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ABSTRACT
AUTOMORPHISM GROUPS OF GRAPLHIS

by Julian Kateley, Jr.

A graph is defined to be a system (S,R), where S in a finite,
non-null set and R is a subset of S xS, or simply a relation on R. No
other restrictions are put on R so that the gravhs considered are
oriented or directed and may have loops or slings.

After caretfully defining the preliminary mathematical concepts
used, a study is made of the problem of finding the automorphism group
of a graph. Certain well known techniques are presented in a form
applicable to oriented graphs. A special technique is formulated which
considerably simplifies the otherwise ditficult task of calculating the
automorphism groups of a graph.

Some consideration is given to certain classes of special graphs.

These are (1) interchange graphs, (Z) graph products, (5) selt-comple-

mentary graphs, and (4) graphs having specitied groups.
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I. INTRODUCTION

Graphs have been the object of study for at least the last one
hundred vears, both as a mathematical discipline in themselves and
also as an important tool in various other fields. Thus graphs are
used in the study of electrical networks, switching circuits, and com-
munication networks to mention but a few of the areas related to
Electrical Engineering. Graphs are used also in branches of Chemistry,
Physics, Biology, Psychology, Philosophy and Sociology.

Much of the work to date has concentrated on what may be
characterized as the topological properties of graphs. Thus the con-
nectivity properties of graphs, the path, circuit and tree properties,
and such other properties as the chromatic number of a graph are all
in the general category of topological properties of graphs.

The objective of this thesis is to set forth certain algebraic
properties of graphs. D. Konig in his book, "Theorie der endlichen
and unendlichen Graphen,' Leipzig (1936) poses questions of an algebraic
nature about graphs. For example, Konig asks, '""When can a given
abstract group be set up as the group of a graph, and if possible how
can the graph be constructed?' In spite of the early origin of this
question in Konigs classic book on graphs, literature in the area of
algebraic studies of graphs is meager and of fairly recent origin.
Ore [Ol] in his book on graphs devotes only one short chapter to the
groups of graphs. C. Berge in his book, ""The Theory of Graphs, "

London (1962) makes no reference per se to algebraic properties of
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graphs. Several of the pertinent works are cited in the text of this
thesis, but as evidence of the limited publications on this subject, these
references are also cited here. For example, Frucht [F1] has briefly
examined the groups of isomorphic graphs. Frucht |F2] and Sabidussi
[S1], [S2] have studied the problem posed by Konig of finding graphs
with given groups. Kagno [K1], [K2] has investigated certain types of
graphs and presented their groups. Sabidussi [S3] has studied graph
products, and finally, Sabidussi [S4] has studied interchange graphs
or graph derivatives. Cre [Ol] apparently includes all other papers in
his bibliography pertinent to the subject of algebraic properties of
graphs.

Unavoidably, use is made of topological properties of graphs in
this thesis, not only because there is no clear dividing line between
topological and algebraic properties, but also because certain topolo-
gical properties result in interesting and useful algebraic properties.

Nevertheless, the definition of a graph is based on algebraic
concepts as presented in Section II. Algebraic concepts leading to the
definition of the group of a graph are presented in Section III. The
intent is that these two sections establish a rigorous basis for the
following two sections, which contain the main results of this thesis.

Of central interest, in this and other algebraic studies of graphs,
is the group of the graph. For graphs of even reasonable size, the
direct calculation of these groups is extremely difficult. The results

of Section IV make feasible the hand calculation of groups of graphs
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of moderate size even when computer calculations were previously
too lengthy.

Certain results of Section IV also provide a basis for an attack
on the problem posed by Konig, as discussed in Section V. In parti-
cular, though several authors have examined his question, a completely
satisfactory answer has not yet been given. As will be made evident in
this thesis, the answer so far given for Konig's question is that every
finite group is isomorphic to the automorphism group of a graph.

The graph constructed having the desired property, however,
contains many more vertices than the group does symbols. This rather
avoids the real intent of the problem, namely, what groups are groups
of graphs where the number of vertices and the number of group symbols
are equal? It is known that for a cyclic group generated by a single
cycle that there is no graph having that group when the graph is non-
oriented (see Kagno [Kl]). In this thesis, it is shown that this restriction
does not exist if oriented graphs are considered, indeed, it is shown that
for a broad class of groups the corresponding oriented graphs do exist.

Section V also includes consideration of certain other algebraic
properties of special kinds of graphs including the problem of finding
a graph of a given group, if there is such a graph. The special kinds
of graphs considered also develop insight into this problem.

For some reason not fully understood by this student, all of the
papers cited investigate only non-oriented graphs. As a consequence of the

results presented in this thesis, such a restriction is not only un-
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necessary but undesirable for certain problems.
As a final introductory comment, it should be noted that the
symbol A is used throughout this thesis to indicate the completion of

a proof.



II. BASIC CONCEPTS AND THE DEFINITION OF A GRAPH

So as to define properly the concepts peculiar to this thesis
and to provide continuity to the text, certain standard mathematical
concepts and definitions will be given here. Those definitions, which
though they might not be original with this thesis, but for which there
may be some controversy in the literature, will be assigned a numbered
definition. It is thereby hoped that the definitions and theorems of this
and succeeding sections follow in a natural and comprehensible way.

Every mathematical system ultimately rests upon certain un-
definable concepts. In set theory, the undefinables are commonly taken
to be ''set'", "element'', and '"belongs to!'. Thus, no attempt is made
todefine set. However, a set is said to be composed of elements.
Moreover a set is said to be well defined if, given any object, it is
possible to decide whether or not this object belongs to the set.

The set of those elements having a specified property P is

denoted by ‘_x ' x has property l:j . The set with no elements is called

the null set, and is denoted by ¥ . Given any two sets A and B, A is

a subset of B, denoted by A€B, if each element of A is an element of
B. A is a proper subset of B, denoted by AQB, if A is a subset of B,
A is not the null set, and there is at least one element of B which is
not an element of A. Two sets A and B are equal, denoted by A = B,
if AEB and BEA.

The Cartesian product of a set of sets Al, AZ' cee, N

noted by A} x Ay x *++ x A, is the set of all ordered n-tuples
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+, a_ ], where a, isin A, fori=1, 2, --+, n. Two elements
n i i

xAzx'-' xAnareequal

Z’

2 ., bn] and [cl, C

., Cn] of A1
if and only if bi =y for all bi and <. in Ai' This assumes some approp-
riate definition of equality of elements in each Ai and will either be
apparent from the context in which the sets are used or else will be
defined.

This equality is a special case of the general concept called a
relation on a set. The idea of a relation is frequently encountered in
set theory, but its definition tends to vary from author to author. So

as to avoid confusion, the following definition is used in this thesis.

Definition 2.1 A binary relation R from a set A into a set

B is a subset of R of A x B. If [a, b] is in R, it is common to say that
a is related to b and to write aRb. The domain of R is the set of all
elements of A which are related by R to at least one element of B,
thus dom R = {a in AlaRy for some y in B} . The range of R is the
set of all elements of B to which at least one element of A is related
by R, thus range R ={b in BIxRb for some x in A} . A binary re-
lation from A into A 1is called a relation in A.

Definition 2.2 A graph A is an ordered pair A = (S,R)
where S 1is a finite, non-null set and R is a binary relation in S.

The elements of S are commonly called the vertices of the
graph and the elements of R are commonly called the g_xis\of the
graph. As defined above, a graph may have '"loops'. A loop is an arc

[s, s] for some s in S. Here the arcs of a graph are oriented. The
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arcs being oriented results from the elements of R being ordered
pairs of vertices.

A relation R is a symmetric relation if [a, b] in R implies

[b, a]in R for all [a, b]in R. There is of course no implication
that [a, b] = [b, a]. A relation R in a set S is a reflexive relation

if [a, a]is in R for all a inS. A relation R in S is an anti-re-
flexive relation if [a, a] is not in R for any a in S. If, for a graph
A = (S, R), R is required to be reflexive, then for every vertex of S,
there is an arc which is a loop. If R 1is required to be anti-reflexive,
then A has no loops.

The definition of a connected graph is not standard in the liter-
ature. So as to give a precise meaning to that idea, a series of de-
finitions must be given.

Definition 2.3 Given a graph A = (S, R), a subgraph B
of A 1is an ordered pair B = (T, Q) such that TES, Q€R and Q€T x T.

As defined, a subgraph is a graph. B is a proper subgraph if TEGS.

Definition 2.4 Given a graph A = (S, R) where S is a
set of n or more elements, a path of A is a subgraph B = (T, Q) of
A such that T = {ti l 1 < i <n, all ti distinct} , and such that

Q = {ti’ ti+1l 1_<_ i<n - 1} for n > 1. Thus there is a path from t1

tot
— n

If there is a path from t to tn in a graph, there need not in

1

general be a path from t toty However, given a graph A = (S, R)

with R a symmetric relation, if there is a path from s in S to t
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in S, then there is a path from t to s.
Definition 2.5 Given a graph A = (S, R) and a vertex s in
S, let JS be the set of vertices of S such that JS = {t in S Ithere exists
a path-;;'—om s to t.} .
Definition 2.6 A set of vertices TS of a graph A = (S, R)

is open if, given any s in T, JSE T. Also, the subgraph (T, Q) is

said to be an open subgraph of A.

Definition 2.7 A graph A = (S, R) is strongly connected

if, givenany s and t in S, there exists a path from s to t.
Set union and intersection are now defined since these are

required in the definition of a connected graph. The union of a set

{Ail i=1, 2, -- } of sets, denoted by UiAi’ is the set of all elements

which are in at least one of the Ai. The intersection of a set
{Ail i=1, 2, - } of sets, denoted by niAi, is the set of all elements
which are in all of the Ai. If the number of sets is finite, then union
may be denoted by UiAi = AIU AZU ce UAn, i=1, 2, -+, n, and
intersection may be denoted by r\iAi = Aln A?_ﬂ e nAn’ i=1, 2,

The following definition is based on a similar definition from
topology.

Definition 2.8 A graph A = (S, R) is not connected if there

exists non-null open sets U&S and V&S such that UUV = S and
UNV = i; otherwise A is connected.

Definition 2.9 The complement A' of a graph A = (S, R)

is the ordered pair

n.
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A' = (S, [SxS] -R)
Thus the complement of a graph is a graph.

A well known fact concerning the complement of a graph is
presented in Theorem 2.1. Since its proof is straightforward it is
included here. The theorem itself will find application in the latter
part of this thesis.

Theorem 2.1 If a graph A = (S, R) is not connected, then
the complement A' of A is strongly connected.

Proof: Since A 1is not connected, there are at least two
non-null open sets UES and V&S such that UUV =S and UNV = 1.
Then [ui, vj] and [vj, ui] are bothin S xS - R for all u, in U and all
v.in V. Moreover, for any u, and u, in U and for any v, in V,

J k J

are inS xS -R. Thus A' = (S, SxS -R)is

[uk, vj] and I_vj, ul]

strongly connected. A



I1I. THE AUTOMORPHISM GROUP OF A GRAPH

The automorphism group of a graph could be defined directly.
However, since the concepts leading up to the definitions of an auto-
morphism and of a group are also otherwise useful in this thesis, a
less direct approach is used.

A function F from a set A to a set B is a binary relation
from A into B which satisfies the additional properties:

(1) dom F # ©

(2) if al-"bl and anZ’ then bl = bZ.

The notation b = F(a) is commonly used and means aFb. Two
functions F and G are equal if dom F = dom G and F(a) = G(a) for
all a indom F. The domain of F 1is extended to include functions of
subsets of dom F so that the notation F(C) is used where
F(C) = {b in range F| b = F(c) for all c in C Sdom F}.

A function F from A to B 1is a function from A onto B

if range F = B. A function F from A to B is said to be one-to-one
if F(a) = F(x) implies a = x for all a and x in dom F.

A binary operation o on a set A is a function F from A x A

into A. A binary operation o on A is closed if dom F = A x A.
The notation aob = ¢ is commonly used and means ¢ = F([a, b]) where
[a, b]is in A x A and c is in A.

An abstract system (S, R, O) is a non-null set S, a set R of

binary relations in S, and a set O of closed operations on S. Either

R or O may be null, but not both.

-10-



-11-
Let (S, R, O)and (T, Q, P) be two abstract systems, A

function H from S into T is a homomorphism from (S, R, O) into

(T, Q, P) provided that there is a relation q in Q corresponding to
every relation r in R, and an operation p in P corresponding
to every operation o in O such that

(1) if [a, b]is in r, then [H(a), H(b)] is in q for all
a and b in S, and for every r in R.

(2) H(aob) = H(a) p H(b) for all a and b in S, and
for every o in O.
If T = range H, then H is a homomorphism from (S, R, O) onto

(T, Q, P). A function H from S onto T is an isomorphism

from (S, R, O) onto (T, Q, P) if and only if H 1is a one-to-one
homomorphism from (S, R, O) onto (T, Q, P). An isomorphism

from (S, R, O) onto (S, R, O) is an automorphism on (S, R, O).

Since a graph A = (5, R) is an abstract system consisting of
a non-null set S and a single binary relation R in S, an auto-
morphism f on A is a one-to-one function from S onto S such that
aRb if and only if f(a)Rf(b) for all a and b in S. The set G of all
such automorphisms on a graph A = (S, R) is a group, as is well
known.

A group is a system (G, o) consisting of a set G together
with a binary operation o on G such that

(1) the binary operation is closed; i.e., aob is in G

for all a and b in G;
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(2) the binary operation o is an associative operation;
i.e., (aob)oc = ao(boc) for all a, b and ¢ in G;

(3) there is a left identity element e in G such that eoa = a
for all a in G;

(4) for each a in G, there is a left inverse element d
in G such that doa = e.
Given a groupl (G, 0), it can be shown that

(1) there exists a right inverse for each element in G; that
is, there is an element a..l in G such that aoa-l = e for each a in
G;

(2) there exists a right identity element e in G; that is,
aoe = a for all a in G;

(3) there is only one identity element in G;

(4) the left and right inverse elements are unique.
The inverse of an element a is denoted as usual by a-l, as in (1)
above.

Now it is possible to show that the set F = (f} of all auto-
morphisms f on a graph A = (5,R) is a group (G, x). To do this,
it is first necessary to define the operation . Let fl and f2 be auto-
morphisms on the graph A = (S,R). Then the operation == is defined
by f1=:<f2(a) = fl [fz(a)] for all a in S, and is commonly called the

composition of fl and fz.

1
As is commonly done, both the set G and the system (G,0) will be referred

to as a group, with the actual meaning apparent from the content.
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It can be shown in general, that the set of all automorphisms
on a system together with the composition of these automorphisms is a
group. Nevertheless, since it is informative, the proof is presented
here for the case when the system is a graph.

Theorem 3.1 Let A = (S,R) be a graph. The set of all auto-
morphisms on A together with the composition of the automorphisms
is a group, G(A).

Proof: Let f,l, f_j and fk be any automorphisms on A,
and let o be the operation of composition.

(1) inf_j is an automorphism. To show this, it is sufficient
to show that infj is a one-to-one homomorphism from S onto S.

First, inf' is a one-to-one function because if fiofj(a) = infj(b)’
then fi[fj(a)] = fi[fj(b)], hence fj(a) = fj(b), hence a = b.

Next, to show that infj is an onto function, it 1s sufficient to
show that there exists an a in S such that infj(a) = b for any b in S.

1 -1

-1 -1 -1
To show this, let a = { lioi i(b) = f i[fi (b)]. Then

fiofj(a) = fi[fj(a)]
= Lol 7 TN}
A1)
= b.
Finally infj is a homomorphism because if aRb, then fj(a)Rfj(b).

f =
(2) fio(fjo k) (infj)Ofk because
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for all a in S.

(3) The function e such that e(a) = a for all a in S is an auto-
morphism. Also eof = f for any automorphism f in F since

eof(a) = ef(a) = f(a).

(4) There exists a g such that gof = e, because if f(a) = b
for any a and b in S, then define g(b) = a. Now gof(a) =g|f(a)] = g(b)=a =e(a)
therefore gof = e. A

Example 3.1.  Let S = {l, 2, 3} andletR = {1, 2], [2, 3],
[3, 1]} . Then G(S,R) = {I, (123), (521)} . Standard cycle permutation

notation is used here in identifying the group elements. A permutation

on a set S is a one-to-one function from S onto S. Given a permutation
fonsS, a El/_c_l_e_ of f is a permutation g onC €S such that g(C) = C

and such that for all subsets D& C, g(D) is not a subset of D. Thus

a permutation is the composition of cycles. The permutation fl = (123)

is a function such that fl(l) =2, f1(2) = 3, and f1(3) = 1; similarly for

fZ = (132). The entry I = (1) (2) (3) and is such that I(1) =1, I(2) = 2, and
I(3) = 3. Thus I is the identity element of G(S,R). Further, the compo-
sition flOfZ is (123)(132) and equals the identity element as does fzofl.

Thus fl = fz“l and f& = fl-l. Figure 2.1 shows this graph as commonly
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drawn.

Figure 3.1. The graph of Example 3.1.

This is a simple example of a graph so its group is not difficult
to find. In general, however, the automorphism group of a graph is
very difficult to find. This is one of the main problems considered in
this thesis. Several theorems to follow will considerably simplify the

task of finding these groups.



IV. PROCEDURES FOR CALCULATION OF THE AUTOMORPHISM
GROUP OF A GRAPH

While in general, it is difficult to find the automorphism group
of a graph, Ore [Ol, pp. 239-240], has noted several graph-group
properties which simplify this task. Ore's discussion is somewhat
restrictive and not very detailed. In this section, a more general and
detailed discussion is given of some of Ore's work and in addition, a
technique is presented which considerably simplifies the task of finding
group elements of even relatively large graphs.

The development to follow requires the introduction of several
numbers associated with groups and graphs. Thus, the number of

elements in a set S, denoted by # (S), is called the order of the set S.

The order of a graph A = (T,R) is ##(T) and is equal to the number of

vertices in the graph. The order of a group (G, ) is #(G). The degree

of a permutation group which is the set of all automorphisms on the

system (S; R; O) is # (S). For example, the group
F = {12)03)4)5)6), (12)(34)(56)}
is of order 2 and of degree 6.

A graph A = (S,R) such that R = S x S is called a complete graph.

The group G of all automorphisms on (S; R; O) such that #(G) = [#(S)]!

is called the symmetric group on #(S) symbols and is commonly denoted

by Zn, where n = #(S). It is easy to show that G(S, S x S) = En, where

n = #(S).

-16 -
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Kagno [K2] has shown that the complement A' of a graph
A = (S,R) has G(A') = G(A). However, since Kagno considers only
connected symmetric graphs without loops, the proof of this useful
result is given in a more general form.

Theorem 4.1 If A' is the complement of the graph A = (S,R),
then G(A') = G(A).

Proof: It is sufficient to show that if f is any permutation
in G(A), then f is also in G(A') and if g is any permutation in G(A'),
then g is also in G(A).

First, suppose f{is in G(A). It is sufficient to show that [a,b]
is in S x S - R if and only if [{f(a), f(b)]is in Sx S - R for all a and b
in S. Assume then that [a, b]is in S xS - R. Then [a, b] is not in R,
so [f(a), f(b)] is not in R. Consequently, [f(a), f(b)]is in S x S - R.
Thus if f is in G(A), then f is in G(A').

The second part of the proof, namely, that if g is in G(A'), then
g is in G(A), is identical in nature to this first part and thus is omitted. A

However, if the groups of two graphs are identical, the graphs need
not be complements nor in any other way related, as is shown by the
following example.

Example 4.1 Let (S,R) and (T, Q) be two graphs, with
s=T=4ql, 2, 3}, and
{iv 21 sy 2o, (2,3}
{01 sy 1220 1230 B0 B 2] 03 3]}.

Then G(S, R) = G(T, Q) and (T, Q) is not the complement of (S, R). The

R

1l

Q
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graphs and their complements are shown in Figure 4.1. All four
graphs have the same group. Note that (5,R) and (S,R)' are connected
but not strongly connected, (T, Q) is strongly connected and (T, Q)' is

not connected.

(a) Graph (S,R) (b) Grai(S,R)‘

(c) Graph (T, Q) - (d) Graph (T, Q)’

Figure 4.1. The graphs of Example 4.1.
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Ore [Ol, p. 239], notes that the determination of the group of
a graph which is not connected can be reduced to the problem of
finding the groups of the connected subgraphs of the graph. This re-

quires the notion of the direct product of groups, here defined.

Definition 4.1  The direct product of the groups (Gl o 1),

(GZ.’ o 2)’ . (Gn’ on) is the system (G, ©) consisting of the
Cartesian product G = Gl X GZ X+t X Gn and the operation o defined
by

" e o [ - - [ s e

SURFL o ley ey s 8 T = Loy fpopr s £ 0 g ]
for all I_fl, fZ, cee fn] and [gl, g, " gn] in G. The direct product

G of these groups is denoted by G, x GZ X X Gn. It is known that

1
the direct product of groups is a group..

The determination of the group of a graph in terms of its
connected subgraph is detailed in the next theorem.

So as to make this next theorem more comprehensible, it is
preceded by the following example. -

Example 4.2 Find the automorphism group of the graph

A

11

(S,R), where S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1I} , and

R

{lz, . (2, 33, [4 51, (5, 43, [6, 70, [7, 6, [8, 9], [9, 8], [9, 10],

[9, 1], [10, 11], [11, 10]} . This graph is shown in Figure 4.2.

O =0ONNO =0
=0 G

Figure 4.2 The graph of Example 4. 2.
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The graph A can be decomposed into the graphs

A= (S Ry A, =S, R,

R, = -[[z, 1], [2, 3]}, s,= {4 5 6, 7}, R,
6, 71, 17, 61}, s,= {8, 9,10, 1} , and R,

9, 10], [9, 1], [10, 11], [11, 10]}.

) and A, = (S,, R,) where S| = . 2, 33},
{le. 51 15, 4],
{is. 91. 19, 8],

I

Note that S = uisi and R = UiRi, i=1,2, 3, and S, n sj =
fori ¢ jandi, j=1, 2, 3.

The graph AZ = (SZ’ RZ) can be further decomposed into

isomorphic graphs, A21 = (SZl’ RZI) and AZZ = (SZZ’ RZZ) where

S, = {4, 5}, R, :{[4, 5], [5, 4D-, S,, = {s. 7} , and R, = {[6, 71,
[7, 61} -

An automorphism of A is simply a re-arrangement of the
vertices of A which "leaves the figure unchanged.' But such changes

can be determined piecemeal for each Al' AZ

Gla)) = {0 (2) (3), (137}

and AS' Thus

Gta,) = {(4) (5) (6) (7). (45), (67), (45)(67), (46)(57)
(47)(56)}
a(a,)= {8) (9) 10) ), (0, )}

Moreover, any composition of permutations, one from each
of G(Al)’ G(AZ)’ and G<A3) is still an automorphism of A, and in
 fact there are no other automorphisms of A. Thus G(A) = G(Al) x
G(AZ) X G(Aj).

These intuitively obvious results are now stated formally in the

next theorem. A similar statement is made by Ore [Ol, p. 239], but once



-21-
again, for symmetric graphs. The proof of the theorem is for arbitrary
R, and since the proof is long, it will be omitted.
Theorem 4.2 Let the graph A = (S, R) be composed of the

subgraphs

A =(S,R1),A

1 1 = (S, R,)

2 2 a2 T By n n

such that
= 1= 2, -, ’
A (Uisi,UiRi),l 1, n
and
Sinsk:é,fori#kandi,k:l, 2, +++, n.
Further, let the subgraph Ai :(Si, R.), i=1, 2, ---, n be composed
of the connected subgraphs
A..=(5,R..)j=1 2+, m,
ij ij 1j i
such that the graphs Aijforj =1, 2, =, m, are isomorphic to each
other but not to other subgraphs of A, and such that
A.:( -S..: .R.-)r .:1: Zy ttry, m.,
1 UJ 1) UJ 1] J
and
s. As =: forx #yandx, y =1, 2, *++, m..
Then
G(A) = G(A,) x G(A,) x -+ x G(A ).
1 2 n
This leaves the problem of finding the group of a graph composed
only of isomorphic subgraphs. Frucht [Fl] has stated a theorem which

can be used to find these groups. For completeness, that theorem is

presented here in a restated and more general form. The theorem uses
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the concept of simply isomorphic permutation groups. Two iso-

morphic permutation groups are simply isomorphic if they are of equal

degree. Since the proof of this theorem is lengthy, but otherwise not
complicated, and since such proofs are commonly omitted, this proof
is omitted here.

Theorem 4.3 Let A = (S, R) be a graph composed of the
connected subgljaphs

A = (Sp R, A, = (S

1 1 RZ)’.",A =(S_,R_),

2’ m m’~ m

such that the graphs Ai’ i=1, 2, *++, m are all isomorphic and such
that

A=(US,UR) i=1 2, -, m,
and

sir\sj =i foritjandi, j=1, 2, -+, m.

Then the groups Gi = G(Ai) are all of the same degree, of the

same order and so they are simply isomorphic one to another. If
h = #(Gi) and n = #(Si)’ then G(A) is of order m! h™ and of degree mn.
The elements of G(A) can be described in the following way. Let

Si :{sil, S0 T sin}’ fori=1, 2, **°, m. Form the matrix

°11 °12 S
S S - . . S
21 22 2
M = "
Sml SmZ o Smn

An element of G(A) is any permutation of the rows of M followed by

any permutation in G(S.).
i



Relying on these theorems, a technique is now developed which
simplifies the task of finding the group elements of a graph.
Definition 4.2 Given a graph A = (5, R), let
FS = {ulnS l (s, u)is mR} ,
Tt = {\' in S I (v, t) is in R} .
Fs is the set of vertices u in S with arcs from s to u and Tt
is the set of vertices v in S with arcs from v to t. FS and Tt are not
independent for a given graph because Tt = {s ' t in FS} and
= 4t in T .
Fs { 's in t}

Definition 4.3 Given a graph A = (S,R) with s in S, let

o}
P
10}
-
"

F_)
H#(F)
i(s) = # (T ).
s
If R is symmetric, then Fs = Ts for all s in S and o(s) = i(s).
These two numbers are commonly called the degree of the vertex s when
R is symmetric. For R in general, o(s) is the number of arcs from s
to vertices in the graph and i(s) is the number of arcs from vertices
to s.
Definition 4.4 Given a graph, let
Ok:{slo(s):k}, k=0,1, 2,

po={t liw =i}, -

Thus Ok is the set of vertices in S having ''out degree' k and

|
o
—
[aY)

n

Ij is the set of vertices in S having '"'in degree' j. Note that Ukok = S,
=1 f k , I = and I, =i 1 j .
Okn OE or k £ ¢ UJIJ S an I_) n Im or j # m

If a graph A = (S, R) has a subset XC'S such that FX = i for



_24-

all x in X, then o(x) = 0 and X EOO- If a graph A = (S,R) has a subset
Y €S such that Ty = i for all yin Y, then i(x) = 0 and Y & Loy

The automorphisms of the graph A = (S5,R) are functions from
F ontoF , from T onto T , from O, onto O, and from I onto I. as is

s s s s k k J ]

shown by the following theorems.

Theorem 4. 4 Let A = (S5,R) be a graph. If fis in G(A), then

f(O

"
O

k’

I.
J

for all Ok and Ij defined by (S, R).

i)

f(I.
(IJ)

Proof: Suppose i(a) = j for some a in S. Then there are
vertices Y Y, T yj in S such that [yi, al]is inR, fori=1, 2, -,
Since f is in G(A), [f(yi), f(a)] is in R. Thus i[f(a)]|> j. If there is a
b in S such that b # f(yi) fori=1, 2, -+, jand [b, f(a)] is in R, then
[f-l(b), a]is in R, hence f-l(b) = yi for somei=1, 2, ++-, j. But this
implies b = f(yi), a contradiction. Hence i|f(a)] = j and f(a) is in Ij.
Since this is true for any a in S such that i(a) = j, then f(Ij) = Ij. The
proof for Ok is identical except for obvious changes. A

According to well known set theory theorems,

(U ,A) = (ADULAHUY -~ V(A ),

g(N B _)=gB)NgB,)N---NgB_),
where f is a function defined on Ai’ i=1, &, ***, n, and g is a function
defined on Bi, i=1, 2, -+, m. These relations. are implicit in the

proof of the next theorem and are also used in the proof of theorems

in the latter part of this section.
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Theorem 4.5 Let A = (S,R) be a graph. If f is in G(A), then

=
o
"
o

s f(s)

) Tf(t)
for all s and t in S such that FS £ 1 and Tt i,

Proof: Suppose b is in Fa. Then [a, b]is in R, so

[f(b), f(a)] is in R. This implies that f(b) is in F , SO f(Fa) c

Fila)
Then [f(a), c¢]is in R and [a, f'l(c)] is

f(a)

Suppose ¢ is in Ff(a)'

in R because f is in G(A). This implies that f-l(c) is in Fa’ S0

-1

f (F ) & Fa’ or Ff(a) = f(Fa)- But then f(Fa) =F

f(a) f(a)

The proof for Ta is similar. A

The requirements FS # 1 and Tt £ ! in Theorem 4.5 are not
restrictive since o(s) = 0 or i(s) = 0 and the group functions of these
vertices are considered in Theorem 4. 4.

The following theorems consider the converse situation from
that of the previous two. It is assumed that a permutation on the vertices
of the graph is given, and sufficient conditions for this permutation to
be an automorphism of the graph are given.

Theorem 4.6 Let A = (S,R) be a graph and let f be a per-
mutation on S. If

HT) = T
for all a in S such that Ta # 1, then f is in G(A).

Proof: To show that f is in G(A), it is sufficient to show

that if [b, a]is in R, then [{(b), f(a)] is in R and if [c, a] is not in R,

then [f(c), f(a)] is not in R for all a, b and ¢ in S. Suppose [b, a]is in
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R. Thenbis in T , so that f(b)is in {(T )= T., .. Hence
a a f(a)
[{(b), f(a)]is in R therefore, [b, a] in R implies [{(b), f(a)] is in R.
Suppose [c, a]is not in R. Then c is not in Ta. Since f is
a permutation on S, ¢ not in Ta implies f(c¢) is not in 1'(Ta). But f(c)

not in f(Ta) =T implies [f(c), f(a)] is not in R. Thus [c. a] not in

f(a)
R implies [f(c), f(a)] is not in R. Therefore, f is in G(A). A
Theorem 4.7. Let A = (S,R) be a graph and let { be a

permutation on S. If

for all a in S such that Fa# :, then f is in G(A).

Proof: The proof of this theorem is identical to
that of Theorem 4.6, except for obvious changes. A

Theorems 4.6 and 4.7 constitute the converse of the theorems
in Theorem 4.5. FHowever, the converse of Theorem 4.4 is not true
as is shown by the following example.

Example 4.3 Let A = (S.R) be the graph S = {1, 2, 3} ,

1"

R = {[1, 1. [1. 2], [2, 1], [2, 3], [3. 2]} . For this graph, o, = {3},

il

o, - {t. 2}, I - {3} and 1, = {l. 2}. For the permutation f = (12),

(O y =1 Yet G(A)= I andf

f(Ol) : Ol, ) = O,, (L) = I1 and (I

2 2 1 2 2’
is not in G(A).

A simple combination of Theorems 4.4 and 4.5 yields the
following theorem:.

Theorem 4.8. Let A = (S, R) be a graph. If fis in G(A),

then



=~}

f(Fanlj) = Ff(a>nlj,
f(TbﬂIj) = Tf(b)f'\lj,
f(FanOk) = Ff(a)nok,
f(TbnOk) = Tf(b)nok,

for all Ij and Ok defined by A and for all a and b in S such that
Fa £ 7 and Tb # ¢, and assuming f(: ) = [ .

Proof: Since all four statements have essentially the same kind
of proof, the proof of only one is given.

f(TbnOk) = f(Tb)n(Ok) = Tf(b)f\ok. A

Of all the theorems in this section, the fc;llowing theorem yields
the most powerful device for calculation of the group elements of a graph.

Theorem 4.9 Let A = (S,R) be a graph and let f be a permu-

tation on S. If f(Fan Ij) = Ff an for all Ij defined by A and for all

(a)
a in S with the special provision that f(: ) = ¢, then f is in G(A).

Proof: Use is made of the set-theoretic properties of functions

of the union and intersection of sets as given on page 24.

F N1 as stated, then
f(a) 7

f F

[U,(F,N1))

flF )

[F,N (V1]

f(Faf\S)

If f(Fan Ij)

Uj f{(F N IJ.)

1"

1

1"

f(Fa).
While
UF )N = Fe AU

= F r\S:Ff

f(a) (a)
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Hence f(Fa) = F and by Theorem 4.7, { is in G(A). A

f(a)

Theorem 4.9 is true for the other three intersection equations,

that is for
f(Tanj) = Tf(b)nlj,
f(F NO,) = Ff(a)n O,
HT,NO,) = Tf(b)nok'

The use of Theorem 4.9 in the determination of group elements
of a graph is illustrated by the following example.

Example 4.4 Let A = (S,R) with S ={1, 2, 3, 4, 5, €yand
R={L, 2], [L 3], (2, 2], [2, 4], [3, 4], [3, 5, [4, 4], [4, 6], [5, 1],

[5, 61, [6, 2], [6, 6]} . Table 4.1 shows a table of all F_f) I and

Faﬂok.
1 ={L 3. %} 1 -fe. 4, 3 0,=5

Fo={ % 3 2 2,3
F,={ 4 2,4 2,4
F, =8 3 5 4 4,5
F,= & ¢ : 4,6 4,6
F, = g, & 1 6 1,6
F, = & R 2,6 2,6

Table 4.1. An Intersection Table for Example 4.4

It is apparent from the I1 column or the I3 column of the table
that only cycles starting with 13, 15, 35, 53, 51, 31, 24, 26, 46, 64,
62, and 42 need be considered for permutations in G(A). This is not

apparent from the O‘2 column, and while all permutations in G(A) could
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be determined from the O2 column, it is much easier to use the I1 and

I3 columns. For example, suppose a possible permutation is to have
a cycle (1). Then (1) implies (2) and (3), (2) implies (24)or (2) and (4).
This and the rest of the analysis for (1) is carried out in Table 4. 2,

with : meaning "'implies', I meaning "impossible', and C indicating

the order in which the closures are determined.

(1) Cr 1 (2) Cg, (,S)Cq (6) Ch : (Z)C{’ (6)Cb
(3) Cp 2 () CO, (4)Ck (2) : 241

(4) : 461 (2) Cl : (2) Cc’ (4)Cd
(4) Cj : (4)Ca, (())Ci (S)Cn: (I)Cl’ (())Cm
(6) : 261

Table 4.2. Analysis of cycle (1).
Thus the identity is the only element of G(A) with the cycle (1).
The above analysis can be done for any cycle consisting of just one
element of S and always yields the identity permutation. Thus the
identity element is the only element in G(A) and so any other element
in G(A) permutes every vertex of A.
Consider the analysis for the cycle starting with 13 as carried

out in Table 4. 3, with closure order omitted.

13C : 35C 24C 46C : 46C 62C
241 : 261 62C : 62C 24C
24C : 24C 46C 35C : 51C 46C
461 : 42 661 51C : 13C 62C

Table 4.3 . Analysis for the cycle starting with 15.
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From Table 4.3, it is apparent that £ = (135)(246) is in G(A).

Consider next the cycle starting with 15, as carried out in

Table 4. 4.
15C : 31C 36C 64C : 64C 26C
26C : 26C  42C 31C . 53C  42C
42C : 42C 64C 53C : 15C 64C

Table 4.4. Analysis for the cycle starting with 15.
From Table 4.4, f = (153)(264) is in G(A). Since this exhausts
all possible cycles to be considered, G(A) :{I, (135)(2406), (155)(2.64)},
A computer program was writtenl which will calculate the
group of a given graph. Since it is interesting to compare the method
of this program with the technique of Theorem 4.9, the method used
in this program is described using the following definitions.
Definition 4.5 Given a graph A =(S.R) of order n, the

connection matrix C(A) is the n x n matrix C(A) = (a_.), where

1)

a,, =1 if [s., s.]is in R,
1) o)

a,. =0 if [s., s.]is not in R
1) 1)

for s, and s in S.
1 J
Definition 4.6 Given a set S of order n and a permutation

f on S, the permutation matrix P(f) is the n x n matrix P(f) - (b,j) where
i

b.. = 1 if and only if, f(s.) = s, for s, and s, in S, and b,, = 0 otherwise.
ij i j i j ij

This program was written by Mrs. Elizabeth Phillips of the Computer
Laboratory at Michigan State University.
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Note that P(f) = P'(f—l) where C' is the transpose of C.

A permutation f on S is a group element of G(A) of the graph A = (S,R)

if and only if P(f) - C(A) © P'(f) = C(A). The computer program presently
in use is given C(A), generates all possible permutations on S. and forms
this matrix product. Tor the graph of Example 4.4, there are

H(S). = 6! = 720 permutations to be tested. For a graph of order 6, the
present computer program requires 18.75 minutes of computer time on

a Control Data 160-A digital computer.

The same test can be used to check the permutations determined
by the method of Theorem 4.9. Since not all possible permutations need
be considered, the task of finding group elements of a graph is con-
siderably simplified. In fact, use of Theorem 4.9 allows hand calculation
of group elements where the order of the graph is too large to allow

calculation by a direct method with a computer.



V. SPECIAL GRAPHS

Having considered the automorphism group of a graph, it
would seem reasonable to ask about the effect of the group permutations
on the arcs of the graph. The following definition establishes the basis
for several ideas about functions of arcs of graphs.

Definition 5.1 Given a graph A = (S5,R) and its automorphism
group G(A), let F(A) be the set of permutations on R such that, for each
g in G(A), fg is in F(A) if and only if

fg[a, b] = [g(a), g(b)]
for all |a, b]in R.

Theorem 5.1 There is a homomorphism from G(A) onto F(A).

Proof: It is sufficient to show that there exists a correspondence
b asso.ciating elements of F(A) with elements of G(A) such that

(1) 7 is a function from G(A) into F(A).

(2) m is an operation preserving function, where in each
system the single binary operation is taken to be composition, so that
n(glgz) = n(gl)ﬂ'(gz) for all g and g, in G(A).

(3) 7 is an onto function, i.e., for every f in F(A) there is
a g in G(A) such that =n(g) = f{.

Let m be defined by w(g) = fg if

fg[a, b] = [gla), g(b)]
for all |a, b] in R.
That w is function from G(A) onto F(A) follows directly from the

way in which w is defined.

-32-



-33-
To show that m is operation preserving, let w(g.) = f.
i i

for i =1, 2, 3 and let g8, = 853 Then n(glgz) = Tr(gj) = fj, and

f,la, b] = [g,(a), g4(b)] = [g g,(a), g g,(b)]
for all [a, b] in R. Let g,(a) =c, g,(b)=d. lc, d] is in R for all

la, b]in R. So

f [a, b]

3 [gl(C): gl(d)] = fl[c, d]

flg,(a), g,(b)] = £ la, b].
Thus Tr(gj) = w(gl) ﬂ(gz) and so n(glgz) = w(glgz) = v(gl)n(gz).A

It follows from Theorem 5.1 that F(A) is a group and it might
seem at first that F(A) would be isomorphic to G(A). This is not so in
general, as is shown by the following example.

Example 5.1  LetS = {l, 2, 3, 4 and let R = [1, 2], [2, 1]
Then G(A) = {I, (12), (34), (12)(34)} and =(I) = =(34) = ([1, 2]([2, 1]),
and w(12) = m(12)(34) = ([1, 2] [2, 1]). Thus = is not a one-to-one function.
This is not a short-coming of w, but rather of A. In this example, the

graph has two perfectly isolated vertices. A perfectly isolated vertex

s 1is one for which o(s) = 0 and i(s) = 0.
The condition for mto be a one-to-one function and therefore,
an isomorphism from G(A) to F(A) is given in the following theorem.
Theorem 5. 2. Let A = (S,R) be a graph and let 7 be the
function as defined in Theorem 5.1. If A has less than two perfectly
isolated vertices, then w is an isomorphism from G(A) onto F(A).
Proof: It has been shown in _Theorem 5.1 that m is a homomorphism

from G(A) onto F(A). Thus it is sufficient to show only that mis a
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one -to-one function; i.e., if w(gl) = w(g&), then gl =g, for all gl and
g, in G(A).

If m(g,) = w(gz), then [gl(a), gl(b)] = [g (a), gz(b)] for all

2
la, b] in R. Thus gl(a) = gz(a) and gl(b) = g (b).

)
o

1

Suppose A contains no perfectly isolated vertices. Then every
vertex in S appears in some element of R, and gl(x) = gz(x) for all x in
S, either because x = a or because x = b for all [a, b] in R. Therefore,
8~ &,

Suppose A contains exactly one perfectly isolated vertex s in
S. Then gl(s) = gz(s) = s for all g and g, in G(A). Again, either

g,(a) = g,(a) for all a in S - {s} or g (b) = g,(b) for all b ins - )y .

2
Thus, g = &, A

From Theorem 4.1 a graph A and its complement A' both have
the same group, that is G(A) = G(A'), a fact pointed out by Kagno [K2]
for non-ofiented graphs. From Theorem 2.1, either A or A' has no
perfectly isolated vertices. Assuming A has no perfectly isolated vertices,
A' may or may not have isolated vertices. Thus, G(A') is at least
homomorphic to F(A') and #[F(A")] | # [F(a)].

Suppose A = (5,R) is a graph with k perfectly isolated vertices.
Let K be the set of perfectly isolated vertices. Let B = (S, RU(K x K)) .
Then three cases are of interest. (1) If 2k # #(S), then G(A) = G(B).
(2) If 2k = A#(S), and R # (S - K) x (S - K), then G(B) = G(A). (3) If

2k =S and R = (S - K) x (S - K), then G(A)CG(B) and G(B) is the group

as given by Theorem 4. 3.
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Since an automorphism group F(A) does exist for the vertices
of A = (S,R), it would seem that some relation or operation on R is
preserved by the elements of F(A). This is indeed true as shown by
the following definition and theorem.
Definition 5.2 Let A = (S,R) be a graph, let x, \v, z be in

S and let a, b be in R. Then

ar b if a =[x, ylJand b = [z, y]
arzb if a=[y, x]and b = [y, z]
ar ;b if a=[x, yland b = [y, z]

The relations thus defined have many interesting properties in
themselves. For example, r. and r | are symmetric relations. A

1 2

relation r is said to be transitive if arb and brc implies arc; rl and rz
are transitive relations.
The fact that these relations are preserved by F(A) is presented
in the next theorem. This theorem is presented without proof since the
form of the proof is the same as the form of the proof given for Theorem 3. 1.
Also the important part of the proof of the following theorem is supplied
by Theorems 5.1 and 5. 2.
Theorem 5. 3 Let A = (S,R) be a graph and let B = (R, {rl,rz,rS} )
be a system. Then the elements of F(A) are automorphisms on B.
It is interesting to note that B may be thought of as graphs. If
' R is symmetric, then r=r,=sr =r and B = (R, r)is what Ore [Ol, p. 245]

calls the interchange graph B = I(A). Sabidussi [S4] calls B the graph

derivative of A. Both Ore and Sabidussi present several results for



these non-oriented graphs.
The n-th interchange, denoted by In(A) of the graph A is the

P
graph An where A = I(A), AZ = I(Al) = I[I(A)] = 1 (A), etc. Under

1
certain specified conditions on A not developed here, In(A) exists, and
F[In(A)] is homomorphic to A for all n. Thus, an entire family of
homomorphic groups is generated by In(A).

Another special type of graph that has received some attention
in the literature is the graph which is the product of two or more graphs.
For example, Sabisussi [S3] has presented a detailed study of the product
of non-oriented graphs without loops. Much of the work of Sabidussi
can be extended to the more general oriented graph with loops, thus
graph product definitions are given which extend those of Sabidussi to
this more general case. In the following definitions, it is convenient
to use the concept of the projection P, from the Cartesian product of sets
onto its i-th coordinate, so that for any s = [sl, S,, ***, 8., *, 5 |

2 1 n
: , - s i i=1, 2, -+, n.
in S1 X S2 X X Si X X Sn pi(s) s, in Si for i =1 n. In
the following definitions I = {l, 2, *--, n} is assumed to be the index
set.

Definition 5.3 Let {A, = (S, R,) | i in I} be a set of graphs.

The Cartesian product AC of these graphs is the system (S, RC) where.

(1) S=5,x5, x+++ xS ;

n

1

(2) for a, bin S, [a, b]is in RC if and only if there exists a

k in I such that [pk(a), pk(b)] is in Rk’ and pj(a) = pj(b) for all j in

1-{x}.
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Definition 5.4 Let {Ai = (Si’ Ri) | iin I} be a set of graphs.

The direct product A of these graphs is the system (S, R ) where

d d

(1) S:SIXSZx"'xS'.

n

(2) for a, bin S, [a, b]is in R if and only if there exists a

d

non-null subset K&1I such that [pk(a), pk(b)] is in Rk for k in K, and

pj(a) = pj(b) for all jinl - K.
Thus these products of a set of graphs are graphs possibly

with loops and not necessarily non-oriented. This suggests the following

problem. Given a graph A = (5,R), is it possible to factor A into two

(or more) graphs Al = (Sl’ Rl)' AZ = (Sz, R?_) such that A is the product

of 3.1 and A,? At least a partial answer can be given to this question.

2

To emphasize the problem, the following example is presented.

Example 5.2 Let A1 = (Sl’ Rl) and AZ = (SZ, RZ) be two graphs

with s = {1, 2}, R = {I1, 2]}. s, = {3, 4, 5} and

R, = {3, 4], [4, 3], [4, 4], [5, 4], [5, 5]} . Then the Cartesian

product is AC = (S, Rc)’ and the direct product is Ad = (S, Rd) where

S = {[1, 30, [L, 4], [1, 51, [2, 3], [2, 4], [2, 5]}, and letting

e
"
~
—
N
—
-
|
-—
—
¥sN
—
1

[1, 5], x =12, 3], y =[2, 4], z = [2, 5], then
R = {lu v], [w =], [v, ul, [v, v] [vs y) [w, ] [ws wl,
[, 2], [ yh Iy xb Iys v1 [z v] (20 21}
R, = RU{lw, v] [, x] o, v}
Actually, the two graph products defined are not independent,
for given one it is always possible to determine the other directly.

Also, the existence of certain arcs in the graph product is determined by



the existence of certain other arcs in the product. The following
theorem exhibits these details.
Theorem 5.4 Let AC = (S,RC) be the Cartesian product and

let Ad = (S, Rd) be the direct product of the graphs Al = (Sl’ Rl) and

A& = (S&’ RZ)' Let u and v be in S1 and w and x be in SZ'

(1) If [u, w] RC[u, x] then [v, w] RC[\', x] and [v, w] Rd[v, x]
(2) If [u, w] Rc[v, w] then [u, x]RC[\’, x] and [u, .\']Rd[\‘, x]
(3) If [u, W]Rc[u, x] and [u, x]RC[\', x], then [u, w] Rd[\‘, x]
Proof: The first two statements follow directly from the
definitions of Cartesian and direct products. Statement (3) is true

because from [u, w]RC[u, x] it follows that w R x; and from [u, x]RC[v, x ]

2

it follows that uR v. Therefore [u, w]R

) vV, x]. A

4l

Theorem 5.4 can be generalized to any two dimensional cross
section of any product of more than two graphs. Furthermore, it
is much easier to draw the product graph when the results of
Theorem 5.4 are used.

The problem of factoring a graph A = (S,R) will be considered

assuming the factors A = (S, Rl) and AZ. =(S,, RZ) are both without

1 1 2

loops. This assumption simplifies the enumeration of arcs in A, as
given in the following theorem.

Theorem 5.5 Let A = (S,, Rl) and A

) ) = (S, RZ) be two

2 2
graphs, both without loops. Then

#(R) = H(S) #(R,) + #(S,) H(R)),

H(S) = H(S)) #(S,)
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where A = (5, R) is the Cartesian product oi A, and AZ'

1
Prooi: Clearly #(S) = #(Sl) #(Sz). Next [i, x]R[i, y] for all
i=1, 2, -, #(Sl) and for all [x, y]in RZ’ for a total of #(Sl)#(RZ)
such elements in R. Similarly there are # (SZ)#(RI) elements
(z, i)R(w, i) in R. A
Theorem 5.5 provides a basis for considering the problem of
factoring a graph. If the graph A = (S, R) is of prime order, then no

factoring is possible. So assume #(S) = mn. Then a necessary condition

for (S,R) to be the Cartesian product of (Sl, Rl) and (SZ’

RZ) is that
#(51) = m, #(SZ) = n, and
mx + ny = #(R)

where x = #(RZ) and y = #(R,). Thus it is necessary to find integral

1
solutions to this equation with the additional restrictions that

0 <y<m(m -1)and 0 <x <n(n -1). This is a Diophantine problem
and has solutions if and only if the greatest common divisior of m and

n divides #(R). Let d = (m, n) denote the greatest common divisor of

m and n. Then if d divides #(R) all solutions are given by

- M2 n
x—x-u~+a t
. m
Y =yE-q t

where x = x¥% and y = y* is any particular solution and t is any integer,
positive, negative, or zero.
Several methods exist for finding x* and y*. The requirements

0 <y <m(m ~1)and 0 <x < n(n-1) assure a finite number of solutions.



-40-

Although only the product of pairs of graphs is considered
from Theorem 5.4 on, these results can be extended to products of
more than two graphs. However, the Diophantine problem in more than
two variables is complicated. Also, in determining the factors of a
graph, all possible factors of the order of the graph may be considered
and even if a set of factors is found that gives a solution to the Diophantine
equation, it is still necessary to determine the individual vertex sets
and their arcs for each graph in the product. Primarily, the
Diophantine solutions will indicate what factors are not suitable for
the 'factoring of a graph.

A third type of graph of special interest is the self-complementary
graph. The self-complementary graph is defined as follows.

Definition 5.5 A graph A = (S, R) is self-complementary if
there is a permutation h on S such that [a, b]is in R if and only if
[h(a), h(b)] is not in R. The permutation h is said to leave the graph
self-complementary. The set of all such permutations is denoted by
H(S,R).

The connection matrix C(A) exhibits several useful properties
of self-complementary graphs. One of the more useful properties is
this. For a self-complementary graph A = (S,R), a permutation

h on S is in H(A) if and only if SR Ch(a)h(b) for all b in C(A).

Here, if ¢ = 0, then c = 1, and if ¢ = 1, then c = 0. That this is true is

shown as follows. First assume h is in H(A). Suppose b - 1 so that

aRb. Then [h(a), h(b)] is not in R so that Ch(a)h(b) = 0. Then suppose
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Cp T 0 so that [a, b]is not in R. Then [h(a), h(b)] is in R so that

=1 Thus, for h in H(a), ¢ =

Ch(a)h(b) . ab Ch(a)h(b) for all b in C(A).

Next, assume c_, = for h a permutation on S and for

ab = h(a)h(b)
all ¢ in C(A). Thus, if [a, b]is in R, then [h(a), h(b)] is not R or if

ab
[a, b] is not in R, then [h(a), h(b)] is in R. Since this is true for all
aand b in S, his in H(A).
Several other features of self-complementary graphs are
obvious in light of the above discussion, namely:
(1) Every permutation h in H(S, R) leaves no element s in S
fixed. This means that h(s) # s. Suppose it were true that h(s) = s

for some s in S. The ¢ cSs in C(A). But this is

= c f
ss Ch(s)h(s) or
impossible, as shown by the above discussion.

(2) A self-complementary graph A has an equal number of
ones and zeros on the main diagonal of C(A). This is true because

C for ¢ in C(A) and all a in S.
aa

aa ;h(a)h(a)
(3) A self-complementary graph A = (S,R) is of even order.
This follows directly from statement (2), above.

(4) A self-complementary graph A = (S,R) has an equal number
of ones and zeros off the main diagonal of C(A). This follows from the
above discussion.

(5) Every cycle of a self-complementary permutation h is of
even length. Suppose some cycle of h were of odd length, say

(s.y s, ¢+, s ). Then for c in C(A), ¢ =c
2 2n+
1 ntl - sls.Z SISZ hm(sl)hm(s
for m even and Cs S = C m m for m odd.
172 h (sl)h (s

»)

Z)



But h (s,) = s, and h (s,) =s,. So

Ch2n+1(s )th+l(s )- 515, ‘slsz
1 2
which is impossible. Thus, all cycles of h are even in length.

" These properties of self-complementary graphs are used in
the theorems presented. The following theorem is unusual in that it
proves the existence of a self-complementary graph for any even
positive integer.

Theorem 5.6 If nis an even positive integer, then there
exists a self-complementary graph of order n.

Proof: The proof consists of constructing the self-complementary

graph (S, R) for which h = (12)(34), -+, (n-1, n)is in H(S,R). This is

done by filling in the entries of C(S,R) by letting cm 1 J_: 1 and
m J,:O form=2, 4, 6, -+, nand j=1, 2, ---, n. Then consider
c.. and c_ ,. ... Since the latter entry is in the row above or below
ij h(i)h(j) i
c.., thenc, . = c ..« Hence (S,R) is self-complementary. A
ij i 7 “h(ih()) (5. R) P y

The next theorem presented depends on two relationships
between the elements of H(S,R) and G(S,R), namely:

(1) 1f h1 and h are in H(S, R) for the self-complementary

2

graph (S,R), then hth is in G(S,R). This is true because

c =
si,sj hi(si), hl(sj)

= c for all ¢ in C(S,R).
h
h1 Z(Si)’ hlhl(sj) Sisj

(2) If his in H(S,R) and g is in G(S, R) for the self-complementary

graph (S,R), then hg is in H(S,R). This is true because



for all c¢ in C(S,R).

S.S.

i] >
These two properties show that [H(S,R)] & G(S,R) and
H(S,R)G(S,R) € H(S,R). It is necessary to define normal subgroup to

complete these results.

A subgroup A of a group B is said to be a normal subgroup

if « 1A x = A for all x in B.

Theorem 5.7 If (S,R) is a self-complementary graph, then
G(S,R) U H(S,R) is a subgroup of the symmetric group on S; the order
of G(S,R) is equal to the order of H(S,R) and G(S,R) is a normal sub-
group of G(S,R)UH(S,R).

Proof: It is first sufficient to show that HZ(S,R) = G(S,R)
and H(S,R)G(S,R) = G(S,R)H(S,R) = H(S,R). To show that HZ(S,R) = G(S,R),

observe that if h,, h

1 5 and h5 are in H(S,R), then hlhl = h1h3 implies

L2
h, = hi; thus the order of H (S,R) is greater than or equal to that of

2
H(S,R); hence the order of G(S,R) is greater than or equal to that of
H(S,R). But since H(S,R)G(S,R)&H(S,R) then the order of H(S,R) is
greater than or equal to that of G(S,R) by a similar argument. But
then the order of H(S,R) is that of G(S,R), so that

H[H%(S,R)] = #[G(S.R)] = #[H(S,R)].
Hence HZ(S,R) = G(S,R) and G(S,R)H(S,R) = H(S,R)G(S,R) = H(S,R).
Next, that G(S,R)UH(S,R) is a group follows by a simple

verification of the group postulates.



Finally, since gG =

44-

G = Gg tor any g in Gand hG = H = Gh

for any h in H, then G is a normal subgroup of GUH. A

The following example is intended to illustrate some of these

ideas.

Example 5.3 Let S = {1, 2, 3, 4} and let

ol
I\

1 - {[1» 2], [1, 3], [1, 4],
R, = {[1’ 2], [1, 3], 01, 4],

= L2 L) L4l

w
n

Then A, = (S, R

1 )y A = (S’

1 2

graphs with

H(A ) = {(12)(54)}
Gla)) = {1}

H(A,) = {(12)(34),
G(A ) =

H(A ) - {(13)24
G(a,) = {i}.

(2, 2], [3, 1], [3, 2], [3, 31, (3. 41},
[2, 2, [3, 3] [4, 1], [4, 2), [4 3%},
[2, 11, [2, 2, [2, 3) [2, 4], [3, 31}

RZ.) and A = (S, Rg) are self-complementary

3

(13)(24), (1234), (1342)},

& (23), 149), (2»09},

As a closing topic for this section, the problem of producing

graphs with a given group is considered. Specifically, the problem is

this. Given a permutation group F of degree n, find a graph (S,R) of

order n such that the automorphism group G(S,R) = F.

Kagno [K2] has shown that there is no non-oriented graph

whose group is the cyclic group generated by a single cycle. If oriented

graphs are used to realize the graph having a given group, then this

cyclic group generated by a single n-cycle always has a graph as shown



by the following theorem.
Theorem 5.8 If F is the cyclic group generated by the
permutation (1, 2, ***, n), then there exists a graph A = (5,R) such

that G(A) = F.

Prootf: The proof consists of specifying C(A) = (a..) for A = (S,R)

so that G(A) = F. Let

a_ . =1fori-=-1, 2, , n -1
i, 1+l
=1,
an, 1 ’
117 %227 " %0

and let a,j = 0 otherwise.
i
First, (1, 2, *-*, n) is an automorphism of (S,R). This is

true because

a
1
oY

for i, j <n

1] i+1, j+1
while
a . - a ) for y < n
nj 1, j+1 -
and
a. = e 1 .
in ai+1, 1 tor 1 < n

Hence F €G(S,R).
Next, let 7 be in G(S,R). Then

a a , fori, j=1, 2, *-+, n.

iyj - TT(l))TT(J)
Suppose w(i) =1 + k (where if i + k > n, then =(i) =1 + k - n). Then
7(1 +1) =1 +k +1, since ai, L1 ai bk, w4 1) and then the only 1 in

row i + k is at columni + k +1. Theretfore, w(l) =1 +k, #(2) = 2 + Kk,

k
etc. But then =~ = (1, 2, -+, n) isinF. A
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Actually, it is possible to specify a graph for a more general
type of group, namely for a special cyclic group, where a cyclic group
on n symbols is the group generated by all powers of a single permutation
on n symbols. The particular cyclic group and a graph for this group
are given by the following theorem.

Theorem 5.9 Let F be the group of degree n generated by

!

the permutation « = PP, """ pq where the Py i=1, 2, -**, qare the
cycles composing w. Let the length of P, be a, fori=1, 2, ~*+, q. If
(ai, aj) =1lfori#jandi, j=1, 2, --+,q, there is an oriented graph A
of order n such that G(A) = F.

Proof: First, G can be written as the product of the subgroups
Gl’ GZ’ Tty Gq where Gi is the cyclic group generated by

P> i=1, ¢, ***, q. This is proved by observing that P, is in G, since

k.
a e P for some integer ki and for i =1, 2, ---, q. Next, the order of
G. is a., hence the order of the product GG, --- G isaa_ -+ a ;

i i 172 q 12 q

moreover, G.G, -+ G _1is a group since G.G., = G.G. for
172 q 1) j i
i, j =1, 2, -+, q. Finally, the order of G is the same as that of

GG,, 7, G .

172 q
Let p. = (s , S , "' s ) fori=1, 2, -+, q.
’ . ’ . = l) .
1 0, Py 1 p. rp' p1
i
Then the graph Ai = (Si' Ri) given by [Sj’Pi’ sj s 1(rp ), Pi] in R

1

tor j =0, 1, =+, rp -1 has G, = G(Ai). Moreover, the graph
i

i

A= (Uisi,UiRi), i=1,2, ", q



has for its group G(A) = G(A) x - xG(A ) = G. A

1 q

On the basis of the previous two theorems, it would seem
reasonable to attempt to prove that a graph always exists for any cyclic
group. While no such proof is given in this thesis, the following example
tends to support the conjecture that a graph exists for any cyclic group.
In this example, the given group is not of the type covered by the previous
theorem.

Example 5.4 LetS= {1, 2, 3, 4, 5, 6} and let

F = {(1234)(55), (13)(24), (1432)(56), I}

be the given group. Then for

=d |

0 1 0 0 0

C(A) =

|©

2
it can easily be shown that G(A) = F.

An approach to the general problem of finding a graph A = (S5,R)
given a permutation group F on S such that G(S,R) = F, is to symbolically

till in C(A) for some { in F using the property T SHDEG tor all c..

£(i)f(J) 1]

in C(A). This process is illustrated by the following example.
Example 5.5 Let f = (12)(34)(56) be in the given group F on

S:{L 2, 3, 4, 5, 6}. Thenc¢c, =c., = a, c

1 22 =c, =b, ¢, =cC = c,

12 21 13 24

and so on for all ci-

j in C(A), so that for



t
p oo s

fis in G(S,R) where (S,R) is determined by any assignment of ones
or zeros to Cf entries so that Cf = C(S,R).

Thus, if it is desired to determine a graph A = (S5,R) of order
n for which G(A) = F for some predetermined group F of degree n,
it would appear that the following would be sufficient:

(1) Construct a Cf for each { in F.

(2) Assign the value 0 or 1 to each entry of each Cf avoiding
contradictions if possible.

(3) Determine all subgroups D of En which contains F as a

subgroup. For each d in D-F, select ani and j and set Cii ¢Cd(i)d(i)’

v v

if possible.

The result would be a connection matrix of a graph whose
group is possibly F.

If it is impossible to complete step (2) or step (3), then F is
not the group of any graph.

The above procedure involves extensive calculations. Possibly,
the intersection table technique as developed in Section IV could be

used to simplity these calculations.
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One final observation is of interest. Most large groups
are not specified by giving the elements of the. group, but rather by
specifying some defining characteristic of the group. Thus, the group

to graph problem should be considerably simplified for groups so specified

as is the situation with the groups considered in Theorem 5.8 and 5.9.



VI. CONCLUSION

The original interest in graphs which prompted this study
resulted from a problem in switching circuits. Because of the possible
application of groups of graphs to such problems, the subject of algebraic
properties of graphs was considered. Without regard to possible
applications, this study in itself, presented some difficult and interesting
problems.

For this reason, this thesis completely ignores the possible
applications of this work. Two such applications deserve mention. First,
the original switching circuit problem involved state merging and state re-
duction in sequential machines. Since the merger diagram of a flow
table is actually a graph of the (S,R) type, the possibility of an algebraic
attack on the merger problem should be considered. Secondly, the
problem of counting the total number of non-isomorphic trees in a
network has received considerable attention in the circuit theory liter-
ature. Since trees of a given network that are isomorphic are related
by the automorphism group of one such tree, it would seem reasonable
to attempt to classify and to count trees by use of algebraic techniques
of the sort used in this thesis.

Any application of this work requires a re-evaluation of the
type of graph which is studied. It is easy to specialize the graph (S,R)
to the non-oriented or to the loopless case. But, some applications
of graphs require multiple arcs from one vertex to another. This is

not possible with the graph (S,R), and is one shortcoming ot this type

-50-



of graph. Conversely, many of the results in this thesis can be extended
to include a more general type of system having sets of relations rather
than just a single relation. Thus, a study of the algebraic properties
of systems, in general, would seem to be an area for possible further
work.

There are several other areas of possible further work using
just the graph (S,R) as the basic system. For example, the problem
of finding a graph of a given group requires much more study. It
should be possible to express the group of a graph product in terms of
the groups of the graphs. Self-complementary graphs, oriented and
non-oriented, offer many problems that could be studied. These are

but a few of the many areas involving algebraic concepts as presented

in this thesis.
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