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A design which frequently appears in behavioral science re-

search is one in which a single group of subjects is classified into

unordered categories by multiple raters. A test of homogeneity of

classification among the raters can be used to determine rater bias.

Analyzing attitudinal change over time, over objects, or over treat-

ments is also frequently of concern in the behavioral sciences. These

illustrations are Specific cases of the more general mixed categorical

data model of order-d which is characterized by a situation in which

n randomly chosen subjects from some homogeneous population are

unasured on an ravalued categorical dependent variable under d dif-

ferent conditions. The hypothesis of general interest is whether the

distribution of responses is the same under the d different condi-

tions. Koch and Reinfurt (1971) stated that such a hypothesis best

examines the relative effects of the d conditions on the dependent

measure of interest.

The probable lack of independence among measures or samples

precludes the valid use of such standard techniques as the chi-square

test of homogeneity. A technique which accounts for the correlated

nature of the resulting distributions is needed if the hypothesis of

homogeneity is to be tested validly.
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The probability model associated with the mixed categorical

data model of order-d is an r x r x...x r contingency table of d

dimensions whose cell frequencies are characterized by a multinomial

distribution of rd cell probabilities and a sample size of n.

Testing the hypothesis of homogeneity of the d correlated distribu-

tions then reduces to testing for marginal homogeneity in the d

dimensional table.

Four different statistical approaches to the problem of

testing for homogeneity of the marginal distributions in the mixed

categorical data model were examined and compared along theoretical

lines. The four approaches examined were the x: statistic of

Stuart (1955), a quadratic form in the differences of the marginal

proportions; the x; statistic of Madansky (1963), a statistic based on

the likelihood ratio criterion; the X§SK statistic of Koch and

Reinfurt (1971), a statistic based on weighted least squares; the

X? statistic of Ireland et a1. (1969), a statistic based on minimum

discrhmimation information estimation.

All four approaches were shown to belong to the same general

class of large sample chi-square statistics. Each of the techniques

was shown to be based on the use of BAN estimators and the four

techniques were shown to be asymptotically equivalent. An eXplicit

algebraic relationship between x: and 338K. was also demonstrated.

.A fifth statistic, 12, algebraically equal to Xésx, was pro-

posed. The }? statistic has the advantage that it does not require

a knowledge of linear models for its understanding as does the X§SK

statistic. The limiting distribution of I? was shown to be chi-

square with (d-l)(r-1) degrees of freedom. A detailed set of
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computational formulas were derived and a program written in Fortran

IV to calculate the 12 statistic was given.

The deve10pment of two different techniques for generating

confidence intervals for contrasts involving the marginal prepor-

tions was also given. One of the procedures, a simultaneous procedure,

was developed along the lines of the results of Scheffé (1959) and

Goodman (1964). A second technique was developed based on the

Bonferroni inequality.

The behavior of the 12 statistic in the finite sample situa-

tion was examined by the method of simulation. The data were gen-

erated in groups of 2000 samples of a given size (n). For this study

the values of n were chosen to yield average expected cell fre-

quencies (H) of 3, 5,10, 20, 40, and 60. For each of the 3 x 3,

4 x 4, and 5 X 5 contingency tables, five different null distribu-

tions were considered and three different non-null distributions were

considered. For the 3 X 3 x 3 table four null and three non-null

distributions were considered.

Empirical estimates of the actual significance level and

power of the I? procedure were found by counting the number of

rejections out of 2000 using the theoretical cutoff levels of

a 8 .01, .05, .10 of the central chi-square distribution and were

compared to their respective theoretical values. Empirical estimates

of the actual significance level and power of 12*, a slight variant

2 2*
of the 12 statistic were also found. The I and 1 statistics

are related by the equation

2* 17'

n
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It was found that for 5.2 10 both statistics approximated

their respective asymptotic behaviors quite well. When E’= S

for those null distributions in which most of the off-diagonal cell

expectations were two or greater, 12 was quite liberal while I?*

approximated its limiting distribution quite closely. For null

distributions in which most of the off-diagonal cell eXpectations

were one or less, 12* was extremely conservative while I? was

slightly conservative. For I; = 3, values of actual alpha were found

to be more extreme than those values found at n = S. In cases where

= 5, 12 was more5
|

the 12 procedure was found to be liberal at

liberal at E'= 3 and in cases where the I? procedure was found

to be conservative at E'= 5, I? ‘was more conservative at E'= 3.

The 12* statistic was more conservative at E'= 3 than it was at

5-5.

The ‘12 procedure was found to be somewhat more powerful

2* ._

than the ‘1 procedure for n = 5. A series of guidelines were

set forth based on the findings of the simulation study.
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CHAPTER I

INTRODUCTION

Questions about the homogeneity of multiple populations are

common in behavioral research. When continuous variables are used,

the questions may focus on population homogeneity with respect to

mean level of performance or variability in performance. When

categorical variables are used, the questions deal with the equi—

valence of the populations with respect to a variable of classifica-

tion.

If multiple populations have been sampled independently and

categorized independently with respect to the classification variable,

then standard data analytic techniques can be used to determine

whether the respective populations are homogeneous. 0n the other

hand, if the samples have been matched (either by pairing or block-

ing of subjects across the samples or by repeated measurement on a

single sample of subjects), the corresponding data analytic techniques

to examine the question of homogeneity are not well-known in the

behavioral sciences nor have their small sample properties been in-

vestigated.

This dissertation develops data analysis techniques to

examine the question of homogeneity in matched populations, studies

the small sample properties of these techniques, and compares these

techniques with other competing approaches that have recently appeared

1



in the statistical literature.

To orient the reader to the design and analysis techniques

presented in this thesis, the independent sample and the matched

sample designs are briefly compared and the need for a separate

matched sample test is explained.

The chi-square test of homogeneity is a categorical data

analytic technique used to analyze data from two—way contingency

tables in which one margin is fixed and the other margin is not.

The corresponding experimental situation involves choosing a random

sample of subjects from each of d different underlying populations

and classifying each subject into one of r categories. The sample

sizes chosen need not be equal but there must be independence both

within and between the samples. The hypothesis of interest is

whether the d populations are homogeneous with respect to the r

categories of the variable of classification. The chi—square test

of homogeneity is analogous in some respects to the one-way ANOVA

used in the analysis of continuous data. A data example to illustrate

the chi-square test of homogeneity follows.

A survey of community needs was conducted in a western

Michigan county. The county was subdivided into four geographic

regions of varying size, and samples of size 23, 25, 93, and 235

were randomly chosen from the adult populations of the respective

four regions. Each respondent was asked to rate the degree to which

he felt it was necessary to solve racial problems. The three

categories of response were: (1) urgent, (2) important, (3) un—

important. The survey yielded the following data given in Table l-l.



TABLE 1-1

Data Illustration for the Chi-Square Test of Homogeneity

 

 

Regions

(1) (2) (3)

Urgent Important Unimportant

Region A (l) 2 ll 10 23

Region B (2) 9 13 3 25

Region C (3) 20 46 27 93

Region D (4) 86 104 45 235

117 174 85

 

The row totals for these data are fixed quantities correspond-

ing to the sample sizes used in the study, while the column totals

are random, with their size determined by the respondents' replies.

The hypothesis of interest is whether the four regions are homogeneous

with respect to the distribution on the dependent variable. If

qu denotes the probability of someone from region q responding

with category j, then the null hypothesis of homogeneity can be

stated in the form

Ho: P1J - sz = P3j = P4j for j - 1,2,3. (1-1)

More generally if independent random samples are taken from d

different populations and each subject is classified into one of

r possible categories, the null hypothesis of homogeneity of the

resulting d distributions can be written as

no: P1j = sz =...= de for j = 1,2,...,r . (1-2)



Let nqj denote the number of observations from sample

which fall in cate or . Let n , n , n, P ,, and P , be

q gyj q 01 OJ (11

defined as follows

r

nq = .:1 nqj for q = 1,2,...,d (1-3)

J

d

n , = Z n . for j = 1,2,...,r (1-4)

OJ qgl qJ

d

n = Z n (1-5)

q=l q

no,

Poj = -;l- for j = 1,2,...,r (1-6)

1'1.

fi . = —91- for j = 1,2,...,r; q = 1,2,...,d (1-7)

93 nq

where nq is the size of the qth sample, n is the total number

0j

of observations falling into category j from the combined samples,

and n is the size of the combined samples. The formula in (1-6)

is an estimate of the probability of an observation falling into

category j under the assumption that this probability is the same

for each of the populations; that is P0j is computed under the

assumption that the null hypothesis in (1-2) is true. The formula

in (1-7) is an estimate of the probability that an observation from

population q will fall into category j.

A statistic which can be used to test the hypothesis given

in (1-2) is

P

cz= z 2: 3i “‘103 . (1-8)



The statistic in (1-8) has the general structure

d r (0 - E )

c2 - 2 z 91E qj (1-9)

q=l i=1 qJ

where Oqj represents the actual number of observations in the qth

sample falling into category j and qu represents the number of

observations to be expected to fall into category j for the qth

sample under the assumption of the null hypothesis given in (1-2).

Large values of the C2 statistic imply that the actual cell fre-

quencies vary widely from those expected under the null hypothesis.

Thus the null hypothesis in (1-2) is rejected for large values of

the C2 statistic. When the sample sizes are suitably large it is

known that the C2 statistic has approximately a chi-square dis-

tribution with (d-1)(r—l) degrees of freedom under the null

hypothesis. For tests performed at the a level of significance,

H0 is rejected whenever the value of the C2 statistic exceeds

the (1-o)th quantile of the chi-square distribution with (d-1)(r—l)

degrees of freedom.

An alternate way of writing the statistic C2, which some-

times appears in the literature is given in (1-10)

2 d r n (P - P )2

c = z z q~ . QJ~ . (1-10)

q=l j=l P

E
.

OJ

To use the chi-square distribution validly as the reference

distribution for the C2 statistic, one of the assumptions which

must be made is that responses across samples are made independently.

One of the reasons for this assumption is that the 02 statistic



does not make any allowances for covariation between random variables

of the form qu and fiq'k for q # q'. That is, the 02 statistic

assumes that

9? I
Cov P

( q q k

j ) = 0 for all q i q', j,k = 1,2,...,r. (l—ll)

If responses between samples are not independent, the random variables

of the form qu and fiq'k will be correlated. Since the C2

statistic makes no provision for this correlation an invalid test

results.

The chi-square test of homogeneity is considered for the

special case where d = r = 2 to illustrate the need for between

sample independence. The 2 x 2 table corresponds to an experimental

situation in which samples of sizes nl and n2 are randomly

selected from two respective underlying populations. The subjects

are then classified on some dichotomous variable. The null hypothesis

of homogeneity can be put in the form

H0: Plj = P23 for j = 1,2 (1-12)

HO: P11 = P21 (1-13)

since the equality in (1-13) implies the equality in (1—12) for the

case when j - 2.

To test H0 the C2 statistic given in (1-10) is computed

for the special case when d = r = 2 and is given by



 

 

  

 

 

  

 

 

  

~ , 2
2 2 n (P - P )

2

C - 2 Z q* Qi: 91* (1-14)

q-l j=l POj

Making use of the equalities given in (1-15), which hold for the

special case under consideration,

P12 3 1 7 P11’ P22 = 1 ” P21’ P02 = 1 ‘ P01 (1‘15)

it can be shown through some algebraic simplification that the

expression for C2 in (1-14) can be rewritten in the form

. ~ 2
(P - P )

c2 = A11 2E . (1-16)

Po“1 ‘ P01) + 1601(1 ' f301)

n1 n2

2 2

Because C as x with 1 degree of freedom

(fill ' 521) .
C = as N(0,l). (1-17)

\v/I P91(1 ’ P01) + 1301‘1 ‘ P01)

n1 n2

The statistic in (1-17) can be written in the form

(fi11 ' P21) ' E1100311 ‘ P21)

150“1 ' 501) + 150“1 ' 501)

n1 n2

because EH (P11 - P21) is 0 by the unbiasedness of the estimators

0

P11 and P21 and the specification of the null hypothesis, P11 - P21.

The C statistic thus has the general form



 

 
 

(1—19)

Var (6)

no

where 6 is an estimate of a parameter 6. Consequently the

estimated variance of P11 - P21 under the null hypothesis is given

by

fi — A A _ A

Var (g _ fi ) = 01‘1 P01) + P01(1 P01)

H0 11 21 n1 n2

= VarH P11 + VarH P21 . (1-20)

0 0

The result in (1-20) is a special case of

Var(Pll - P21) = Var(P11)+ Var(P21) - 2 Cov(Pll,P21) (1-21)

when Cov(Pll,P21) = 0. Thus the normal curve statistic (1—18)

and the chi-square statistic (1-14) treat P11 and P21 as un-

correlated random variables since (1-20) implies CSVH0(P11,P21)

is taken to be 0. For the general case of d samples measured on

a variable of r categories the result in (l-ll) is assumed to

hold. Thus valid use of the chi—square test of homogeneity requires

between sample independence because data from dependent samples are

correlated. Use of 02 for dependent samples assumes incorrectly

that condition (1-11) is satisfied and results in an invalid test.

The mixed categorical data model of order-d involves

a situation in which n randomly chosen subjects or blocks from

some homogeneous papulation are measured on an r-valued categorical

dependent variable under d different conditions. The hypothesis



of general interest is whether the distribution of responses is

the same under the d different conditions. Koch and Reinfurt

(1971) stated that such a hypothesis best examines the relative

effects of the d conditions on the dependent measure of interest.

Because of the nature of the design, the chi-square test

of homogeneity is most likely inappropriate to analyze the data from

such a model. It is doubtful that the observations or responses

made by the same subject are independent of one another. Since the

chi-square test of homogeneity does not make any allowances for

correlated responses, what is needed is a test of homogeneity for

correlated samples that builds the correlation into the procedure.

The use of the mixed categorical data model of order-d and

a subsequent test for the homogeneity of the resulting d correlated

distributions are required in the following types of situations.

1. Panel studies in which d different attitudinal

policy questions are asked of the subjects with

each question having the same r categories of

response. A test for homogeneity of the d distribu-

tions of response would determine if the group held

the same attitude for each of the policy questions.

ii. Longitudinal studies in which each of the subjects

in a group is measured at d different time intervals

on the same r—valued categorical variable. A test

for homogeneity of the d distributions of response

would determine if the group as a whole changed its

mode of classification over time.
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iii. Studies in which a single group of subjects is

classified into r categories by d different

raters. A test for homogeneity of the d distribu—

tions would determine if the d raters viewed the

group as a unit in the same manner.

iv. Studies in which the same group of subjects is asked

the same question which has r categories of response

under d different treatment conditions. A test for

homogeneity of the d distributions would determine

the relative effects of the d treatments.

v. Studies in which the subjects in each of d matched

samples are each classified into one of r categories.

A test for homogeneity of the d distributions would

determine the degree to which the d groups are the

same in terms of the variable of classification.

Design situation (i) can be illustrated by part of a survey

reported by Marascuilo and McSweeney (1969). The survey concerned

the attitude of Berkeley residents toward the integration of the city's

schools. A sample of the city's adult p0pulation was made and the

subjects were asked to respond to the following questions.

(1) For some grade schools, [it has been] suggested that

lines be changed so that the percentage of nonwhite and

white children in these schools would be more like the

percentage for the entire school system

I agree I disagree I am not sure
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(2) For [two of the three] Junior High Schools, [it has

been] suggested that school lines be changed so that

the percentage of nonwhite and white children in these

schools would be more like the percentage for the entire

school system

I agree _____I disagree _____ I am not sure

(3) If more day-care centers and nursery schools are set up,

[it has been] suggested that they be set up to permit

a greater integration of the races than is found at

present

I agree .____ I disagree _____I am not sure

A test for the homogeneity of the distributions of the three

questions would provide a test of whether the adult pOpulation of

Berkeley viewed each of the issues in the same manner. Such an analysis

would be an improvement upon the pairwise analysis used by Marascuilo

and McSweeney (1969) in the absence of a simultaneous test for three

correlated distributions on a polychotomous variable of three categories.

From the same study reported by Marascuilo and McSweeney (1969)

the following question was asked of the group.

[It has been] suggested that more day—care centers and

nursery schools be set up to let more children attend.

I agree ____ I disagree _____ I am not sure

If such a question were asked over d increments of time a test for

the homogeneity of the d distributions would examine the attitude

of the Berkeley adult community to this issue as a function of time.

This is an example of situation (ii).
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In the Miller et al. (1970) study a sample of 84 infants

were tested on a series of tasks involving object concept develop-

ment in the sensory-motor period. Two observers categorized what

they believed to be each of the children's overall performance on

a series of Piagetian-tasks. The categories of classification were

(0) failure, (1) partial pass, and (2) pass. If the researchers

were interested in determining whether the two observers applied

equally stringent standards to the group, a test for homogeneity of

the distributions of ratings for each of the observers would answer

such a question. This illustration is an example of the design

situation (iii).

Yoshinaga (1974) investigated the constancy of teachers'

choices of a disciplinary strategy -- positive reinforcement, social

modeling, and punishment -— when increasing increments of information

were given about the child involved in the disciplinary incident.

The teachers were first given a written description of the dis-

ciplinary incident and asked to choose a strategy to deal with the

incident. The teachers were then given some biographical informa-

tion about the child and again asked to choose a disciplinary

strategy. Finally, the teachers were presented with additional

biographical information about the child and again asked to choose

a strategy. The researcher was interested in knowing if teachers

change their strategy to handle disciplinary problems as more is

known about the child. A test for homogeneity of the resulting

three distributions answers such a research question. This is an

illustration of design situation (iv).
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In Laumann's (1973) study of social interaction and social

mobility, a husband and the fathers of both the husband and wife were

each classified into one of a number of social classes. This design

can be considered as consisting of three matched samples and is an

example of design situation (v). By testing for homogeneity of the

three correlated distributions, the researcher can make inferences

concerning the social interaction of various social classes as well

as make inferences about generational changes in social class. The

classification of a husband, his father, and his father-in-law are

most probably not made independently. The matched triples of

husband, father, and father-in-law can be considered as blocks in a

randomized block design.

The previous examples show the different ways in which the

mixed categorical data model can be used in behavioral science re-

search. The studies of Marascuilo and McSweeney (1969), Miller

et a1. (1970), and Yoshinaga (1974) illustrate data analytic situa-

tions which demanded a statistic to test for homogeneity of d

correlated distributions. Such a statistic can be applied in a variety

of settings which require categorical data analysis of either matched

samples or repeated measures data.

This dissertation focuses on testing for homogeneity of dis-

tributions on a polychotomous variable for non independent samples.

The utility of such a technique in educational and behavioral science

research has been pointed out in this introductory chapter. The

dissertation has three major sections. The first section provides a

review and synthesis of some of the more significant literature re-

lating to the problem. Several methods for dealing with the problem
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are presented and compared in this review. The second major section

provides a detailed development of a large sample statistic which

can be used to test for homogeneity of correlated distributions.

The statistic has the appeal of simplicity and can easily be related

to techniques which are familiar to behavioral researchers who have

had some exposure to statistical methods. In addition a development

of post-hoe techniques to be used in conjunction with the test

statistic is provided. The third major portion of the dissertation

reports a simulation study of the small sample behavior of the

statistic develOped in the second section. The distributional pro-

perties of the statistic both under the null and alternative hypothesis

are considered for a number of small sample cases. The purposes of

this third section are to assess the degree to which the asymptotic

results hold in settings which are frequently encountered in data

analytic situations and to establish a series of guidelines which

can help the potential user of the technique in determining its

appropriateness. A final chapter is included which ties the body of

the dissertation together in the form of a summary and conclusions

reached as a result of the work.



CHAPTER II

TESTING FOR HOMOGENEITY

MULTIVARIATE VERSUS UNIVARIATE APPROACH

The mixed categorical data model of order-d is characterized

by a situation in which n randomly chosen subjects or blocks from

some homogeneous pOpulation are measured on an r-valued categorical

dependent variable under d different conditions. The hypothesis

of interest is whether the distribution of responses is the same

under the d different conditions. Because it is doubtful that

responses made by the same subject or by matched subjects are in-

dependent of one another, a multivariate model is assumed to fit

the data.

The data for this model are represented in an r x r X...x r

contingency table of d dimensions. The set of d responses made

by each subject is counted as a single observation in the contingency

table. The set of responses made by a subject can be characterized

by a vector (jl,j2,...,jd) where jg = 1,2,...,r for g = 1,2,...,d.

In all there are rd such possible vectors or modes of response

which characterize the rd celled contingency table. Let

P31’32""’jd represent the probability of a response profile

(jl,j2,...,jd) or equivalently that of an observation falling into

cell (j1,j2,...,jd) of the contingency table. A multinomial

distribution with parameters {P } and n is assumed

jl’j2""’jd

15
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to fit the cell frequencies {n. } with

Jl)j2”°°3jd

Z

(31.12.....jd

P. . . O a d

JlstsoootJd) ’ n

9
P , =

) 31.32.....Jd

(H)

X n, = n .

(j1,j2,...,jd) Jl’j2’°°°’jd

The distinction between a univariate and multivariate

approach is a consequence of the manner in which an observation is

defined. A univariate approach would count the d responses made

by each of the subjects as d separate observations. In all there

would be nd observations which could be represented by a d X r

contingency table. Such a model is appropriate for a design in

which the d responses made by a subject are assumed to be mutually

independent. As was indicated in Chapter I the chi-square test of

homogeneity for this design is the appropriate procedure to test

whether the distribution of responses is the same under the d dif—

ferent conditions. This is contrasted with the multivariate approach

which views the d responses made by each of the subjects as a

single response profile which is characterized by a response vector

of d components. It is the response vectors which serve as the

conceptual units of observation. Under the multivariate approach

there are thus n and not nd observations. The n observations

can be represented in an r X r X...X r contingency table of d

dimensions. Such a model is appropriate for a design in which the

d responses made by a subject are assumed to be correlated as is

often the case with the repeated measures or matched—sample data.
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In Chapter I it was pointed out that when observations over

the repeated measures are correlated, estimates of the proportions

which characterize the d distributions of response are also

correlated. The multivariate approach examines the joint distribu-

tion of responses over the repeated measures. A test of whether the

distribution of responses is the same under the d different con-

ditions reduces to testing whether the marginal distributions in the

r X r X...x r contingency table are homogeneous. Because the

multivariate approach makes use of the joint distribution the nature

of the correlation between the estimates of the proportions which

characterize the d distributions of response can be determined.

Such information could clearly not be determined using the d x r

contingency table which characterizes the univariate approach. The

multivariate approach, which is employed throughout the dissertation,

takes account of the correlated nature of the responses by focusing

on the joint distribution.

Let M represent the probability that a subject is

qb

classified by category b under the qth condition. qu is a

marginal probability which can be written as

M = X . Z P for q = 1,2,... d

qb ° ' = j ,j ,...,j ’ .(2_2)

(jl,jz,...,jd) with jq b 1 2 d
b = 1,2,...,r

The formula given in (2-2) for the marginal probability indicates

that all joint probabilities which correspond to reSponse vectors

having response category b under the qth condition are summed.

The hypothesis of interest is that the distribution of

responses is the same under the d different conditions. This
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hypothesis of marginal homogeneity can be written as

Ho: M1b a M2b =...= M for b = 1,2,...,r. (2-3)

A number of different techniques have appeared in the

literature for testing H Each of these techniques assumes the0.

multivariate model as set forth in this chapter. The remainder

of the chapter is divided into two main sections. The first section

presents a number of different techniques to test HO while the

second section provides a comparison among the techniques.

TEST PROCEDURES

Notation

In presenting the different approaches to testing H a

0

common notation is used. The multivariate categorical model as

described in the previous section is assumed for each of the

techniques described together with the notation introduced in that

section. Let P and M denote the unrestricted

j1,j2,...,jd qb

estimates of the cell and marginal probabilities respectively with

- “hair-“dd

lesjzt-ooajd n

 

2: x (2'4)n

B j ,j ,...,j

-(j1’j29'°°’jd)Withj b 1 2 d

qb n

 

For certain of the techniques it is necessary to estimate cell

probabilities under the constraints of the null hypothesis. Such

estimates will be denoted as with the method of13
j1’12"“’jd

estimation defined within the content of the technique presented.
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Stuart's Statistic-
 

The technique developed by Stuart (1955) is a large sample

statistic which tests for homogeneity of two correlated distributions.

The statistic is confined to the mixed categorical data model of

order-2 whose data can be represented by an r x r contingency

table. The null hypothesis can be written as

HO: Mlb = M2b for b = 1,2,...,r. (2-5)

Stuart argued that the cell frequencies have a limitingn

jl’jz

multivariate normal distribution. Stuart then defined the variate

di - n(M21 - M11) for i = 1,2,...,r and argued that since the

di are linear functions of the cell frequencies, the di will

also have a limiting multivariate distribution but of rank (r—l)

because of the constraint I d1 = 0.

Stuart then suggestizla statistic which could be used to

test H0. The statistic has the form

2 ,.-1
xS .9 r9 ‘g

(2-6)

with '9' = [d d

lX(r—l)

,d 2d = ((6 >).
r-l" __ ij

(r-l>x(r-1)

1, 2,...

The matrix id is a consistent estimator of the variance-covariance

matrix for the random vector d_ under the assumption that H0 is

true with the 6 being defined as

13

613 = Cov(di,dle0) = -n(Pi,j + Pj,i) (i f j)

(2-7)

611 = Var(dilHO) = n(M21 + M11 - ZPi’i)
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Because the vector d. is approximately multivariate normal

of full rank (r-l) and Ed is a consistent estimator of the

variance-covariance matrix of g_ under HO, Stuart claimed that

for large n, the statistic x: has a chi-square distribution with

(r-l) degrees of freedom under the null hypothesis of marginal

homogeneity. Stuart then defined the rejection region for the large-

sample test as the upper tail of the chi-square distribution with

(r-l) degrees of freedom. Because any (r—l) of the di uniquely

determine the remaining one, Stuart argued that the value of the

x: statistic remains invariant under the choice of which di to

eliminate in the formation of the d. vector.

Likelihood Ratio Statistic
 

Madansky (1963) developed a large sample statistic, based

upon the likelihood ratio criterion of Neyman and Pearson (1928),

which tests the null hypothesis of marginal homogeneity in the

general r x r X...X r contingency table of d dimensions. Using

Madansky's technique the null hypothesis is stated as

H0: qu = Mlb for q = 2,...,d

. (2-8)

b = 1,2,...,r

Let 3_ represent the vector of cell probabilities with

P, a P. ] o (2-9)

—d [Jl’j2"..’jd

lxr

The likelihood function for the multinomial distribution which char-

acterizes the cell frequencies is
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n

I

n
(P

jl’jz’°oa,jd

jn j n31,j2,...,jd! jl,jz’...,jd jl,j2,...,jd
o

319 2900.,
d

(2-10)

 

Luz) - n

The likelihood ratio statistic is given by

ME)
A = ——f:- ,

(2‘11)

LLB)

The 2' vector of probabilities is that estimate of P_ which

maximizes the quantity in (2-10) subject to the restrictions

specified by the null hypothesis and the additional constraint

A

that the sum of the components in ‘g is l. The 2_ vector of

probabilities is that estimate of P_ which maximizes the likeli-

hood function in (2—10) subject only to the constraint that the

sum of the cell probabilities is l.

Madansky specified the constraints which define the null

hypothesis. In all there are (d-l)(r-l) linearly independent

constraints which do not depend on the added constraint that

Z P = l . (2-12)

31:32:---,jdj1’j2’°°°’jd

The constraints which are implied by‘the null hypothesis can be

expressed as

Z [ P

jl’...’Jq-l’jq+l’.°°
’jd j19j29°°°9jq_19b9jq+l,ooo,jd

(2-13)

1 = 0; b = 1,2,...,r-l- P

b’j ,...,j ’j ’j ,...,j

2 -l 1 +1 d

q q q = 2,...,d .

The (d-l)(r—l) constraints given in (2-13) are equivalent to the

statement that qu = Mlb for q = 2,...,d and b = 1,2,...,r—1.
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But this, together with the constraint given in (2-12), implies

the null hypothesis of homogeneity as stated in (2-8).

Maximizing the function L(P) in (2-10) under the hypo-

thesis of homogeneity is equivalent to maximizing the function

H(_1?_)= (11:32::---.Jd)njl’j2’°°"jd log Pj1’j2"°°’jc1 (2-14)

subject to the (d-l)(r-l) + 1 constraints given in (2-12) and

(2-13). If the Lagrangian multipliers A0 and uqb (with

q a 2,...,d and b = l,...,r-l) are introduced, the problem re—

duces to finding that value of P_ which maximizes the function

d r-l

L* (P) = H(P) - A0 [ljl’.t.’de) jl’°°°’jd - {J- qzzzb:1 “qb¢qb (2-15)

where

¢qb ' 2 'Pj1,j2,...,jq_1,b,jq+1,...,jd
j1,...,jq_l,jq+l,...,jd

. . ]
b’jz!‘"3jq_l’jl’Jq+l”°”Jd

*

Differentiating L (P) with respect to each of the P . .
— jl’j2’000,Jd

and setting the derivatives equal to zero, Madansky obtained rd

equations of the form

 

n
11’...,jd d

- X0 - E (u . - u . ) = 0 . (2-16)

P j q=2 qu qu
11,090, d

The estimates of the {Pj j } can then be expressed in the
l’°°°’ d

form
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- j .-.-.j
P a 1 d

11,...,3d

 

d (2-17)

A + 2 (u - u )

q=2 q

In order to find the actual values of the { } the
Pj1,...,jd

corresponding expressions given in (2-17) are substituted into the

constraint equations (2-12) and (2-13). Since the resulting equa-

tions are nonlinear in the unknown Lagrangian multipliers an iterative

method is needed to solve these equations. Madansky described a

linear approximation method for handling the problem. A detailed

algorithm is also given by the author. The resulting P

jl’...’jd

which are obtained using this procedure are the maximum likelihood

estimates of the Pj j under the condition specified by the
1’...,d

null hypothesis of marginal homogeneity.

The unrestricted maximum likelihood estimates of the

Pj 1 subject only to the constraint given in (2—12) are the
1.0.0, d

observed relative frequencies given by

P, . = . (2-18)
31,...,jd n

 

 
(2-19)

 

 

The value of 1 always falls between 0 and l. A small value of

1 indicates that the data provide evidence that the null hypothesis

is false. A test statistic of the form

X; = -2 log 1 (2-20)
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was given by Madansky. Large values of x; lead to a rejection of

the null hypothesis. For large sample sizes the Xi statistic is

approximately distributed as a chi—square random variable with

(d-l)(r-l) degrees of freedom.

Minimum Discrimination Information Statistic

Ireland, Ku, and Kullback (1969) considered the problem of

testing for marginal homogeneity within the context of the mixed

categorical data model of order—2. The authors proposed a statistic

based upon minimum discrimination information estimation (MDIE) of

the cell probabilities of an observed r X r contingency table under

the null hypothesis of marginal homogenity.

Before discussing the actual procedure used by the authors

for the particular problem under consideration, a more general dis-

cussion of the MDIE technique and how it can be used to produce

estimates of cell probabilities under a general null hypothesis is

given. An associated hypothesis testing procedure is also dis-

cussed.

Let { } characterize the cell probabilities in anP

119.12

r X r contingency table such that

2 P = 1, P > 0 j = 1,...ji; j = l,...,r . (2-21)
. , 1 2

j1,j2j1"2 j132

Such a table will be denoted as the Pftable. Let {Pj j } be

1’ 2

the observed set of pr0portions based upon n observations from

an r X r contingency table whose classifications are common to

the Pftable and such that

A

Z , P. >

Jl’jz

jl’jz

P. . = 1 o ' = 1,...,r; = l,...,r. (2-22)
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Such a table will be referred to as the Eftable.

A distance-like measure from the Pftable to the Ettable

known as the discrimination information denoted by I(P}E) can

be defined as

Pj j
I(§;§) = 2 Pj j log ;_l__2_ . (2-23)

j19j2 l, 2 P. c

31932

The discrimination information is a distance-like function

in the sense that

(i) 1(3)?)

ll

0

(2-24)

(ii) I(_P:_l_3_) > o for £753 .

It should be pointed out however that in general the values

I(P}E) and 1(23P) are not the same.

Let W represent the family of all Petables which satisfy

the constraints of some null hypothesis H The method of MDIE0.

then consists of finding that §_e W which minimizes the dis-

crimination information in (2-23). In a sense the technique con-

sists of finding that {stable which satisfies the constraints of

the null hypothesis and at the same time most closely resembles

the observed table 2, The P_e W which is closest in distance

~

to the observed table will be denoted as P, The {Pj j } are

l’ 2

then the MDIE of the cell probabilities under the constraints of

the null hypothesis H Taylor (1953) has shown that estimates0.

obtained in this manner are BAN in the sense of Neyman (1949).

A discussion of BAN estimators is given in more detail later in

the chapter.
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In order to test a null hypothesis a statistic of the form

P

2 ~ j1’32
X = 2n 2 P log-—-—-— (2-25)

1' 2 j1,j2

can be used. Using the results of Kullback (1968) and Neyman

(1949), it can be shown that the statistic Xi has a limiting

chi-square distribution under the null hypothesis. The degrees

of freedom are given by the number of linearly independent con-

straints put on the components of P_ which are specified by the

null hypothesis H0 and which are independent of the constraint

that the sum of the components in P_ is l. The Xi statistic

was called the minimum discrimination information statistic (MDIS)

by Ireland, Ru, and Kullback (1969). Large values of the statistic

indicate that the observed probabilities differ considerably from

those cell probabilities which would be expected under the null

hypothesis. Hence large values of Xi would reject the null

hypothesis.

Now consider the Specific problem investigated

by Ireland et a1. (1969) who were interested in testing for the

marginal homogeneity of two distributions in an r X r table.

The procedure which these authors used follows the general methodology

which has just been described.

The specific null hypothesis under consideration is

HO: Mlb = M2b for b = 1,2,...,r . (2-26)

The linearly independent constraints specified by H0 which are

independent of 2 Pi j = l are then expressed as

i,j ’
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131 Pi,j = kil Pk,i for 1 = 1,2,...,r-l . (2—27)

The first part of the procedure consists of finding that P_ vector

whose components satisfy the constraints given in (2-27) and which

minimizes the discrimination information

P. .

1(3 2) = 2 Pi j log :%21- . (2—28)

i,j ’ Pi j

If the Lagrangian multipliers Y0 and o

are introduced, the problem reduces to minimizing

r r P r-l r r

z 2 Pi j log-:iL1-+ 2 a1 2 Pi - 2 Pk 1

1-1 3-1 ’ P1 1 i=1 =1 ’1 k=l ’

(2-29)

r r

+ y Z Z P - 1

0 i=1 j=l ij

. Ex ressions for the P can be

1.3 p ' 1.1}

obtained in terms of the unknown Lagrangian multipliers Y0 and

with respect to the P

a1, 1 - l,...,r-l by differentiating the expressions in (2-29)

with respect to each of the P1 3 and solving the resulting r2

3

equations together with the constraint equations given in (2-27)

and by X P = 1.

i.
1.1 3

Rather than solving for the unknown Lagrangians the authors

developed a convergent iterative procedure which leads directly

to the estimates {P1,j}. Approximations to the {P1,j} can be

achieved to any desired level of accuracy. A proof that the

approximations do in fact converge to the desired {P1,j} was

also given by the authors. Once the {Pi j} are found, or at

’

least approximated, the MDIS to test the null hypothesis (2-26)
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is given by

2 ~ P.

XI - 2n 2 P1 , log-£L1 . (2-30)

.3 ‘
1.1 Pi,j

Values of Xi larger than the (1-o)th quantile of the tabled

chi-square distribution with (r-l) degrees of freedom will reject

the null hypothesis of marginal homogeneity for tests performed

at the a level of significance.

Weighted Least Squares Approach

Koch and Reinfurt (1971) derived a statistic which tests for

homogeneityof the marginal distributions within the context of the

general case of the mixed categorical data model of order—d. The

development of the test statistic makes use of a general methodology

given in Grizzle, Starmer, and Koch (1969). This general methodology

involves the derivation of test statistics in terms of weighted

least squares analysis of certain linear models. A brief outline

of the general methodology given by Grizzle et a1. (1969) is dis-

cussed, followed by the Koch and Reinfurt (1971) adaptation of the

technique to the problem of testing for homogeneity of the d

marginal distributions in the r X r X...X r contingency table.

Let P_ represent the vector of cell probabilities which

characterizes the r X r X...X r contingency table of d dimen-

sions and let .2 represent the corresponding vector of observed

proportions. Let Fm(§) be any function of the elements of .2

that has partial derivatives up to the second order with respect

to the {P }, m = 1,2,...,u. Also let
jl’ooo’jd
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Fm(P) = chg) evaluated at P_= P_

[E (2):" = (Fig). F2(.P_):°--:Fu(£)] (2-31)
qu

1: (23' =- [5(2), F2<§),....Fu<§)1 .
uxl

It is assumed that the functions Fm(P), m = 1,2,...,u are linearly

independent of one another and of the constraint that the sum of

the components of the 2_ vector is 1.

Let

: (.11)= x .13. , <2-32)

qu uXv le

where X is a known matrix of coefficients and ‘B is a vector of

unknown parameters. A general equation of the form given in (2-32)

can be used to specify a linear model which is hypothesized to

characterize the data. Grizzle et al. (1969) prOposed a statistic

to test the fit of the data to the linear model proposed in (2-32).

The test statistic is given by

2
_ "’ I "1 "_ _ "' _

XGSK - (3(3) — X g) 8 (2(2) x 3;) (2 33)

where S is the sample estimate of the variance-covariance matrix

of F(§) and ‘B is that value of the §_ vector which minimizes

the quantity

(21(2) - x y's’lmé) - x a) . (2—34)

The estimate of the vector of unknown parameters which is given

by E. is the weighted least squares estimate and the test statistic

is simply the residual sum of squares or sum of squares error due
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to lack of fit. If X is of rank v, the test statistic XGSK

has approximately a chi-square distribution with u — v degrees

of freedom for large sample sizes under the assumption that the

model in (2-32) fits. Large values of the statistic provide

evidence that the model does not fit.

Consider the Koch and Reinfurt (1971) adaptation of

the general weighted least squares methodology to test for homo—

geneity of d marginal distributions in a mixed categorical data

model of order-d. The null hypothesis of marginal homogeneity can

be stated as

H : M = M =...= M for b = 1,2,...,r . (2—35)

In terms of a linear model approach the hypothesis in (2-35) could

be stated in the form~

Ho: qu = Bb, q = 1,2,...,d; b = 1,2,...,r-l (2-36)

where the Bb are unknown parameters which are estimated from

the data. The linear model can be written in matrix terms as
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.. 1 F” ‘7' - '-

M11 1 O 0 B1

M21 1 O 0 B2

Mdl 1 0 O

B

M12 0 1 O L r-I‘

M22 0 1 O

... = . . . (2-37)

MHZ O l O

er-l O O . . . 1

M 0 O 1

2r-l

Mdr-l 0 0 . . . l

‘b d — _

P. (P) = x a -
d(r-l)x1 d(r-l)x(r-l) (r-1)x1

Testing the null hypothesis of marginal homogeneity as given

in (2-35) can be accomplished by testing the fit of the model given

in (2-36) to the observed data. A significant test of fit statistic

(2-33) indicates that the hypothesized linear model in (2-36) does

not fit the data. This is equivalent to rejecting the null hypo-

thesis of marginal homogeneity as is stated in (2-35). The test

statistic X2 has an asymptotic chi-square null distribution

GSK

with d(r-l) - (r-l) = (d-1)(r-l) degrees of freedom.
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COMPARING TEST PROCEDURES

This section of the chapter is devoted to a discussion of

the relationships among the four procedures presented in the pre-

vious section. The relationships deve10ped are, in some cases,

based upon modifications and elaborations of previous research.

Before any direct comparisons are made among the four procedures

under consideration, a series of theoretical results are presented

which serve as the basis for the subsequent comparisons.

Throughout this section the symbol P will be used in

1

place of P for the sake of notational simplicity and the
j17"°dd

multinomial probability model will be assumed throughout.

Neyman and BAN Estimators

The mixed categorical data model of order-d, as considered

in this dissertation, assumes an r x r x...x r contingency table

of d dimensions whose cell frequencies are characterized by the

probability distribution

 ¢ =" HP 1 (2-38)
2 n11 i ‘1

such that Z P = 1 and 2 n = n.

1 1 1 1

Let

fmag = o , m = 1,2,...,t (2-39)

define t linearly independent constraints on the components of

g_ which are independent of the constraint 2 P1-= 1. It is

.1.

assumed that fm(2), m = 1,2,...,t,possess continuous partial

derivatives up to the second order with respect to the Pi. and
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that there is at least one solution such that P > 0 for all 1.

l

The problem of estimating the components of the g_ vector

given the model in (2-38) and the constraints (2-39) was considered

by Neyman (1949). Neyman defined a class of estimators known as

best asymptotically normal (BAN) estimators which possess the

following properties:

~

If P is a BAN estimator of P then

i l

(i) P is a consistent estimator of the parameter P.. This means

i

that as n, the sample size tends to infinity, the estimator

P approaches the parameter P

1 1°

(ii) Jh<§l.- Pi) is asymptotically normal with zero mean and

asymptotic variance 02, where 02 is independent of n.

This means that as n tends to infinity, for any real number

t,

'fna‘ -P.)
l l

P o < t a p{Z < t}, where Z ~ N(0,l) . (2-40) 

~*

(iii) If P1. is any estimator of P1. satisfying (i) and (ii)

*

but with 0 taking the place of o in (ii) then

0 2 o . (2-41)

(iv) P1. has continuous partial derivatives with reSpect to the

observed proportions.

Neyman (1949) showed that BAN estimators for the components

of 2_ under the required restrictions can be obtained by either

minimizing the quantities
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(n - nP )2 (nl.- nPi)2

(a) z - or (b) )3 (2-42)

1 1 1 1

 
 

or by maximizing the quantity

 

n-

(C) 2'“ , 11 Pi 3- (2-43)

1 1 '

with reSpect to the Pl. under the given constraints. Estimates

obtained using criterion (a) are called minimum chi-square estimates.

Estimates obtained using criterion (b) are called modified minimum

chi-square estimates while those estimates computed using criterion

(c) are called maximum likelihood estimates. Maximum likelihood

estimators constitute a subclass of BAN estimators. The motiva-

tion for Neyman's (1949) paper was to find a class of estimators

more general than that of maximum likelihood but possessing the

same desirable asymptotic pr0perties as maximum likelihood estimators.

It was h0ped that in certain cases some of the BAN estimators would

be easier to compute than maximum likelihood estimators. Neyman

showed that if the fm(g), m = 1,2,...,t given in (2-39) are

linear in the P then a set of modified minimum chi-square1:

estimates could be obtained by solving only a system of linear equa-

tions.

Neyman demonstrated that a null hypothesis defined by the

t linearly independent constraints given in (2-39) can be tested

by using either the chi-square statistic, modified chi-square

statistic, or likelihood ratio test statistic defined reSpectively as



 

 

(n - n1’.)2

2

x =2 .,

P.i. n 1

and (n - n? )2

X2 = X l 1 (2-44)
1 . n.

1 1

and

as

-2 lo ,1 = 2 z n,(lo n, - log n P, .

g l. l g l. l?

Neyman proved that each of the statistics in (2-44), using any set

of BAN estimators defined in (2-42, 2-43) {%l.% has a limiting chi-

square distribution with t degrees of freedom under the null hypo-

thesis as the sample size, n, approaches infinity.

All three test criteria given in (2-44) are consistent for

the null hypothesis being tested. That is under any admissible form

of the alternative the power of each of the procedures tends to

one as n approaches infinity for every fixed level of significance.

Neyman showed that the three test criteria in (2-44) are asymptotically

equivalent in the sense that the probability of the respective tests’

contradicting each other tends to zero as n approaches infinity

for every admissible hypothesis Specifying either the null or

alternative. The Neyman results were reported by Bhapkar (1966).

Mitra (1958) has shown that under a suitable sequence of

alternatives tending to the null hypothesis at a suitable rate,

the x2 statistic given in (2-44) has a limiting noncentral chi-

square distribution if the {P1} are maximum likelihood estimators.

Bhapkar (1966) conjectured that Mitra's results should hold

for any of the statistics in (2-44) using any system of BAN
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estimators. This conjecture was based on the asymptotic equivalence

of the chi—square statistics in (2-44) and the fact that any BAN

estimators possessthe asymptotic properties of the maximum likeli-

hood estimators used by Mitra in his proofs.

The results of Neyman discussed in this subsection together

with certain results which are now discussed serve as the basis for

comparisons among the four procedures outlined in the second section

of this chapter.

Some Results by Bhapkar
 

In this subsection, a major result by Bhapkar (1961) which

links the modified minimum chi-square estimators to a quadratic

form of the unbiased estimators of the fm(P) is presented. The

result serves as a theoretical basis for the Grizzle, Starmer, and

Koch (1969) methodology which uses a weighted least squares approach.

The result also provides some common ground for comparing the four

procedures presented in the second section.

Let the probability model in (2-38) be assumed. Also assume

that n is large enough so that n1.> 0 for all 1, Consider a

null hypothesis defined by t linearly independent constraints on

the {P } (independent of Z P = l) of the form

1 J 1

Ho: fm(P) = Z fml 71.: 0 m = 1,2,...,t . (2-45)

.1

The fml are known constants such that the equations in (2—45),

together with Z P = l, have at least one set of solutions for

l

which the P 's are all positive.

.1
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Let

f = f (P) =‘2 f , P m = 1,2, ,t

m —' . mu. 1.
1.

if = [E ,E ,...,E 1 (2—46)
1x: 1 2n c

‘ 1' f 1 'with Pl.- ;- or al 1..

A

The fm’ m - 1,2,...,t, are the unbiased estimates of the correspond—

ing fm (P) .

Using the multinomial probability model defined in (2—38)

and the linearity of the covariance operator it can be shown that

Cov(£,£.)=lzf f, P.(1--P)—l 2 f f,,,PP,
m m n1 mjmi l j_ nfij'l' mjml ii (247)

[
H

.. 1 _ ..- “1151,1333“.l P1 n fm(P>fm.(P> ¢mm.

Let the variance-covariance matrix of f_ be denoted as ¢ where

¢ = ((¢ ,)) m,m' = 1,2,...,t . (2-48)

11’“: mm

Let G denote the sample variance-covariance matrix of f. formed

by replacing the P1 in 4 by their respective sample estimates

P with

l.

G = ((gml)) m,m' = 1,2,ooo’t a (2-49)

txt

The G matrix is a consistent estimator of ¢, the true variance—

covariance matrix of f, both under the null hypothesis and

alternative.
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Theorem 2.1. Min x2 = if G_1 £_ . (2-50)

Subject to H0

The expression on the left side of the equality in (2-50)

represents the value of the modified chi-square statistic (2-44)

used in conjunction with modified minimum chi-square estimators,

computed under the constraints of the null hypothesis. Theorem

2.1 shows that the xi method to test the linear hypothesis in

(2-45) is algebraically equivalent to a test statistic based upon

the asymptotic normality of the unbiased estimators of the fm(P),

whose variance-covariance matrix is estimated by the sample variance—

covariance matrix. The quadratic form in (2-50) bears some re-

semblance to Stuart's statistic (2.6). The explicit relationship

is specified later in this chapter. A modification and elaboration

of the proof of Theorem 2.1 originally formulated by Bhapkar (1961)

is given in Appendix A.

Bhapkar's result given by Theorem 2.1 serves as the theoretical

basis for the Grizzle, Starmer and Koch (GSK) methodology presented

earlier in the chapter. The GSK methodology is concerned with

testing the null hypothesis that a specified linear model characterizes

the data:

H : g: (P) = x 3; (2-51)

qu uXv vxl

where X is a prespecified matrix of coefficients with full rank

v S u, and B. is an unknown (v X 1) vector of parameters.

Bhapkar (1966) stated that there exists a [(u — v) X u]

C matrix of full rank which is orthogonal to X such that
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C _F(_I_’_) = C X I_3_ = _(_)_ . (2-52)

(u-v)X1

The model in (2-51) implies the u - v constraint equations given

in (2-52). These constraints represent u — v linearly independent

constraints on the components of the 2. vector.

As a concrete illustration of this abstract argument con—

sider the case of testing for marginal homogeneity in an r X r

table where r = 3. The null hypothesis can be formulated in terms

of testing the fit of the linear model when the Koch and Reinfurt

(1971) approach based on GSK methodology is used.

    

M11 0 Bl

M21 1 0 B2 (2-53)

M12 = o 1

Jazz] _o 1—

£(_1:>= x 2
4X1 4X2 2X1

If the C matrix is taken to be

C = l -l O 0

2x4 0 0 1 -1

C and X are orthogonal,

C X = 0

2x2

and the linear model in (2—53) gives rise to the constraint equations

C 131(3) = 9

which can be written as



(2—54)

For this illustration testing for marginal homogeneity can

be accomplished either by testing the fit of the model in (2—53)

using the'weighted least squares approach as given in (2—32 - 2—34)

or by testing the null hypothesis as it is formulated in (2-54) in

terms of linear constraints placed upon the components of the '2

vector. The constraint equations given by (2-54) can actually be

written out in terms of the components of P_ by writing the marginal

probabilities in terms of the Pl. as given in (2-2). Testing

the null hypothesis as it is formulated in (2—54) can be accomplished

by using any of the techniques given in (2-44).

Bhapkar (1966) showed that testing a null hypothesis of the

form given in (2-52) using the statistic with modified minimum
X1

chi-square estimators computed under H0 results in a test statistic

which is algebraically equal to the statistic used to test the fit

of the corresponding linear model given by (2-51). Bhapkar thus

demonstrated that by thinking of the null hypothesis either in terms

of a linear model (2—51) or in terms of a group of constraint equa-

tions which the linear model defines (2-52), two algebraically equi-

valent test procedures result.

If the null hypothesis is defined in terms of a linear model

H: 1; (_P_) = x p (3-55)

qu uXV VXl

the corresponding statistic to test H is given by the sum of

0

squares residual
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2 , ~ , —1 - ~
xGSK = (5(2) - x 13) s (21(3) - x _I_3_) (2—33)

with _E a weighted least estimator of B. (2-34) and S a con-

sistent estimator of the variance-covariance matrix of F(P) under

both the null and alternative hypotheses.

If the null hypothesis is defined in terms of the constraint

equations

H o

0. f (P) = C F(P) = 0 (2-52)

(u—V) x1 — (u-v) Xu (Ll—3) x1

which are induced by the linear model, then it can be tested using

the statistic

~ 2

- P2 (n1. n 1)

x1 = 2 n (2-43)

.1 i

 

where the {P } are the modified minimum chi-square estimators

.l

computed under the constraints given in (2~52) and the additional

constraint that Z P a 1.

l

Bhapkar's (1966) result states that the statistics XGSK

and xi are algebraically equal whenever the latter is defined.

Each has a limiting chi-square distribution with u - v degrees

of freedom under the null hypothesis. In addition by Theorem 2.1

the result

2 ...“!

XGSK E' G

’1 g (2—56)

follows. The (u - v) X (u - v) matrix C is a consistent

estimator of the variance-covariance matrix of £_ under both the

null and alternative hypotheses with
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G = C S C' . (2-57)

xi Statistic and Maximum Likelihood Estimators

It was shown by Theorem 2.1 that if a null hypothesis of

the form (2-45)

H : f (P) = E f , P, = 0 m = 1,2,...,t
0 m -' 1. ug_ j_

is tested using the statistic in conjunction with modified

2

X1

minimum chi-square estimators computed under the null hypothesis,

a statistic results which is equal to the quadratic form

=i'G f

with 3 defined by (2-46) and 0 defined in (2—47 - 2~48).

Define

= ' =
OG ((Ogmlil')) 111,111 192200.”:

(2-58)

with g , = 1-2 f ,f , P,

0 mm n l. ml,m j_ j_

The 0G matrix is a consistent estimator of the variance—covariance

matrix of £1 provided the null hypothesis is true. From (2-47)

and the definition of 0G in (2-58) the relationship between G

and 0G can be written as

G= G-iEE'. (2—59)
0 “——

In the computation of 0G, the zero vector is taken as an estimate

of :3 which results in a consistent estimate only under the con-

dition that the null hypothesis (2-45) holds.
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Theorem 2.2. If the null hypothesis

H0: me) glfmi Pl= o m = 1,2,...,t

is tested using the xi statistic with approximate maximum likeli-

hood estimators computed under H0 then

2*

X1

-1
a W ‘ _
£00 E (2 60)

k

where xi is used to denote the modified chi-square statistic

computed with approximate maximum likelihood estimators. The proof

of Theorem 2.2, which is an extension and elaboration of a proof

given by Bennett (1968), appears in Appendix B.

It can be shown that when £_ is taken to be the vector

d_ defined in (2-6) the quadratic form in (2-60) is the test

statistic given by Stuart (1955) which was the first procedure in-

troduced (2-5 - 2-7) to test for homogeneity of marginal distribu-

tions.

Explicit Relationships Among_Statistics

The four statistics discussed in section two of the chapter

are now compared from the standpoint of the research and results

2

S

statistic of Stuart (1955), the Xi statistic of Madansky (1963)

cited in (2-38 through 2-60). Under consideration are the X

based upon the likelihood ratio criterion, the Xi statistic of

Ireland et a1. (1969) based upon minimum discrimination information

estimation, and the X2GSK statistic of Koch and Reinfurt (1971)

based upon fitting a specified linear model by weighted least squares.
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There is an algebraic relationship between the X2 and

GSK

x: statistics. For the case of marginal homogeneity of the r X r

table the linear model can be specified as

  

   

_ ‘

F111 y 1 o 0 51 I

M21 1 0 . . . 0 B2

M12 = 0 l . . . 0 .

M O l . . . O

, 22

H0. . . J-BrTlJ (2-61)

M1r_1 o o . . . 1

M O O . . . l

2 -1
nrJ -— A 

using the Koch and Reinfurt approach. This model leads to the re-

sulting constraint equations

M21 " M11 = 0 “(M21 " M11) = 0

M22 - M12 = 0 or equivalently n(M22 - M12) = 0 (2-62)

Ho:

MZr-l " er-l = 0 n(M2r-l " Mir-l) = 0

Let d1 = n(M21 - M11), 1 = 1,2,...,r-1

5y =[d,d,...,d_]
lX(r—1) l 2 r l

A

_1f with 'f_ taken as d_ and the
2 "v

The result that XGSK .f_ G

relationship between G and CG given in (2-59) with 0G taken

as 2d defined by (2-7) can be used to write the xéSK statistic

to test H0 as
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2 =

GSKX é'tid vigil-15; (2-63)

For notational simplicity let A equal 2

I
n
.

Claim; By Ireland et al. (1969)

 

 

1 -1 -1 “A 93 A’1
[A — Ed _<_1_'] = A + —1 (2-64)

[n - ng d]

Proof of Claim

1 —1 Auli i'A-l
Show [A - E-g_gf] A + _1 = I (2-65)

[n - de d]

where I is the identity matrix of dimensions (r-l) x (r-l).

The product of the two matrices in (2-65) can be written as

  

 

 

 

AA - H d Q'A + _1 - -l

n - d'A d n(n - 51_'A _d_)

—1 HI. 931-1) + 9. g'A'li'A'lg + n. s'A’l - .4. g'A‘IsI. g'A‘l
=- AA + -1

n(n - de d)

-1 5!. i'A-ld'A’lg. - d(d'A—1d)d'A—1

=- AA + -1

n(n — de d)

-1 51 s'A'lgA’ls-L - g. _c1'A‘1 <_'A"lsl_>
= AA + _1

n(n — de ‘_)

- AA'1 + o = 1

(r-1)X(r-l)

In a similar manner it can be shown that

-1 A'lsi. g'A‘l—l 1
A + _1 [A'Eig']=1°

In - i'A 9.3]

Substituting the result in (2—64) into (2-63) one obtains
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2 -1 flat 2'“ -1 g'A'lg £95151
XGSK - d' A + -l d = d'A _c_l_+ _1

In - 93A 9.] In - 93A 21

n _d'A-ld - (d'A-lg)2 + (d'A 1d)2 _d'A-ld

[n - d'A-ld] _'A’1g_

1— n
“-1

I

1 2.21. .4.
a —-——-—-—- ;

(2—66)

.1 '._1l n g_Bg i

but 4d} §;¥d_ is the Stuart statistic. Hence from (2—66) the re-

lationship between XESK and x: can be stated as

2 2
X X

x2 = S or x2 = GSK . (2-67)
GSK 1 _ l_x2 S 1 +'l-X2

n S n GSK

As n + w under H X2 + X2 although X2 2 X2 for all finite
0’ GSK S GSK S

n. When n is large and the components of g_ are small the X§SK

and x: statistics will be close in value. The X28K provides a

more powerful test under forms of the alternative hypothesis since

it uses a variance-covariance matrix whose variance terms are

smaller in value than those used by Kg. In addition to the algebraic

relationships given in (2-67), there is an underlying relationship

among all four statistics. Each of the techniques either is itself

or reduces to a large sample chi-square test based upon the use of

BAN estimators. The x: statistics of Stuart can be shown to be

approximately equal to the modified chi-square statistic xi (2-44)

used in conjunction with approximate maximum likelihood estimators.

It was also shown that the X§SK statistic of Koch and Reinfurt

is equal to the modified chi-square statistic xi used in conjunction

with modified minimum chi-square estimators. The x; statistic of
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Madansky is the likelihood ratio test statistic (2-44) used in

conjunction with maximum likelihood estimators. According to Neyman

(1949) each of these three techniques possesses the same asymptotic

properties and are all asymptotically equivalent. Ireland et a1.

(1969) pointed out that by using results of Taylor (1953) and Neyman

(1949) it can be demonstrated that minimum discrimination information

estimators are also BAN and the Xi statistic thus belongs to the

same general class of statistics as Xésx, x; and Xi.

The technique of estimating a set of cell probabilities

{B1} under the constraints of a given null hypothesis using MDIE

consists of finding that 2_ vector whose components satisfy the

null hypothesis and which minimizes the function

P

I(§_,_13_) = 2 P log :— . (2-68)

1 1 ‘1

If, instead of minimizing the function in (2-68), a gfvector is

chosen which minimizes the function

f

. i.

I(£,§_) = 2 Pi log 17 , (2—69)

1. J.

an estimation procedure results which is also referred to as minimum

discrimination estimation by Kullback (1968). The estimates found

using (2-68) and (2-69) are, in general, different.

When (2-69) is rewritten as

n nl n

I(_f:,_) = 2 —log-- - 2 --log Pl

1 i

= constant - l-Z n 10 P

1 n .1 g .1
.1.

n

= constant1 - i-log P 1- (2-70)
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it is seen that the value of _1_’_ which minimizes I@,3) is the

same as that value of g_ which maximizes the quantity

n

H P 1-- L(§) + constant

1_ J.

2 (2-71)

where L(£) is the likelihood function defined in (2-10). The

equivalence of minimum discrimination estimation and maximum likeli-

hood estimation thus follows from this last result, provided the

distance-like measure defined by (2-69) is used. The technique of

MDIE has appeared in the literature using both definitions of dis-

tance, (2-68) and (2-69). When (2—69) is used, the resulting X2
I

statistic which is given by

log (2'72)

H
w
'
l
r
-
u
’

is equal to the likelihood ratio test statistic given by (2-44)

since {5 } are maximum likelihood estimators. When the distance-

i.

like measure defined in (2-68) is used, the Xi

not the same as the likelihood ratio statistic. Berkson (1972)

statistic is generally

noted that the differences between the two estimation procedures

defined by the two different distance functions are analogous to

the differences between the modified minimum chi-square and minimum

chi-square estimation procedures defined in (2-42) respectively.

The point of comparison is the fact that 1(232) and 1(232)

interchange the observed and estimated probabilities as do the

respective chi-square procedures. Berkson then stated that the

2
X2 statistic using estimation procedure (2-68) is to the x1

I
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statistic (2-44) as the Xi statistic using estimation procedure

(2-69) is to the x2 statistic (2—44). The analogy is a conceptual

rather than a mathematical statement. It is conjectured that

Ireland et a1. (1969) chose to use the distance-like function given

by (2-68) rather than that given by (2-69) to define their statistic

because of the difficulty in computing maximum likelihood estimators

for the problem of testing for marginal homogeneity. The use of

the (2-69) definition would require the computation of maximum likeli-

hood estimators.

This somewhat lengthy discussion of the X2I statistic and

two associated estimation procedures has been given in order to re-

late this statistic to the better known statistics in (2-44) which

have served as the basis for comparing the techniques discussed in

the second section of the chapter. It should be pointed out that

the comparisons made are all based upon large sample theory.

In Chapter III an explicit statement of a statistic which

is algebraically equivalent to X2
GSK

the advantage of not requiring a knowledge of linear models as is

is given. The statistic has

the case for x2
GSK' A development 0f the large sample distribution

of the statistic is given. In addition post hoc procedures which

are used to locate sources of significance are developed and

illustrated.



CHAPTER III

2

THE I STATISTIC AND ASSOCIATED

POST Hm PRmEDURES

2

THE I STATISTIC

In Chapter II four different techniques to test for homo-

geneity of the marginal distributions in the mixed categorical

data model were given. The Xi statistic of Ireland at al. (1969)

and the Xil statistic of Madansky (1963) each require iterative

procedures to obtain estimates of the cell probabilities computed

2

under the null hypothesis, The XGSK statistic of K061”! and Reinfurt

(1971) does not require the estimation of the individual cell proba-

bilities but does require the estimation of a vector of parameters

Specified by the linear model which is to be fitted to the data. In

the Koch and Reinfurt procedure the parameters of the model are esti-

mated using a weighted least squares technique and the estimates are

computed using a straightforward chain of matrix multiplications and

2

inversions. Although the XCSK statistic is less computationally

2

difficult than either the x: or XM statistics, it does require a

certain knowledge of linear models and weighted least squares analysis

which may not be possessed by potential users of the technique.

The statistic develOped in this chapter has the advantage

2 2

of both computational simplicity relative to the XM and XI

2

statistics and conceptual SimpliCity relative to the XGSK

SO
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statistic in that a knowledge of linear models is net required in

order to understand the technique. If the null hypothesis of

marginal homogeneity is stated in terms of t linearly independent

constraint equations, each linearly independent of the constraint

2 P = l, and is written in the form

1 i

H : f = 2 f , P, = 0 for m = l,...,t (3-1)

0 m - ml. 1

l.

a statistic to test HO can be written as

2 A " A

x = g} G 1 g

with g, and c as defined in (2-46) and (2-49) of Chapter II

respectively. The structure of the null hypothesis and associated

test statistic in (3-1) serve as the general framework for develOp-

ing an explicit statistic to test for marginal homogeneity in the

mixed categorical data model of order-d.

Model and Hypothesis

Throughout the discussion it is assumed that d repeated

measures are taken on each of n Subjects and the measures are

based on the same r-level categorical dependent variable. For

notational simplicity the numbers 1,2,...,r are used to index

the levels of the dependent variable.

The data from such.a design can be represented as an

r x r x...x r contingency table of d dimensions with a multi-

nomial distribution assumed.to fit the observed set of rd fre-

quencies. Any cell in the contingency table can be represented
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as an ordered d-tuple each of whose components represents a

particular level of the dependent variable on a particular measure.

In general any cell can be represented in the form

(jl’j2’°'°’jd)3ji=1’2)000,r Vl=1,2,...,d.

Following the notation introduced in Chapter II let

nj j denote the number of observations which fall in cell
1,...’d

(‘11,."’jd)' Let Pj1,0'0,jd

ject's set of reSponses falling into cell (j1,...,jd)

denote the probability of a sub-

with the

Let M denote the marginalcell probabilities summing to one. qb

probability that a subject is classified by category b on the qth

measure with

ll

H D
.

 

M = 2 . . . X P , q ..
qb j ,...,j _

(11,---,jd) 1 d b = l,...,r (3 2)

with j = b

q

An unbiased estimator of P . is
jl’°°°’Jd

n .

A .11’ ’Jd

= (3-3)
31, "jd n

and an unbiased estimator of “db is

‘ — . . . iM. 2 z ...,j
qb _ j :

(31,---.jd) 1 d

with j = b

q

I‘ r

with 2 M, = 2 fi = 1 Vq = l,...,d

b=1 qb b=1 qb

Define
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_ 1 d a 1 d .

M =— 2; M , M =- >3 M Vb=1,...,r. (3-4)
.b d b .b d b

(181 q q=1 q

b and M‘b and the constraints on

the marginal probabilities given in (3-3) it follows that

Using the definitions of M

r r A

b:1(qu - Mb) = b2:1 (‘qb - Mb) = o vq = l,...,d (3-5)

and

d _ d . 3

q111(qu - MOb) = (1:104 b - Mob) = o Vb = l,...,r. (3-6)

The null hypothesis of equality of the d marginal dis-

tributions can be stated as

H : M1b = M2b =...= M Vb = l,...,r or equivalently as

H0: Y. 9. (3-7)

(drxl) (drxl)

where

I . -'— - -'_ = -Yb [Mlb M.b.M2b 110b,...,Mdb Mb] Vb l,...,r (3 8)

(lxd)

and

The correSponding sample estimates are given by

.' A L. ;

.... - - M -
Yt [Mlb M.b 3 M21) .b g o o o ’fidb .b]

Z
P
’

(3'9)

and



54

In the next subsection a statistic for testing H !_= 0
o‘ —

is developed and its large sample distribution is derived. The

test statistic is a quadratic form which involves a reduced form

x .*

of the vector y, !_, and the sample variance-covariance matrix

Zh* which is a consistent estimator of 2A*. The test statistic

V

has the form

2 .*' ._ .*

I = l 2,3. X (3‘10)

which is shown under H and for large n to be approximately
0

chi-square with (d-l)(r—l) degrees of freedom.

Large Sample Distribution of 12 Under H0

Because each subject is measured d times, the outcome

for subject 1 can be represented as falling into cell

(j11,j21,...,jd1). Define a set of Bernoulli random variables on

the sample space of outcomes as follows:

xa1.a2.-...ad((jl’12’°”dd” = 1 if ak =51k Vk = l,...,d

= 0 otherwise . (3-11)

In all there will be rd such Bernoulli random variables with

one being defined for each value of a a - 1,2,...,r and

k’ k

k - 1,2,...,d. One can now represent the d responses for each

subject 1 as a vector of the form
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P —‘

x1,1... . ,1((311’321’°” "1:11”

x1,l,...,2((jli’jZi"°"jdi))

. X1,1,...,r((jli,121’...’jdi)) (3’12)

rXm .

.
fi
fl

xj1,j2’° ° ° ’jd ((j119j21" " 9jd1))

xr,r,...,r((jli’j21’°°"jdi))   _J

The vector in (3-12) contains rd - l zeros and a single 1 which

indicates the cell into which subject i's set of observations

falls. The random vector X has a multinomial distribution with
_1

parameters {P. } and n = l.
j1,...,jd

Let

P' = P d

— d [jls'°°9jd] an

1Xr

(3—13)

13' =[13 1 .
- j ,...,j

lxrd l d

By the definition of ‘xi, 2_ can be written in the form

A 1 n

§_= - Z X (3—14)

n 1‘1 -d

By the definition of the mixed categorical data model it is assumed

that the n subjects are a random sample from a homogeneous popula—

tion. Then it follows that gi,_2,...,§n are independent, and

identically distributed. By a form of the multivariate central

limit theorem given in Rao (1965)
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.4; (13 - 1:) 421 ~ N (1(9- 2) (3-15)
r

where 2 - 2x . For a fixed n, where n is taken large, it

_1

follows from (3-15) that .2. is approximately N d(P,-%-Z)- and

r

this approximation improves as n approaches infinity. Because a

multinomial distribution is assumed to characterize the cell frequencies

- 2 3! (3-16)

(rdxrd)

d
where DP is an (r x rd) diagonal matrix with elements of the

2' vector on the main diagonal.

Let

I B A
3Eb [Mlb’ fiZb’°°" Hdb] Vb l,...,r and

lxd (3-17)

_11' ' [21" fi'900-9 fi'] °

IXdr 2 "T

It is possible to find a matrix K d’ the elements of which are

zeros and ones such that K E = _ffrxi‘his can be done because M:

is a vector of estimates of marginal probabilities and E_ is a

vector of estimates of joint probabilities which, when summed

appropriately, yield the marginal estimates.

The following proposition from multivariate statistics

is used to derive the approximate sampling distribution of :2

for large n.

 

Proposition 1. If Y ~ N (u, 2 ) and if L is a matrix of

- k‘- Y
le - ka

constants then LX_~ Nm(Lu, L ZAL').

Y

Using the facts that P ~ N (1(2, 2?) for large n, and K}: = _M

r _—

from Proposition 1 it follows that the distribution of E; can be



approximated by

r
<
>

H
I
>

It is now possible to find a matrix

- A i where 1 is the vector defined by (3-8). Matrix A, which

is a block-diagonal matrix, has the form

 

By Proposition 1, the distribution of §_= A‘fl_ can be approximated

by a multivariate normal of the form Ndr(A L g, A L X

is approximately distributed as

2 ~ N (Q, ’3)» with 2
dr V X_

the basis for constructing a statistic to test HO: !_-

equivalently to test H

Proposition 2.
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AL') . (3-18)

A

erdr

such that

"
U

H l

where D = ((d )) d = - —' for i f j
0 dXd ij ij d

I ad—Zl- for i=j (3-19)
d

r_ Vm= 1,2,...,r . 

AL'A') when

"
U

A

Because !_ is an unbiased estimator of V, the null

09

n is large.

hypothesis _V_ - Q can be stated as Ed) - 9; hence under H

(3-20). = A L ZAL'A'

[
'
1
1

The following result from multivariate statistics provides

0 or

EQZ) = _C_)_:

is of full rank, then

Y

0:

~ Nk(u_, £3.) and Z—If g

 
kxl

-l
- ' - ~

(I. .2) g! C! .2) Xk'

Let BA denote a sample estimate of Z. found by replacing

V V

in EA by 2, Because 2. is a consistent estimator of Z.

X. .2

is given by

V

0
a statisfic to test B
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12 - @-2>'i:1@-2> = 'i'1

1 i

I
<
>

P
<
>

(3-21)

The statistic in (3-21) relies on (3-20) and the substitution of

2:1, a consistent estimator of 2:1. If EA were of full rank

1 y. 2 y.
then 1? would have an approximate x distribution with dr

degrees of freedom under H Large values of I? would provide0'

evidence against H and hence the upper tail of x2 could serve

0

as the rejection region. The only drawback to the preceding

argument is that Z“ and 5‘ are both of deficient rank.

V

The rank of 2. is determined by the number of linearly

V .

independent components in the random.vector .23 The components of

I
<
>

j; are themselves random variables which can be thought of as

elements in the inner product space L , the space of all random
2

variables with finite second moments with an inner product defined

as follows:

VU1,U e L , (Ui’U ) . (3-22)j 2 ) = Cov(U1,U

J 3

Claim; There are (d-1)(r-l) linearly independent components in 2,

The legitimacy of this claim rests on the restrictions

d

introduced in (3-5 and 3-6). The restriction Z (qu

q-l

Vb - l,...,r implies that r linearly dependent vectors

— M.b) a 0

are introduced, one for each value of b. For a fixed value of b,

d .

once any d-l terms in 2 (qu - M b) are known, the other term

qu ' .

is determined and redundancy exists in the definition of ‘2, The

r A

restriction Z (qu - Mib) = O ‘Vq = l,...,d implies that d

b-l

linearly dependent vectors are introduced, one for each value of

Ar

q. Knowing any r—l terms in 2 (M - M b) determines the

b-l qb
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remaining term. Again, a redundancy is introduced. In all,

d1+ r - l redundant components are introduced since one component

is counted twice. Consequently there will be dr - (d + r - 1) =

(d - l)(r - l) linearly independent components in i}

No information will be lost be deleting any (d + r - 1)

redundant components. The goal is to form a new vector ‘fif from

i; by choosing any (d-l)(r-1) linearly independent components

.. * .9:

from 1; y_ will be approximately 1 ~ N(d-l) (r_1)(0, 26*)

under Ho since any marginal distribution of a multivariafe

normal distribution is itself multivariate normal. The matrix

1A

2‘* is then of full rank and for n large, 25* will also be of

V V

full rank. As a consequence of Proposition 2, a statistic '12

can be defined which, for large n, is approximately distributed

under Ho as

2 *'“-l “* 2

I Y. ZV" Y. X(d-1) (1.-” '
{3-23)

5* A

The vector ‘2. is formed from. V_ by choosing any (d-1)(r-l)

linearly independent components of ‘2, Define for each b,

b - 1,2,...,r

A*' A ..2‘. A _". A .1 x .2.

Es ' [Mlb ' M.b"°°’Mmb-1 b “ M.b’ Mhb+1 ‘ M.b""’ Mdb ’ M.b]

1X(d-1)
(3-24)

where mb is any integer such that l S mb 5 d Vb and

.*' .*' *' .*' .*'

V - [_V_ ’ o o o ’Yh—l’ VH1, o o 0 "Y1 ] (3-25)

1x(d-171t-1)

.*

for any h tsuch that l S h S r. The specific !_ which is formed

5*

is determined by the choice of the mb's and h. If 1!_ and
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*

22. represent two different vectors formed by two different

choices of (d-l)(r-l) linearly independent components from '2,

then

2 .*'._1 .* .*4 -1 .*
I a 12' .* l!’ — 2! 2 .* 2!_ . (3-26)

111. 2...

Invariance of 12
 

*

The invariance of 12 under mode of formation of .2 is

demonstrated in this subsection. The invariance follows as a con-

sequence of the following theorem.

Theorem 3.1. Suppose that W' = [W1,W2,...,W ] such that

fit t

W1 6 L2 V i, l s i s t and also suppose that the W

 

1's generate

a subspace S of L such that dim(S) = k where k < t. Now let
2

g} - [X1,X2,...,Xk] where .é. is formed by choosing a set of k

lxk

linearly independent components from ‘W_ and let

If - [Y1,Y2,...,Yk] where q! is formed by choosing a different

:2: of k linearly independent components from .3? Suppose fix is

a function from (L2)k onto the class of k x k nonsingular —

variance-covariance matrices such that ETX = T fixT' for all k x k

real matrices T. Then _- .—

e"?& = 1'2; X. - <3—27)

‘nggf. By definition of a basis {X1,X2,...,Xk} and {Y1,Y2,...,Yk}

each forms a basis for 8. Hence ‘X_= T§_ where T is a k x k

matrix of full rank. This result follows because one basis can be

expressed as a nonsingular linear transformation of another basis

for the same space S. By substitution



1'2; X." l‘T'Y- T32 - (3-28)

By hypothesis

f - T 2 T' . (3-29)

Substituting (3-29) into (3—28)

16;]: - _x'T'uExT'flrx eg'r'u'flfiglfl'rx . (3-30)

From (3-30) the final result

.- ~-1: .- v ..3. XY 1 x 2x x (3 31)

is obtained.

.*

The invariance of I? under mode of formation of :1

follows directly from Theorem 3.1. In the specific case under con—

.* .*

sideration, two vectors 1!_ and 2!. whose components generate

the same subspace S of dimension (d-1)(r-1) are formed from the

vector ‘2. by choosing any (d-l)(r-l) linearly independent com-

ponents from ‘2, In terms of the more general theorem, Z, 12?, and

22* play the roles of W, x, and 2 respectively. The result in

(3-31) with the appropriate substitutions made verifies the invariance

.*

of the 1? statistic under mode of formation of 2;.

Computational Form of I?

In this subsection the necessary formulas needed in the

computation of the I? statistic are provided.

The majority of the work in calculating the 1? statistic

A A 6*

given by 2; ZA* 2; goes into finding the variance-covariance
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matrix. Instead of calculating §.* directly, it is easier to

write

5* * A A *x *'

y - A M

(d-l) (r-l) xdt " v _M_

Associated with each 12% there are numbers m1,m2,...,mr and

h defined in (3-24) and (3-25). The matrix A* associated with

the corresponding if can be found by deleting rows m1,

[m2 + d],...,[mr + (r-l)d], and rows [(h-1)d + 1] through dh

of matrix A defined in (3-19). Row [mh + (h-1)d] will be in-

cluded in the rows [(d-l)h + 1] through dh which are deleted.

*

An illustration of the formation of A follows

i'r’h‘fia A- r—2-1-1ooooo‘O"

9X1 . .1

MZI-MJ -12—1oooooo

fi31’fi.1 -1-1zoooooo

Mlz-M:2 %— oooz-1-1ooo

fizz-M.2 ooo-12-1ooo

fiaz'fia 000-1-12000

{113-HS 0000002-1-1

1223-?4'.3 oooooo-12-1

1j33-fi-fl _oooooo-1—1_2_J    
.*

Consider a vector !_ of the form

 

A* " .3..—

1 " 1321”}.1‘

M -M

31 .'1 h=3,m-l,m=3~
. _‘fi' 1 2

M12 “.2

M —M
_22 .34 
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*

To find the appropriate A matrix using the value of h = 3,

rows 7, 8, and 9 are deleted from A. In addition for ‘ml - 1 and

a

m - 3, rows 1 and 4 are also deleted from A. The resulting A
2

matrix has the form

A= 'Ci'z-looooo'fi"

1-1-12000000

30002-1-1000 '

_ooo-12-1oo‘gj  

It now remains to determine the structure of 2 . For

'M

notational simplicity let Cov(-) and Var(-) denote population

parameter values and let C(°) and V(-) denote consistent

estimators of the former found by replacing the P3 j
1,000, d

with Pj j . The formulas which follow are a consequence
1,000, d

of the fact that a multinomial distribution characterizes the cell

frequencies.

Var(P ) - la )(1 - P ) (3-32)
31’...,jd n Jl"°"jd j19°°'9jd

v03 > - l{1'5 )(1 - f ) <3—33)
11,000,1d n 11’...,jd jl’ooo’jd

A A 1

COV(P .P . .) = - -(P )(P . .) (3-34)
jl’ooo’Jd 11,...’jd n jlgooo,jd jl’...’jd

where for at least one value of i - l,...,d, ji * 3i

.1’5 .>=—1(
Ji!"°9jd HPj19'°'de)(P

C(P
31’...’jd ji!'°'9jd

v) . (3-35)

The following estimates of Var(-) and Cov(-) are obtained

from the respective parameters in a similar fashion



A 1A A

V(qu) - n qu(l - qu) (3-36)

A _l" A I
C(qu, qu.) n ququ. for b i b (3-37)

603 ii )=-1- z (1'5 )-lM M (3-38)
qb’ q'k n j =b jl,...,jd n qb q'k

Jq=k
q' for qa‘q'

11:1,..0’r

for i#q,q'

Formula (3-38) results from.writing the marginal proportions

qu and ‘fiq'k in terms of formula (3-3) and using the linearity of

the covariance operator to obtain the algebraic simplification in

Define the following:

A .

Z bb - 2‘ where ‘flb is defined in (3-17) b = l,...,r

dxd 5o

Sigh - “Sm” skm - C(Mkb, Mmb) k 9‘ 111 (3-39)

k,m-l,...,d skk - v<fikb)

f-C(M,M) for 1+3
dxdij “1 ‘1

C031. {11) - ((aghD ash = 00381. fihj) (3-40)

g,h-l,...,d

The variance-covariance matrix EA which is of dimension

, M

dr X dr can be expressed as a block matrix having the form
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z11 212 ° ' ' ' ' 21r

5f“ - f: 55 .
2.1. 21 22 . .

0 .0 o . (3'41)

fir . O . 0 . Err

1   
The form given in (3-41) is a consequence of the definition for

g given in (3-17). The computational form of the 1,2 statistic

is then

A *' *. *t * .

12 - M'A (A z A ',)'1A _M_ . (3-42)

N
I
3
)

Conceptually the 1 statistic follows the general frame-

work set forth in (3-1). The null hypothesis in (3-7) can equi-

valently be stated as

Ho: 1* Q . (3-43)

(d-l)(r-1)XI

The null hypothesis in (3-43) defines (d-l)(r-l) linearly in-

dependent constraints on the parameters {Pj j } each of which
1’...’ d

is independent of the constraint that the cell probabilities sum to

one. The 12 statistic has the same form as the more general

.* . .

statistic given in (3-1) with 2_ replacing f_ and 25* replacing

V

G in (3-1). From the results of Chapter II the 12 statistic is

thus algebraically equivalent to both the X§SK statistic and the

xi statistic used in conjunction with modified minimum chi-square

estimators. The null hypothesis of marginal homogeneity is rejected

at the a level of significance whenever '12 is greater than the

(l-o) quantile of chi-square with (d-l)(r-l) degrees of freedom.
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Asymptotic Power of I?

Bhapkar (1966) conjectured that the results of Mitra (1958)

concerning the power of the minimum chi-square statistic based on

maximum likelihood estimators could be extended to the xi statistic

based on modified minimum chi-square estimators. Because I? is

algebraically equal to a xi statistic based on modified minimum

chi-square estimators, Mitra's results will be applied to the 1?

statistic.

Let a sequence of alternatives to the null hypothesis be

defined as

*

“ink ! -= Li (3—44)
A?

where (I. is a vector of (d-l)(r-l) constants not all of which

are zero. As n tends to infinity the sequence of alternatives

{H§é)} tends to the null hypothesis. For large n, the power

function of the I? test can be approximated by a noncentral chi-

square with noncentrality parameter given by

*' - k _

1'17. i! =‘1‘:l'£«1'l—x ° (3-45)

!_ /h 2_ J;-

Because 2:: has an n to the first power in it the expression

V

given in (3-45) does not depend upon n.
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TECHNIQUES FOR ISOLATING

SOURCES OF SIGNIFICANCE

If the I? statistic is so large as to lead to rejection

of the null.hypothesis of marginal homogeneity, the next step in

the analysis is to identify the sources of significance and estimate

the magnitude of the differences. If there are only two correlated

distributions it suffices to identify those categories, or combina-

tions of categories, with unequal marginal probabilities. When more

than two correlated distributions are involved, the additional

problem of locating which of the distributions differ is encountered.

Define a contrast to be a function of the M of the form

qb

r d

W - X 2 C M (3-46)

b=1 q=l qb qb

where the Cqb are known constants subject to the condition that

d

2 c =0 Vb . (3—47)

q=l qb

Let

'- =9b [Clb’CZb’°°"Cdb] Vb l,...,r

le

and let (3-43)

9' -[9_'.g'.....c'1 .

lxdr 2 —T

Define

y} =- [g'.y_'....,M'1 (3—49)

ler 1 "1'

0- =

where Eb [M1b,M2b,...,Mdb] Vb l,...,r.
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Any contrast, V, can then be written in vector notation as

w = 9' M . (3-50)

For suitably chosen 9_ vectors, contrasts which provide meaningful

information to the experimenter can be formed. Interval estimates

of these contrasts can be made which not only help isolate where

the differences between the distributions lie, but also provide

estimates of the magnitude of these differences. Some examples of

contrasts are given in the following illustration from Yoshinaga's

(1974) study.

Yoshinaga investigated the constancy of teachers' choices

of a disciplinary strategy when increasing increments of information

were given about a child involved in a disciplinary incident. The

teachers were given a description of the incident and asked to choose

a strategy from a group of three strategies to deal with the be-

havior problem. The three strategies were: (1) positive reinforce-

ment, (2) social modeling, and (3) punishment. The teachers were

given some biographical information about the child and were again

asked to choose a strategy. Finally the teachers were presented with

further background information about the child and asked again to

choose a strategy from the same group of those three strategies.

The ‘12 procedure provides a test of whether the teachers as a group

vary their strategy as increased amounts of information are provided

about the child. A significant value of the 12 statistic provides

evidence that the probability of a teacher choosing a given strategy

may change as this teacher learns more about the child. In order to

identify which of the probabilities change and under what circumstances,



the researcher can examine a series of contrasts.

are typically chosen to reflect the logical comparisons which might

be of interest in the given experiment.

marginal proportions might be compared according to the contrasting
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sets of conditions specified below.

(a)

(b)

(e)

(d)

A set of contrasts which reflects comparisons of these types

strategy based upon no information about the child vs.

strategy based upon one source of background information

strategy based upon no information about the child vs.

strategy based upon two sources of background information

strategy based upon one source of background information

vs. strategy based upon two sources of information

strategy based upon no information about the child vs.

strategy based upon some information.

and the corresponding §_ vectors are listed below.

“’1 " M11

“'2 ' M12

“'3 ' M13

“'4 " M21

“'5 " M22

“'6 " M23

“’7'"13

wa'Mn

“’9'H11

“'10 " M11 ’ W21 ' 15M31

V " M12 ' s""422 " 15M3211

“'12 ' M13 ' L5H23 " L“‘Maa

- M

21

2
!

22

{
I

23

I
!

31

{
I

32

{
I

33

I
!

33

i
!

32

{
I

31

10-

11

12-

19; - [1,-1,o,o,o,o,o,o,01

c' =- [0,o,o,1,-1,o,o,o,01

c' - [o,o,o,o,o,o,1,-1,01

c' - [0,1,-—1,o,o,o,o,o,01

c' - [o,o,o,o,1,-1,o,o,01

c' - [0,o,o,o,o,o,o,1,-1]

c' - [o,o,o,o,o,o,1,o,-1]

c' - [o,o,o,1,o,-1,o,o,01

c' - [1,o,-1,o,o,o,o,o,01

c' - [1,-!s,-1:,o,o,o,o,o,01

9' = [0.0.0,1,-%s.-!s,0,o,o]

c' - [0,o,o,o,o.o.1.-!:.-!:]

The contrasts

For this experiment the
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Contrasts W1 through W3 are based upon comparison type (a),

while contrasts W4 through W6 are based upon comparison type

(c). Contrasts V7 through V9 reflect comparison type (b) while

contrasts V10 through W12 reflect comparison type (d). Contrasts

which contain only two marginal proportions, such as those given by

W through V1 are called simple or pairwise contrasts. Contrasts

9

containing more than two marginal proportions, as in V10 through

V12, are called complex contrasts.

Hypotheses of the form

H : W = 0 (3-51)
1 0 i

can be tested by determdning whether the corresponding confidence

interval for W includes the value of zero. Should be re-
1 1H0

jected, meaning that the confidence interval for W1 does not

contain zero, the confidence limits provide an interval estimate

of the magnitude of W A confidence interval procedure not only1.

locates differences, it provides interval estimates of the magnitude

of these differences. For example a confidence interval for V1

not only tests whether the proportion of teachers who choose the

strategy of positive reinforcement changes with the first introduc-

tion of background information about the child, but also provides

an interval estimate of the magnitude of the change, should one exist.

A confidence interval for W10 tests whether some versus no back-

ground information about the child has any effect on the probability

that a teacher chooses a positive reinforcement strategy, and pro-

vides an interval estimate of the effect, should one exist.



71

When several hypotheses are tested at one time, the prob—

lem of determining the significance level for the experiment as

a whole becomes very complicated. If the probability of committing

a type I error is set equal to a for each individual confidence

interval, the probability of rejecting at least one true null hypo-

thesis, 1H0: W1 - 0, when several confidence intervals are gen-

erated becomes considerably larger than a. If enough intervals are

examdned, it is very likely that one or more hypotheses are re-

jected even though they are all true. The error rate experiment-

wise refers to the probability that one or more erroneous statements

will be made in an experiment, where for the purposes of this dis-

cussion an erroneous statement is the rejection of a true null

hypothesis. For most data analytic situations the experimentwise

error rate needs to be controlled since the researcher typically

wants to guard against making any erroneous statements.

In the discussion which follows two methods are considered

for forming confidence intervals about the Y Each technique1.

controls the magnitude of the experimentwise error rate. The

theoretical basis for each of the two techniques is now presented.

Scheffé-type Solution

The technique presented in this subsection is a simultaneous

confidence interval method based upon the works of Scheffé (1959)

and Goodman (1964) and adapted to the design and statistic under

consideration in this chapter. Let the set of all possible con-

trasts of the form. V be denoted by 3. The unrestricted maximum

likelihood estimator of Y for any W e 3 is denoted as P where
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i - _C_' 3. (3-52)

V is also an unbiased estimator of V for each W e 3. Let

82(2) denote the consistent estimator of the variance of T de-

fined in (3-53)

2 . . ,.
S (‘1’) =9_ 2 g . (3-53)

)
H
!

The theorem which follows provides the theoretical basis for the

simultaneous procedure described in this subsection.

Theorem 3.2. As n tends to infinity, the probability will approach

1 - e that simultaneously for all Y e 3

V - S(@)L s V s Q + S(@)L . (3-54)

Here n denotes the sample size, L is the positive square root of

the 100(1 - a)thapercentile of the central chi-square distribution

with (d-l)(r-l) degrees of freedom and 8(2) is the positive

square root of 82(9).

The result of Theorem 3.2 allows the experimenter to examine

the confidence intervals for as many contrasts, V e 3, as desired,

holding the probability of making one or more erroneous statements

at o, regardless of the number of confidence intervals examined.

Rather than assigning an error rate per contrast, an error rate

for the entire family of contrasts, 3, is assigned. The technique

is quite advantageous to use when many different contrasts are of

interest, or when one is merely searching the data to locate some

of the sources of significance in the event of rejection of the

over-all null hypothesis of marginal homogeneity. The use of such
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a technique permits the experimenter to control the experimentwise

error rate and thereby guard against making one or more erroneous

statements, irrespective of the number of statements made.

Proof of Theorem 3.2.

Define Aqb = qu - qu q = 2,...,d

b - 2,...,r (3-55)

The (d-l)(r-l) functions A (q - 2,...,d), (b - 2,...,r), are

qb’

contrasts. The {Aqb} form a set of (d-l)(r-l) linearly in-

dependent estimable functions of the components of the ‘M_'vector

and will span the space of all contrasts W e 3.

Define

A' B [A'__ __,...,A']

1X(d-l)(r-1) 2 ‘T

where (3-56)

A; -[A ,...,. 1.
lX(d-1) 2b db

Any contrast V e 3 can then be written in the form

V = h'.g (3-57)

where ‘h_ is a vector of suitably chosen constants.

Let

9} . [pf,...,n'] (3-58)

1X(d-l)(r-l) 2 "1

Where

v _ " __ A _L

9b [MZb M.b’°°°’ Mdb M.b]

(3-59>

and i=e'2-
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It was shown earlier in the chapter that for large n, 2_ is

approximately multivariate normal with an expected value of .A

and with a nonsingular variance-covariance matrix ED. The :2

5*

vector is a special case of the more general .2. vector defined

earlier in the chapter. If S denotes a consistent estimator of

*. * *.

Z , where S is A 2,.A with l_)_= A_M_ then for large n, S is
D

{
I

nonsingular and as n_ tends to infinity, the probability will

approach 1 - a that

(2, - A)'S"1(I_>, - A) s L2 (3-60)

where L2 is the 100(1 - a)th percentile of the chi-square dis-

tribution with (d-l)(r-l) degrees of freedom. The statement in

(3-60) is the result of Proposition 2 of this chapter.

The Cauchy-Schwarz inequality states that if ‘Q_ and .5

are any two vectors in the space Rk then

IE'HI s (A's. Cy. - <3-61)

The inequality given in (3-61) is used to prove a lemma which aids

in the proof of Theorem 3.2.

Lemma 3.1. If J is a k X k symmetric matrix such that J = R'R

where R is a k X k matrix and of full rank, then for all

29!. e R“

le'il s (ZS'J x v’z'J'l: . (3-62)

Proof of Lemma 3.1. If y_ is taken to be (R-1)':f_ and _N_ is

taken to be RH; then it follows that
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-l

A's-E R'<R )'¥.=.1£'I -

By definition of matrix J

Eli-E R’Ri=i'Ji

and

2'11. = X'R'l <R'1> '3. = i'J‘li .

If the preceding equalities are used together with the Cauchy-

Schwarz inequality stated in (3-61) the desired result

 

li'zl s (it! i é'J'H

is obtained and Lemma 3.1 is proven.

A second lemma needed in the proof of Theorem 3.2 is now

given.

M- Q; - AYS'IQ - A) 5 L2 if and only if lye. - A>| s

L {hfs h. for all ‘h_ in (d-l)(r-l) Euclidean space.

Proof of Lemma 3.2. The variance-covariance matrix S is of full

rank for n large, thus it possesses the properties of matrix J

in Lemma 3.1. If _11 is substituted for _1_(_, (Q - A) for X, and

S for J in Lemma 3.1 with k = (d-l)(r-1) the result given in

(3-63) follows.

/

111' (D. - AM 5 “21's 11 v/(P. - Q's—1(1). - A) (3-63)

 

VIL in. (d-1)(r-l) Euclidean space.
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Now if QQ.‘.A)'S-1(2.‘ g9 S L2 then from (3-63) it follows that

lh'Qz-AH SI» “.11'811

V1; in (d-l)(r-1) Euclidean space.

This completes the proof of Lemma 3.2 going one way. Going in the

other direction it is assumed that

Ih'(_l_)_ - AH S L Vh'S _I_I_ V1; in (d-l) (r-l) Euclidean space.

Choosing an ‘h_ equal to (S-l)'q;-£9 will result in the inequality

 

Ie - Ars‘lo. — A>I «L 42- A>'s’1s<s‘1>'<2- A) .

Because both sides of this inequality are non negative it is valid

to square both sides to obtain an equivalent statement. Squaring

both sides of the inequality and using the fact that symmetry of

8 implies that S-1 is also symmetric when the inverse exists,

the following result is obtained:

[(2 - g's'lm - £912 s Lzm - Q's-1Q - A) . <3-64)

The expression (2.- A)'S-1(Q - A) is non negative since it is a

quadratic form. If the quadratic form happens to be zero, the

result that (2 - A)'S-1(_D_ - A) S L2 is obvious since L2 is

positive. Otherwise [(Q_- A)'S-1(2 - 9)] > 0 and dividing both

sides of (3-64) by this expression yields

1 2
(p - 9's" (p - _A_) s L . (3-65)

This completes the proof of Lemma 3.2.
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As a consequence of the results in (3-65) and Lemma 3.2 the

probability that

l lg'Q-hSthh'Ash'p+hShL (3-66)

simultaneously for all h. in (d-1)(r-l) Euclidean space tends

to 1 - a as n tends to infinity. But by (3-57), each contrast

‘l‘ e y , is of the form h'A and conversely every h'A is a con-

trast ‘1'; 31']; is then ‘1" while 11's 3 is the sample variance of

2 which is denoted as $2(@) as defined in (3-53). The result

given in (3-66) together with these substitutions completes the

proof of Theorem 3.2.

The simultaneous confidence interval procedure is typically

used as a follow up procedure when the value of the I? statistic

is large enough to permit rejection of Ho, the over-all null

hypothesis of marginal homogeneity.

The experimenter is free to generate as many confidence

intervals as desired, provided the intervals have endpoints as

1Ho: V1 - O can be

tested by seeing if the corresponding confidence interval

specified by (3-54). Hypotheses of the form

A

(V - S(V)L, Q + S(T)L) spans zero. If the interval does not
i i

span zero, a source of significance is located and an interval

estimate of its magnitude is given by the bounds of the interval.

In this manner sources of significance can be located and their

magnitudes estimated, while at the same time the experimenter is

protected against making one or more erroneous statements because

a simultaneous error rate of a is set for the entire family of

contrasts 3.
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The simultaneous confidence interval procedure just des-

cribed has the added advantage of correspondence to the test criterion

associated with the 12 procedure. The 12 procedure tests the

over-all null hypothesis of marginal homogenity,

H0: A = Q a (3‘67)

and the 12 statistic is algebraically equal to the quantity

QfS-¥Q. For a test performed at the a level, the test criterion

is to reject B if and only if

0

p's p> L . (3-68)

But from Lemma 3.2 the condition in (3-68) occurs if and only if

there exists at least one h. in (d-l)(r-l) Euclidean space for

which

lh'al > E's—1h L .

The over-all null hypothesis, H0, is thus rejected using the 12

test criterion if and only if there is at least one contrast

V e 3 for which zero is not included in the interval

(V - 3(@)L, ‘1? + S(\F)L) .

Rejection of the over-all null hypothesis of marginal homogeneity

using the ‘12 test criterion guarantees the existence of at least

one contrast V e 3 which is statistically significant when using

the simultaneous confidence procedure.

The ability of the experimenter to examine as many contrasts

V e 3 as he desires for a fixed experimentwise error rate is not
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without drawbacks. Because the Scheffé-type procedure focuses on

the entire family 3, it may not be as powerful a procedure as

certain other techniques. The confidence intervals generated using

the Scheffé-type solution may be wider than the corresponding

intervals using other procedures and less sensitive in detecting

differences. An alternative procedure to the Scheffé type technique

follows.

‘ggnferroni-type Solution

If only a specified subset, s, of the contrasts in 3' are

of interest to the experimenter and if the number of contrasts in

s is sufficiently small, then the technique presented in this sub-

section may be preferable to the Scheffé-type solution. The Bon-

ferroni-type solution places an error rate on each individual

contrast which is examined but the error rate per contrast is de-

termined so as to control the over-all experimentwise error rate.

Let 3 be a subset of 3, with S containing the finite

number of contrasts which are of interest to the experimenter,

denoted as V1,V2,...,Wk. Let Ei be the event that the null

hypothesis

iH0: W1 - 0 (3-54)

is falsely rejected. Let

a1 - F(Ei) .

*

Let E be the event that one or more null hypotheses of the form

given in (3-54) are falsely rejected. Then
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k k
*

P(E ) - P(E u E u...u E ) s 2 P(E ) - 2 a . (3-69)

1 2 k i=1 1 i=1 i

The inequality in (3-69) is called the Bonferroni inequality. The

a

quantity P(E ) is the experimentwise error rate, having as an

k

upper bound the quantity 2 a1. If k is not too large (for

1-1

example 5) and the a are relatively small (for example .01)
i

*

the approximation of this upper bound to the quantity P(E ) is

quite good. Typically each a is chosen to be a/k where a
i

is a specified value which serves as an upper bound for the experi-

mentwise error rate. By dividing the entire 0 value among the

different contrasts of interest, the experimenter is able to control

the probability of making one or more erroneous statements.

Earlier it was shown that for large n, the vector of cell

frequencies is approximately multivariate normal. Because any con-

trast, $1, is a linear combination of the components of the cell

frequency vector, when n is large f will be approximately uni-
i

variate normal. Because S(@1) + o(@i) as n + m, for n large

the distribution of

(3-70)

is approximately standard normal. An equivalent statement of (3-70)

is that as n“+ a the probability will approach 1 - a1 that

W1 - s(wi)za15 W1 5 vi + 3(Yi) zai (3—71)

T 2

where Za ,2 is the 100(1 - a1/2)th percentile of the standard

1

normal distribution. To test hypotheses of the form 1HO: W1 = 0,
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determine whether the corresponding confidence interval for W1,

(W1 - S(Wi)Zai/2, W1 + S(Wi)Za1

I2)

spans zero.

If all 2 are set equal to Z where Z is the 100(1 - Ethh
ai/Z 2k

percentile of the standard normal distribution, then the confidence

intervals using the Bonferroni technique (3-71) will be narrower

than the corresponding intervals using the Scheffé-like procedure,

(3-54), if and only if

Z < L

where L is the 100(1 - a)th percentile of the chi—square distribu-

tion with (d-1)(r-1) degrees of freedom. Typically Z S L will

hold whenever the number of contrasts examined, k, is such that

k S 8d(d - 1)r (3-72)

for the usual values of a (.05 or .01), Goodman (1964).

The Bonferroni technique can be used as a substitute for

the omnibus test of homogeneity or as a follow up procedure to

locate and estimate sources of significance should the omnibus test

be significant. In either case, the choice of the contrasts to

comprise set :5 must be made before the data are examined, other—

wise a serious distortion of the error rate may occur. The experi—

menter must not use the data in determining which contrasts to include

in set :5 This is a major point of difference between the Bonferroni

and Scheffé-type procedures. The Scheffé-type procedure allows the

experimenter to examine any contrasts in 3 for a constant
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experimentwise error rate, whether the choice of contrasts is

dictated by prior hypotheses or inspection of the data.

Although both the Scheffé and Bonferroni type techniques

are large sample procedures based upon asymptotic results, the

robustness to nonnormality of the V is probably greater for the
i

Scheffé-type than for the Bonferroni-type technique. The accuracy

of the Scheffé-type procedure is based upon the degree to which the

quadratic form 'QfS-¥2_ approaches its limiting chi-square distribu-

tion under the null hypothesis. Such a study is conducted in

Chapter IV for tests performed at the nominal .01, .05, and .10

significance levels. A good fit to the limiting distribution at

these cutoff values will guarantee a valid Scheffé-type confidence

procedure at these levels. The validity of the Bonferroni procedure

is dependent upon the degree to which the quantity

W1 - W1

.
(3-70)

8(W1)

approaches its standard normal limiting distribution for each con-

trast W1 examined. The fit of the statistic in (3-70) to its

limiting standard normal distribution may not be good in the extreme

tails of the normal distribution. Because a separate significance

level is assigned to each test of iH0: W1 - 0, the significance

level per test is typically quite small, for example If
2.
k 0

a - .05 and k . 10, it would be necessary to use the .25th and the

99.75th percentiles of the standard normal distribution as the cutoff

values. The fit of the statistic in (3—70) to its limiting distribu-

tion in such extremities of the distribution as the .25th and 99.75th
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percentiles is questionable for small or even moderate sample sizes.

A.Monte Carlo investigation to examine such behavior would be extremely

costly because of the large number of samples which would have to be

generated to produce stable estimates of the actual significance

level for tests performed at such small nominal a values. The

actual significance level for each test of vi = 0 or equivalently

the actual confidence level given to each interval in (3-71) may

be quite different from its stated nominal level when n, the sample

size, is small or moderate. When similar procedures are employed

for the k contrasts, the resulting experimentwise error rate may be

quite different from the theoretical rate of a, the value set by

the experimenter.

Asymptotically the relationship between the Bonferroni and

Scheffé-type techniques is made explicit in (3-72), but for small or

moderate sample sizes the relationship in (3-72) may not be a valid

criterion to apply because of the lack of information about the

actual significance level of tests using the extreme tails of the

distribution as would be the case in the Bonferroni-type procedure

when many hypotheses are tested.

A data example which illustrates the 'L2 procedure and the

two post hoc techniques presented in this section is now given.
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DATA EXAMPLE

The following data example is based upon Laumann's (1973)

social interaction data. In Laumann's study of social mobility

and social interaction, a husband and the fathers of both the husband

and wife were each classified into one of a number of social classes.

This design can be considered as consisting of three matched samples.

By testing for homogeneity of the three matched samples on the

variable of classification, the researcher can make inferences con-

cerning the social interaction of various social classes. Because

the three samples are probably not independent, the 12 procedure

is used to test for homogeneity of the marginal distributions.

Laumann's original categories of classification are collapsed into

just four categories to make the analysis feasible since rd, the

number of cells in the contingency table, would be too large had

Laumann's original categories been used.

The four categories of classification are given as:

(1) professional, technical, kindred-white collar managers,

officials

(2) clerical - white collar

sales - white collar

(3) craftsman - blue collar

(4) operatives - blue collar

service - blue collar

laborers (except farm) - blue collar

Let husbands be sample 1, husbands' fathers sample 2, and wives'

fathers sample 3. The data are represented in the 4 x 4 x 4 con—

tingency table given in Table 3—1.



TABLE 3-1

 

 

 

 

  
 

Laumann's Social Interaction Data

Sample 1

(l) (2)

Sample 2 Sample 2

(1) (2) (3) Q4) (1) (2) (3) (4)

(l) 44 17 4 12 (l) 11 2 4 8

Sample 3 (2) 10 3 6 2 (2) 1 2 2 3

(3) 29 7 22 22 (3) 6 7 4 9

(4) l3 8 21 32 (4) S 1 11 8

(3) (4)

Sample 2 Sample 2

(1) (2) (3) (4) (1) (2) (3) (4)

(l) 8 2 19 ll (1) 9 2 9 10

Sample 3 (2) O 0 5 5 (2) 0 0 2 6

(3) ll 2 26 35 (3) ll 0 22 32

(4) 4 l 21 37 (4) 12 4 28 39

Marginal Totals

(1) (2) (3) (4)

Sample 1 252 84 187 186

Sample 2 174 58 206 271

Sample 3 172 47 245 245

n = 709

Ho: Mlb - MZb = M3b for b = l,2,3,4
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32* =- E11 - 171 7.0742837

821 -‘fi;1 -.035731

17112 - "1:72 .029619

822 -‘§;2 = -.007052

813 -‘§;3 -.036201

fi23 - 3'3 -.009403

The if vector is formed by choosing m = m m = m = 3 and
1 2 = 3 4

h = 4, where the m's and h are defined in (3-15). This choice

A

represents one of many possible V vectors which could be used.

in the computation of the 12 statistic

 

  

2:: a 11464.6 6198.0 6501.1 2647 3 5468.9 2420.6

2' 6198.0 13478.0 2991.9 6467.3 3445.4 4713.3

6501.1 2991.9 22447.7 12705.9 5326.5 2411.8

2647.3 6467.3 12705.9 25063.1 2961.5 4452.6

5468.9 3445.4 5326.5 2961.5 10192.6 4445.6

I_2420.6 4713.3 2411.8 4452.6 4445.6 8584;4‘1

'12 = Ef'i:i if = 71.39

v

The null hypothesis is rejected for tests performed at the nominal

level of a = .05 since the value of 12 is larger than the 95th

quantile of x2 with 8 degrees of freedom.

Confidence intervals using both the Scheffé-like and

Bonferroni—techniques are computed for the following contrasts:
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V1 7 M11 " M21

32 ' M11 ' M31

*3 ' M21 ‘ M31

*4 ' 2M11 M21 ‘ M31

‘15 ' M14 ‘ M24

W6 ' M14 ‘ M34

V7 ' M24 7 M34

W8 ' 2M14 ’ M24 ' M34

*9 ' M22 ' M32

3 - M - M

TABLE 3-2

Scheffé—like Confidence Intervals at a - .05 and

Bonferroni Confidence Intervals with a - .005 per Contrast

 

 

\

Y Q 8(2) - Scheffé-likeA A Bonferroni A

(v — S(W)L, w + 3(3) L) (w — s(w) z,w + 3(3)2)

31 .1100 .0212 (.0349, .1852)* (.0504, .1696)*

32 .1128 .0228 (.0320, .1937)* (.0487, .1769)*

33 .0028 .0200 (-.0638, .0740) (-.0534, .0590)

V4 .2228 -0270 (.1270, .3186)* (.1531, .2925)*

35 -.1199 .0233 (-.2026, -.0372)* (—.1854, -.0544)*

26 -.0832 .0227 (-.1639, -.0025)* (-.1470, -.0194)*

27 .0367 .0237 {-.0475, .1209) (-.0299, .1033)

vs -.2031 .0395 (-.3431, -.0631)* (-.3141, -.0921)*

29 .0155 .0137 {-.0332, .0642) (-.0230, .0540)

310 -.0550 .0245 (-.1418, .0318) (-.1238, .0138)

 

* Significant contrast
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Contrasts W3, W7, W9, and W10 each compare the respective

family backgrounds of husband and wife. Neither the Scheffé nor the

Bonferroni procedure yields statistically significant confidence in-

tervals. This suggests that the variable of social class has the

same distribution for both father of husband and father of wife. In

a global sense these results indicate that the social class back-

grounds are the same for husband and wife. Contrasts W1 and W5

each examine generational differences in social class. Both con—

trasts are significant, and the nature of the intervals suggests

upward class mobility of the son versus his father. Contrasts Y2,

Y4, Y6, and VB each make generational comparisons as well as

comparisons between the husband and the wife's father. Each of these

contrasts is significant using both the Bonferroni and Scheffé-like

procedures. The confidence intervals again reflect an upward class

mobility of the husband relative to his father and/or father-in-

hm».

For this data example the Bonfernoni solution yields shorter

confidence intervals and thus greater power than the Scheffé-like

procedure. The power of the Scheffé-like procedure relative to the

Bonferroni solution would increase as more contrasts are examined

and eventually surpass the power of the Bonferroni solution. For

this data example the small number of contrasts examined relative

to the total number of all possible contrasts is not enough to

realize the advantage of a simultaneous procedure such as the

Scheffé-like procedure.

The extent to which the asymptotic results of this chapter

hold in the case of finite sample sizes is investigated in the next
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chapter. A simulation study of the behavior of the 12 statistic

for finite sample sizes is reported in Chapter IV. The degree to

which the ‘12 statistic approaches its limiting distribution both

under the null and various forms of the alternative hypothesis is

studied in the next chapter.



CHAPTER IV

2

A MONTE CARLO STUDY OF THE I. STATISTIC

2

In Chapter III it was shown that the I statistic has a

limiting central chi-square distribution under the null hypothesis

of marginal homogeneity. The nature of the chi-square approximation

2 for finite sample sizes has notto the exact distribution of I

as yet been investigated. The jump from asymptotic distribution

theory to the practical use of an asymptotic result cannot be made

unless the asymptotic result is examined in a context of practical

circumstances. Before the use of 12 could become a legitimate

statistical procedure, the author felt that an investigation of

the distributional behavior of 12 for finite sample sizes was

warranted.

The extent of the disparity between the nominal significance

level at which a statistical test is performed and the exact level

of significance is a major factor in determining the legitimacy

of the procedure. In this investigation exact levels of signifi-

cance associated with the nominal one, five, and ten percent levels

using a central chi—square distribution for the 12 procedure were

estimated by Monte Carlo sampling. Samples of 2000 sets of n

observations of a given discrete distribution specifying a null

hypothesis were generated for each of a number of parameter sets

considered and for each of several different values of n.

90 4
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The ability of a statistical procedure to detect departures

from the null hypothesis is a major concern in any hypothesis testing

problem. Knowledge of the power of a statistical procedure can

help in designing studies which use the procedure. Exact values of

power for the 12 procedure were estimated by Monte Carlo sampling

for tests performed at the nominal one, five, and ten percent

significance levels. The author was interested in studying the

extend to which the empirically determined values of power approximated

values which were derived using a noncentral chi~square distribu-

tion with the appropriate noncentrality parameter. Interest centered

on determining the correspondence of nominal and estimated actual

power values for varying sample sizes and different sets of cell

probabilities, each set specifying a form of the alternative

hypothesis.

The chapter is divided into five sections. The first serves

as a literature review, reporting the results of some related re-

seardh findings. The remaining four sections describe the investiga-

tion. The first of these four sections reports the design parameters

used in the investigation. The second section describes the genera-

tion procedure for the Monte Carlo sampling. The third section

reports as well as discusses the results of the investigation and

the final section discusses the conclusions reached as a result of

the investigation.
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RELATED RESEARCH

Bhapkar (1961) demonstrated that a statistic of the form

of '12 was algebraically equivalent to the modified minimum chi-

square statistic of Neyman (1949) denoted as Xi. The 12

statistic can be represented in the form

A 2
(n, - nP )

2 2 J ’j ’°"!j jaj a°°°9j

(jl’jZ’...,Jd) j1,j2,eoe,jd

provided 111 j j > O for all cells of the contingency table.

1’ 2"°’ d

The 9 form a set of best asymptotically normal

j ,j ,...,j

estimatirsz(BAN) Shich are least squares estimators found by min-

imizing the quantity given in (4-1) subject to the constraints

which specify the null hypothesis of marginal homogeneity (Neyman,

1949). Neyman demonstrated, that under certain regularity con-

ditions, the statistic

 

A 2

2 c (n - DP )

X a ‘1: k k

1 n
k=1 R

has a limiting central chi-square null distribution with t degrees

of freedom where the pk are BAN estimators found by minimizing

2

x1 subject to t linearly independent constraints,

F1(p) - 0 i - 1,2,...,t (4'2)
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The statistic given in (4—1) is a special case of the more

general result just stated. The constraints which specify the

particular null hypothesis of marginal homogeneity possess the

appropriate regularity conditions stated by Neyman. Consequently,

the statistic in (4-1) has a limiting central chi-square distribu-

tion under the null hypothesis of marginal homogeneity. The degrees

of freedom are (d—l)(r-l) since (d-1)(r-l) linearly independent

constraints are needed to specify the marginal homogeneity null

hypothesis.

Neyman showed the asymptotic equivalence of three statistical

methods to test a null hypothesis of the form given in (4-2). Use

of either the Pearson X29

 

. 2

2 c (n - npk)

X - g -—————— (4-3)

k-l nfik

the Neyman modified minimum x1,

. 2
c (n - np )

2

x1 - n 1‘ n 1‘ <4-4)
k-l k

or the likelihood ratio statistic

c

-2£’m>.-2 z n(Lnn -Ln(nf> )) (4-5)
k-l k k

A

leads to asymptotically equivalent results when the pk are BAN

estimators of the pk subject to the constraints of (4-2). Neyman

also established that each of these three statistics has as its
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limiting null distribution the central chi-square distribution

with t degrees of freedom. Bhapkar (1966) verified that the three

statistics have the same asymptotic relative efficiency.

Research concerning the behavior of the X2 statistic

for finite samples may be applicable to the Xi and 1 statistics

because all three statistics belong to the same general class and

all three possess the same asymptotic prOperties. Since much of

the work on finite sample behavior has been done with the x2

statistic, some of the more significant results are cited. Some

of these results may be relevant to the behavior of the I

statistic for finite sample sizes since the 12 statistic is

algebraically equal to the xi statistic whenever the latter is

defined and x: is asymptotically equivalent to the x2 statistic.

Asymptotic equivalence does not necessarily imply that the statistics

will behave in a similar manner for finite sample sizes, but a

citation of some of the significant findings in the literature

will help in designing a MOnte Carlo study to examine the behavior

of the 12 statistic for finite sample sizes.

There has been some disagreement as to how large the

theoretical cell frequencies, upk, must be before the x2 statistic

is distributed approximately as a chi-square random variable.

Fisher (1941) recommended that no theoretical cell frequency be

less than five while Cramér (1946) recommended that expectations

should be at least ten. Cochran (1954) suggested that if relatively

fewer than 202 of the cell expectations are less than five a minimum

expectation of l is allowable in using the chi-square approximation
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to the distribution of the x2 statistic.

In the more recent past several authors have shown that the

above restrictions are quite conservative in estimating the degree

to which the x? statistic approximates its limiting chi-square

distribution for small sample sizes. Maxwell (1961) stated that

for fifteen or more degrees of freedom, the Pearson x2 statistic

is well approximated by its limiting chi-square distribution even

when most of the expected cell frequencies are as low as 1 or 2.

Wise (1963), using a theoretical approach, showed that the X2

statistic is well approximated by its limiting distribution when

the expected cell sizes are small but nearly equal.

Slakter (1966) obtained the empirical null distributions

of the x? statistic when the P1 each equal 1/k, for n's

of 10, 15, and SO, and k's providing expected frequencies from

S (n - 50, k - 10) to .05 (n - 10, k - 200). His study provided

further evidence that the chi—square goodness of fit test is robust

with respect to small but equal expected cell frequencies. Roscoe

and Byars (1971) obtained results similar to those of Slakter in

a Mbnte Carlo study which examined the small sample behavior of

X2 in tests of fit to a uniform distribution. In addition these

authors examined the x2 statistic in the context of tests of fit

to nonuniform distributions. Roscoe and Byars found that for

nonuniform distributions far removed from the uniform, average

expected cell frequencies greater than five were needed in order

to achieve a good approximation to the limiting distribution.

Good, Cover and Mitchell (1970) theoretically derived the

exact distributions for the Pearson X2 and the -297n ). statistics
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in the context of a goodness of fit test for an equiprobable k-

category multinomial distribution. The authors found that the

chi-square approximation was better for the -2 (m 1 statistic

than the x2 statistic when n > 3k/2 or n >1k + 9 for tests

of size less than .005 where n is the total sample size. The

Pearson x2 statistic was better than the -2.011. statistic in

terms of approaching its limiting chi-square distribution when

n/k < 1 for tests of any size.

Yarnold (1970), working in the context of the goodness of

fit test, showed that if the number of classes k is three or

more, and if r denotes the number of expectations less than five,

then the minimum expectation may be as small as 5r/k and still

achieve a good approximation to the chi-square distribution.

Yarnold found that by using this rule, the empirical lower and

upper bounds for the true probability of a type I error would be

.006 and .0162 for the nominal .01 level and .0375 and .060 for

the nominal .05 level.

The cited results of Wise, Slakter, Roscoe, Good and Yarnold

are all restricted to the goodness of fit test in which the para—

meters are completely specified a priori. The results do not re-

flect the possible effects of estimating the parameters from the

data, as in tests of independence or homogeneity. Because the 12

procedure does estimate parameters from the sample data, some re-

seardh findings in this context follow.

The small sample properties of the x2 test of homogeneity

of independent samples were studied by Roscoe and Byars (1970).
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Cases of 2 to 5 samples from multinomial distributions of 2 to 5

categories were investigated. Both uniform and skewed multi-

nomial distributions were examined. For the uniform cases average

expected cell sizes of 3 to 5 frequently resulted in empirical

estimates of alpha that were within two standard errors of the

nominal values of .01 and .05. For the skewed distributions

average expected cell sizes of 10 or more were typically needed

to meet the same criterion. Use of the Pearson X2 statistic

resulted in conservative tests when chi-square was used as the

limiting reference distribution.

Lewontin and Pelsenstein (1965) looked at the Pearson

X2 test for homogeneity for 2 X k tables and found the test to

be conservative for most of the cases considered. They found

the chi-square approximation to the Pearson x2 test to be good

for 5 or more degrees of freedom and all expectations at least of

size 1.

Margolin and Light (1974) as part of their study compared

the Pearson X2 statistic to the likelihood ratio statistic for

testing for homogeneity in the context of 3 x 2 contingency

tables (three response categories and two independent groups).

The authors found that the Pearson x2 statistic is considerably

better approximated by its limiting chi—square distribution under

the null hypothesis than is the likelihood ratio statistic.

The authors also proved that when the two independent groups are

equal in size the likelihood ratio statistic is numerically larger

2

than the Pearson 'X statistic. The authors recommended the use
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of the more conservative Pearson X2 procedure for small sample

sizes.

March's (1970) study, referenced by Tate and Hyer (1973),

2 test for independence in 2 X 3 tables withexamined the X

random margins, sample sizes from 8 to 42 and no expectations

less than one. March found that when the average expected cell

sizes were 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0, the mean absolute

percentage errors over the .01 - .10 region of test sizes were

69, 36, 30, 23, 21, 20, and 19 respectively. March concluded that

if close approximations to the exact probabilities are needed, the

Chi-square test may at times be poor.

A special case of the weighted least squares approach as

described in Chapter II is the minimum logit x? approach of Berkson

(1955). The Berkson approach is used primarily in the testing of

hypotheses involving J independent binomial distributions. Let

P denote the probability of success in population j. The logit

J

Yj for papulation j is defined as

Y 3 (4-6)

P

Y a J— : '= ...rm Y [311,372, ,J
j l-Pj IRS

Let a null hypothesis to be tested be defined in terms of the

linear model

1 - x B (4-7)

where X is a matrix of constants and ‘B. is a vector of unknown

parameters.
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13

Let the observed logits be defined as ’Ifj = Pm “j—
A

where the {P1} are the observed relative frequenciesT-Pflet nj

denote the size of sample j. The x? (logit) statistic to test

the hypothesis given in (4—7) can be written in the form

2 J ,. ... 2

x (logit) = 2 [n.P.(1 - P )(Y. - Y.) 1 (4-8)
j=1 J J j J J

where the {§j} are those values of the {Yj} which minimize

the quantity

J
2

x (logit) = z

. 2

j=l )(Yj - Yj) ][anj(1 - Pj

with respect to the parameters of the model given in (4-7).

BishOp et a1. (1974) showed that the statistic in (4-7) could be

written in the form

2 A ~ ' -1 ~

x (logit) = (z - _Y_) s? (3, - x) (M)

where S? is the estimated variance-covariance matrix of ‘2, The

x?(logit) statistic is thus seen to be a special case of the weighted

least squares approach discussed in Chapter II.

Taylor (1953) has shown that {Yj} belong to the class

of BAN estimators of Neyman. Because the I? statistic is

algebraically equal to a statistic based upon a weighted least

square approach, as has already been noted in Chapter II, the

small sample properties of x2(logit) statistics may provide

some information about the behavior of the I? statistic for finite

sample sizes.
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Berkson (1968) examined the relationships between the

Pearson x2 and x2 (logit) statistics using maximum likelihood

and minimum logit X2 estimators respectively for the two

statistics. This study was done in the context of tests for no

interaction in higher order contingency tables. Berkson found

no appreciable difference between the two methods for the sample

sizes examined, and recommended the X? (logit) because of its

computational simplicity.

In another comparative study Odoroff (1970) looked at the

samll sample prOperties of 12 goodness of fit tests for interaction

in 2 x2 x2 and 3x 2x 2 contingency tables. The 12 tests

were constructed by combining three tests (the minimum logit chi-

square test, the Pearson chi-square test and the likelihood ratio

test) with four methods of estimation (iterative maximum likeli-

hood estimation and three variations of the minimum logit chi-square

estimation). Odoroff found that the x2 (logit) and the Pearson

X2 statistic approximated their chi-square limiting distribution

better than did the likelihood ratio statistic. In addition Odoroff

found that the approximation to the limiting distribution was better

when minimum logit chi-square estimation was used in place of

estimation by maximum likelihood. Odoroff's was a small sample

study which employed contingency tables whose minimum expectations

ranged from one to ten observations in a cell.

There still is little agreement as to the requisite sample

sizes for use of the chi-square large sample procedures. Some

authors were very Optimistic as to the applicability of the
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techniques to small samples while others were more pessimistic.

The works cited in this literature review aided the author in de-

signing a Monte Carlo study of the small sample prOperties of

the I? test. The articles suggested possible sample sizes to

examine and distributions, both uniform and nonuniform, to con-

sider. Bhapkar (1966) noted that the 12 technique might be in—

accurate in the presence of many empty cells, but he was unsure

of the extent of this inaccuracy. This issue led to the inclusion

of distributions which would give rise to many empty cells, since

such a phenomenon is not rare in social science data analysis.

The design of the Monte Carlo study of the small sample behavior

of 12 follows.

DESIGN PARAMETERS USED IN THE INVESTIGATION

Contingency Tables Examined

A design consisting of d matched—samples or d repeated

measures on the same sample can be represented by an

r X r x...x r contingency table of d dimensions. A multinomial

distribution defined by rd parameters and a sample of size n

are assumed to characterize the frequencies of the rd cells of

the contingency table. The number of cells, rd, grows very rapidly

as either r or d increases. For many data analysis situations

higher order tables are impractical because of the large sample

sizes needed to obtain valid statistical tests. For example, a

4 x 4 x 4 X 4 table contains 256 cells. Even at the very low
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figure of an average expected cell size of three, 768 observations

would be needed and simulation would be prohibitively expensive.

In this study, 3 x 3, 4 x 4, 5 x 5, and 3 x 3 x 3 tables

are considered. Their relatively modest sample size demands, their

frequent use in social science data analysis and the reduced

simulation costs all prompted this choice.

Distributions Considered Under the Null Hypothesis

The I? procedure tests for homogeneity of correlated

marginal distributions. Because the marginal distributions are

correlated, the joint distribution of the variables is needed to

specify the contingency table completely. The choice of which

parameter sets to include in the study must be made on the basis

of both the marginal distributions generated and the nature of the

configuration specified by the joint distribution. There is no

way to investigate the x2 procedure for the general case of a set

of specified marginal distributions. The procedure can only be

investigated for the marginal distributions in the context of a

specific configuration or joint distribution. For example, the

contingency table given in Figure 4—1 is incompletely specified

until at least four joint prdbabilities are given although its

homogeneous marginal distributions are specified.
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Distribution 1
 

Distribution 2

   
.3 .2 .5

FIGURE 4-1

Two Correlated Distributions

For each of the 3 x3, 4 x4, and 5 X5 contingency

tables 5 different parameter sets were considered under the null

hypothesis of marginal homogeneity for a total of 15 discrete dis-

tributions. The distributions fall into 5 general categories.

The 5 general categories or classes of distributions are denoted

by the letters A through E and are given in Appendix C.

The five general classes of null distributions considered

for study are each characterized by the common property of symmetry.

The symmetric contingency table represents an important subset

of the class of all contingency tables which specify the null hypo-

thesis of marginal homogeneity. It was believed that systematic

investigation of this important subclass would be more enlightening

than attempting to study the entire class of contingency tables

which specify the null hypothesis, a task whidh is clearly beyond

the sCOpe of any Monte Carlo study of limited finances.

The five general classes of null distributions considered

for the two dimensional contingency tables within the subclass of

symmetric tables provide a wide range of possible practical settings

for the '12 technique. The joint distributions which make up
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classes A through C have certain common properties which provide

the basis for some interesting comparisons among these classes.

The joint distributions for each of the classes A through C give

rise to uniform marginal distributions. Secondly, calls off the

main diagonal of each contingency table have equal probabilities

associated with them and finally, the main diagonal of each con-

tingency table is characterized by cells of equal probability.

The classes A through C differ in one major respect and

that is the degree to which the probability is concentrated on the

main diagonal of the contingency table. The degree of concentration

of probability on the main diagonal for the two dimensional tables

. corresponds to the degree to which subjects do not change their

response for the case of the repeated measures design, and corresponds

to the degree of agreement between pairs of dependent subjects in

the case of two dependent matched samples. It should be noted

that marginal homogeneity can occur regardless of the degree of

probability concentration on the main diagonal of the contingency

table.

The distributions of class-A are each characterized by a

uniform distribution of the probability about the contingency table.

The distributions of class-B are each characterized by having main

diagonal cell probabilities four times those of the off diagonal

cells. This class represents a moderate concentration of proba-

bility on the main diagonal with the concentration being approximately

672, 572, and 50% for the 3 x 3, 4 x 4, and 5 x 5 tables

respectively. The distributions of class-C are each characterized
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by a very heavy concentration of the total probability on the main

diagonal of the contingency table. For each of the distributions

within this class between 85% and 88% of the total probability is

concentrated on the main diagonal.

The last two classes of distributions, class-D and class-E,

define contingency tables in which the marginal distributions are

not uniform over the categories of the dependent variable and the

off diagonal cell probabilities are not all equal. The class-D

distributions were chosen to examine the effect of having a small

marginal probability for at least one of the categories of the

dependent variable. The low marginal probabilities were chosen to

be .10 and .07 respectively for the 3 X 3 and 4 X 4 tables

and .065 for each of two categories in the 5 x 5 table. The con-

centration of probability on the main diagonal was chosen to be

relatively high for this class of distributions. The concentra-

tion for the 3 x 3, 4 x 4, and 5 x 5 tables were chosen to be

approximately 80%, 70% and 68% respectively.

The class-E distributions represent a series of configura-

tions which might arise when there is some meaningful ordering of

the categories of the dependent variable. For each of the distribu-

tions in this class, cell probabilities decrease in simplex fashion

as one moves away from the main diagonal of the contingency table.

The 12 procedure can be employed to test homogeneity of the

marginal distributions, although such an hypothesis does not make

use of the ordinality of the data.
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Four different configurations specifying the null hypo-

thesis were considered for the 3 X3 X3 contingency table. The

distributions are depicted in Appendix D. For the 3 x 3 X 3

table the main diagonal is composed of three cells; (1,1,1), (2,2,2),

and (3,3,3). In the case of a repeated measures design, the degree

of concentration on the main diagonal corresponds to the degree to

which subjects do not change their response over the repeated

measures. For the non repeated measures design, the degree of

concentration on the main diagonal corresponds to the degree of

agreement among the triples of dependent subjects. Just as in the

case of the two dimensional tables, marginal homogeneity can occur

regardless of the level of the concentration of probability on

the main diagonal.

The configurations.A and C given in Appendix D are extensions

of the corresponding classes in the two dimensional case to three

dimensions. The two distributions have the same similarities pre-

viously described for the two dimensional case. The joint distribu-

tion A in Appendix D uniformly distributes the total probability

among the 27 cells of the contingency table. Configuration C in

Appendix D indicates a very high concentration of the total probability

in the main diagonal cells with over 85% concentrated on the main

diagonal. Configuration D in Appendix D is an extension of the

class-D distributions to the three dimensional table. Configuration

B in Appendix D has no counterpart in the two dimensional case.

The distribution might arise in the context of a repeated measures

design in which the probability of making only one change in
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response over the three repeated measures is greater than the proba-

bility of making two changes, and the probability of making two

changes but responding with only two different categories is greater

than the probability of using all three categories. The concentra-

tion of probability on the main diagonal is 46%.

The class-C distributions for both the two and three

dimensional contingency tables have the proPerty that for small

samples, many of the cells of the corresponding contingency tables

may be empty. This class of distributions was chosen in order to

2 statisticinvestigate the claim of Bhapkar (1966) that the 1

may be considerably inaccurate in approaching its limiting distribu-

tion when many cells are empty in the contingency table.

Each of the configurations mentioned in this subsection was

investigated for sample sizes which were chosen to yield average

expected cell frequencies of 3, 5, 10, 20, 40, and 60. The average

expected cell frequency, 3, is defined as the total sample size

divided by the number of cells in the contingency table, 5 = 23'.

The sample sizes investigated cover a range which extends from the

very small samples which might be found in some experimental re-

searCh studies to the large samples which might be encountered in

survey research.

Distributions Considered Under the Alternative Hypothesis

Three different sets of cell probabilities each specifying

a form of the alternative hypothesis were investigated for each

of the following size contingency tables: 3 x 3, 4 x 4, 5 x 5,
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3 X 3 X 3. The configurations are depicted in Appendices E and F.

Estimates of exact power were computed by Monte Carlo sampling for

tests performed at the nominal one, five, and ten percent significance

levels for each of the parameter sets under consideration for sample

sizes yielding average expected cell frequencies of 5, 10, and 20.

These values were compared to their corresponding theoretical values

of power as computed under a noncentral chi—square distribution

with noncentrality parameter given by

3k

1=Y_ '8.

V

*1
(4.10)

where .!f and 2.* are both functions of the distribution specified

by the alternativg hypothesis and sample size under consideration.

The theoretical value of power was found in tables given in Haynam

et al. (1970) for a specified noncentrality parameter. Because

many of the values of A considered in this study were not given

in the Haynam tables, a Lagrange interpolation formula suggested

by Haynam was used to compute the associated power values. If X

is the given value of x which is not tabled,the interpolation

procedure consists of taking 6 tabled values of k such that 3 of

them are above X and 3 are below X. Let these values be denoted

by x1, X2, X3, X4, X5, X6 such that X1«< X21< X3 < X4 <‘X5 < X6.

Let Y1, Y2, Y3, Y4, Y5, Y6 be the corresponding values of power

for the respective X's. The value of power Y which corresponds

to the noncentrality parameter x is then given by the formula
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6 6 (x - X)

Y = 2 Y n _ (4-11)

i=1 1 3:1 (x1 Xj)

.‘Hi

The interpolation procedure typically yields values of power that

are within .0001 of the theoretical power, which is far in excess

of the degree of accuracy needed for this study.

The distributions chosen for the power investigation were

selected to yield most theoretical power values in the range .40

to .80 for the case of an average expected cell size of 10 for

tests performed at the nominal .01 and .05 significance levels.

Moderate values of power were chosen as reflective of true data

analytic situations. For average expected cell sizes of 5 and 20

more extreme values of theoretical power were achieved, thus pro-

viding the investigation with a very broad range of situations to

be examined.

For the two dimensional tables three general classes of

distributions specifying a form of the alternative hypothesis were

considered. The configurations are given in Appendix E. The class-

F distributions are each categorized by having the sole change in

marginal probabilities occur between two categories. The change

is concentrated in a single off diagonal cell. For the 3 X 3,

4 X 4, and 5 X 5 tables these off diagonal cells are (1,2),

(2,1), and (2,1) respectively. The change in the marginal proba-

bilities is relatively large for this distribution class. The

class-G distributions are each categorized by having a large change

in one of the marginal pr0portions accompanied by smaller changes
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TABLE 4-1

 

 

 

Table Distribution Average Expected Cell Size '3

3 x 3 A 3 5 10 20 40 60

B 3 5 10 20 4O 60

C 3 5 10 20 40 60

D 3 5 10 20 40 60

E 3 5 10 20 40 60

4 x 4 A 3 5 10 20 40 60

B 3 5 10 20 40 60

C 3 5 10 20 40 60

D 3 5 10 20 40 60

E 3 5 10 20 40 60

5 X 5 A. 3 5 10 20 40 60

B 3 5 10 20 40 60

C 3 5 10 20 40 60

D 3 5 10 20 4O 60

E 3 5 10 20 4O 60

3 x 3 x 3 A 3 5 10 20 4O 60

B 3 5 10 20 40 60

C 3 5 10 20 40 60

D 3 5 10 20 40 60
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TABLE 4—2

Cases Investigated Under the Alternative Hypothesis
—

g

k

 

 

 

Table Distribution H. Noncentrality Parametera

3 X 3 F 5 10 20 4.5283, 9.0566, 18.1132

G 5 10 20 3.4450, 6.8900, 13.7799

H 5 10 20 1.4876, 2.9752, 5.9504

4 x 4 F 5 10 20 4.7059, 9.4118, 18.8235

G 5 10 20 4.4063, 8.8126, 17.6252

H 5 10 20 5.5920, 11.1840, 22.3680

5 x 5 F 5 10 20 5.3215, 10.6429, 21.2858

G 5 10 20 4.6661, 9.3322, 18.6643

H 5 10 20 4.2989, 8.5979, 17.1957

3 x 3 x 3 I 5 10 20 3.4069, 6.8139, 13.6278

J 5 10 20 4.7230, 9.4461, 18.8921

K 5 10 20 9.9387, 19.8773, 39.7546

a
Values of noncentrality parameters correSpond to average eXpected

cell sizes of 5, 10, and 20.
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in the other categories. The class-H distributions are each

categorized by having small to moderate changes in the marginal

prOportions for each of the categories.

For the 3 X 3 X 3 table three distributions specifying

a form of the alternative hypothesis were considered. The con-

figurations are given in Appendix F. Distribution I reflects

small to moderate changes in the marginal proportions for all of

the categories, with these changes occurring exclusively between

the first and second measures. Differences of this type characterize

teachers' choices of a disciplinary strategy when increasing

increments of information were given about the child involved in

the disciplinary incident, Yoshinaga (1974). Although the teacher's

initial choice of a disciplinary strategy may not have been a

behavior formation strategy, once such a strategy was chosen, it

was typically resistant to change on subsequent trials. Distribu-

tion J indicates a steady, moderate decrease in the proportion

concentrated in a single category accompanied by smaller increases

for the other two categories. Such differences might typify

the status of farm-related occupations in a generational study of

of occupations. Distribution K reflects the same marginal pattern

as distribution 1; the changes in the marginal proportions for

distribution K are each 1.5 times the corresponding changes in

distribution I.

DATA GENERATION

For each case which appears in Tables 4-1 and 4-2, 2000

samples were generated. Estimates of the exact significance levels
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which correspond to the theoretical values of .01, .05, and .10

for each case considered under the null hypothesis were calculated

by counting the number of rejections out of 2000 using the respective

cutoff points of the central chi—square distribution. Estimates

of exact power were found by counting the number of rejections

out of 2000 for tests performed at the nominal significance levels

of .01, .05, and .10 for each case considered under the alternative

hypothesis.

Data were generated from a pOpulation which has a discrete

distribution. For the general r X r X...X r contingency table of

d dimensions the discrete distribution can be characterized by

rd cell probabilities. Two main steps comprise this generation

procedure:

(1) Generating independent random variables which are

uniformly distributed between zero and one.

(ii) Converting the uniformly distributed random vari-

ables into random variables from the discrete dis-

tributions Specified in the investigation.

Each step is discussed in the next two subsections.

Random Number Generator
 

A multiplicative congruential generator was used to obtain

the uniform random variates. The generator was described by

Naylor (1968) and adapted to the CDC 6500 computer by Sidney Sytsma.

Starting with an initial number no, pseudo-random numbers are

generated according to the recursive formula

n1+1 = a ni(mod Pe) .
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The numbers a, P, e, and n are chosen to maximize the

0

period of the sequence of pseudo-random numbers generated and minimize

the first-order serial correlation between the pseudo-random numbers.

For a binary computer P is chosen to be 2 and e is chosen to

be 48, the number of bits in a single word integer constant on the

CDC 6500 computer. The maximum period which can then be achieved

is of length 246. The size of this period is sufficiently large

for almost any Monte Carlo study. Naylor (1968) showed that, to

achieve the maximum period, a must be of the form a = 8t + 3,

where t is any positive integer. Naylor (1968) recommended

choosing a close to 224 in order to minimize first-order serial

correlation between the pseudo-random numbers. A further require-

ment suggests that n , the initial starting point must be chosen

relatively prime to 248.

Fbr Sytsma's adaptation of the generator to the CDC 6500,

24
a was chosen to be a - 2 + 3, and n was chosen as

110 - 135791357. Such choices guarantee a maximum period of length

246 and a low first-order serial correlation between the pseudo-

random numbers. By dividing each random number produced by the

generator by the quantity 248 , a uniformly distributed variate

defined on the unit interval is obtained.

Three different statistical tests were applied to the

generator in order to ascertain if the generator has the desired

statistical properties. A description of each of these tests

follows.



115

Each of the tests is applied to a sequence,

<un>rw u0,u1,u2,..., of real numbers produced by the generator,

which purports to be uniformly distributed between zero and one

in an independent manner. The three tests applied in this study

are designed primarily for integer-valued sequences instead of the

real-valued sequence <un>.

The first test applied to the generator determines whether

the numbers generated are uniformly distributed between zero and

one. In the case of this first test, the auxiliary sequence

<Yn>= Y0, Y1, Y2,...,

which is defined by the rule

Y = [100 u ],

n

where [x] is the greatest integer less than or equal to x

formed from the sequence <un>, the numbers which are the product

of the generator. The sequence {Yn>' is a sequence of integers

which are uniformly distributed between 0 and 99 if and only if

<un>' is uniform between 0 and 1. A sequence <un>'= u0,u1,...,u9999

of numbers was generated and the corresponding <Yn>' sequence

was examined. For each integer r, O S r«< 100, the number of

times Yj - r for 0 S,j < 10,000 was counted. Under the null

hypothesis that <un> is uniform on [0,1] or equivalently that

<Yn> is a sequence of integers uniformly distributed between 0 and

99, the expected number of times Yj = r is 100 for each integer,

r, 0 S r < 100.
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A chi-square statistic of the form

99 (G; - 100)2

X = E 100 3 (4'12)

r=0

 

where CE, is the observed number of Yj's which equal r, was used

to test the null hypothesis that <Yn> is uniform between 0 and 99.

This process was repeated for 20 different sequences <Yn>, each

of 10,000 observations, and the results combined into an overall

chi-square test which retained the null hypothesis that <Yn>» and

equivalently that <un> is uniformly distributed. The test was

performed at the .10 significance level.

The second test applied to the generator determined whether

pairs of successive numbers are uniformly distributed in an in-

dependent manner. For this test an auxiliary sequence

dn> = YO,Y1,Y2, .

which is defined by the rule

Yn = [10 um]

is formed from the sequence

<Lln> = u0,u1,u2,ooo

This test counts the number of times the pair (y2j’Y2j+1) = (q,r)

occurs for 0 s j < 10,000; these counts are made for each pair of

integers (q,r) with 0 s q, r < 10. Each observation (YZj’Y2j+l)

can fall into any of 100 categories with equal probability of 1%63

Under the null hypothesis that pairs of successive numbers are uni-

formly distributed in an independent manner, 100 pairs are expected
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to fall into any given category.

A chi-square statistic of the form

2 9 9 (or - 100)2

x = 2 :2 q 100 . (4-13)
q=0 r=0

 

where CE? is the number of observed pairs of the form (q,r), is

used to test the null hypothesis that <Yn>- and equivalently <un>

has pairs of successive elements uniformly distributed in an in-

dependent manner. This process was repeated for 20 different

sequences <yn>, each consisting of 20,000 numbers or 10,000 pairs

of numbers. The results were combined into an overall chi-square

test which retained the null hypothesis at a .10 significance level.

The third test was applied to the random number generator

to determine whether triples of successive numbers are uniformly

distributed in an independent manner. For this test an auxiliary

sequence

Y Ydn>=Y0’ 13 2,...

which is defined by the rule

 

is formed from the sequence

>= , , ,...

<”n u0 u1 u2

This test counts the number of times the triple (Y ) =

3;] ’Y3j+1’Y3j+2

(p,q,r) occurs for 0 s j < 10,000. These counts are made for each

triple of integers (p,q,r) with 0 s p,q,r < 5. Each observation

(Y3J’Y3j+l’Y3j+2) can fall into any of 125 categories Wlth equal

probability under the null hypothesis that triples of Successive
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numbers are uniformly distributed in an independent manner. For

10,000 triples a chi-square statistic of the form

4 4 4 (o -80)2

>2  

where Opqr is the number of observed triples of the form (p,q,r),

is used to test the null hypothesis that <Yn>' and equivalently

<nn>’ has triples of successive elements uniformly distributed in

an independent manner. This process was repeated for 20 different

sequences <Xn>, each consisting of 30,000 numbers or 10,000 triples.

The results were combined into an overall chi-square test which re-

tained the null hypotehsis at a .10 significance level.

The results of the three statistical tests performed on the

random number generator indicate that the generator does what it

purports to do; that is, it generates independent uniform random

variates on the unit interval. The second step in the generation

process converts the uniformly distributed random variates produced

by the generator into random variates from a population which has

a Specified discrete distribution. The next subsection describes

the conversion process used.

Generation of Discretg_yalued€§andom‘Variableg
 

Let X be a discrete random variable with P[X =‘Vi] = pi.

A method for generating X in a computer is to generate a unit

uniform random variable U and put X =‘Vi if

p1 +...+ pi_1 < U S p1 +...+ p (po = 0) (4-15)

1

Although this method is theoretically sound the method proves to be
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too time consuming for discrete random variables which can take on

a considerable number of values. Norman and Cannon (1972) developed

a computer program for the generation of random variables from any

discrete distribution which is far less time consuming than the

method given in (4-15). The algorithm which these authors de-

veloped generates numbers rapidly (many thousands per second of

computer central processing unit time) while requiring a modest amount

of computer core storage (no more than a few hundred words). The

algorithm is based upon previous work by Marsaglia (1963).

The algorithm is now described with the aid of a particular

example. Let X be a discrete random variable of the form given

in Table 4-3. Suppose that the computer used for the data genera-

tion has storage blocks which may be called for by number. The

fastest method of generating the discrete random variable X is

probably the following:

In memory locations 0 - 999, store 23 a's, 38 b's, 74 c's,

103 d's,..., ll m's. Then if U = .d1d2d3... is a unit uniform

random variable generated in the computer, look up the number in

location dld2d3 and designate it as X.

While the method just described may be the fastest it is

not necessarily the most economical. The method requires 1000 storage

locations, and had the probabilities been given to four decimal

places, 10,000 storage locations would have been required. The

method of Marsaglia and the more general method of Norman and Cannon

is an improvement on the fastest method in that it uses much less

memory Space and takes only slightly longer to execute. This makes

the Norman and Cannon procedure less costly than the fastest method

just described.
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TABLE 4-3

Illustrative Discrete Random Variable

 

 

  

Value of X Probability

a .023

b .038

c .074

d .103

e .148

f .206

8 .140

h .101

i .093

j .037

k .026

m .011
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The fastest method has been described by Marsaglia as

analogous to choosing at random a ball from an urn composed of dif-

ferent balls which correspond to the values of the discrete random

variable, with the number of balls of each type relative to the total

the same as the corresponding probabilities given by the discrete

distribution.

The method of Marsaglia can also be compared to choosing a

ball at random but the sampling scheme is slightly different. In-

stead of one urn there are three urns. The urns are filled according

to the digits of the probabilities of X given in Table 4—3. The

composition of urn 1 reflects the digits in the tenths position, that

of urn 2, the digits in hundreths position, and urn 3 reflects the

digits in thousandths position. Thus the contents are:

urn l: l d, l e, 2 f's, l g, l h

urn 2: 2 a's, 3 b's, 7 c‘s, 4 e's, 4 g's, 9 1'3, 3 j's, 2 k's, l m

urn 3: 3 a's, 8 b's, 4 c's, 3 d's, 8 e's, 6 f's, l h, 3 1'3, 7 j's,

6 k's, 1 m (4-16)

Let Mi. denote the sum of the digits in the ith decimal position of

all 12 probabilities given in Table 4-3. Let urn 1 be chosen with

probability 10 -1 X M1, urn 2 be chosen with probability 10 -2 X M2,

and urn 3 be chosen with probability 10 ‘3 XM3. For this example

these probabilities are .600, .350, and .050 respectively. Urn 1

consists of 6 balls, urn 2 consists of 35 balls, and urn 3 consists of

50 balls, each of which is marked as indicated in (4-16). In all

there are 91 balls available for selection. The Marsalgia technique

is analogous to a two step procedure in ball selection. First an
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urn is selected with probability .600, .350, and .050 for urns 1, 2

and 3 respectively.

chosen.

Once the urn is selected, a ball is randomly

The principle underlying the Marsaglia technique is given

in the equality (4-17)

terminology and a corresponding generation procedure is given.

P(X = x)

i I
l
t
1
c
s

1

[F(urn i is chosen)P(X = x‘urn i)]

for x

(4—17)

The ball and urn approach is now translated into computer

In

a computer the contents of the urns can be stacked in the following

manner.

6 - 40, and urn 3, locations 41 - 90.

Urn 1 occupies storage locations 0 - 5, urn 2, locations

Table 4-4.

This arrangement is shown in

The source of Table 4-4 is Marsaglia's (1963) article.

TABLE 4-4

Computer Memory Scheme for Discrete Generation

 

 

Location

0 d 10

11

12

13

14

15

l6

17

18

19

Contents

b 20

c 21

c 22

c 23

c 24

c 25

c 26

c 27

e 28

e 29

e

e

30

31

32

33

34

35

36

37

38

39

x
‘

L
A

L
;

L
h

40 m

41 a

42 a

43 a

44 b

45 b

45 b

47 b

48 b

49 b

50

51

52

53

54

55

56

57

58

59

c 62

c 63

c 64

c 65

d 66

d 67

7O

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

j 90 m
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The two step selection process of choosing an urn and then a

ball from the selected urn is translated to the following procedure.

Let u I .d d ... be a unit uniform random variable. Let V(n) be

1 2

the contents of memory location n. Then

(a) (b)

1) if d1< 6 put X=V(d1)

2) if 60 S dle < 95 put X = V(dld2 - 54) (4—18)

3) if 950 s d1d2d3 put x = V(d1d2d3 - 919) .

In this rule (a) is analogous to determining the urn and (b) to

choosing a ball randomly from the selected urn in part (3). Using

rule (4-18) together with the equality in (4-17) results in the gen-

eration of random variates with the discrete distribution given in

Table 4-3. In all only 91 memory locations are needed.

The Marsaglia algorithm was described for the particular dis-

tribution given in Table 4-3. Norman and Cannon develOped a computer

program for the generation of random variables from any discrete dis-

tribution. Their procedure follows the specific illustration given

with the exception that the probabilities of the discrete distribu-

tions are expressed to four decimal places. The program consists of

first setting up an array similar to that given in Table 4-4 to des-

cribe the desired discrete probability distribution. Once the array

is set up, a rule similar to (4-18) is determined. If M1, M2, M3,

and M.4 are the sums of the digits in the first, second, third, and

fourth positions of the probabilities of the discrete distribution,

the number of storage or memory locations needed is given by

M 3+‘M '+ M +-M which is considerably less than the 10,000 loca-

l 2 3 4

tions needed for the computationally faster procedure.
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The generation program GEN given in Appendix G is a Fortran

IV version of the general program given by Norman and Cannon. The

program reads in the probabilities which comprise the desired dis-

crete distribution, creates an array similar to the one given in

Table 4-4, generates the unit uniform random numbers using the

multiplicative congruential generator and then converts the uniform

random variates to random variates of the required discrete distribu—

tion using the previously created array and a general assignment

rule similar to that given in (4-18).

For each of the discrete distributions considered in Tables

4-1 and 4-2, 4,000 observations were generated using the Norman and

Cannon algorithm. A chi-square goodness of fit test was performed

in order to determine the adequacy of the fit of the generated data

to their respective theoretical distributions. For a contingency

table characterized by the set of cell probabilities {P1,P2,...,P
k}

the chi-square goodness of fit test has the form

k ((31 - 4000 Pi)2

8
1,1 4000 P

2
X = ((0-19) 

i

where (31 is the number of observations out of 4000 which fall into

cell i. A test of the form given in (4-19) was performed for each

configuration considered in the Monte Carlo study. The results

of these tests are given in Tables 4-5 and 4-6. From these tables

it is seen that out of 31 goodness of fit tests only 2 show signifi-

cant lack of fit for tests performed at the .10 significance level.

These results provide strong evidence that the algorithm effectively

generates the desired discrete distributions.
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TABLE 4-5

Goodness of Fit Tests for Null Distributions

 

 

 

2

X

 

 

Distribution Value Df p >

A 9.11 8 .30

B 11.48 8 .10

C 5.53 8 .50

D 4.48 8 .80

E 9.01 8 .30

A 12.22 15 .50

B 12.68 15 .50

C 17.27 15 .30

D 7.45 15 .90

E 19.90 15 .10

A 22.92 24 .50

B 24.61 24 .30

C 27.46 24 .20

D 14.07 24 .90

E 21.97 24 .50

3 x 3 X 3 A 22.27 26 .50

B 15.73 26 .90

C 16.05 26 .90

D 36.06 26 .05

a
p = PEXZ 2 critical value]

lack of fit at a = .10
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TABLE 4-6

 

 

Table Distribution

3 X 3

4 X 4

5 X 5

3 X 3 X 3

F

x2 Value

12.89

6.65

11.13

10.60

17.05

7.54

20.99

19.09

33.90

21.60

20.91

31.55

Df

8

8

8

15

15

15

24

24

24

26

26

26

.10

.50

.10

.70

.30

.90

.50

.70

.05

.70

.70

.20

 

2

P = PIX 2 critical value]

lack of fit at CY .10
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Analysis Routine

Output from the generation program GEN consists of a vector

of cell frequencies for each sample. For each case given in Tables

4-1 and 4-2, 2000 such samples were generated. The vector of cell

frequencies serves as the input for the analysis routine XSTAT.

XSTAT is a program written in Fortran IV which is used to calculate

the value of the 12 statistic. As input the program uses the

vector of cell frequencies, the number of matched samples, d, the

number of categories of the dependent variable, r, and a matrix

of constants Ait defined in Chapter III. The program is given in

general form for any values of d and r in Appendix H. Special

programs were written to adapt the more general XSTAT program to

the specific designs used in the study.

The calculation of the 12 statistic,

1* .- 1*

12 .. 1 . .151. , (4-20)

‘1.

assumes the nonsingularity of E * which is an estimator of the

V

variance-covariance matrix of 4*. For certain types of contingency

tables this matrix may be singular when the sample size is small.

This may occur when many of the cells in the contingency table are

empty. Berkson (1955) suggested replacing the zero cell frequencies

with some small number. Grizzle et a1. (1969) and Koch et al. (1974)

suggested replacing the zero cell frequencies with a number such

as ‘% in the event that i.* is singular. Such a procedure was

employed in this study. THHS procedure was effective in producing

nonsingular estimators of 25*. The simulation results, including

V

a discussion of the occurrence of singularities, follow.
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SIMULATION RESULTS

This section is divided into five subsections. The first

subsection reports the extent to which singularities occur in the

iL*' matrix. The second subsection reports the estimates of the

agtual significance level of the 12 procedure and discusses

these results. The third subsection reports the estimates of the

actual significance level of the {2* statistic, which is a slight

variant of 1?. The fourth subsection reports the estimates of

the actual power of the I? procedure and compares these values

with the nominal values obtained from a noncentral chi-square dis-

tribution. The fifth subsection deals with the power of the 12*

statistic.

Occurrence of Singularities

In Chapter III it was stated that zfl*, the variance-co-

variance matrix of .i* is nonsingular and tHat the corresponding

consistent estimator i.* is asymptotically nonsingular. For small

sample sizes and for ce¥tain types of data the matrix i *, may be

singular. The presence of singularities was encountered-for dis-

tributions of classes C and D for small sample sizes. These results

are reported in Table 4-7.
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TABLE 4-7

Number of Singularities in 2000 Samples

 

Distribution n I 3 5 10

3 x 3 C 485 119 4

D 217 O 0

4 x 4 C 340 47 l

D 19 3 0

S x 5 C 91 4 0

D 38 5 0

3 x 3 X 3 C 23 0 0

D 47 l 0

For sample sizes in which IE'> 10 no singularities were

encountered. When ‘H'I 10 the singularity problem is nearly non—

existent. At .E.- 5 the most noticeable problem occurs for the

3 X 3 - C table in which approximately one out of every twenty of

the §.* generated was singular. The problem of singularities is

also ngticeable for the 4 X 4 - C table at 'H'I 5 in which

approximately one out of every forty of the §.* generated was

singular. The class-C distributions are the mast troublesome be-

cause of the very small probabilities attached to the off-diagonal

cells. When '3' is 5 the expected cell frequencies for the off-

diagonal cells are between .8 and .9 for the 3 X 3 - C, 4 X 4 — C,

5 X 5 - C, and 3 X 3 X 3 - C tables. In the generation process

this may cause some of the off-diagonal cells to be empty. This

does not appear to cause inversion problems of the EL* matrix in

V
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the 5 x,5 and 3 x 3 x.3 tables. The presence of zeros in the 3 x 3

and 4 x.4 contingency tables will more frequently cause the

matrix to be singular.

When the sample size is such that 'Hl= 3 a problem of

singularities in the estimated variance-covariance matrix becomes

decidedly more pronounced. When ‘H'I 3 for the class-C distribu-

tions the off—diagonal cells each have a cell size expectation of

approximately .5. This will cause many of the off-diagonal cells

to be empty in the generation process. The problem of singularity

is quite apparent in the 3 )(3 - C and 4 )<4 - C tables and, to a

lesser extent, in the 5 )<5 - C table. The presence of singularities

is also quite noticeable for the 3 )(3 - D distribution at ‘;'= 3.

At this sample size, 4 of the 6 off-diagonal cells have expected

frequencies of .54. This will cause some of the off-diagonal cells

to be empty in the generation process.

From the results given in Table 4-7 it appears that the

presence of empty cells in the 3 X.3 and 4 X.4 tables tends to be

more serious in terms of causing the EL,, matrix to be singular than

a comparable proportion of empty cells in the 5 X 5 and 3 x 3 x 3

table.

It was found that by applying the Berkson procedure of

replacing the empty cells with the frequency i:, all singularities

were successfully eliminated. The Berkson correction was used only

when EL*. was found to be singular. The results in Table 4-7

V

correspdnd to the number of times the Berkson procedure had to be

employed out of 2000 samples.
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Estimates of Actual Alpha for the I? Statistic
 

The estimates of the actual alpha are presented in Tables

4-8 through 4-10. The standard errors for the empirical estimates

of alpha are estimated by

 

63,- jtheoretical alpha (1 - theoretical alpha)/N’ where N, the

number of samples for this investigation, is 2000. For the nominal

alpha values of .01, .05, and .10 the corresponding estimates of the

standard errors are .00222, .00487, and .00671 respectively. For the

purposes of this investigation, an empirical estimate which falls

within 1.96 standard errors of its corresponding nominal value will

be considered an adequate approximation to the theoretical value.

Such estimates are within 95% confidence intervals of the nominal

values, and there is insufficient evidence to state that the actual

alpha level and the nominal level are different. The 95% confidence

intervals for the nominal values of alpha of .01, .05, and .10 are

(.0056, .0143), (.0404, .0595), and (.0869, .1131) respectively.

The choice of a 95% level statement is completely arbitrary

although many researchersuse'it as a rule of thumb. Empirical

estimates which fall outside the 95% confidence bounds may still be

considered adequate approximations of the theoretical alpha values,

depending upon the degree of accuracy required by the data analyst.

Roscoe and Byars (1970) regarded empirical values which fall within

:_ 20% of their corresponding theoretical values as excellent and

believed that i 50% would be quite acceptable in most behavioral

applications. Roscoe and Byars claimed that these figures are con-

sistent with the notion of robustness as applied to parametric tests

of hypotheses about means. The empirical estimates of a are given
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TABLE 4-8

Test Associated with Nominal 1% Level

 

Average Expected Cell Size
 

 

Distribution H'= 3 5 10 20 4o 60‘_

3 x 3 A .0265 .0145 .0180 .0130 .0115 .0105

B .0135 .0115 .0125 .0115 .0100 .0105

c .0010 .0005 .0045 .0090 .0090 .0115

D .0045 .0090 .0100 .0060 .0115 .0110

E .0150 .0150 .0120 .0135 .0120 .0080

4 x 4 A .0220 .0205 .0160 .0125 .0090 .0070

B .0195 .0145 .0115 .0120 .0120 .0095

c .0000 .0035 .0050 .0120 .0090 .0090

D .0075 .0115 .0125 .0100 .0105 .0075

E .0165 .0060 .0105 .0070 .0080 .0100

5 x 5 A .0215 .0155 .0130 .0130 .0140 .0105

B .0185 .0155 .0115 .0110 .0095 .0065

c .0015 .0025 .0085 .0110 .0080 .0140

D .0185 .0155 .0115 .0110 .0095 .0065

E .0165 .0125 .0100 .0100 .0075 .0110

3 x 3 x 3 A .0150 .0215 .0135 .0125 .0155 .0130

B .0225 .0100 .0150 .0085 .0075 .0070

c .0010 .0055 .0095 .0120 .0100 .0100

D .0210 .0085 .0095 .0170 .0075 .0110
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TABLE 4-9

Test Associated with Nominal 5% Level

 

Average ExPected Cell Size
 

 

Distribution E'= 3 5 10 20 40 60

3 x 3 A .0755 .0685 .0650 .0520 .0620 .0470

B .0725 .0735 .0575 .0595 .0495 .0465

c .0160 .0300 .0465 .0475 .0525 .0510

D .0460 .0540 .0480 .0475 .0510 .0530

E .0750 .0650 .0505 .0560 .0595 .0450

4 x 4 A .0750 .0645 .0585 .0550 .0560 .0525

B .0765 .0690 .0540 .0540 .0535 .0560

c .0105 .0355 .0490 .0535 .0540 .0515

D .0615 .0590 .0645 .0500 .0530 .0490

E .0710 .0630 .0590 .0460 .0405 .0510

5 x 5 A .0760 .0660 .0565 .0545 .0575 .0555

B .0685 .0640 .0570 .0640 .0500 .0450

c .0265 .0460 .0515 .0515 .0445 .0605

D .0620 .0565 .0505 .0585 .0530 .0585

E .0700 .0685 .0535 .0555 .0475 .0515

3 x 3 x 3 A .0650 .0685 .0570 .0535 .0535 .0540

B .0655 .0605 .0570 .0510 .0480 .0390

c .0330 .0475 .0500 .0500 .0545 .0490

D .0685 .0510 .0555 .0615 .0505 .0515
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TABLE 4-10

Test Associated with Nominal 10% Level

2

 

 

Average Expected Cell Size

 

Distribution 3': 3 5 1o 20 40 60

3 x 3 A .1380 .1210 .1120 .0980 .1130 .0980

B .1415 .1260 .1105 .1065 .1060 .0905

c .0560 .0750 .1220 .0985 .1055 .1025

D .1140 .1055 .1050 .1000 .1100 .0990

E .1415 .1220 .1090 .1115 .1090 .0985

4 x 4 A .1405 .1145 .1135 .1025 .1095 .0965

B .1435 .1250 .1100 .1060 .1050 .1080

c .0515 .1015 .1030 .1045 .1050 .0985

D .1275 .1140 .1220 .0995 .0970 .1065

E .1260 .1190 .1070 .0990 .0980 .1090

5 x 5 A .1300 .1225 .1155 .0985 .1135 .1160

B .1225 .1165 .1105 .1150 .1095 .0975

c .0800 .1085 .1065 .1055 .0940 .1150

D .1160 .1140 .1055 .1085 .1000 .1105

E .1325 .1190 .1010 .1075 .1055 .0970

3 x 3 x 3 A .1260 .1260 .1105 .1010 .1040 .1130

B .1225 .1110 .1105 .0985 .0910 .0970

c .0925 .1150 .1055 .1070 .1015 .1065

D .1335 .1115 .1005 .1145 .1000 .1045
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1.11 Tables 4-8 through 4—10. It is left to the reader to judge

which criterion to use although the author feels that any empirical

estimate falling within the apprOpriate 95% confidence interval

should be considered a good approximation to the theoretical value.

Table 4-11 reports the number of estimated actual alphas

which are within the limits of a 95% confidence interval for the

corresponding nominal alpha levels. These data exhibit the rela-

t ionship between average expected cell size and degree of approxima—

t :I; on to the limiting distribution under the null hypothesis.

TABLE 4-11

Number and Percentage (Out of 19 Different

Distributions) of 8 Within 95% Confidence

Limits of the Corresponding Nominal o

_:_

 

  

Average Expected Nominal Alpha

Cell size 5 a I .01 .05 .10

3 3 (15%) 1 (5%) 1 (5%)

5 8 (42%) 6 (32%) 5 (26%)

10 14 (74%) 18 (95%) 15 (79%)

20 18 (95%) 17 (89%) 17 (89%)

40 18 (95%) 17 (89%) 18 (95%)

60 19 (100%) 17 (89%) 17 (89%)

 

The results given in Table 4-11 are computed across 19

different combinations of distributions and table sizes. The most

striking improvement in the chi-square approximation to the distribu—

tion of 1.2 occurs when H is increased from 5 to 10. At 171 I 10

the approximation to the limiting distribution generally appears to
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be quite good. There is some further improvement in the approxima-

tion when H is increased to 20. Beyond 3 a 20, there is no

noticeable improvement in the chi-square approximation to the dis-

tribution of the 12 statistic.

One of the more striking characteristics of the results in

Tables 4-8 through 4-10 is the almost uniform liberalness of the

12 procedure for very small sample sizes (H = 3,5). The one major

exception to this rule is found in the behavior of the 12 statistic

Eo r the distributions of class—C. Each of these distributions is

Characterized by a very heavy concentration of the total probability

On the main diagonal of the contingency table. When the average

EXpected cell size is 10 the expected number of observations within

each off-diagonal cell is between 1.60 and 1.75 for the 3 x 3,

5|» X 4, 5 X 5, and 3 X 3 X 3 contingency table. When H = 5 these

E igures drop to .48 and .52 respectively. In general the

Procedure appears to be conservative for the class-C distributions,

Especially for 11 I 3. The chi-square approximation is noticeably

better for the 5 X 5 and 3 X 3 X 3 contingency tables than it is

for the 3 x 3 and 4 x 4 tables. The approximation to the limiting

distribution becomes quite good when H I 5 for the 5 X 5 - C

and 3 x 3 X 3 - C distributions. For contingency tables of any of

the sizes considered in this investigation the approximation to the

lILmiting distribution is quite good when a 2 10 for the class-C

distributions. These results are quite encouraging because the

distributions of this type give rise to contingency tables in which

a considerable number of off-diagonal cells may be empty or contain

less than two observations when H = 10, and yet the procedure re-

mains quite valid.
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In general for the distributions of classes A, B, C and

E for the two dimensional tables and for the distributions of classes

A, B, and C for the 3 x 3 X 3 table, the approximation to the chi-

square limiting distribution typically does not become good until

2

is at least 10. The I statistic behaves quite well, however,:1.

E or the distributions of class-D at H a 5. At :1- = 5, 4 out of 9

cells in the 3 X 3 - D table, 6 out of 16 cells in the 4 X 4 — D

cable, 14 of 25 cells in the 5 X 5 - D table, and 18 of 27 cells in

the 3 x 3 x 3 - D table have expectations of size less than one.

Y et despite the presence of a large number of tiny cell size

expectations the empirical estimates of alpha are quite close to

their nominal values.

At .5 I 5, for the distributions of classes B and E for the

two dimensional tables and B distribution for the three dimensional

ease, the majority of the cells have expectations of sizes between

For the distributions of class-A the2 and 3 with none below 1.

It seems unusual that the behaviorCell size expectations are 5.

2

0f the I statistic for the distributions of class-D should be

b etter than the behavior under these other classes of distributions.

An. explanation for these results is offered in the next subsection.

9:

E\8timates of Actual Alpha for the 1,2 Statistic

2

It was mentioned in Chapter III that the I. statistic,

*.-1 *

12= '..*

‘1

|
<
>

|
<
’

uses 5; *, a consistent estimator of 25* both under the null and

" vV _

alternative hypothesis. A slightly different statistic, which is
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a generalization of the Stuart (1955) statistic discussed in

Chapter II, can be used to test for marginal homogeneity. The

2*

statistic, denoted as I , has the form

2* “-1 x*

I =27 1*1

° \1

with A: * having the prOperty that (4—21)
0 A

V

A A 1 A*A *'

5* - 025* - n _V. X .

1 \1

The matrix 02.01: is a consistent estimator of the variance-

V

9?
covariance matrix of 2 under the assumption that the null hypo-

:h esis of marginal homogeneity is true. The use of smaller terms

2

Ln variance-covariance matrix of the 1 statistic, as seen from

*

C 4-21), makes the procedure more liberal than the 12 procedure.

*

Ar). explicit relationship between 12 and 12 is given by

2
2*

x = "“‘lI—'2 . (4-22)

1 + g I

This relationship is a generalization of the relationship (2-67)

given in Chapter II. When n is small the disparity between the

2 2*

I. and I. statistics may be large enough to cause considerable

differences in the exact significance levels of the two procedures

When used to test the null hypothesis.

Empirical studies cited earlier in this chapter indicated

tflat the fit of the small sample chi-square statistics to the

limiting chi—square distribution was quite good for uniform data.

when the data were markedly nonuniform with certain cell probabilities

Very small, the tests tended to be quite conservative for small

Sample sizes.
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The results in the last subsection showed the 12 statistic

to be quite liberal for small sample sizes (3 -= 3,5) for distribu-

tions which were uniform (class-A) and other distributions which

did not have extremely small off-diagonal cell probabilities. The

approximation to the limiting distribution was quite good for the

class-D distributions for small sample sizes, especially for '6 = 5.

From the description of the class—D distributions given in the pre—

vious subsection one would expect the 12 statistic to be somewhat

conservative for this class of distributions. The class-C distribu—

C ions did produce conservative results but the results were

3 urprisingly better than would be expected for such an extreme dis-

tribution in which the off-diagonal cells have such small proba-

b ilities.

The author speculated that a statistic based upon the use

A

of 086* as an estimator of 2“,, would produce results consistent

V V

W1 th some of the findings in the. literature review. Exact levels

Of significance for the 12* procedure were estimated by Monte

Carlo sampling for tests performed at the nominal .01, .05, and .10

1EPAIels. These estimates are based upon the same data that were used

in estimating the corresponding exact levels for the 12 procedure

given in Tables 4—8 through 4-10. The results for the 12*

3 tatistic are given in Tables 4-12 through 4-14.

The 12* statistic behaves quite well for the class A,

B a and E distributions for an '5 as low as 5. At the nominal .05

level 9 out of 11 empirical estimates of alpha are within the 957.

QOnfidence limits for a nominal alpha of .05 while at the .10
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TABLE 4-12

*

Monte Carlo Estimates of Exact Level of 12

Test Associated with Nominal 1% Level

 

 

Average Expected Cell Size
 

 

D :1. stribution 3' = 3 5 10 20

3 x 3 A .0060 .0065 .0110 .0100

B .0020 .0035 .0075 .0100

c .0000 .0000 .0025 .0065

0 .0000 .0020 .0060 .0035

E .0010 .0060 .0065 .0095

4 x a A .0080 .0095 .0110 .0135

B .0065 .0040 .0085 .0085

c .0000 .0010 .0030 .0095

0 .0010 .0050 .0085 .0065

E .0030 .0015 .0060 .0065

5 x 5 A .0085 .0075 .0120 .0100

B .0060 .0090 .0080 .0100

c .0000 .0015 .0050 .0095

D .0050 .0050 .0070 .0090

E .0065 .0070 .0075 .0080

3 >< 3 x 3 A .0070 .0155 .0105 .0095

B .0075 .0045 .0090 .0080

c .0005 .0030 .0060 .0095

D .0060 .0030 .0075 .0155
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TABLE 4-13

2

Monte Carlo Estimates of Exact Level of I,

Test Associated with Nominal 57. Level

 

Average Expected Cell Size
 

 

Di. 8 tribut ion 3 3 5 10 20

3 x 3 A .0440 .0430 .0520 .0470

B .0350 .0470 .0440 .0515

c .0040 .0140 .0365 .0450

D .0155 .0325 .0410 .0420

E .0370 .0410 .0435 .0565

4 x 4 A .0370 .0510 .0485 .0535

B .0435 .0510 .0435 .0485

c .0025 .0155 .0380 .0490

D .0310 .0455 .0545 .0445

E .0345 .0475 .0465 .0410

5 x 5 A .0465 .0495 .0525 .0510

B .0465 .0480 .0440 .0580

c .0090 .0270 .0435 .0490

D .0350 .0430 .0385 .0570

E .0430 .0440 .0455 .0525

33 >< 3 x 3 A .0415 .0550 .0495 .0510

B .0415 .0485 .0485 .0475

c .0130 .0315 .0455 .0540

D .0415 .0365 .0495 .0560
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TABLE 4-14

*

Monte Carlo Estimates of Exact Level of 12

Test Associated with Nominal 10% Level

 

 

AverageAExpected Cell Size
 

 

Di. 8 tribution E = 3 5 10 20

3 x 3 A .0995 .0990 .0995 .0940

B .0845 .1025 .1020 .1055

c .0160 .0450 .0955 .0880

D .0505 .0745 .0905 .0910

E .0870 .0935 .0970 .1030

4 x 4 A .0970 .0960 .1020 .1090

B .1030 .1025 .0985 .1005

c .0245 .0780 .0910 .1015

D .0805 .0895 .1120 .0950

E .0950 .0980 .0970 .0920

5 x 5 A .1030 .1030 .1065 .0955

B .0880 .0960 .0970 .1120

c .0420 .0855 .0980 .0975

0 .0805 .0885 .0925 .1035

E .0935 .0990 .0905 .1040

3 ><, 3 x 3 A .0935 .1040 .1050 .0985

B .0900 .0955 .1035 .0940

c .0570 .0925 .0965 .1020

D .0990 .0935 .0825 .1035
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nominal level every estimate is within the 95% confidence limits.

The behavior of the 12* statistic is quite good for the uniform

distributions of class-A even when '5 is as small as 3. These

sarailues are somewhat conservative in contrast to the corresponding

‘12 values which were decidedly liberal especially at E = 3.

The empirical estimates of alpha for the cases using the distribu-

t: ji.ons of class-D are quite conservative at 'E'- 3 especially

E or the 3 x3 and 4 x4 tables. The fit of 12* to its limiting

cslrx.i-square distribution is extremely poor for the distributions

Of class-C with the procedure being extremely conservative at

I! equalling 3 or S and somewhat conservative for the 3 x 3 and

[0» x 4 tables at 3 = 10.

Table 4—15 reports the number of estimated actual alphas

wh ich are within the limits of a 95% confidence interval for the

*-

Corresponding nominal alpha values when the 12 statistic is used.

TABLE 4-15

Number and Percentage (Out of 19 Different Distributions) of 51

Within 95% Confidence Limits of the Corresponding

2*

Nominal or for the I Statistic

 
Average Expected Nominal Alpha

Cell Size n a a .01 .05 .10

3 9 (47%) 8 (42%) 11 (58%)

5 6 (32%) 13 (68%) 15 (79%)

10 16 (84%) 16 (84%) 19 (100%)

20 17 (89%) 19 (100%) 19 (100%)
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*

A comparison of Tables 4-11 and 4-15 reveals that the 12

statistic better approximates its limiting distribution than does the

12 statistic when E'= 3, 5 and the null distributions are considered

as a whole. However, 12* is extremely conservative when computed

for class C and D distributions when E'= 3,5 and at least half of

the off-diagonal expected values are less than one. 12 should be

preferred in these cases. The use of a variance-covariance matrix

with smaller terms inflates the 12 statistic relative to 12*

and cancels out some of the conservativeness of the 12* procedure.

For the other classes of distributions considered under the null

hypothesis (classes A, B, and E) for E'= 3 or 5 none of the off-

diagonal cells have cell expectations of size less than one. For

such distributions the approximation of the 12* statistic to its

limiting distribution is quite good eSpecially when ;.= 5. The

smaller terms in the variance-covariance matrix of the 12 statistic

inflate 12 relative to 12*, making the 12 procedure liberal

when a good approximation to the limiting distribution might have

*

been expected. The power of both the 12 and 12 procedures is

examined in the next two Subsections.

Estimates of Actual Power for the 12 Procedure

This subsection reports the degree to which the actual power

of the 12 procedure approximates the power computed using a non-

central chi-square distribution with the appropriate noncentrality

parameter. The value of power found from the noncentral chi-Square

distribution is referred to as the asymptotic power. Tables 4-16

through 4-18 each report estimates of the actual power of the 12
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TABLE 4-16

Monte Carlo Estimates of Actual Power and

Tabled Asymptotic Power for the 12 Test

Associated with the Nominal 1% Level

 

 

Average EXpected Cell Size

 

Distribution {1' = 5 10 20

Est. Asymptotic Est. Asymptotic Est. Asymptotic

Actual Power Actual Power Actual Power

3 X 3 Power Power Power

F .2695 .2402 .5512 .5569 .9275 .9133

G .1960 .1676 .4385 .4095 .8005 .7962

H .0725 .0603 .1615 .1385 .3500 .3417

4 X 4

F .2310 .2050 .5445 .5062 .9105 .8925

G .2265 .1872 .4875 .4688 .8615 .8641

H .2995 .2598 .6315 .6097 .9525 .9467

5 X 5

F .2215 .2073 .5535 .5237 .9390 .9097

G .1870 .1720 .4645 .4469 .8670 .8550

H .1640 .1532 .4075 .4025 .8290 .8141

3 X 3 X 3

I .1335 .1111 .3100 .2939 .6930 .6780

J .2065 .1750 .4685 .4537 .8590 .8607

K .5220 .4829 .9035 .8830 .9990 .9985
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TABLE 4-17

Mbnte Carlo Estimates of Actual Power and

Tabled Asymptotic Power for the 12 Test

Associated with the Nominal 5% Level

 

 

AveragegExpected Cell Size
 

 

Distribut ion 3 = 5 10 20

Est. Asymptotic Est. Asymptotic Est. Asymptotic

Actual Power Actual Power Actual Power

3 X 3 Power Power Power

F .4995 .4629 .7880 .7734 .9820 .9753

G .3990 .3638 .6511 .6480 .9270 .9240

H .2020 .1772 .3445 .3191 .5990 .5802

4 X 4

F .4450 .4167 .7575 .7327 .9710 .9666

G .4240 .3922 .7080 .7011 .9560 .9552

H .5295 .4871 .8325 .8110 .9880 .9865

5 x 5

F .4700 .4203 .7780 .7464 .9860 .9735

G .4005 .3709 .7045 .6816 .9700 .9511

H .3565 .3430 .6545 .6406 .9345 .9320

3 x 3 x 3

I .3140 .2748 .5445 .5274 .8630 .8348

J .4090 .3753 .6925 .6877 .9515 .9536

K .7725 .7130 .9765 .9630 .9995 .9998
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TABLE 4-18

Mbnte Carlo Estimates of Actual Power and

Tabled Asymptotic Power for the 12 Test

Associated with the Nominal 10% Level

 

Average Expected Cell Size

 

Distribution K = 5 10 20

Est. Asymptotic Est. Asymptotic Est. Asymptotic

Actual Power Actual Power Actual Power

3 X 3 Power Power Power

.6175 .5893 .8745 .8566 .9905 .9886

.5040 .4891 .7560 .7569 .9513 .9596

.2885 .2752 .4570 .4412 .7330 .6983

4 X 4

.5705 .5444 .8500 .8255 .9875 .9839

.5420 .5195 .8045 .8006 .9790 .9777

.6520 .6132 .8955 .8842 .9960 .9941

5 x S

.5985 .5486 .8670 .8364 .9940 .9876

.5205 .4981 .7990 .7852 .9885 .9754

.4750 .4685 .7580 .7512 .9650 .9643

3 x 3 x 3

.4305 .3936 .6545 .6515 .9125 .9157

.5345 .5026 .7920 .7901 .9710 .9768

.8500 .8103 .9860 .9820 1.0000 .9999
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procedure together with the correSponding values of the asymptotic

power assumed under the noncentral chi-square distribution for tests

performed at the nominal significance levels of .01, .05, and .10.

The asymptotic power understates the actual power of the 12

procedure. Of 109 empirical estimates of the actual power, only 9

are below their correSponding asymptotic values. Of these 9, 7 are

within one standard error of their correSponding asymptotic values

while the other 2 are within the 95% confidence limits of their

reSpective theoretical values. Table 4-19 reports the number of cases

in which the empirical value falls beyond the upper limits of the

corresponding 95% interval about the asymptotic power value.

The degree to which the asymptotic power understates the

actual power decreases as the average expected cell size increases.

This trend is expected since the distribution of the non-null 12

statistic should better approximate its limiting noncentral chi-

square distribution as the sample size increases. The percentages

of empirical power estimates falling within the 95% confidence bounds

of their reapective asymptotic values are approximately 10%, 60%,

and 75% for values of 3' of 5, 10, and 20 reapectively.

TABLE 4-19

Number and Percentage (out of 12 Different Distributions)

of Empirical Power Values Beyond the Upper Limits of the

95% Confidence Intervals for their Reapective Asymptotic

Values for Nominal a of .01, .05, .10

 

 

 

Average Expected Nominal Alpha

Cell Size n a = .01 .05 .10

5 9 (75%) 11 (92%) 9 (75%)

10 5 (42%) 6 (50%) 3 (25%)

20 3 (257.) 3 (257.) 3 (257.)
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Although the results for power are not as theoretically

pleasing as the results for actual alpha, the deviation from the

theoretical power is in the desirable direction. For those distribu-

tions considered under the alternative hypothesis, the asymptotic

power generally serves as a lower bound for the actual power of the

procedure. The power appears to be at least as good as would be

predicted using asymptotic theory, a situation which is highly

desirable for practical applications of the statistical procedure.

Although many of the empirical estimates of the actual power

of the ‘12 procedure are not within the 95% confidence limits of

their reSpective theoretical values, implying that the actual values

of power probably do differ from their corresponding asymptotic values,

the actual magnitudes of the differences are quite small for most

cases considered. At the .01 nominal significance level the average

absolute percent error of the empirical estimate relative to the

asymptotic value of power was 13.9% when E'= 5, 5.1% when El= 10,

and 1.3% when 3'= 20. When the test was performed at the nominal

.05 level, the comparable measures were 9.2%, 2.7% and 1.0%

reapectively, and when the test was performed at the .10 nominal

level the correSponding averages were 5.3%, 1.5% and .8% reSpectively.

*

Estimates of Actual Power for the 1? Procedure

2* 2

The 1. statistic is always less powerful than I as a

consequence of the reSpective definitions of the variance-covariance

matrices. In this subsection the degree to which the actual power

2*

of the I procedure approximates the asymptotic power computed

*

with noncentrality parameter A , defined as
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TABLE 4-20

MOnte Carlo Estimates of Actual Power and

Tabled Asymptotic Power for the 12* Test

Associated with the Nominal 12 Level

 

M

Average Expected Cell Size

 

 

Distribution ;'= 5 10 20

Est. Asymptotic Est. Asymptotic Est. Asymptotic

Actual Power Actual Power Actual Power

3 X 3 Power Power Power

F .1675 .2116 .4905 .5026 .9170 .8786

G .1155 .1522 .3750 .3742 .7785 .7575

H .0400 .0582 .1235 .1328 .3235 .3281

4 x 4

F .1555 .1894 .4905 .4736 .9040 .8705

G .1555 .1739 .3630 .3732 .8485 .8421

H .2095 .2368 .4665 .4586 .9470 .9301

5 x 5

F .1595 .1953 .5060 .4987 .9325 .8940

G .1285 .1633 .4260 .4267 .8530 .8373

H .1140 .1461 .3685 .3851 .8130 .7959

3x3x3

I .0955 .1074 .2810 .2837 .6795 .6624

J .1515 .1667 .4240 .4346 .8440 .8444

K .4390 .4424 .8820 .8512 .9990 .9971
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TABLE 4-21

Monte Carlo Estimates of Actual Power and

Tabled Asymptotic Power for the 12* Test

Associated with the Nominal 5% Level

 

Average Expected Cell Size

 

Distribution 5 = 5 10 20

Est. Asymptotic Est. Asymptotic Est. Asymptotic

Actual Power Actual Power Actual Power

3 X 3 Power Power Power

F .4270 .4254 .7605 .7305 .9795 .9617

G .3340 .3404 .6330 .6137 .9205 .9037

H .1540 .1728 .3165 .3101 .5780 .5657

4 x 4

F .3830 .3953 .7390 .7053 .9675 .9580

G .3630 .3732 .6855 .6751 .9535 .9454

H .4665 .4586 .8095 .7813 .9865 .9810

5 x 5

F .4110 .4040 .7535 .7261 .9840 .9674

G .3495 .3582 .6860 .6633 .9505 .9430

H .3110 .3320 .6305 .6237 .9315 .9230

3 x 3 x 3

I .2695 .2685 .5195 .5158 .8560 .8461

J .3645 .3631 .6750 .6705 .9485 .9463

K .7200 .6776 .9760 .9494 .9995 .9996
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TABLE 4-22

Monte Carlo Estimates of Actual Power and

Tabled Asymptotic Power for the 12* Test

Associated with the Nominal 10% Level

 

 

Average Expected Cell Size

 

Distribution ;’= 5 10 20

Est. Asymptotic Est. Asymptotic Est. Asymptotic

Actual Power Actual Power Actual Power

3 X 3 Power Power Power

.5675 .5528 .8615 .8237 .9895 .9814

.4610 .4644 .7370 .7276 .9610 .9470

.2540 .2696 .4320 .4312 .7210 .6853

4 X 4

.5320 .5227 .8385 .8040 .9855 .9793

.4990 .4998 .7895 .7796 .9780 .9721

.6145 .5858 .8840 .8625 .9955 .9914

5 X 5

.5590 .5322 .8575 .8207 .9935 .9844

.4750 .4847 .7880 .7701 .9690 .9707

.4360 .4568 .7415 .7369 .9630 .9589

3 x 3 x 3

.3950 .3863 .6385 .6408 .9100 .9089

.4935 .4899 .7805 .7761 .9700 .9726

.8350 .7819 .9855 .9744 1.0000 .9999
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A = V ' 2.9: Y. . (4-23)_. 0 V

is examined. Values of the asymptotic power were computed from the

Haynam.tables for each of the distributions and sample sizes given

in Table 4-2. Empirical estimates of the correSponding actual power

values were calculated using the same data used in calculating the

empirical power values for the 12 procedure. The results of these

calculations are given in Tables 4-20, 4-21, and 4-22.

Table 4-23 provides a summary of the relationship between

sample size and the degree to which the actual power of the 12*

procedure approximates the asymptotic power. All of the estimates

indicated in Table 4-23 with the exception of the case of o = .01

at ;'= 5, are beyond the upper limits of their correSponding 95%

confidence intervals. This indicates that the asymptotic power

computed by (4-23) tends to underestimate the actual power of the

TABLE 4-23

Number and Percentage (out of 12 Different Distributions)

2*

of Empirical Power Values of 1, Beyond the 95% Confidence

Limits of their ReSpective Asymptotic Values for Nominal

o of .01, .05, .10

 

 

Wed Nominal Alpha

Cell Size n a = .01 .05 .10

5 9 (75%) 3 (25%) 3 (25%)

10 l (8%) 6 (50%) 5 (42%)

20 5 (42%) 4 (33%) 5 (42%)
 

*

‘12 procedure with some exceptions in the case of tests performed

at the nominal .01 significance level. These results indicate that,

in general, the asymptotic power serves as a lower bound for the
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TABLE 4-24

*

Estimates of Actual Power of the 12 and 1,2

Procedures for Tests Performed at the Nominal 5% Level

 

 

Average Expected Cell Size
 

 

Distribution H'= 5 10 20

3 x 3 12 12* 12 r2* I2 2*

F .4995 .4270 .7880 .7605 .9820 .9795

c .3990 .3340 .6511 .6330 .9270 .9205

H .2020 .1540 .3445 .3165 .5990 .5780

4 x 4

F .4450 .3830 .7575 .7390 .9710 .9675

G .4240 .3630 .7080 .6855 .9560 .9535

H .5295 .4665 .8325 .8095 .9880 .9865

5 x 5

r .4700 .4110 .7780 .7535 .9860 .9840

G .4005 .3495 .7045 .6860 .9700 .9505

H .3565 .3110 .6545 .6305 .9345 .9315

3 x 3 x 3

I .3140 .2695 .5445 .5195 .8630 .8560

J .4090 .3645 .6925 .6750 .9515 .9485

K .7725 .7200 .9765 .97 60 .9995 .9995
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actual power of the 12* procedure.

Table 4-24 indicates that at ;.= 5 the differences of the

actual power values of the 12 and 12* statistics are rather

sizable relative to the power values involved. However, for the

larger sample sizes the differences are quite small.

The following conclusions result from this Monte Carlo study.

CONCLUSIONS AND IMPLICATIONS OF THE SIMULATION RESULTS

The main purpose of this simulation study was to examine the

behavior of the 12 statistic for finite sample sizes both under the

null and alternative hypotheses. In addition the behavior of the

12* statistic, a slight variant of 12, was examined for finite

sample sizes both under the null and alternative hypotheses. In

this section recommendations regarding the use of each of the

statistics are made based upon the findings of the study. In the

strict sense generalizations from this study are limited to the

3 X 3, 4 X 4, 5 x 5, and 3 X 3 X 3 contingency tables for the con-

figurations and sample sizes considered. Nevertheless, certain con-

clusions can be drawn from the general patterns of observed statistical

behavior of the 12 and 12* procedures which may be applicable

to a larger class of cases than those actually studied.

In choosing between the 12 and 12* procedures an important

question to consider is the relative importance which the eXperi-

menter places upon guarding against committing a type I or type 11

error. If a type I error is considered by the experimenter to be

the more serious, then a procedure which is conservative might be

preferred if the sacrifice in power is not too great. On the other
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hand, if a type 11 error is considered to be the more serious error,

then the eXperimenter might be willing to tolerate a higher actual

alpha level for the procedure if some increase in statistical power

can be gained.

For the configurations considered in this investigation the

distributions of both the 12 and 12* statistics are very well

approximated by their limiting central chi-square distribution under

the null hypothesis for samples of size 3.2 20. The actual power

values for both of the procedures are quite close in value and are

well approximated by the reSpective asymptotic power values. In

general the asymptotic power serves as a lower bound for the actual

power of the two procedures. These results indicate that for con-

tingency tables in which 3.2 20 and all of the cells contain 3 or

more observations, one can expect the asymptotic theory to hold quite

well. The choice of which statistic to use for this case is a

matter of personal choice. The 12 procedure is slightly more

powerful but the 12* procedure may provide a slightly better

approximation to the reapective theoretical alpha values.

The distribution of the 12 statistic is well approximated

by its limiting central chi-square distribution under the null hypo-

thesis for the configurations considered for samples of size ;.= 10.

The procedure tends to be slightly liberal when ;|= 10. The actual

levels of significance tend to be between .01 and .015, .05 and .06,

and .10 and .115 for tests performed at the nominal .01, .05, and .10

levels reSpectively. The actual power of the 12 procedure tends

to be at least as great as the theoretical power for this size sample.

* _—

The 12 statistic tends to be slightly conservative when n = 10.
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In general the actual levels of significance tend to be between .005

and .01, .04 and .05, and .095 and .105 for tests performed at the

nominal .01, .05, and .10 levels reSpectively. For data in which

80 percent or more of the observations are on the main diagonal the

12 procedure tends to provide actual levels of significance which

are closer to the respective theoretical values. The use of the

12 procedure also provides a slight increase in power over the 12*

procedure. The 12 is therefore recommended for cases in which

80 percent or more of the observations are concentrated on the main

diagonal when ;'= 10. The experimenter should eXpect the asymptotic

theory to hold fairly well for both the 12 and 12* procedures

for sample sizes of ;'= 10 for contingency tables in which each of

the off-diagonal cells contains at least a single observation.

For sample sizes in which 3'2 10 the behaviors of the 12

and 12* statistics were not radically different. When 5’ is re-

duced to 5,however,noticeable differences in the two behaviors are

evident. When 3': 5 the 12 procedure is quite liberal for con-

figurations in which most of the off-diagonal cells contain two or

more observations. For tests performed at the nominal .05 level the

eXperimenter can eXpect actual alpha values between .06 and .07 for

such configurations. For contingency tables in which most of the

off-diagonal cells contain 2 or more observations the 12* statistic

is recommended, eSpecially if the experimenter is most concerned

with guarding type I errors. For such data the 12* procedure will

typically yield actual levels of significance between .045 and .05

for tests performed at the nominal .05 level. The actual power of

2*

the I procedure is scmewhat less than the correSponding power of
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the 12 procedure when ;'= 5. The loss in power from using the

12* procedure may be from 10 to 15 percent of the actual power of

the 12 procedure for values of the latter in the range .30 to .70.

When there is a heavy concentration of the observations on

the main diagonal (80% or more) for samples of size ;'= 5, most of

the off-diagonal cells contain less than two observations. If only

20% of the off-diagonal cells are empty the .05 nominal alpha level

is well approximated byI2 for the 5 x 5 and 3 X 3 X 3 tables. The {2

procedure for such configurations at 5': 5 tends to be slightly

conservative for the larger contingency tables (5 x 5 and 3 x 3 X 3)

and somewhat more conservative for the smaller contingency tables

(3 X 3, 4 X 4). For these smaller tables actual alpha values of

.03 to .04 occur for tests performed at the .05 level. Use of the

12* statistic at ;'= 5 for tables in which 80% or more of the

observations are concentrated on the main diagonal is not recommended.

For such data the 12* procedure may have an actual significance

level as low as .015 to .02 for the smaller tables and as low as .025

to .03 for the larger tables for tests performed at the nominal .05

level. For such data singularities in the variance-covariance matrix

may be a problem in the 3 x 3 table and to a slightly lesser extent

in the 4 X 4 table.

When the sample size is reduced to ;'= 3 the 12 statistic

is quite liberal for configurations in which each off-diagonal cell

contains at least one observation. For tests performed at the nominal

.05 level actual significance levels of .065 to .075 are to be expected

using the 1? statistic. For the same type of data actual levels

*

of significance for 12 between .035 and .045 occur for tests
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performed at the nominal .05 level. For such data the 12* statistic

is recommended eSpecially if the experimenter wants protection

against making a type I error. However, use of the 12* procedure

results in a considerable loss in power. When ;.= 3 and the

majority of the off-diagonal cells is empty, the approximation of

the 12 statistic to its limiting distribution is quite poor for the

3 X 3 and 4 X 4 tables but considerably better for the 5 X 5 and

3 X 3 X 3 tables. For tests performed at either the nominal .01,

.05, or .10 levels the 12 statistic is conservative for data of

this type. For the 3 X 3 and 4 X 4 tables tests performed at the

nominal .05 level may have an actual alpha level as low as .01 to .02.

For the 5 X 5 and 3 x 3 X 3 tables the experimenter can expect actual

alpha values between .03 and .04 for tests performed at the nominal

.05 level. The corresponding values of actual alpha for the 12*

statistic are .004 for the 3 X 3 and 4 X 4 tables and .0165 for the

5 x 5 and 3 X 3 X 3 tables for tests performed at the nominal .05

level. The 12 statistic should be preferred to (12* for data in

which the majority of off-diagonal cells is empty. For the larger

tables the experimenter should expect a test which is moderately

conservative.

The presence of empty cells in the 3 X 3 and 4 x 4 tables

results in a relatively frequent occurrence of singularities in the

matrix §.*- Use of either 12 or I?* for the 3 X 3 or 4 X 4

tables isynot recommended if the majority of the off-diagonal cells

is empty.

By judiciously choosing between the 12 and 12* procedures

the experimenter can eXpect to have a reasonably valid statistical



160

procedure for sample sizes as small as E]: 5 and in some cases when

3' is as small as 3. When the choice is between a liberal I2 pro-

2*

cedure or a conservative I procedure the experimenter must

evaluate the relative importance which is attached to guarding against

committing a type-I error or type-II error. For those situations in

which I2 is conservative the choice is made by virtue of the rela-

2 2*
tionship between I and I .

2*

If the I procedure leads to a statistically significant

test, any post-hoe procedures should involve the matrix §A* rather

than o§~* since the OEL* matrix is a consistent estimafor of

V

8x* only under the assumption that the null hypothesis is true.

V

The results of this study emphasize the need to examine the

small sample prOperties of statistics which are based upon asymptotic

results. Theoretically one should eXpect the I2 and 12* statistics

to have very similar behaviors,yet it was seen that when the sample

sizes are sufficiently Small the two behaviors can be quite divergent.

Chapter V provides a summary of the results which have been

given in this and the previous three Chapters. In addition suggestions

for further research are given.



CHAPTER V

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

SUMMARY

This dissertation has dealt exclusively with the problem

of testing for marginal homogeneity in the mixed categorical data

model of order-d. The design implied by the mixed categorical data

model precludes the use of such standard techniques as the chi-

square test of homogeneity to test for the homogeneity of the

marginal distributions. It was demonstrated in Chapter I that a

technique which takes into account the correlated nature of the

marginal distributions is necessary in such an analysis. The

practical utility of such a technique in behavioral science re-

search.was also demonstrated in Chapter I.

In Chapter II the probability model associated with the

‘mixed categorical data model was stated and a rationale for its

structure was given. The necessity of using an r x r X...X r

contingency table of d dimensions rather than an r X d con-

tingency table for such a model was explained. Four different

statistical procedures for dealing with the problem of testing for

homogeneity in the mixed categorical data model were then presented

2

S

statistic of Stuart (1955); the x; statistic of Madansky (1963),

in some detail. The four procedures presented were the X

2

a procedure based on the likelihood ratio criterion; the XI

161
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statistic of Ireland et a1. (1969), a procedure based on minimum dis-

crimination information estimation used in conjunction with the

minimum discrimination information statistic; and the XSSK statistic

of Koch and Reinfurt (1971), a statistic based on weighted least

squares.

All four procedures were shown to be asymptotically equivalent.

The X2 statistic was shown to be algebraically equal to the

GSK

modified chi-square statistic x: of Neyman (1949) used in conjunc-

tion with modified minimum chi-square estimators of the cell proba-

bilities computed under the null hypothesis. The x: statistic was

shown to be approximately equal to the modified chi-square statistic

xi of Neyman used in conjunction with approximate maximum likelihood

estimators computed under the null hypothesis. All four statistics

were shown to belong to the same general class of asymptotic chi-

square statistics employing BAN estimators of the cell probabilities

computed under the null hypothesis. Each of the statistics has a

limiting chi-square distribution with (d-l)(r-l) degrees of freedom

under the null hypothesis of marginal homogeneity.

In Chapter II it was also demonstrated that the X2

GSK

statistic can be put in the form

2 _ ,-1« :
xGSK—ic g . (5-1)

The linear model Specifying the null hypothesis of marginal homo-

geneity using the X§SK procedure gives rise to (d-l)(r-l)

linearly independent constraint equations of the form

£103) = o i = 1,2,....<d-1><r-1> (5-2)
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The null hypothesis can then be stated in the form

H0: ..f_(P_) = .9. (5'3)

(d-l)(r-l)

and f... = [f1(2'),...’f(d‘1>(r'1)(£)].

A statistic which can be used to test HO has the form

where (5-4)

E. = [f1(P_) ’ ° ' ° 5f(d_1) (151303)]

and G is a consistent estimator of the variance-covariance matrix

of f,

It was also shown that the x: statistic can be written in

the form

2:... -15

xS :09 i (55)

with 0G being a consistent estimator of the variance-covariance

matrix of 2_ under the assumption that the null hypothesis is true.

The 0G matrix has the property that

I
m
’

c=c- “go ' . (5-6)

5
|
r
-
J

From statements (5-1), (5-5), and (5-6) it was demonstrated that the

 

2 2
d XXGSK an S are related by the equation

2 xésx

1 + n GSK

For n large, the numerical difference between the two statistics

is small and as n approaches infinity the two procedures are equi-

valent.
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In Chapter III a statistic of the form given in (5-1) was

developed. The statistic does not require knowledge of linear models

2
for its understanding and has more intuitive appeal than the XGSK

statistic. The statistic designated as I2 was shown,using

asymptotic theory,to have a limiting central chi-square distribution

under the null hypothesis and a noncentral chi-square distribution

under the alternative hypothesis. The degrees of freedom are

(d-l)(r-l). A detailed set of computational formulas for the I2

statistic were derived.

The development of two different techniques for generating

confidence intervals for contrasts involving the marginal pr0portions

was also given in Chapter 111. One of the procedures, a simultaneous

procedure, was developed along the lines of the results of Scheffé

(1959) and Goodman (1964). A second technique was develOped which

is based on the Bonferroni inequality. The simultaneous Scheffé-

like procedure was found to yield narrower confidence intervals for

the usual values of a (.05 or .01) when the number of contrasts

examined, k, is such that k > %d(d-l)r.

In Chapter IV the behavior of the I2 statistic in the

finite sample situation was examined by the method of simulation.

Estimates of both actual alpha and power were found and compared to

their reapective asymptotic values for a number of different cell

probability configurations and sample sizes. In addition the small

sample properties of the I2* statistic were examined. The I2*

statistic is related to I? by the equation

(5-8)
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The extent of the diaperity between the I2 and I2* procedures

for small n was also considered.

For those configurations considered it was found that the

asymptotic theory held quite well for sample sizes of 3.2 20 and

in most cases when 3'2 10. When a- was reduced to 5, however, a

noticeable decrease in the degree of approximation to the asymptotic

results was found. The I2 procedure was found to be quite liberal

for configurations in which most of the off-diagonal cells contained

two or more observations when E'= 5. The IZ* procedure for the

same situation behaved quite closely to what asymptotic theory would

predict under the null hypothesis. It was found, however, that a con-

siderable loss in power relative to I2 took place when the I2*

statistic was used. For the experimenter who is most concerned with

controlling for the probability of making a type I error the I2*

procedure was recommended.

It was also shown that when most of the observations were

concentrated on the main diagonal of the contingency table (greater

than 80%) for samples of size ;'= 5, both the I2 and I2* were

conservative. The I? statistic did, however, provide a much better

approximation to the limiting distribution and was recommended in

such situations.

When the sample Size was reduced to ;'= 3 it was found that

the I2 was quite liberal for configurations in which each of the

2*

off-diagonal cells contained at least one observation. The I

procedure for the same situation was moderately conservative. For

2*

such data the I procedure was recommended eSpecially if the

eXperimenter wants protection against making a type I error. The
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12* procedure can result, however, in a considerable loss in power

relative to the I2 procedure.

When the sample size is E'= 3 and the data are such that

the majority of the off-diagonal cells is empty, it was found that

the fit of the I2* statistic to its limiting distribution is

extremely poor. It was also found that the I2 statistic is extremely

conservative in such situations for the 3 X 3 and 4 X 4 tables,

but only moderately conservative for the 5 X 5 and 3 X 3 X 3 tables.

The use of the I2 was recommended for such data if the contingency

table is either 5 X 5 or 3 X 3 X 3. The experimenter was recommended

not to use either procedure if the table is 3 x 3 or 4 X 4 for such

types of data .

The examination of asymptotic results in the context of finite

sample sizes is a necessity if the asymptotic results are to be of

any use to the applied statistician. The aim of this dissertation

has been to explore a problem along the lines of asymptotic theory

and then to test the theory in the context of data analytic circum-

stances. The financial and time limitations have left certain issues

unexplored. Suggestions for further research in the area under con-

sideration are now given.

SUGGESTIONS FOR FURTHER RESEARCH

In Chapter 11 four asymptotically equivalent procedures which

test the null hypothesis of marginal homogeneity were presented.

The small sample prOperties of two of these procedures have been

investigated by the method of simulation. Although asymptotically

*

equivalent, the behaviors of the I2 and 1? statistics were quite
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different for small sample sizes. This suggests that a study of the

small sample prOperties of Xfi (likelihood ratio statistic) and

Xi (minimum discrimination information statistic) would be both

meaningful and extremely useful. A study in which all four

statistics are compared would help establish additional guidelines

for the applied statistician.

Another area for possible research concerns the manner in

which Singularities of the variance-covariance matrix §A* are

handled. The problem of singularities reSults from the %resence of

a number of empty cells in the contingency table. Rather than re-

placing zero cell frequencies by some arbitrary constant such as %,

BishOp et al. (1974) suggested replacing the observed table of cell

frequencies with a new table of what they called "pseudoéBayes

estimates". The method consists of selecting an a priori set of

probabilities {P1}, which may be based on external information or

the data themselves. Based on this a priori distribution, cell

estimates are computed using a set of formulas which the authors

supply. The advantage of this technique is that one can distinguish

among zero frequency cells which have varying probabilities of

occurrence. The Berkson rule which was used in this simulation

study treats all empty cells in the same way. The rule assumes each

of the empty cells is equally likely. The pseudo-Bayes estimates

approach can make use of prior knowledge in determining how to deal

with the empty cells. Comparisons between the Berkson rule and that

suggested by BiShOp et al. can be made and their effect on the

sampling distributions of the large sample statistics such as I2,

2* 2 2

'I , XM. and XI can be determined.
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In the recent past authors such as Koch et al. (1974), and Koch

and Reinfurt (1971), have adapted the weighted least Squares approach

discussed in Chapter II to a series of complex designs in which the

dependent variable is categorical. The analysis of categorical

data from such designs as the Split-plot is quite easily handled

using the general weighted least squares methodology. The small

sample properties of the statistics generated by these authors have

not as yet been investigated. Such an investigation would prove of

extreme value to the potential users of the techniques in the

behavioral sciences.

Much of the data in the behavior sciences are categorical,

but the development of categorical analogues to ANOVA and MANOVA

for complex designs is a relatively recent phenomenon. The avail-

ability of such techniques and the ability to assess their statistical

validity relative to anéipriori set of standards will greatly enhance

the behavioral scientist's repertoire of categorical data analysis

techniques. The findings of this dissertation together with further

research along the lines suggested Should help greatly in the

pursuit of this goal.
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PROOF OF THEOREM 2.1

THEOREM 2.1

min x: = f' G-IE,

Subject to H0

The proof consists of finding algebraic expressions for the

modified minimum chi-square estimators by minimizing the quantity

2 x

(n1_ nPi) (P P )

Z n = n 2

.i .1 1P1

  

(A-l)

‘with respect to the {P13 subject to the constraints specifying

the null hypothesis (2-45) with the additional constraint that

2 P3,. 1. The estimators {P1} are then substituted into (A-l)

‘with the resulting expression shown to be the required quadratic

form.

Minimizing the expression in (A-l) subject to the required

constraints can be accomplished by minimizing

 

(P -13 >2
.1 1 [— 1] f

Q - n z: - 27.0 2 Pl- - 2 73 um 1m(g) (A-2)

j_ P1. 1_ m

with respect to the {P1), where A0, u1,...,ut are the required

Lagrangian multipliers which correspond to the respective con-

straints under which the minimization takes place.

Differentiating Q with respect to P and equating to

1.

zero results in rd equations of the form

n(P - P )

1' 1‘ A 2 f— — u =

fi 0 m m m1_

1’ 169

 0 (A-3)
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The rd equations in (A-3) are a consequence of the fact that rd

parameters define the r x r X...X r ccontingency table which is

the model under consideration. Multiplying equation (A—3) by P

 

 

i,

summing over 1, and using the fact that 2 P - Z P = 1 leads to

ii 1.1

the result

A0 = Z umfm . (A-4)

m

Putting the result in (A-4) back into (A-3) one obtains

n(P - P )

1. i. .

A - Z umfm - X umfml - 0 . (A-S)

P m m

1.

Solving for P1 one obtains

2f '13)
~ A mum( m1._ m

P = P 1 + (A-6)

1. 1. n

The {P1} are the modified minimum chi-square estimators.

Replacing the P in (A-l) by the corresponding estimates one

1.

obtains after some simplification the resulting expression

1 x x x

(A-7)

1 A A A

= I: um :31. um! :[H (fmi - fm) (fm'l - fm')Pl]

Lemma 2.1

1' “ f A - A 8:[n (fmi — fm><fm'i - mapl] - gm. <- >

Proof of Lemma 2.1
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The expression in (A-fl) can be written as

.1 “ _ 1 " " _ 1 * . _1_ . x
in [fml fm'l Pl] n fin: [fm'i Pl] n fm, 3:- [fml Pl] + n fmfm'

1 .. 1 . ,. 1 ~ « 1

= :; fmlfm'l Pl - If fmfm' - n- fm'fm + h- fm'fm

1 . 1 x

a i; [fmlfm'i P1] - h- fmfm'

8mm' as defined in (2-47) and (2-49).

Using the result of Lemma 2.1 the second expression in (A-7) can

be written as

... 0

2' Z “mum'gmm' -_§_J_ GU .

m m

Thus far it has been shown that

2 .
Min x = U G y_ (A-9)

Subject to Ho

where E' = [u ,u ,...,u]
l><t l 2 t

Lanna 2.2

G p + i - 9_ (A-lO)

Proof of Lemma 2.2

The {P1} have been determined in such a way as to satisfy

the constraints specified by the null hypothesis (2—45). By sub-

stituting those values for the estimates found in (A—6) into the

constraint equations (2-45) one obtains the equations
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ivum"fm'i ’ fm')
:fmipl 1+ n = 0 m= 1,2,...,t . (A-ll) 

The t equations in (A—ll) after some simplification can be

written as

fi 1 A a

fml. H1.+X um ,[i Z fmflfmfj P1.- n fm'fm] - O m - 1,2, . ,t

.1 n1

which further simplifies to

Em + :1. [um.gmm,] = 0 m = 1,2,...,t . (A-12)

From (ArlZ) the Lemma 2.2 follows

Gp+§=g. (A-13)

Because the constraints (2-45) are linearly independent it follows

that G is of full rank. Solving for U. in (A-l3) one obtains

_g =- -c‘1 _E_ . (A-14)

When the expression for U_ is substituted into the left hand side

of the equation (A-9) the required result that

Min x2 =

Subject to H0

' c.1 f_ follows .

I
H
'
n
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APPENDIX B

PROOF OF THEOREM 2.2

THEOREM 2.2

The proof of Theorem 2.2 consists of first obtaining expressions

for the approximate maximum likelihood estimators of the {Pj} correct

to terms of order n-z. The obtained expressions are substituted

into the xi statistic and the result in (2-60) then follows.

Assuming the multinomial probability model as defined in

(2-38), the likelihood function can be written as

n
n! j_

! H P. 0 (3’1)

n1. 1- j_ p

 

9 = n

.i

Maximizing 0 subject to the constraints specified by the null

hypothesis (2-45) and the further constraint that 2 P 8 1 can be

1.1

accomplished by maximizing

log ¢ = (constant) + 2 n1 log P1-- A;(2 P1-- 1) - Zuzfm(g)

i i m (B-2)
* * *

where A0, u1,...,ut are the appropriate Lagrangian multipliers

which correspond to the constraint conditions.

Differentiating log ¢ with respect to each P results

.1

in rd equations of the form

n

l 1* E *f 0 (B 3)— - — u = . u-

?i. 0 m. m m1.
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Multiplying through by P1. in (B-3) and summing over 1_ results

in the equation

* *

n - A - 2 f0 : um;-L mi.?i.= 0 . (B-4)

But by the definition of H (2-45) the equation in (B-4) reduces

 

0

to

* - 0 1* -n - A0 - or 0 - n . (B-5)

*

Replacing A0 in (B-3) by n and solving for P1 one obtains

n "’ -I

- i 1
Pl - I-l- * . (3-6)

2 u f

m m m1

.1. .....—

_1 n .J  
The right Side of the equation in (B-6) is then expanded in a

Taylor series which can be written in the form

  

 

E *f (2 *f )2 2 *f )3
n1. m uIn m1_ m um m1 ( um m1

—— 1-—————+ — m +...+
n n 2 3

n n

(B-7)*

(2 u f )k

k m m m1

{-1) k +Rk+1 .

n

The maximum likelihood estimators can then be approximated as

correct to terms of order n-2 by

n

i3 ' l 1 12: *f 13* B8
l n [ —nm' um! m'l] i ' (—)

Because the {P } are computed under the constraints

1

specified by the null hypothesis (2-45), substituting the results

in (B-8) back into (2-45) yields
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n n

f 1. 1 1. n ,

32- mi {-1- - ; - r3. um'fm' = O, for m - 1,2,...,t

which can be written as

* A

- E u , 2 [fE f E, f ,, P,] é'o, for m = 1,2,...,t (B-9)
m m mmillmv .1 1.1.1

The results in (B-9) can be further simplified to

x x

f — E [um m. m' o ] = O, for m = 1,2,...,t . (B-lO)8mm!

where fm and ogmm' are defined by (2-46) and (2-58) respectively.

From (B-lO) the result

, x *' x n *

= 0G E ’ With E 3 [111,112, 0 e C ,ut] (B-ll)

I
t
?
»

follows, with i_ and 0G being defined by (2—46) and (2—58)

respectively.

*

The xi statistic can be written in the form

~* 2

- is
2.. (P1 1)

x1 ' n 2 ---—-—-—' . (B-12)

.1 Pi

Substituting the approximations to the (Pi) found in (B-8)

into (B-12) gives the result

2* 1 a * 2

x = n E ——-P (z u ,f )

1 1L2 lm' “‘ m'i]

* s

= X 2 [u u , 2';

m m' m m i-n fmifm11_§1]

* * * *
= a ' —: :'[umum, og ,] Q_ oG y_ . (B 13)
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From (B-11) and using the fact that 0G is nonsingular because

of the linear independence of the constraints defining the null

hypothesis one obtains

. -l
y. 3 OG : .

(B‘IA)

*

Substituting the expression in (B-l4) for g_ into (B—l3) yields

the final result that

x1 5 if G-1§_. (B-IS)
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3 x 3

(1) (2) (3)

(1) .1111 .1111 .1111 .3333

(2) .1111 .1111 .1111 .3333

(3) .1111 .1111 .1111 .3333

' :33§§_1-.5333} .3333 J

4 x 4

(1) (2) (3) (4)

 

(1) V‘.0625

 

    
 

 

 

 

    
 

 

.0625 .0625 .0625 .2500

(2) .0625 .0625 .0625 .0625 .2500

(3) .0625 .0625 .0625 .0625 .2500

(a) .0625 .0625 .0625 .0625 .2500

.2500 .2500 .2500 .2500

5 x S

(1) (2) (3) (4) (5)

(1) .0400 .0400 .0400 .0400 .0400 .2000

(2) .0400 .0400 .0400 .0400 .0400 .2000

(3) .0400 .0400 .0400 .0400 .0400 .2000

(4) .0400 .0400 .0400 .0400 .0600 .2000

(5) .0400 .0400 .0400 .0400 .0400 .2000

..2000 .2000 .2000 .2000 .2000

FIGURE 0-1

Class-A Null Distributions
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(1)

(2)

(3)

(4)

(5)
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C lass -B Null Distribut ions

3 x 3

(1) (2) (3)

(1) .2223 .0555 .0555 .3333

(2) .0555 .2223 .0555 .3333

(3) .0555 .0555 .2223 .3333

‘ .3333 .3333 .3333

4 x 4

(1) (2) (3) (4)

(1) .1429 .0357 .0357 .0357 ' .2500

(2) .0357 .1429 .0357 .0357 .2500

(3) .0357 .0357 .1429 .0357 .2500

(4) .0357 .0357 .0357 .1429 .2500

.2500 .2500 .2500 .2500

5 x 5

(1) (2) (3) (4) (5)

.1000 .0250 .0250 .0250 .0250 .2000

.0250 .1000 .0250 .0250 .0250 .2000

.0250 .0250 .1000 .0250 .0250 .2000

.0250 .0250 .0250 .1000 .0250 .2000

.---.ino..._,_ .0250 .0250 .0250 .1000 .2000

.2000 .2000 .2000 .2000 .2000

FIGURE 0-2
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(2)

(3)

(4)

(5)
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3 x 3

(1) (2) (3)

(1) .2933 .0200 .0200 .3333

(2) .0200 .2933 .0200 .3333

(3) .0200 .0200 .2933 .3333

.3333 .3333 .3333

4 x 4

(1) (2) (3) (4)

(1) .2200 .0100 .0100 .0100 .2500

(2) .0100 .2200 .0100 .0100 .2500

(3) .0100 .0100 .2200 .0100 .2500

(4) .0100 .0100 .0100 .2200 .2500

.2500 .2500 .2500 .2500

5 x S

(1) (2) (3) (4) (5)

.1720 .0070 .0070 .0070 .0070 .2000

.0070 .1720 .0070 .0070 .0070 .2000

.0070 .0070 .1720 .0070 .0070 .2000

.0070 .0070 .0070 .1720 .0070 .2000

.0070 .0070 .0070 .0070 .1720 .2000

.2000 .2000 .2000 .2000 .2000

FIGURE C-3

Class-C Null Distributions
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(5)
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3 x 3

(1) (2) (3)

(1) .3700 .0600 .0200 .4500

(2) .0600 .3700 .0200 .4500

(3) .0200 .0200 .0600 .1000

.4500 .4500 .1000

4 x 4

(1) (2) (3) (4)

(1) rflizzoo .0400 .0400 .0100 .3100

(2) .0400 .2200 .0400 .0100 .3100

(3) .0400 .0400 .2200 .0100 .3100

(4) .0100 .0100 .0100 .0400 .0700

.3100 .3100 .3100 .0700 A

5 x 5

(1) (2) (3) (4) (5)

.2000 .0390 .0390 .0060 .0060 .2900.

.0390 .2000 .0390 .0060 .0060 .2900

.0390 .0390 .2000 .0060 .0060 .2900

.0060 .0060 .0060 .0410 .0060 .0650

.0060 .0060 .0060 .0060 .0410 .0650

.2900 .2900 .2900 .0650 .0650

FIGURE 0-4

Class-D Null Distributions
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3 x 3

(1) (2) (3)

(1) .2962 .0741 .0556 .4259 “I'

(2) .0741 .1852 .0370 .2963

(3) .0556 .0370 .1852 .2778

.4259 .2963 .2778

4 x 4

(1) (2) (3) (4)

(1) .2500 .0625 .0313 .0156 .3594

(2) .0625 .1562 .0313 .0156 .2656

(3) .0313 .0313 .1250 .0313 .2189

(4) .0156 .0156 .0313 .0936 .1561

.3594 .2656 .2189 .1561 '

S x 5

(1) (2) (3) (4) (5)

.1800 .0400 .0200 .0100 .0100]; .2600

.0400 .1200 .0400 .0200 .0200 .2400

.0200 .0400 .0800 .0400 .0200)! .2000

.0100 .0200 .0400 .0800 .ozoofg .1700

.0100 .0200 .0200 .0200 .0600 _;}?99_

.2600 .2400 .2000 .1700 .1300 .

FIGURE C -5

Class-E Null Distributions
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lSt MEasure

(1) (2)

2nd MEasure 2nd MQasure

(1) (2) (3) (1) (2) (3)

(1) ‘.0370 .0370 .0370] (1) 7:0330 .0370 .0370'_‘

3rd (2) .0370 .0370 .0370| Eff; (2) .0370 .0370 .0370
 

 
iMeasure (3) .0370 .0370 .0370l Measure (3) LLP370 .0370 .0370
 

 

(3)

nd

2 Measure

 

(1) (2) (3)

 

 

(1) .0370 .0370 .0370

3rd (2) .0370 .0370 .0370

Measure (3) .0370 .0370 .0370    

marginal prOportions

N51 :. M21 = M31 - .3333

M12 = M22 M32 .3333

M13 - M23 = M33 .3333

FIGURE D-l

 

The 3 X 3 X 3-A Distribution
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3rd

 

Measure

3rd

 

Measure

3rd

 

Measure
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lst Measure
 

 

 

   

 

 

  
 

 

 

  
 

 

(1)

2nd Measure

(1) (2) (3)

(1) .1533 .0200 .0200‘

(2) .0300 .0300 .0100

(3) .0300 .0100 .0300

(2)

2nd Measure_

(1) (2) (3)

(1) .0300 .0300 .0100 ‘

(2) .0200 .1533 .0200

(3) J.0100 .0300 .0300 .

(3)

2nd Measure

(1) (2) (3)

(1) .0300 .0100 .0300

(2) .0100 .0300 .0300

(3) .0200 .0200 .1533

marginal pr0portions

M11 = M21 = M31 = .3333

M12 = M22 = M32 = .3333

M13 = M23 = M33 = .3333

FIGURE D-Z

The 3 X 3 X 3-B Distribution



3rd

 

Measure

3rd

 

Measure

3rd

 

Measure
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St

 

 

 

 
 

 

 

  

 

 

 
 

 

1 Measure

(1)

2nd Measure

(1) (2) (3)

(1) .2853 .0060 .0060

(2) .0060 .0060 .0060

(3) .0060 .0060 .0060

(2)

2nd Measure

(1) (2) (3)

(l) .0060 .0060 .0060

(2) .0060 .2853 .0060

(3) .0060 .0060 . .0060

(3)

2nd Measure

(1) (2) (3)

(1) .0060 .0060 .0060

(2) .0060 .0060 .0060

(3) .0060 .0060 .2853

marginal pr0portions

M11 = M21 = M31 = .3333

M12 = M22 = M32 = “3333

M53 = M23 = M33 = .3333

FIGURE D-3

The 3 X 3 X 3-C Distribution

 

 

 



3rd

 

Measure

3rd

 

Measure

3rd

 

Measure

18S

 

 

 

   

 

 

   

 

 

  
 

 

1St Measure

(1)

2nd Measure

(1) (2) (3)

(1) .0600 .0050 .0050

(2) .0050 .0050 .0050

(3) .0050 .0050 .0050

(2)

2nd Measure

(1) (2) (3)

(1) F.0050 .0050 .0050

(2) .0050 .3050 .0400

(3) .0050 .0400 .0400

(3)

2nd Measure

(1) (2) (3)

(1) .0050 .0050 .0050"

(2) .0050 .0400 .0400

(3) .0050 .0400 .3050

marginal prOportions

Mu.=Mn,=Mn_=°um°

M12 = M22 = M32 = .4500

M53 = M23 = M33 = .4500

FIGURE D-4

The 3 x 3 x 3-D Distribution
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APPENDIX E

NON-NULL DISTRIBUTst FOR TWO DII‘ENSIONAL TABLES

(1)

(2)

(3)

(4)

(5)

 

 

 

    
 

 

 

 

    
 

 

 

 

   
 

3 x 3

(1) (2) (3)

(1) .1600 .2000 .0400 .4000

(2) .0400 .2200 .0400 .3000

(3) .0400 .0400 .0400 .3000

.2400 .4600 .3000

4 x 4

(1) (2) (3) (4)

(1) .1800 .0100 .0300 .0300 .2500 E

(2) .1100 .0800 .0300 .0300 .2500 '

(3) .0300 .0300 .1600 .0300 .2500

(4) .0300 .0300 .0300 .1600 .2500

.3500 .1500 .2500 .2500

5 x 5

(1) (2) (3) (4) (5)

.1600 .0100 .0100 .0100 .0100 .2000

.0800 .0900 .0100 .0100 .0100 .2000

.0100 .0100 .1600 .0100 .0100 .2000

.0100 .0100 .0100 .1600 .0100 .2000

.0100 .0100 .0100 .0100 .1600 .20001.

.2700 .1300 .2000 .2000 .2000

FIGURE E-1

C lass -F Distributions
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(1)

(2)

(3)

(4)

(5)

187

 

 

 

      

 

 

 

    
 

 

 

    
 

3 x 3

(1) (2) (3)

(1)l .3000 .0500 .0500 .4000

(2) .1300 .1400 .0300 .3000

(3) .1300 .0300 .1400 .3000

.5600 .2200 .2200””"‘ -3

4 x 4

_- <1) <2) <3) <4) _

(1) .1200 .0400 .0400 .0500 §.2500 1

(2) .0500 .1200 .0200 .0600 .2500

(3) .0100 .0300 .1200 .0900 .2500

(4) .0300 .0200 .0300 .1700 .2500

.2100 .2100 .2100 .3700

5 x 5

(1) (2) (3) (4) (5)

A .1500 .0200 .0100 .0100 .0100 .2000

.0400 .1000 .0100 .0200 .0300 .2000

.0400 .0200 .1000 .0200 .0200 .2000

.0300 .0200 .0300 .1000 .0200 .2000

.0200 .0200 .0300 .0300 .1000 .2000

.2800 .1800 .1800 .1800 .1800

FIGURE E-2

Class-G Distributions

 

 



(1)

(2)

(3)

(4)

(5)

188

 

 

 

     

 

   
   
 

 

 

 

    

3 x 3

<1) <2) (3) H

(1) .2400 .1200 .0400 .4000

(2) .0400 .2200 .0400 .3000

(3) .0400 .0400 .2200 .3000 _.

.3200 .3800 .3000

4 x 4

(1) (2) (3) (4)

(1) 33.1200 .0200 .0500 .0600 .2500 .3

(2) .0200 .1200 .0600 .0500 .2500

(3) .0200 .0200 .1800 .0300 .2500

(4) .0200 .0200 .0300 .1800 .2500 fl

.1800 .1800 .3200 .3200 ,

5 x 5

(1) (2) (3) (4) (5)

3.1400 .0100 .0200 .0100 .0200 ‘ .2000

.0300 .0700 .0200 .0300 .0500 .2000

.0100 .0200 .1400 .0200 .0100 .2000

.0400 .0100 .0400 .0700 .0400 .2000

.0200 .0400 .0200 .0200 .1000 .2000

.2400 .1500 .2400 .1500 .2200

FIGURE E-3

Class-H Distributions
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NON-NULL DISTRIBUTIONS FOR THREE DIMENSIONAL TABLES

lSt'Measure

(l)

2 “d Measure
 

(l) (2) (3)

 

 

   

(1) .1400 .0200 .0200

3rd (2) .0200 .0400 .0400

Measure (3) .0200 .0400 .0400

(2)

2 "d Measure

(1) (2) (3)

(l) .0200 .0200 .0200

 

 

   

3rd (2) .0200 .1500 .0200

Measure (3) .0200 .0200 .0200

(3)

nd

2 Measure
 

(1) (2) (3)

(l) .0200 .0200 .0200

 

   
 

3rd (2) .0200 .0200 .0200

Measure (3) .0200 .0200 .ISOQ

marginal pr0portions

M11 = .3800 M21 = .3000 M31 = .3000

M12 = .3100 M22 = .3500 M32 = .3500

M13 = .3100 M23 = .3500 M33 = .3500

FIGURE F-l

The 3 X 3 X 3-I Distribution
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190

(1)

(1) (2) (3)

 

(1) .1400 .0100 .0100

(2) .0100 .0300 .0300

   

 

(3) .0100 .0300 .0300

(2)

(l) (2) (3)

(l) .0100 .0100 .0100

(2) .0200 .2200 .0200

 (3) .0200 .0200 .0200   

(3)

(l) (2) (3)

A“

(1) .0100 .0100 .0100’

(2) .0200 .0200 .0200

 (3) .0200 .0200 .2200   

marginal proportions
 

= .3500 M - .3700
M12 22

M13 -- .3500 M23 = .3700

FIGURE F—2

The 3 X.3 X 3-J Distribution



(1)

rd

3 (2)
 

MeaSure (3)
 

3rd

 

Measure

11

M12

M13

191

st

1 Measure

 

 

   

 

 

 

   

 

   

 

The 3 X 3 X 3-K Distribution

(1) (2)

d

2nd Measure» 2n Measure

(1) (2) (3) (1) (2) (3)

.1800 .0100 .0100 (1) .0100 .0100 .0100

.0100 .0400 .0400 (2) .0100 .1400 .0400

.0100 .0400 .0400 (3) .0100 .0400 .0400

(3)

2nd Measure

(1) (2) (3)

(1) .0100 .0100 .0100

(2) .0100 .0100 .0400

(3) .0100 .0400 .1400

marginal preportions

.3800 M21 = .2600 M31 = .2600

.3100 M22 = .3700 M32 = .3700

.3100 M23 = .3700 M33 = .3700

FIGURE F-3
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