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ABSTRACT

PTOLEMAIC METRIC SPACES AND THE CHARACTERIZATION
OF GEODESICS BY VANISHING METRIC CURVATURE

by David Clifford Kay

In a metric space, the characterization of a geodesic among all

rectifiable arcs by the identical vanishing of its metric curvature--from

now on referred to as the fundamental theorem--has curiously required the

space to be locally ptolemaic. Such a metric space is one whose metric
xy satisfies the inequality

pg+rs + preqs 2 ps-qr
in some neighborhood of each point of the space. Haantjes did obtain
the theorem for his concept of curvature in a class of metric spaces
that includes, for example, spherical space, but his proof involves
certain variations of the ptolemaic inequality. Counterexamples in
L, spaces show that Eggé condition is necessary. Part I of this
thesis is devoted to discovering how restrictive the ptolemaic in-
. equality is, with emphasis on those metric spaces introduced and
studied previously by H. Busemann called G-spaces. On the other hand,
it is possible that other inequalities may imply the fundamental theorem.
This is explored in Part II, and finally, a new concept of curvature
is proposed for which the fundamental theorem can be proved in a wide
class of metric spaces which includes locally ptolemaic G-spaces, two-
dimensional Riemannian spaces, and Banach spaces with strictly convex

unit sphere.
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More specifically, in Part I a concept of space curvature
called median curvature is introduced, analogous to that studied by
Busemann. This concept is compared with that of Busemann and the
following theorems are proved:

A G-space having non-positive median space curvature is locally

s ptolemaic.

In a Riemannian space the conditions non-positive median curva-
ture, non-positive Busemann curvature, non-positive classical curvature
at every point, and being locally ptolemaic, are equivalent.

Other theorems of Part I are:

A straight G-space with convex differentiable spheres is
euclidean iff it is ptolemaic and satisfies the parallel axiom.

A Finsler space is Riemannian with non-positive Busemann curva-
ture iff it is locally ptolemaic.

A symmetric Hilbert geometry (where the absolute is a symmetric

= convex surface) is hyperbolic iff it is locally ptolemaic.

In Part II, two weaker forms of "non-positive median curvature®
-are introduced: If for each point p 1in a G-space there exists a
neighborhood V  in which the space has unique joins and a constant
r})p with O<;p< 1 such that if a, b, and c be any three points
of Vp and m the midpoint of the segment joining a and b, then
the inequality

rrp-mc<\/éac +4%bc” - 4ab

holds, the space is said to have weakly non-positive median space

curvature, while if the inequality
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mc £ % (ac + be)
holds, the space is said to have feebly non-positive median space

curvature. (Non-positive median curvature is defined by the former
inequality with 7/p =1 for all p.) The theorem obtained is:

In any G-space which has both weakly and feebly non-positive
median space curvature, the fundamental theorem is valid for both
the Menger and the Haantjes definitions of the curvature of an arc.

The class of spaces for which this theorem is valid includes
all Riemannian surfaces and certain (non-euclidean) Minkowski spaces.
Also in Part II is introduced the following concept of curvature for
arcs in G-spaces: If {qi} N &r:& , and {Si} are any three
sequences of points on an arc such that for each i, qi< ri< si,
qiri - risi’ and m, is the unique midpoint of the segment joining
q; and s;, then that arc is said to have transverse curvature

k(o) at p iff

8 m,r. ,
Um il = kp{p).
jmo0 2
q.s,
t B 3

This curvature is compared with classical concepts in euclidean space
and a formula for it is derived in certain Minkowski spaces. Then
the fundamental theorem is proved for this curvature in G-spaces

having feebly non-positive median space curvature.
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INTRODUCTION

Various definitions of curvature for arcs in general metric
spaces have been advanced. Menger [lb,] was perhaps the first to
propose an acceptable definition, and he made immediate efforts to
show that an arc in a metric space is a segment if and only if his
curvature identically vanishes along the arc. He concocted a variety
of examples showing that this is not the case, but eventually did
show with the help of Alt and Beer that the property is character-
istic of segments in E". Schoenberg [16] extended this theorem to
arcs in metric ptolemaic spaces (see p. O for the definition) while
Haant jes [11] , using a definition of curvature suggested by Finsler,
established a similar theorem in a class of metric spaces somewhat
more general than ptolemaic spaces. Simple examples in L1 spaces
of dimension two show that the characterization theorem is not ex-
tendible to general linear spaces using any of the definitions thus
far considered. It has been conjectured by L. Kelly and others that
an arc with identically vanishing Menger or Haant jes-Finsler curvature
in a strictly convex Banach space must be a segment, and one of the
principal objectives of this thesis is the study of this conjecture.

Somevhat more generally we attempt here to extend the funda-

mental characterization theorem to as wide a class of metric spaces






as possible, while at the same time we seek to gain a deeper insight
into the scope of the class of ptolemaic metric spaces. Our efforts

to verify the conjecture are unsuccessful, but they lead to the intro-
duction of a new curvature Kp (defined in Section 9) which coincides
with the variously studied curvatures in classical spaces and for which
we can prove the following satisfying theorems

Theorem: An arc A 1in a strictly convex Banach space is a
segment if and only if for each point peA’KT(p) = 0.

Actually the class of spaces for which this theorem is valid is
much wider than the strictly convex Banach spaces. It includes all
spaces each two points of which can be joined by a unique segment
(straight spaces in the language of Busemann [6)) and in which the
length of the median of a triangle is less than or equal to one-half
the sum of the adjacent sides. The theorem can be "localized" and in
the local form such spaces include spherical, euclidean, hyperbolic,
.elliptic and in fact all Riemannian spaces. In Section 8 we obtain
tHe precise relationship between K in a Minkowski space and -
classical curvature in the associated euclidean space thus making con-
tact with Busemann's work [5] in this direction.

Freese [9] in his Missouri dissertation proves that two-
dimensional Riemannian space with everywhere non-positive Gauss
curvature is ptolemaic, a fact which is actually implicit in the work
of Wald on the metrization of Gauss curvature [20] . We introduce
a new concept of space curvature somewhat analogous to that of
Busemann and prove that any space with non-positive curvature in

this sense is ptolemaic. This implies the Freese result in any






dimension.

We had hoped to establish that any G-space (defined in Section 5)
having negative curvature in the sense of Busemann is ptolemaic. This
proved to be rather difficult and in our efforts to construct examples
we discovered the interesting fact that any symmetric ptolemaic
Hilbert geometry (defined in Section 5) is hyperbolic. The concept
of curvature we introduce also provides the analogue of the P. Kelly
and Strauss theorem [13] to the effect that any Hilbert geometry with
unisigned curvature is hyperbolic.

We should note in conclusion two other possibly significant
fai lures. We have been unable to find an example of a "respectable®
space (e.g., a G-space) in which the fundamental curvature characteriza-
tion theorem for geodesics is not valid. We have also been unable to
construct an example of a space of negative curvature in the sense of

Busemann which is not Riemannian.



PART I

1. Preliminaries. If M {is any set, a real-valued function

d defined over MXM is a distance function on M if for any P;EM,
(a) dlpy,pp) 2 O.
(b) d(pl,pz) = 0 iff (if and only if) Py = Pye
(c) d(py,p,) = dpy,p)).
(d) d(pl,pB) < d(pl,pz) + d(pz,pB), referred to as the

triangle inequality. A set M with a distance function is a metric

space and d(pi,pj) is the distance from p; to Pje The distance
will be represented here more simply by the symbol PiPj and the
number PiP; itself by a Greek character, the Latin alphabet being
reserved primarily for points in M.

The topological conventions of Busemann [6] will be adopted.

For the convenience of the reader a list of the more frequently used
concepts appears below.

The sequence {pi} ,i=1, 2, 3, ***, where Pié M, converges
to peM iff i1_i,n':"’pip= 0.

A function f:Ml—->M2 mapping M; into M, is continuous iff
{f(pi)} converges to f(p) whenever {pi}’ i=1, 2, 3, *++, converges to
p. A function f:M;—M, is an isometry (or a congruence) iff f
is an onto mapping and P{P; = £(p;) f(pj) for all py,eM,. Sucha

mapping is clearly continuous and in fact a homeomorphism.



A metric space is corllgact iff every sequence contains a convergent
subsequence or altermatively iff every infinite subset has an accumulation

element. It is said to be finitely compact iff every bounded subset is

compact.

A neighborhood about peM, to be denoted usually by Vp, is the
open sphere V(p,8) for some & >0, that is, the sets of points xeM
such that px < 6.

A compact subset S of M has the property that every open
covering by neighborhoods {Vp}, p €S, can be refined to a finite sub-
covering, Vpl’ sz, seey Vpn'

A definition of particular importance to this thesis is the

followings

Definition l.1l: A quadruple of points pl, Pys p3, and ph
in a metric space is ptolemaic iff
PiP;'PyPm * PiPk'PiPn 2 PiPm'P Pk
where (i, j, k, m) is any permutation of (1, 2, 3, L). A space M is
said to be ptolemaic iff each of its quadruples are ptolemaic. It is lo-

cally ptolemaic iff each point peM has a neighborhood Vp which is

ptolemaic.

Euclidean space of dimension n, denoted by Bn, consists of all
ordered n-tuples (xl,xz,-“,xn) of real numbers xi metrized by

defining

2
X = J("L - y1)2 RS AR C 'yn)2

where x = (xl,xz,"',xn) and y = (yl,y2,“°,yn).

An isometric image in M of the euclidean segment is a metric
seghent in M. The images of the endpoints of the euclidean segment
are the endpoints of the metric segment and the metric segment is said
to be a segment. joining those endpoints. S(p,q) will denote the






segment joining p and q whenever it is unique in M. If S(p,q)
exists for each pair of points (p,q) in M it is said to have
unique segments.

The point q is metrically between p and r iff pq+ qr = pr
and p % q ¥ r, and the symbol (pqr) will demote this sitvation. If
p, 9, and r are any three distinct points of a segment then one is
always metrically between the other two.

A metric space is convex iff each pair of points has a point
between them.

Theorem (Menger): Each two points of a complete convex metric
space are joined by a metric segment. (The proof of this may be found
in Busemann [6]. )

A curve in a metric space M is a continuous map of El into
M; an arc is a homeomorphism of a euclidean segment. A geodesic is
a curve which is locally a metric segment, that is, each point of
the curve has a neighborhood in which each of its subarcs is a metric
segment.

If (pmq) holds and pm=mq then m is called a midpoint
of the pair p, q. If S(p,q) exists m must be in S(p,q) and
it is then unique and called the midpoint of the segment S(p,9)
denoted by Mpge

If the points p, q, and r in M determine unique segments
then the set union of those segments is the triangle with vertices
P, 9, and r, and is denoted by T(p,q,r). The median of the triangle
T(p,q,r) from p is the segment S(p,mgr), if it exists.

This section will be concluded with a definition which proves

to be relevant to ptolemaic spaces.






Definition 1.2: The median inequality for a complete convex metric

space M is for any point triple (p,q,r) and any midpoint m of
q and r the inequality

pn?< 3 pa® + § pr® - 4 arl.

Remark: The significance of this tnequality may be seen from
the fact that if (p,q,r) —(p',r',q') is an isometry of M into
E2 with m' the midpoint of S(q',r!), and if the median inequality
holds in M, then from the formula for the length of the median of a
triangle in terms of its sides in £2 §t fottows that pm g p'm';
this applies even if p', q', and r' are collinear. Moreover,
if the median inequality holds in a complete convex metric space M,
the space will have unique segments. For, suppose m is a midpoint
of q andr, and p is any other midpoint. Then in the isometry
(p,q,r)—=(p',a',r') into E2, p' coincides with m' and the
above observation produces pm < 0. That is, pm =0, and p = m.
Thus, midpoints are unique in M, and it easily follows that segments

are unique also.

2. The Ptolemaic and Median Inequalities Related. A stronger

form of the median inequality is obtained, from which it will be
proved that in any complete convex metric space the median inequality
implies the ptolemaic inequality.

Lemma 2.1: Let M be any complete convex metric space in
which the median inequal ity holds, and therefore in which unique seg-
ments exist. Then if p, q, r, and s are any four points with

s € S(q,r), the inequality






qr ar

holds. Moreover, if M {is such that the strict median inequality
holds for any three non-linear points (that is, not on a segment),
then the above inequality is also strict for p,q,r non-linear points,
qisir,

Proof: Since S(q,r) is iso-
metric to the interval 0 < % £ qr
by the mapping x —>% , x € S(q,r),
put’ T = qx/qr = &/qr, which defines
a linear map from S(q,r) to the unit
interval 0 < T < 1; then demote x by x,. The desired inequality
for x, = s then reads
(2.1) px2 & (1 -7) pg® + Topr? - T(L - 7) qr?

This will first be proved for 7 a diadic rational m/?n, by
induction on n. Let R(n) = {1/2%, 3/2", 5/2", «+-, (2" - 1)/2"}.
For n=1, if T is in R(n) then T =% and x, is the midpoint
of S(q,r), so the proposition follows by the median inequality itself.
Suppose it has been proved for all integers k less than n and
ZeR(k). Let 7 be in R(n) and suppose 7 = (2m - 1)/2" where
1¢nganl put p=(n-1/2"! and o= 2™ o that g

and o are each in some R(k) for k < n. Then the induction
hypothesis gives
(2.2)

P

pxs < (1-ppa? + popr? - pl1-prar?
(2.3)
2 2 e 2
px5 & (1-9)pq® + o*pr® - o(1-0)qrS q Xp Xg Xg T



Note that x, is the midpoint of S(x(,x,), since
XpXe= @y - @ = (‘L‘-'o)qr
while
XeXg= Wg = Py = (@-T)qr
and (T-Par = 2M.qr = (¢-7)qr. Observe also that T = %(f“’)'

Applying the median inequality to T(p,xf,x,) it follows that

Pl <hpd v bl - g xd,

or, using XpXr = (a'-P)qr,
(2.) et pd +hpd - g (0"(’)2“2-
From (2.2) and (2.3),
P & (et dpepr - 3 (p- phar? ¢
4 (1-0pq® + dopr® - 4 (0= A)qr? - Ko - {3)2qr2
(1-3p-dapa? + Hpraor? - (hprda -do>-dpo-johar?

(1-Dp + Topr2 - (T - 1¥)qr?

(2.5)

which is the desired inequality for 7 in R(n). Hence the inequal-
ity (2.1) holds by induction for all n and TER(n), that is, if T
is a diadic rational. Since the diadic rationals are dense on the
interval (0,1) a sequence {’Vn} of diadic rationals can be found
which converge to T, given s = xg, so that the corresponding sequence
{ x.;n} converges to X, and by the continuity of the metric,
l1’x_i':n".ple,l = pXq. But since (2.1) holds for each ‘L’n we have for each n,
(2.6) pred (1= Tpa® + T opr? - Tp(1 - T)arl.
Taking the limit as n—=©9 , the desired result (2.1) is obtained.
Now suppose the strict median inequality holds for non-linear
points in M, and let p, q, and r be non-linear, with q #% s # r.

Put s = xq and locate X, and x, any two points on S(q,r) .such
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that x, is the midpoint of S(x‘,,x,). Again it follows that 1-5(‘“«)

except that here, Ps % and T are not necessarily diadic rationals.
Nevertheless the inequalities (2.2) and (2.3) are now established

for arbitrary I and o, and the strict inequality holds in (2.L).
It then follows that in the subsequent steps the inequalities are
strict in (2.5) which gives the strict inequality in (2.1), completing
the proof.

Remark: It follows from the lemma that if the median in-
equality holds in M and (p,q,r)—>(p',q',r'} is an isometry
into 52 with s!' that point on S(q',r!') such that q's' = gs,
then ps ( p's'. For it is clear that

Ps € St +pq + 35 +pr - gsesr
qr qr

= S't! .pigt + Q'S' .pirt o gist.strt
q'r! q'r!

= p'st,
making use of an elementary formula valid in EZ.

Theorem 2.1: If the median inequality holds in a complete
convex metric space M, then M is ptolemaic.

mo_f: It is trivial that if four points are not distinct, or
if they are linear, then they are ptolemaic. It may then be assumed
that the four points are distinct and non-linear. Let the points be
represented by p, q, r, and s, so ordered that among pq.rs, pregs,
and ps-qr, the value ps-qr is maximal. It then suffices to prove
the single inequality
(2.7) PQ-TS + preqs » ps-qr

for all cases. Suppose (p,q,r)—>(p',q',r!') is an isometry
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into E2. Choose a second isometry (q,r,s)—(q',r',s') into E?

so that if both triples (p,q,r) and (q,r,s) are non-linear, p!

qr
s
M o £2 o
P P

1 r!

and s' fall on opposite sides of the lines through q' and r'.
The points p' and s! are then distinct, for otherwise both triples
(p,q,r) and (q,r,s) would be linear, and since M has unique seg-
ments from the median inequality this would imply that all four points
were linear, contrary to assumption. Again, the line through p' and
st in 52 will always have exactly one point x' in common with the
line through q' and r!' or else these lines would coincide implying
that p, q, r, and s are linear. There are then two cases: (a) x!
falls on S(q',r') or, (b) x*' is exterior to S(q',r!').

(a) x' falls on S(q',r'). Let x be that point on S(q,r)
such that qx = q'x'. By the lemma and the remark following it,
(2.8) px £ p'x! and sx £ s'x!
so that px + xs ép'x' + x's! = p'st and the triangle inequality
ps £ px + xs imply
(2.9) ps < p's'.
From the fact that E° is ptolemaic, (2.9) implies 4
(2.10) pqers + preqs = p'q'sr's! + p'rt.q's' 2 p'st-q'r' > ps-qr.

(b) x' is exterior to S(q',r!). Consider the sum of the
2

angles (p',q',r') and (r',q',s') in E° and the sum of angle
(p',r',q') and angle (q',r',s'). One of these sums must be greater

than a straight angle. Since the following argument may be applied
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to either case it may be assumed that the

latter sum is greater than a straight angle.

If both angles in this sum are > 7 then
il

p'q' >alr! and s'q'>q'r' so that

pq>qr and gs>qr and it follows that
pq-rs + preqgs > qrers + preqr = (rs + p[‘)ﬂl‘>/ ps+qr.
The remaining cases are when one of the angles of this sum is acute.
Again it may be assumed without loss of generality that angle (q',r!,s')
is acute and angle (p',r',q') is obtuse or straight. Finally, it may be
assumed that ps >p's', for otherwise (2.9) holds and (2.10) follows as
it did in (a). Introduce a coordinate system (&,%) in 52 with the ori-
ginat r', p' on the negative §-axis, and st in the fourth quad-
rant or on the negative 7- axis. Since %(angle (p‘,r',q')grf, ql
will either lie in the first quadrant or on the positive E-axis, hence its
coordinates (,f) will be such that @ >0, B>0. Let the coordinates
of s' be (7,8 with 7/>O, $<€0. Consider the minor arc A of the
circle with center at r' and radius (: equal to r's', whose endpoints
are s' = (7/,8) and t' = (!0,0). The real-valued function f€(z') = p'z!
for z'eA is continuous, and f(s!') =p's'< ps while f(t') =p't' =
P'r!' 4+ r's' = pr+ rs »ps. Hence there exists a point s" % s'on A
such that f(s") = ps. If s" has coordinates («r',&") then y‘}y and
8'>§ and it follows that
q's1? - qren? = (@)% + (g - )2 < (a - 7')2 -(p- &2

= 2alyt -g) < 288 - 5) + (7P 8D - (P g?

>f°2 ~ FZ 5
or q's' > q's" and therefore
(2.11) qs > q's".
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Applying the ptolemaic inequality to » n
E

the quadruple p',q!,r', and s q'

in EZ,

p'ql-rist 4+ p'risqist 3 p'steqir! on T
!
or, since p's" = ps, £

pqers + preq'st ps-qr

which, together with (2.11), implies
Pq'rs + preqgs > pq-rs + pr.q's" > ps-qr,
completing the proof.

Remark: In 122 the ptolemaic inequality is strict for distinct
points in all but two cases, so the applications made of it in the
above proof result in the strict inequality in all but those two cases.
The two cases when equality holds for points in E2 are when the
points are linear or cyclic. An examination of the proof of Case (a)
above reveals that since the points p', q', r', and s' cannot be
linear, the only possible way for the ptolemaic equality to hold for
those points is for them to be the vertices of a cyclic quadrilateral
with diagonals S(p',s'} and S(q',r'). Then x' is an interior
point of S(q',r') which implies from the lemma that the strict
inequality for (2.9), (2.10), and therefore for (2.7}. In Case (b)
the argument either reduced to Case (@) or the strict inequality was
obtained for (2.7). This proves

Corollary 2.1: If the strict median inequality holds for non-
linear triples in M and p, q, r, and s are any four points in M,
the only occurrence of equality for (2.7) is the case when either

the four points are not distinct or when they are linear.
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3. The Ptolemaic Inequality and Riemannian Spaces. A brief

description of a Riemannian n-manifold M will be given for the
convenience of the reader. Many terms will be encountered which
involve basic concepts of topology and are not defined here. The
reader is referred to Synge and Schild [18] for details concerning
tensor calculus.

(a) M is an n-manifold with a differentiable structure of
class (:2 at least. That is, M is a connected separable topological
space such that for each point p in M there is an open neighbor-
hood Vp homeomorphic to an open neighborhood of En, n fixed for all
pEM, such that if this homeomorphism be denoted by hp and its inverse
by hp'l then whenver two neighborhoods Vp and Vq have non-void

2,"',xn) into

intersection the transformation hth'l from En(xl,x
E“(yl,yz,"',yn) is of the form
(3.1) yi= yi(xl,xz,‘”,xn), i=1,2, ", n
where the y{ have continuous second order partial derivatives at
least.

(b) There exists, with respect to the coordinate systems of
M corresponding to these homeomorphisms into " a poéitive definite
fundamental or metric covariant tensor gij(xl,xz,"',x") of the second
order defined at each point for each coordimate system. That is,
there exists an nXn positive definite matrix [gij] which trans-
forms by means of (3.1) from one coordinate system to another as

follows (summation indicated by repeated indices):

= xE xS
9'45 7 9rs S5 53

where g'” corresponds to the components of the matrix in the
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coordinate system (yl,y?','-',yn) . One usually makes the assumption
that the gjj; are each of class c3 at least.
(c) In terms of this tensor the arc length of curves of
class C' at least, x! ?xi(r), i=1,2, +*», n, is defined as
-/ LgxJ
A= 915 X dx*dx’ v
d7z dv
by means of which M is metrlzed by taking xy to be the number
Inff \/gi axlax) a4z
dr dr
taken over all curves x. = xi(7) such that x corresponds to 7T = &
and y to T=§.
Observe that in the case n = 3 and with

gij(xl,xz,x3) =1 when i=j,
= 0 otherwise,

the above formula reduces to the usual one for differentiable curves

3
in E-,
A f\ﬂ 2+dx3)2 at
Tr: ar

and thus M is E in this case,

A few well-known results from Riemannian geometry will be needed.
One of these is that every point has a neighborhood in which each pair
of points may be joined by a unique metric segmenti, and that there
exists a fami ly of geodesics of class C2, passing through each point,
a unique one for each direction.

The angle between two geodesics may be defined as follows:
Suppose two geodesics represented by xi1 = xi(‘b’) and xé = x&(’[‘),
{f=1, 2, «¢¢, n, emanate from a certain point a € M with the respec-

tive directions (uj,u%,n-,ui}),j:l,z, where u1=dxi/dt,u; = dxé/d‘c,

1
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i=1,2, ***, n. The measure A of the angle between those geodesics

A = Cos~l 94 uiud

gijuiu{ gijuéug

There is a satisfactory concept of curvature in M, referred
to as Gauss curvature in the case n =2 which is a generalization
of Gauss curvature of surfaces in E3. The curvature K at a point
p in M for n>2 is defined corresponding to each two-dimensional
surface through p as the Gauss curvature of that surface. It is
possible to characterize locally euclidean spaces (those for which
each point has a neighborhood which is isometric to a neighborhood
in En) among all Riemannian manifolds by the condition K = 0 at
every point (see Synge and Schild [18) ). The following results con-
cerning curvature are from Cartan [7] , p. 261, for non-positive curva-
ture, and from Alexandrov [1] for positive curvature.

The Cosine Inequality: If K < O in a Riemannian space M
there exists a neighborhood V of each point in which the sides of
every triangle T(a,b,c) with vertices in V satisfy

2 _ 2ac.be cos C

(3.2) ab23 ac? + be
where C 1is the measure of the angle at c. If

K> 0 at some point p in M, then there exists

a surface which contains two geodesics through

p such that on that surface there is a

neighborhood V in which the sides of every triangle T(a,b,c) with

vertices in V satisfy (writing ﬁ as the metric of the surface)

(3.3) 2 ¢ 562 + Be? - 2ac+be cos C.
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The following theorem was obtained for the 2-dimensional case
by Freese [9_\ , using methods which cannot be extended to higher
dimensions. The following theorem, therefore, is somewhat stronger,
and its proof does not involve dimension in any way.

Theorem 3.1: If M 1is any Riemannian space of arbitrary
dimension and with K £ O at every point, then M is locally
ptolemaic.

Proof: Since K< O atany point p€M there exists a
neighborhood Vp which has unique segments and in which (3.2) holds
for every triangle with vertices in Vp. It will be shown that VI__J
is a convex metric space in which the median inequality holds. Vp
is already a convex metric space by assumption. Let a, b, and ¢
be any three points of Vp and m the midpoint of a and b.
Since T(a,c,m) and T(c,m,b) exist (3.2) may be applied. Let D
be the measure of angle (a,m,c) and put %= bc, fS= ac, 7= ab,

and A= cm. Then

p2>i72+)\2- y>\ cos D " 4
a2y 472+ R+ y)cos D f g
which implies ‘
aZe g2 9%+ 202, 3y Moy P

That is, >\2£ %0&2 + %ﬁz - 172, which is the median inequality.

By Theorem 1.2 Vp is ptolemaic which proves M is locally ptolemaic.
It might be conjectured that in certain cases the local con-

dition of non-positive curvature could guarantee the ptolemaic inequal-

ity in the large. But that this is not the case even for K strictly

negative everywhere may be seen in the example of the surface of

revolution in Ea(x,y,z) obtained by rotating the curve y = x2 4 1,
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z = 0 about the x-axis. This surface has negative curvature every-
where and by the above theorem is locally ptolemaic. But observe
the points a, b, d, and ¢ equally spaced on the circle generated
by the point (0,1) on the generating curve. With xy denoting the
metric on this surface, ab =bd =cd = ac = T while ad = bc = m,
but abecd + acebd = _%,_2 while ad-bc = M2 so that

abecd + ac+bd < ad-bc
violating the ptolemaic inequality for arbitrary points.

The converse of Theorem 3.1 also holds.

Theorem 3.2: If M 1is a Riemannian space and M is locally
ptolemaic then K< O everywhere.

Proof: Suppose K > 0 for some point p of M. This means
that there is a two-dimensional neighborhood about p such that every
triangle T(a,b,c) in it satisfies (3.3) Let L; and L, be two
geodesics in that neighborhood meeting at p orthogonally. Consider
points a and d on L; on opposite sides of p with ap=dp = %
and points b and ¢ on L2 on opposite sides of p so that
Bp = S = «%. Then from (3.3), ab, bd, cd, and ac are each less
than V2o and

ab.cd +ac-bd QE'E + acebd < 202 + 202 = 20t+20 = Ad+be = ad-be

for all sufficiently smll «, so

regardless of the n-dimensional neigh- 1
borhood taken about p there always

exist a quadruple of points violating >

the ptolemaic inequality. But this b e

P
contradicts the fact ttat M is locally / L

ptolemaic, which then proves K< 0. d




L. Metric Curvatures in Riemannian Space. In this section we

study two metric concepts of curvature in the context of metric spaces
with locally unique segments. In particular we investigate the
relationships of these curvatures to the ptolemaic inequality in
Riemannian spaces. After Busemann [6] we state

Definition L.1: A metric space M which locally has unique

segments is said to have non-positive Busemann curvature denoted by

KB<O iff each point p€M has a neighborhood Vp such that if a, b,

and c are any three points in Vp then my, and m,. exist and

(L.1) myemy & 3 ab. ¢
The space is said to have zero Busemann my. my
AT R c

curvature denoted by Kg = 0 iff

(L.2) myemy = 4 ab a b

always holds, and non-negative Busemann curvature denoted by Kg >0 iff

(L.3) Myetye > 4 ab

always holds. If the strict inequality holds in (L.1) for non-linear
triples a, b, and c the space is said to have negative Busemann curva-
ture denoted by KB< 0, and if strict inequality holds in (L.3) for non-

linear triples it {s said to have positive Busemann curvature denoted by

Kg > 0.
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Definition 4.2: A metric space M which locally has unique

segments is said to have non-positive median curvature denoted by

KMS 0 iff each point pé& M has a neighborhood Vp such that if
a, b, and c are any three points in VP then my;, exists and
(L.L) "’abcg <4 ac? + 4 be? - % ab2. B
The space is said to have zero median

curvature denoted by Ky =0 iff
(4.5) mapc® =+ ac? + 4 be® - % ap? = "ab b

always holds, and non-negative median curvature denoted by Ky 20 iff
2

(L4.6) mabc2 > 4 ac? + 4 be? - 3 ap

always holds. If the strict inequalities (L.l) or (L.6) hold for non-

linear triples, as in Definition L.l the space is said to have respec-

tively negative and positive median curvature denoted in the obvious way.

It should be noticed that the inequality (1.2) referred to
earlier as the median inequality is precisely the condition (L.lL)
affirming that the space has non-positive median curvature. It then
follows by a previous theorem that a space which has non-positive
median curvature is locally ptolemaic. It is clear that this is not
the case with non-positive Busemann curvature, for this class of spaces
includes Minkowskian spaces which are not in general ptolemaic.

It is important to observe that for both space curvatures KB

and K, the condition "non-positive curvature™ does not necessarily

M
include the conditions "negative curvature" and “zero curvature" as
mutually exclusive cases. That is, non-zero curvature for a space

does not imply that the space has either positive or negative curvature.
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Theorem L.1: In any metric space which has unique segments
locally, the conditions negative, non-positive, zero, non-negative,
and positive median curvature respectively imply negative, non-
positive, zero, non-neg@tive, and positive Busemann curvature.

Proof: To handle the above cases at once, let the following
notation be used. If a metric space S has Ky< 0 write Ky(S)<O,
and similarly for the other cases. Corresponding to each metric space
S for which Ky(S) is defined, define a binary relation Rs(d,P) on
the real numbers as follows:

Rg(®,p) iff d(F if Ky(s) <o

RS(UL,P) iff xgrs if Ky(s) <0

RS(OL,P) iff o=p if Ky(S) = 0

Rglet,p)  iff a2f if Ky(S) 0

Rg(@,p) iff a>f if Ky(S)> 0
Let p be any point in the space. In each of the five cases there
exists a neighborhood Vp in which for any three non-linear points
X, ¥y, and z in Vp and w the midpoint of x and 2z,
Re(rw2, 4 xy? + 4y - § xz2) holds. Let W be the
neighborhood about p with radius one-half that of Vp and suppose
a, b, and ¢ are any three points of W,. If p is the radius of

P

Vp and m,. is the midpoint of b and c, then

pmpc < PC + Cmpg
= pc + 4 b
<pe + 4 (pb + pc)
<de+d (p+dp)=p

so that a, c, and m,. lie in Vp. Let m,. be the midpoint of a
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and ¢ and put & = bc, ﬂ= ac, 7 =ab, o' =mm., and " = my.a.
If a, b, and ¢ are linear, it is clear that o' = %7 Otherwise,
a, b, and c are non-linear and therefore a, my., and c are non-

linear and lie in Vp. Therefore

Rs(p'?s o’ + 4 - 1) ¢
holds, or ‘Lﬁ é
2z -2

(D) Rg2 pt? - 262+ 3p2 )

o "
Also, c

"

(L. 8) Rs(y”Q, éfz + %72 - 3. 7
The transitivity of R. then implies & V4 B

S|
from (4.7) and (L.8)

Ry(2pr? - 38« 32, 367+ 4 - ded)

or Rs(y'z, %72)
Since 7/' and ’)’ are positive then RS(Vl’ 4}7) holds, which com-
pletes the proof.

Busemann proves in [6] pp. 269-70 that in a Riemannian space
with classical curvature K defined at each point, KB £ 0 and KL O
everywhere are equivalent conditions in the space, that also Kg =0
and K = 0 at each point are equivalent, and that K < 0 at every
point implies I(B & 0. It is now possible to give a similar compari-
son between K and Ky. This is done in the next two theorems.

Theorem L.2: 1In a Riemannian space M, the following conditions
are equivalent:

a. l(é 0 at every point.

b. KM< 0%

c. The space is locally ptolemaic.
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Proof: (a) implies (b) since (2) implies the cosine inequality
(3.2) and, as in the proof of Theorem 3.1, the cosine inequality implies
KM$ 0. (b) implies (c) by Theorem (2.1), and (c) implies (a) by
Theorenm 3.2.

Remark: It follows that in a Riemannian space, non-positive
Busemann curvature and non-positive median curvature are equivalent.
Indeed, Ky O and the three conditions of Theorem L.2 are equivalent
for a Riemannian space.

Theorem 4.3: In a Riemannian space M, K = 0 at every point
iff Ky =0, and if K< 0 at every point then Ky< 0 and M is
locally strictly ptolemaic.

Proof: The first statement follows easily from the fact that
K = 0 at every point mkes M locally euclidean (isometric to E"
locally) so that KM = 0 holds, and conversely it will be seen later
that Ky = 0 implies M is locally euclidean which means K= 0 at
every point. For the second assertion, let K <O at every point.
Then Kg< O from Busemann's theorem, and the cosine inequality (3.2)
holds locally. Let Vp be a neighborhood about an arbitrary point
p € M such that for any non-linear triple x, y, and z in Vp, My,
and myy exist and both inequalities
(L.9) Moy < 4 xy
(L. 10) xy2> y22 +x22 -2 yz+xz+cos Z
are valid, where Z = angle (x,z,y). Let Wp be the neighborhood
about p whose radius is one-fourth that of V_ and suppose a, b,

P
and c¢ are any three non-linear points in Wp. The midpoint m of
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a and b lies in a neighborhood about p of radius one-half that of
Vp, and therefore the midpoints m) and m, of m and a and

of m and c respectively lie in Vp. c

The non-linearity of a, b, and ¢

implies that of a, ¢, and m. Hence

(4.9) implies

(L. 11) m1m2< 4 ac. a — . b
But from (4.10), with C = angle (ml,m,mz),

mlmz2 > m1m2 + m2m2 - 2:mym-mom.cos C

= 1.ap2+ 1.mc? - 1.abemcecos C
b T T

and from (L.11),

(L.12) ac?> % ab? + mc? - abemc-cos C
Also from (L4.10),
(L.13) be? > P ab? + mc? + abemc-cos C
Summing,

acz‘bc2>fab2+ 2 mc?
or
(L. 1k) nc? < 4 ac? + 4 bc? - 4 ab?.

This proves that for any non-linear triple a, b, ¢ in Hp the
strict inequality (L.l) holds, hence Ky < 0. That the strict ptole-
maic inequality holds for distances in Hp (for quadruples of
dis tinct non-linear points) now follows from Corollary 2.1.

The above theorems show that any one of the concepts we tave been
considering serves to distinguish the non-positive sign of curvature in

Riemannian geometry. This suggests the use of either Ky or the local
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ptolemaic condition--both metric concepts--as a means of defining more
general ly non-positive curvature in G-spaces, analogous to Busemann's

condition KB< O. This will be treated in the next section.

5. The Ptolemaic Inequality and G-Spaces. Metric spaces which

satisfy the following list of axioms have been termed G-spaces, or
geodesic spaces, by Busemann [6] :

a. The space is finitely compact

b. The space is convex.

c. The space is locally prolongable, that is, for p any point
of the space there exists a neighborhood Vp of p such that given gq
and r any two distinct points in Vp there exists a point s with
(qrs) satisfied.

d. The space is uniquely prolongable, that is, if p and q are
distinct points then (par;) and (parp) imply rj = r, whenever
ary) = qry.

The immediate important consequences of these axioms ares:

a. Each point has a neighborhood in which each pair of points
can be joined by a unique segment.

b. Each segment can be prolonged to a unique geodesic of the
space which contains that segment as a sub-arc. Accordingly, we shall
denote the unique geodesic obtained in this manner by L(p,q) where p
and q are the end-points of the segment.

The stock of “standard" examples of G-spaces consists of
Riemannian space, along with the special cases of hyperbolic, euclidean,

and spherical space, Finsler space, along with the special case of
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Minkowski space, Hilbert geometry, and Cartesian products of any of the
above metrized by

a( (xp,%0) (v oyo) ) = (xqy ™ + xzy;)l/“
with a1, where X and y; are in I«Ti, a G-space with metric
Xiyi, 1= 1, 2.

In this section we extend the study of G-spaces to include our con-
cept of median curvature of space, with particular emphasis on G-spaces
which are locally ptolemaic. Our original objective at this point was to
establish or disprove the conjecture that a G-space with KB< 0 is local-
ly ptolemaic. In this we were unsuccessful but the investigation led to
many interesting results which we include here. The argument presented in
the proof of Theorem L.l is equally applicable to a G-space. It then fol-
lows that in any G-space KMé 0 implies KB< 0, while in a Riemannian
space, these conditions are equivalent. This points up how desirable it
would be to know the precise relationship between Xy and Kp ina G-space.

In [6) Busemann shows that a G-space with KB =0 is a locally
Minkowskian space, the term "locally" being used in the strong sense
indicating that each point has a neighborhood isometric to one in a
Minkowskian G-space. Since the condition Ky =0 implies both that
Kg = 0 and that the space is locally ptolemaic, then it implies in a
G-space that the space is a locally ptolemaic Minkowskian space. This,
together with the fact (Schoenberg [17] ) that a ptolemaic Banach

space is an inner product space proves

Theorem 5.1: A G-space is locally euclidean iff KM = 0.
It should be remarked here that this theorem is implicit in the
work of Blumenthal [2,3] since the condition KM =0 ie locally

what he terms the feeble euclidean four-point property. Our
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proof of the above theorem then provides an independent proof of some
of Blumenthal's characterization theorems.

The proof of Theorem 5.1 given above employs Busemann's theorem
which characterizes locally Minkowskian G-spaces as those for which
Kp = 0. Since Busemann's argument establishing this fact is scattered
throughout a number of other important results, it seems desirable to
present a2 new and somewhat more direct proof of this fact here. Then, 2
more direct proof of Theorem 5.1 will be indicated, after which, as stated
earlier, we shall explore the implications of the locally ptolemaic con-
dition in certain G-spaces.

Preliminary to the proof of the Busemann result we sketch a few of
the relevant facts concerning normed linear spaces which will be useful
throughout the remainder of the thesis.

Definition 5.1: A vector space M over the real field F is said
to be normed, or to have a norm, iff there is a mapping of M into the
set of non-negative reals, demoted by |[x|| for x €M, satisfying the
axioms

a. ||x|l= 0 iff x = o, the zero of M as a vector space.

b. Ixll= Dl for x€M, \eF.

ol + ylI € lIxl + Wyl for xeM, yeM.

M is said to have a semi-norm ||x| iff just (a) and (b) hold.

It is easily seen that M becomes a metric space by defining the

metric as xy=||x - y|l . The topological terms connected with norms are

with this understanding.
Definition 5.2: A space M is called a (real) Banach space iff

it is a vector space with a complete rorm, that is, a norm for which
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every Cauchy sequence has a limit. The dimension of M is understood
to mean its dimension as a vector space.

Definition 5.3: The unit w U of 2 semi-normed vector space
is the set of all points x such that |[x[l=1. A point x is called an
interior or an exterior point of U according as either [Ixll < 1 or

Il > 1.

Definition 5.4t The unit sphere U 1is said to be convex iff for
each x€U, y€ U then
(5.1) Ix+ (1 - Nyl € 1, o<h<,
and it is called strictly convex iff the strict inequality holds in (5.1)
whenever x%y.

It follows automatically that a normed vector space, and therefore
also a Banach space, has a convex unit sphere, for if 0<A<1 then since

lxll = Oyl =,
I+ =Ny« T =Dyl =Dl «lc - Dyl = 1.

The set ny, sometimes called a “one-flat," defined as the set of
all x in a Banach space M such that

z=2z, = Ax+ (1-Ny, MEF,
is isometric to Bl. For, if f(zl\) = \-Xy where Xy is the metric
of M defined as above, it follows that
znzap = 23 - 2
Ty = Ax= Chg = Ayl
= ol lx -l
S PN W P
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while
f(Z\Al)f(Z\Z) . If(le) = f(zxg)\

- I)\lx}' = >\2xyl

= Dy -y
or z \;Zy, = f(zn)f(zw). The subset Sxy of ny defined by
restricting N to ogk@ is therefore isometric to the euclidean seg-
ment 0 TExy, 'L”eE1 and is then a segment joining x and y. Segments
are unique in M iff U is strictly convex (see Busemann [6] , p. 96).
The only axiom for a G-space not satisfied by a Banach space with strictly
convex unit sphere is therefore that of finite compactness.

Definition 5.5: A G-space is called a straight space iff it has

the property that each two of its points can be joined by a unique seg-
ment.

Definition 5.6: A Minkowski space is a finite-dimensional Banach

space.
It then follows that a Minkowski space M with strictly convex

unit sphere is a straight G-space, with the unique segment joining a

pair of points x and y in M and the unique geodesic through x
and y being respectively the sets Sxy and ny defined above, and we
may now employ our previous notation S(x,y) and L(x,y) to represent
these sets. Now consider any three points x, y, and z in M and let
my; and m,, be the midpoints of S(x,z) and S(y,z) respectively.
Then
M =dx+ (L= z=3(x+2)

and similarly my, = 4 (y + 2) so that

momz = 13 (x+2) -3 v+l =13 x-9 =3 x






30

and therefore KB = 0, showing that this condition is necessary for a
G-space to be locally Minkowskian.

It is useful to express the Minkowski metric differently and to
view the space in a more familiar setting. Suppose a basis for an
n-dimensional Banach space M consists of the points by, by, «++,by
in M. By the linear independence of the hi each point x€é€M has the
unique representation

X =ab) + cczhz +ees * ol b
where the %; are real numbers. Thus the map f of M—g" given by

£(x) = (o), ap,eee, o)
is a one-to-one onto correspondence. It moreover follows that

f(x +y) = £(x) + £(y)
and

£f(Ax) = A\ £(x)
for each x and y in M and all real )\, so that M and E" in
this way prove to be isomorphic vector spaces and thus their topologies
are equivalent. From now on the distinction will not be made between
the points of M and " although, naturally, their metrics differ in
general. Now let x and y be two given points in M, x#y, and let
the metric of EM be demted by Xy. Put z =x -y and let L(o,2)
cut the unit sphere U in u and -u (since |lull = |l-ull = 1).
Then
(5.2) = lIx-y| = 2 = oz
and since the points o, x, y, and 2z are vertices of a parallelogram,
(5.3) Xy = oz.

There exists a real A such that z = Au and therefore
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(5.1 oz = llzll = Il = DMl = I\ .
It has been observed that scalar multiplication in M and E" coincide.

Hence, by definition of scalar multiplication in E",

(5.5) oz = o

The result is

(5.6) =y,
ou

and so it follows that the metric xy of M 1is given by dividing the
euclidean distance from x to y by the euclidean "radius" of the
unit sphere that is parallel to L(x,y).

It is clear from the preceding remarks that if U is any
euclidean sphere, M 1is isometric to E". A much stronger result is:
Two n-dimensional Minkowski spaces are isometric iff there exists an
affine transformation which maps the unit sphere of one onto that of

theother, from which it follows that a Minkowski metric is euclidean iff

lits unit sphere is an ellipsoid. A proof of this may be found in
Busemann [6] &

It is now possible to prove the theorem mentioned earlier:

Theorem 5.2: A straight G-space is Minkowskian iff Kg = 0
in the large.

Proof: The necessity of the condition was shown in the re-
marks following Definition 5.6. The proof of the sufficiency will be
given in a sequence of lemmas. In each of these the assumption will be
that M 1is a straight G-space in which the distance between the mid-

points of two sides of any triangle equals one-half the third side.
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b are any four points of

m and m' the respective midpoints of $(a,b) and

ant & & (aa? + bb1),

¢ be the midpo

of S(a,a') and my, my the midpo

of S(b,c) and 3(b',c) respectively.

Then
mm! émmL *omymy + mym!
=4aa' + 4 bb' + § an'
=4 (aa' + bb').

Lemma 2: Suppose in triangl

b
int

ints

e T(a,b,b') that

m' € S(a,b') are two points such that

am _ am'

ab ab!
holds. Then triangles T(a,m,m')

T(a,b,b!) are similar, that is,

am am! mn!
ab  ap't  bb'

Proof: Define m, and m,!

and S(a,b') with (am,)/ab = (am.')/ab' =T, 0T K1,

and

respectively on

shown that for all real 7T 1in this range

mymg' = T.bb'.

M with

5(a',b!), then

m€s(a,b) and

a
nt
bt
S(a,b) and S(a,b')
It must be

This will be shown first for the diadic rationals by induction on n

where R(n) = {_l_x LR _%} for n a positive integer.

on N

For n=1, m%m%' = f bb' follows by hypothesis. Assume it has been
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proved for T€R(k), k<n. Let 7 be in R(n). Then it may be assumed

that

where p is some integer, 1¢ pg on=l. 1f p =1 so that T = 1,

on

put @ =27T = l). so that ¢ €R(k) for some k < n, which implies
21F

by the induction hypothesis,
(5.7) mem,! = @ +bbl,
Also, m, and m;' are the respective midpoints of S(a,m,) and
S(a,m,!') so it follows that
Myme' = 4 mym,' = %o <bb! = T bb!
and the assertion holds for p = 1.

It may then be assumed that 2 p & 2™l write

o =Z-b-p-2
on 2!’1—1

=2p -3
g =

P =22-2=p-1
on on-1

2“
g =2p=_P
2" 2n-1

so that «, !0, and @ are each in some R(k) for k<n and the
induction hypothesis applies to mgm,!', mrmf', and mem,':
(5.8) memg' = @-bb', mm' = E-bb!,  mm' = O -bb!

where o0 and C#1l. But if my and my' are defined as a,
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and m) and m' as b and b' respectively, then (5.8) holds even
for 0b=0 and = 1, so that for all p, 2& pg 2™ L, (5.8) holds.
It is clear that m, e, and m,, divide S(m,,m,) into equal segments,

and similarly for m,,', mr', and mg'. Thus Lemma 1 implies

mtm,,'é é (m(‘mF’ + mmg') %
=4 ({M @) bb!
=% (Izin_:_lls ‘27\9.—1) bbt
=2p - 1 .bbt
2n
or,
(5.9) mem,'  Tebb!.

Lemma 1 also implies

(5.10) R <% (mﬁmﬁ' + mymg!)
and
(5.11) r’-bb'g %[i—(m,'m,.' + mfmr’) + m,rmf':l 2

Using (5.8) this becomes

povt (dov v §p) bt + 4 meny?
and therefore

mong > (%
- (3

s 4 ) bb!
.p-1l -4 p-2) bbb
on-1 on-1
= 2o 1.,
21’1
That is,

m.‘mf‘)'f'bb',
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and in view of (5.9) this proves that mgm,' = T .bb'. Induction
then carries, and the proposition has been proved for T a diadic
rational. The continuity of the metric then implies mgm,' = T .bb!
for arbitrary 0&7TK1.

Lemma 3: The medians of a triangle are concurrent in a point
which is two-thirds the distance on each median from the vertex to the
midpoint of the opposite side.

Proof: Let T(a,b,c) be any triangle and consider

the median S(m,c) from c. Let 2
x be the point on S(m,c) such
2 > m!
that xc =3mc, and let d and d! d qr
X
be those points on S(a,b) and ﬂ
S(a,c) respectively such that b c

ad = %—ab and ad! = %ac. The lemma will be proved by first show-
ing that x is the midpoint of S(d,d'). By Lemma 2,
(5.12) ddr = % be.

But bd = %-2 bm = %bm and similarly cd! = %cm', so again Lemma 2

implies dx = %bc and xd' = %—mm' - -%f bec = %—bc, or dx = xd' = %bc.

From (5.12) it follows dx + xd! = dd'. Therefore x is the midpoint
of S(d,d").

Now if y is that point on the median S(b,m') from b such
that by = -;‘ bm', it follows in exactly the same manner that y 1is the
midpoint of $(d,d'). Therefore, x =y thus proving that any two
medians of a triangle intersect in a point x which is two-thirds the
distance on each median from the vertex to the midpoint of the opposite

side. This establishes the lemma.
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Remark: For the proper interpretation of the next lemma, let
the following conventions be established. Uhenever x =y the midpoint
of S(x,y) will be taken as x, and L(x,y) will consist of the single
point x. Also, (xyz) is interpreted loosely as meaning simply
Xy *+ yz = xz without any demands on distinctness of x, y, and z.

Lemma L: Let o be any fixed point and x and y arbitrar-
ily given points in M. Define the point z = x +y by locating the
midpoint m of S(x,y) and taking z
as that point of L(o,m) such that x
(omz) holds and om = mz. The opera= n Xty
tion x + y thus defined makes M an
additive abelian group. y

Proof: It is clear from the definition that:

a. The operation is well-defined and closed by the fact that
M is a straight space.

b, x+y=y+x for xeM, yeM.

c. o+ x=x forail x€M

d. -x 1is that point z on L(o0,x) such that (zox) holds
and 2o = oX.

All that remains to prove is the associative law. Let x, y,
and z be three given distinct points, each distinct from o. This
invo lves no loss of generality, for by the continuity of x+ y in M
this case implies those cases where at least one pair of points coin-
cide. In the definition of (x+ y) + z let m) be the midpoint of
S(x,y) thus locating x + y, and let my, be the midpoint of S(x + y,z)

which then defines (x +y) + z. Next, let m;' be the midpoint of
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S(y,2) which defines y + z and let m,' be the midpoint of S(x,y + 2)
thus locating x + (y + z). By Lemma 3, in triangle T(o,x, y + z) med-
ians S(o,my') and S(x,ml')

intersect in a point r such

that
(5.13) xr = %xml'
and
(5.1L) or = Jomy'.

In triangle T(o, x + y,z) medians S(o,mz) and S(z,ml) intersect

in a point s such that

(5.15) zs = %zml
and
(5.16) os = % om.

Finally, in triangle T(x,y,z) medians S(x,m;') and S(z,m;) inter-

sect in a point t such that

(5.17) xt = -§-xm1'
and
(5.18) zt = %zml.

Then it follows that r and t are both on S(x,ml‘) with xr = %xml‘
from (5.13) and xt = %xmll from (5.17), hence xr = xt and therefore
r=t. Also, s and t are both on S(z,ml) with zs = %zml from

-%-zm1 from (5.18), hence 2zs = zt and therefore s = t.

(5.15) and zt =
Then r =s and therefore mp and m2' are such that (orm2) and
(ormz‘) hold. But also om, = omy' from (5.1L4) and (5.16) which im-
plies rmy, = rmy'. Therefore my = my' from which it follows tmat

(x+y)+z=x+(y+ 2.
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Lemma 5: Let x be given and A any real non-negative number.
Define Ax as that point y on L(o,x) such that one of (oxy) or
(oyX) holds and oy = A-ox. Extend the definition to negative A by
defining Ax = (-\) (-x). With this as scalar multiplication, M is
a real vector space.

Proof: Directly from the definition it follows that 1l.x = x
and it is an elementary exercise to verify that ()\/A)x = >\(/4 x) and
()\+/4)x = Ax +px for real )\, Jt. To prove that Ax + y) = N x +>\y,
for positive >\, let m be the midpoint of S(x,y) which defines
x+y and A(x +y). Let m' be the midpoint of S(Ax, \y) which

defines >\x + Xy. Put m" = )\m,

x! = \x, and y! =>\y. It will be Ax = xt
proved that m" 1is the midpoint of s . )\(x +y)

m!
S(x',y"). Now (ox!')/ox = (oy')/oy =\ ¥+

Ax+Ay
so that (x'y')/xy = A\. Similarly, o
Y
Tmt = 1" =

(x'm")/xm = \ and (y'm")/ym = ), or Wi 25

ximt_ _ y'mt =x|::| Sxty! | xiy!
ym Xy 7xm 2ym

xm
and therefore x'm" = y'm" = % x'y! so that x'm" + y'm" = x'y'.
Hence m' is the midpoint of S(x',y') or §( >\x, )\y) and it
follows that m" coincides with m'. Writing w) = >\(x+ y) and
Wy = Ax + Ay, both w) and w, lie on the single geodesic L(o,m).
But if z=x+y then oz =2 om so that Wy =)z means
ow; = X-0z = 2\ -om. Also, owp = 2 om! = 2 om' = 2\.om since m"
was defined as Am. Hence ow) = ow, and the betweenness relations

then imply W) =w, or that
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A(x +y) =Xx+>\y.
For A= 0, the axiom in question is trivial; for A < 0, the above
proof implies (-N) (=x-y) = (=N) (=x) + (= \) (=y), so by the
definition of Ax for this case,

M+ ) = (-0 [-tx v y)

=N (-x-y
= (-0 (=0 + (N ()
=hx + Ay

which verifies the axiom for all real M.

Lemma 6: Define ||x|| = ox for x€M. Then |lx| is a norm
for M and under this norm, M is a Banach space.

Proof: That ||x|| is a norm follows from:

a. |[Ix]] =ox =0 iff x = o0 by the fact that the metric xy
behaves this way.

b. If y=\x, Il =1yl = oy = Mox = [\l xll, for a1l reat s

c. Let x+ y=2z. Then if m is the midpoint of S(x,y)
X

and m! that of S(o,x),
m'm = 4 xz, m'm =% oy

so that xz = oy. Hence from the o

triangle inequality of the metric
it follows that i

I+ vl = flzll = ozgox+xz=ox+oy= x| + |y] .
That the norm is complete is clear from the finite compactness of M.
Therefore, M is a Banach space.

Lemma 7: M is finite dimensional, and therefore M is a

Minkowski space.
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Proof: This also follows by the finite compactness of M by
standard arguments (see, for example, Taylor [191 p. 97).

These seven lemmas complete the proof of Theorem 5.2. The pre-
ceding arguments may all be localized to give:

Corollary 5.2: A G-space is locally Minkowskian iff KB = 0.

It was stated earlier that a direct proof of Theorem 5.1 would be
indicated. That proof proceeds as follows: The local condition KM =0
implies Kpg = 0, so the proofs of Lemmas 1-7 follow locally, and it then
follows that some neighborhood V of an arbitrary point o€M is Min-
kowskian. The following theorem of Schoenberg (see [17] for the proof)
may now be employed, stated here as a lemma since it will be found useful
later:

Lemma 5.1: A linear space M is an inner product space (and
therefore euclidean) iff for each two points x and y on the unit
sphere,

(5.19) e e yll 2+ - vl 22 b

Since the neighborhood V either contains the unit sphere or is
isometric to one which does, there is no loss in generality in assuming
that V contains the unit sphere U. Now let x and y be two given
points in V. Applying the condition Ky =0 to the median S(0,3(x+y))
of triangle T(o,x,y) it follows that

N3G+ 9l 2= 3iixl 2+ 40v0 2 - 4l x - v 2
or

Ixs vl 2 lx= vl 2= 20xl 2+ 20yl 2

(the familiar parallelogram law) which, in particular, implies (5.19)
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if Ixll = \ly| =1, that is, if x and y areon U. Therefore,
the metric of V is euclidean and M 1is locally euclidean. Conversely,
if M is locally euclid/ean, it is clear that Ky = 0.

The characterization theorems mentioned earlier will now be pre-
sented. Certain preliminary definitions and remarks are necessary for
each theorem.

Definition 5.7: If the sphere S in a straight G-space is con-
vex, then it is called differentiable (Busemann ] ) at x on s iff
no proper subset of the set W, formed by the points on the supporting
lines of S at x, decomposes the space. "

The Parallel Axiom for Two Dimensions: The Parallel Axiom holds
in a straight two-dimensional G-space iff for a given line (geodesic) L
and a given point x not on L, exactly one line through x exists
which does not intersect L.

The parallel axiom may be formulated in straight G-spaces of
higher dimension whenever the space is Desarguesian or hyperplanes
exist. In this connection Busemann [6] , p. 147, proves that a
straight G-space of dimension greater than two in which the spheres
are convex and differentiable and the parallel axiom holds, is a
Minkowski space with differentiable spheres. He proves another theorem
(p. 157) which handles the case for two dimensions: A two-dimensional
straight G-space is Minkowskian iff it satisfies the parallel axiom and
an @ »1 exists such that py*¢ #(px™ + pz¥) whenever y is the
midpoint of S(x,z). It is easy to combine these two theorems into the

following characterization of o by means of the ptolemaic inequality.
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Theorem 5.3: A straight G-space M in which the spheres are con-
vex and differentiable is euclidean iff it is ptolemaic and satisfies the
parallel axiom.

Proof: The necessity of the conditions are obvious; it suffices
to prove for the sufficiency that M is Minkowskian, for then the
ptolemaic inequality implies (5.19) from which it follows by Lemma 5.1
that M 1is euclidean. To obtain (5.19) from the ptolemaic inequality,
let x and y be any two points on the unit sphere, and consider the
quadruple X, y, -y, and -x. The ptolemaic inequality gives

xye (=y) (%) + x(-y)-y(-x) 2 x(-x) -y(-y)
or

Ix -yl 2+ llx+yl2> 20x2:0y = L
Now if the dimension of M is higher than two the theorem of Busemann
mentioned above already implies M is Minkowskian. For dimension two,
it need only be shown that if y 1is the midpoint of S(x,z) and p
is any other point, there exists an a 2> 1 with
(5.20) Py} (px® + pz®).
But the ptolemaic inequality applied to p, X, y, z gives

PZ'Xy + PX'YZ ) Py*Xz
or, since xy =yz = % xz,

4 (pz + px) 2 PY>
which is (5.20) with @& = 1, thus completing the proof of the theorem.
The next theorem concerns itself with Finsler spaces, the essen-

tial axioms of which are now presented.
a. The space (denoted from now on by M) is an n-manifold with a

differentiable structure of class ch, Neighborhoods of M are
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coordinatized by means of the homeomorphisms into En (just as they are
in Riemannian space). Thus, overlapping neighborhoods have mre than
one coordimate system, so the differentiability structure sets up a
tensor calculus there.
b. Let a curve of class C]' be represented by xi = xi @),

(-2 QTQF Then .de is a contravariant tensor. Let a function
F‘(;( 3 ,“',xn,El,E, ,+++,E¥") be defined over the 2n variables
xl, %2, oo, xP,ELE2, <00 ¥M and let it be of class c3 where the
domain of the xt is the neighborhood where this coordinmate system is
valid, and that of Ei all of E", Further, let F satisfy

(1) F(x,8) >0 for &40, where x = (x1,x2, +++,x" and
g (gLEd, e,

() Fx, N®) = INFOE).

(3) The surface F(x, %) = 1 in E- space for each fixed

x has everywhere positive Gauss curvature. Then the definition

Ai=pr(x1(r) x2() ,+ e e xNw) ;I dx ,ax2, ’%;_n) a7

a7

will be a suitable arc-length for curves locally (a classical result in
the calculus of variations).

c. The metric of M is taken as

. Inf f F(x,9%) dr
i)l Uy F
where @W is the class of Cl. curves in M with
= (@) pP@), e @),y = () )k )
Theorem 5.L: A Finsler space is Riemannian with Kgg 0 iff it

is locally ptolemaic.
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Proof: The necessity is clear from Theorem L.2 and the remark
following it. A result of Busemann and Mayer [h] will be used to prove

the sufficiency. Define for pel, BeE",

Fp(®) = F(ELEY, 8" = K(pl,p?,-e,pELe2, oo 81
Then for p = (pl,pz,---,pn), a fixed point in M, the points in "
satisfying Fp("%) =1 define a strictly convex surface U. If x and
y now be given in M and if %=x -y then since Fp(XE) = |)\|FP(E),
it follows that

X = m(xy) = Fy(x - y)
defines a Minkowski metric at p (since a Minkowski metric is deter-
mined uniquely up to an isometry by specifying its unit sphere). The

result of Busemann and Mayer we shall use is:

lin G ia,
X —>p %
y—>p

Suppose UA is not an ellipsoid. Then mp(x,y) is not euclidean,
and in view of Lemma 5.1 this means there exist a pair of points a and
b in M 1lying on U satisfying

la+ bl ?+ fla-b[2<L
If ¢c=-b and d = -a, this is equivalent to
36.33 + -F4 < 555,
which becomes, with & = (3b-cd)/(ad-bc) and g= (a¢-5d) /(zd-be) ,
o+ F( 1. d
Define the points x =Xa, y =Ab, z=\c, and w=\d, 0< A< 1,

in M. Then since Xy = A-3b, Xz = \-ES, and so on, we have

EE-« EE-p

XW*yZ XWeyz
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where « and F are constant with respect to A . Hence

i (2E ez

Yo \Xwyz  Wryz
= lim L XZoyW | W'E_ﬂ>
=0 Xz YW xweyz
-arp

<1

which means there is a sequence of points Xis Yis Zp and W, converg-
ing to p for which
XY 2y + Xy < XYz

holds, i = 1, 2, °++. This contradicts the fact that M 1is locally
ptolemaic.

Therefore, U must be an ellipsoid with the equation (using
summation convention)

915 igd-
where [gij:l is a symmetric positive definite nXn matrix defined at
p. Therefore FE(E)E gij(p) EiEj and in general
Fo(xl, %2, oo v, xMyaxl, ax2, - -+ ,dx) = gij(xl,xz,- - xM dxiaxd

thus proving that M is a Riemannian space, with 1(34 o.

The final theorem of this section requires the definition of
Hilbert geometry, which will now be given.

Definition 5.8: A Hilbert geometry M corresponding to any convex

body U with boundary U in E" consists of the set of points U - U
metrized as follows. If x and y be any two points of M, then the

affine line through x and y cuts U 1in two points u and v; define
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Xy = |log il

Xa-yv

where DPq denotes the euclidean metric. A sxmmetric Hilbert geometry
is one for which the convex surface U is symmetric, that is, a surface
for which there exists a point o called its center such that for all
x€U, the affine line through o and x intersecting U also in x!',
5% = ox'.

It can be shown (see Busemann [6] , p. 96) that M is a straight
Gwspace whenever U is strictly convex, with the lines and segments coin-
ciding with the intersection of M with the affine lines and segments.
The reader may notice that Hilbert geometry is a generalization of hyper-
bolic geometry when U 1is an ellipsoid. The convex surface U is
often called the absolute.

Remark: The fact that a Hilbert geometry remains unaltered
under affine transformations will be used later. This can be observed
from the fact that the expression in the logarithm which defines the
metric is a cross ratio, an invariant under affine transformations, so
that although the points themselves have been transformed, the new space
is isometric to the old.

Lemma: 1In any Hilbert geometry M with absolute U, if {xi}
and {yi} are two sequences of points in M converging to b€EM in
such a way that the intersections u; and vy of L(xl,yi) and U
for each i converge to a€U and c€U respectively, then

lim X1 4
i—> 33, ®BE
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Proof: For i sufficiently large, X;7;< Xju; and it may be
assumed without loss of generality that for all such i X3 is between
u; and y;. For any such i, put Xy =T, Xu; = @, and Xjvg =ﬁ.

Then T/a<1l and ’U/p< 1, so by using a Taylor expansion,

Kl ol XV
Xi¥i XMLV VY

I o g(om—c;
T - alp-T

s 2l A .

L [iog 1+ Z) - 105 1 T)]

=¢1_-11, B sy Ty __+...]
3 cc 20 30 B 2 3F

=_£__+___ (1 s (1+____)1,2' 2

e e

Letting i—>oe, then T—>0, &—>3b, and B—>BC, so the above limit
is (1/ @) + (1/ bc), proving the lemma.

Theorem 5.5: A symmetric Hilbert geometry is hyperbolic iff it
is locally ptolemaic.

Proof: Again the necessity is clear; assume for the sufficiency
that M is locally ptolemaic symmetric Hilbert geometry, but not hyper-
bolic. Then the symmetric surface U with center o is not an ellipsoid,
and there accordingly exists a plane section C of U through o which
is not an ellipse. The assertion is made: There exists an ellipse E
inside C with center at o, and with four points in common with C.

To prove this, first observe that there exists among all ellipses in-

terior to C and with center at o, an ellipse E with maximal area.®

*This argument is due to Schoenberg [17]
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This follows from the fact that the set consisting of C and all its in-
terior points is closed. It is clear that E must have at least one
point a 1in common with C, or it would not have maximal area. By the
fact that C 1is symmetric about o, then also -a is a common point.
Now perform an affine transformation taking E into the unit circle

E' (the maximal property of E 1is preserved under such a mapping),

C into some convex curve C', a into at', -a into -a', and assume
a coordimate system (E,'Q) such that o is (0,0), a' is (1,0) and
-at is (-1,0). Suppose E' and C' have no other points in common
besides a' and -a!, and consider the one-parameter family of ellipses

Ey! passing through (: 1l ,+ 1 given by

T

2 2
aE +(2-a)n =1, 1<a < 2
with conjugate radii of respective lengths 1/ & and 1/ V/ 2-« ,

and hence with area

Ay = __j_T__
V 2a-a?
Thus, since a1, 20&-062< 1 so that Ag> 1 for each ellipse in the
family. But taking o close enough to unity, there exists an ellipse of
this family completely interior to C', and with area greater than that
of E'. This contradicts the maximal property of E' and proves that
E' and C' must have at least a third point b', and therefore a fourth,
-b? in common. If b and -b are the corresponding points under the
mapping, then E has the four points a, -a, b, and -b in common with

C.
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It is convenient to argue in terms oi“ the above transformed
ellipse E' and curve C!'. The assumption made above now implies
that E' is interior to, and distinct from, C', with the four points
of contact at, b', -a', and -b'. Since the Hilbert geometry M!
defined by C' 1is isometric to the original one defined by C, M! is
also locally ptolemaic. Let f = f(6) be the polar representation
of C'. It follows that f(@) >1, 0 < HL 7. The distinctness
of E!'! and C!' implies the existence of at least one 7] for which
f(8) > 1, and hence by continuity of f(§) an interval a< 6<ﬂ
for which f(6) > 1. From the existence of the four points of con-
tact, it follows that « and P may be taken so that f(a«) = 1,
£(p) =1, 0ga<m 0<BL T, and 0<la-pIKM Let c and d be
the points of C' corresponding to @ =& and 9=p , respectively,
and let ' = %(oup) and B' - 3( a,+,3): _1'2_[, choosing the sign so
that O<ﬁ' { 1. For some neighborhood of o0, the ptolemaic inequality
is valid; let x, y, z, and W be in that neighborhood and such that
they are the vertices of a rectangle
with diagonals along L(o,c) and
L(o,d), with xe S(o,c) and
y €S(o,d). Hence

Xye2W + XZeYW 2 XWeYyZ

and, dividing by Xw.yz, this

may be written in the form

, e XZ:yW  XW.yz

TR weyEC weE

* 2w

Xy
(5’21) —— aen ¢
Xy -2

e
1l o
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But if » is the angle between S(x,z) and S(z,y) it follows that

Xy zw Xz yw
— = sin 7/, = = cos Y
Xw Yz Xw Yz
and (5.21) becomes
XZ yw XW z
—. sin’y + . °°S2?’> _— —y:
Xy Zu XZ yw Xw Yz

which, in the limit as x, y, z, and w tend to o, becomes by the

lemma,
(2 £(BY) )2 sinfy s (2 f(o(.')>2 sy S 2 fa) * 2 £(p)
(") 20 a) £2(x) - £2(p)
or, ‘
2
(5.22) L;S-Z— + _:_“ﬁ.').’_ > L
f(a) £°(B"

But f(a!') > 1 and f£( ﬁ')>1° provides the contradiction

C0527 + .‘°‘_1_"_2_'_7'._ < cos27 + sin27 = 1.
£2(ar) £2(p"

Therefore U must be an ellipsoid which means that M is a hyperbolic

(5.23) 1&

wace.






PART II

6. Preliminaries. We turn now from the study of ptolemaic

spaces to a consideration of the class of metric spaces in which
geodesics are characterized by the identical vanishing of one of the
metric curvatures thus far introduced. We have had a measure of suc-
cess in extending the fundamental theorem to spaces which are not
locally ptolemaic. In particular, we extend the theorem to include a
restricted class of strictly convex Banach spaces--Banach spaces whose
unit spheres are strictly convex--but we are still unable to settle
the question with that restriction removed. However, we introduce
another quite natural definition of curvature, Keps and for this
definition geodesics in strictly convex Banach spaces are character-

ized by the vanishing of k.. at every point.

T
In considering Menger curvature, Ky 2N alternative definition

kg suggested itself which seemed equivalent to K In Section 7 we

w
prove this equivalence and utilize this result to effect a new proof
of the fundamental theorem in ptolemaic spaces, based on Haant jes?
original argument. Then in the final sections we introduce the curva-
ture &T, study the relationship between K in a “smooth" Minkowski

space and the classical curvature relative to the associated euclidean

metric, and prove the fundamental theorem for it in a broad class

51
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of metric spaces, which includes strictly convex Banach spaces.

We introduce the notation to be used in connection with curves,
arcs, and arc-length. A curve in a metric space M was defined pre-
viously as a continuous image of El, while an arc is a homeomorphism
of an interval. Rectifiability is defined here in terms of arcs and
not curves.

Definition 6.1: A lattice P of anarc A with (distinct)

endpoints a and b, henceforth denoted Ag, is any finite set of
points pieA};, i=1,2, <+, n, ordered by < by means of the natural
ordering of the interval of which AE is a homeomorphism, such that

a2 =py<pP;<p, < <py = b
The norm of P is defined as

max [pi-lpi I i=1, 2, *°, n]
and the length of P is

PPy + p1P2 *p,p,t Pr.iP

23 n

where pq 1is the metric of M.

Definition 6.2: If P, 1is any lattice of arc AZ with norm

A, L(P,) is its length, and R is the set of positive reals, con-
sider the number 2ugR L(P,). The arc is said to be rectifiable with
arc-length A;’ iff this number is finite.

An important theorem used later is

Theorem 6.1t If an arc A: is rectifiable of length Az then

b
lim L(P ) =
Ao (P) Aa
(A proof may be found in Busemann [6] , pp. 19-20.)

It is clear that if an arc A: is rectifiable then each of

its subarcs A} must also be rectifiable. If AY is defined as
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-A; for y«x, it can be shown that for arbitrary points x, y, and

z on a rectifiable arc AZ,
y z _ z
A+ Al= Aj-
From this it follows that if x(T) 1is the homeomorphism of the in-
b
terval 7T into M defining A, then A:(T) is a continuous,
one-to-one function of 7, and therefore of xeA:. A parametrization
y(a), 0K a'gAg, of Ala) by arc-length ¢ can now be given. Define
y(0) = a, and for each o, O<0'<A2, define y(0) as that point y
on Ag such that

y
= a0,
- Aa
A geodesic was previously defined as a curve which was Wlocally"
a metric segment. For greater ease of exposition we shall confine our

attention to "geodesic arcs" which are now given a precise definition:

Definition 6.3t A geodesic arc is an arc which has the property
that each point on it has a neighborhood in which that érc is a metric
segment.

It is clear that an arc Ag parametrized by arc-length y(o),
0<0’<A2, is a metric segment iff Ag = ab with y(¢) as the
isometry of the interval into M which defines AZ. It follows that
a rectifiable arc A is a geodesic arc iff AX = xy holds locally

on A.

Another theorem which we shall use is the '"n-lattice theorem”

of Schoenberg:
Theorem 6,2: For any arc Az and each positive integer n

there exists an n-lattice, that is, a lattice

{a = Pgs Pys Pps *0%» pn=b}
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of Ai such that
PoPy = plp2 = p2p3 s = pn-lpn’
(Schoenberg‘s proof of this is found in Blumenthal [3] , pp. 73-L.)

7. Menger Curvature and Haantjes! Proof of the Fundamental

Theorem. Following Menger [ll] , Menger curvature for curves is defined,
then a simplified version of it is given which is later proved to be
equivalent to it.

Definition 7.1t Let p be any point on an arc A and let

q, ry, and s be any triple of distinct points on A. Define

V/(aqr + s + sq)(ar * s - SQI(qF - s + sq)(-qr + s + 5Qq)

KM(Q:r,S) =
qrers-sq

Then A 1is said to have at p Menger curvature nM(p) iff to each

€>0 there corresponds a §>0 such that for pq, pr, and ps each
less than 3,
|k (ars) - x(p)] <e.
Note that there are no difficulties arising due to permutations
of q, r, and s, since the expression ch(q,r,s) is symmetric in
q, r, and s.

Definition 7.2: Let p be a given point of an arc A with

q, ry, and s any triple of distinct points of A, with sq maximal

among the values qr, rs, and sq. Define

olqr + rs - sq)
KS(Q:r)S) = °
qrers.sq
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Then A is said to have at p simple Menger curvature Ks(p) iffto each €>0
there corresponds a §>0 such that for pq, pr, and ps each less than 5,
K r,s) - K <e.

. lsh,,) éwl

Since the restriction qr = rs in the definition of LM(q,r,s)
above effects a close resemblance between Menger curvature and another
curvature considered by Heantjes and Finsler, from now on referred to
simply as Haantjes curvature, its definition is stated here.

Definition 7.3: Let A be a rectifiable arc and p any point

on it, with q and r a pair of points of A such that g <r. Writ-

ing arc-length Az on A as A(x,y), define

20 A(q,r) - ar .
/_1______
A(q,1)

Then the arc is said to have Haantjes curvature K.H(p) iff to each

K (1)

€>0 there corresponds a §>0 such that for pq and pr each less
than §,
\KQ%H- n¢m|< €.

Pauc [15] has proved that the existence of Menger curvature at
a point of a curve C in an arbitrary metric space implies some sub-
arc of C containing that point is a rectifiable arc, so the two
curvatures KM and K'H are comparable, that is, they apply to the
same class of curves--those which possess a sub-arc at one of their
points which is a rectifiable arc. Haantjes [10] proved that in
abstract metric spaces the existence of K implies that of ch at
a point on an arc but not conversely, and that in 52 the two are
equivalent. It is well known that for curves in E" of differentia-

bility class cl‘ or higher if the classical curvature %(p) ¥ 0 at
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a point p of the curve, the curvatures KM and KH each exist there
and agree with the classical curvature. Note that in En the expres-
sion 1/ ky(2r,s) is the radius of the circle c(q,r,s) passing
through q, r, and s, provided q, r, and s are non-linear. For
curves of differentiability class Ch or higher with k(p) > 0, then
if q, r, and s each approach p along the curve, C(q,r,s) approaches
the (free) osculating circle at p with 1/ k(p) as radius. We now prove

Theorem 7.1l: In any metric space and for an arbitrary arc A,
k y(p) exists for pe A iff xg(p) exists, and the two are equal.

Proof: (1) Suppose Ks(p) exists. Let {q{} . {ri} , and
{'s;} be three sequences of points on A which converge to p, with
q, ry, and s;  distinct for i =1, 2, **+, and consider icm(qi,ri,s i).
It may be assumed without loss of generality that the ordering is such
that for each i, $;9, is maximal in q;Tis T3S Siqi' Then

2

K’S(qi’ri’si) converges to &S(p) and therefore r;sjcs;q;: Ks(qi’ri’si)
q;r;08;q;" Ké(qi,ri,si), and q;r;-r;s;- &g(qi,ri,si) each converge to

zero, hence

q.r,+r,s.+s.q. - q.r:;+r.s.-s.q -
i i
lim i i1 1% - lim 1 i7i Titg + 2 =2
19 L *19 i
q,r,-r;S;+5;q; - q;rytris.-s.q -
(7.1) 1im L L PP P g P2 T i o0
9Ty L XL il
-q.r,+r,s +s,q, - q,r,+r,s,-s.q, .
ii i i"i 171 Tit
lim ! ! ta lim| - + 21 =2
ris; L r.s, i

But
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nm(qi,ri,si) =

.T.+I.5.+S.Q, +3T:sS, .T,=-r.S.+s5.q, -q,r,+r.s,+s,q,
\/ql i35 'K'S(ql’ i’ 1) . /ql i7Fi%1"%1% /ql i"T1%1"%1
. T, .S,
5193 v 8 /Ty TiS4

which converges to

Ks(p)
V2 s

proving that ky(p) exists and equals Ks(p)o

VATV AV "s(p)

(2) Let K-M(p) exist. Consider any three sequences {qi} s
{ri} , and {si} of points on A which converge to p with s.q.
maximal in qQiTys T3S;s Si9;s and with qy, ry, q distinct, for
i=1,2, *»». Since K'M(qi’ri’si) converges to KM(p) then
(Siqi)z""ﬁ(qi’ri’si) converges to zero. That is,

qiri*risi*+siq; Qqiri*rysij-sjqy Qqiri-risi*sjq; -9iri* risi*siqj
L[] [ ] (]
.. r.s. .I. r o
;T iSi q1 i iSi

converges to zero. In the four above expressions, the first, third,
and fourth are bounded away from zero, therefore the second must con-
verge to zero. For, in the first expression r;s;+s;q; > qir; implies
that

UrPTSi*siT Gty

= 2’
Ty Y

in the third expression, s;q; P2 r;s; implies

qyTy-riSi*siqy  94Fy 0oy
qiTy T

and in the last, s;q; > q;r; implies

-qiri*trisy+sjqy O+ rysy
I‘iSi z I‘iSi

1.







58

Therefore
qiritrisSi =Sidj
(7.2) lim Tis; =0,

Now, since s;q;/ris; > 1, then from

$iqi . qiri*trisi-siqj =1lim qiri+risi-siqi =0
Tisy $i9j Tisi

lim

it follows that

.S =S T
947" riSi-S{9;

(7.3 lim = Q.

) Si9j

Next it will be shown that
qiri*riSi=sSidy

Suppose (7.L) is false. Then there exists a subsequence {j} of {i}
and-some €>0 (since the expression in (7.L) is non-negative by the

triangle inequality for every i), such that for all j in the subse-

quence,
(7.5) LT S .,
3t j
Consider
5T 5 3Tty L 4T
b}
Q5T T35 575 59 S35 $ 393

for each j. From (7.5) the first expression on the left is bounded

while the second converges to zero by (7.3). Hence

(7.6) 1im 0,
Joos59j

which implies, also from (7.3),
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.S
(7.7) lim JJ = 1.
b 859

Hence there exists a j  such that for all j 3 j

(7.8) 5%y >3

°5%j

. . . 2 2
Next consider, for j >JO, (rjsj) . K'M(qj’r_j’sj)’ or

DS R M R I S0 MG S B A B

“TiSiSiY S4T85S 59
sj4j T qT 5595

By the triangle inequality,

93755557859 35950559
/ 3 3
539 5393

by (1.5),

.I'.+r.s.~S.q.
G5 55575 595

- > e,
EAEN

from $59; 2 T3S55

quj-rjsj-bsjqj> quj + 0

r 7 :T
EARN ENRN
and by (7.8), for j > jo, and using s

“q Tt Syts Ay O s
7

®5%; 595

= .

Therefore,

2
(I‘ij) 'Kﬁ(qj,rj,sj) > 2'6’13% = €
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for all j > jo. But this contradicts the fact that K.M(qj,rj,sj) con-
verges, hence (7.L) holds.

Meking use of the limits (7.2), (7.3), and (7.L) it follows
that

K'S(qi’ri’si) =

- VT . \// qLi*T51-519)

qiri{-riSi*Siqj

v 8 . K'M(qi’ri’si)

\///_qiri*risi*siqi Qiri-TiSi*+S1qQ; -qTi+03S1¥51q;

*id4 Ui TiSi

VB KM(qi’ri’si)

i 1]

Siqj J

q.. . e N
|2~
qjri risi

converges to

\/T-KM(p)
VT VT ST

proving that k.s(p) exists and equals K.M(p). This completes the

= *u(p)

proof of Theorem 7.l.
Remark: Suppose that KM(p) exists for peC. Then let
{a} » {r;} , and {Si} be three sequences of points on C which
converge to p in such a way that for each { =1, 2, ---
qr; =T

isi.

Hence
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2 O‘il"i"'Si(Ti 2 (Iili—siqi s

2 2
(r.s,) k (q.,r.,s,) = .
11 /A RO S | q;Ty q;T;

which converges to zero. Since (2 qiri+siqi)/(qiri) > 2 for each

i, it follows that

o= 1 2 9;7;-5,q; .1, i9;
= im T/ = - im
a;Ty qiri
and therefore
q.r, r.s.
(7.9) 1im e = lim 11 =},
5194 Si9j

It follows that there exists an io such that for all i > io
q;r; = rys; <s;q;, and hence by Theorem 7.1,

“M(p) = lim K-S(qi,l‘i,si).
mX(qi’Si) -1

If X(qi,si) is defined as 2 q;r;, then by (7.9) 1i

q;84
and therefore from B
: | 8 (2qr.-sq,) _/32 ( Mayss;)-s;a;)  Wgyss,)
Kolq.,r,.,5:) = = *
SR A S| (qiri)z'siqi >\3(qi)si) Siqi

the result is

)\(qi,sij - 9483

lim /32 -

(7.10) KM(p) Lin >‘3(qi’si)

This expression bears a striking resemblance to the one for Haant jes
curvature and suggests the possibility of a proof of the fundamental
theorem for Menger curvature that closely parallels the proof Haant jes
gave.

For the purpose of simplicity, throughout the remainder of
this thesis we shall confine our attention to the characterization
of geodesic arcs by identically vanisﬁing curvature among all EEEEE'

fiable arcs.
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Theorem 7.2: In any locally ptolemaic metric space M a
rectifiable arc A 1is a geodesic arc iff K-M(p) = 0 for each point
PEA.

Proof: The necessity of the condition being obvious, suppose A
is a rectifiable arc with KM(p) =0 for peA. Restricting the arc
to a neighborhood Vp of p in which M 1is ptolemaic, there
exists an arc A!' with endpoints a and b, alb, such that A'CA
and A'CVp. It suffices to show that A(a,b) = ab proving that
At is a metric segment. Let €>0 be given and consider xeA!'.
Since Ky(x) = 0, by (7.10) there exists a § >0 such that for every
triple of points q, r, and s in A' with qr = rs and xr(SX,

xs<8x,

A (q,s) - as e
(7.11) 0 < N 4 ——16A3

holds, where \(q,s) =2 qr and A = A(a,b) > 0. But if

W = {w | wx & § } then {W } X € A} is an open covering of the
xz,l..’ WM
It is at once clear that there exists a $>0 such that if now q, r,

compact set A', whence there is a finite subcovering le,

and s are any three points of A! with qr = rs and qr<§ then
q, r, and s all three will lie in at least one of the Wx and hence

i
will satisfy (7.11). By Theorem 6.2 there is an n-lattice of A!

po<p1<p2< s 00 <pn=
where PgPy = PyPp = *** =P, 1P, )\ By the rectifiability of A!

a

and Theorem 6.1 the limit of the lengths of these n-lattices, n )‘n’ as
n—oo is A(a,b), hence there is an n, such that for all n > n,

£ A(a,b) - n)\n<-§- , and since >‘n< (1/n) /A (a,b) there is an
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n2 such that for all n > Ny) \n < 8. Let n be any integer larger
than either n; and n, and consider the corresponding n-lattice

{Pyy »k=0,1,2, °++, n. It then follows that

(7.12) 0< A(a,b) - n\ <&
n~?
and for k=1, 2, ¢+, n-1,
0 ¢ MPy_ 1P = PPy € _,
3 3
NPy 15Pyyy) 16 A
which reduces to
3
An € , k=1, 2, ++, n-1

(7.13) 02X, = Py 1Psr <

2 A3
from Mpy_;sPy,q) = 2 A

The points Pgs> Py_12 Pyo and Pl for each k, k=1, 2, <°-,
n-1, are ptolemaic, hence

PoPy-1"PrPra1 * PoPk+ 1 Px-1Pk 2 PPk Pk-1Pis 1

which reduces by (7.13) and PiPrs1 = P Px = )\n to

2
PoPr-1 * PoPrel 2 PP \ 27 5 A3
or, 2
.>‘n €
2 PP < PPic-1 " PoPre * PP’ T3

and using p_p, < A(a,pk) < A(a,b) = A\ this becomes

0

2
(.14 ) A €
7-14) PPy < PPe1 T PPrer t AT
Define

“k=k>\n-p0pk’ k=0,1, 2, ***, n,






6L
and substitute into (7.14)  The result 1s the et of n-1 inequalities
>\ 2
(7.15) « -aq La -q + _n€
kt1 Kk K k-1 > 1\2

For each integer j =1, 2, =++, n-1 sum (7.15) over k =1, 2, +++, j

, k=1,2, «-+, n-1.

to obtain the n-1 1inequalities

2
D R B\
g+l 1 j ) 2
2 A\
But & =& =0 by definition and j >\n<n>\n</\. s0
Ane
(7.16) “. < “. + n i) j = l’ 2, .’.’ n"lo
j+l J 2N

Summing (7.16) over j =1, 2, ---, n-1,

, (- X e
2\

(o 2R T A S + o+ o+
>t % n <% 2 n-1

and again since (n-1) >\n< nh A  this reduces to
n
€
drn< 2

From (7.12) it follows that

A(a,b) - At - PoP,
(A(a,b) - an) v

€ €
<3*s3

and therefore

0 A(a,b) - ab < €.
Since A(a,b) and ab are constants and €>0 was arbitrary then
AN(a,b) - ab = 0 must hold which proves that A' is a metric
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segment and that the given arc A 1is a geodesic arc.

8. Haantjes! Proof in Non-Ptolemaic Metric Spaces. The attempt

was made to adapt the Haantjes proof of the fundamental theorem (essen-
tially the proof just presented in the preceding section) to Banach
spaces with strictly convex unit spheres. It is clear that if strict
convexity is not required, then the two-dimensional space (x,y) with
unit sphere as |x| + |y| = 1 affords a counterexample: the curve

Yy = % 1is not a geodesic but it has zero nM and KH at all its
points. The resulting partial solution to this problem applies to cer-
tain non-linear metric spaces.

Definition 8.1: A metric space M will be said to have weakly

non-positive median (space) curvature iff there exists a positive
constant «yp(l and a neighborhood Vp for each point p€M such
that if a, b, and c¢ are any three points in Vp and m is any

midpoint of 2 and b, then

(8.1) ?/p-czn < V3 ac?a 1 bc? - § ab? .

Definition 8,2: A metric space M is said to have feebly

non-posi tive median (space) curvature iff there exists a neighborhood
Vp of each point peM such that if a, b, and c¢ are any three
points in Vp with m any midpoint of a and b, then
(8.2) cm  4(ac + be).

Unfortunately, the condition for "feeble" does not seem to be
a special case of the condition for “weakly!" non-positive median curva-
ture. Both conditions are needed in the proof of the fundamental

theorem given in this section, as is the existence of midpoints, so






66

there M will be assumed to be (metrically) convex and complete. If
this is not assumed, then (8.1) and (8.2) could be satisfied trivially
without imposing any condition on the space.

It is interesting that in Banach spaces (8.1) is a form of what
will be called the "weak" parallelogram law.

Definition 8.3+ The norm ||x|| of a Banach space M for xéeM

is said to satisfy the weak parallelogram law iff there exists a posi-

tive constant f/<1 such that for every x and y in 1,
(8.3) Ix + yiZ + 2% - yIPg 2 il + 2 Iyl

To see that (8.3) implies (8.1) in any strictly convex Banach
space, given a, b, and c, set x=a-c andy = -(b - ¢c). Since
m = -}_(a + b) is the only midpoint of a and b 1in this case, it
follows from (8.3) that

la - b2 + bpPiba + b) - cl® 2 fla -l + 2 b - ol
or,

ab? + hyzicng 2 ac® + 2 be’

which is (8.1). 1In euclidean space, trivially (8.1), (8.2), and
(8.3) all three are satisfied in the large with 7/= 1, while for
arbitrary metric spaces, M has weakly non-positive median curva-
ture if it has non-positive median curvature, has feebly non-positive
median curvature if it is locally ptolemaic (see the proof to Theorem
5.3), and in a Banach space, the weak parallelogram law holds if the
parallelogram law holds. Following the proof of the next theorem,

the question of what non-ptolemaic metric spaces have weakly and

feebly non-positive curvature will be discussed.
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Theorem 8.1: In any complete, convex metric space M having
both weak and feeble non-positive median space curvature, a rectifiable
arc A 1is a geodesic arc iff it has vanishing Menger curvature at
each of its points, and iff it has vanishing Haantjes curvature at each
of its points.

Proof: The necessity of the condition is clear., For the suffi-
ciency, let KM and KH vanish identically along a rectifiable arc A.
There exists a sub-arc A' of A containing an arbitrary point peA
which is contained in a neighborhood Vb of p in which (8.1) and
(8.2) are valid. As in the proof of Theorem 7.2, let a and b, a< b,
be the endpoints of A'; it suffices to prove A(a,b) = ab. Let 0&e<A(a,b)
be given. In order to handle both Ky and ¥y simultaneously, the
following notation will be used. Let
(8.L) a=p,<p p,L--+<p =D
be an n-lattice of A' in the case of Kk, with )n = Py 1Py for

k=12, ==+, n, where n 1is so large that both

(8.5) 2 My * Pl 1Pkl <e', k=
(2 3)°

l, 2, =+-, n-1,

the choice of ' to be made later, and

(8.6) 0 £ Ala,b) - n)\n<§ .

In the case of Ky, let (8.4) be a lattice of A!' such that
Apgspy) = Nlpyspp) = +oo = Alpy_15py)

with \n = f\(pk_l,pk) for k=1,2, *++, n where n 1is so large

that

(8.7) KH(pk-l’pk-l‘l) <e' k=1,2, *, n-1,
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and, in this case for any choice of n,

(8.8) A(a,b) - n)\n = O<§ .

But (8.7) is the same inequality as (8.5) and (8.8) and (8.6) are the

same, so from this point on the proofs for K.M and KH will be iden-

tical. Moreover, it is sufficient to show how to obtain the set of n-1

inequalities of (7.15) for, from that point on the proof will be identi-

cal to that of Theorem 7.2. P A
For each k =1, 2, ***, n-1 let

m,  be any midpoint of Py_1 and k-1

Py+ 1> the existence of at least one

being assured by the fact that M is Pice1 Py

convex and complete. From popkg pom, + mp, and by (8.1) and (8.2),

it follows that

PPy < $PoPy_1 *+ PoPyeay) "NV 3oy 19 o b pypiee 24Py Py P

while pk-lpkéxn for k = 1, 2, *++, n reduces this to

2 poPi € PoPk-1 * PoPre * (/) V' (2 NPy 1Py 1) (2 NPy 1Piear)
But by (8.5)
3
2 >‘n T Pr-1Prat <8 )‘n €'
and
2An * PrePray S 2N * P P T PR K2 M T h>‘n

so therefore,

2 pop, < PoPiy * PPy * (M) YV BA et

Now ¢' 1is chosen as (72 62)/(128 Ah) and o) = k >‘n - PoPy 3

= cee 3 ] = - 3 ] >\ne
for k=0, 1, 2, , N are defined, with 042 2>‘n p092<8>‘n €< 161\3.
By substitution,
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2
n €
2k)\n-2ock<(k-1))\n‘d‘k-1+(kﬂ) >‘nno('}ﬁl"z 2

which simplifies to
2

(8.9) “pel T k<% T By ! zﬂj—i'z , k=1,2, s, n-l,
identical to (7.15). The remainder of the proof proceeds as in Theorem
7.2, hence A 1is a geodesic arc.

The following discussion will serve as a sketch of the proof
that any Riemannian surface has both feebly and weakly non-positive
median curvature. It is clear that in view of Theorem 4.2 a
Riemannian space with non-positive classical curvature has non-
positive median curvature and is locally ptolemaic, and therefore
will have both feebly and weakly non-positive curvature.

Consider any 2-sphere S‘o with radius e in 1:‘.3. Letting
{21} » {bi} , and {Ci} be any three sequences of points on §,
converging to a point p € Sf, for all sufficientlylarge i the
following is true:

(a) m; = maibi exists.

(b) The formula from spherical trigonometry

aici biC.
. cos + cos
cos oiMi o | L
f aibi
2 cos Tf’
is valid.
b a;c; a;b;

, and 7/1 = -.F-. . Again, for i

large enough, the following manipulation with Taylor series is permis-

Let Ol'-'-'-------ici =
i e ’ﬁi

sible:s
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cos & +cos Pi

cos 39;
2 - 402 - 1.2 + o(a?) + o(B)
-39+ o))
2 -[2-2«3{ -fp +o(ot 3)+o(p ) ][1*37 +o(7 3):‘
EAVEIAE i M

2 -

CcC.m:
2(1 - cos 1 1)
‘D

2 -

Therefore,
cimi2 cm, 2 2 2 2 5
2 2 3 .
£ - F ye 27 gy ol )0l )+olyd)
f“iz*%ﬂiz- iy?  2(i-cos Ci'oi) BagZ + OB;2 - Ly
Now »
c;m,

n
—

lim Com;
i—>oo 2(l-cos i l)

and it is easily verified that
2 2 2 2 3 3 3
tim i P+l w0 () v o)
; 2 2 2
i—>oo -
Bay "+ 8 = by

regardless of the way in which the values d’i’pi’?/i converge to zero.

Hence there cannot exist three sequences of points converging to p for

which )
.cimiz
sl o) ot
2 (l-cos fif:_n.i.) . 80{'12 + Bpiz - h?’iz J

so there evidently exists a 8( depending only on 'o such that if a,
b, and c are any three points of S, with ap<§,, bp<6r, cp<8,,

and m the midpoint of a and b writing as before ¢ =%‘i, ﬂ=a?°.,

and 9 = —, then the above expression in @, P, 7> ¢ and m s not greater
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than 4, that is,

Cm2
rya
¢ <
ja? + 32 - 392 O
or
Cm2 ).J

}bc2 + %agy'_ ;}ab2
which is (8.1) with Yo = 4. It is well known from spherical geometry
that the ﬁedian of every triangle in a small enough neighborhood is
less than half the sum of the adjacent sides, which is (8.2). This,
together with the preceding paragraph shows that non-ptolemaic spheri-
cal geometry has both weakly and feebly non-positive median curvature.
The result of Wald [20] for Riemannian surfaces is now

employed. Define Sk for each real number k to be the 2-sphere in

3 of radius 1/k if k>0, to be the euclidean plane E2 if k = 0,

E
and to be the hyperbolic plane of curvature k if k< 0. For a
Riemannian surface M, let V be any neighborhood of an arbitrary
point p having unique segments. The theorem of Wald states that
each four points of V can be isometrically imbedded in some Sk,
where k lies between the upper and lower bounds of the Gauss curva-
ture K in V. Then already (8.2) is clear. For (8.15, if k<o
there is no problem; if k > 0, using the above remarks, if the im-

bedded points lie outside the neighborhood of radius & then the

1/k
neighborhood V 1is chosen smaller, but k is changed (perhaps).
However, Sl/k is evidently a decreasing function of k so if k!

is the least upper bound of k, it suffices to take the radius of V
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to be Sl/k“ for then the imbedded points will lie in a neighborhood
of radius 81/k,< 81/1;’ That is, those points lie in the desired
neighborhood on the sphere Sl/k and therefore (8.1) holds, It is
natural to conjecture from the locally euclidean character of any
Riemannian space, that a Riemannian n-manifold has both feebly and
weakly non-positive median curvature.

There are some strictly convex Banach spaces which satisfy (8.3)
and therefore (8.1). The condition (8.2) is of course always satisfied
by a simple application of the triangle inequality for the norm, The
following theorem gives a sufficient condition for (8.3).

Theorem 8.2: Let M be a Minkowski space with strictly convex
unit sphere U with center o. If there exists an upper bound ‘0 for
the diameters of all ellipses with center o and passing through three
distinct points of U, then the norm of M satisfies the weak parallel-
ogram law.

25933‘: Let pg denote an associated euclidean metric of M.

Then put ¢ = Min ou and take
u€evy

7=Min (4% ,0/p),
hence, 0< '/( l. The inequality
2
Ix + y)% + 92 Ix - y12< 2 I + 2 |yl

is trivially true for the cases x =0, y =0, and y =)~x, \ real.

Assume y # Ax for all real A and that x4 o and y % o. If
x', yt, and z' are the points where the rays from o through x, y,
and 2z = x + y respectively intersect U, then these will be three

distinct points of U. By the strict convexity of U, there is a unique
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ellipse E through ', yi, and 2! with center o. The argument
may now be restricted to the plane of E. Put w =x -y and let
w! be the point of intersection of the ray from o through w and U,
and w" the point where that ray intersects E. Letting “xHE repre-
sent the norm with unit sphere E, since E 1is an ellipse it follows
that HxllE defines an inner-product
space and hence satisfied the parallel-
ogram law

v vl + Ix = yi 2 = 2l + 2l P
But as the unit spheres U and E of

the two spaces coincide at x', y'!, and

z', it follows that

2 2 2 2
(8.10)  lx+ vl + lx - i = 2 1% + 2 il
Now ow" < Diameter Fé‘o so that 1/{0 < 1/ out, while o ow' im-

plies that a'/(><( ow' / ow" ). That is,

—

(8.11) y < f .
OW"
Then from (8.10), 2 .2
w+wﬁ+yﬂv-ﬁ2<w+wﬁ+<ﬂJ (ﬁ»
ow" owt

2

2 Xy
Ix + yl™ + (—::-)
ow"

2
lx+ 3% + lx - ¥l g2
2 2
=2 0xT e 20017
Example: The two-dimensional Minkowski spaces {(x,yi} given

parametrically by taking U\:P as the curve
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{ x2 + AXy + y2 1, for (x,y) 1in first and third quadrants

x2 - pXy* y2 1, for (x,y) in second and fourth quadrants
where 0 { A<2 and o</u<2, clearly satisfy the hypothesis of the
above theorem, and so is a class of non-ptolemaic Banach spaces in
which the fundamental theorem holds.,

I.t:follous in a similar manner that a two-dimensional 1p space,
1< pg 2, satisfies the condition of Theorem 8.2 since its unit sphere
is given by

%P+ |y|P =1
which has everywhere positive curvature, infinite curvature at (%1, 0),
(0,£1) if p * 2. Also by curvature considerations it can be shown--
although it will not be undertaken here--that finite dimensional 1p
spaces, 1< p 2 in general satisfy that condition.

A Banach space which does not satisfy the weak parallelogram
law is the set {(x,y)} metrized by taking as unit sphere
b 1, |x| € 1. Consider the points on the unit sphere

a = (7,1- T4 b= (-7, 1- 74 0<7<1.

lyl + x

a+ b= (0,2-2 ’CL‘) and a - b = (27,0) imply that
la+b] =2-27¢Y, la - bl =27.
But then '

20all 2+ 2 bl 2o lasbl® L h-(2-23M2 2 6
la - b2 L*

which converges to zero as T—>O0.

9. Transverse Curvature. Attention now turns to a different

concept of curvature for arcs from those considered earlier. The
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definition will be given in as general a metric space as possible, and
for as general a curve as is possible, then emphasis will be on apply-
ing the definition to arcs in G-spaces.

Definition 9.1t Let p be any point of a curve C

in a metric space having unique local segments, and suppose Vp is a
neighborhood of p 1in which M has unique segments. Given q, r,
and s three points on C and in Vp such that q<r<{s and qr = rs,

define

8m r

K'T(Cbr’s) =—-—q—;- .
qs

Then the curve C 1is said to have transverse curvature K,T(p) at

the point p iff to each €>0 there corresponds a §>0 such that
whenever qp, rp, alnd sp are each less than § then
IK.T(q,r,s) - nT(p)I e,

It will be apparent that this curvature has some advantages
over the others, although it is not known precisely how it compares
with them. We do not explore that problem here. However, we do make
a few comparisons of this curvature with so-called classical curvature
for euclidean space., We take as the definition of classical curvature
the following:

Definition 9.2: For any arc in E" the classical curvature

K (p) exists at a point p of that arc iff for any sequence of circles
{Ci} which have three points ;s ri, and s, in common with the

arc for i =1, 2, *** such that lim q; = lim r, = lim S; =P then

the sequence {l/oci} of inverses of the radii %, of C_, for
i
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each i, converges to k(p). (A straight line in E" is defined to
be a circle with zero as the inverse of its radius.)
This strictly geometric definition of curvature actually coin-
cides with that of Menger curvature when applied to the metric of o
Now suppose C is a circle in 52 with radius «. To find
the transverse curvature of C at a point peC, let {q} ’ {r.} s
i i
and {s} be three sequences of points on C with q.r, = r,s
i 11 ii
and each sequence converging to p. Then if o 1is the center of C,
writing m. for m_ for each i, it follows that

8 m;r,

K

8(a - omi)
h(misi)2

=

2(a - om;)
2

o? - om,
1

1

@ - 4mr,

Since lim mr = 0O then
ij-+o00 1

lim k. (q.,r,,s,) =1 =k(p) = x(p)
j-»o0 T 1, l,i o T

n
More generally, let A be any arc in E  whose classical curva-

ture exists at a point p € A. Let {qi} R {ri} , and {si} be

three sequences of points on A each converging to p such that for

each i =1, 2, ¢, q;» ri, s; are distinct points and qiri= risi.

Put m, mqisi . Let {J} be that subsequence of {1} obtained






7

by considering these triples 9> Ty s, which are linear, and let {k}
be the sequence remaining. Consider the case when both subsequences

{3} and {x} are infinite. By the definition of {3}, mr =0
J
for every j and g,s. >0 so X _(q.,r.,s.) =0, and therefore
JJ T3 5

lim ¥ (g ,r ,s) = 0.
i T J g3

For each k, the radius &, of the circle through Qs rk, and s

k k

exists, and the calculations above show that

1
(9.1) 'CT(crk,rR,sk) = .

oy = dmr

The linearity of an infinite subsequence of triples 95 ri, N implies

that K (p) = 0, and its existence implies for the subsequence {k}
that ol,k—*oo s, hence

lim k (g ,r ,s ) =0
R AR R

proving that KT(p) exists and equals Kk (p). The case in which

{k} is a finite subsequence leads to the same result. Finally, when
{j} is a finite sequence, it may be assumed without loss of general-
ity that {1} = {k} and if Obk——-"°° then again K.T(p) exists

and equals K (p) = 0. Otherwise, lim @ exists and since

= = O ‘1
mkrk< TSyt ™S T TSt 3 qs, then lim mr so (9.1)
again shows that K.T(p) exists and equals K(p). This proves the
theorems
Theorem 9.1: For arcs in En the transverse curvature exists

at a point of the arc whenever the classical curvature exists, and the

two are equal.
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In order for Definition 9.1 to have any meaning in a Banach
space, it must have unique segments and therefore strictly convex unit
sphere., The following property is needed for the next theorem.

Definition 9.3:t A Minkowski space is said to be smooth iff its

unit sphere has at each of its points a unique hyperplane of support.
In a smooth Minkowski space, if p 1is any point in M let Uﬁ
be the unit sphere with center p. The sphere Up will have the same
*smoothness" properties as U since they are congruent bodies in E".
Suppose plane ‘nb passes through p and cuts Ub in Cp. Then Cp
is a strictly convex curve in ‘ﬂﬁ with unique support lines at each
point u, of Cp. The diameter S(up,-up) of Cp is uniquely deter-
mined by up as is the conjugate diameter S(uﬁl',-uﬁL ) where uﬁl
and -qEL are defined as the points of intersection of the line
through p parallel to the unique line of support at up of C.

p
If L_ 1is any line through p cutting Cp at the points tu_ the

P P

line L(u-t-u L) will be denoted L.
p p P
The euclidean area of a parallelogram with adjacent sides of

unit Minkowski length along two distinct lines L and LY
will be denoted A(L,L!), while A(L) will denote the euclidean
area of a square with side of Minkowski unit length along line L. It is
clear that A(L,L') and A(L) are respectively equal to A(K,K})
and A(K) whenever K is a line parallel to L and K!' is one
parallel to L¢,

Finally, we need definitions for the existence of tangents and

osculating planes. For greater simplicity these concepts will be
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stated in algebraic terms, the first definition after Kelly and

rwald (2 .

Definition 9.4+ If for any two sequences -{q{} and .{r{}
of points on an arc A converging to p € A and qi<( ri holds for
each i the limit

r.-q
lim p+ 1 il =t
i—»o0 riq, P

1

exists, the line L(p,tp) is called the free tangent to A at p.

Definition 9.5: If for any three sequences -{q{} R {r{} , and

{si} of points on an arc A converging to p€A and qi< ri< si holds

for each 1 with x =2ny limit point of the sequence {;>+ s; ; qi}- and
p m, - r i1
yp any limit point of the sequence {:p + e i}- s Where m, = f(ai+si),
it

the plane 17T_ = M(p,x ,y ) determined by p, x , y is unique, then
P P p PP

that plane is called the free osculating plane to A at p.

It is easily shown that the free tangent and osculating planes
of an arc are geometric objects of En, independent of the particular
Minkowski metric defining them. That is, the free tangent of an arc
exists in Bn iff it exists in M, and the two are equal. A similar
statement holds for the free osculating plane. Standard examples show
that the existence of the free tangent does not guarantee that of the
free osculating plane, nor does the existence of the free osculating
plane ensure the existence of the free tangent, as a plane curve with-
out a tangent shows.

Remark: A result of L. Kelly and G. Bwald [12]  which will be
implicitly assumed in the statement of the following theorem states

that (as applied to our case) if the classical curvature of an arc
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exists at a point of that arc, then it has a free tangent there.
Theorem 9.2: If M is any smooth Minkowski space with

strictly convex unit sphere and A is an arc in M for which both

the classical curvature and the free osculating plane exist at some

point p€A regarded as an arc in En, then the transverse curvature

K.T(p) exists at p. Moreover, if the free tangent to A at p is

Tp = L(p,tp) , then KT(p) is gi\;en by the formula

< (p) AZ(T)

A(’I‘p,TpJ')

Ko(p) =

Proof: Without loss of generality it may be assumed that p = o.
Let {qi} s {ri} R {si} be any three sequences of points on A
converging to p such that for each i, qi< ri < si and qr,= risi‘

From the existence of the free tangent at p (and since p = o), if

r, - q. S, - Ir. S. - Q.
a. = 1 1 s b. = 1 1 s ci = i 1 s
rlql S.I. Slq1

then the sequences {ai} R {bi} , and {ci} each converge to tp,

some point on U. It is now shown that if t: and -tp are the

endpoints of the diameter of U which is conjugate to S(tp,-tp), the

sequence of elements

i=1,2, «oo

either converges to tI;L, converges to -tI':)L , or can be divided into

two subsequences, one converging to t:', the other to -tp . Since

?ﬁie U for each i, in is bounded and thus has at least one limit

point., Consider m any such limit point and let {j} be any






81

subsequence of {1} such that
limm, = m.
i
The line L through tp parallel to
L(p,m) 1is the set of points

{tp+ )\ml )Y real},,

Suppose L is not a line of support

at tp. Then there exists a second

point q # tp in common between U

and L. Then for some )\,
=t o+ A
q D m
which means that

I Anll = 1A

or >\=it,
qP

g - tp\l = at

Since the afgument for both cases is similar, it may be assumed that
A\ = qtp and that therefore

q=t (qt)) m.
Put r =4 (tp +q) = tp + 4 (qtp) m. By the strict convexity of U,
r 1is an interior point of U. Therefore “r\\ < 1. Consider the
sequence of points

T, = bj + 4 (qtp) m,.

J
This converges to r since limb, =t and limm, = m. But since
j J P j
r, - . t 8,
c L Tthlre)
J r.
JmJ
= % .riq‘ . r"l ql - %o iﬂ . fal.—.:_j.
r.m r.q, r.m, s
JJ 3% JJ JJ
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n

qu.
% ® r_n_?l (a, - b_])

SN
a, -b,
= J J
ajbj
then
a_ =-b,
T,.=Db_ + t ) wdoeed = ma,+ (1 - u) b,
J J %(qp) a.b, F5 £y %
JJ
where = t )/2 ab . Since lima.b, =t t =0, for all j
/wj (qp) £ magPy T b ’ J

sufficiently large l""j will be greater than unity and the corres-
ponding T, will be exterior to the segment S(aj’bj) and therefore
J

to U, hence Il?jﬂ > 1 which results in the contradiction

1> el = i E) >0

J

Therefore, L is a line of support.
Next, L 1is in ‘n’p, the free osculating plant of A at p, for

by definition 1 is the plane determined by p, lima, and lim ﬁj,
p . .

J
or p, tp’ and m. Hence tp + m 1is also in that plane. But tp and

tp + m are then two distinct points of L lying on 1Tp, so that L
is in 1Tp. L must accordingly be the unique support line of U nrrp

at t . Since L(p,m)<L coincides with TI;L where Tp is the tangent
p

[

to A at p, m is either t’L or -t . Thus the only limit points of

"0

the sequence {ﬁi} are *tp‘]' and -t7, proving the assertion. It

e}

follows that since pt = p( -t;‘) , then ' Xy is a euclidean metric for M

p

—l
lim pm, = pt™ .
Also, it follows from limc, =t_ that
{—» 00 1 p

i—»o0
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Now if t_  is a point on A r ti
i

for each i such that E-igi = Fi-ai’

let

and suppose that «, = m(ri,ti,mi)

where m(x,y,z) denotes the

(euclidean) measure of angle (x,y,2z),
and. ﬂi = m(ti,ri,mi) ) a(,i equals either m(xi,p,yi) or 17- m(xi,p,yi)
so that sin @, = sin m(xi,p,yi); also pi equals either m(yi,p,'r-ni). or
T - m(yi,p,?ni) and therefore sin ﬁi = sin m(yi,p,Tni). Again by the
existence of the free tangent to A at p, the only limit points of {yi}
are 1tp. Also, since L(p,xi) is always orthogonal to L(p,ci) then
{xi} has at most two limit points, x and -x such that L(x,-x) is
orthogonal to Tp. Since
sin m(x,p,tp) = sin m(ix,p,;ttp)
this proves the only limit point for {sin m(xi,p,yi)} is
sin m(x,p,tp), that is

(9.L4) lim sin d.i = sin m(x,p,tp) = sin 417 =1

i-» oo
and similarly,

. . _ 1
(9.5) lim sin 'Bi sin m(tp,p,tp ).

{00

Therefore,






8L

g m.T,
8 —_
"y . _pmy
Y Ss
;S q;s;
pua—
Pci
8 WX, WTE, pe.°
I A0 O G S
s = =
Ts;  my P
8mt, sin «, pc 2
ii i i
— 2 -
S, sin B, pm
with the limit, since K(p) = lim (8 miti) / (qisi)z,
j> o0
1 'p"p2
k(p) - '
sin m(t ,p,tp ) FEP

k (p) (‘Eip)3
5t FEL . sin(t_,p,t )
P p P

P
proving that K"I‘(p) exists at p and that
k(p) A%(Tp)
act,t )
P p

The resemblance of the above formula to one obtained by

nT(p) =

Busemann [5] is close. His formula involved a different definition

of curvature x(S) where S 1is Minkowski arc length and the same

curvature x(8) wunder the associated euclidean metric. The formula is
x(s) = X(® o (t) ot

where ¢ (t2) is the area of a certain two-dimensional region and
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a’(tl) is the length of a certain line segment. The corresponding

factors in our formula are therefore inverted.

10. Transverse Curvature and the Fundamental Theorem. By a

theorem of Busemann proved in [6] a G-space having non-positive
Busemann curvature also has feebly non-positive median curvature; that
is, each point of the space has a neighborhood in which every triangle
has the property that any median is less than or equal to one-half the
sum of the adjacent sides. For, Busemann proves that in a G-space with
KBSQ 0, each point has a neighborhood V with unique segments and in
which, if y(t) 1is the arc-length parametrization of a geodesic arc in
V and x 1is any fixed point in V not on that geodesic, the function

xy(T) 1is convex. Specifically, this means that for any two values

T, and T

1 , of T,

xy () £ 3 37(7)) + 4 x9(T,).
Applying this to a triangle T(a,b,c) with vertices and sides in V
with the midpoint m of S(a,b) proves e
(10.1) cm £ 4 ac + 4 be.

The following theorem applies more

generally to all metric spaces with locally a m b
unique segments and having feebly non-positive median curvature. This
class of metric spaces is indeed large, for it includes

(1) G-spaces with non-positive Busemann curvature.

(2) Banach spaces with strictly comvex unit spheres.

(3) Locally ptolemaic metric spaces with locally unique seg-

ments.
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(4) Riemannian surfaces, and, apparently, Riemannian space.
(5) The three classical geometries, hyperbolic, euclidean, and
spherical spaces.

Theorem 10.1: If M 1is a metric space with locally unique seg-

ments and having feebly non-positive median space curvature, then any
rectifiable arc of M 1is a geodesic iff its transverse curvature van-
ishes identically along the arc.

?_g_g_g_{é For the necessity, let A be a geodesic arc and p
any point on A. There exists a neighborhood Vp of p in which M
has unique segments and in which A is a metric segment. Let {qi} s
{ri} , and {s i} , be three sequences of points on A converging to
p, with qi< ri< si and q;r; = T8 for each i. For all suf-
ficiently large i > T and S; lie in Vp and hence, as distinct
points on a metric segment, one of (qirisi), (riqisi)’ or (risiqi)
mist hold. But q; < ri< s; implies that (qirisi) is the only
possibility and hence r; is the midpoint of q; and S;e There-
fore rimqisi =r,r, =0 and K‘T(qi’ri’si) = 0 for all sufficiently
large i, proving that KT(p) exists and equals zero, for p € A.

Now let A be a rectifiable arc with K'T(p) =0 for p €A.
Let Vp be a neighborhood of p 1in which M has unique segments and
(10.1) holds for every triangle with vertices in V . Let A! be any

P

sub-arc of A contained in V with endpoints a and b, with
p

A(x,y), x<{y, as arc-length along A. Suppose €>0 be given.
Following the method of proof of Theorem 7.2, choose an n-lattice of

A'

a=pyKp;<py - <p,=b
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with n so large that

- € =
(10.2) 0L Aa,p) - nX <&, A =p_p,
and
€ = e
(10.3) KT(pk-l’pk’pk'* 1) < ‘2—1? y k=1, 2, » D=1,

where A=A (a,b). Again, it will be sufficient to obtain the set
of n-1 inequalities of (7.15). With m_ as the midpoint of p_,

and p, ., (10.3) becomes

2 2 2
8 mp, < (P-1Pke) € ¢ (Pr-1P * PrPra) € _ LAn°e
N
2 N? 2 N2 2 \?
or, 5
)\n € Po
(10.L) mp, 4 —— k=1, 2, *<*n-1,
LA
P
substituting (10.1) and (10.4) in the k-1
. . P,
triangle inequality popk< pomk + m Py k+l Py
it follows that
(10.5) 2pp L PP, ; * PP, * )“26 k=1, 2, «¢¢, n-1
oK “07k-1 0 k+1 2A2, > ’ ’
Put
@ = k)\n - P> K =0, 1,2, *:c, n,
and substitute into (10.5): )\ 2
€
‘N
2k M -2a, K (k=X - a,  + (kD)X - &, * 5
2 A
~which simplifies to \ o
. €
(10.6) %y - a,k< @ - o 1+_“_K,z , k=1, 2, *++, n-1,
-2

the desired set of inequalities (7.15). The remainder of the proof

follows exactly as before, proving that A(a,b) = ab, Therefore A!
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is a metric segment and A 1is a geodesic arc.

The result of this theorem is that transverse curvature not
only affords the same characterization of geodesics in practically
the same class of metric spaces, namely ptolemaic spaces, as the
Menger and Haant jes curvatures originally afforded, but widens the
class to include such general spaces as Banach spaces with strictly
convex unit spheres--spaces which were not covered even by Haant jes!
theorems covering certain non-ptolemaic spaces such as spherical
space. The fact that the transverse curvature agrees with classical
curvature when the space is eucl idean makes it a "reasonable" concept
of curvature. Moreover, the existence of a readily applied formula
in the case of Minkowski lspaces makes it a useful generalization of
eucli dean curvature as far as those spaces are concerned. (The
Menger and Haantjes curvatures are not so readily calculated in
Minkowski spaces.) In conclusion, many interesting questions re-

garding this concept of curvature await their answers.
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