which we assume is attained at 1 (G), GeG. The nth stage empirical
N
Bayes risk based on the estimate G = G_(X 1

N
n-1
a(X TaeiX ) and

conditional on the data satisfies

(1.19)

where we have used abbreviations d(H) = (1*(H),§(H)), HeG. Bounds

like (1.19) are basic in empirical Bayes analysis and go back at

least to Hannan (1957). Hence,
(1.20) 0 < R(6,d(B)) - R.(G) < 2 sup {|R(G,d) - R(G,d)|: deT,xD}.

Thus, if the convergence of the estimator is in the metric defined
in RHS (1.20), the empirical Bayes procedure based on G will be

asymptotically optimal (a.o.).

Theorem 1.1. Suppose that o = {0,1,...,a} and that the loss

function L is bounded. Suppose that T, 1is a specified subset
of T, R, denotes the associated envelope risk function and that

R,(G) 1is attained by (1*(6),§(G)), GeG. Suppose further that

N
n ntX s X n 1), n=2,3,... is an a.s. consistent estimator

of GeG. (Here we identify G with the a-dimensional simplex of
probability vectors on © and we denote the sup norm on

* A -~
x@tl by || ||). Then the empirical Bayes procedure d" = (t (G,),8(G ))

is a.0. on G.



-18-

Proof. Since L 1is bounded, the risk set associated with
the component is bounded; specifically, 0 < R(8,(1,8)) <L +cm
for 6 = 0,1,...,a. Hence, RHS(1.20) < 2(L + ¢ m)IIGn - G|| so

n

that (1.20) with G = én implies R(G,d") » R,(G) a.s., GeG.
N

N
X n-1

Taking expectation with respect to X 1,..., establishes
the L1 convergence, which is sense in which asymptotic optimality

is usually defined. 0

Of course, choices T, = T,

i T = Ty To = T result in

Fo ol
envelopes R, = Ri’.R* = RF’ Ry = RB defined in the last section
and displayed for a particular component in Example 1.1. For a
component where T, includes truly sequential stopping rules, the
implementation of the empirical Bayes stopping rule l(én) may
require considerable calculation involving backward induction.

We will not attempt to generalize Theorem 1.1 to cover a
general infinite © component. In the next chapter we investigate
empirical Bayes one-step look ahead sequential procedures-for-

certain components where the structure is sufficiently tractable

to analysis, namely certain finite action components.
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CHAPTER 2
TWO ACTION AND MULTIPLE DECISION PROBLEMS

2.1 Two Action Problem

In this chapter we will establish asymptotic results for
empirical Bayes sequential decision procedures in the cases of
linear loss testing and the multiple decision problem components.

In this section we describe the linear loss testing problem
where two composite hypotheses are tested against each other and
derive the one-step look procedure gL = (IL(G),Q(G)) relative
to G for the linear loss two-action problem. An empirical
Bayes sequential decision procedure will be constructed in the
next section and asymptotic results will be given in Section
2.3. In Section 2.4 we formulate the one-step look ahead
procedure for the general multiple decision problem and exhibit
an empirical Bayes sequential decision procedure with asymptotic
results. Throughout this chapter, we will assume that the para-
meter space 0 is a subset of the real line and fe >0 1is a
density function of the distribution P, with respect-to a given

S

o-finite measure u on (X,B). To conserve notation we will also

1ot fe(ik) denote the product fe(xl)...fe(xk) for 5keXk, k > 1.

We wish to test the hypothesis
HO: 6 < 0, against Hi: 6> 8,

where 6c0 - Consequently, the action space A consists of two
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actions only, namely {ao,al} where a and 3 denote the actions
of deciding H0 and Hl’ respectively. We assume a linear loss

function, specifically,

(2.1) L(e,ay) = (o - eo)+, L(6,a;) = (8 - 65)7, e .

We assume that the first moment of 6 is finite with respect to G,
where G is the prior distribution on o. This is sufficient to
ensure that the Bayes risk of the m-truncated one-step look ahead
procedure defined in Section 1.2 is finite.

In the literature many authors have studied the two-action
problem from the standard empirical Bayes point of view. Samuel (1963)
discussed the two-action problem and exhibited a.o. empirical Bayes
tests under various loss structures and, in part, dealt specifically
with certain types of discrete exponential families. Yu (1970),

Johns and Van Ryzin (1971, 1972) considered the linear loss two-
action problem with exponential families and developed rates of
convergence in the regret ER(G,Gn) - RB(G) where §_  is an
empirical Bayes test for the fixed sample size linear loss two-

action problem. Van Houwelingen (1976) proposed monotonizing empir-
jcal Bayes tests defined in Johns and Van Ryzin (1971, 1972). 0'Bryan
(1972), 0'Bryan and Susarla (1975) treated the testing problem where
the sequence of component problems consists of independent but not
identical decision problems, all having the same unknown prior dis-
tribution. These sequences of decision problems are identical except

for the sample size. Laippala (1979, 1980, 1983, 1985) discussed the
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two-action problem with varying random sample sizes in Binomial and
exponential conditional distributions.

Now let us determine the m-truncated one-step look ahead procedure
QL = (lL(G),g(G)) with respect to G for our testing problem (see
Section 1.2). The terminal decision rule &(G) is a finite sequence

(61,...,6 ) where ervk(k=l,...,m) is a Bayes decision function

m
relative to G for the fixed sample size k testing problem
(e,A,L) with the loss function (2.1).

For k > 1, §, can be determined as follows.

Let Gk(lk) = Pr {choosing ag|X; = xy,...,X, = x,} be a randomized
decision for the two-action problem with the loss function (2.1) given
that the observations are X1 = xl,...,Xk = X Then the Bayes risk

of decision function 8 relative to the prior distribution G is

given by

= k

) (L(s,29)8, (x*) + L(8,2;)(1-5, (x*))3 Pg(dﬁ

]

k) k

Since f,(x") 1is a conditional uf-density of X = (X,,...,X), and

L(e,ao) - L(e,al) =0 -8, (see (2.1)), one can write

(2.2) r(Gaey) = /a6 8 () W (0 + ¢
where C. =/, L(e,a;)G(de) and
(2.3) a (x5) = 7, (0-80) ,(x¥) G(de) .

From (2.2) and (2.3) it is clear that a Bayes rule (a minimizer

of r(G,dk) for given G) s provided by the nonrandomized rule

G(de).
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1 if o (xX) <0

k) -

(2.4) 8, (x
. Kk
0 if o (x7)>0.

Note that we have suppressed the display of dependence of the Bayes
rule Gk(ﬁk) on G. Henceforth, the terminal decision rule

8(G) = (61,...,6m) for the m-truncated one-step look ahead procedure
d" = (<(6),56(G)) defined in Section 1.2 is given by (2.4) and
(2.3), k =1,2,...,m. Then the minimum posterior Bayes risk

r(Gk) with respect to G, for k> 1, is given by

r(6,) = 7y L(0,6,(x5)) 6, (do)

where Gk is the posterior distribution of 6 given lk = 5k. Thus

for the linear loss testing component,

r(6,) = £o {L(8,ag)6, (x*) + L(e,a))(1-5,(x))} G, (de)

¢]
(2.5)
Ky

So U(L(e,ay) - L(s,ag))s, (x7) + L(s,a )} G (de).
Since L(e,ao) - L(e,al) =8 - 8), (2.5) can be written as

r(G

|
(g

(2.6) K - o (8-84)G, (ds)

1
— /. L(8,a,)f (x

K)

G(de) +

provided fk(ﬁk) >0 and r(G) =0 if fk(lk) = 0 where for

k> 1, fk(ﬁk) = Jq fe(lk)G(de), and o, 1is given by equation (2.3).

The expected risk E*r(Gk+1) from taking Xk+1 observation

and playing Bayes conditional on lk = 5k is given by
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* *

(2.7) Er(Gyp) = 7y (G )f (xppqduldx )

*
where f (Xk+1) is a conditional density of Xk+1 given

k+1)

X"=x" . Let f ., (x and fk(ék) be unconditional marginal

k+1 k

densities of X and X~ vrespectively. Then a conditional density

) /£, (x5)

*
of Xk+1 given lk = 5k is given by f (Xk+1) = fk+1(—
= 0. Using this fact

*
if fk(ék) >0 and f (Xk+l) =0 if fk(ék)

and changing k to k + 1 in equation (2.6) and then substituting
back in (2.7) we get

*ooo 1 k
E'r(Gyy,) = o fo L(0,a))Fy(xK)6(de) +
(2.8)
1 k+1
?’?iFE 1 S Doy (D)
k'\=

provided fk(ﬁk) >0 and E*r(Gk+1) =0 if fk(lk) = 0 where
Sp+1 and a4 are given by (2.4) and (2.3), respectively, with k
replaced by k+1. Letting

(29) o) = 1, Tapyg < 0 oy w(dxpq) + () = Loy < 0] o (x9),

k) k) = 0 and

we observe that pk(5 = 0 when fk(l

Er(Gy, ;) (6,) o (VB i Y > 0
r tc-r =
k+l k c if fk(lk) =0.

L. (L L

Hence, the stopping rule 1 TyseeesTp of m-truncated one-

step look ahead procedure (1.10) for our testing problem is defined
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L

by Ty = 1, and for k =1,...,m-1 by

I if p(x¥) > 0
(2.10) T(x) =

0 if o (xf) <0

where we have suppressed the display of dependence on G.

Let NL be the stopping time of m-truncated one-step look ahead

(zL(G),g(G)); then

procedure gL

K™ = min (k| (x6) = 13

and since r; = 1, sampling will be stopped after Xm has been

observed if it had not been stopped earlier. The risk of this

procedure at G 1is (see (1.1) and (1.2)),

(2.11) R(6) = = s o/ o [NL=k](L(e,6k(5k)) tck) f

1 X 6

no~3

(x™)G(de)u™(dx™)
k .

where &, = [ak < 0] by (2.4), o, s given by the equation (2.3),

and L 1is defined by (2.1). By the definition of L we get

Using this fact and the definition of C. following (2.2), we have
m

_ L. '
L(G) =Cg ¥ kil o fxm [N- = k]([ak < 0J(e - 8g) + ck)

R

(2.12)

fo(x")G(do)u"(dx™) .

The empirical Bayes approach applied to this problem can be
based upon estimation of the functions [NL = k] and @y k =1,2,...,m.
For this purpose, it is useful to decompose and represent the indicator

functions as follows. Note that for k = 1,2,...,m-1 [NL = k] = Ak + Bk
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and [NL =m] = A_ where
Ak = [pl < 0] .......... [pk_l < 0][pk > 0] for k =1,..... m-1
(2.13) Bk = [pl <0]eeevinnnn, [pk_l < 0][pk = 0] for k=1,..... m-1
Am = [pl < 0] .......... [pm 1 < 0]

Thus, the Bayes risk of m-truncated one-step look ahead procedure
QL = (lL(G),g(G)) relative to G for our testing problem can be

written in the following form (see (2.12)):

m
R (6) = Cg + k§1 fefxm A ([, < 01(e - 6g) + ck) f (x")G(de)u"(dx")
(2.14)
m-1 m m, ,.m
+ k§1 f@fxm B, ([o, < 0J(e - 87) + ck)f (x")G(de)u"(dx") .

The inequalities defining the indicators correspond to open sets for the
Ak and boundary sets for the Bk' In the empirical Bayes application,
the functions py are estimated so that a separate treatment of bound-

aries is important in so far as convergences are concerned.
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2.2 An Empirical Bayes One-step Sequential Decision Procedure for

the Two Action Component Case

Suppose that the prior distribution G 1is unknown but fixed;
then the classical Bayes quantities (2.3)-(2.9) of the Section 2.1
are not available to the statistician. However, suppose that we
are experiencing independent repetitions of the same component
problem. Then applying the empirical Bayes approach introduced by
Robbins (1956), we may derive empirical Bayes estimates of the
classical Bayes quantities (2.3)-(2.9), and, hence, an empirical
Bayes one-step sequential decision procedure d" = (z",s"), where
ln is an empirical Bayes stopping rule and gn is an empirical Bayes
terminal decision rule.

In order to construct an empirical Bayes sequential decision
procedure g" = (ln,gn), we will make the following assumptions on

conditional density fe(x) and the parameter space o.

(A1) For each x, fe(x) is a continuous function of 6.

(A2) © 1is compact.

At the nth problem of the repetitions, we will have observed

N N
the random vectors 511,...,5nfil from the past (n-1) repetitions

of the component problem 2.1, where Nl""’Nn-l are the respective
stopping times of the past repetitions. Let {Gn} be a sequence of
N N

distribution functions on ©, where Gn(e) = Gn(e,lll,...,lnfil)
N N

depends only on the random vectors 511""’5n?11’ which converges
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weakly to the prior distribution function G with probability one as
n > «, that is,
Pr {1im Gn(e) = G(6), any continuity point of G} = 1.
N>

Remark 2.1. Robbins (1964) showed the existence of such a sequence
of distribution functions on © = (a,b), - » < a < b < =, under the
following assumptions.

(a) For each x, F_(x) 1is a continuous function of 6, where

6

Fe(x) is the conditional distribution function of X.

(b) If G1 and 62 are two distributions on © such that

FGl = FG2 then G1 = G2 , where FG(x) =7 Fe(x)G(de) .
(c) The limits 1im Fe(x) and lim Fe(x) exist for each x
8->a 8-+b
and neither 1im Fe(x) nor lim Fe(x) js a distribution function.
6+a 8->b

He showed that when © 1is a compact subset of R, condition (c)
can be relaxed.

Now we define our empirical Bayes sequential decision (EBSD)
procedure g” = (ln,gn) as follows.

Let " be a finite sequence of functions (6?,...,5"

m)’ where
K)

n

52 is such that &, (x") = Pr {choosing a0|1k = 5k} and, motivated

by (2.4) and (2.3),

1 of(xf) <0
(2.15) (%) =

0 if af(x) > 0
and
(2.16) ap(x¥) = s, (6 - 0,)f,(x¥)6, (de)
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Let 1" be a stopping rule consisting of a finite sequence

of functions (T'{,...,T;) where, motivated by (2.10) and (2.9),
=1 and, for k=1,..,m1,
1oif ol 0
(2.17) k) =
0 if p:(ik) <0
where

k+1

(2.18) SN = sy ol M), K utax, )+ off ) - e()el(x)

with () = 7, £,(x¥)6 (de) . Since =1, sampling will be
stopped just after Xm has been observed if it had not been stopped
earlier.

For investigating the risk of the EBSD it is useful to define

CE = [p'l1 20])ss0s0wsmes [pz_l < 0][92 >0] for k=1,...,m1
(2.19)
= [o] <0leevnnnnnns Len_y <01

Then [N" = k] =C{ for k=1,...,m-1 and [N"=m]=C
N denotes the stopping time of the EBSD procedure d" = (et

s > L
Note that = [N = k] =1 implies I =1
k=0 k=1

Let R(G,d") denote the conditional Bayes risk of d" = (:",s")

with respect to G. Then since the CL' partition x™ ,






m

(2.20)  R(G,d") =C.+ = s s _CN

([«] < 016 - o

onk +

o)

+ ck) fo(x")6(de)u"(dx") .

In the next section we will treat the difference between the
empirical Bayes risk R(G,gn) and the one-step look ahead risk

RL(G) using the decompositions (2.20) and (2.14).
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2.3 Asymptotic Results for the Two Action Component Case

In this section we compare the asymptotic behavior of uncondi-
tional Bayes risk of the Section 2.2 EBSD procedure g" with the
Bayes risk of m-truncated one-step look ahead procedure gL
discussed in Section 2.1. First we prove the following useful

lemma. Convergence of sequences of functions on x™ js understood

to be pointwise convergence.
Lemma 2.1: Under the assumptions (Al) and (A2) for k > 1,

>

pE Pk w.p.l as n-»> o,

Proof: From (2.9) and (2.18) with dependence on §k suppressed,

IA

o = Ix Logay < Odogyquldxy) + cfy = Loy < Oloy

and

n _ n
ok = Ix Loy

IA

0]aE+1u(dxk+l) + CfE - [aE < O]O.E .

By assumptions (Al) and (A2), f (5k) is a bounded and continuous

0

function of o for each 5k. Then recalling the definitions of

aps ops fps | (see (2.16), (2.3), below (2.18) and below (2.6))

and the assumptions on the sequence {Gn}, we get for k > 1,
(1) aE > o, W.p.l as nose

and

(1) fp»f, wp.l as noe.

From (i) it follows that
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(2.21)  [op < OJop » [, < OJu,  w.p.l as s, k>l
To show that J, [aE+1 < 0]a2+1u(dxk+l) > Iy [ak+1 < 0]“k+1“(dxk+1)

w.p.1 as n > « , we use the Generalized Dominated Convergence

Theorem (GDCT).

+
Note that |ak+1 x 1)[ak+1 < 0]| < hk+l( k+ 1) where

+ + +
hf, (K1) = sl - eI, (x¥*1)6 (de) . Then Tin J " K ax,,) =
Vim £ £]e - 60| f. (x*1)6 (de)u(dx,,,) = r|e - 6q|f.(x)G(d6) w.p.1
o 0l TptX  /apldo/uidXyyy 0l Tgt2 P
by the assumptions (Al) and (A2). But /|6 - eolfe(ﬁk)G(de) is
equal to / /|6 - 6,|F(x*"1)G(ds)u(dx,,;) and note that the

following equality is satisfied :

k+1 . +
05 10 = oglF(x*T6(de)uldx 1) = £ Vim s e - 6| fy(x**T)

N>e

6, (d0)u(dxy,;)

k+1
=/ lim hk l( )u(ka+1) w.p.1 .
N+oo
Now use the GDCT and (2.21) to get the required results. 0

Now we state and prove a theorem which concerns the asymptotic
behavior of the conditional Bayes risk of empirical Bayes sequential

decision procedure g" = (L",gn) defined in the previous section.
Theorem 2.1: Under the assumptions (Al) and (A2)

(2.22)  Tim sup R(G,d") < R (6) w.p.l

N>

where R(G,Qn), and RL(G) are given by the equations (2.20) and (2.14),

respectively.
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Proof: The difference of R(G,g") and RL(G) can be written as

m

R(G,d") - R (6) = _? £ 470 A{([a] < 0] - [ay < 01)(6 - 6p)
=1 i=1
+c(i - ) (xM)6(de)u"(dx™)
e + mgl 2 77 CMB(([a" < 0] - [as < 01)(6 - o)
[ I L B = 0

+c(i - 31 (x™)6(de)u™(dx"™) .

The first double sum in (2.23) can be written as Ji + Jﬁ + Jﬁ s
where
1 m J-1 n n
o= I 2 07 G A(Teg < 0] - oy < 0])(e - 8p)
j=2 i=1
+c(i - §)Hf (xM)6(de)u"(dx")
Jo= 2 S G A-{([ai < 0] - [a; < 0])(e - eo)
j=1 i=j+l J !
+c(i - §)3(x6(de)u"(dx™)
and
m
33 - P S cl A L([of < 0] - [a; < 01)(6 - 8,)}f (x™)6(do)u"(dx™) .

i=1
We will show that J; >0 w.p.l as n-» e, i=1,2,3, and, hence,
the first double sum in (2.23) goes to zero w.p.l.

By the definitions of C?, A. and B\j note that for i < j,

J
c? As < [p? > 0][o, < 0], and for i > j, c? Aj < [pg < 0][pj > 0].

Then observe that
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1 m j-1

al < &z s s Lo} 2 0dlp; < 01e2J0 = ag| + cli - §[3fy(x")
j=2 i=1
G(de )" (dx™)
(2.24)
m j-1 n
= I oL S ey < 0Illey - el > fo.l12]e - 8|

j=2 i=1

tcli - G (x")6(de)u"(dx™) .

But s|e - eOIG(de) < =, and [pi < O]EIp? - pil > Ipil] >0 w.p.l
as n > » by Lemma 2.1, and hence the DCT gives ldil >0 w.p.l as

n~+« ., Similarly, one can show that |J§| +0 w.p.l as n~» =,

., o7 and . depend only on the first i observa-

. n
Sin .
ce C1, A1 j ;

tions (Xl""’xi)’ Jﬁ can be written as

o
n
ne~m3s

L C§ A (Lo} < 0] - [oy < 0]ja; u'(dx') .

. n n
But for i > 1, [([aj < 0] - [a; < 0]) a; | < Loy = a5l > Jag[Ta;]

so that

"W o~3

n ] i
7 el =gl 2 faglD fag e

i=1

But s |e - eOlG(de) < o implies f 1.|on1.|u1(d51) <w, and for i>1,
X

o > o, w.p.1as n-> e (see proof of Lemma 2.1) implies for i >1,

i i

(2.25) oy [|a? ol 2 fas[] >0 wp.l as now .

Now apply the DCT to get Idgl >0 w.p.l as n-» o,

To derive the asymptotic behaviour of the second double sum in

(2.23), observe that it can be written as Ki + Kﬁ + Kg where
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k! = m1 "B Nco
- jEZ RAEEAE {(laj < 0] - [a; < 01)(6 - 08p)
+c(i - §)Hf,(xM6(de)u"(ax"™)
2 m-1 n n m
Ky = 27 CF By ((a] < 0] - Loy < 01)(6 - og)Hfy(x")
1=
G(do)u™(dx™)

and
(2.26) K° = mEI ? 57 ¢V B. (([o" < 0] - [a; < 0])(6 - 8,)

L R LI i- J- 0

+c(i - 31 (x")G(de)u"(dx") .

We will show that K; +0 w.p.l as n-»>, i =1,2, and

3

1im sup Kn

N>

For i < j, C? By < [p? > 0][p; < O] so that

<0 w.p.l.

, o m-1 -1 o
Kol < 2z 77 [py 2010 < 0] 12]6 - 684] +cli-jf}
P i 0
j=2 i=1
fo (x")G(do)u"(dx™)
m-1 j-1 n
RN Loy < OIlley - oyl 2 logl] 2]8 - g

+eli = |, (x")6(de)u"(dx") .

This is the bound (2.24) for IJﬁl which. was shown to converge to zero

w.p.1l as n >« . Hence, IK%I > 0 w.p.l as n-»> e,

Now note that Kﬁ can be written as
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-1 . .
2 _ m n n i i
K = 151 5 € By {ley < 0] - [o; < 0J}asu (dx7) .

The above equality follows from the fact that the functions

C?, Bi’ a? and @ depend only on the first 1 observations

(Xl,...,x_i) . ThUS,
-1 .
2 m n i i
KLl < L [lay = as] > feg [T |u (dx7) .

This is the bound for |Jﬁ| which was shown to converge to zero

w.p.1l.
We summarize the results concerning the difference (2.21) obtained

so far with
(2.27)  R(6,d") - R (6) =

1 2 3 ,1 2

where Jn, Jn’ Jps Kos Ko have been shown to converge to zero w.p.l.

From (2.26) we can write

m-1
(2.28) K3 = 1 (Ly(n,d) + Ly(n,d) + La(n,d))
noo5e 1 2 3
where
m n n m m m
(2.29) Ll(n,j) = ¢ f[C; B. [a: <0](6 - eo)f (x™)G(de)u (dx )
i=j+1 i o3t o= g\= =
m n m m, ,.m
(2.30) L,(n,j) = -z s s C; B, [a; < 0](6 - 8,)f,(x")G(d6)u (dx")
2 i=j+1 LI BN B 0/ o'~
and
m

(2.31)  La(n,j) = £ 17 CVB. c(i - §)f, (x™6(de)u™(dx™) .
3 i=j+1 i 9
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R m
We define cE = 3 c? for k=3 +1,...,my j=1,..., m-1
: i=k

and observe that EE = [p? <0J]eeerennnn. [pz_1 <0] for k=j+1,..., m,

and, hence, 62 depends only on the first k - 1 observations
(xl""’xk-l) . Now using the definition of 62 » k> 1, we can
write Ll(n,j), L2(n,j) and L3(n,j) as follows:

m

Ly(n,d) =c¢ = s Cp B f(xM)G(de)u"(dx™)
k=j+1 J
M ap k-1 k-1,, k-1
(2.32) =c oz sCp B f (XA ax )
k=j+1 o
m
= I 8,(n,J)
k=j+1
where
o ~n k-1, k-1, , k-1
Ak(n’J) =Cc/f Ck BJ fk—l(i )U (dﬁ ) .
Also
N n n m
G(de)u™(dx™)
- ~n m m,,.m
(2.33) ==/ 1 Cin Bj[aj < 0J(e - 8)f (x7)G(de)u (dx™)
- on Jiapd
= -f Cj+1 Bj [aj < O:chju (dxv)
and
m n n i
Ly(n,g) = =/ €y By [og < 0Jaju (dx')
i=j+1
(2.34) 1
m . . m- N
N n 1 1 n
= ¢ [JC:;B. [a; <0Jo;u(dx') - £ s C; B.
i=j+1 LIS B B 1 = j=j+1 i+l 7

[ < 0Jagu’(dx") .
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The last equality follows from the fact that C? = 6? - "

i+1 for

i=j+l,...,m-1, j=1,...,m-1 and c; = E; . We can write

m m-1
(2.35) Li(n,3) =z Tunyg) - & S;(n,j)
i=j+1 i=j+1

A

where Ti(n,j) =7 "B, [«" < 0]a.u1(d§i) and
N an n i1 .
Si(n,J) =/ Cig Bj [ai < 0]“1“ (dx') . Thus the sum of Ll(n,J) .
L2(n,j) and L3(n,j) can be written as
m m-1
Li(n,3) + Ly(n,3) + Ls(n,d) = = Ti(n,j) - & S.(n,j)

i=j+l i=j+1

A

-1 0 8y [ag < O]ajuj(dxj)

Jtl1 7 =
m
oz 8 (n,)
k=j+1
- oy an J(dyd
(2~36) Tj+1(naJ) / Cj+1 Bj [aj b O]GJU (dﬁ )

m

+ z [T(naJ) - S, (n’j)
_i=j+2 1 1-1

*+ 25(n,5)]

M (n,3) + My(n,J)

where
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(2.37)  My(n,d) = Ty, (3an) =/ €y By Lo < 0Jagu(dxd) + a5, (n,3)
and
m
(2.38) My(n,g) = & [Ti(n,3) - S5 1(n,3) + a5(n,3)] .
i=j+2

Now observe that Ml(n,j) is equal to

(2.39) £ €, By Ulely) < 0dagyquldxg,g) - Lo < 0o + cfju J(axd) .

J*l 7] J
But 0 < Bj < [pj = 0] and by the definition of P (see (2.9))
cfj - [aj < OJaj = -f [aj+ 0]aJ+1u( J+1) on [pj = 0] . Then

from (2.39),

M1 (n,3) |

| A

J [DJ“: 0](“ [394.1 < 0]aj+1U(dxj+1)

(2.40) - Logey < 0Jag,uldxy,g) w3 (axd)

J+1 J+l)

A

/ [IQJ+1 ®i+1 | > |a J+1|]l°‘J+1|U

The R.H.S. of (2.40) goes to zero w.p.l as n » =, since o

j+1 7 @

J+l
w.p.1l (see the proof of Lemma 2.1), J I“j+1|uj+1(dﬁj+1) < » and by
an application of the DCT. Thus, Ml(n,j) +0 w.p.l as n~» =,

Now it remains to consider Mz(n,j) in (2.38). Observe that for

1=j+2,...,m, Ti(n,j) - Si_](n,j) + Ai(n,j) is equal to

) . ) o
7 €38 Lo} < 0Jagu’(dx') -/ € By [of_y < 0Jay_p! Lax'-h

+ 7078, of (T e

The above sum can be written as






-39-

-

(2.41) s Cl By (1 [of < 0Jajuldx;) - [of_; < 0o _

Adding and subtracting the term [o; ; < OJa;_; into the integrand

of the above integral (2.41), we get

~

n n
s C; Bj (r [ai < 01“1“(dxi) - [ai—l < O]ai-l

+ef. uiHax'™

i-1

~n n
(2.42) t 7/ Ci BJ- ([a.i_l i O]a.i_l - [a_i_l f_ 0]a_i_1)

U]—l(dl1_1) .

Now use (2.25), f |a,_ju'"H(dx'™!) <=, and the DCT to show that
~n n i-1,, 1-1
s Cy By (Log_q < 0Jey_q = Loy g < 0y y)uw “(dx" ") goes to zero

w.p.l as n >« . First integral in (2.42) can be rewritten as

s € By [ojp < 01/ [af < OJajuldx;) = Loy < 0Ja;_;

+ cfi_l)ui-l(dii'l)
(2.43)

~n n
+ C; Bj [pi—l > 0](/ [ai < O]aiu(dxi) - [ai-l < 0]a1._1

i-1 i-1
+ Cfi-l)“ (dx' 7).

But 0 < 6? [01_1 > 0] < [p?_l < 0][01._1 > 0] and therefore the
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absolute value of the second integral in (2.43) is less than or equal

to

(2.44) I

i1 < O][pi-l > 0]{r |a1|u(dx1) + l“j_ll + Cfi-l}“

and (2.44) is less than or equal to

£ Uesog = eyogl 2 legogllogg > 03U foglu(dxy) + fag_y I+
(2.45)
ref i e

51'1) < » and the

We use Lemma 2.1, [los| w'(dx') <o ,rlay_j]u'"H(d
DCT to conclude that (2.45) goes to zero w.p.l as n » = , and, hence,
the second integral in (2.43) goes to zero w.p.l as n+ = . By the
definition of Pi 1 (see (2.9)), observe that cfi_1 - [a i1 2 0]
oaj 1 < - Loy < 0Joyuldx;) on [p; ; < 0] . Then the first integral

in (2.43) is less than or equal to the following expression

s B; [o;_ = 01/ o]

IA

O]aiu(dxi) -/ [ai < 0]aiu(dxj))

(2.46) , .
Sl

and the absolute value of (2.46)

</ |a1||[a?

A

0] - [o; < 0]]u(dx’

<7 laglDle” - agl > Jagdui(ax))

which goes to zero w.p.l by (2.25), s |a1|u](dx1) < » and the DCT.

i-l(dii-l) ,
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Now combining (2.39) - (2.46) we get for 1i=j+2,...,m
1im sup (Ti(n,j) - Si-l("’j) + Ai(n,j)) <0 w.p.l.
N>
Hence, by the definition of M2(n,j) (see (2.38)) for j=1,...,m-1,
1im sup Mz(n,j) <0 w.p.l, and by (2.36) 1lim sup (Ln(n,j) + Lz(n,j)

N> N>

+Lg(n,d)) <0 w.p.1, and by (2.28) limsup K> <0 w.p.l. This
N->co

completes the proof of the Theorem 2.1 . 0

The next corollary compares the asymptotic behaviour of the

unconditional Bayes risk of EBSD procedure g“ with RL(G) .

Corollary 2.1: Under the assumptions (Al) and (A2)

lim sup E R(G,d") < R (G) ,

N>

where E denotes expectation with respect to random vectors
Ny Nn-1
X x 74,
_1 B AR ’_n-l

Proof. The proof follows from Theorem 2.1 and Fatou's lemma. 0

Corollary 2.2: If m=2, then 1lim R(G,d") = R

n->oo

L(G) w.p.1l. and

1im E R (6,d") = R (G) .

n->o
Proof: If m=2, then R (G) = Ry(6) and, therefore, R(G,d") > R (6)
for all n and G. Hence, 1lim R(G,g") = RL(G) w.p.1l follows from

N>

(2.22) and then 1lim E R(G,d") = R

N>

L(G) follows from the DCT. 0
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Corollary 2.3: If G is such that f s ije(ﬁi)uJ(déJ)G(de) =0,
j=1,...,m-2, then

lim R(G,d") = R (6) w.p.1 .

N>
Proof: From (A2) and (2.3) there exists a constant B such that
los| < Bfy , i=1,...,m and Sla;fu(dxy) < Bf, [, 1= 2...,m.
Hence, by (2.38) and (2.41) for j = 1,...,m-2 ,

m i-1y i-1,, i-1
IMo(ns i) <2 pB. (2B + o)f, ((x ") “(dx" ) .
i=j+2 J

But Bj is 5j measurable so RHS of the above inequality is zero by
the hypothesis of the corollary. Combining this result with
1im Ml(n,j) =0 w.p.las n-» o« , we obtain 1im Kﬁ =0 w.p.l as

n >« so that from (2.27) the proof is complete. 0

Corollary 2.4: Let N be the stopping time associated with the EBSD
L

procedure g” and let N~ denote the stopping time associated with

the one-step look ahead procedure gL. Then w.p.1, N s stochastically

larger than NN oas n o e ; specifically, for i = 1,2,...,m,

Tim inf s [N > iF (x™)G(de)u"(dx™) > ss [n- > 11F,(x™)6(de)u"(dx") w.p.1

N>

with convergence to the RHS if /s B-fe(éj)uJ(déJ)G(de) =0, 3=1,2,...,m-1.

J
Proof: By the definitions, [N" > i] = [p? < 0] vovinennnn [p?_l < 0] and
[NL > i) = [pl <0] vovvnnnnn. [pi_1 < 0]. Thus, we have
[o) < 0]eerennn. [,y < 0] < Tim inf [N" > i] < Vim sup [N" > 1]
1- N> N>
(2.47)
:_ [pl < 0] oooooo [p_l 1 < 0] .







and the inequality follows from Fatou's Lemma. Observe that

i
0 < RHS(2.47) - LHS(2.47) <
J

1
. Bj .

{1 e TN |

Hence, by the hypothesis concerning the Bj, we have

Tim [N > i1 = [N > i] w.p.las now, i=1,2,...,m
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The

proof is completed by taking expectation and applying the DCT. O
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2.4 Multiple Decision Problem

In this section we treat a component decision problem that subsumes
that treated in the last section. Assume that the action space
A= {ao, al,...,az} consists of a finite number of distinct actions
and let L(e,a) >0 on o xA be the loss function associated with
the problem.

The m-truncated one-step look ahead sequential decision procedure
gL = (lL(G), 8(G)) with respect to G, GeG, for this multiple decision
problem (©,A,L) can be defined as follows. Let 6&(G) be the
)

decision rule consisting of a finite sequence of functions (61,...,6m
where 8 is a Bayes decision function with respect to G for the
fixed sample size k decision problem based on the sample (Xl,...,Xk).
8, can be derived as follows (see Van Ryzin and Susarla (1977), Gilliland
and Hannan (1977) or Ferguson (1967) Chapter 6).

At the stage k of the sequential decision procedure, suppose

k) where

.
t (Jx7) = 1.

= (£, (01xK), ..t (2]x9)

tk(Jllk) = Pr{choosing action ajllk = 5k} and

we use a decision rule tk(l )
L
z
J=0
Then the Bayes risk of tk(o) w.r. to G is

N ™M

£ L(e, a5) (st (3[xF)PK(dx*))6(de)

r(G,t
=0 J

K =

K)

[ Ke)

5t (L(e,a5) - Llesag))f, (X )6(de) K (ax

Jj=0

+ 17 L(0,a0)6(de) o (xF)uk(dx®)

r(G,tk) is minimized by tk(Jlﬁk) = ék(J|£k), j=0,1,...,m where
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1 if xfe s
(2.48) 5 (d1x5) =
0 if xX ¢ S.
=%
with
Sj = {5k|j = min {t: Aéat,ék) = m}n A'Jai,ik)}}
(2.49)
k
by (355x%) = £(L(6,2,) = L(8,29))F,(x¥)G(de)

When arguments are displayed we will delete the subscripts on 5k and B

Therefore, the Bayes terminal decision rule §(G) = (61,...,6m) is

defined componentwise by (2.48). Then the minimum posterior Bayes

risk w.r. to Gk is given by

r(G) = s L(e,sk(zk))Gk(de)

s8(3 I_)_(_k)L(e,a.

J)Gk(de)

N ™Mes

[}
.
o

n ™M e
o

8(31%%) 7 (L(0,a5) - L(0,20))G, (do)

(S

+

! L(e,a)G, (do)

f,(x*)6(de)
) 7 (Le,a) - L(s,a))
0 ’ £ (x°)

1
fk(ﬁk)
k) = 2 if fk(ﬁk) = 0. In the above
derivations we use the fact that = 6(j|5k) = 1. Now use (2.49)
to get r(Gk) in the following for%?o

(x*)6(de)

I L(e,ao)fe

K)

provided fk(i >0 and r(G
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Ky + _l_k_) £ L(8,ap)f, (x*)6(do) .
X

(2.50) r(G
(X

The stopping rule lL(G) of gL consists of a finite sequence of

(<],...,1-) and stops sampling for the first k (k=1,2,...,m)

= 1 where r; =1

functions

L

for which Tk(ék)

and for k=1,...,m-1,

o 1 if E* r(Gk+1) +C - r(Gk) >0
Tk(é ) =
0 if E* r(G,y) +c-r(G) <0

and E* denotes the conditional expectation over Xk+1 given

Xk = xk . It is easy to show that

L
1 1 k+l k+1
E* r(G,,,) = Sz 8(dxT T )ala.x Tuldx, )
k+1 fk(ik) 320 N k+1
1 k
+ o/ L(e,ao)fe(ﬁ )G(de)
fk(f_ )
provided f (x*) > 0 and E* r(G,,) = 0 if f(x)=0.
Then E* r(Gk+1) +¢C - r (Gk) >0 if and only if
£ k+1 k+1 K o L k k
s os(3]xT )alasxt Muldx,q) + cf (x7) > = s(j[x")alas,x")
L J k+1 k . J
j=0 Jj=0
when fk(ﬁk) >0 .
We define
Ky _ £ K+ k+1 k
B (x") =z s s(dlx" )alas,x" )uldxy q) + cf (x7)
J=0
(2.51)
L
- 1 e(ixMatasxb)
j=0 )






, k
if £ (x7)

and

(2.52)

k=1,...,m-1

respect to

Now add and

and use the

that is,
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>0 and . (x") =0 if fk(lk) = 0, and the functions

A, = [8y <0]..... [8,.; < 01[8, > 0] for k=I,...,m-1

Bk = [Bl < 0] ..... [Bk-l < OJ[Bk = 0] fOY' k=1,...,m-1
Am = [81 <0]..... [Bm-l < 0]
- - - L = =
k] = Ak + Bk’ k=1,...,m-1, [N m] Am and
k) tA =1 Therefore, (rl,. ,T;) is defined by
1 if Bk(ﬁk) >0
L,k
Tk(l ) =
0 if Bk(ﬁk) <0,
and T, = 1. The Bayes risk of gL = (IL(G),Q(G)) with
G is
- m L _ Kk m m, ..m
R(G) = = ss[N" = k]{L(s,8(x")) + ck}f (x")G(de)u (dx™)
k=1
m L £ k m m, . m
= ¢ JsrIN=kI{z s(d]x)L(e,a;) + ck}f (x7)G(de)yu" (dx™) .
k=1 j=0 J ®

subtract L(e,ao) into the integrand of the above integral

facts G(jlﬁk) =1 and to obtain

N ™M

"~ 3
mrm
=
-
1]
[
—d
"
—

, SR (L(s.a7) - Llouag))

+ ek} (x)6(do)u"(dx")

© B I = L,ag MBI,
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om L ok
R (G) = R A jEO 8(3[x")(L(6,a5) - L(esap))
+ ck}fo (x™)6(de)u"(dx™)
m'l E k
(2.53) t 17 Btz s(3[x7)(L(ea5) - L(esap))
k=1 j=0

+ ck}f (x")G(de)u"(dx")

+ 75 L(6,ag)f (x")G(de)u"(dx")

Let d” = (<",6") denote an empirical Bayes one-step sequential

decision procedure for the above multiple decision problem. We shall

N
construct g" based on the past data X 1""’5n211 and the present

data X at the stage n. Assume that there exists a sequence of dis-

: N N _

tribution functions {G } on e, where G (e) = G (6,X 1,...,Lnfll)
N N

depends only on the past data X 1,...,§n?11, which converges weakly

to G with probability one as n » «» . Let gn be the decision rule

consisting of a finite sequence of functions (62,...,6;) where
g ky _o Nk ng, .k . £ ok
8, (x7) =(87(0[x"),...,67(L]x")) subject to z &67(j|x") =1 and,

: ook J k. .k
for j = 0,1,...,£, if & (j|x ) = Pr{choosing aj|§ = X'}, then

1 if xKe s,
n,.,. k - J
(2.54) 6 (Jx") = )
0 if x ¢ Sj
e - S n Ky _ . n k
SJ = {x'|j = min{t:a (at,x ) = min 4 (ai,ﬁ )} ,» and
1
(2.55)
a"a ,xK) = 1 (L(e,a.) - L(8,a)F. (x€)G (do)
i’= ’ *70’ o n
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The stopping rule ln is defined by a finite sequence of functions

(T?,...,T;) which stops sampling for the procedure g” for the first

k(k = 1,...,m) for which rE(ﬁk) = 1 where r; =1 and for

k=1,...,m-1,

1 if Bz(ﬁk) >0
rn(xk) =
k= n, k
0 if Bk(é ) <0 s
where
n o ky _ % oo k+lyon, . k+l n, k
(2.56) B (x") = jio Iy 8 (3T T)a (ag,x T uldxy ) + efy (x7)
ya
- 1 6"(31xN)a" e ,xb)
3=0 ’
. n, ky _ k
with fk(é ) =/ fe(5 )Gn(de)
Define
Cp = [8] < 0l..... [8y_, < 01[gy > 0] for k=l,...,m-1
and
n_r.n
Cm = [61 < 0]..... [Bm-l < 0]
Then [Nn = k] = CE for k=1,...,m where N s the stopping time

of g" = (ln,gn) for the multiple decision problem. The conditional

Bayes risk of g” = (ln,gn) with respect to G 1is then equal to

2
R(G,d") = .y Cp {2 én(jlﬁk)(L(e,aj) - L(8,a,))
k=1 =0
(2.57) + ck}f (x")G(de)u"(dx™)
+ 7 L(e,ao)fe(ém)G(de)um(dxm) .
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Now we prove a lemma which is used to prove the next theorem on
the asymptotic behaviour of conditional Bayes risk of empirical Bayes
sequential decision procedure g” = (ln,gn) for the multiple decision

problem.

Lemma 2.2: Assume L(6,a) is a continuous function of 6 for each
a ¢ A; then under the assumptions (Al) and (A2) for k > 1

Bnk + B, W.p.las n-> o where g and BE are given by (2.51)
and (2.56), respectively.

Proof: Observe that for j > 1, k > l,An(aj,ik) > A(aj,lk) w.p.1l as

n -+ o and fE(ik) > fk(ék) w.p.l as n » = by the assumptions in
the Temma. Then by the definitions of 6"(j|5k) and G(jlik) we get

2
(2.58) 16" 1A a6 > 1 os(i]xM)ala,
j=0 ) j=0 ’

4

,5k) w.p.las n» =,

Now to complete the proof of BE(ﬁk) > Bk(l w.p.l as n-» « , it

£
remains to prove I Jf, § Jlxk+1 "(a

k+1
j=0 j’_ ) (

dxk+1) > jz Iy 6(J|x

k+1)p(dxk+l) w.p.l as n >« . To prove this statement

L
s"(3xK )M, x5 -
0 J j=0

A(aj’i

we use the GDCT. From (2.58), .
J

1N o™Mes

pagx )

n
A (aj,§ k+1

where J 1is a finite constant and fﬂ+1(ék+1) = f f6(5k+1)Gn(de) .

K1) (dx

w.p.l as n > «» , and observe that by the definition of

k+1) k+1 (x k+1)

and the boundedness of L(e,a),|A"(a )| <29 £

But s f

fz(ék) by Fubini's theorem. Then

ka1 k+1)

k+1
Tim s fk+1( )u(dx

N+>co

k+1) fk(ék) w.p.1 by (Al) and (A2). Therefore,
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Tim 5 £, (X

N>

ka+1) S 11m fk+1( k 1)u(dxk+1) w.p.1 follows from

(x¥* 1y

the equality fk(lk) = f fk+1(5k+l)u(dxk+1) s 11m fk+1 u(dx

k+1)
w.p.1l. It follows from the GDCT that

2
. . k+ly . n k+1
Tim s (2 (G XA aL,x ) uldx, L4 ) = £ (
now X 3=0 J k+1 X j

This completes the proof of Lemma 2.2.

The next theorem gives us the asymptotic behaviour of the conditional
Bayes risk of our empirical Bayes sequential decision procedure

g” = (<",s") for the multiple decision problem.

Theorem 2.2: If L(6,a) 1is continuous function of 6 for each

ae A, then under the assumptions (Al) and (A2),

1im sup R(G,d") < R (6) w.p.1,

N>
where RL(G) and R(G,gn) are given by (2.53) and (2.57),

respectively.






-52-

Proof: Write

m ) .
R(G,d") - R (6) = z z LS o At 6"(k|§1)9k(6) -

8(k|x3)gy (8) + c(i-3)), (X6 (do)u"(dx™)

(2.59) m m-1 L ;
t 1oz oo e"(kx )g, ()
i=1 j=1 I k=0
L
z
k=0

s(k[x9) 9, (8) + c(i-3)1f,(x™)6(de)y"(dx™)

where gk(e) = L(e,ak) - L(e,ao), k=1,2,..., £.

The first double sum in (2.59) can be written as Ji + Jﬁ + Ji .
where
Jn = 3 I I Ci A.{ z k]x k 6) -z &(k|x )gk(e) +
j=2 =1 J k=0 k=0
+e(i-3)3f,(x)6(de)u"(ax™)
o= 2o s Az e(k|x')g (8) -1 s(k|x )g, (6) +
i=1 i=j+1 3 k=0 k=0
+c(i-3) M (x7)G(de)u"(dx™)
and
m L . £
= I ST skl g 6) -E s(klxt gy ()¢, (xME(ds)ex™) .
i=1 J k=0 =0

Then observe that

1 m j-1
[Jpl <z
= =]

£
ST GG AT fgy(e)] + cfi=g 3y (xMa(de) (e
j=2 J k=0

.i

and
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m-1 m ya
1<tz sl AjC T |gy()] + cli-3] 1, (x™6(de)u"(dx™) .
j=1 1i=j+1 k=0
Recall that for i > 1, C? = [e? < 0]..... [g" 1< 0][3? > 0] and for
i>1, Aj = [61 < 0]..... [Bj-l < 0][3J. > 0], Bj = [61 < 0]..... [Bj-l < 0]
[8; = 0J. Then by Lemma 2.2 for i < j, ¢ Ag < [8] > 0][g; < 01+ 0
w.p.las n+« and for i > j, C? Ag < [sg < 0][sj >0]+0 w.p.l
as n > «, Now use the DCT and the assumptions in the theorem to con-
clude that J1 + 0 and 92 >0 w.p.las n>=. Now to finish the
proof that the first double sum in (2.59) goes to zero w.p.l as
n-+eo, it is enough to show that Jﬁ goes to zero w.p.l as n » = ,
where
3 m n £ n i i m m,, m
Jp= S r G AT (s7(k[xT) - s(k|x"))g, (8)}f (x")G(de)u"(dx™) .
i=1 k=0

From the definition (2.49) of A(aj,ék) we can write Jﬁ in the

following form:

£
z

m n
Jo = T /. Ci Ai{
= k=0

1 X
From (2.58) and A"(ak,ﬁi) > A (ak,ﬁi) w.p.las n>e, k>1,
i>1, wegetfor i>1,
2

(2.60)  s"(k|x")a(a.x") -
k=0

4
)
k=0

Now use / .[a(ax')[u'(dx') <=, k=0,1,...,6, i>1, and the
X
DCT to conclude that J2 » 0 w.p.las n o~ .

The second double sum in (2.59) can be written as Ki + Kﬁ + Kﬁ

where
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K= = r S JC Bj{ £ ¢ (k|x )gk(e) -z §(k|x )gk(e) +
j=2 =1 k=0 k=0
c(i-3) 14 (x")6(do)u"(dx™)
m-1 L . .
K=z sl Btz (8"(klx') - s(klx'))g (0)1f,(x™G(de)u™(dx™ ,
i=1 k=0
and
m-1 m ya . ya .
K="z el e"(kx)g(e) -r s(klx))g,(e) +
j=1 i=j+l J k=0 k=0
+ ¢(1-3)1f 4 (x™)6(de)u"(dx™) .
K; and Kﬁ have similar forms as Ji and Jﬁ respectively, and

2

one can show that Ki >0 and K >0 w.p.las n->« using similar

arguments as for Jﬁ and Jﬁ .
We now summarize the results concerning the difference (2.59)

obtained so far.

n 3 3
(2.61) R(G,d") - R (6) = = I+ 1 K
J=1 j=1
1 .2 .3 .1
where Jn, Jn’ Jn, Kn, Kn have been shown to converge to zero w.p.l

as N -» »

Now we will show that 1im sup Ki <0 w.p.l. MWrite
N>«

3 m-1
(2.62) K2>= = (Ly(n,j) + Ly(n,3) + Lo(n,j))

n j=1 1 2 3
where

m n £ n i m m,,.m

(2.63)  Ly(ng) =z ss ] Bz 6"(k|x')g,(6))F (XM 6(de)u"(dx™

i=j+l k=0
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L .
557 C0 (T s(klx))gy (0))F, (M 6(de)uM(dx™)

(2.64) Ly(n,j) =
2 j=j+1 1 k=0
and
m n m m m
(2.65) La(nd) = £ 75 CV B, c(i-§)F. (x™)G(de)u™(dx™) .
3 i=j+1 i 6

. m

Define CE = I C? for k = j+l,...,m and j =1,...,m-1; then
i=k

n_An 2n . _ n_zan

Ci =C, - Ci+1 for i 1,...,m-1 and Cm Cm .

p Now L,(n,j),
L2(n,j) and L3(n,j) can be simplified into the following form:

m [_ . . . .
Ll(n,j) = X J i C? Bj( z 5n(k|£])A(aks£1))U1(dﬁ1)
i=j+l X k=0
m . 2 . . . .
= I S, c? B.( £ 5"(k|51)A(ak,51))u1(d51)
i=j+l X J k=0
(2.66)
m_l . £ . . . .
- x oLt Bz s"(k|x")alaL,x"))u" (dx")
j=j+1 x7 T 30 «
m m-1
= z Ti(ﬂ,j) -z Si(nsj)
i=j+1 i=j+1
where
2 . C . .
T.(n,j) =7 . C"B.(z 5"(k|51)A(ak,51))u1(dﬁ])
and

S;(nd) = 1 5 €1, B0z 6 (klxDaax )T (dxh) s
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m J;
i;§+l I c? Bj(kio (k[xK) (8))F,(x ™6 (de)u™(dx™)

L,(n,J)
_ n n £ i
=5 Bi(CTey * €y e+ CC T s(k[xT)g, (o))

+
J+l Jj+2 m =0

(2.67) f (x")6(de)u™(dx™)

and

n
(@]
™
-
'\.
o
(o]
-
~~
x
3
N—
o
—~
(o R
<))
p——
=
3
—~
o
>
3
N—

L3(naj)

(2.68) = L c/f .

where
Us(n,d) = e s oy €% £ (7 ekt

The sum Ll(n,j) + L2(n,j) + L3(n,j) now takes the following form:

m I ) m-1 “n L ]
z :(n,j) - z S.(n,j) -r . C. . J
jejep 1 i j(nsd) ! BJ(kEO s(k|[x7)
vy diaedy » M
8(a,x) ) (dx?) + zUi(n,j) ,
i=j+1

that is,
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. L . L
T Y 3 3yy,9 (dxd
Tie1(nsd) » Ci41 BJ(kE0 s(k|x")a(ay,x"))u (dx")

(2.69) m

+U. 1(ny53) + 2 (T.(n,d) - S;_;(n,3) + U.(n,j§)).
J+ivl j=j+2 i i-1 i
The sum of the first three terms in the expression (2.69) is equal to

L

n n J+l J+l
(2.70) I G Byl B8 (k] x ) ala %" Huldxy )
-2 s(k|x)ala,x?) + of s (x)d (de?)
k=0
By the definition of Bj (see (2.51)),
‘ j j j ‘ 31 51
-z 8(k|x )A(ak’5 ) + cf(x’) = -5 I &(k|x )A(ak’5 )
k=0 J X k=0

u(dxj+1) on [Bj = 0] .

But 0 < Bj < [Bj = 0] so the absolute value of the expression (2.70)

is less than or equal to

L . .
(2.71) ;e = 010)r (= 6"(k|x3h)a(a,,x3tY)
3 X k=0 k*=

L . . . .
Jt+l Jt+l J(dyd
- bkl ta T utaxg, ) I (ae))
Expression (2.71) goes to zero w.p.l as n > = by (2.60) ,

£

R S V.Y - T
k=0 xJIt1 K

5Cj'*l)Iuj"']-(c@]J':l) < » and the DCT.

Finally let us consider the sum I ) {7.(n,3) = S5 _1(n,3) + Us(n,3)1.
=g+

Observe that for i=j+2,...,m, Ti(n,j) - Si-l(n’j) + Ui(n,j) is equal to
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"B, f.

+cCc [ : . - 1 u X
X 1775 i-1

Rearranging the terms in the above integrals we get

;.. VB s ( f s"(k|x")a(a,,x"))uldx;)
xi-1 717 k=0 = k*= /IURER
(2.72) .
- 3 Gn(kl 1—1)A(ak3£1—1) + Cfi-1(£1-1)}u1-1(d51'1)
k=0
¢ i-1 -1
Now add and subtract the term =t &(k|x )A(ak’i ) into the integrand
k=0
of (2.72) to get
Fooo OV B f s"(k|x")a(a,,x"))uldx;)
VLI Tt Bt R e = k>= /THRER
L i-1 i-1 i-1y i-1,,.i-1
(2.73) -kzo 6(k|x )A(ak, ) + Cfi—1(5 Ju' T(dx' %)
L 2
w7 e sk hatax"h - 1 6M(k|x'Th)
X J k=0 k=0

A(ak,51'1}un'1(d51'1) )

The second integral term in (2.73) goes to zero w.p.l as n » « from

2 L
(2.60), £ s . qlalax" [T d' ™) <@, and the DCT.
k=0 x'~ N -
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The first integral in (2.73) can be rewritten as

(2.74) o

u]-l(d '1-1) .

n n
But 0 < C'I [81_1 > 0] < [31_1 < 0][31_1 > 0] +> 0 W.p.l as n» o
by Lemma 2.2 . Therefore, the second term in (2.74) goes to zero

w.p.l as n >« by the DCT and s A(ak,éi)u(dx1) <o, i>1,
k>1. The first term in (2.74) is

</ c" B, [B., , < 0]{s g én(klxi)A(a x"))u(dx.)
S IRt Rt IS D k=0 = k>= IS
(2.75)
4 . . . -
AR s(k|x")a(aox " (i T Hax ™)

The inequality (2.75) follows from the fact that (see 2.51) on
[85_1 < 0] we have
L

-z 6(k|§i'1)A(ak,5
k=0

£
z
k=0

) v e 0T < s s(k|x)a(aex"))uldx)

Now it is easy to see that the
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R.H.S. of the inequality (2.75) goes to zero w.p.l as n » =
L L.
from (2.60), = s 1.IA(ak,f)hﬂ(dE) < , and the DCT . Now

k=0 X
combine (2.74) and (2.75) to get for i=j+2,...,m

1im sup {T;(n,3) = S;_1(m3) + Uy(n,3)} <0 w.p.lasn o
N>

and then with (2.69) and (2.70), we have for j=1,...,m-1,

1im sup (Ll(n,j) + L2(n,j) + L3(n,j)) <0 w.p.l.

n>e
Therefore, 1im sup Ki <0 w.p.l follows from (2.62). This completes
N>

the proof of Theorem 2.2. 0

Remark 2.2: Corollaries analogous to Corollaries 2.1 - 2.4 of the
previous section can be stated and proved in the more general

multiple decision problem context as well.
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2.5 Final Remarks

Using arguments very similar to those of Sections 2.3 and 2.4, we can
show that the result Tlim sup R(G,d") < RL(G) w.p.las n> =
also holds for natural empirical Bayes sequential decision procedures
for the squared error loss estimation component under (Al) and (A2).

A curious feature of the EBSD's in approximating one-step look
ahead risk is- the inequality in the asymptotic result. (The asymptotic
optimality that is typically proved is the convergence to RB(G).)
There are examples of two-action Tinear loss components with Poisson
distributions and priors G for which 1lim sup R(G,gn) < RL(G) on

a set of positive probability.
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