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ABSTRACT

EMPIRICAL BAYES WITH SEQUENTIAL COMPONENTS

by

Rohana Jith Karunamuni

We consider the empirical Bayes decision problem where the

component problem is an m—truncated sequential decision problem.

The Bayes risk envelope of this component is smaller than that

of the fixed m-sample size component when there is a cost for

each observation. Empirical Bayes methods are presented that

result in empirical Bayes risk approaching envelope risk as the

number of components increases.

Consider an empirical Bayes decision problem with fixed

sample size components. Let (6,5), (61,11m)...(e ,X )... be
n —nm

i.i.d. with the common distribution being 6 ~ G, with

l ~ PexPex...xPe = Pém) conditional on e . An empirical Bayes

dec1$ion procedure TS a sequence {tn} where tn = tn(§lm,...,§ )
nm

is a function taking values in the set of component decision rules

th
and EL[e,tn(X X X )(l)] is its n stage risk for making

—1m’—2m”"’—nm

a decision about 9 . The convergence of this risk to the com-

ponent envelope risk whatever be G is termed asymptotic optimality

(a.o.).

With the sequential components, tn selects both a stopping

rule function and a terminal decision function for use in the

component with parameter 6'. This results in the observations

available at stage n being 51N1’52N2"" X , where N1, N2,...,Nn
9

—nN
n





 

 

are the numbers of component observations taken in the first n

components. The random sample size feature adds a degree of

complexity to the development of a.o. of empirical Bayes procedures.

Our results include the demonstration of a.o. procedures for some

finite state components and an empirical Bayes approach to one-

step look ahead procedures for some infinite state multiple

decision components.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

This thesis is concerned with empirical Bayes decision theory

with a sequential statistical decision problem as the component.

Robbins (1949, 1956) introduces empirical Bayes decision theory,

and Robbins (1964) summarizes results for certain components and

develops some general methods in regard to estimation of the prior

(mixing) distribution. Our development is reasonably self-

contained but does presuppose that the reader is somewhat familiar

with both sequential analysis and empirical Bayes decision theory.

The components to which empirical Bayes methods have been

applied are, with few exceptions, given fixed sample size identical

statistical decision problems. Exceptions are the varying (non—

stochastic) sample size components considered by O'Bryan (1972,

1976), O'Bryan and Susarla (1975, 1976, 1977) and Susarla and

O'Bryan (1975). Another exception is found in the works of Laippala

(1979, 1980, 1983, 1985). In his case the varying sample sizes

are random.

In this thesis we define a construct within which we can treat

both the random sample size and the usual fixed sample size cases.

We believe that the somewhat informal style with which this is

accomplished will expedite understanding of a fairly complicated

mathematical construct which mixes sequential analysis and

empirical Bayes decision theory.

 

 

 



 

In Section 1.2 we introduce the sequential component problem

which is the kernel of the empirical Bayes decision problem. In

Section 1.3 we give a brief introduction to Robbins' empirical

Bayes decision problem and develop new results for some finite

parameter space component problems. Finite action linear loss

testing and multiple decision component problems are treated in

Chapter 2.

 



 

1.2. The Component Problem 

The component problem we consider is the m—truncated sequential

decision problem with constant cost per observation. This problem

is described in detail in various books concerning decision theory,

e.g., Berger (1980, Chapter 7). However, in order to make this

presentation reasonably self-contained, we will use this section

to develop notations to describe the component problem that is the

kernel of the empirical Bayes decision problem that is the subject

of our investigation.

The parameter space is the measurable space (e,A) and the class

of all (prior) probability distributions on A is denoted by G. The

parameter a indexes transitions; specifically, P6 is a distri-

bution on (X,B) where X is the real line and B is the Borel

o-field. Conditional on e, the observable random variables

X1""’Xm are iid PG; for k = 1,2,...,m, xk = (x1,...,xk) a X ,

P6 = P6 x...x Pe (k times) and Bk denotes the Borel o-field

k

Suppose that the component decision problem has (terminal)

action space A and loss function L 3 0 defined on O x A. Let

c 3 0 denote the constant cost per observation.

For k = O,l,...,m, let Dk denote a set of mappings 6 from

m

X into A that are constant with respect to the last m-k

coordinates and are such that L(e,6) is A x 8m measurable.

00 consists of constant functions. We will regard the domain of

k k
6 e D as X when it is convenient to do so, k = 1,2,...,m.
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We are to sample the Xk sequentially. The observations are

taken one at a time, with a decision being made after each observa-

tion, to either stop sampling and choose an action in A or to take

another observation. Therefore, a sequential decision procedure

consists of two components, a stopping rule and a terminal decision

rule.

The sto in rule 1 is a sequence 1 = (10,rl,...,1m) where

To is a constant function representing the probability of making a

decision without sampling and, for k = 1,2,...,m rk: Xm + [0,1]

is an xk - measurable function representing the conditional

probability of stopping at stage k given that sampling did not

stop at stages O,l,...,k—l and given the observation xk. With

the m-truncated sequential problem, rm E 1. For a nonrandomized

stopping rule I, Tk takes values in {0,1} for k = O,l,...,m.

Associated with l is the stopping time variable N.

We will be concerned only with nonrandomized l and will

m

take N = min {k: Tk = 1}. Such l partition X into {[N=O],

[N=1],..., [N=m]} where [N=k] is a function of xk only. If

To = 1, then [N=0] = xm and N20. If =0, then [N=O]=¢ .
T0

The terminal decision rule g is a sequence g = (60,

O x 01 x...x Dm. The interpretation is that the

 

51,...,am) c D = D

decision function 5k is used on the set [N=k], k = O,l,...,m.

A sequential decision procedure is a pair (199), where 1 

is a stopping rule and p is a terminal decision rule. We will

restrict consideration to the class of procedures T x D, where

 



 

-5-

T denotes the class of all nonrandomized stopping rules 1 such

that TO 5 0. (The reason for working with stopping rules such

that N 3 1 will be made clear in the next section.) Thus, we

may drop first coordinate functions and take I = (11,...,rm),

g: (51,...,5m).

For a sequential procedure (1:9) the risk (including cost

for observations) given 6 is

R(e,(l,§)) = f kgl [N=k]{L(e,6k) + ck} 32(dxm)

(1.1)

m

k k

r L<e,sk>ge<dx)Z + cEeN;

k=1 [N=k]

the Bayes risk of (l,§) with respect to CEO is

(1.2) R(G,(1,§)) = I R(e,(;.§))G(de);

and the (infimum) Bayes risk at G is

(1.3) R G) = inf{R(G,(l,§)): (l,§)eTxD}.B(

Under certain conditions, the Bayes envelope value RB(G) is

achieved by a choice (18(6),§(G)) where the components of the

Bayes stopping rule 18(6) are defined by backward induction and

the components of the Bayes decision rule §(G) are Bayes in the

respective fixed sample size problems. (cf. Berger (1980, Chapter

7).)

In the typical empirical Bayes problem, the decision—maker

is faced with a sequence of independent, identical component problems



 

 

with a common (unknown) G. The idea is to pool sample information

from the components in the sequence to estimate G, or the Bayes

procedure with respect to G, so that as the number of components

increases, the empirical Bayes decision procedure has risk approach-

ing the envelope value, whatever be G, i.e., is asymptotically

optimal.

Our formulation of the component problem enables one to produce

the fixed sample size and other component problems by restricting

1. Gilliland and Hannan (1974, 1976, 1985) have introduced the

idea of producing different envelopes by restriction of the class

of decision procedures. For example, if we define

(1.4) TF = {leTz 1 constant}

and

(1.5) RF(G) = inf {R(G,(_,_§)): (1,§)eTFxD},

we have the envelope risk for fixed sample size procedures. We refer

 

to (1.5) as the optimal fixed sample size risk. If we define Tk

to be a subset of TF consisting of rules 1 where }j = 1 if j = k

and = 0 if j < k, then the corresponding envelope Rk(G) is that

of the fixed sample size k component. We refer to Rk(G) as the

optimal fixed sample size k risk. Note that for each G,

(1.6) RF(G) = inf {Rk(G): k = 1,2,...,m}.

Since

(1.7) RB(G) 3 RF(G) 5 Rk(G), k = 1,2, ,m,

 



achieving the Bayes envelope risk for the m-truncated sequential

component is preferred to achieving envelope risk in either the

Optimal fixed sample size or given fixed sample size component.

However, the construction of empirical Bayes procedures that achieve

the most stringent envelope is the most difficult construction.

We will also be dealing with a sequential procedure which

in the literature is called a one-step look ahead procedure. Here

the decision to continue or to stop the sampling is made after

observation xk by comparing the conditional on xk (posterior)

Bayes risk of stopping and making a decision with that of making

a decision after taking one more observation and playing Bayes.

(See Berger (1980, §7.4.6) for details.) The one-step look ahead

stopping rule is much simpler than the Bayes stopping rule. (The

latter can be defined by backward induction; the decision to

stop is based on a comparison of the conditional on xk Bayes

risk of stopping and making a decision with that of not stopping

and playing an optimal sequential strategy from that point.)

Formally, the one-step look ahead stopping rule is defined

as follows. For k = 1,2,...,m, let Gk denote a posterior

distribution of 6 given xk in the component with e ” G and,

conditional on e, X1,...,Xk iid P9. (We assume such Gk exist

" >for each 5k 5 X , k = 1,2,...,m. . We suppose that

(1.8) r(G) = inf{fL(e,a)G(de):aeA}



 

is attained at each G and that a Bayes decision function 6k(G)

attains the infimum posterior Bayes risk, i.e.,

(1.9) r(Gk) = fL(e,6k(G)) Gk(de)

for all xk and k = 1,2,...,m.

 

The one-step look ahead stopping rule is 1L(G) = (T&(G),...,T:(G))

where 15(G) = 1 and, for k = 1,2,...,m—l,

. , *

L 1 if E r(Gk+1) + c - r(Gk) 3 O

(1.10) Tk(G) =

*

0 if E r(Gk+1) + c - r(Gk) < O

. * . . . . . k _ k

WTth E denoting conditional expectation on Xk+l given 5 — x .

The one-step look ahead sequential decision procedure is
 

(1L(G), §(G)); i.e., it uses the Bayes terminal decision rule with

the stopping rule (1.10). If m = 2, 1L(G) is a Bayes stopping rule.

The Bayes risk of (1"(G), _6_(G)) is denoted by RL(G). This

is not an envelope risk, rather, the Bayes risk associated with a

particularly tractable sequential decision rule. We will consider

the empirical Bayes approach to achieving risk RL(G) in Chapter

2 for particular classes of sequential components.

We now give three examples to illustrate some of the concepts

introduced to this point. The examples are sequential m-truncated

components with testing simple versus simple, testing with linear

loss and estimation with squared error loss.

Example 1.1 (Testing Simple vs. Simple). Let 9 = {0,1}, A = {0,1}
 

and L(0,0) = L(l,1) = 0, L(0,1) = L(1,0) = L > 0, a constant. We

 

 





 

identify a prior G on e by the mass n it puts on the state

1 so that G can be identified with the unit interval. Let P0

be N(-1,1) and P1 be N(1,1). (This example is the sequential

version of that used by Robbins (1951) to introduce the idea of

compound decision theory.) The posterior probability of e = 1

k k

1
x.)}

. k . _

given 5 is "k - neXp (i Xj)/{n exp (1 xj) + (l-n) eXp (-2 J

and a Bayes decision rule is

1 if “k 3 1/2

(1.11) 5

0 if Wk < 1/2

The event wk 3 1/2 is equivalent to 2: xj 3 C(n) where C(n)

(1/2) In ((1-n)/h).

Consider the case of truncation at m = 2. In this case, the

one-step look ahead procedure is Bayes with respect to n so that

RL(n) = RB(n), O gin 5 1. Let the loss for misclassification be

L = l and the cost per observation be c = .05.

The one-step look ahead stopping rule 3(n) (cf. (1.10)) is

defined by i2(n) = 1 and

1 if rl(n1) + .05 - r0(n1) 3 0

(1.12) 11(n) =

0 if r1(n1) + .05 - r0(n1) < 0

Here

- «or 51/2]+ (1- n) [n > 1/21,.
5

O

A

d

v

I

and

r1(n) = n¢(C(n) - 1) + (1 - n){1 - ¢(C(n) + 1)}



 IlIllIllllIIIIIIIIII:—————————————————————————————————————- e~ ,
.
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where o denotes the standard normal cdf. Calculations show that

(1.12) is equivalent to

1 if |h1 - .5) 5 .361567

(1.13) T1(fl) =

o if |n1 - .5) > .361567

and

1 if |x1 - c(n)| 3 c(.138433)

(1.14) 11(n)

0 if [x1 - c(n)| > c(.138433).

The envelOpe risk RB(r) resulting from the Bayes procedure

g(i) = (1(n),§(n)) was calculated for selected values of n and

is plotted below along with the fixed sample size envelopes

R0(n) = r0(n) and Rk(n), k = 1, 2, where

(1.15) Rk(n) = n¢((c(n) - k)//E) + (1 - n){1 - ©((C(N) + k)//E)} + .05k.

Of course, the optimal fixed sample size risk envelope is

RF(n) = min{R1(n), R2(n)}. Note that RB(n) is considerably less

than RF(n) for priors n near .5 . Also note that for n's near

0 and l, R0(n) < RF(N).





Risk A

.20 b

.15 P

.10

.05

 
Figure 1.1 Envelope Risk Functions

 

 
 

>ii
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Theorem 1.1 of the next section shows that the Bayes envelope

risk RB(n) for the truncated sequential component is achieved in

the limit by empirical Bayes decision procedures 9“ = (1h,§n)

where In and g" are Bayes with respect to consistent estimates

of n. The theorem as stated and proved subsumes the usual fixed

sample size component case and the optimal floating fixed sample

size case through restriction of the class of component stopping

rules.

In the next two examples, P6 = N(e,1), e e 0 = (-m,w) and

the prior on 0 is G = N(0,02). In this case the posterior

distribution Gk of 6 given lk = xk is N(oZSk/(l + koz),

k
02/(1 + k02)) where Sk = lej’ k = 1,2,.... In the following

examples, “k denotes the conditional mean.

 

Example 1.2 (Testing with Linear Loss). Let 00 e e.

Let A = {a0,a1}, where a0 and al correspond to actions

"decide 6 i 00" and "decide 6 > 60”, respectively. Let

+ _

L(e,a0) = (e - 00) and let L(e,a1) = (e — 60) . Let

§(G) = (61,...,6m) be the Bayes terminal decision rule where

6k is a Bayes decision rule with respect to G for the fixed

k k)
sample size k decision problem. If 5k = Pr(a0|§ = x , then

we take

1 If pk : 60

(1.16) 6k =

0 If pk > 90 ,

We now derive the one-step look ahead stopping rule. Posterior

minimum Bayes risk at stage k(k 3 1) is given by
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r(Gk) = igf re L(e,5) Gk(de) re L(e,6k) Gk(de)

I00 (0 - 00)Gk(de) if uk 5 00

00 .

fm (00 - e)Gk(de) if uk > 00 .

Define 0(t) = f:(x - t)¢(x)dx = ¢(t) - t(l - o(t)), where ¢

denotes the density function and 0 denotes the cdf 0f the standard

normal distribution. Then

ail/2 n (all/2m0 - 1.k)) if pk < 00

_ 2 2 .

akl/ W (ai/ (Mk ‘ 90)) If Uk > 90

where ak==(l + k0 /02 . In other words,

(1.17) r(Gk) = ail/2 w (at/2190 - ukl).

*

The conditional Bayes risk EriG

given xk = xk is (see DeGroot (1970) p. 286)

k+1) from taking Xk+1

E*r(Gk+l) = r(Gk) - ell/2 w (bi/Zleo - ukl)

where

2 ) .
bk = ak (o ak + 1

Therefore, in defining the stopping rule (1.10),

* 2
E r(Gk+1) + c - r(Gk) = c - bi/ v (bi/Zleo - ukl) .

Thus, the stopping rule 1L for the m-truncated problem stops

sampling for the first k(k = 1,2,...,m-1) for which

c 3 bi/Z w (bi/2|00 - ukl) or k = m, whichever is smaller.
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Example 1.3 (Estimation with Squared Error Loss). Let A = e and
 

let L(0,a) = (e - a)2. Then the Bayes terminal decision rule

§(G) = (61,...,6m) for the m-truncated problem is given by the

estimators 6k = uk, k = 1,2,...,m.

Posterior minimum Bayes risk is the posterior variance

r(Gk) = f (e - uk)2Gk(de) = 02/(1 + koz). Therefore, r(Gk) depends

only on the number of observations that have been taken and not on

the observed values X1,...,Xk. Thus E*r(Gk+1) = 02/(1 + (k+1)02).

Therefore E*r(Gk+1) + c - r(Gk) = 02/(1 + (k+1)02) + c - 02/(1 + koz).

Then the stopping rule IL for the m-truncated problem stops

sampling for the first k (k = 1,...,m-1) for which

c 3 04/(1 + k02)(1 + (k+1)02) or for k = m, whichever is smaller.
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1.3 The Empirical Bayes Problem
 

In the last section, we introduced the basic idea behind

Robbins' empirical Bayes formulation after defining the sequential

m-truncated component problem. This component has envelope risk

which is no greater than that of any fixed sample size k version,

k = 1,2,...,m. By suitable restriction of the class of stopping

rules, the component Specializes to the customary fixed sample size

component.

In its full generality, the sequential component presents some

unique problems when it i; the keanel of the empirical Bayes

1
decision problem. Let 5 ,...,l n,... be the observation vectors

from the sequence of independent repetitions of the component. For

each n, the stopping rule In used in the npp component can

depend on (5,1,...,§ n"1). Thus, the sequence of observed random

vectors is not the usual iid sequence.

This fact raises interesting problems in regard to the

efficient use of such random vectors in estimating stopping rules

and decision rules for the empirical Bayes application. This

thesis will not address these problems. Rather, it will address

the issues of the convergence of empirical Bayes risk to envelope

risks such as RB(G) and RF(G) and t0 one-step look ahead risk

RL(G) for selected empirical Bayes decision procedures based on

B<e>nF<(assumed) consistent estimators of G or of 1 G),

L(G) and go).
1
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We will now indicate the reason why we restrict T to I such

that TO = 0. Consider the empirical Bayes problem with the

sequential m-truncated component and envelope RB' For specificity,

take 0 = {O,l,...,a} and G to be the a—dimensional simplex of

probability vectors on o with norm and Borel o-field that induced

a+1
from X For certain component loss structure, transitions P

e

and cost 0, there will exist an open set 60‘; G such that, for

GeGO, 10(G) = 1, i.e., G such that a Bayes st0pping rule with

respect to G in unrestricted T calls for taking no observations.

(See Example 1.1.) Hence, if OH is an a.s. consistent estimator

of 686 and if GeGO, then the empirical Bayes strategy based on

the estimate' Gn will a.s. cause sampling to terminate after a

finite number of repetitions of the component and, therefore,

will not enable consistent estimation of the mixing distribution.

Hence, it will not be possible to achieve the envel0pe risk RB(G).

For this reason, we have restricted consideration to the class of

stopping rules T which take at least one observation, i.e., such

that T0 = 0. (In this cage note,Nthat the first coordinates of

the observation vectors X 1,...,X n,... are iid so that the

decision-maker does have standard data available with which to

construct consistent estimates of G.)

Suppose that the stopping rules are restricted to a class

T* g;T. The envelope risk associated with T* is

R*(G) inf {R(G,(l,§)): (1,§)€T* X 9}

(1.18)

inf {R(G,(l,§(G)): 1€T*}
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*

which we assume is attained at l (G), GeG. The nth stage empirical

. N N

Bayes risk based on the estimate G = Gn(X 1,...,X n-1) and

conditional on the data satisfies

0 : R(G,g(é)) - R.(G) : R(G._q(é)) - R(G,d(e))

(1.19)

+ R(G,g(G)) - R(G,g(é)) for G, Geo,

where we have used abbreviations g(H) = (1*(H),§(H))s HeG. Bounds

like (1.19) are basic in empirical Bayes analysis and go back at

least to Hannan (1957). Hence,

(1.20) 0 5 R(G,g(é)) - R*(G) 5 2 sup {|R(é,g) - R(G,g)|: geT*xD}.

Thus, if the convergence of the estimator is in the metric defined

in RHS (1.20), the empirical Bayes procedure based on G will be

asymptotically optimal (a.o.).

Theorem 1.1. Suppose that O = {O,l,...,a} and that the loss

function L is bounded. Suppose that T* is a specified subset

of T, R* denotes the associated envel0pe risk function and that

R*(G) is attained by (1*(G),§(G)), GeG. Suppose further that

N

n n _ ,...,X n 1), n = 2,3,... is an a.s. consistent estimator

of 656. (Here we identify G with the a-dimensional simplex of

probability vectors on 0 and we denote the sup norm on

Xa+1 by II II). Then the empirical Bayes procedure g“ = (1

is a.o. on G.
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Proof. Since L is bounded, the risk set associated with

the component is bounded; specifically, 0 3 R(e,(1,§)) 5 L + c m

for 0 = O,l,...,a. Hence, RHS(1.20) 5 2(L + c m)||Gn - G|| so

that (1.20) with 0: Gn implies R(G,g_") + R*(G) a.s., 656.

N N

Taking expectation with respect to X 1,...,X "'1 establishes

the L1 convergence, which is sense in which asymptotic optimality

is usually defined. D

Of course, choices T* = Ti’ T* = TF’ T, = T result in

envelopes R* = R R* = R R* = RB defined in the last section
i’.

and displayed for a particular component in Example 1.1. For a

component where T, includes truly sequential stopping rules, the

implementation of the empirical Bayes stopping rule 1(Gn) may

require considerable calculation involving backward induction.

We will not attempt to generalize Theorem 1.1 to cover a

general infinite 9 component. In the next chapter we investigate

empirical Bayes one-step look ahead sequential procedures for”

certain components where the structure is sufficiently tractable

to analysis, namely certain finite action components.
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CHAPTER 2

TWO ACTION AND MULTIPLE DECISION PROBLEMS

2.1 Two Action Problem
 

In this chapter we will establish asymptotic results for

empirical Bayes sequential decision procedures in the cases of

linear loss testing and the multiple decision problem components.

In this section we describe the linear loss testing problem

where two composite hypotheses are tested against each other and

derive the one-step look procedure gL = (lL(G),§(G)) relative

to G for the linear loss two-action problem. An empirical

Bayes sequential decision procedure will be constructed in the

next section and asymptotic results will be given in Section

2.3. In Section 2.4 we formulate the one-step look ahead

procedure for the general multiple decision problem and exhibit

an empirical Bayes sequential decision procedure with asymptotic

results. Throughout this chapter, we will assume that the para-

meter space 0 is a subset of the real line and f6 3 O is a

density function of the distribution P with respect to a given
6

o-finite measure u on (X,B). To conserve notation We will also

let fe(xk) denote the product fe(xl)...fe(xk) for xkexk, k 3 1.

We wish to test the hypothesis

H0: 0 3 00 against H1: 0 > 00

where 0050 . Consequently, the action space A consists of two
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actions only, namely {a0,a1} where a0 and a1 denote the actions

of deciding HO and H1, respectively. We assume a linear loss

function, specifically,

(2.1) L(e,a0) = (e - 00)+, L(e,a1) = (e - 00)', see .

We assume that the first moment of e is finite with respect to G,

where G is the prior distribution on o. This is sufficient to

ensure that the Bayes risk of the m-truncated one-step look ahead

procedure defined in Section 1.2 is finite.

In the literature many authors have studied the two-action

problem from the standard empirical Bayes point of view. Samuel (1963)

discussed the two-action problem and exhibited a.o. empirical Bayes

tests under various loss structures and, in part, dealt Specifically

with certain types of discrete exponential families. Yu (1970),

Johns and Van Ryzin (1971, 1972) considered the linear loss two-

action problem with exponential families and developed rates of

convergence in the regret ER(G,6n) - RB(G) where 5n is an

empirical Bayes test for the fixed sample size linear loss two-

action problem. Van Houwelingen (1976) proposed monotonizing empir-

ical Bayes tests defined in Johns and Van Ryzin (1971, 1972). O'Bryan

(1972), O'Bryan and Susarla (1975) treated the testing problem where

the sequence of component problems consists of independent but not

identical decision problems, all having the same unknown prior dis-

tribution. These sequences of decision problems are identical except

for the sample size. Laippala (1979, 1980, 1983, 1985) discussed the
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two-action problem with varying random sample sizes in Binomial and

exponential conditional distributions.

Now let us determine the m-truncated one-step look ahead procedure

gL = (11(G),§(G)) with respect to G for our testing problem (see

Section 1.2). The terminal decision rule §(G) is a finite sequence

(61,...,6m) where okevk(k=l,...,m) is a Bayes decision function

relative to G for the fixed sample size k testing problem

(e,A,L) with the loss function (2.1).

For k 3 1, 5k can be determined as follows.

Let 6k(xk) = Pr {choosing aOIX1 = Xl""’xk = xk} be a randomized

decision for the two-action problem with the loss function (2.1) given

that the observations are X1 = x1,...,Xk = xk . Then the Bayes risk

of decision function 6k relative to the prior distribution G is

given by

r(e,sk> = ka f9 {L(e.a0>ak(sk) + L(esa1)(1-6k(5k))} P§(dxk) G(de).

k
Since fe(xk) is a conditional pk-density of x = (x1....,xk), and

L(e,a0) - L(e,al) = e - 00 (see (2.1)), one can write

(2.2) r(e.sk) = ka ak(sk> 6k(§k) pk (dsk> + Ca

where CG = f0 L(e,al)G(de) and

(2 3) ak(§k) = f9 (6-60) fe(§k) G(de) .

From (2.2) and (2.3) it is clear that a Bayes rule (a minimizer

of r(G,6k) for given G) is provided by the nonrandomized rule
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1 if ak(xk) < 0

(2.4) (5“) =5
k

. k
0 lf ak(§)>0.

Note that we have suppressed the display of dependence of the Bayes

rule 6k(xk) on G. Henceforth, the terminal decision rule

§(G) = (61,...,6m) for the m-truncated one-step look ahead procedure

dL = (1L( G),§(G)) defined in Section 1.2 is given by (2.4) and

(2.3), k = 1,2,...,m. Then the minimum posterior Bayes risk

r(Gk) with respect to Gk’ for k 3 1, is given by

r(Gk) = IO L(e.ak(sk)> ek(de>

where Gk is the posterior distribution of 6 given Xk = xk. Thus

for the linear loss testing component,

k>r(Gk) - (a {L(6.a0)6k(x + L(e.a1)(1-ak(sk))} ek(de>

(2.5)

x9 {(L(e,a0) - L(0,a1))5k(xk) + L(e,a1)} Gk(de).

Since L(e,a0) - L(e,a1) = e - 00, (2.5) can be written as

r(Gk) = CG + 0k(xk) f0 (0-00)Gk(d0)

(2.6)

1

—————- ; L(e.a )i (xk) G(de) +
 

provided fk(xk) > 0 and r(Gk) = 0 if fk(xk) = 0 where for

k 3 1, fk(xk) = f0 fé(xk)G(de), and ak is given by equation (2.3).

The expected risk E*r(Gk+1) from taking Xk+1 observation

and playing Bayes conditional on Xk = xk is given by
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‘k ‘k

(2.7) E r(Gk+1) = [X r(Gk+1)f (xk+l)“(dxk+1)

where f*(xk+1) is a conditional density of Xk+1 given

5k = 5k . Let fk+1(Xk+l) and fk(Xk) be unconditional marginal

k+1 k
densities of X, and X respectively. Then a conditional density

+

k 1Niko")

if ik(§k) > 0 and f*(xk+1) = 0 if ik(§k) = 0. Using this fact

of X iven Xk = xk is iven b f*(x ) = f (x
k+l 9 — — 9 Y k+l k+1 —

and changing k to k + 1 in equation (2.6) and then substituting

back in (2.7) we get

* ' 1
E k(Gk'tl) = m f0 L(6,al)fe(Xk)G(dO) +

k ._-

(2.8

) —1— x 5 (W1) (xm) (d
k x k+1 - ak+1 — “ xk+1)

fk(1 )

provided fk(Xk) > 0 and E*r(G = 0 if fk(Xk) = 0 where
k+1)

5k+1 and ak+1 are given by (2.4) and (2.3), reSpectively, with k

replaced by k+l. Letting

k _ k k

(2-9) 01((5 ) ' IX [aki’l : 0] ak+1 U(dxk+l) + ka(_)£ ) ‘ [0k : 0] “k(fi )9

we observe that pk(Xk) = 0 when fk(Xk) = 0 and

c if fk(X ) = O .

L - ( L L)
11,...,rm of m-truncated one-Hence, the stopping rule I

step look ahead procedure (1.10) for our testing problem is defined
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by T; s 1, and for k = 1,...,m-1 by

1 if pk(5k) > 0

(2.10) it(xk) =

0 if pk(5k) < 0

where we have suppressed the display of dependence on G.

Let NL be the stopping time of m-truncated one-step look ahead

(imam); thenprocedure gL

NL(Xm) = min {kltt(Xk) = 1}

and Since I: “ 1, sampling will be stopped after Xm has beenl
l

observed if it had not been stopped earlier. The risk of this

procedure at G is (see (1.1) and (1.2)),

m

(2.11) R G) = f9 f m [NL=k](L(e,6k(Xk)) + ck) f

k=1 X

ML( e(5m)G(d6)um(d,>_<m)

where 5k = [ak 3 0] by (2.4), ak is given by the equation (2.3),

and L is defined by (2.1). By the definition of L we get

L(e,5k) = L(o,a1) + (e - 00)6k, since L(0,a0) = L(e,a1) = e - 00.

Using this fact and the definition of CG following (2.2), we have

m L '

RL(G) = CG + 2 f0 f m [N = k]([ak 3 O](e - 00) + ck)

k=1 X

(2.12)

fe(xm)e(de)um(dxm) .

The empirical Bayes approach applied to this problem can be

based upon estimation of the functions [NL = k] and ok, k = 1,2,...,m.

For this purpose, it is useful to decompose and represent the indicator

functions as follows. Note that for k = 1,2,...,m-1 [NL = k] = Ak + 8k
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and [NL = m] = Am where

Ak = [p1 < 0] .......... [pk_1 < 0][pk > 0] for k = 1, ..... m-1

(2.13) Bk = [p1 < 0] .......... [pk_1 < 0][pk = 0] for k = 1, ..... m-l

Am = [pl < O] .......... [pm_1 < 0].

Thus, the Bayes risk of m-truncated one-step look ahead procedure

L L(
g = (l G),§(G)) relative to G for our testing problem can be

written in the following form (see (2.12)):

m

RL(G) = CG + kil fefxm Ak([01k _<_ 0](e - so) + ck) fe(Xm)G(de)pm(dx_m)

(2.14)

m-l m m m
+ kEI fefxm Bk([ak 3 O](e - 60) + ck)fe(X )G(d9)u (dX ) .

The inequalities defining the indicators correspond to open sets for the

Ak and boundary sets for the Bk' In the empirical Bayes application,

the functions pk are estimated so that a separate treatment of bound-

aries is important in so far as convergences are concerned.
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2.2 An Empirical Bayes One-step Sequential Decision Procedure for

the Two Action Component Case
 

Suppose that the prior distribution G is unknown but fixed;

then the classical Bayes quantities (2.3)-(2.9) of the Section 2.1

are not available to the statistician. However, suppose that we

are experiencing independent repetitions of the same component

problem. Then applyingthe empirical Bayes approach introduced by

Robbins (1956), we may derive empirical Bayes estimates of the

classical Bayes quantities (2.3)-(2.9), and, hence, an empirical

Bayes one-step sequential decision procedure g” = (In,§n), where

In is an empirical Bayes stopping rule and g” is an empirical Bayes

terminal decision rule.

In order to construct an empirical Bayes sequential decision

procedure db = (In,§n), we will make the following assumptions on

conditional density fe(x) and the parameter space 0.

(A1) For each x, fe(x) is a continuous function of 0.

(A2) 9 is compact.

At the nth problem of the repetitions, we will have observed

N N

the random vectors X11,...,anil from the past (n-l) repetitions

of the component problem 2.1, where N1,...,Nn_1 are the respective

stopping times of the past repetitions. Let {Gn} be a sequence of

N N

distribution functions on o, where Gn(e) = Gn(6,X1 s~°°$_n_l

N N

depends only on the random vectors X11,...,XnT11, which converges
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weakly to the prior distribution function G with probability one as

n + m, that is,

Pr {lim Gn(e) = G(e), any continuity point of G} = 1.

n+0!)

Remark 2.1. Robbins (1964) showed the existence of such a sequence
 

of distribution functions on e = (a,b), - m 3 a < b 3 w, under the

following assumptions.

(a) For each x, Fe(x) iS a continuous function of e, where

Fe(x) is the conditional distribution function of X.

(b) If G and G2 are two distributions on e such that
I

Fell = FGz then G1 = G2 , where FG(x) = f0 Fe(x)G(de) .

(c) The limits lim Fe(x) and lim Fe(x) exist for each x

G+a G+b

and neither lim Fe(x) nor lim Fe(x) is a distribution function.

G+a G+b

He showed that when 0 is a compact subset of R, condition (c)

can be relaxed.

Now we define our empirical Bayes sequential decision (EBSD)

procedure g” = (ln’én) as follows.

Let g" be a finite sequence of functions (69,...,6;), where

n
62 is such that 6k(Xk) = Pr {choosing aole = Xk} and, motivated

by (2.4) and (2.3),

(2.15) afl(_k) =

0 if 01:35“) > 0

and

(2.16) aflo") = I, (e - eo)fe(§k>Gn(de)



Let in be a stopping rule consisting of a finite sequence

of functions (Tn,...,Tn) where, motivated by (2.10) and (2.9),
1 m

T; a 1 and, for k = 1,...,m-1,

1 if pE(Xk) > 0

(2.17) T135") =

0 if 02(Xk) < 0

where

n k _ n k+1 n k+1 n k n k n k

(2-18) “((1 ) ' IX 6k+1 (5 ) ak+1(2(_ )U(ka+l) + ka(5 ) - 61((5 )ak(§)

. n k _ k . n z . .

with fk(X ) — fepfe(X )Gn(de) . Since Tm — 1, sampling Will be

stopped just after Xm has been observed if it had not been stopped

earlier.

For investigating the risk of the EBSD it is useful to define

CE = [pg < 0] .......... [pE_l < 0][pE 3 0] for k = 1,...,m-1

(2.19)

n _ n n
Cm - [91 < 0] .......... [pm_1 < 0] .

Then [Nn = k] = CE for k = 1,...,m-l and [Nn = m] = Cg , where

gn = (_Tn’ 6“)

Nn denotes the stopping time of the EBSD procedure

m m

Note that 2 [Nn = k] = 1 implies 2 CE = 1 .

k=0 k=1

Let R(G,gn) denote the conditional Bayes risk of g“ = (1n,gn)

with respect to G. Then Since the CE partition an,
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Ill

(2.20) k(G,g“) = CG + kEI f9 me cflqafl 5 0](e - 00) +

+ ck) fe(Xm)G(de)um(de) .

In the next section we will treat the difference between the

empirical Bayes risk R(G,gn) and the one-step look ahead risk

R G) using the decompositions (2.20) and (2.14).L(
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2.3 Asymptotic Results for the Two Action Component Case

In this section we compare the asymptotic behavior of uncondi-

tional Bayes risk of the Section 2.2 EBSD procedure g” with the

Bayes risk of m-truncated one-step look ahead procedure gL

discussed in Section 2.1. First we prove the following useful

lemma. Convergence of sequences of functions on .Xm is understood

to be pointwise convergence.

Lemma 2.1: Under the assumptions (A1) and (A2) for k 3 1,

n
pk+pk w.p.1 as n+oo.

Proof: From (2.9) and (2.18) with dependence on Xk suppressed,

|
A

I
A

0k = (x [“k+1 0J0‘k+1“(d"k+1) + ka ‘ LO‘k 0J0‘k

and

II n

pk ‘ ’x [“k+1 I
A A

n n n n

0]o¢k+1u(dxk+l) + ka - [01k _ QJOLk .

By assumptions (A1) and (A2), fe(Xk) is a bounded and continuous

function of e for each Xk. Then recalling the definitions of

afl, ak, ffl, fk (see (2.16), (2.3), below (2.18) and below (2.6))

and the assumptions on the sequence {Gn}, we get for k 3 1,

(i) aE + ak w.p.1 as n + w

and

n
k + fk w.p.1 as n + m .

From (i) it follows that
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(2.21) [0: 3 OJoE + [ak 3 OJak w.p.1 as n + w , k > 1.

n n
To Show that IX [ak+1 3 O]ak+1u(dxk+1) + IX [ak+1 3 O]ak+1u(dxk+1)

w.p.1 as n + m , we use the Generalized Dominated Convergence

Theorem (GDCT).

Note that lak+1(Xqk+1)[ak+l_< 0]] : hk+1(_k1) where

n k+1 _ k+1 k+l _

hk+1(X ) — fle - Golfe(X )Gn(d6) . Then :12 f hk+1(x )u(dxk+l) -

. k+1 _ k
Tim I fle - eolfe(X )Gn(de)p(dxk+1) - f|e - 00|f6(X )G(d6) w.p.1

n+oo

by the assumptions (Al) and (A2). But fle - Golfeqk

sk+1)

)G(de) is

equal to f fl9 - 60|f6( G(d6)u(dX and note that the
k+1)

following equality is satisfied :

k+1 _ . k+1

f f l8 - eOlfeQ )G(de)u(dxk+1) - I Al: I la - 60|f6(§ )Gn(de)u(dxk+1)

_ k+1
- I Tim hk+1(x )p(ka+1) w.p.1 .

Now use the GDCT and (2.21) to get the required results. D

Now we state and prove a theorem which concerns the asymptotic

behavior of the conditional Bayes risk of empirical Bayes sequential

decision procedure g“ = (1n,§n) defined in the previous section.

Theorem 2.1: Under the assumptions (A1) and (A2)
 

(2.22) lim sup R(G,g”) 5 RL(G) w.p.1

n+oo

where R(G,gn), and RL(G) are given by the equations (2.20) and (2.14),

respectively.



-32-

Proof: The difference of R(G,gn) and RL(G) can be written as

R(G,d") - RL(G) = g g I I CU A.{([a9 3 O] - [o- 3_0])(e - e )

i=1 i=1 ‘ J I 3 O

+ c(i - i)}fe(xm)e(de)nm(dxm)

(LB) +31? waetuw<OI-n <mxe-ei
i=1 i=1 I j I " j ' 0

+ c(i - i)1f6(xm)e(de)nm(dxm) .

The first double sum in (2.23) can be written as J; + Jfi + 03 ,

where

1 _ m j'1 n n
Jn — .1 .1 I I C, Aj{([“i 3 0] - [aj : 0])(0 - 00)

3-2 i-1

+ C(i - j)}fe(§m)G(d6)um(d§m)

2 m-l m n n

Jn = z z I I Ci A.{([ai 3 0] - [a. 3 0])(e - 00)

i=1 i=j+1 J J

+ c(i - 1)}fe(xm)e(de)um(dxm)

and

m

a3 = .2 f f cg Ai{([a? 5 0] - Ia, 5 0])(6 - eoiiie(km)e(de)nm(dkm) .
l 1

We will Show that J; + 0 w.p.1 as n + w, i = 1,2,3, and, hence,

the first double sum in (2.23) goes to zero w.p.1.

By the definitions of C2, A and Bj note that for i < j,

J

n n . . n n
C1 Aj 3 [pi :30][p1 < 0], and for l > J, Ci Aj 3 [pj < 0][pj > 0].

Then observe that
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1 m j-l

n . .
ldnl _ .E .E f f Lo; 3 OILpi < OIIZIG - eol + cli - 3|}fe(Xm)

3-2 i-1

G(de)nm(dxm)
(2.24)

m j-I n

i Z X f f [0,- < OHIO,- - oil _>_ loi|]{2|e - eol
i=2 i=1

+ cli - Jllfe(§m)G(d6)um(d§m) .

~— n
But fle - 90|G(de) < w, and [pi < OJLlpi - oil 3 [oil] + O w.p.1

as n + w by Lemma 2.1, and hence the DCT gives Idil + 0 w.p.1 as

n + w . Similarly, one can Show that ldfil + 0 w.p.1 as n + m .

n
Since C?, Ai’ a1 and a1 depend only on the first i observa-

tions (X1,...,Xi), 0: can be written as

n n ' '

f . Ci A1 {[01 3 O] - [oi 3 0]}ai u1(dX1) .

. n n
BUt for 1:1, |([aI:0]-[a1:0])al )ELIO-i 'aililaiIJIGil

so that

"
M
S

3 n . .
ldnl s IX, Ila,- - a,l:la,l1la,lu‘(dzs‘).

i 1

But I la - 60|G(de) < m implies f 1.loijlpi(dXi) < w, and for i 3 1 ,

X

an + a1 w.p.1 as n + w (see proof of Lemma 2.1) implies for i 3 1 ,.i

(2.25) [ail [lag - ail :_|ail] +~() w.p.1 as n + w .

Now apply the DCT to get |Jg| + 0 w.p.1 as n + w .

To derive the asymptotic behaviour of the second double sum in

(2.23), observe that it can be written as Ki + Kg + Kg where



-34-

k1 - m-l 3.1 c” B " 0n "jiz 121}. f l J {([0‘1 : ] " [015}: 0])(e ‘ 60)

+ c(i - 1)}fe(xm)e(de)nm(dxm) .

2 m-l n n m
Kn = iil I I Ci B1 {([a1 3 0] - [a1 : 01)(6 - 90)}fe(§ )

GIdeIImIdxm)

and

m-l m

(2.26) Ki = z z I I c? Bj {([a? 3 0] - [aj 3 0])(0 — e0)

i=1 i=j+1

' + c(i - 1)}fe(xm)e(de)nm(dxm) .

We will show that k; a 0 w.p.1 as n . m , i = 1,2, and

lim sup K3
n

n+w

For i < j, c? Bj < (a? 3 O][pi < 0] so that
_—

3 0 w.p.1 .

1 m-l j-I n

IR") 3 z z I I [pi 3 0][o. < 0] {2|e - e | + c|i - jl}
._ ._ l 0

3-2 i—l

fe(§m)G(de)um(d§m)

M ‘H [ l I " I I3 z 2 I I o. < 0 [ o. - o. 3 lo- ] {2|e - e |
j=2 1:1 1 l i i 0

+ Cli - J|}fe(§m)G(d6)um(d5m) .

This is the bound (2.24) for lJé] which.was shown to converge to zero

w.p.1 as n + w . Hence, lKil + O w.p.1 as n + w .

Now note that Ki can be written as
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-1 I o

2 _ m n n i l

The above equality follows from the fact that the functions

Cg, Bi’ 0? and oi depend only on the first i observations

(X1""’Xi) . Thus,

2 m'1 n i i

lKnl 31:1] [191' ' “1| 3- '911110‘1111 (d5) -

This is the bound for ngl which was Shown to converge to zero

w.p.1.

We summarize the results concerning the difference (2.21) obtained

so far with

(2.27) R(G,g”) - R

1 2 -3 1 2
where J”, J”, on, n n have been shown to converge to zero w.p.1.

From (2.26) we can write

3 m'1 . . .
(2.28) Kn = jEI (L1(n,J) + L2(n,J) + L3(n,J))

where

m

(2.29) L1(n,i) = 1.=§+1I I c? Bj Ia? s 01(e - 60)fe(§m)G(d6)um(d§m)

(2.30) 1201.1) = 3? I I c? 83. Ia, _<_ 01(e - eoiieommideiamws'“)
i=j+1

and

m

(2.31) L3(n,j) = z I I C? B (i - j)fe(§m)G(d9)um(d§m) .
i=j+1

. C

J
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A m

We define CE = z c

- i=k

d
o
:

for k = j + 1,...,m, j = 1,..., m-l

and observe that CE = [of < 0] .......... [p:_1 < 0] for k = J + 1,..., m,

and, hence, CE depends only on the first k - l observations

(x1....,xk_1) . Now using the definition of GE , k 3 1, we can

write Ll(n,j), L2(n,j) and L3(n,j) as follows:

in

L3(n,j) = c z I I E: B. fe(Xm)G(de)um(de)

k=j+1 J

m “n k-l k-l k-l
(2.32) = c k I 1I ck Bj fk_1(5 )o (d; )

:J+

m

= 2 Ak(n,J)

k=j+1

where

Ak(nsj) = c I 0E BJ. fk_1(Xk-1)uk-1(ka'l) .

Also

. _ _ n n _ m

L2(n,a) — I I (Cj+1 + ... + Cm) BJIaj : 01(9 90)Io(5 )

G(de)um(dxm)

(2.33) = -I I 03,1 Bj[oj : O](e - 00)fe(xm)G(de)nm(dxm)

= _ “n j i
f Cj+1 Bj [OJ : OJOIJ-p (dX)

and

m n n i i
L1(n,j) = z I C B. [o. < OJa.p (dx )

i=j+1 i J i — i —

(2.34) 1

m . . . m- A

= 2 I GD 3 [a9 < o]a.u‘(dX‘) - z I C? B.
i=j+1 l J 1 — i i=j+1 1+1 J

[0? OJaip1(dX )
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The last equality follows from the fact that C? = C? - C"1+1 for

i=j+1,...,m-1, j=1,...,m-1 and c; = C; . We can write

m m-l

(2.35) L1(n,i) = Z T,(n,j) - 2 51(n,j)

i=j+1 i=j+l

where Ti(n,j) = I C? Bi [0? 3 0]0i0i(dXi) and

. _ “n n i i .
Sj(nsJ) - f C1+1 Bj [oi 3 OJGiu (dX ) . Thus the sum of L1(n,J) ,

L2(n,j) and L3(n,j) can be written as

m m-l

L1(n,j) + L2(n,i) + L3(n,j) = 2 Ti(n,i) - 2 51(n,j)

i=j+1 i=j+1

A

- I c" B [aj 3 0]oij(dXJ)
3+1 3

m

+ 2 Ak(n,j)

k=j+1

= . _ “n j j

m

+ E [T(naj) " 5' (71,3)
i=j+2 1 1"].

+ A1(n.i)1

M1(n,i) + M2(n,j)

where
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A

man MWJ)=BHUm)-IQHBJUJ:W%NNQI+%HWJ)

and

m

(2.38) M2(n.j) = z [Ti(n,J) - Sj_1(n,J) + 4i(n.j)] .

i=j+2

Now observe that M1(n,j) is equal to

“n n J J
(2.39) f Cj+1 Bj {f[aj+1 3 0]aj+1p(dxj+l) - [aj 3 0]aj + ij}p (dX ) .

But 0 3 Bj 3 [pj = 0] and by the definition of pj (see (2.9))

from (2.39),

|M1(n.j)| I
A

_ n

f ij’ 0](lf [aj+1 : OJGJ+1U(de+1)

(2.40) -I Laj+13 01oj+1u(dxj+l)|)p‘j(de)

n

.+l .+1

|
A

. n
The R.H.S. of (2.40) goes to zero w.p.1 as n + w, Since aj+l + aj+1

w.p.1 (see the proof of Lemma 2.1), I la luj+l(de+l) < m and by

3+1

an application of the DCT. Thus, M1(n,j) + O w.p.1 as n + w .

Now it remains to consider M2(n,j) in (2.38). Observe that for

I=j+2,...sms Ti(nsj) ' Si_](n,j) + Ai(n9j) IS equal to

“n n i i “n n - i-1 i-1

f Cl Bj [01 : 0]a1u (dX ) - f C1 Bj [ai_1 : 0Ja1_1p (dX )

+IC?%Cfi4QPHN4N§4)-

The above sum can be written as
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(2.41) I c? Bj (I [0? 3 O]o1p(dx1) - [0.2.11 3 0]a._

)ui-l(dXi-1) -+ Cfi-I —

Adding and subtracting the term [ai_1 3 0]ot1._l into the integrand

of the above integral (2.41), we get

A

n n

f C1 Bj (f [oi 3 O]oiu(dxi) - [ai_1 3 01ai_1

(2.42) + I 0? Bi ([a._

Now use (2.25), I lai_1|01'l(dX1'1) < w , and the DCT to Show that

“n n i-l i-l
I C, Bj ([o1._1 3 O]o1._1 - [ai_1 3 0]a1_1)u (d3 ) goes to zero

w.p.1 as n + w . First integral in (2.42) can be rewritten as

f C? Bj [pj_1 : 01(f [0? : 0191P(dxi) ' [01-1 5 OJO‘i-l

+ cfi_1)pi'1(dXI'1)

(2.43)

an
n

+ [C1 Bj [pl-1 > 0](f [OL_i : 0]aiu(dx1) ' [ml-1 : 0]ai_1

i-l i-l
+ cf1_1)u (dx ) .

But 0 3 c? [o,_1 > 0] 3 [o?_1 < O][01_1 > 0] and therefore the

 



-40-

absolute value of the second integral in (2.43) is less than or equal

to

(2°44) f [p?_1 < O][pI-1 > 0]{f l01|U(dX1) + IaI-ll + Cfi_1}U1-l(d§1-l) :

and (2.44) is less than or equal to

f [lp?_1 ' 01_1| Z lpl-1|][pl-1 > 0]{f|0i|U(dxi) + laI-1|+

(2.45)

l-l l-1

+ Cf1_1}u (d5 ) '

1'1) < w and theWe use Lemma 2.1, flail gi(dXi) < w ,flai_1|pi-1(dX

DCT to conclude that (2.45) goes to zero w.p.1 as n + w , and, hence,

the second integral in (2.43) goes to zero w.p.1 as n + w . By the

definition of pi-l (see (2.9)), observe that cf1._1 - [ai_1 3 0]

o1_1 3 -I [a1 3 OJaip(dXi) on [pi_1 3 O] . Then the first integral

in (2.43) is less than or equal to the following expression

f C? Bj L91_1 : 0](f [0? E O]aiU(dXi) 'f [a1 : 0]01U(dxi))

(2.46) . .

“1-1(dl1-1) 3

and the absolute value of (2.46)

s I la,l|[a? 01- [01,: OJIquzi)I
A

5 f lailtla? 4,! : |a1|]u‘(dx‘) .

which goes to zero w.p.1 by (2.25), I |o1|p1(dx1) < m and the DCT.
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Now combining (2.39) - (2.46) we get for i=j+2,...,m

lim sup (Ti(n,j) - Si_1(n,j) + Ai(n,j)) 3 D w.p.1 .

n+w

Hence, by the definition of M2(n,j) (see (2.38)) for j=1,...,m-1,

lim sup M2(n,j) 3 0 w.p.1 , and by (2.36) lim sup (Ln(n,j) + L2(n,j)

n+°° n+oo

+ L3(n,j)) 3 0 w.p.1, and by (2.28) lim sup Kg 3 0 w.p.1 . This

n+oo

completes the proof of the Theorem 2.1 . U

The next corollary compares the asymptotic behaviour of the

unconditional Bayes risk of EBSD procedure g" with RL(G) .

Corollary 2.1: Under the assumptions (A1) and (A2)
 

lim sup E R(G,g”) 3 RL(G) ,

n+oo

where E denotes expectation with respect to random vectors

XNI XNn-l
_1 ,ooo,_n-1 0

Proof. The proof follows from Theorem 2.1 and Fatou's lemma. D

Corollary 2.2: If m=2, then lim R(G,d”) = RL(G) w.p.1. and

n+m

 

lim E R (e.gn) = R

n+oo

L(G).

Proof: If m=2, then RL(G) = RB(G) and, therefore, R(G,g") 3 RL(G)

for all n and G. Hence, lim R(G,gn) = RL(G) w.p.1 follows from

Moo

(2 22) and then lim E R(G,g") = R

n+m

L(G) follows from the DCT. D
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Corollary 2.3: If G is such that I I ije(Xi)uj(de)G(de) = 0 ,

j=1,...,m-2, then

lim R(G,g“) = R

n+w

L(G) w.p.1 .

Proof: From (A2) and (2.3) there exists a constant B such that

|a1| 3 Bf, , i = 1,...,m and I|a1|u(dxi) 3 Bf1_1 , i = 2,...,m .

Hence, by (2.38) and (2.41) for j = 1,...,m-2 ,

m . . .

|M2(nsj)l < >2 I B]. (28 + c)f1._1(x_1 1111‘ 1(dx‘ 1) .
i=j+2

But Bj is 33 measurable so RHS of the above inequality is zero by

the hypothesis of the corollary. Combining this result with

Tim M1(n,j) = O w.p.1 as n + w , we obtain lim K2 = 0 w.p.1 as

n + m so that from (2.27) the proof is complete. D

Corollary 2.4: Let Nn be the stopping time associated with the EBSD

procedure 9" and let NL denote the stopping time associated with

the one-step look ahead procedure 9L. Then w.p.1, Nn is stochastically

larger than NL as “.1 w ; Specifically, for i = 1,2,...,m,

lim inf I IIN” 3 i]fe(Xm)G(de)nm(de) 3 II [NL 3 i]fe(Xm)G(de)pm(de) w.p.1

n+oo

with convergence to the RHS if II ije(XJ)pJ(dXJ)G(de) = 0, j = 1,2,...,m-1 .

Proof: By the definitions, [Nn 3 i] = [.2 < 0] .......... [,?_1 < 0] and

[NL 3 i] = [01 < O] .......... [01_1 < 0]. Thus, we have

[o1 < 0] ........ [o. 1 < 0] 3 lim inf IN“ 3 i] 3 lim sup [Nn 3 i]

1- n+oo n+oo

(2.47)

: [01$ 0] oooooo [pi-1: O] 3





and the inequality follows from Fatou's Lemma. Observe that

.i

0 3 RHS(2.47) — LHS(2.47) 3

1'

1

1 Bj .

I
I
M
I

Hence, by the hypothesis concerning the Bj, we have

lim [Nn 3 i] = [NL 3 i] w.p.1 as n + w , i = 1,2,...,m.
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The

proof is completed by taking expectation and applying the DCT. D
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2.4 Multiple Decision Problem
 

In this section we treat a component decision problem that subsumes

that treated in the last section. Assume that the action space

A = {a0, a1,...,a£} consists of a finite number of distinct actions

and let L(e,a) 3 O on o x/\ be the loss function associated with

the problem.

The m-truncated one-step look ahead sequential decision procedure

QL = (3L(G), 3(6)) with reSpect to G, GeG, for this multiple decision

problem (e,A,L) can be defined as follows. Let §(G) be the

decision rule consisting of a finite sequence of functions (61,...,om)

where 5k is a Bayes decision function with respect to G for the

fixed sample size k decision problem based on the sample (X1,...,Xk).

5k can be derived as follows (see Van Ryzin and Susarla (1977), Gilliland

and Hannan (1977) or Ferguson (1967) Chapter 6).

At the stage k of the sequential decision procedure, suppose

k) = (tk(0|xk),...,t

tk(j|Xk) = Pr{choosing action alek = Xk} and

we use a decision rule tk(X

Then the Bayes risk of tk(-) w.r. to G is

.IIItkIIIBkIPSIdBKIIGIde)r(G,tk) = Z I L(e,aJ

I- tk(J|§k){I(L(6.aj) - L(6,a0))fe(Xk)G(d6)}uk(ka)

+ II L(e,a0)G(de)fe(§k)uk(dxk) .

r(G,tk) is minimized by tk(ilxk) = ok(jlxk), j = O,l,...,m where
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1 if 3k e Sj

(2.48) akII'Ix") =

0 if xk 4 S.
— J

with

k . . .
53' = {X [J = min {t: Ak(at,Xk) = m}n Ak(a.,3k)}}

(2.49)

k
I, (are ) = I(L(e.a,) - L(e.a0))fe(xk)G(de) .

When arguments are displayed we will delete the subscripts on 5k and Ak.

Therefore, the Bayes terminal decision rule §(G) = (61,...,om) is

defined componentwise by (2.48). Then the minimum posterior Bayes

risk w.r. to Gk is given by

Me I L(6,6k(2<_k))Gk(d6)k)

.)GI6(J‘ka)L(e,aJ k(do)

(
.
1
.

"
M
N

"
M
N

O

‘
-

A

I
—

A

G
)

\
D D
.
)

V

I

O

l
K

V

L
:

0
'
:

A (
_
i
.

X L(e,a0))Gk(de)

L
4
.

 

l o

fk(§K)

k) = 0 if fk(Xk) = 0. In the above

2

derivations we use the fact that z 6(lek)

i=0

to get r(Gk) in the following form:

(IKIGIde)
 

I L(e,a0)fe

k)provided fk(X > 0 and r(G

= 1. Now use (2.49)
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(2.50) r(G
  

(5k)G(de) .k) I L(e,a0)fe
j—

o ik(x

The stopping rule 3L(G) of gL consists of a finite sequence of

functions (T%,...,T;) and stops sampling for the first k (k=1,2,...,m)

L L _ l
for which tk(Xk) = 1 where rm = and for k=l,...,m-1 ,

L k 1 if E* r(Gk+1) + c - r(G

“((5 ) =

0 if E* r(G + c - r(Gk) < O
k+1)

and E* denotes the conditional expectation over Xk+1 given

 

 

Xk = Xk . It is easy to Show that

E* r(G ) = 1 I I o(j|xk+l)A(a. xk+1)u(dx )

1 k
+ k I L(0,a0)fe(X )G(de)

fk(§ )

. k _ ~ k _
prov1ded fk(X ) > O and E* r(Gk+l) - 0 if fk(X ) — O .

Then E* r(G ) +~c - r (Gk) 3 0 if and only if
k+1

K . k+1 k+1 k
z I 6(Jlé )4(a ._ )u(dx ) + cf (1 ) z
._ J k+1 k -

J-O J

when fk(Xk) > 0 .

We define

sk+1>aIdxk+1> + ka(§k)

"
M
N

aIiIkk)A(a.,3k>
O J
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if fk(3k) > 0 and Bk(3k) = 0 if fk(3k) = 0, and the functions

Ak = [81 < O] ..... [Bk-1 < 0][Bk > 0] for k=1,...,m-l

Bk = [Bl < 0] ..... [Bk-1 < O][Bk = 0] for k=1,...,m-1

and

I
>

l
l

m [81 < O] ..... [Sm-1 < 0] .

Then [NL = k] = Ak + Bk, k = 1,...,m-1, [NL = m] = A and
m

m'1 L L
kil (Ak + Bk) + Am = l . Therefore, (T1,...,Tm) is defined by

1 If Bk(§k) 3 O

L k
(2.52) Tk(§ ) =

0 if Bk(§k) < 0 ,

k=1,...,m-1 and tm : 1 The Bayes risk of gL = (3L(G),§(G)) with

respect to G is

m L k m m m

RL(G) = Z IILN = k1{L(6.6(§ )) + cklfe(§ )G(d6)u (d4 )

k=1

m L K . k m m m

= z IILN = k]{ 2 5(Jlx )L(6,a ) + cklf (5 )G(d6)u (d5 ) .

k=1 i=0 3 9

Now add and subtract L(e,a0) into the integrand of the above integral

2 m

and use the facts 2 o(j|Xk) = 1 and z [NL = j] = 1 to obtain

i=0 i=1

m L f k
R (G) = 2 II [N = k]{ z 6(Jlx )(L(e,a ) - L(e.a ))
L _ ._ J O

k-1 3—0

+ ckife(xm)e(de)wm(dxm)

m L m m m

+ 2 II [N = k]L(e,a0)fe(x )G(de)u (d5 ),

k=1

that is,
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_ m 2 . k

RL(G) - kil I I Ak jED 6(JIX )(L(e.aj) - L(e,a0))

+ ck}fe(§m)G(d9)um(d§m)

m-l 2 k

(2 53) + z I I Bk{ 2 6(ilx )(L(e,aj) - L(6.a0))

k=1 j=0

+ cklfe(§m)G(d6)um(dz<_m)

+ I I L(e.a0)f (Xm)G(de)um(de)
6

 

Let g“ = (ln’én) denote an empirical Bayes one-step sequential

decision procedure for the above multiple decision problem. We shall

N

construct 9" based on the past data X 1,...,anil and the present

data X at the stage n. Assume that there exists a sequence of dis-

. N N _

tribution functions {Gn} on o, where Gn(e) = Gn(e,X_1,...,Xn211)

N N

depends only on the past data X 1,...,an11, which converges weakly

to G with probability one as n + w . Let g" be the decision rule

consisting of a finite sequence of functions mo?,...,o”) where

on(j|Xk) = 1 and,

(

2

o£(Xk) =(on(0|Xk),...,on(£|Xk)) subject to '2

. . n . k .3 k k
for J = O,l,...,t, if 5 (Jll ) = Pr{ch005ing ale = X }, then

1 if xk e S.

n.k — J

(2 54) 6 (J11 ) = k .

0 if X 4 Sj

“ _ _ . n k _ . n k

SJ - {x [J - min{t:A (at,X ) - min A (ai’5 )} , and

l

(2.55)

I"(a xk) = I (L(e a ) - L(e a )f (xk)G (do)
i’— ’ i ’ O B — n





-49-

The stopping rule in is defined by a finite sequence of functions

n) which stops sampling for the procedure g" for the first
m

k(k = 1,...,m) for which tfl(3k)

(.Q,...,.

= 1 where t; 1 and for

k=1,...,m-1,

 

a“(xk) =

k _ n k

0 If Bk(£ ) < 0 9

where

(2 56) n(xk) = i I a”( ka+1)I"( xk+1) (dx ) + cfn(xk)
° 8k — i=0 x J 3’ “ k+1 k —

Z

- z 6"(Jlek)4"(a ask)

i=0 3

. n k _ k

w1th fk(X ) — I fe(X )Gn(de) .

Define

CE = [8? < 0] ..... [ofl_1 < 01(82 3 0] for k=1,...,m-1

and

n _ n
Cm - [81 < O] ..... [Sm-1 < O] .

Then [Nn = k] = C: for k=1,...,m where Nn is the stopping time

of dn = (3n,§n) for the multiple decision problem. The conditional

Bayes risk of g“ = (3n,§n) with respect to G is then equal to

m 2

RIG.d“) = z I I GE {.2 a"(i|3k)(L(e,a.) - L(e.a0))
k=1 3-0 3

(2.57) + cklfe(§m)G(d6)um(d§m)

+ I I L(e,a0)f (Xm)G(de)um(dxm) .
O
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Now we prove a lemma which is used to prove the next theorem on

the asymptotic behaviour of conditional Bayes risk of empirical Bayes

sequential decision procedure 3" = (in,gn) for the multiple decision

problem.

Lemma 2.2: Assume L(e,a) is a continuous function of o for each

a c A; then under the assumptions (A1) and (A2) for k 3 l

Bnk + Bk w.p.1 as n + m where Bk and B: are given by (2.51)

and (2.56), respectively.

Proof: Observe that for j Z 1, k 1 1,An(a.,Xk) + A(a k)
J 1’5

k) k) w.p.1 as n + m by the assumptions in

w.p.1 as

n + w and f:(X + fk(l

. . . n . k . k

the lemma. Then by the definitions of 6 (3|X ) and 6(JIX ) we get

(2.58) z on(j|X a.,X + z o(j|Xk)A(a.,Xk) w.p.1 as n + w .

j=0 J j=0 3

Now to complete the proof of BE(Xk) + Bk(Xk) w.p.1 as n + m , it

C

remains to prove 2 IX on(j|Xk+l)An(a. o j,xk+l) (
J:

dek+l)+.: fxéjl

4(a.,xk+1)u(dxk+1) w.p.1 as n + w . To prove this statement
J..—

+ + . +

lexk)14"(a xk 1) + z 6(1l5k 1)we use the GDCT. From (2.58), -,_

0 J i=0J

"
M
N

k+1) w.p.1 as n + m , and observe that by the definition of

k+1

as )|<

Aa.,X(J-

k+1) (X—k+l)

An(aj,X and the boundedness of L(e,a),|A"(a <20 fn
k+1

where J is a finite constant and ffl+1(Xk+l) = I fe(Xk+1)Gn(d0) .

But I f u dx = fE(Xk) by Fubini's theorem. Then
k+1(— k+1)

fk(3k) w.p.1 by (A1) and (A2). Therefore,
. +

n+oo
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( k+1) ( I Tim fnTim I ffl+1 3 (1 dx
n+oo

(x_k+l)u(dxk+1) w.p.1 follows from
k+1): k+1

. + .
the equality fk(Xk) = f fk+1(§k l)u(dxk+1) = I Tim fE+1(§k+1)u(dxk+1)

n+m

w.p.1. It follows from the GDCT that

C
o

+
+

. k+1

. J ( I )
n+w J 06 J

6.11
0”

M
N

k+1
4(aj,X )u(ka+1) w.p.1 .

This completes the proof of Lemma 2.2.

 

The next theorem gives us the asymptotic behaviour of the conditional

Bayes risk of our empirical Bayes sequential decision procedure

g" = (1n,on) for the multiple decision problem.

Theorem 2.2: If L(e,a) is continuous function of e for each
 

a c A , then under the assumptions (A1) and (A2),

lim sup R(G,gn) 3 RL(G) w.p.1 ,

n+w

where RL(G) and R(G,gn) are given by (2.53) and (2.57),

respectively.
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Proof: Write

. m
g .

R(G,dn) — RL(G) = z z I I c? A { z o”(kIX‘)gk(a) -
i=1 j=-1 k=0

- k§0 6(kl§j>gk(e) + c(i-j)}fe(Xm)G(de)um(d§m)

(2.59)
m m-l 2 n i

+ z z I I C? Bj I z o (kIX )gk(e)
i=1 j= 1 k=0

2

- 2H) «NkaJngI e) + c(i-1)}f (_m)G(de)'"(dxmi

 

where gk(o) = L(e,ak) - L(6.60)s k = 1,2,..., 2.

The first double sum in (2.59) can be written as J; + dfi + 02 ,

where

1 m j-1 n I, E. j

Jn = z z I I Ci AJ{ 2 n1C(ij)gk( B) -2 o(k|X )gk(o) +
i=2 i=1 k=0 k=0

+ C(i-J)}fe(5m)G(de)um(dxm) ,

2 I'll-'1 m n AZ
K '

Jn = z z I I Ci A.{ z n1'(le) gk( 6) -z o(k|X3)gk(e) +
J=1 1=j+1 J k=06

k=0

+ C(i-J)}fe(§m)G(d6)nm(dfim) .

and

m 2 - 2 -

a3 = z I I c" A. { z a"(ka‘>g (e) -z 6(klx‘)g (enf (5m)G(de)um(dxm) .n ._ i j k _ k eT-l k=0 k-O

Then observe that

m j-l 2

Idll : Z X f f C“ A- I 2 l9 (e)l + CIT-Jl}f (1m)G(de)um(dxm) ,
” J=2 i=1 1 J k=0 k 9

and
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m-l m K

)JfiI3 z z I I c? Aj{ z ng(e)| + c|i-j|}fe(Xm)G(de)um(de) .

i=1 i=j+1 k=0

Recall that for i 3 1 , c? = [3? < 0] ..... [BQ_1 < 0][o? 3 0] and for

jil , Aj = [81 < O] ..... [Bj-1< (”[85] > 0], Bj = [81 < 0] ..... [Bj-1< 0]

[Bj

w.p.1 as n + w and for i > 3, C? A? 3 [89 < O][Bj > O] + O w.p.1

0]. Then by Lemma 2.2 for i < j, c? A? 3 [3? 3 01(81 < 0] . 0

as n + m. Now use the DCT and the assumptions in the theorem to con-

clude that J; + O and Jfi + O w.p.1 as n + w . Now to finish the

proof that the first double sum in (2.59) goes to zero w.p.1 as

n + w , it is enough to Show that J2 goes to zero w.p.1 as n + w ,

 

where

2

z

k=0

C
- II

l
l
[
‘
4
3

I I C? Ai{ (6n(k|Xi) - 6(lei))gk(e)}fe(Xm)G(de)um(de) .

i 1

From the definition (2.49) of 4(aj,Xk) we can write 0% in the

following form:

t

XOM14!) - oIkIITIIAIak._x_">nl(d3") .
k-

m n

=1 X

From (2.58) and An(ak,Xi) + A (ak,Xi) w.p.1 as n + w , k 3 1,

i3: 1 , we get for i :_1 ,

3 n i i i i
(2.60) t 6 (le )A(ak,x ) + z o(k|X )A(ak,X ) w.p.1 as n + w .

k=0

Now use I 1.|4(ak,XI))..‘(dXU < e , k = 0,1,...,2 , i 3 1, and the

x

DCT to conclude that J: + 0 w.p.1 as n + m .

The second double sum in (2.59) can be written as Ki + Kg + K:

where
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1 m-l j-l n 2 n i t j

Kn = z z I I Ci Bj{ z 6 (k 5.)9k(9) -z 6(kIX )gk(e) +

j=2 i=1 k=0 k=0

C(i-J’)}fe(§m)G(de)um(d§m) .

m-I 2 . .

Ki = E f f C? Bii Z (6n(k|§1) - 6(kl11))gk(e)Ife(§m)G(de)um(de) ,

i=1 k=0

and

m-l m 2 . K -

Kg = 2 z I I C? Bj{ Z on(k|X1)gk(e) -£ o(k|X9)gk(o) +

i=1 i=j+1 k=0 k=0

+ C(i-J)lfe(§m)G(d6)um(d§m) .

K1 2 . . 1 3 .
n and Kn have Similar forms as Jn and Jn respectively, and

one can Show that K; + 0 and Ki + 0 w.p.1 as n + m using similar

arguments as for J; and J3 .

We now summarize the results concerning the difference (2.59)

obtained so far.

n 3 . 3 .

(2.61) R(G,g ) - RL(G) = z 0% + 2 kg

i=1 i=1

1 2 3 1
where J”, J", J", Kn’ Kn have been shown to converge to zero w.p.1

as n+oo.

Now we will Show that lim sup Kg 3 O w.p.1. Write

n+oo

3 m-1

(2 62) K = 2 (L (0.1) + L (0.1) + L (n.J))
n J=1 1 2 3

where

m n K n T m m m

(2.63) L1(n.j) = z I I c, B.( 2 6 <ka )gk(e))fe(x )G(d6)u (dx )
i=j+1 J k=0
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£ .

(2.64) L2(n.i) -I I I c? B.( 5 aIkIsiIgKIeI)fQIBmIGIdeIwmId2P>
i=j+1 J k 0

and

m n m m m
(2.65) L3(n,j) = z I I C. B. c(i-j)fe(X )G(de)u (dX ) .

i=j+l ‘ J

“n m n
Define Ck = 2 Ci for k = j+1,...,m and j = 1,...,m-1; then

i=k

n _ “n “n . _ n _ “n .
C1 — Ci - Ci+1 for 1 - 1,...,m-l and Cm - cm 0 NOW L1(n’J),

L2(n,j) and L3(n,j) can be Simplified into the following form:

 

L1(n.J) = z I 1 c? Bj( z 6n(k|§1)4(ak.§1))ui(dx1)
i=j+1 x k=0

m , 2 . . . .

= z I 1 c? B.( 2 a”(k|3‘)a(ak,3‘))al(d3‘)

i=j+1 x J k=0

(2.66)

m-l A 2 . . . .

- z I . c? B.( 2 on(k x‘)a(a ,x‘))a‘(dx‘)

i=J+l x1 ‘+1 3 k=0 l’ k ‘ ‘

m m-1

= Z T(n:j) -X Si(naJ)

i=j+1 i=j+1

where

K n l l l l

T (0.1) = I C B ( z o (klx )A(a .x ))u (dx )
T l J _ k

x k-O

and

. t

Si(n,j) = I . c? B.( 2 a"(ka‘)a(a
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m 2

L2(n,j) = -2 I I c9 B.( 2 eIkIIkIg (eIIf (5m)G(d6)um(de)i=j+1 ‘ J k=0 k 9 ‘

= -I I B.(cD + 09 . + C")( 2 6(klxi)9 (6))J 3+1 3+2 m -0 — k

(2.67) fe(xm)G(de)um(dxm)

, 2
= -I I B]. cg+1(kzo snug)gk(e))fe(3m)e(de)wm(dxm)

= -I . B 69 ( z 6(klzj)4(a ,xj))uj(dxj) .
x1 3 3+1 k=0 k T 7

and

m A m m mL3(n,j) = c 2 I I C BJ fe(x )G(de)u (dX )

i=j+1

m .n i—l i-1 i-I(2.68) = Z c I 1-1 Ci BJ f1_1(X )u (dX )

i=j+l x

m

= 2 U1(n,J)

i=j+l

where

° — An I-l- l-l 1-1
Ui(naJ) ' C in-l C1- 8,] fl-1(5 )lJ (d1 ) -

The sum Ll(n,j) + L2(n,j) + L3(n,j) now takes the following form:

m m-l An 2 .

Z Ti(nsJ) " X Si(nnj) 'f ° (3+1 B( Z (“k(éJ)

i=j+1 i=j+1 xJ J J k=0

. . . m

4(ak,xJ))uJ(de) + z u,(n.i).
i=j+1

that is,
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. 2 . , _ ,

' - . n . J J J JTj+1(n.J) IXJ CJ+1 BJ(k:0 6(le )A(ak,X ))u (d5 )

(2.69)
m

The sum of the first three terms in the expression (2.69) is equal to

 

z . .
“n n 3+1 3+1

(2.70) IXj (:J.+1 BJ{IX kEO 6 (le )a(ak,x )u(dxj+1)

£13“ 331‘
-z 6(kl5 )A(ak.§ ) + cfj(§ )}u (da ) .

k=0

By the definition of Bj (see (2.51)),

2 . . . 2 .

-2 6(k|XJ)A(ak,XJ) + cf.(XJ) = -I z (lej+l)A)A(ak, J+1)

k=0 3 X k=0

u(dxj+1) on [83 = 0] .

But 0 3 Bi 3 [83 = 0] so the absolute value of the expression (2.70)

is less than or equal to

2 . .

(2.71) I j[8j = 0]{|I ( z 6n(k|XJ+1)A(ak,XJ+1)

X X k=0

K (k J”))( J"'11) (d ) j(dj)-k:OA( |X Aak,X u xj+1 |}u X .

Expression (2.71) goes to zero w.p.1 as n + w by (2.60) ,

Z

2

+1) j+1 j+1

|(A .3 )ul (dx )

k=0 xJ+1

< w and the DCT.

Finally let us consider the sum 2 {Ti(n9j) - 51_1(nsJ) + U1(n,j)}.

i=j+2

Observe that for i=j+2,...,m, Ti(n,j) - S1_1(n,j) + Ui(n,j) is equal to
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“ I. .

I - C” B.( 2 6"(klx1)4(a .x1))u1(dx1) -

x1 I J k=0 ’ k ‘

A 2 -_ -_ -_ '-

I ._1 c? BJI 2 6”(klx‘ 1)A(ak.§‘ liiwl 1(dx‘ 1)
X k=0

(Xi-1)ui-1(dXi-1) .AI"!

I C ’ i-l Ci Bj fi-I — —
X

Rearranging the terms in the above integrals we get

 

I E” B {I ( i a”(k|xl)a(a xl)) (dx )
Xi-I i j k=0 — k’— “ i

(2.72) 2

- 2 3"(kI 1‘IIAIa .Il‘l) + cf. (3“1)}al‘l(dr“1>
_ k T-l

k-O

K i-l i-1
Now add and subtract the term 2 o(k|X )A(ak,X ) into the integrand

k=0

of (2.72) to get

I C” B {I ( f 6n(k|xi)A(a xi)) (dx )
Xi-1 i j x k=0 — k’— “ i

2 . . . .

(2.73) - z 3(kal'1)a(a , 1‘1) + cf. ( 1-l)u1-l(dX1-l)
_ — k -1 —

k-O

I

+ I 1_1 C? B { z o(k|x1 1)A(ak,X1'1) - Z on(k| 1'1)

x J k=0 k-o

A(ak,§i-1}un-1(d£i-I) .

The second integral term in (2.73) goes to zero w.p.1 as n + w from

2 . . ~ .

(2.60), z I . 1|n(ak,x“1)|u"1(dx"1) < e , and the DCT.

k=0 x“ ‘ ’
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The first integral in (2.73) can be rewritten as

f En B [8 < O]{f ( é 6n(k|xi)A(a xi)) (dx )
Xi-l i j i-l — x k=0 - k’— “ i

i-l) (xi-1)}ui-1(dXi-l)T-l

5(kll ”(3'05 1_ _

K

-2 + Cfi-

k 0

(2 74) + f E" B [s > 0]{/ ( é 6n(k|xi)
- Xi-l i j i-l k=0 —

A(ak9£i)U(dxi)

z . . .

- Z 6(kl51'1)A(ak,§1-1) + cfi 1(51-1))

k=0

Ll1"].(d 1‘1) .

But 0 5 E? [ei_1 > 0] 5 [e?_1 < 0][s1._1 > 0] + 0 w.p.1 as n + m

by Lemma 2.2 . Therefore, the second term in (2.74) goes to zero

w.p.1 as n + m by the DCT and f A(ak,§1)u(dx1) < m , i 3 1 ,

k 3 1 . The first term in (2.74) is

< f En B [ < 0]{f g 6n(k|xi)A(a xi)) (dx )
— Xi-1 i j 8i-1 — k=0 - k,_ u 1

(2.75)

i 1 i i-1 i-1
- f (kzo 6(kI5 )A(ak,§,))u(dxj)u (d1 ) .

X =

The inequality (2.75) follows from the fact that (see 2.51) on

[Bi-1 g 0] we have

K

-2 5(kl51-1)A(ak,§

k=0

0

.
z

.
.

i-l) 1'1) z s(k|§‘>a(ak’§‘))u(dx ) -+ Cfi-1(5 1
: —fX(k:O

Now it is easy to see that the
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R.H.S. of the inequality (2.75) goes to zero w.p.1 as n + m

K . . .

from (2.60), z j 1.|A(ak,_)g1)|u1(d§1) < w , and the DCT . Now

k=0 X

combine (2.74) and (2.75) to get for i=j+2,...,m

lim sup {Ti(n,j) - Si_1(n,j) + Ui(n,j)} 3 0 w.p.1 as n + m

n+w

and then with (2.69) and (2.70), we have for j=1,...,m-1 ,

lim sup (L1(n,j) + L2(n,j) + L3(n,j)) 5 O w.p.1 .

n+oo

Therefore, lim sup K: 5 0 w.p.1 follows from (2.62). This completes

n+0!)

the proof of Theorem 2.2. D

Remark 2.2: Corollaries analogous to Corollaries 2.1 - 2.4 of the

previous section can be stated and proved in the more general

multiple decision problem context as well.
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2.5 Final Remarks
 

Using arguments very similar to those of Sections 2.3 and 2.4, we can

show that the result lim sup R(G,gn) 5 RL(G) w.p.1 as n + w

also holds for natural empirical Bayes sequential decision procedures

for the squared error loss estimation component under (A1) and (A2).

A curious feature of the EBSD's in approximating one-step look

ahead risk is the inequality in the asymptotic result. (The asymptotic

optimality that is typically proved is the convergence to RB(G).)

There are examples of two-action linear loss components with Poisson

distributions and priors G for which lim sup R(G,gn) < RL(G) on

a set of positive probability.
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