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ABSTRACT

AUTOMORPI-HSM GROUPS OF GRAPHS

by Julian Kateley, Jr.

A graph is defined to be a systetn (S,R), where S in a finite,

non—null set and R is a subset of S x S, or sin‘iply a relation on. R. ,\'o

other restrictions are put on R so that the graphs considered are

oriented or directed and may have loops or slings.

After carefully defining the preliminary mathematical concepts

used, a study is made of the problem of finding the automorphism group

of a graph. Certain well known techniques are presented in a form

applicable to oriented graphs. A special technique is forn‘iulated which

considerany simplifies the otherwise difficult task of calculating the

automorphism groups of a graph.

Some consideration is given to certain classes of special graphs.

These are l interchanve Graphs, .1) Ora h roducts, 5 self—comale—
s t - s P l

mentary graphs, and (4) graphs having specified groups.
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I. INTRODUCTION

Graphs have been the object of study for at least the last one

hundred years, both as a mathematical discipline in themselves and

also as an important tool in various other fields. Thus graphs are

used in the study of electrical networks, switching circuits, and corn—

munication networks to mention but a few of the areas related to

Electrical Engineering. Graphs are used also in branches of Chemistry,

Physics, Biology, Psychology, Philosophy and Sociology.

Much of the work to date has concentrated on what may be

characterized as the topological properties of graphs. Thus the con-

nectivity properties of graphs, the path, circuit and tree properties,

and such other properties as the chromatic number of a graph are all

in the general category of topological properties of graphs.

The objective of this thesis is to set forth certain algebraic

properties of graphs. D. Konig in his book, "Theorie der endlichen

and unendlichen Graphen, " Leipzig (1936) poses questions of an algebraic

nature about graphs. For example, Kdnig asks, "When can a given

abstract group be set up as the group of a graph, and if possible how

can the graph be constructed?" In spite of the early origin of this

question in Kfinig's classic book on graphs, literature in the area of

algebraic studies of graphs is meager and of fairly recent origin.

Ore [OI] in his book on graphs devotes only one short chapter to the

groups of graphs. C. Berge in his book, "The Theory of Graphs, "

London (1962) makes no reference per se to algebraic properties of
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graphs. Several of the pertinent works are cited in the text of this

thesis, but as evidence of the limited publications on this subject, these

references are also cited here. For example, Frucht [Fl] has briefly

examined the groups of isomorphic graphs. Frucht [F2] and Sabidussi

[SI], [82] have studied the problem posed by Konig of finding graphs

with given groups. Kagno [K1], [K2] has investigated certain types of

graphs and presented their groups. Sabidussi [S3] has studied graph

products, and finally, Sabidussi [54] has studied interchange graphs

or graph derivatives. Cre [Ol] apparently includes all other papers in

his bibliography pertinent to the subject of algebraic properties of

graphs.

Unavoidably, use is made of topological properties of graphs in

this thesis, not only because there is no clear dividing line between

topological and algebraic properties, but also because certain topolo-

gical properties result in interesting and useful algebraic properties.

Nevertheless, the definition of a graph is based on algebraic

concepts as presented in Section II. Algebraic concepts leading to the

definition of the group of a graph are presented in Section III. The

intent is that these two sections establish a rigorous basis for the

following two sections, which contain the main results of this thesis.

Of central interest, in this and other algebraic studies of graphs,

is the group of the graph. For graphs of even reasonable size, the

direct calculation of these groups is extremely difficult. The results

of Section IV make feasible the hand calculation of groups of graphs
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of nooderate size even when computer calculations were previously

too lengthy.

Certain results of Section IV also provide a basis for an attack

on the problem posed by Konig, as discussed in Section V. In parti-

cular, though several authors have examined his question, a completely

satisfactory answer has not yet been given. As will be made evident in

this thesis, the answer so far given for Konig's question is that every

finite group is isomorphic. to the automorphism group of a graph.

The graph constructed having the desired property, however,

contains many more vertices than the group does symbols. This rather

avoids the real intent of the problem, namely, what groups are groups

of graphs where the number of vertices and the number of group symbols

are equal? It is known that for a cyclic group generated by a single

cycle that there is no graph having that group when the graph is non-

oriented (see Kagno [Kl]). In this thesis, it is shown that this restriction

does not exist if oriented graphs are considered, indeed, it is shown that

for a broad class of groups the corresponding oriented graphs do exist.

Section V also includes consideration of certain other algebraic

properties 'of special kinds of graphs including the problem of finding

a graph of a given group, if there is such a graph. The special kinds

of graphs considered also develop insight into this problem.

For some reason not fully understood by this student, all of the

papers cited investigate only non-oriented graphs. As a consequence of the

results presented in this thesis, such a restriction is not only un-
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necessary but undesirable for certain problems.

As a final introductory comment, it should be noted that the

symbol A is used throughout this thesis to indicate the completion of

a proof.



II. BASIC CONCEPTS AND THE DEFINITION OF A GRAPH

So as to define properly the concepts peculiar to this thesis

and to provide continuity to the text, certain standard mathematical

concepts and definitions will be given here. Those definitions, which

though they might not be original with this thesis, but for which there

may be some controversy in the literature, will be assigned a numbered

definition. It is thereby hoped that the definitions and theorems of this

and succeeding sections follow in a natural and comprehensible way.

Every mathematical system ultimately rests upon certain un-

definable concepts. In set theory, the undefinables are commonly taken

to be "set", "element", and "belongs to'.'. Thus, no attempt is made

to define set. However, a set is said to be composed of elements.

Moreover a set is said to be well defined if, given any object, it is
 

possible to decide whether or not this object belongs to the set.

The set of those elements having a specified property P is

denoted by k I x has property 13 . The set with no elements is called
 

the null set, and is denoted by I . Given any two sets A and B, A is

a subset of B, denoted by AEB, if each element of A is an element of
 

B. A is a proper subset of B, denoted by ACE, if A is a subset of B,

A is not the null set, and there is at least one element of B which is

not an element of A. Two sets A and B are 33.11—31.13 denoted by A = B,

if A513 and BEA.

The Cartesian product of a set of sets A , A
 

2,...) n

I

noted by Al x A2. x - - ' x A is the set of all ordered n-tuples
11’
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-, an], where ai is in Ai for i = l, 2, - ' - , n. Two elements

- , bn] and [c1, c2, - - - , Cn] of A1 x AZ x ' - - x Ar1 are equal

if and only if bi :2 ci for all bi and c1 in Ai. This assumes some approp-

riate definition of equality of elements in each Ai and will either be

apparent from) the context in which the sets are used or else will be

defined.

This equality is a special case of the general concept called a

relation on a set. The idea of a relation is frequently encountered in

set theory, but its definition tends to vary from author to author. So

as to avoid confusion, the following definition is used in this thesis.

Definition 2.1 A binary relation R from a set A into a set
 

B is a subset of R of A x B. If [a, b] is in R, it is common to say that

a is related to b and to write aRb. The domain of R is the set of all

elements of A which are related by R to at least one element of B,

thus dom R = {a in AlaRy for some y in B} . The 33133 of R is the

set of all elements of B to which at least one element of A is related

by R , thus range R ={b in B IxRb for some x in A} . A binary re—

lation from A into A is called a relation in A.
 

Definition 2.. Z A gr_a_p_}l A is an ordered pair A : (S,R)

where S is a finite, non-null set and R is a binary relation in S.

The elements of S are commonly called the vertices of the

graph and the elements of R are commonly called the £C_S\Of the

graph. As defined above, a graph may have ”loops". A loop is an arc

[5, s] for some 8 in S. Here the arcs of a graph are oriented. The
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arcs being oriented results from the elements of R being ordered

pairs of vertices.

A relation R is a symmetric relation if [a, b] in R implies
 

[b, a] in R for all [a, b] in R. There is of course no implication

that [a, b] =1 [b, a]. A relation R in a set S is a reflexive relation

if [a, a] is in R for all a in S. Arelation R in S is an anti-re-

flexive relation if [a, a] is not in R for any a in S. If, for a graph

A 2 (S, R), R is required to be reflexive, then for every vertex of S,

there is an arc which is a loop. If R is required to be anti-reflexive,

then A has no loops.

The definition of a connected graph is not standard in the liter-

ature. So as to give a precise meaning to that idea, a series of de-

finitions must be given.

Definition 2. 3 Given a graph A = (S, R), a subgraph B

of A is an ordered pair B = (T, Q) such that TES, OER and QET x T.

As defineda subgraph is a graph. B is a proper subgraph if TCS.
 

Definition 2.4 Given a graph A = (S, R) where S is a

set of n or more elements, a path of A is a subgraph B = (T, Q) of

A such that T = {ti I 1:1: n, all ti distinct} , and such that

= < ' < - > . 'Q {ti’ t1+1 l l_ 1 _ n l} for n 1 Thus there is a path from t1

to t .

— n

If there is a path from t to tn in a graph, there need not in

1

general be a path from tr1 to t1. However, given a graph A = (S, R)

with R a symmetric relation, if there is a path from s in S to t
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in S, then there is a path from t to 5.

Definition 2. 5 Given a graph A : (S, R) and a vertex 5 in

S, let Js be the set of vertices of S such that Js = {t in S Ithere exists

a path-f:0m s to t} .

Definition 2.6 A set of vertices T58 of a graph A 2 (S, R)

is open if, given any 5 in T, JSE T. Also, the subgraph (T, Q) is

said to be an open subgph of A.
 

Definition 2. 7 A graph A = (S, R) is strongly connected
 

if, given any 5 and t in S, there exists a path from s to t.

Set union and intersection are now defined since these are

required in the definition of a connected graph. The union of a set
 

{Ai| i :1, 2, - - 1' of sets, denoted by UiAi’ is the set of all elements

which are in at least one of the A,. The intersection of a set

1
 

{AiI i :2 l, 2, ° - } of sets, denoted by niAi, is the set of all elements

which are in all of the A1. If the number of sets is finite, then union

may be denoted by UiAi = Al” A2” - - - UAn, i =1, 2, - ' ' , n, and

intersection may be denoted by niAi : Aln A20 - - - nAn’ i :1, 2, - - - , n.

The following definition is based on a similar definition from

topology.

Definition 2. 8 A graph A = (S, R) is not connected if there
 

exists non—null open sets U95 and v9.5 such that qu : s and

UnV = I; otherwise A is connected.

Definition 2. 9 The complement A' of a graph A : (S, R)
 

is the ordered pair
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A‘ :(S, [SxS]-R)

Thus the complement of a graph is a graph.

A well known fact concerning the complement of a graph is

presented in Theorem 2. 1. Since its proof is straightforward it is

included here. The theorem itself will find application in the latter

part of this thesis.

Theorem 2.1 If a graph A : (S, R) is not connected, then

the complement A' of A is strongly connected.

Proof: Since A is not connected, there are at least two

non-null open sets U ES and VES such that UUV = S and UnV = I .

Then [ui, Vj] and [v], ui] are both in S x S - R for all ui in U and all

v, in V. Moreover, for any u and u in U and for any vj in V,

J k l

[uk, vj] and [v], u are in S x S — R. Thus A' = (S, S x S - R) is,1

strongly connected. A



III. THE AUTOMORPHISM GROUP OF A GRAPH

The automorphism group of a graph could be defined directly.

However, since the concepts leading up to the definitions of an auto-

morphism and of a group are also otherwise useful in this thesis, a

less direct approach is used.

A function F from a set A to a set B is a binary relation

from A into B which satisfies the additional properties:

(1) dom F i

(2) if an1 and an2’ then bl = b2.

The notation b : F(a) is commonly used and means an. Two

functions F and G are equal if dom F : dom G and F(a) = G(a) for

all a in dom F. The domain of F is extended to include functions of

subsets of dom F so that the notation F(C) is used where

F(C) = {b in range Flb : F(c) for all c in C Edom F}.

Afunction F from A ‘to B is a function from A onto B
 

if range F = B. A function F from A to B is said to be one-to—one
 

if F(a) == F(x) implies a : x for all a and x in dom F.

A binary operation 0 on a set A is a function F from A x A
 

into A. A binary operation 0 on A is closed if dom F : A x A.

The notation aob = c is commonly used and means c = F([a, b]) where

[a, b] is inAanndcis inA.

An abstract system (S, R, O) is a non-null set S, a set R of

 

binary relations in S, and a set O of closed operations on S. Either

R or O may be null, but not both.

-10..
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Let (S, R, O) and (T, Q, P) be two abstract systems. A

function H from S into T is a homomorphism from (S, R, O) into
 

(T, Q, P) provided that there is a relation q in Q corresponding to

every relation r in R, and an operation p in P corresponding

to every operation 0 in O such that

(1) if [a, b] is in r, then [H(a), H(b)] is in q for all

a and b in S, and for every r in R.

(2) H(aob) 2 H(a) p H(b) for all a and b in S, and

for every 0 in O.

If T : range H, then H is a homomorphism from (S, R, O) onto

 

(T, Q, P). Afunction H from S onto T is an isomorphism
 

from (S, R, O) onto (T, Q, P) if and only if H is a one-to—one

homomorphism from (S, R, O) onto (T, Q, P). An isomorphism

from (S, R, O) onto (S, R, O) is an automorphism on (S, R, O).
 

Since a graph A = (S, R) is an abstract system consisting of

a non-null set S and a single binary relation R in S, an auto-

morphism f on A is a one -to-one function from S onto S such that

aRb if and only if f(a)Rf(b) for all a and b in S. The set G of all

such automorphisms on a graph A 2 (S, R) is a group, as is well

known.

Aw is a system (G, 0) consisting of a set G together

with a binary operation 0 on G such that

(l) the binary operation is closed; i.e., aob is in G

for all a and b in G;
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(2) the binary operation 0 is an associative operation;

i.e. , (aob)oc : ao(boc) for all a, b and c in G;

(3) there is a left identity element e in G such that eoa : a

for all a in G;

(4) for each a in G, there is a left inverse element d

in G such that doa : e.

. 1 .
Given a group (G, o), it can be shown that

(1) there exists a right inverse for each element in G; that

. . -l . -l .

15, there IS an element a in G such that aoa : e for each a in

G;

(2) there exists a right identity element e in G; that is,

aoe : a for all a in G;

(3) there is only one identity element in G;

(4) the left and right inverse elements are unique.

The inverse of an element a is denoted as usual by a- , as in (1)

above.

Now it is possible to show that the set F : {f} of all auto—

morphisms f on a graph A =2 (S,R) is a group (G, :3). To do this,

it is first necessary to define the operation =:=. Let f1 and f2 be auto-

morphisms on the graph A : (S,R). Then the operation :1: is defined

by f1::<f2(a) : f1[fz(a)] for all a in S, and is commonly called the

composition of f1 and f2.

 

As is commonly done, both the set G and the system (G,o) will be referred

to as a group, with the actual meaning apparent from the content.
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It can be shown in general, that the set of all automorphisms

on a system tOgether with the composition of these automorphisms is a

group. Nevertheless, since it is informative, the proof is presented

here for the case when the system is a graph.

Theorem 3.1 Let A = (S,R) be a graph. The set of all auto-

morphisms on A together with the composition of the automorphisms

is a group, G(A).

Proof: Let fi’ fj and fk be any automorphisms on A,

and let 0 be the operation of composition.

(1) infj is an automorphism. To show this, it is sufficient

to show that fiof. is a one —to-one homomorphism from S onto S.

First, inf' is a one -to-one function because if fiof,(a) : infj(b)’

then fi[fj(a)] : fi[fj(b)], hence fj(a) : fj(b), hence a = b.

Next, to show that infj is an onto function, it is sufficient to

show that there exists an a in S such that infj(a) : b for any b in S.

-l .-l -l .

To show this, let a = f .01 (b) = f ,[f, - (b)]. Then

J 1 1 1

infj(a) : fi[fj(a)]

. -1 -1
:fi{fj[fj “1 (b))]}

—1
:fiLfl (b)]

21).

Finally fiofj is a homomorphism because if aRb, then fj(a)Rfj(b).

2. f f f : f 'f( ) iO( J.O k) ( io j)ofk because



[(infj)Ofk](a) :2 [infj] [fk(a)]

— itfjtfktan

: f1 [ijfk(a)]

: flo[fjofk(a)]

: [fio(f.ofk)] (a)

for all a in S.

(3) The function e such that e(a) : a for all a in Sis an auto-

morphism. Also eof : f for any automorphism f in F since

eof(a) : ef(a) : f(a).

(4) There exists a g such that gof : e, because if f(a) : b

for any a and b in S, then define g(b) :- a. Now gof(a) :g[f(a)] : g(b):a=e(a)

therefore gof : e. A

Example 3.1. Let s : {1, 2, 3} and let R = {[1, 2], [2, 3],

[3, 1]} . Then G(S,R) = {1, (123), (321)} . Standard cycle permutation

notation is used here in identifying the group elements. A permutation
 

on a set S is a one -to-one function from S onto S. Given a permutation

f on S, a cycle of f is a permutation g on C ES such that g(C) = C

and such that for all subsets D C C, g(D) is not a subset of D. Thus

a permutation is the composition of cycles. The permutation f1 : (123)

is a function such that f (l) : 2, fl(2) =2 3, and fl (3) = l; similarly for

1

f2 : (1.32). The entry I = (l) (2) (.3) and is such that 1(1) =1, 1(2): 2, and

1(3) : ,3. Thus I is the identity element of G(S,R). Further, the compo-

sition flofZ is (123)(l32) and equals the identity element as does onfl.

Thus fl : fZ-l and f2 : fl-l. Figure 2.1 shows this graph as commonly
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019‘?)

Figure 3.1. The graph of Example 3.1.

This is a simple example of a graph so its group is not difficult

to find. In general, however, the automorphism group of a graph is

very difficult to find. This is one of the main problems considered in

this thesis. Several theorems to follow will considerably simplify the

task of finding these groups.



1V. PROCEDURES FOR CALCULATION OF THE AUTOMORPHISM

GROUP OF A GRAPH

While in general, it is difficult to find the automorphism group

of a graph, Ore [01, pp. 239-240], has noted several graph-group

properties which simplify this task. Ore's discussion is somewhat

restrictive and not very detailed. In this section, a more general and

detailed discussion is given of some of Ore's work and in addition, a

technique is presented which considerably simplifies the task of finding

group elements of even relatively large graphs.

The development to follow requires the introduction of several

numbers associated with groups and graphs. Thus, the number of

elements in a set S, denoted by# (S), is called the order of the set S.
 

The order of a graph A : (T,R) is #(T) and is equal to the number of
 

vertices in the graph. The order of a group (G, :k) is #(G). The degree
 

of a permutation group which is the set of all automorphisms on the
 

system (S; R; O) is # (S). For example, the group

F = {(1)<2)<3>(4><5)<6>. (12>(34)<56>}

is of order 2 and of degree 6.

A graph A = (S,R) such that R = S x S is called a complete graph.
 

The group G of all automorphisms on (S; R; O) such that #(G) =[#(S)]1

is called the symmetric group on #(S) symbols and is commonly denoted
 

by Zn, where n : #(S). It is easy to show that G(S, S x S): En, where

n 2 #(S).

-16-
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Kagno [K2] has shown that the completrient A' of a graph

A 2 (S,R) has G(A') 2 G(A). However, since Kagno considers only

connected symmetric graphs without loops, the proof of this useful

result is given in a more general form.

Theorem 4.1 If A' is the complement of the graph A 2 (S,R),

then G(A') 2 G(A).

Proof: It is sufficient to show that if f is any permutation

in G(A), then f is also in G(A') and if g is any permutation in G(A'),

then g is also in G(A).

First, suppose f is in G(A). It is sufficient to show that [a,b]

is in S x S - R if and only if [f(a), f(b)] is in S x S - R for all a and b

in S. Assume then that [a, b] is in S x S - R. Then [a, b] is not in R,

so [f(a), f(b)] is not in R. Consequently, [f(a), f(b)] is in S x S - R.

Thus if fis in G(A), then f is in G(A‘).

The second part of the proof, namely, that if g is in G(A'), then

g is in G(A), is identical in nature to this first part and thus is omitted. /_\.

However, if the groups of two graphs are identical, the graphs need

not be complements nor in any other way related, as is shown by the

following example.

Example 4.1 Let (S,R) and (T, Q) be two graphs, with

s = T = {1, 2, 3}, and

R z {[1, Z]: [1 3], [3» 11, 12, 31} :

Q = {[1, 1], [1, 3], [2, 2], [2, 3], [3,1], [3, 2], [3, 3]}.

Then G(S, R) 2 G(T, Q) and (T, Q) is not the complement of (S, R). The



~18-

graphs and their complements are shown in Figure 4.1. All four

graphs have the same group. Note that (S, R) and (S,R)' are connected

but not strongly connected, (T, Q) is strongly connected and (T, Q)‘ is

not connected.

 (a) Graph (S,R)

 
(C) Graph (T,Q) ' (d) Graph (TiQ)'

Figure 4.1. The graphs of Example 4.1.



-19-

Ore [01, p. 239], notes that the determination of the group of

a graph which is not connected can be reduced to the problem of

finding the groups of the connected subgraphs of the graph. This re-

quires the notion of the direct product of groups, here defined.

Definition 4.1 The direct product of the groups (G1 01),
 

(G2, 0 ), ° ' ' (G , on) is the system (G, 0) consisting of the
2 n

Cartesian product G 2 G1 x G2 x - - - X Gr1 and the operation 0 defined

by

“1’ f2’ {Ii} 0 [g1’ g2’ gn]2[f101gl,fzozgz'°°, fsongs]

for all [f1, f2, ' ° ' , fn] and [g1, g2, ° ° ' , gn] in G. The direct product

G of these groups is denoted by Gl X G2 X ' ' ' X Gn. It is known that

the direct product of groups is a group..

The determination of the group of a graph in terms of its

connected subgraph is detailed in the next theorem.

So as to make this next theorem more comprehensible, it is

preceded by the following example. -

Example 4. 2 Find the automorphian group of the graph

A (S,R), where s = {1, 2, 3, 4, 5, o, 7, 8, 9, 10, 11] , and

II ,
p
.

o
1

R {12. 11. 12. 31. 1 . 1, is. 41, 16. 71. 17. 61. 18. 91. [9. 81. [9. 101,

[9, 11], [10, 11], [11, 10]}. This graph is shown in Figure 4.2.

 

Figure 4. 2 The graph of Example 4. 2.
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The graph A can be decomposed into the graphs

A :(s, R), A = (s , R ), and A3 {(53, R3)where sl : {1, 2, 3},
1 1 1 2 2 2

R1: {[2, 1], [2, ISUIZs = {4, 5, o, 7} , R2 : {[4, 5], [5, 4],

[6, 7], [7,8],} —{8,9,10,11},ahdR : {[8, 9], [9, 8],

[9, 10], [9, 11], [10,11], [11, 10]}.

Note that s = LJisi and R : UiRi, i-: 1, 2, 3, and 81 n sj : -

foriijandi,j2l, 2, 3.

The graph A R2) can be further decomposed into2:

isomorphic graphs, A212 (521’ R21) and A22 2 (822’ R22) where

521 = {4, 5}, R21:{[4, 5,] [5, 43-52 :,{6 7}, ahdRZZ=,{[o 7],

[7, 8]] .

An automorphism of A is simply a re-arrangement of the

vertices of A which "leaves the figure unchanged. " But such changes

can be determined piecemeal for each A1, A2 and A5. Thus

G(A1)= {(1) (2) (s). (13)}

G(AZ): {(4) (5) (6) (7). (45). (67). (45mm). (46)(57)

(47)(5o)}

G(A3): {(8) (9) (10) (11), (10, 11)}.

Moreover, any composition of permutations, one from each

of G(Al)’ G(A2)’ and G(A3) is still an automorphism of A, and in

I fact there are no other automorphisms of A. Thus G(A) 2 G(Al) x

G(A x G(A3)°2)

These intuitively obvious results are now stated formally in the

next theorem. A similar statement is made by Ore [01, p. 239], but once
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again, for symmetric graphs. The proof of the theorem is for arbitrary

R, and since the proof is long, it will be omitted.

Theorem 4. 2 Let the graph A 2 (S, R) be composed of the

subgraphs I

Al : (81’ R1), A2 : (52’ R2), I I I ’ n n n

such that

z ': g ..., ,A (Uisi,UiRi),1 1, , h

and

Further, let the subgraph A12 (Si, R ), i 21, 2, - - - , n be composed

of the connected subgraphs

A.-:(S.-, R--)3j:1: 2: ...,m.2

1] 1] 1] 1

such that the graphs Aij for j 2 l, 2, ° ° ° , mi are isomorphic to each

other but not to other subgraphs of A, and such that

A. :( ..S.: ...R)’ I :1: 2: ...; m.)

1 UJ 1.] UJ 1J J

and

S. n S. 2 for Xfy and x, y 2 l, 2, '°', 111,.

Then

G(A) 2 G(A ) x G(AZ) x X G(A ).

111

This leaves the problem of finding the group of a graph composed

only of isomorphic subgraphs. Frucht [Fl] has stated a theorem which

can be used to find these groups. For completeness, that theorem is

presented here in a restated and more general form. The theorem uses
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the concept of simply isomorphic permutation groups. Two iso-

morphic permutation groups are simply isomorphic if they are of equal
 

degree. Since the proof of this theorem is lengthy, but otherwise not

complicated, and since such proofs are commonly omitted, this proof

is omitted here.

Theorem 4. 3 Let A 2 (S, R) be a graph composed of the

connected subgraphs

A1: (51’ R1” A2 2 (52’ R2)’ ’ Am : (Sm’ m)

such that the graphs Ai’ i 2 l, 2, - - - , m are all isomorphic and such

that

A : ’ o - 9 . : 9 Z! . . . 7 ’
(U15i UlRl) 1 l m

and

sins]. : for if-jandi, j: 1, 2, m.

Then the groups G1 = G(Ai) are all of the same degree, of the

same order and so they are simply isomorphic one to another. If

h 2 #(Gi) and n 2 #(Si), then G(A) is of order m1 hm and of degree mn.

The elements of G(A) can be described in the following way. Let

5.: 5.. S.» '°', s_ fori212, "', m. Formth mat'

1 {11 12 in}, ’ e rix

S11 S12 ' ' ’ S1h

S S o o o S

21 22 2

M = “

‘iml SniZ I I I Sm:  
An element of G(A) is any permutation of the rows of 1\/I followed by

any permutation in G(S,).

1



Relying on these theorems, a technique is now developed which

simplifies the task of finding the group elements of a graph.

Definition 4. 2 Given a graph A 2 (S, R), let

FS 2 {uinS I (s, u) is inR} ,

"rt : {v inS | (v, t) is in R}.

FS is the set of vertices u in S with arcs from s to u and Tt

is the set of vertices v in S with arcs from v to t. FS and Tt are not

independent for a given graph because Tt 2 {s | t in F8} and

FS:{tls inTt}.

Definition 4. 3 Given a graph A 2 (S, R) with s in S, let

1
1

1
t

20(3)

1(8) = # (T )-

If R is symmetric, then FS 2 T8 for all s in S and 0(5) 2 i(s).

These two numbers are commonly called the degree of the vertex 5 when

R is symmetric. For R in general, 0(5) is the number of arcs from s

to vertices in the graph and i(s) is the number of arcs from vertices

to 5.

Definition 4. 4 Given a graph, let

Ok2{sIo(s) k}, k20, 1, 2,

I]. ={t (i(t) 1}»1'“

Thus OR is the set of vertices in S having "out degree" k and

H I O 5
—
:

N

Ij is the set of vertices in 5 having "in degree" j. Note that UkO 2 S,

k

Okn Of 2 ”I forkf-fl , UjIj 2Sand Ijnlm: forjfim.

If a graph A 2 (S, R) has a subset XCS such that FX 2 for
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all x in X, then 0(x) 2 O and X 500- If a graph A 2 (S,R) has a subset

ch such that Ty : for all y in Y, then i(x) = 0 and Y 510.

The automorphisms of the graph A 2 (S,R) are functions from

FS onto F5, from T8 onto TS, from OR onto Ok and from 1j onto 1]. as is

shown by the following theorems.

Theorem 4. 4 Let A 2 (S,R) be a graph. If f is in G(A), then

for all 0k and 1j defined by (S,R).

Proof: Suppose i(a) 2 j for some a in S. Then there are

vertices yl, yz, ' ° °, yj in S such that [yi, a] is in R, for i 21, 2, ' ' ° ,

Since f is in G(A), [f(yi), f(a)] is in R. Thus i[f(a)]:j. If there is a

b in S such that b #- f(yi) for i 2 l, 2, ' ' ° , j and [b, f(a)] is in R, then

[f-1(b), a] is in R, hence f-1(b) 2 y].L for some i=1, 2, ° ° - , j. But this

implies b 2 f(yi), a contradiction... Hence i[f(a)] 2 j and f(a) is in I].

Since this is true for any a in S such that i(a) 2 j, then f(I.) 2 I]. The

proof for Ok is identical except for obvious changes. A

According to well known set theory theorems,

f(U 1A1) = f(Al)Uf(AZ)U U f(An).

g( n i18m) -- g(Blmngm- - . nssm),

where f is a function defined on A1, i 2 l, 2, ' ' ° , n, and g is a function

defined on Bi, i :. 1, 2, - - . , m. These relations. are implicit in the

proof of the next theorem and are also used in the proof of theorems

in the latter part of this section.
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Theorem 4. 5 Let A 2 (S,R) be a graph. If f is in G(A), then

for all s and t in S such that Fs 7f and Tt f i .

Proof: Suppose b is in F3. Then [a, b] is in R, so

[f(b), f(a)] is in R. This implies that f(b) is in Ff(a)’ so f(Fa) E Ff(a)

-1

Suppose c is in F Then [f(a), c] is in R and [a, f (c)] is

f(a).

-l

in R because f is in G(A). This implies that f (c) is in Fa’ so

{-1

(F )EFa, orF Cm? ). But thenf(F ):F
f(a) f(a) - a a f(a).

The proof for Ta is similar. A

The requirements FS )5 ’I and Tt # in Theorem 4. 5 are not

restrictive since 0(5) 2 O or i(s) 2 O and the group functions of these

vertices are considered in Theorem 4. 4.

The following theorems consider the converse situation from

that of the previous two. It is assumed that a permutation on the vertices

of the graph is given, and sufficient conditions for this permutation to

be an automorphism of the graph are given.

Theorem 4.6 Let A 2 (S,R) be a graph and let f be a per-

mutation on S. If

for all a in S such that Ta 2 , then f is in G(A).

Proof: To show that f is in G(A), it is sufficient to show

that if [b, a] is in R, then [f(b), f(a)] is in R and if [c, a] is not in R,

then [f(c), f(a)] is not in R for all a, b and c in S. Suppose [b, a] is in
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R. Then b is in T , so that f(b) is in f(T )2 T. . Hence

a a f(a)

[f(b), f(a)] is in R therefore, [1), a] in R implies [f(b), f(a)] is in R.

Suppose [c, a] is not in R. Then c is not in Ta. Since f is

a permutation on S, c not in Ta implies f(c) is not in f(Ta). But f(c)

not in f(Ta) 2 T implies [f(c), f(a)] is not in R. Thus [c, a] not in

f(a)

R implies [f(c), f(a)] is not in R. Therefore, f is in G(A). A

Theorem 4. 7. Let A 2 (S,R) be a graph and let f be a

permutation on S. If

for all a in s such that Fat .5 , then f is in G(A).

Proof: The proof of this theorem is identical to

that of Theorem 4.6, except for obvious changes. A

Theorems 4.6 and 4.7 constitute the converse of the theorems

in Theorem 4. 5. However, the converse of Theorem 4. 4 is not true

as is shown by the following example.

Example 4. 3 Let A : (s.R) be the graph 5 : {1, 2, 3} ,

R z {[1, 1]. [1, 2], [2, 1], [2, 3], [3. 2]}. For this graph, 01 : {3},

O2 : {1, 2 , 11: {3} and 12 z {1, 2}. For the permutation f = (12),

{(1) : I and £(1
2’ 1 1 1:1

2 2° Yet G(A) 2 I and f

is not in G(A).

A simple combination of Theorems 4. 4 and 4. 5 yields the

following theorem.

Theorem 4. 8. Let A 2 (S, R) be a graph. If f is in G(A),

then



v) )
7
]

{(1921an) - f(a)” 1..

f(Tanj) = Mmj.

f(FanOk) = ”amok,

f(TbnOk) =—. Twr'Io

for all I]. and Ok defined by A and for all a and b in S such that

Fa )é ‘ and Tb # , and assuming f(i ) 2 .

Proof: Since all four statements have essentially the same kind

of proof, the proof of only one is given.

f(TbnOk) = f(Tb)n(Ok) = Tf(b)n0k. A

Of all the theorems in this section, the following theorem yields

the most powerful device for calculation of the group elements of a graph.

Theorem 4. 9 Let A 2 (S,R) be a graph and let f be a permu-

tation on S. If f(Fan 1].) 2 (“Ij for all 1j defined by A and for allF

f(a)

a in S with the special provision that f(i ) 2 , then f is in G(A).

Proof: Use is made of the set-theoretic properties of functions

of the union and intersection of sets as given on page 24.

Ff(aj)n1 as stated, then

f[Uj(Fan 11.)]

f[Fan (UjIjH

f(FanS)

If f(Fan Ij)

U. {(12 n1.)

1 a 1

While

H h
q

D (
I
)

H 1
T
]

..
.,
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Hence f(Fa) 2 Ff(a) and by Theorem 4. 7, f is in G(A). A

Theorem 4. 9 is true for the other three intersection equations,

that is for

Hf(Tbn IJ.)

f(Fan 0k)

f(Tbn ok) = Tf(b)n0k.

Tf(b)n1j,

l
l

Ffla)!‘ ok.

The use of Theorem 4. 9 in the determination of group elements

of a graph is illustrated by the following example.

Example 4.4 Let A = (S,R) with s :{L 2, 3, 4, 5, 83am

R={[1, 2], [1, 3], [2, 2], [2, 4], [3, 4], [3, 5], [4, 4], [4, 8], [5, 1],

[5, 8], [8, 2], [8, 8]} . Table 4.1 shows a table of all Fan IJ, and

 

Fan Ok'

11:{1, 3, 5} 13 :{2, 4, 8} oZ : 5

F1 :{2, 3} 3 2 2,3

F2 = {2, 4} 2,4 2,4

F3 = {1, 5} 5 4 4, 5

F4 = {4, 8} 4,8 4,8

F5 = {1, 8} 1 8 1,8

F6 : {2, 8} 2,8 2,8

Table 4.1. An Intersection Table for Example 4.4

It is apparent from the 11 column or the 13 column of the table

that only cycles starting with 13, 15, 35, 53, 51, 31, 24, 26, 46, 64,

62, and 42 need be considered for permutations in G(A). This isnot

apparent from the O column, and while all permutations in G(A) could

2
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be determined from the O2 column, it is much easier to use the 11 and

13 columns. For example, suppose a possible permutation is to have

a cycle (1). Then (1) implies (2) and (3), (2) implies (24)or (2) and (4).

This and the rest of the analysis for (l) is carried out in Table 4. 2,

with : meaning "implies", 1 meaning "impossible", and C indicating

the order in which the closures are determined.

(1) Cr : (2) Cg, (3)Cq (6) Ch : (2)C1., (6)Cb

(3) C (5) Cr, (4)C (2) : 241

p o k

(4) 461 (2) Cf : (2) CC, (4)Cd

(4) C. : (4)C . (6)C. (5)C :(1)C , (61C
J a 1 n I m

(6) : 261

Table 4. 2. Analysis of cycle (1).

Thus the identity is the only element of G(A) with the cycle (1).

The above analysis can be done for any cycle consisting of just one

element of S and always yields the identity permutation. Thus the

identity element is the only element in G(A) and so any other element

in G(A) permutes every vertex of A.

Consider the analysis for the cycle starting with 13 as carried

out in Table 4. 3, with closure order omitted.

13C : 35C 24C 46C : 46C 62C

241 : 261 62C : 62C 24C

24C : 24C 46C 35C : 51C 46C

461 :42 661 51C: 13C 62C

Table 4.3 . Analysis for the cycle starting with 15.
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From Table 4. 3, it is apparent that f :: (135M246) is in G(A).

Consider next the cycle starting with 15. as carried out in

Table 4. 4.

15C: 31C 36C 64C : 64C 26C

26C : 26C 42C 31C : 53C 42C

42C : 42C 64C 53C : 15C 64C

Table 4. 4. Analysis for the cycle starting with 15.

From Table 4. 4, f 2 (153) (264) is in G(A). Since this exhausts

all possible cycles to be considered, G(A) ={1, (135)(248), (15.3)(2640,

A computer prOgram was written1 which will calculate the

group of a given graph. Since it is interesting to compare the method

of this program with the technique of Theorem 4. 9, the method used

in this program is described using the. following definitions.

Definition 4. 5 Given a graph A 2(S,R) of order n, the

connection matrix C(A) is the n x n matrix C(A) 2 (a. .1. where
 

1)

a,,:l if [5,, s.]is inR,

1.1 1 J

a,,20 if [5,, s,]is not inR

1J 1

for s, and s. in S.

1

Definition 4.6 Given a set S of order n and a permutation

f on S, the permutation matrix P(f) is the n x n matrix P(f) 2 (b]) where

1 

b,, 2 1 if and only if, f(s,) 2 s. for s, and s. in S, and b,, 2 0 otherwise.

1] 1 J 1 J 1J

 

This program was written by lVlrs. Elizabeth Phillips of the Computer

Laboratory at Michigan State University.
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Note that P(f) 2 P'(f-l) where C' is the transpose of C.

A permutation f on S is a group element of G(A) of the graph A 2 (S,R)

if and only if P(f) ° C(A) ° P'(f) 2 C(A). The computer prOgram presently

in use is given C(A), generates all possible permutations on S. and forms

this matrix product. I or the graph of Example 4. 4, there are

#(S)! 2 6'. 2 720 permutations to be tested. For a graph of order 6, the

present computer program requires 18. 75 minutes of computer time on

a Control Data l60-A digital computer.

The same test can be used to check the pernqutations determined

by the method of Theorem 4. 9. Since not all possible permutations need

be considered, the task of finding group elements of a graph is con-

siderably simplified. In fact, use of Theorem 4. 9 allows hand calculation

of group elements where the order of the graph is too large to allow

calculation by a direct method with a computer.



V. SPECIAL GRAPHS

Having considered the automorphism group of a graph, it

would seem reasonable to ask about the effect of the group permutations

on the arcs of the graph. The following definition establishes the basis

for several ideas about functions of arcs of graphs.

Definition 5.1 Given a graph A 2 (S,R) and its automorphism

group G(A), let F(A) be the set of permutations on R such that, for each

g in G(A), fg is in F(A) if and only if

fgla: b] = [g(a), g(b)]

for all [a, b] in R.

Theorem 5.1 There is a homomorphism from G(A) onto F(A).

Proof: It is sufficient to show that there exists a correspondence

TT associating elements of F(A) with elements of G(A) such that

(1) TT is a function from G(A) into F(A).

(2) w is an operation preserving function, where in each

system the single binary operation is taken to be composition, so that

H(g1g2)2 H(g1)n(gz) for all g1 and g2 in G(A).

(3) TT is an onto function, i. e. , for every f in F(A) there is

a g in G(A) such that Tr(g) 2 f.

Let TT be defined by 7T(g) 2 fg if

fg[a, b] 2 [g(a), g(b)]

for all [a, b] in R.

That TT is function from G(A) onto F(A) follows directly from the

way in which TT is defined.

_32.
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To show that 11' is operation preserving, let 71(g,) 2 f,
_, 1

1

for i=1, 2, 3 and let glgZ 2 g3. Then 11(g1g2) 2 7T(g3 )2 f3, and

fsla, bl = 181.3(9), 83(b11 = 1818201): 8121.2in

for all [a, b] in R. Let gz(a) 2 c, g2(b) 2 d. [c, d] is in R for all

[a, b] in R. So

f3[a, b] 2 [g1(C). g1(d)1=f11<‘-: d1

Thus 7(g3) 2 Tr(g1) 11(gz) and so 11(g1g )2 17(g1g2): H(g1)n(g2).A

It follows from Theorem 5.1 that F(A) is a group and it Inight

seem at first that F(A) would be isomorphic to G(A). This is not so in

general, as is shown by the following example.

Example 5.1 Let s = {1, 2, 3, 4} and let R = [1, 2], [2, 1]

Then G(A) .—. {1, (12), (34), (12)(34)} and 7T(I) = e(34) = ([1, 2])([2, 1]),

and Tr(12) 2 11(12)(34) 2 ([1, 2] [2, 1]). Thus 11 is not a one-to-one function.

This is not a short-coming of TT, but rather of A. In this example, the

graph has two perfectly isolated vertices. A perfectly isolated vertex
 

s is one for which 0(5) 2 0 and i(s) 2 0,

The condition for it to be a one -to-one function and therefore,

an isomorphism from G(A) to F(A) is given in the following theorem.

Theorem 5. 2. Let A 2 (S,R) be a graph and let 11 be the

function as defined in Theorem 5.1. If A has less than two perfectly

isolated vertices, then TI’ is an isomorphism from G(A) onto F(A).

Proof: It has been shown in Theorem 5.1 that TT is a homomorphism

from G(A) onto F(A). Thus it is sufficient to show only that 17 is a
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one-to-one function; i.e. , if F(gl) 2 17(g ), then g1: g for all gland

2 2

ga in G(A).

1f Tr(gl) 2 77(g2), then [g1(a), g1(b)] 2 [g2(a), gz(b)] for all

[a, b] in R. Thus gl(a) 2 gz(a) and g1(b) 2 g (b).

2

Suppose A contains no perfectly isolated vertices. Then every

vertex in S appears in some element of R, and gl(x) 2 gz(x) for all x in

S, either because x 2 a or because x 2 b for all [a, b] in R. Therefore,

£11 : g2-

Suppose A contains exactly one perfectly isolated vertex 5 in

S. Then g1(s) 2 gZ(s) 2 s for all g1 and g]Z in G(A). Again, either

gl(a) 2 g2(a) for all a in S - {s} or g1(b) 2 g (b) for all b in S - {s} .

2

Thus, g12 g2. A

From Theorem 4.1 a graph A and its complement A' both have

the same group, that is G(A) 2 G(A'), a fact pointed out by Kagno [K2]

for non—oriented graphs. From Theorem 2.1, either A or A' has no

perfectly isolated vertices. Assuming A has no perfectly isolated vertices,

A' may or may not have isolated vertices. Thus, G(A') is at least

homomorphic to F(A') and #[F(A')]l #- [F(A)].

Suppose A 2 (S,R) is a graph with k perfectly isolated vertices.

Let K be the set of perfectly isolated vertices. Let B 2 (S, RU(K x K)) .

Then three cases are of interest. (1)1f 2k 2 #(S), then G(A) 2 G(B).

(2) If 2k 2 #(S), and R f- (S - K) x (S - K), then G(B) 2 G(A). (3) If

2k 2 S and R 2 (S - K) X (S - K), then G(A)CG(B) and G(B) is the group

as given by Theorem 4. 3.
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Since an automorphism group F(A) does exist for the vertices

of A 2 (S,R), it would seem that some relation or operation on R is

preserved by the elements of F(A). This is indeed true as shown by

the following definition and theorem.

Definition 5. 2 Let A 2 (S,R) be a graph, let x, y, z be in

S and let a, b be in R. Then

arlb if a 2 [X, y] and b 2 [z, y]

aer if a 2 [y, x] and b 2 [y, z]

ar3b if a —- [x, y] and b 2 [y, z]

The relations thus defined have many interesting properties in

themselves. For example, r1 and r2 are symmetric relations. A

relation r is said to be transitive if arb and brc implies arc; r1 and r2
 

are transitive relations.

The fact that these relations are preserved by F(A) is presented

in the next theorem. This theorem is presented without proof since the

form of the proof is the same as the form of the proof given for Theorem 3.1.

Also the important part of the proof of the following theorem is supplied

by Theorems 5.1 and 5. 2.

Theoretri 5. 3 Let A 2 (S,R) be a graph and let B 2 (R, {$1, r2,r3'} )

be a system. Then the elements of F(A) are automorphisms on B.

It is interesting to note that B may be thought of as graphs. If

R is symmetric, then r12 r2 2 r3 2 r and B 2 (R, r) is what Ore [01, p. 245]

calls the interchange graph B 2 1(A). Sabidussi [S4] calls B the graph

derivative of A. Both Ore and Sabidussi present several results for



these non—oriented graphs .

The n-uiinterchange, denotedtntino4)o£the graph.A nsthe

')

graph An where A 2 1(A), A 2 1(A ) 2 I[I(A)] 2 15(A), etc. Under

1 2 l

certain specified conditions on A not developed here, In(A) exists, and

F[In(A)] is homomorphic to A for all n. Thus, an entire family of

homomorphic groups is generated by In(A).

Another special type of graph that has received some attention

in the literature is the graph which is the product of two or more graphs.

For‘example, Sabisussi [S3] has presented a detailed study of the product

of non-oriented graphs without loops. Much of the work of Sabidussi

can be extended to the more general oriented graph with loops, thus

graph product definitions are given which extend those of Sabidussi to

this more general case. In the following definitions, it is convenient

to use the concept of the projection p, from the Cartesian product of sets

1

onto its i-th coordinate, so that for any 5 2 [s], 52’ ' ° ° , s,, - ' - , s ]

1 11

ms XS x--- XS. X’" XS , p,(s)2 5, ins. fori21, 2, ---, n. In

1 2 1 n 1 1 1

the following definitions 1 2 {1, 2, - - - , n} is assumed to be the index

set.

Definition 5. 3 Let {Ai : (Si, Ri) | i in I} be a set of graphs.

The Cartesian product AC of these graphs is the system (S, RC) where.
 

(1) S28 XSZX'°°XS;

11l

(2) for a, b in S, [a, b] is in RC if and only if there exists a

k in I such that [pk(a), pk(b)] is in Rk’ and pj(a) 2 pj(b) for all j in

1-{k}.
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Definition 5. 4 Let {Ai 2 (S.1, R1) I i in I) be a set of graphs.

) wher eThe direct product A of these graphs is the system (S, R

d d 

(1)S:SIXSZX"’ xSnz

(2) for a, b in S, [a, b] is in R if and only if there exists a

d

non-null subset K51 such that [pk(a), pk(b)] is in Rk for k in K, and

pj(a) 2 pj(b) for all j in I - K.

Thus these products of a set of graphs are graphs possibly

with loops and not necessarily non-oriented. This suggests the following

problem. Given a graph A 2 (S,R), is it possible to factor A into two

(or more) graphs A 2 (S R1), A 2 (S , R2) such that A is the product

1 1’ 2 2

of A1 and A '? At least a partial answer can be given to this question.

2

To etnphasize the problem, the following example is presented.

Example 5. 2 Let A1 2 (81, R1

with 51: {1, 2}, R12 {[1, 2]}, s2 = {3, 4, 5} and

R2 2 {[3, 4], [4, 3], [4, 4], [5, 4], [5, 5]} . Then the Cartesian

) and AZ 2 (52, R2) be two graphs

product is AC 2 (S, Rc)’ and the direct product is A 2 (S, Rd) where

d

s e {[1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5]}, and letting

u 2 [1, 3], v 2 [1, 4], w 2 [1, 5], X 2 [2, 3], y 2 [2, 4], z 2 [2, 5], then

RC 2 {[u, v], [u, x], [v, u], [v, v], [v, y], [w, v], [\v, w],

[\v. a), 1x. 3']. 1y. x]. hr. 3']. [2. y]. [2. 2]}

Rd = Rcu {[w. y]. [n x]. Lu. 3]}.

Actually, the two graph products defined are not independent,

for given one it is always possible to determine the other directly.

Also, the existence of certain arcs in the graph product is determined by



the existence of certain other arcs in the product. The following

theorem exhibits these details.

Theorem 5. 4 Let AC 2 (S,R ) be the Cartesian product and

c

let Ad 2 (S, Rd) be the direct product of the graphs A 2 (S , R ) and

l l l

: . ' ' ad I: ' ..A2 (82’ R2) Letuandvbelns1 n vxandxbe in S2

(1) If [u, w] Rc[u, x] then [v, w] RC[v, x] and [v, w] R v, X]d1

(2) If [u, w] RC[v, w] then [u, x]RC[v, x] and [u, x]R v, x]d[

(3) If [11, w]RC[u, X] and [u, x]RC[v, x], then [u, w] Rd[v, X]

Proof: The first two statements follow directly from the

definitions of Cartesian and direct products. Statement (3) is true

because from [u, w]RC[u, x] it follows that w R2 x; and from [u, x]RC[v, x]

it follows that uRlv. Therefore [u, w]Rd[v, x]. A

Theorem 5. 4 can be generalized to any two dimensional cross

section of any product of more than two graphs. Furthermore, it

is much easier to draw the product graph when the results of

Theorem 5. 4 are used.

The problem of factoring a graph A 2 (S,R) will be considered

assuming the factors A12 (8 , R ) and A 2 (S , Rl 1 2 2 2) are both Without

loops. This assumption simplifies the enumeration of arcs in A, as

given in the following theorem.

Theorem 5. 5 Let A12 (51, R1) and A2 2 (82’ R2) be two

graphs, both without loops. Then

# (R) = #(51) #(R2) + #(sz)#(R1).

# (S) #(SI) #(52)
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where A 2 (S, R) is the Cartesian product 01A1 and AZ.

Proof: Clearly #(S) 2 #(S ) #(S ). Next [i, x]R[i, y] for all

)#(R )i: 1, 2, ' ° ' , #(SI) and for all [x, y] in R2, for a total of #(S1 2

such elements in R. Similarly there are # (SZ)#(R1) elements

(7., i)R(w, i) in R. A

Theorem 5. 5 provides a basis for considering the problem of

factoring a graph. If the graph A 2 (S, R) is of p.rirne order, then no

factoring is possible. So assume #(S) 2 mn. Then a necessary condition

for (S,R) to be the Cartesian product of (51, R1) and (52‘, R2) is that

#(S 2 n, andl) m. #(s,)

mx + ny 2 #(R)

where x 2 #(R ) and y 2 #(R ). Thus it is necessary to find integral

2 1

solutions to this equation with the additional restrictions that

O E y E n1(m - l) and 0 _<_ x : n(n — 1). This is a Diophantine problem

and has solutions if and only if the greatest common divisior of m and

n divides #(R). Let (1 2 (m, n) denote the greatest common divisor of

m and n. Then if d divides #(R) all solutions are given by

— ‘l‘ n

X -— X't‘ + a t

. _ m

3 — Y'“ - g t

where x 2 x* and y 2 y* is any particular solution and t is any integer,

positive, negative, or zero.

Several methods exist for finding X* and y*. The requirements

0 < y < m(m - l) and O < x < n(n-1) assure a finite number of solutions.
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Although only the product of pairs of graphs is considered

from Theorem 5. 4 on, these results can be extended to products of

more than two graphs. However, the Diophantine problem in more than

two variables is complicated. Also, in determining the factors of a

graph, all possible factors of the order of the graph may be considered

and even if a set of factors is found that gives a solution to the Diophantine

equation, it is still necessary to determine the individual vertex sets

and their arcs for each graph in the product. Primarily, the

Diophantine solutions will indicate what factors are not suitable for

the factoring of a graph.

A third type of graph of special interest is the self-complementary

graph. The self-complementary graph is defined as follows.

Definition 5. 5 A graph A 2 (S, R) is self-cmnplementary if

there is a permutation h on S such that [a, b] is in R if and only if

[h(a), h(b)] is not in R. The permutation h is said to leave the graph

self-complementary. The set of all such permutations is denoted by

H(S,R).

The connection matrix C(A) exhibits several useful properties

of self-complementary graphs. One of the more useful properties is

this. For a self-complementary graph A 2 (S,R), a permutation

h on S is 1nH(A)1f and only if Cab 2 Ch(a)h(b) for all cab in C(A).

Here, if .C 2 0, then 3 21, and if c 21, then 3 2 0. That this is true is

shown as follows. First assume h is in H(A). Suppose Cab 2 1 so that

aRb. Then [h(a), h(b)] is not in R so that Ch(a)h(b) 2 0. Then suppose
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c21b 2 0 so that [a, b] is not in R. Then [h(a), h(b)] is in R so that

Thus, for h in H(a), c — 1 f ’ . ° . .ab Lh(a)h(b) or all cab in C(A)

Next, assume c, 2ab Ch(a)h(b) for h a permutation on S and for

all cab in C(A). Thus, if [a, b] is in R, then [h(a), h(b)] is not R or if

[a, b] is not in R, then [h(a), h(b)] is in R. Since this is true for all

a and b in S, h is in H(A).

Several other features of self-complementary graphs are

obvious in light of the above discussion, namely:

(1) Every permutation h in H(S, R) leaves no element 5 in S

fixed. This means that h(s) 2 5 Suppose it were true that h(s) 2 s

for some sin S. The c 2 c f ' A .

ss h(s)h(s) or CSS 111 C( )

But this is

impossible, as shown by the above discussion.

(2) A self-complementary graph A has an equal number of

ones and zeros on the main diagonal of C(A). This is true because

aa h(a)h(a)for Caa m C(A) and all a 1” 5°

(3) A self-complementary graph A 2 (S,R) is of even order.

This follows directly from statement (2), above.

(4) A self-complementary graph A 2 (S,R) has an equal number

of ones and zeros off the main diagonal of C(A) This follows from the

above discussion.

(5) Every cycle of a self-complementary permutation h is of

even length. Suppose some cycle of h were of odd length, say

1 2’ --°, S2n+l)° Then for c in C(A), c

. s s m m

l 2 l 2

for m even and c

—— 2

s s 2 c m m for m odd. 1

l 2 h (Sl)h (52)



2 '1 2 +1

But h nT(s )2 s andh n (s

c . — c

2 + 2 +h n 1(sl)h n 1(52) 5182 $152

which is impossible. Thus, all cycles of h are even in length.

I These properties of self-complementary graphs are used in

the theorems presented. The following theorem is unusual in that it

proves the existence of a self-complementary graph for any even

positive, integer.

Theorem 5. 6 If n is an even positive integer, then there

exists a self-complementary graph of order 11.

Proof: The proof consists of constructing the self-complementary

graph (S,R) for which h 2 (12)(34), -_ - - , (n-l, n) is in H(S,R). This is

done by filling in the entries of C(S,R) by letting cn .2 1 and

1—l,J

Cm j: 0 for m2 2, 4, 6, --°, nandj2l, 2, ---, n. Then consider

c.“ and C , , .

IJ h(1)h(J)

c..,thenc,.2e . ,L

11 11 11(1)h(1)

The next theorem presented depends on two relationships

Since the latter entry is in the row above or below

Hence (S,R) is self-complementary} A

between the elements of H(S,R) and G(S,R), namely:

(1) If h and h are in H(S,R) for the self-complementary

l 2

graph (S,R), then hth is in G(S,R). This is true because

c ' 2 Z 2 c for all c in C(S,R).

, I- . 1‘. 3 h . h . , . .

Si 5] h1(51) 1(SJ) hl 2(81) hlh2(sj) 518]

(2) If h is in H(S,R) and g is in G(S,R) for the self—cmnplenientary

graph (S,R), then hg is in H(S,R). This is true because



for all c in C(S,R).

5,51

1
or

. 2

These two properties show that [H(S, R)] E G(S,R) and

H(S,R)G(S,R) 5 H(S,R). It is necessary to define normal subgroup to

complete these results.

A subgroup A of a group B is said to be a normal subgroup
 

if x—IA x 2 A for all x in B.

Theorenn 5. 7 If (S,R) is a self-connplementary graph, then

G(S,R) U H(S,R) is a subgroup of the symmetric group on S; the order

of G(S,R) is equal to the order of H(S,R) and G(S,R) is a normal sub-

group of G(S,R)UH(S,R).

Proof: It is first sufficient to show that HZ(S,R) 2 G(S,R)

2(and H(S,R)G(S,R) 2 G(S,R)H(S,R) 2 H(S,R). To show that H S,R) 2 G(S,R),

observe that if h , h and h} are in H(S,R), then 11

l 2’

1h2 2 hlh3 1mp11es

, 2

hZ 2 h]; thus the order of H (S,R) is greater than or equal to that of

H(S,R); hence the order of G(S,R) is greater than or equal to that of

H(S,R). But since H(S,R)G(S,R)EH(S,R) then the order of H(S,R) is

greater than or equal to that of G(S,R) by a similar argument. But

then the order of H(S,R) is that of G(S,R), so that

2

#[H (S,R)] : #[G(s,R)] : #[H(S,R)].

Hence HZ(S,R) 2 G(S,R) and G(S,R)H(S,R) 2 H(S,R)G(S,R) 2 H(S,R).

Next, that G(S,R)UH(S,R) is a group follows by a simple

verification of the group postulates.
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Finally, since gG 2 G 2 Gg for any g in G and hG 2 H 2 G11

for any h in H, then G is a normal subgroup of GUH. A

The following example is intended to illustrate some of these

ideas.

Example 5.3 Let s : {1, 2, 3, 4} and 1et

13,]: {11. 21. [1, 31. [1. 41. [2. 21. [3. 11. [3. 21. [3. 31. [3. 41} .

R z {[1, 2], [1, 3], [1, 4], [2, 2], [3, .3], [4, 1], [4, 2], [4, 3]] ,

R‘ = {[1, 21. 11. 31. 11, 41. [2. 11. 12, 21. 12. 31. [2. 41. 13, 31}

Then A12(S. R 2 (S, R ) are self-complementary), A 2 (5, R2) and A3 3

graphs with

H(Al) : {(12)(343

G(Al) : {1}

H(AZ) = {(12)(34), (1:3)(24), (1234), (1342)],

G(AZ) : {1, (23), (14), (2,3)(14)},

H(A3) : {(13)(24)}

G(Ap : {I}.

As a closing topic for this section, the problem of producing

graphs with a given group is considered. Specifically, the problem is

this. Given a permutation group F of degree 11, find a graph (S,R) of

order n such that the automorphism group G(S,R) 2 F.

Kagno [K2] has shown that there is no non—oriented graph

whose group is the cyclic group generated by a single cycle. If oriented

graphs are used to realize the graph having a given group, then this

cyclic group generated by a single n—cycle always has a graph as shown



by the following theorem.

Theorem 5.8 If F is the cyclic group generated by the

permutation (l, 2, ' ‘ ' , n), then there exists a graph A 2 (S,R) such

that G(A) 2 F.

Proof: The proof consists of specifying C(A) 2 (a,,) for A 2 (S,R)

11

so that G(A) 2 F. Let

a_, 21f0ri2l,2,"',n—l

1, 1+1

a :1,

n, l

a 2 a , 2 2 a ,

ll 22 rm

and let a,, 2 0 otherwise.

First, (1, 2, ° ' °, 11) is an automorphism of (S,R). This is

true because

51.. 2a_ _ for i, '<n

1] 1 +1, J +1 J

while

a , : a . for ’ < n

111 1, J +1 3

and

a, : a, ’ for i < n.

1’1] 1 '1' 1, 1

'Hence FEG(S,R).

Next, let TT be in G(S,R). Then

a,.2a , fori,'2l,2,°“,n.

1:) 11(1):TT(J) J

Suppose n(i) 2 i + k (where ifi + k > n, then 77(1) 2 i + k - n). Then

77(i +1) 2 i + k +1, since a], 1+12 ai + k, n(i + 1) and then the £le 1 in

row i + k is at column i + k +1. Therefore, 71(1) 2 l + k, 77(2) 2 2 + k,

k

etc. But thennr-(l, 2, °", 11) is in F. A



L4,,-

Actually, it is possible to specify a graph for a more general

type of group, namely for a special cyclic group, where a cyclic group

on n symbols is the group generated by all powers of a single permutation

on n symbols. The particular cyclic group and a graph for this group

are given by the following theorem.

Theorem 5. 9 Let F be the group of degree n generated by

the permutation 77 2 plp‘Z - - - pq where the pi, i 21, 2, " ', q are the

cycles composing 77. Let the length of pi be aifor i 21, 2, ' ' ' , q. If

(ai, aj) 2 l for i 2 j and i, j 21, 2, ~- - ,q, there is an oriented graph A

of order n such that G(A) 2 F.

Proof: First, G can be written as fhe product of the subgroups

° , G where Gi is the cyclic group generated by

p , i: 1, 2, .. -, q. This is proved by observing that pi is in G, since

1 . . -

77 2 p, for some integer k, and for 1 2 l, 2, - - -., q. Next, the order of

1 1

G. is a,, hence the order of the product G G -- - G is a a - - - a ;

1 1 l 2 q 12 q

moreover, G G. ° ' ' G is a group since G.G. 2 G.G. for
1 2 q 1 J J 1

i, j 21, 2, " ' , q. Finally, the order of G is the same as that of

GG."'.G-
l 2 q

__ ... ’ -_ 7 ...

Let pi (50,11, 81, p.’ sr _ l, p.) for 1 21, 2, , q.

1 1 p, 1

1

Then the graph Ai : (Si' R1) given by [Sj,p.’ sj +1(r ), ]1n R

1 P. 1

1

for j 2 O, l, "', rp - 1 has G, 2 G(A,). Moreover, the graph

. 1 1

1



has for its group G(A) 2 G(Al) x ' ' ' x G(Aq) 2 G. A

On the basis of the previous two theorems, it would seem

reasonable to attempt to prove that a graph always exists for any cyclic

group. While no such proof is given in this thesis, the following example

tends to support the conjecture that a graph exists for any cyclic group.

In. this example, the given group is not of the type covered by the previous

theorem.

'Example 5.4 Let s z (1, 2, 3, 4, 5, 8} and let

F : {(1234)(58), (13)(24), (1432)(58), I}

be the given group. Then for

010003

  B 1 O l 1

L
0

it can easily be shown that G(A) 2 F.

An approach to the general problem of finding a graph A 2 (S,R)

given a permutation group F on S such that G(S,R) 2 F, is to symbolically

fill in C(A) for some f in F using the property Cij 2 c.. . for all C..

1(1)f(J) 1J

in C(A). This process is illustrated by the following example.

Example 5. 5 Let f 2 (l2)(34)(56) be in the given group F on

2 v 2'! 3) 4, 3 I ' )- 3 : »- I r I Z I I 3 I : : 9S {l 5 o} Thcnt11 C22 a L12 c21 b c13 C24 c

and so on for all Ci. in C(A), so that for

J



w
1

H
]

  3 n r q t s_]

fis in G(S,R) where (S, R) is determined by any assignment of ones

2 C(S,R).or zeros to Cf entries so that Cf

Thus, if it is desired to determine a graph A 2 (S,R) of order

n for which G(A) 2 F for some predetermined group F of degree n,

it would appear that the following would be sufficient:

(1) Construct a C for each f in F.

f

(2) Assign the value 0 or 1 to each entry of each Cf avoiding

contradictions if possible.

(3) Determine all subgroups D of En which contains F as a

subgroup. For each d in D-F. select an i and j and set Ci] #Cd(i)d(j)’

if possible.

The result would be a connection matrix of a graph whose

group is possibly F.

If it is impossible to complete step (2) or step (3), then F is

not the group of any graph.

The above procedure involves extensive calculations. Possibly,

the intersection table technique as developed in Section IV could be

used to simplify these calculations.



-49_

One final observation is of interest. Nlost large groups

are not specified by giving the elements of the group, but rather by

specifying sonie defining characteristic of the group. Thus, the group

to graph problem should be considerably simplified for groups so specified

as is the situation with the groups considered in Theorem 5. 8 and 5. 9.



VI. CONCLUSION

The original interest in graphs which prompted this study

resulted from a problem in switching circuits. Because of the possible

application of groups of graphs to such problems, the subject of algebraic

properties of graphs was considered. Without regard to possible

applications, this study in itself, presented some difficult and interesting

problems.

For this reason, this thesis completely ignores the possible

applications of this work. Two such applications deserve mention. First,

the original switching circuit problem involved state merging and state re-

duction in sequential machines. Since the merger diagram of a flow

table is actually a graph of the (S,R) type, the possibility of an algebraic

attack on the merger problem should be considered. Secondly, the

problem of counting the total number of non-isomorphic trees in a

network has received considerable attention in the circuit theory liter-

ature. Since trees of a given network that are isomorphic are related

by the automorphism group of one such tree, it. would seem reasonable

to attempt to classify and to count trees by use of algebraic techniques

of the sort used in this thesis.

Any application of this work requires a re-evaluation of the

type of graph which is studied. It is easy to specialize the graph (S,R)

to the non-oriented or to the loopless case. But, some applications

of graphs require multiple arcs from one vertex to another. This is

not possible with the graph (S,R), and is one shortcoming of this type

-5()-
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of graph. Conversely, many of the, results in this thesis can be extended

to include a more general type of system having sets of relations rather

than just a single relation. Thus, a study of the algebraic properties

of systems, in general, would seem to be an area for possible further

work.

There are several other areas of possible further work using

just the graph (S,R) as the basic system. For example, the problem

of finding a graph of a given group requires much more study. It

should be possible to express the group of a graph product in terms of

the groups of the graphs. Self-complementary graphs, oriented and

non—oriented, offer many problems that could be studied. These are

but a few of the Inany areas involving algebraic concepts as presented

in this thesis.
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