1 . 1i|||||| ‘‘‘‘ \ 2.1:...- 3.5..." ...... .1 ... .......§......._2111112.......... ‘43... . ..v........a. .. ...:...1........._..........._,. r Ew.§.~1..1.........¥1.11... : .1 .... ..... . J.....__ ......H...z. .. y ....2.rv...... é . ... ... _:...-1.. ...... 52.291233. ...:1. ...... ... ...-...... . 2...... ..... 1.....- . ...: a... ...... . . ...: ......r... ..pripW...rw1p.... ... .. . .... .. r ... w .....J.......,«.. .1... 4—4“... .... . ... . ....1... 133...... 3.1.3:...1q .... .. ......e ...... 1...». 1.1.....‘..A.?..:. 3;... 11.......;..... ..¢......:_. ...1.....\........... 1.........¢........ ... ... . 1......1173 ...... ...A.h..1..:. r.. ... 4.». ...; ..1...1 11......I. . 7......31 ......I I? . :...._.... A .2... .... is... .....1. ... . ...-......E..-.:.._..» ...“:- .........1..; . ...: t......E .. VI... :1... 2.! . .. ...... 5... ...“... ...: '35.... \«I.~‘..‘~.fi.a«> ~ ..... 021......Z; .1...4\_.~.»— ....... . ....x...._....1..... ....1.3.\n .21. .. ..1 1...... .......m.511.1x.1........x...1._....._. #1.??? ..11. .. \.1(..T;.1:...?.....\...11.. ......J..1, ...:1... .1.: . 1 .....1.... ......Z... .-.. ....1... . . .1. 2.13.1.1..-......n.-........?- ..........A...._.1..._.:1.....Z._.........:..... ...._ ....,......_ . a... . 1-2:...1. 1.........1..... ...... . ...... n. 51::.. .. .1...._..T...f... «1.1.11.3: ......1...._1v. ....1 ............1...... 0 BS A; H . x... mm. H ! IC:RGIAI Lt! RESO 1' H: . . . . . . . . ... . . .. .. . .l . . ._. .. . . .. . . . . . 1 . 1. 1 .1 1 1 . . 1 . . . . . .. . T . . ........_ . .. ~ .. . . . .1 . . ... .. . . 1 . 1 . , .11. 1.6.1.7.: Jv.v.mr.zw...1.~..rtm.1h:d “RTEXF... I . .L .. ..x........ . ..:.r1.xul.mw1.. 9:15.. 9&1 1:143: :1 ....1...1..I..t..: 11.51.... I... 1. :5? .5: .. . 1 . . , . .m...11 15.11.1173??? 43/? 4:111:11: ......1.....;..:. :11. . :p 15318 LIB If {RY MlChlz 1 State University This is to certifg that the thesis entitled HIGH RESOLUTION ABSORPTION, ZEEMAN AND MAGNETIC ROTATION SPECTRA OF ‘ THE FUNDAMENTAL AND SATELLITE BANDS OF NITRIC OXIDE IN THE NEAR INFRARED presented by Donald B. Keck has been accepted towards fulfillment of the requirements for Ph. D ° degree mm . 7 /" Major professor DaeNovember 17, 1967 0-169 ABSTRACT HIGH RESOLUTION ABSORPTION, ZEEMAN AND MAGNETIC ROTATION SPECTRA OF THE FUNDAMENTAL AND SATELLITE BANDS OF NITRIC OXIDE IN THE NEAR INFRARED by Donald B° Keck The absorption, Zeeman and magnetic rotation spectra of the 1—0 vibration—rotation bands of nitric oxide have been obtained using the Michigan State University high resolution (mo.07 cm"1 at NZOOO cm'l) near infrared spectrometer. This included the weak satellite transitions, Zflfi + 2H3 and 2H3 + znio Improved values of the molecular constants have been obtained by a simultaneous least squares analysis of combi- nation differences and frequencies° The spin-orbit constant was determined directly by means of the satellite band fre- quencies which were includedo Theoretical calculations of the Zeeman patterns and intensities have been giveno The observed spectra match these predictions very closelyo A phenomenological,theory of magnetic rotation spectra is outlined° Predictions made on the basis of this theory eXplain the major features of the observed magnetic rotation Signals starting from rather basic principles. These features include the doublet structure of lines at high pressure and the intensity contour of the 2—subband. ABSTRACT HIGH RESOLUTION ABSORPTION, ZEEMAN AND MAGNETIC ROTATION SPECTRA OF THE FUNDAMENTAL AND SATELLITE BANDS OF NITRIC OXIDE IN THE NEAR INFRARED by Donald B. Keck The absorption, Zeeman and magnetic rotation spectra of the 1—0 vibration-rotation bands of nitric oxide have been obtained using the Michigan State University high resolution (~0.o7 cm'1 at ~2000 cm‘l) near infrared spectrometer. This included the weak satellite transitions, 2H5 + 2H3 and 2H3 + 2H§. Improved values of the molecular constants have been obtained by a simultaneous least squares analysis of combi— nation differences and frequencies° The spin-orbit constant was determined directly by means of the satellite band fre— quencies which were includedo Theoretical calculations of the Zeeman patterns and intensities have been giveno The observed spectra match these predictions very closelyo A phenomenological,theory of magnetic rotation spectra is outlined. Predictions made on the basis of this theory explain the major features of the observed magnetic rotation Signals starting from rather basic principles» These features include the doublet structure of lines at high pressure and theintensity contour of the 2-subband° Donald B. Keck Modifications made in the above mentioned instrument are discussed. These include a rod source, a vacuum polarizer assembly, new monochromator mirrors, a new grating drive as- sembly, and new detectors° All air paths in the entire opti- cal train have been eliminated. 4 44m.--m-__¥P .l_ HIGH RESOLUTION ABSORPTION, ZEEMAN AND MAGNETIC ROTATION SPECTRA OF THE FUNDAMENTAL AND SATELLITE BANDS OF NITRIC OXIDE IN THE NEAR INFRARED BY Donald B. Keck A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics 1967 (HSLM‘B 3—3-4s ACKNOWLEDGEMENTS I am very grateful to Professor C. D. Hause for his help and guidance throughout my work. I have considered it a privilege to work and learn under him. It was he who sug— gested this problem and encouraged me throughout the research. I owe a special thanks to Professor T. H. Edwards. He too has given much helpful advice and assistance during all phases of this worko I wish to thank Professors P. M. Parker, R. D. l Spence and J. A. Cowen. All presented excellent courses and { have been helpful with many questions. I wish to thank former graduate students, Drs. Joseph Aubel and Melvin Olman for their friendship and assistance. Dr. Aubel was an excellent teacher concerning the spectro— meter and the magnetic rotation work. Dr. Olman was very helpful with the modifications of the instrument, the com- pUter work and the analysis. I am also indebted to former graduate students, Drso Jerry Johnston, Kent Moncur, Tom Barnett and Lew Snyder for their friendship and many discussions. The friendship of my fellow graduate students Lamar "Dutch" Bullock, Pete Willson, Dick Blank and Dick Peterson is greatly appreciated. A special thanks is extended to much Bullock for his collaboration on several projects. ii I wish to thank the National Science Foundation for their generous support of this work through various grants and fellowships. The M. S. U. Computer Center has also been very helpful in this work. I want to take this opportunity to thank my father, Dr. W. G. Keck, for all the valuable guidance and training he has given me which stood me in good stead for this work. Finally, but by no means least, I want to thank my wife Ruth for her encouragement throughout this work and the many hours she spent in the preparation of this thesis. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . ii LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . V LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . Vi LIST OF APPENDICES. . . . . . . . . . . . . . . . . . . Viii INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . 1 Chapter 1 ROTATION—VIBRATION ENERGY FOR AN INTERMEDIATE 211 STATE. ., . . . . . . . . . . . . 4 2 WAVEFUNCTIONS AND INTENSITIES. l3 0 o o o a o o o 0 3 ZEEMAN ENERGIES. . . o o . . . . . . . . . . . . 26 4 MAGNETIC ROTATION THEORY . . . . o o . . . . . . 29 5 ABSORPTION ANALYSIS. . . . . . . o . . o . . . . 36 6 ZEEMAN ANALYSIS. . . . . o . . . o a o o o o o o 53 7 MAGNETIC ROTATION ANALYSIS 57 a o O 0 o o o D a o o 8 SPECTROMETER DESCRIPTION . . . . . . . . . . . . 81 SUMMARY 0 0 O 0 0 0 O 0 B O 9 o B O O O O 0 0 B 0 0 O Q 104 REFERENCESO O o 6 D o O O O D 0 O 0 D O D 0 0 0 6 0 O 0 105 APPENDICESO o o o a o o o o o o o o o o o a o o o o o o 1-10 iv LIST OF TABLES Matrix of H; in Pure Case (a) Basis. . Matrix of H£ + A(fn§) in Symmetrized Case (a) Basis . . . . . . . . . . . . _ —> —> Matrix of H} + A(L°S). . . . . . . . . Direction Cosine Matrix Elements . . . Experimental Conditions for Absorption Effective Constants for NO . . . . . . Spectra a o o 0 Comparison of Effective Constants for NO . . . Rotational Constants for NO. . . . . . Spin—Orbit Constants for NO. . . . . . Isotopic Calculations for 15N160 . . . o a o a o a o o Zeeman Splittings for the (l— O), P2(5/2) and R2(3/2) Lines of 1 N16 O and 15N160 as a Function of Field. . . . . . . . . . . Spectrometer Optics. . . . . . . . . . n Page 18 37 44 46 47 48 48 56 87 LIST OF FIGURES Figure 5.1 High resolution spectra of the Q- -branch region of the 1- 0 HES band of 15N16 o . . . . . . . 5.2 High resolution spectra of the Q- -branch region of the 1- o LES band of 15 5N1 6o . . . . . . . 6.1 a) Observed Zeeman s ectra for the 1—0 band, P2(5/2) line of 1“‘N1 O as a function of field b) Predicted Zeeman spectra for the same conditions as in a) . . . . . . . . . . . . . . 7.1 Magnetic rotation spectra of the 1-0 band, P-branch of 11+N160 as a function of pressure. . 7.2 Magnetic rotation spectra of the l— 0 band of 1L+N160 as a function of pathlength . . . . . 7.3 Magnetic rotation spectra of the l— 0 band, P- branch of 1“N160 as a function of field . . . 7.4 Magnetic rotation spectra of the 1—0 band of 1“N160 as a function of polarizer angle. . . 7.5 Magnetic rotation spectra of the R- branch region of the 1- 0 HES band of 1L+N160 as a function of field and pressure. . . . . . . . . 7.6 Predicted Zeeman patterns and relative intensities for the 1-0 band, P—branch of 1"‘Nleo for a magnetic field strength of 6000 gauss . . . . . . . . . . . . . . . . . 7.7 Typical anomalous dispersion curves for a simple Zeeman doublet . . . . . . . . . . . . . 7.8 Predictions of the terms making up the magnetic rotation signal of the l- 0 band, P1 (15/2) line of 1”N6 . . . . . . . . . . . . . . . . 7.9a Predictions of the magnetic rotation signal for the 1-0 band, P1(15/2) line at pressures of 1.0 and 10.3 torr. . . . . . . . . . . . . . vi Page 38 39 54 58 59 60 61 62 65 66 68 72 Figure Predictions of the magnetic rotation signal for the 1-0 band, P2(15/2) line at pressures of 1.0 and 10.3 torr. . . . . . . . . . . . . Predictions of the magnetic rotation signal for the l- 0 band, P2 subband of 1”N160 at pressures of 1.0 and 10. 3 torr. . . . . . . Predicted Zeeman patterns and relative intensities for the 1-0 HES band, R-branch of 1“N160 for a field strength of 6000 gauss . . Rod source. . . . . . . . . . . . . . . . . Rod source power supply . . . . . . . . . . . o Foreoptics, polarizer assembly and solenoid Polarizer assembly. . . . . . . . . . . . . . Monochromator and exit optics . . . . . . . . Grating drive train . . . . . . . . . . . . . Calibration system. . . . . . . . . . . . . . Page 73 75 78 83 84 86 90 91 96 98 ‘m. 3—.-- Appendix I A. B0 II A. B0 III A. B. IV V A. B. VI A0 B6 C0 VII A. B0 C0 D. E. F. G. H. VIII A. B0 IX A. B. X A0 B. LIST OF APPENDI Matrix elements of Hr 9 Matrix elements of A(L S Intermediate wave functions for the v = 0 and v = 1 states 0 Intermediate wave functions for the v = 0 and v = 1 states 0 Calculated line strengths for 1“N160. Calculated line strengths for 15N160. Calculated values for the integrated for 1”N160. absorption coefficients g— —factors for 1L’N160. . g- factors for 15N160. Expressions used in the Combination differences Frequencies . . . . A- doublet splittings. . Computer programs SHAFT . . . . . . . DIFF. . . . . . . . . . ROTCONS ALLFIT. . . . . . . . . LAMCON. . . . . . . . . STEPFIT . . . . . . . . ZEEPUN. . . . . . . . . PLOTPUN . . . . . . . . o r. o o o o 0 0 CBS 0 o o ) o a o o f 1L+N1600 f15N10. o o o o n o o o o a o o a o a o o 0 programs 0 a o a o e GSCD and frequency fit (inputing constants 1L*N 6o . from the GSCD fit) for o o o o o GSCD and frequency fit (inputing constants 15N50... from the GSCD fit) for Frequency fit for 11+N160. Frequency fit for 15N160. A-doublet splitting fit for l“N160. A-doublet splitting fit for 15N160. viii o Page 110 111 112 116 120 123 126 131 133 135 135 137 139 164 176 176 176 176 196 203 220 228 235 240 245 248 INTRODUCTION Nitric oxide, being the only stable diatomic molecule possessing an odd number of electrons and an electronic angular momentum, has been the subject of many investiga— tions (1-16). The result is a 2H ground state whose com- ponents are separated by N120 cm"1 by a spin—orbit inter— action. The coupling is intermediate between Hund's cases (a) and (b). In addition the intermediate coupling makes both H states magnetically sensitive. Improvements in infrared detectors since Shaw's (6) work on NO in 1956 has led to an increased interest in the vibration—rotation spectra of the fundamental region (~19oo cm“1). This work has been concerned with obtaining and ana- lyzing high resolution absorption, Zeeman and magnetic rotation spectra of both 1L*Nleo and 15N160 for this region, including the weak satellite transitions, 2H1 + 2H3 and 2H3 + 2H1” The system used in obtaining the spectra is described in Chapter 8. This includes an account of the modifications Which were necessary to extend the range of the instrument to enable these spectra to be recorded. Analysis of the absorption spectra was carried out using the existing theory (9, l7, l8, 19, 20) which is outlined in Chapter 1. A simultaneous analysis of all observed transitions for each isotope is carried out in Chapter 5 and leads to improved values of existing molec- ular constants through the use of least squares fits to both combination differences and frequencies. Inclusion of the satellite data provides a direct determination of of the spin—orbit coupling constant and helps resolve previous differences regarding this quantity. Zeeman components were resolved for two low J-value lines for both isotopes. The theory necessary to explain their positions and a brief analysis of them is given in Chapters 3 and 6 respectively. In Chapter 2 the quantum mechanical theory for the intensities of the transitions is given. These calcula— tions are necessary for the magnetic rotation analysis. Buckingham and Stephens (21) have given a review of the theory for magnetic rotation spectra from a phenomenol- Ogical viewpoint. A brief account of their approach and the deviations from it as proposed by Aubel (22) are given in Chapter 4. Aubel“s approach coupled with the results Of Chapter 2 enable theoretical predictions of the magnetic rotation signal to be made starting from rather basic prin— Ciples. With the help of the computer these predictions have been made for several representative transitions and are given together with the observations in Chapter 7. It is found that the major features of the observed signal can be explained by this theory on a semi-quantitative level. CHAPTER 1 ROTATION-VIBRATION»ENERGY FOR AN INTERMEDIATE AH STATE The molecular Hamiltonian of a diatomic molecule, for the region of spectrum being considered here, can be written (23) as a sum of an electronic, a vibrational, and a rota- tional term, viz. H = H + H + H . (1.1) e v r Vibrational Term Assuming an anharmonic oscillator as a model, the form for the Vibrational energy has long been known. Herz- berg (24) gives the term value as: _ _ ‘-2 - j 3 G(V) — we(v+£) wexe(v+§) + weye(v+§) + ... . (1.2) where G(V) is in ch], v is the vibrational quantum number and w >>w x >>w y are vibrational constants. e e e e e Rotational Term Here the pure end over end rotation of the molecule is considered. If J is the total angular momentum quantum number in units of h, and assuming the possibility of orbital, L, and spin, S, electronic angular momenta, the end over end rotational angular momentum of the molecule is: + + + + P=J-L-S. (1.3) For the case of the diatomic molecule, taking the body fixed z-direction along the internuclear axis, P2 = 0 so that: l— 2_ - - 2 - _ 2 Hr — BP — B[(JX Lx sx) + (JY Ly SY) ] = B[J2 -_A2 + 82 - 23-§ + L2 - A2] + 2B[(LXSX + LySy) - (JXLX + JYLY)] , (1.4) where B is the rotational constant. The matrix elements for the Hamiltonian in equation (1.4) have been given by Van Vleck (18) and later by Dous- manis, Sanders and Townes (20) for a pure Hund's case (a) coupling scheme. These are listed in Appendix I-A with their phase conventions. In this representation both L and S are quantized along the internuclear axis with the eigenvalues A and 2 respectively. Herzberg (25) discusses this and other coupling schemes in detail. The total angular momentum along the axis is designated by 9 = [A + X For the case of NO or any other molecule with an un- paired p-electron, L = 1, its projection A = 0,il, S = § 1%. With these quantum numbers six 28+1|A| and its projection 2 case (a) states can be formed with the designation A+2 viz. Zni, 2H_%, 2H3, 2H_3, 22%, 22_£ . 'U+ II C—N' I L'Nv I UN (1.3) For the case of the diatomic molecule, taking the body fixed z-direction along the internuclear axis, P2 = 0 so that: l_ 2_ _ _ 2 _ _ 2 Hr - BP — BHJX LX Sx) + (J Ly Sy) ] Y + = B[J2 —_A2 + 32 - 2J°S + L2 - A2] + 2B[(LXSX + LySy) - (JXLx + JyLy)] , (1.4) where B is the rotational constant. The matrix elements for the Hamiltonian in equation (1.4) have been given by Van Vleck (l8) and later by Dous— manis, Sanders and Townes (20) for a pure Hund's case (a) coupling scheme. These are listed in Appendix I-A with their phase conventions. In this representation both L and S are quantized along the internuclear axis with the eigenvalues A and 2 respectively. Herzberg (25) discusses this and other coupling schemes in detail. The total angular momentum along the axis is designated by Q = [A + X For the case of NO or any other molecule with an un- paired p-electron, L = 1, its projection A = O,il, S = i eand its projection Z = 3%. With these quantum numbers six case (a) states can be formed with the designation P‘s-HIM!”Z ViJL 2n£, 2n_£, 2H3, 2n_3, 22$, 22_£ . The interactions of these six states form a 6X6 matrix, as given in Table 1.1. This matrix can be factored by choosing as a ba51s, symmetric and antisymmetric combina— tions first prOposed by Kronig (26), of the six pure case (a) wave functions. v12. w(A,z,mS a = /-%-'[tp(A,Z,Q) . w(-A,-Z,-§2)] (1.5) .‘7 This factorization breaks the Hamiltonian matrix into two 3X3 blocks of Opposite parity, similar to that shown in Table 1.2. The eigenvalues of the symmetric (antisymmetric) block corresponds to the C(d) level (A-doublet levels) of Mulliken (27). The only difference between the two blocks is in the 2-2 and the ani terms. These matrix elements stem from the last line of equation (1.4) which is off diagonal in A. The degeneracy in A is lifted by the inter- action of the H with the nearby 2 state. Similar terms will enter when the sp1n=orbit interaction is considered. Electronic Term For this work only the ground electronic state need be considered. Its energy may be taken as some constant, Te° An additional energy will arise when the electronic (orbital and spin angular momentum interaction is included. fPhe total electronic energy can therefore be written: He 2 Te + A(L»S) (1.6) Table 1.1 Matrix of H; in Pure Case (a) Basis. 21 111 H 7 -. H H g 2 3 «1 -1 -i I J E}; x, O K; O ;'< H* 6* Y1 O O O H' = 6* * 0 OL 61 n 'k C* O 61 Bi 8 k 0 0 O n* 8* Y1 ) Table 1.2 Matrix of H} + A(LoS) in Symmetrized Case (a) Basis. s .s s a a a L n, n z n n i 2 3 i i 3 s s K h n (US)* 8 e O -> —>- 71* 6* Y H' + A(L S) = a a r K p n O (u )* B e I nit ~* I J 4 +--> Table 1.3 Matrix of H} + A(LmS). H'I H 2 E j j 8+02(B12+€2) €[l+02(81+Y1)] H' + A LvS' = ~ . r ( ) . 6*[l+oé(81+v1)] Y+02(Y12+€2) where p 3 Dn/B". 2 2 2 l O. 6“ n O . ’k 61 B} E: f n* 6* Y1 a = 6* 0 0 e? \ 0 0 O n* H_£ H_3 Z; O O 0 0 0 01 n 81 E 6* Y1 Table 1.2 Matrix of H —> —> , ' + A(Las) 1n Symmetrized Case (a) Basis. _s s s L’ H- H i i 3 s s l K 11 7‘1 (us)* 6 E a + ’ n* 5* Y H' + A(LOS) = O I l o a a K p n a (u )* B e n* 6* N Table 193, Matrix of H; + A(fmS). H1 2 8+02(B12+62) H' + A Lo§ = » r ( ) e*[l+p4(sl+yl)] where p E DW/B". “a e[l+pz(81+Y1)] Y+92(Y12+52) Matrix elements of the spinmorbit Hamiltonian are given in Appendix I—B in the pure case (a) basis. In the symmetrized basis discussed above the matrix of H; + A(L-S) is given in Table 1.2. Diagonalization of He and Er At this point the two 3X3 subblocks of Table 1.2, ob— tained by adding He + H”, may be diagonalized to obtain r rotational and electronic eigenvalues. Dousmanis, Sanders and Townes (20) have shown that by diagonalizing to succes— sively higher orders in (E )71 the problem reduces to elec diagonalizing the 2x2 submatrix: B . (1.7) E: -<(“) f t A This is acceptable for the case of NO since it is known that the ground state is the 2H and Ew—n is N120 cm'1 and EZ—n is m32,000 cm‘l. Terms in 1/EZ_=Tr will therefore be small. It is seen that to this order the eigenvalues for the symmetric and antisymmetric blocks are equal. These eigenvalues are: E1 2 = )(B + y) . )[(B — y)2 + 4[.|2]é )7 = isia , (2.1) where the wavefunctions (Zn) and [2H> are in the inter- mediate and the symmetrized case (a) basis respectively. The s (a) denotes the symmetric (antisymmetric) linear combinations. The matrix C, is evaluated from H" = CHC+ and the normalization condition; CC+ = l. The result is: 1’ ”b \ c=[]:1 a , (2.2) 4 where, , F 5 a _'xw2+)2 b _x+2-1 Jv‘i'zx ‘ ' Jv‘ 2X ° 13 14 Therefore the intermediate wave functions to this order are: 2 S a _ 2 51a _ . 2 s a I Hi) ’ — aJvl H§> val H3> ’ (2.3a) |2H3)S’a = aJVIZH3>S’a + va|2n£>s’a (2.3b) The symmetries of the wave function have been carried merely as a formality since to the order considered here, the ener- gies and therefore the wave functions are identical for both the symmetric and antisymmetric blocks of Table 1.2. A complete tabulation of these wave functions for the states v = 0 and v = 1 and for J up to 49/2 is given in Appendix II, for 1L‘NI‘S’O and 15N160. It is seen that the wave functions are very nearly pure case (a). Intensities To obtain the selection rules and for later calcula— tions, the integrated absorption coefficient (30, 31) (often called the absolute or integrated line intensity) S (cm-2) will be needed. For a transition from the state m to m” it is: em, -= (Nm - Nm,) hvmm,Bmm, , (2.4) where Nm is the number of absorbing molecules in the mEfl State, vmm' is the frequency (cm‘l) of the transition, Bmm' is the Einstein coefficient of induced absorption, and h is Planck”s constant. For this work, N is negligible, and m7 Bmm' can be obtained from time—dependent perturbation theory (32). From this treatment it is seen that three cases must 14 Therefore the intermediate wave functions to this order are: s,a IZH£)S’a = (2.3a) S a aJvl2H12> I - va_l2Hg> s,a >s,a ._ 2 2 s,a ‘ aJvl “3 + val H5) IZHE) (2.3b) The symmetries of the wave function have been carried merely as a formality since to the order considered here, the ener- gies and therefore the wave functions are identical for both the symmetric and antisymmetric blocks of Table 1.2. A complete tabulation of these wave functions for the states v = 0 and v = 1 and for J up to 49/2 is given in Appendix II, for 1“N160 and 15N160. It is seen that the wave functions are very nearly pure case (a). Intensities To obtain the selection rules and for later calcula— tions, the integrated absorption coefficient (30, 31) (often called the absolute or integrated line intensity) S (cm—2) will be needed. For a transition from the state m to m‘I it is: smm” = (Nm _ Nm') hvmm'Bmm' ’ (2°4) where Nm is the number of absorbing molecules in the mEB state, vmm' is the frequency (cm'l) of the transition, Bmm' is the Einstein coefficient of induced absorption, and h is Planck"s constant. For this work, N is negligible, and mi Bmm" can be obtained from time-dependent perturbation theory (32). From this treatment it is seen that three cases must 15 be considered. These are; a) no magnetic field, non— polarized radiation, b) longitudinal magnetic field, non— polarized radiation, and c) longitudinal magnetic field, radiation linearly polarized in the X—direction. (The values of Bmm“ for these three cases are identical as they must be, but for completeness all are given here.) A coordinate system having the space fixed Z—axis parallel to an applied magnetic field and along the direction of propagation is chosen. (From this it is apparent that in later references to Zeeman patterns, it is a longitudinal effect that is being considered.) In the following expressions [(uAH2 is the square of the absolute value of the space fixed electric dipole moment matrix element in the intermediate basis of the absorbing molecule, with A = X, Y, Z. (a) No magnetic field, non—polarized radiation. 2n 3mm. = 3:2— {|(ux)l2 + my)!2 + [(uz>|2} <2o5a) This is effectively the case of isotropic radiation since the molecular dipole moments are randomly oriented. Since any direction is equivalent to any other, the three terms in the above sum may be replaced by 3 times any one of them. (b) Longitudinal magnetic field, non-polarized radiation. Bmm' = 2n 2,132 {l(uX)l2 + |(uY)|2} (2.5b) 16 In writing this it has been assumed that the magnitude of the electric fields in the X“ and Y-directions are equal. (0) Longitudinal magnetic field, radiation linearly polarized in the X-direction. B . mm 2 = —1 |(uX)|2 (2.5c) {'12 | The electric dipole matrix elements must now be i evaluated. For a diatomic molecule the body fixed dipole moment is along the internuclear or z—axis. The value of the A—component in the space fixed system is then: uA = g )Aaua (2.6) where AAa is the direction cosine transformation coef- ficient relating the A— (space fixed) and a—axis components of a vector, where A = X, Y, Z and a = x, y, z. The quantum numbers v, J, 0, M will describe the system completely for what is now needed. With primes de- noting the final state the square of the absolute value of the matrix element of “A in the intermediate basis can be written (assuming no vibration—rotation interaction): (V.IJIPQ'IM3IHAIVIJIQIMJ)l2 = ((v'luzlvH2 I(J-1;J)|2 [16J2(2J+1)(2J-1)]"l (2.9a) |q>(J;J)|2 [16J2(J+1)2]‘1 (2.9b) I¢(J+1;J)I2 [l6(J+l)2(2J+l)(2J+3)]-1 (2.9c) 18 WHAHIEHWVAEHHVHH mmAH+2ubVAZHWVH WHAN+ZHHVAH+SHhVHH NHNEINHL NI 2N H WHAH+SIhVAH+E+bVHm U A2.nlafizr.bv xeflfi n 5 Az.hlafiz..nv we 5 Azrnlz:.nv Ne WHAHIGHHVACHUVHH WHAH+GHUVAGHWVH mmfim+awaAH+Gubvaw mmmcumbimu cm wmxa+cnhvna+c+bVHm HIHMHAHIbNVAH+bNVHvH HIHAH+bevH Hlfimmxm+bmvAH+bNVHAH+vaV Ae.buaflar.nvx¢eflw n m Aarhlafla..hv as N Aarhlar.nv as Anu.bv e th. N .b h. H ..n. HIT” H .h. ,;Avmv mpcmsmam xflnpmz manmoo coapomuflo axm.manme. i r( v'l.|‘l\ l9 (ii) Here the notation 91,92 for Q = §,3 respectively is used° (a) A9 = 0 ¢ J-l Q ;J 9 2 = 4 a a Jz-QZ £ I ( ' 112 I 112)l { J—l,v' JIV[ 1'2] 2_ 2 i 2 + bJ_ l v' bJ V[J Q 2'1] } (2.10a) 2 4{aJ,v'aJ,v91,2 + bJ,V'bJ,v92,1} (2°10b) ¢ J+1 9 ;J a ) 2 = 4{a J+1 2 - 92 5 I ( ' 1:2 ' 1,2 I J+1 V' V[( ) 1,2 1 2 _ 2 i 2 + bJ+1 V, bJ v[(J+l) 92f:] } (2.10c) '(b) M2 = :1 ¢ J-l Q ;J 0 2 = 4 a b Jz-QZ £ l ( I 2&1 ’ 1:2)l { J’livu JIV[ 2'1] _. 2_2 £2 bJ-l,v”aJ,v[J QIyZ] } (2.11a) |(Jsz :J,9 )l2 = I 1:2 - 2 4{aJ'V,bJfl/,S22’1 bJ,v"aJ,v91,2} (2.11b) ¢ J+1 Q ;J 9 2 = 4 J+1 2 - 92 £ I ( I 2'1 I 1a2)l {aJ+lI Va bJI V[( ) 2’1] _ 2_ 2 £2 bJ+l,v'aJ,v[(J+l) 91,2] } (2.llc) It is to be noted that in the intermediate basis the values A9 = i1 are allowed, for here the quantum number 9 merely denotes the limiting pure case (a) value. The 20 following terms give the relative intensities of the Zeeman components for each branch: (iii) |<1>(J+1,M:1;J,M)|2 = (JiM)(J¢M—l) (2.12a) |¢(J,M:1;J,M)l2 = (J$M)(J1M+1) (2.12b) |¢(J+1,Mi1;J,M)[2 = (JiM+l)(JiM+2) a (2.12c) The line strength for a particular branch is obtained from the product of the appropriate AJ terms from Eqso (2.9) and (2.10) or (2.11) multiplied by the sum over all possible M and AM values of the corresponding term from Eq. (2012): These sums are: Z[(J—M)(J—M—l) + (J+M)(J+M—l)] = M §J<2J+1)(2J—1) (2.13a) X[(J+M)(J+M+1) + (J+M)(J-M+l)] = M §J(J+1)(2J+l) (2.13b) Z[(J+M+1)(J+M+2) + (J-M+l)(J-M+2)] = M §(J+1)(2J+1)(2J+3) . (2.13c) Then defining s(J',Q';J,Q) as the line strength, one can write: s(J-l,Q';J,Q) = I%5|¢(J-1,9';J,m|2 (2.14a) s(J,9'7J,Q) = I%%%§%%yl¢(J,Q";J,9)IZ (2.14b) s(J+l,Q“;J,Q) = I2.7%:34<1>(J+1,s2';J,:2)|2 . (2°14c) 21 The calculated values for these line strengths are given in Appendix III for the four possible bands (ioec, A9 transi- tions) up to J = 49/2 for 1“N160 and 15N160o The values of the line strength for the A9 = 11 transitions are seen to be considerably less than those for A9 = 0. The effect of the symmetry of the wave functions has been neglected hereo It has been shown that for each value of J there are two levels (A-doublet levels) of opposite parityo The general symmetry selection rule is (35): +<—->- I+7L"+I'7L'*'o (2-15) Each line of a branch will consist of two transitions of equal intensity, and the line strengths given above must be divided by 2 to prOperly account for this A-doubling. The Einstein coefficient of induced absorption may now be giveno For the field free case it is: B(V”,J”,Q';V,J,Q) = allR [2s(J',a';J,9) a (2:16) 452" In the presence of a magnetic field, the values given in the preceding equation must be multiplied by a field factor corresponding to the particular branch needed: This gives: B(v5,Jxl,Q”,Mfil;v,J,Q,M) = B(v",J~l,9';v,J,9) %~E%§¥%§%§%§%g (2.17a) 22 B(v',J,Q',Mil;V,J,Q,M) = (J:M)(JiM+l) J(J+l)(2J11) .] (2.17b) an» B(V',J,Q';V,J,Q) [ B(V',J+1,Q',M11;V,J,Q,M) = . ,. 3 (JiM+l)(JiM+2) B(v ,J+l,9 ,v,J,Q) [I (J+1)(2J+1)(2J+3)]°(2°l7c) Here again the symmetry of the levels has been neglected. Finally an expression for the number of absorbing molec- ules in the initial state is needed. This can be obtained from Boltzmann statistics. If N is the total number of ab- sorbers taking part in the absorption process/unit volume, then the number of absorbers in the state characterized by the numbers i, v, J, M (i denoting the electronic state) will be given to a very good approximation by: N = N exp(-ei/kT)exp(-wev/kT) x ivJM exp[-BVJ(J+1)/kT]exp(-A/kT)/ZiZVZJZM (2.18) where BV is the rotational constant, A is the Zeeman energy of the state M, and Zi’ Zv’ ZJ and ZM are partition functions for the electronic, vibrational, rotational and magnetic states. Since the magnetic energies are small compared with .kT the magnetic term becomes: exp(-A/kT)= l (2.19) ZM (2J+]) frhe evaluation of the vibrational and rotational terms is giwnnlin many places (see e.g. Townes and Schawlow (36)). 23 They can be written: exp(-wev/kT) exp(—wev/kT)[l-exp(-we/kT)] (2.20) Z V and exp[—BVJ(J+l)/kT] (2J;%)Bv exp[-BVJ(J+l)/kT] . (2.21) ZJ For the case of nitric oxide only the 2H electronic states need be considered in evaluating the electronic term. This becomes: — kT exp( E:112/ ) _ l Zi _ l+eXp(:Ae/kT) (2.22) where A5 = E2 - E1 = A (the spin—orbit constant). It must be remembered that the -(+) sign above is used for the tran- sition a = 5, A9 = 0,+1 (a = 3, A0 = 0,—1). The complete expression for the integrated absorption coefficient in the absence of a magnetic field is then ob- tained from the product of Eqs. (2.16), (2.19), (2.20), (2.21), and (2.22) as: S(v',J',0';V,J,Q) = thZBV P exp(-wev/kT)[l — exp(—we/kT)] X (M?)2 [1 + eXp(¢A€/kT)] eXP['BvJ(J+l)/kT]B(V',J',Q';V,J,9)v(v',J',Q';v,J,Q) (2.23) where P is the partial pressure of the absorbing gas (the ideifl.gas law has been used) and all other quantities are as previously defined. The integrated absorption coefficient is usually writ- ten in the form: 5 = SOP (2.24) where So is given in cm‘Z/atm. By making use of James" (12) experimental determina- tion of IRVI2 = (8.14 x 10‘2 Debye)2 the values of So can be calculated. This was done for 1”N160 for the Vibra- tional transition v=0 + v=l for values of J up to 49/2 for all possible values of A9 and AJ. These are tabulated in Appendix IV. Shaw and Abels (38) have also carried out portions of this calculation though by a different method. Transitions The pure case (a) selection rules, the intermediate wavefunctions, the intensities and the energies having already been given, the spectrum can be predicted. The main points should be summarized. It will consist of two subbands, Znfi + 2H£ and 2H3 + 2H3 and two satellite bands, Zflfi + 2H3 and 2H; + 2H2 for the particular vibration being considered. To facilitate later notation these transi- tions will be designated 1, 2, H, and L respectively. The two satellite transitions may also be called HES and LES (high and low energy satellite) respectively. Each of these transitions will have a P, Q and R branch corres— ponding to AJ = —l,0,+l respectively. In addition each line of these branches will be a doublet, since for each value of J, there are two levels of opposite parity. A typical spectral line within a vibration—rotation band might be labeled PH(7/2)+, which indicates a transition from J = 7/2, 0 = i to J'= 5/2, Q = 3. The plus sign is merely a designation to indicate the higher frequency component of the A-doublet. CHAPTER 3 ZEEMAN ENERGIES The intensities and selection rules for the Zeeman transitions were given in the preceding chapter. Here our concern will be the energy levels of the system in the presence of a magnetic field. The effect of the inter- mediate wavefunctions will be quite apparent, for contrary to the pure case (a) coupling scheme where the 2H2 state would have a magnetic moment of zero, a non—zero value is now obtained. Dousmanis, Sanders and Townes (20) have given a treatment of the Zeeman energies in the intermediate case. The magnetic Hamiltonian is: —> —> Hm — - (10H . (3.1) In the body fixed system the magnetic moment operator is: K = —u0(f+2's’) (3.2) where “0 is the Bohr magneton. Since this work is concerned with only the 2H states, only the z-component of L will have non—zero matrix elements. To transform the magnetic moment operator to the space fixed system the direction cosines, A must again be used. AOL’ Since the magnetic field is taken along the space fixed Z-axis, only this component of the magnetic moment is needed, viz. 26 27 “Z = -u0[21ZXSX + ZAZySy + AZZ(A+ZSZ)] o (3.3) From Appendix I and Table 2.1 the matrix elements of “Z can be calculated by a simple direct product of A and 8“. Ad In the.pure case (a) basis the matrix elements needed are: -u09M = ——n—mm(A+22) (3.4a) J(J+1) +uo[(J;9)(JiQ+l)]£M = , X J(J+1) [S(S+l) - 2(211)]i . (3.4b) Inserting the appropriate values for the quantum numbers yields: <2H£|uZ|2H£> = 0 (3.5a) '3U0M <2H31UZIZH3> = _____l (3.5b) J(J+1) +1.1 0M E _~_mmy[(J-£)(J+3)] . (3.5c) 1 <2H In lzn > = <2n In |2n > = £22 32) J... From this the expectation values for “z in the intermediate basis can be calculated, viz. wow) 3 [2(J-fi) (J+3) + 3 - 3x1 (HZ) = __“_fi_ {2 1 } (3.6) J(J+1) X where the upper (lower) sign corresponds to the intermediate Zflfi (2H3) state. 28 The Zeeman energies can be written: where gJ is the molecular g-factor given by dividing Eq. (3.6) by -u0M. Calculated values for gJ are given in Appendix V for the vibrational states v = 0 and v = l and for J—values through 49/2 for both 1”N160 and 15N160. Eq. (3.6) agrees with that given by DST (20) al- though the method by which it was obtained follows that of Lin (39). The strengths obtained for the Zeeman components in Chap. 2 did not include the perturbing effect of the magnetic field. They are certainly good to a first approximation and will be used throughout. If one were to consider Hm = -E~fi, as a perturbation, the perturbed intermediate rotational wave functions, from first order perturbation theory (40), can be written: (J+1,Q,M(uZ|J,Q,M)H |J,9,M)' = IJ,Q,M) + IJ+l,Q,M) AE R (J-l,Q,M|pZIJ,Q,M)H ‘ AE - (J-I,Q,M) , (3.8) P where AER,P = EJ+l-EJ and EJ-EJ_l respectively. This ap- proach was carried out for a pure case (a) basis and the results indicated that the intensities would change by less than 1%. The exact perturbation calculation is not conceptually difficult; however, the algebra involved, because of two magnetically sensitive levels, will be extremely tedious. CHAPTER 4 MAGNETIC ROTATION THEORY As early as 1846 Faraday (41) showed that optical activity (rotation of the plane of polarization) can be induced in matter by a magnetic field. This furnished one of the first connections between optics and magnetism and provided an impressively strong hint as to the elec- tromagnetic character of light. A medium exhibits magnetic circular birefringence (MCB)(or Faraday rotation) when, as the name implies, a longitudinal magnetic field causes the refractive indices for right and left circularly polarized light to be un- equal, thereby rotating the plane of polarization. In addition the field causes different absorption coefficients for the two polarizations, giving rise to magnetic circular dichroism (MCD). These two effects are interrelated. Mag- netic rotation spectra (MRS) in which the total intensity transmitted through crossed polarizers is measured, stems from these two effects. Buckingham and Stephens(B&S) (21) have recently given an extensive review of magnetic optical activity from a pheno- menological standpoint. Their starting point is essentially that of Rosenfeld (42), Kramers (43) and Serber (44) with 29 30 the extensions of Carroll (45). It should be mentioned that Hameka (46, 47, 48) has treated magneto-optic phenomena by resonance fluorescence techniques. While this is probably a more rigorous approach, it loses sight of the relevant phenomenological parameters and consequently will not be considered here. The phenomenological calculation considered by 8&8 is carried out in three steps: the observable is related to the difference in the complex refractive indices of right and left circularly polarized light; Maxwell's equations are used to express the complex indices in terms of the moments induced by the radiation; finally, these moments are calculated quantum mechanically. This approach is general enough to be applicable to all material phases; however, things can be simplified, both conceptually and practically, for the gaseous phase which is our immediate concern. The approach which will be used is an extension of that of Aubel (22), and parallels quite closely that of B&S. The first step of both approaches is the same. In complex notation the electric vector describing a circularly polarized wave prOpagating in the +Z-direction is (21): i E = ExiiiE 3 = Eoexp[i(wt-kiZ)](iii3) (4.1) Y where E+ (E_) represents the electric field for a right (left) circular polarization in the conventional right hand 31 sense (i.e., for radiation traveling in the +Z-direction, right circularly polarized will mean a rotation of the electric vector in the counter-clockwise sense viewed into the beam), k+ (k‘) is the corresponding propagation con- stant, and w is the angular frequency of the radiation. Then a wave linearly polarized in the X- and Y- directions can be written in terms of E+ and E": _ l — EX — —2-(E+ + E) (4.2a) E = L . (4.7) With this, Eq. (4.5) can be written: . “r _ /*= T“ = {(’/T 2 T )2 + /T*T'sin2(P+e)} (4.8a) _ + - = exp[mLa-;a )L]{sin2(P+e) + sinh2¢} . (4.8b) It should be understood that ni, a- and therefore 6, ¢ and T' are functions of frequency. The form of Eq. (4.8a) makes it easy to separate it into a circular dichroism term: CD = 1r-“ 4 = (4.9a) and a circular birefringence term: + ... CB = VTTT‘sin2(P+e) = exp[«i34:1—LL]sin2(P+6) 2 . (4.9b) This completes step one. 33 At step two B&S obtain the complex indices in terms of the magnetic and electric polarizabilities. Following Aubel it is simpler to express them in terms of the absorp- tion coefficients for right and left circularly polarized light. From Penner (49) one finds that the absorption coef- ficient can be written in the following forms for various conditions of pressure. At very low pressure, Doppler broadening is the major contribution to line width. The absorption coefficient is: -§_1_n_2) 222- 2 aD(vi) YD( ) eXpl YD (v vi) ] (4.10) H where S is the integrated absorption coefficient, is the YD Doppler halfwidth, and vi is the frequency of the iEQ absorp— tion line. In speaking of halfwidths, it will always be assumed to mean one half the total width at one half the maximum height (HWHM) unless otherwise designated. The Doppler halfwidth is given by: = :3 2kT 1n21§ 7M YD C (4.11) where k is the Boltzmann constant, M the mass of the molecule and T the absolute temperature. At the other extreme, that of high pressure, the line shape should be Lorentzian and the absorption coefficient will be: s YL 1 W 0L (v.) = L l (v—Vi)2 + YLZ (4.12) where YL is the Lorentz halfwidth and S is as before. F_______________________________________________:IIIIIIIIIIIllllllllllfifiiiiiiiiiiii \_ 34 YL is pressure dependent and can be written (50): O YL = YL P I (4.13) . 0 - where P 15 the pressure. Values for YL (cm 1/torr) must be found experimentally. Most of our work falls in an intermediate pressure range where the absorption coefficient is: SYL 1n, 1 expl-(ln2/YD2)n2]dn YD G(Vi) = . (4.14) 3 w YLZ + (V-vi-n)2 -€D If there is an applied longitudinal magnetic field there will be an absorption coefficient for each Zeeman component. When the absorption coefficient for each vi has been found, the total absorption coefficient is found for right or left circular polarizations by a single sum- mation: at(v) = Zat(vi) . (4.15) l The integrated absorption coefficient determines whether Vi absorbs the right or left component as will be shown shortly. Finally the Kramers-Kronig relations (51) are used to obtain the indices of refraction, viz. co 9(V) = l [3121211221 (4.16a) " (v'Z—VZ) (v')dv' ¢(v) = ~3 J9 (4.16b) V 0(vl2_V2) 35 The quantum mechanical calculation of the integrated absorption coefficient which was treated in Chapter 2, com— pletes the third step. From time dependent perturbation theory it is known (52) that AM = +1 (-1) absorbs right (left) circularly polarized radiation. This completes the phenomenological calculation and one must now combine Eqs. (4.6), (4.7), (4.8a), (4.14), (4.15) and (4.16a) to obtain, in principle, the magnetic rotation intensity T'(v) as would be observed by a spectro- meter having infinite resolving power. In practice the spectrometer halfwidth is much greater than the line widths being considered. Therefore to predict the MRS signal which would be observed, an integration over the spectrometer slit—function must be performed. The nor- malized MRS signal will then be given by: IT' (v)o(\))d\) T(v) = . (4.17) Io(v)dv Here 0(v) is the spectrometer slit-function which can be obtained by recording the profile of a very narrow emission line. It should be mentioned that the integrations involved in Eqs. (4.14), (4.16) and (4.17) can not be done in closed form and numerical integration techniques must be used. CHAPTER 5 ABSORPTION ANALYSIS Spectra of the l- and 2-subbands, the HES and LES for the V = 0 + V = 1 transition for both 1”N160 and 15N150 were obtained using the high resolution infrared spectrometer. Details of the instrument will be treated in Chapter 8. Ex— perimental details for obtaining the absorption spectra of the four bands of both 11+N160 and 15N160 are given in Table 5.1. Figures 5.1 and 5.2 show typical absorption records for portions of the HES and LES spectra for 15N160. 15N160 and 1”N150 were obtained from the Isomet Corporation and the Matheson Company respectively. 15N160 had sufficient purity as obtained; however, the 1“N160 contained nitrogen compound impurities which were frozen out for the LES region. Calibration was accomplished using Edser-Butler bands as recently reviewed (53). Bands of CO, HCl, and HCN meas- ured by Rank et. a1. (53) were used as standards. Standard deviations of the calibration fits ranged from 0.001 cm"1 to 0.003 cm_1. All frequencies used in the analysis were measured on at least two different records. The absorption charts were photographed, the raw data then digitized using the Hydel system (54) and finally reduced to absorption frequencies by the computer program SHAFT, which 36 37 Table 5.1 Experimental Conditions for Absorption Spectra. ) 1”N160 Calibration Chart Band Region Pressure Fringe Eff. Standard Order Pressure S.D. (cm-1) (Torr) Order 51. Width (Torr) - (cm-1) 5/26 HES 1945-2070 100-200 9 .062 HCl (2-0) 3 10-20 0.0014 co (1-0) 1 1 5/27 HES 1990-2020 200 9 .062 C0 (1-0 1 80-3 0.0015 5/31—1 HES 1990-2020 200 9 .062 C0 1-0 1 80-3 0.0012 5/31-2 HES 1990-2020 200 9 .062 CO (1-0) 1 80-3 0.0010 5/31-3 HES 1990-2020 100 9 .062 CO (1-0) 1 80-3 0.0015 6/1-1 HES 1990-2020 100 9 .062 co (1-0) 1 77-9 0.0017 6/1-2 HES 1995-2080 100-200 9 .062 C0 (1-0) 1 80-1 0.0021 6/2-1 HES 1995-2080 100—200 9 .062 C0 (1-0) 1 80-1 0.0023 6/2-2 HES 1950-1990 100-200 9 .062 HCl (2-0) 3 6-10 0.0015 CO (1-0) 1 50-10 6/3 HES 1950-1990 100—200 9 .062 HCl (2-0) 3 6-14 0.0012 CO (1-0) 1 50-10 6/7 FUND 1905-1990 1-260 9 .062 HCl (2-0) 3 4 0.0013 CO (1-0) 1 50-10 6/10 FUND 1905-1990 1-260 9 .062 HCl (2-0) 3 4 0.0016 CO (1-0) 1 50-8 6/13 FUND 1800-1930 .5-2 9 .061 HCN (101) 3 5 0.0020 Hc1 (2-0) 3 6-9 6/14 FUND 1800-1910 .5-2 9 .061 HCN (101) 3 5 0.0022 HCl (2-0) 3 6-10 3 6/22 FUND 1705-1800 230—2 11 059 HCN (001) 2 4-10 0.0022 HCN (101) 3 5 6/23 FUND 1705-1800 200-2 10 059 HCN (001) 2 5-10 0.0013 HCN (101) 3 5 6/24 LES 1670-1830 250—100 10 062 HCN (001) 2 1 0.0019 HCl (2-0) 3 10-6 7/5 LES 1670—1840 200-100 11 .062 HCN (001) 2 1-2 0.0019 HCl (2-0) 3 9-6 11/1 LES 1690-1795 100 (0 .016 HCN (001) 2 2 0.0030 HCN (101) 3 5-3 11/2 LES 1690-1795 100 11 .036 HCN (001) 2 2 0.0038 HCN (101) 3 3 lsulto Calibration 7/11 HES 1930-2020 76 9 .060 HCl (2-0) 3 4-3 0.0016 co (1-0) 1 3-1 7/13 HES 1920-2015 75 9 060 HCl (2-0) 3 4-3 0.0018 CO (1-0) 1 3-2 7/15 LES 1690-1780 71 10 .062 HCN (001) 2 1-2 0.0020 HCN (101) 3 4 7/18-1 LES 1660-1690 70 10 055 HCN (001) 2 1 0.0021 ‘ HCN (101) 3 5 7/18-2 LES 1645-1690 70 11 .055 HCN (001) 2 1 0.0021 HCN (101) 3 4 7/19 LES 1700-1780 68 11 .062 HCN (001) 2 1 0.0026 HCN (101) 3 4 7/20 FUND 1705-1790 66-2 10 .065 HCN (001) 2 4 0.0031 HCN (101) 3 3 7/21-1 FUND 1710-1790 66-2 11 065 HCN (001) 2 3 0.0025 HCN (101) 3 3 7/21-2 FUND 1770-1890 .5—2 9 .057 HCN (101) 3 3 0.0027 HCl (2-0) 3 3 7/22 FUND 1790-1890 5-2 9 .057 HCN (101) 3 2 0.0027 _ HCl (2-0) 3 3 7/25 FUND 1890-1970 1-64 9 .058 HCl (2-0) 3 3 0.0026 CO (1-0) 1 80-60 7/26 FUND 1890-1970 1—64 9 .058 HCl (2-0) 3 4 0.0018 co (1-0) 1 80-60 All of the above spectra were recorded with the following conditions: Pathlength, 945 cm; grating, 300 lines/mm; detector, Kodak PbSe E-2; grating rotations, 0.02 and 0.05 degs./min. 38 .msofluflmcmnu 032: one Ewan m>onm mwaouflo puss mwsflq .numcwanpwm uuuou mm .whsmmmum coflmmu socmunlo map mo onuomm 314 p. 1.. }*_1 mm: .HIEU wo.o .Emzm QOHDUGDMIDHHm “EU mvm .owfizmfi mo pawn mmm 01H wzu w0 m :oflDDHOmwu nmflm .H.m .mam OBZn. .1150 60.0 .szE aonnucsm10HHm “so mea .npmswasumm “when on .wusmmmum .owHZmH mo pomp mmq ou_ map wo cosmos cocmunlo emu mo mhuommm soHuSHommH poem .N.m .mflm 39 —r~n —.N IN .....wwlwlnmmwhnm mmfi 0222 40 is described in Appendix VII-A. Identification of the trans- itions presented no difficulty. The "effective" rotational, vibrational and spin—orbit constants may be obtained from the method of combination differences (55) and/or from frequencies.. Both of these approaches were used. In each case the appropriate formula was fit to the observed data by the method of least squares using the M. S. U. CDC 3600 computer. Data from all bands for a given isotopic species were fit simultaneously. The least squares subroutine used in-all fitting programs gives estimators for the constants and their standard errors. From this the simultaneous confidence intervals (SCI) (56) can be calculated for each constant. On all fits a level of significance of 0.05 was chosen (i.e., a 95% SCI was used). Combination differences were calculated from the ob- served frequencies using program DIFF. This program, given in Appendix VII-B, calculates all possible A1F and A2F's and forms a weighted average of the appropriate components to determine the final values for both the ground and upper state. Because of the statistical nature of the problem, one may use both A1F and A2F's in deter-- Inining the constants. Frequencies used in forming the cxxnbination differences are the average of the A—doublet frequencies . 41 Effective Energy Expressions For the 2H state of NO, L = 1, A = $1, and 1V = Av/Bv =73. The radical in Eq. (1.17) may therefore be expanded in powers of (J+§)2. Keeping terms through (J+fi)6 yields: TQ(J,v) = Te + G(v) - 0V + (-1>iC1V/2 2 _ L1 6 + Bvi(J+§) Dvi(J+§) + Hvi(J+§) i E£(J,v) , (5.1a) where Clv = AV - 23V - 2BV2/AV + ... , (5.1b) Bvi = BV + DV + (-1)ti[1V + 21V2 + ...] , (5.1c) Dvi = DV + (-l)iBV[Av3 + 61V“ + ...] , (5.1d) Hvi = (-l)iBV[2)V5 + 201V6 + ...] . (5.1e) B vi’ Dvi and HVi are "effective" rotational constants. The energies in Eq. (5.1a) are essentially those of two simple diatomic molecules with an electronic energy separation of C) . v From Eqs. (5.1c), (5.1d) and (5.1e) the "true" rota- tional constants are: B = Vl -—VZ - D (5.2a) H fl“... _ _, -1 4 _ v1 v2 DV _ 2 (502b) H + H _ v1 v2 : Hv _ - 2- _ O . (5.2c) The "effective" rotational and spin-orbit constants were assumed to be linear functions of v, viz. BVi = Boi - div , (5.3a) DVi = Doi + Biv , (5.3b) Hvi = Hoi - yiv , (5.3c) AV = A0 - xv . (5.3d) The expressions for the combination differences and fre- quencies, including the above assumptions, which were fit are found in Appendix VI-A and VI—B. They are listed there in a form readily adaptable for computer use. Two methods were used in obtaining the molecular con- stants. In the first method the ground state combination difference data were first fit, using program ROTCONS given in Appendix VII-C, to determine the “effective" ground state rotational constants. 80 and 76 non-zero weighted GSCD with J-values up to 71/2 for 1”N150 and 15N160 respectively were fit. These ground state constants were then fixed in the frequency fit (using program ALLFIT given in Appendix VII-D) ‘thereafter determining only the "effective" upper state con- stants. The fits indicated that the upper state "effective" (nanstants were determined less accurately in a fit of the 43 upper state combination differences than in the fit of fre- quencies in which the ground state "effective" constants were fixed. For this reason all upper state constants quoted were determined from a fit of frequencies. From preliminary fits it was found that Hv and Hv2 were equal and opposite to the 1 accuracy of our measurements; consequently they were replaced by a single constant, HV' = Hv2 = —H The final least v1° squares output from these two fits, for both molecules, is given in Appendix VIII, which includes the observed, predicted and observed minus predicted values for all data points. In the second method, a frequency fit was made in which all constants, both upper and ground "effective" rotational, spin-orbit and vibrational, were determined simultaneously. The final least squares output from this fit for both molec- ules is given in Appendix IX. Effective Rotational Constants The values of the "effective" rotational constants with their 95% SCI from these two methods are listed in Table 5.2 under Case I and Case II respectively. While the constants overlap in almost all cases, within their 95% SCI, it is still disconcerting that the overall standard deviations of the frequency fits, also listed there, should differ by such an amount. Attempts were made to remove this discrepancy. One of these was the inclusion of an AJ dependence suggested by James (13). While the AJ term was on the verge of signifi- cance, it did not improve this situation. mHm>MUuGH wocmpfiwooo msomcmuasfiflm wmm « mmoo.o amoo.o mmoo.o meoo.o 10am menace.m mma men mom mom Dam .mno .oz . . aruoa x Aem.o.ss.oo Or.ea x 1mm.o.aa.ov .> asoa x 1a.a.e.muv mnoa x Am.m.e.muv .10H xlm.e.ea.omuv m.bH x Am.m.m.euv Na muoa x rm.a.m.mv muoa x Aa.a.e.sv aloa x Aw.e.aa.mmv w.ba x Aa.e.m.aav an Hmoooo.o.meosao.o mmoooo.o.maoaao.o amoooo.o.mmomao.o Hmoooo.o.meaeao.o Na maoooe.o.aemeao.o mmoooo.o.aemeao.o amoooo.o.maoeao.o oeoooo.o.amasao.o Ha alloa x Awe.o.mm.ev aluoa x Aaa.o.ao.ev oluoa x Awm.o.mo.wc salsa x Awm.o.eo.sv w 4 Canon x Ame.o.ma.ev OHIOH x las.o.ao.ev salon x Amm.o.om.mv canon x lam.o.em.sv Am 4 .-oa x ANH.o.em.wv aloe x lea.o.om.mc auoa x ANH.o.aa.mv wuoa x lma.o.as.mv are .-OH x “ma.o.mo.ac wuoa x lea.o.mm.wv .uoa XAHH.O.HH.OHV suoa x “No.0.ws.av Noe .-oa x lea.o.mm.ac .-oa x lea.o.oe.av auoa x Ama.o.eo.av .10H x Ama.o.em.av Han .-oa x lea.o.ma.ac suoa x Asa.o.mm.av .-OH x Aaa.o.mm.ov .-oa x Aaa.o.ea.av Hon amoooo.o.aseaem.a Haooo.o.eoeaee.a maoooo.o.maamos.a Haoooo.o.mmomos.a Nam emoooo.o.emmmme.a Haooo.o.aaemme.a amoooo.o.weaoms.a emoooo.o.omooms.a Nam maoooo.o.mmmsam.a oaooo.o.memsam.a maoooo.o.mmaeme.a emoooo.o.amomme.a 11m maoooo.o.eemmae.a oaooo.o.mmamae.a mmoooo.o.meomse.a .esoooo.o.asamae.a Hom. HH wwoo H wmmo HH mmmo H wmmo Damumcoo owfizmm . omazaa .Alusov oz now museumqoo 0>auowmmm N.m magma 45 Our values of the "effective" rotational constants from Case I are listed in Table 5.3 along with those of other researchers. Small differences between our constants and others could arise from the fact that an Hv dependence has been included. In fitting the data this will of neces- sity affect the values of the other constants. Rotational Constants The rotational constants for both molecules were cal- culated from Eqs. (5.2a) and (5.2b) and are given in Table 5.4. In this Eqs. (1.11) and (1.12) have been used. These rotational constants, determined from Case I and Case II "effective" constants, agree to well within their 95% SCI. Spin-Orbit Constants The constants(jw and X were determined directly from the frequency fit since satellite data is included. From the values ofC10 and B0, A0 can be obtained by solution of the simple quadratic (obtained by neglecting terms of order zBV3/AV2 = 0.0006 cm'“1 and higher) of Eq. (5.1b). Table 5.5 lists the values of A0, A1, Ae and Xe obtained. It is seen from this that the spin-orbit constants from Case I are the same, within their 95% SCI, for both isotopes, as are those from Case II. Our values for A0 and A1 should be compared with those of James (13) for 1L‘N16O (A0 = 123.1610.02 cm—1 and A1 = 122.91:o.02 cm-l). 46 .wsam> popmHoUHmo m wmpmoflch ADV How OHOHXNom H.en aloaxrom m.m m.s soaxmlo e.a m.m soaxrzo m.m m.s e.m loo s.m moaxaoo m.a m.m a.a sm.o hoaxloo oeaee.a asoee.a Nam eeamm.a maamm.a 11m memme.a aseme.a hemme.a mesme.a Nam mamae.a mmeae.a aaeae.a memae.a Hom leao AHHV Demnmeoo .Hm.nm .HH 00 Ame x003 meme .mmmfluw .smEHO m>630HUH2 .AHIEUV 032mH wo mncmwmoou U>Hpoommm m.s loo .HN Oroaxaom m.au loo .Hmu Ozoaxlom a.a p.03 H.a soHXNre m.a me.o m.m aOHXalo m.a loo e.oa m.a e.oa m.a H.a soaxaoe N.H ma.a m.H as.o e.a m.m soaxaoo memos.a mmmos.a mmos.a NHm momme.a aomme.a Heme.a 11m mooms.a emoms.a mooma.a eaoms.a Naoms.a come.a Nam samee.a erase.a mmmse.a mmmee.a mmmse.a mmee.a Hom Avav .AMHC ........... AHHV . poopmoou Aa.mv .Hm.um Dashnare .Hh.nm rev xuoz mane m>m30uofls .Hmmwz .mmEMb .cmEHo 363m oAHIEOV 022:H MO mflfiwUmGOU O>H#Owwmm .AHIEUV oz How museumsoo U>Huommmm mo GOmHHmmEOU m.m manna '1! Illlll 47 WHMKYHOHGH OOCGUHMGOU mDOOCwUHDEHm wmm um voooo.0uamomH.H woooo.OHNmOmH.H woooo.ofimmomH.H voooo.o«mmomH.H OH m10H x AN.H.m.oV muoa x Am.a.o.mv muoa x Am.m.m.Hv .10H x Aa.m.e.mv 0a mica x AOH.Onwo.mv mIOH x ANH.Onho.mv mIOH x Am0.0n©v.mv mIOH x Am0.00mv.mv OD «Hoooo.0nmvmmHo.o haoooo.0nm¢mmao.o omoooo.oHVBthooo mmoooo.ohvmmhao.o mo mw000090nmmvvwm.H whoooo.0namvvwo.H wmoooo.0nmmw¢0hoH hmoooo.0uhmmv0b.H mm .-OH x Aoa.o.mo.mv .-OH x AmH.o.oa.mo .10H x Amo.o.me.mv mica x Aao.o.ae.mv 1o mica x “OH.Onmo.mv mIOH x ANHoohwo.mv oIOH x Awo.lov.mv oIOH x Amo.0nhv.mv om mmoooo.0nmmmmHm.H mhoooo.onNmmHm.H mwoooo.0nhmmmhooa mwoooo.0nhmmmhm.a Hm HmoooooonhHmmm.H mnoooo.0nonHmmw.H mmoooo.0naoawmm.a «omoooo.0nomommmoH om HH mmmo H mmmo HH mmmo H Ummo usmumsou omlzma OSHZSH .AHIEUV oz How mpcmumdou HMQOHUMpom «.m.manhe 48 O meermflflH QUGGUHMCOU mDOGGM#H5EHm Pmm ¥ U wIOH x Amoconoomv mIOH x Amooofihoomv mIOH x AOHOOHmoomV oIOH x ANHolooomv Q m ONOOO0.0HmvwwHooo mNOOOOOOHmNmoHooo «Hoooooon¢mmHooo PHOOOOOOHvamHooo a m vmooooooMmmvwvmoa hmooooocnmvvvvwoa mmoooooOHmmwvvmoH *thOO0.0HHmvwvmoH m - HH wmmo . -H WWMUTs, .--- , HH mwmu .- . - H mmmu pneumoou , ADHHUV oowmhwsi-, 1 1 - Amoov,ommzma-. .AHIEUV Oolzmb now msoHDMHDUHmo UHQODOmH w.m UHQMB mHm>HmusH UUGUUHHQOU mDOUQMDHDEHm wmm a m mmooooHNNvmoo mhoooonmvmoo mmoooonHvNoo HmOOOOmemNoo x m mhooooHNmomomma mmoooohvmmmomma 0000.0nmwom.MNH HHooo a hmmomma fl NmoooonmvmoNNH vaOOOHH¢mmomma hmoooOH©w¢moNNH mvooooHHNmmoNNH H< Nmoo.o«Hme.mmH mvooooHomomomma bmooooHHmmHomma *mvoooOHmwONommH ed .; HH mmmu H mmmo 1 HH mmmo , , H mmmo puebmsoo oefizma omfizaa .Arusoc oz 000 mucmquoo hangoucaem m.m magma 49 Lambda Doubling Constants A least squares fit to determine the A-doubling con- stants was also performed for each molecule. The expres- sions which were fit (using program LAMCON given in Appendix VII-E) are given in Appendix VI-C. Doublet separations from both the HES and LES were used. The least squares output for both isotopes is given in Appendix X. Values for these constants (cm‘l) are: This Work Microwave (5) 15N160 14N160 15N160 luNleo pA x 103 5.67210.058* 5.82810.063 5.686 5.876 qA x 105 3.911.1 4.6¢l.l 2.4 3.84 No. pts. fit 29 41 Std. dev. 0.0028 0.0043 * 95% Simultaneous Confidence Intervals The values for pA agree very well with those obtained from microwave measurements. While the values for qA do not over- lap theirs, it should be pointed out that much higher J-values are being fit (e.g., up to J = 47/2 for 1“N160 and J = 41/2 for 15N160). Vibrational Constants Since only one vibrational transition was observed, only one vibrational constant, AG(1), can be determined. The difference in vibrational term values is: AG(v) s G(v) - G(O) = (we-wexe) v - wexe v2 + .. . (5.4) 50 The values for AG(1) from the two cases, given here for com- pleteness, are: 14N160 Case I Case II AG(1) 1875.9872 5 0.0038 1875.9904 1 0.0026 15N160 Case I Case II AG(1) 1842.9366 5 0.0030 1842.9378 1 0.0023 The Case I and Case II values do overlap within their 95% SCI. Isotopic Calculations The theoretical relations for rotational and vibra- tional constants between isotOpically related molecules in terms of the reduced mass are: Bel = pZBe, (one)1 = page, Del = que, wel = owe, (5.5) where i refers to the substituted species and 02 = u/ui, u being the reduced mass of the normal species. Assuming 1”N160 to be the normal species, Table 5.6 lists observed and calculated values for the isotope 15N160. A value of p = 0.98211970 was obtained from the AIP Handbook (57). It is seen that these calculated values agree very well with the observed values. 51 Discussion The measurement of the line frequencies used in the analysis is believed to be accurate to 0.003-0.004 cm'l. The "effective" ground state rotational constants de- termined from the ground state combination difference data are probably the more meaningful of the two sets. It is generally accepted (58) that fitting combination differences leads to a more accurate determination of these constants than a polynomial fit of the frequencies. In addition, the constants determined in this way will not be affected by perturbations of the upper states, and the ground state is less likely to be affected by perturbations. The difference between the standard deviation of the frequency fit of Case I and Case II could arise due to the fact that in Case I, the fit is being forced to accept values for several of the constants. The curve obtained by varying the remaining constants may not be able to match the experimental curve as well as when all the constants are varied. It is still possible however, that the accuracy of the present data is sufficient for this difference to be pointing to an inadequacy of the present theory. The diffi- culty does appear to come in large part from trying to fit the satellite and fundamental data simultaneously. James (13) reported difficulty in using constants determined from the fundamental band to accurately predict the observed HES fre- QUencies. The double set of constants is carried throughout to klighlight this difficulty. 52 It is comforting that the "true" rotational constants (Table 5.4) from the two cases are in good agreement. The values for re, which are the same, as expected, for both isotopes, are good to the accuracy stated. It should be stressed that the spin-orbit constants for the two isotopes are in very good agreement for both Case I and Case II. This indicates that both isotopes have identical electronic structure to the accuracy of the data. The Q—branches of the fundamental subbands overlap considerably, leaving very few unblended lines. This is due in part to the A-doubling in the Q1 lines which is quite large at high J (e.g., 60.24 cm"1 at J = 21/2). For this reason these Q-branches were not included in any of the fits. It should be emphasized that the data input to all the fits included the lines from both fundamental subbands to- gether with lines from the HES and LES. For reference, the 95% SCI quoted throughout, are ~4 times the commonly used standard errors of the coefficients. CHAPTER 6 ZEEMAN ANALYSIS In general, Zeeman spectra have not been recorded in the infrared because the resolution was not sufficient to show the individual AM transitions. It happens that the splittings for the 2-subband of both 1“N160 and 15N160 are sufficiently large and the experimental conditions such that for small J—values the extreme components of the transitions could be resolved and their splittings measured. Fig. 7.6 shows Zeeman patterns for the P—branches of the l- and 2—subbands for low J-values. In Fig. 6.1a the observed Zeeman spectra for the P2(5/2) line of the (1-0) band of 1“'Nl‘SO at five different magnetic fields are shown. The patterns for 15N160 are not significantly different and hence are not reproduced. The magnetic fields producing these patterns were ob- tained from an air-core, water cooled solenoid built by the Magnion Corporation. This solenoid is capable of producing fields up to 6800 gauss. It has a central core diameter of seven inches and is forty-eight inches long. Over the region containing the absorption cell, the field is homogeneous to within i2%. 53 54 .Am :H mm mGOHHHUCOU warm map How muuowmm :mEmwN pmpUHUmHm An .3180 emo.o .zmzm aoflpoeswuuaHh uso mam .rumemaruam "Huou v .muommwum .onHH Ho coHuUcom m we 022:H H0 UGHH Amxmcam .eemn oua 0:0 now 6006066 gramme em>nmmno A6 .H.e .mam Seenw.z ooooo.r to to- to to- //.E . @0000 . I 00000.: o .I 55 From the work of Chapters 2 and 3 the theoretical Zeeman-patternS»can be predicted. Figure 6.1b shows the predicted Zeeman pattern for the P2(5/2) transition for: the same fields as above. (These were obtained from program PLOTPUN given in Appendix VII—H.) The central components of these transitions overlap considerably; however, the two outermost components appear as single lines. Measurements of the splittings of the components of the P2(5/2) and R2(3/2) lines from the zero field position were made for both 1”N160 and 15N160. Table 6.1 lists the observed and predicted values (predicted from program ZEEPUN, Appendix VII-G) of these splittings for the various field-conditions. The uncertainty in measurement is probably no greater than 0.004 cm‘l; however, the field and therefore the splitting uncertainty ranges between 0.9 and 1.5%. The observed and predicted values agree reasonably well. Microwave measure- ments of these splittings (58, 59, 60) are more accurate, but the above agreement is good enough so that the inter- pretation of the observed pattern is certainly correct. 56 Table 6.1 Zeeman Splittings for the (l—O) P2(5/2) and R2(3/2) Lines of 1”N160 and 15NléO as a Function of Field. Splittingsa p2(5/2) R2(3/2) FIELD Obs. Calc. Obs. Calc. (Gauss) 4000 0.3807 0.3764 -- -— 5000 0.4785 0.4704 0.4784 0.4702 14N16O 6000 0.5718 0.5644 0.5648 0.5642 6700 0.6398 0.6304 0.6328 0.6300 4000 0.3862 0.3760 -- -- 5000 0.4732 0.4702 0.4806 0.4708 15N16O 6000 0.5686 0.5642 0.5693 0.5650 6700 0.6248 0.6300 0.6350 0.6308 a) Separation between the most extreme Zeeman components in cm'l. CHAPTER 7 MAGNETIC ROTATION ANALYSIS From October 7—27, 1966, quite an extensive series of magnetic rotation spectra were run on the l-O band of both 1”N160 and 15N160 as a function of pressure, path length, field and polarizer angle. This included a look at the HES of 1"‘N160. Figures 7.1, 7.2, 7.3, 7.4 and 7.5 summarize the main features of these spectra. The experimental arrange— ment used in obtaining them is described in Chapter 80 Most features in Figs. 7.1 = 7.4 have been given a qualitative explanation. The opposite rotations of the l— and 2-subbands of Fig. 7.4 has been observed and accounted for by Mann and Hause (62) and by Aubel and Hause (63). A general explanation for the intensity minimum of the P2 and R2 lines near J = 9/2, visible in Figs. 7.1 - 7.4, was also given by the latter. The doublet structure seen in the lines in Figs. 7.1 and 7.2 has also been observed by Robinson (64) who simply attributed the occurrence to absorption from a background of non-uniform intensity. A semi-quantitative description of the above features has been attempted. Using the M. S. U. CDC 3600 computer the numerical integrations of Eqs. (4.14), (4.16a) and (4.17) WeIe carried out to predict the magnetic rotation signal. 57 58 .HIEo a. 0 mo :53 coauUCDMI ”Dan M. van .Eo mam mo cumcwanumm m 6280 ooom wo cpmcwupm wamaw oauwcmmfi m. cud: pmomoowu mums wmonfi .wHSmmmum mo coauocsm m mm Om 2.: mo gunman um Joann ona 93 mo muuommm counumuou oufiwc m: .HK .mflm ... w ... ... m m. 4mm 3.. ______i____________ am N N N N _N N_ N m 3.. _l__4__4__4__w__fl__._.__._.___ 3x0... NAN - wmsmwmza 4‘ *4 Fl! 1.) r l}, Llrv' I.‘.IPI’-.Kr 2 f: 2: : : : II? I? .ILI ILLIID; ll r... ._..._.M_,,_.,3_ 3.2 23: j E 1. ii .rv l FL. g. E . 3353 :2. j. A. a t 2:11:22 i _ . j E :44 59 .Han H.o mo Exam coauocowlpflam m cow .Huou a wo wusmmwua m .mmdmm oooo mo numcwnum UHmHm oaumcmmfi m suflz popuoowu wuoz mmmne .numcoanumm mo :ofipocsw m mm sz+; mo pawn Ola 05p wo mupowmm cofiumuou oauwcmmz .m.n .mflm h: u n .W .2w 1 _ 4 _ _ w _ _ + _ _ + __ 4 __ a __ a __ a m «_ .*_ _m_l w__%_,%__%_.%_lfi.%. 3.. w__%__._m_.%__+__w__m___*__* ..rlwl_¢:*____m_.:._.__fi_.:4:w_3.. 1‘ lit , amm...“15:3:_::_E:2_::: lrL. [I . Fa fl: - igfzzszf. Q%‘ :r = Egzzafiazz: . n - E. . mph...“ _. 3,3 3 :, 3:2 : J l. l. j : EN» . Irozua ...—Ha 60 .780 To wo Exam :oHuocomubHHm 6 tan E0 m: wo cpmcoazuMQ m .Hqu H mo onsmmoum m nufls woouoowu muwz wmwna .gumcwupm «$me oflumcmme mo cofluocafi m. mm oo 2.; mo £0985 ..m 6ch 01H 05. mo muuoomw coflumuou 0.30: 62 Join .mfim —:4~ 'dN :9“ 8k- % m“. m» m m Em. _ w. .1 . N N m .....m :1. ____~__.fi__.m__w___________ Ill llul )l l r». p . _ i. .2 1 1.3,: _ L _E: ‘Eficii- :3: E t _- : ..-. mooov . I ll .1 Br r I; _ L»? [Ir ...),rlx .41... inikflififiil: :4 f: . 4 a 61 .>H0>Huommmmu coflumuou w>Hummwc cam w>fluflmom uflbflnxw mmcfla UQMQQSmIN pom Ia one .HIEU H.o mo zmzm COHHUCDMIuHHw m paw EU mam wo Qumcma Invmm m .Huov H mo mhsmmmwm m .mmsmm ooom mo numcwuum pawflm m npflz poouoomu wHwB wmwne .oaccm Hmmflumaom mo coflpocsm w mm 032: we pawn ola mcp mo mupowmm COHpmuou oeumcmmz .v.» .mflm _; 4: —nrv ~m~ _ t,“ 1:,” —«~ 0 -...” ...... —|71“‘ ‘5'“ do. *5!" #4 '9!» 3w 3 .1 L .D u .r L ll... Drill)! y} , I . is... .-..Ei...:52.24.2.2; ..., . .a. . 3oz< 13:339.. . :50 na.o .Emzm COHuUCSMIuHHm “:8 mam .numcwflcumm .waw>fluowdmmu uuou cow 6:6 com who muuowmw Hmon can Roma: wnu How monommwum one .wuommwum cam pamwm mo COHuoch m mm OmHZJ~ mo coma mmm 0|_ mm# m0 COflmwu socmunlm may mo muuowmm coflpmuou oflumcmmz .m.h .mflm .Eiisiifiiiééééi _ _ _ _ _ _ _ . _ _ _ _ _ _ _ gggéjififiégé 303.... .83.: 988.: ——————i 63 These predictions also give a clearer picture of the whole magnetic rotation effect. In all calculations it is assumed that the adjacent lines do not add appreciably to the circu- lar birefringence or dichroism. The effect of overlap is considered later. Program PLOTPUN, listed in Appendix VII-H, carried out the necessary computations and plotted the output. Pertinent magnetic rotation parameters which are input are the Doppler HWHM, Lorentz HWHM, spectrometer HWHM, pressure, pathlength, integrated absorption coefficient, polarizer angle, the Zeeman splittings including the A—doubling and the relative intensities. The Doppler HWHM for NO at room tem— perature, calculated from Eq. (4.11) is w0.002 cm-l. The Lorentz HWHM must be found experimentally. Shaw and Abels (38) have done so for NO and found YL = 8><10_5 cm'l/torr. It is slightly dependent on the transition. This value has been found to be too low, by at least a factor of 2, to give reasonable matches to the observed magnetic rotation signal. Buckingham and Segal (65) found that a value 4 times larger than this was needed in their predictions for the 3—0 band of NO. The difficulty must be studied in more detail; however, for the time a value increased by 2X will be used. For pres— sures : l torr, = 10y and one would expect a Do 1er line- L PP YD shape; however, for pressures of m20 torr, YD = YL° Therefore the intermediate lineshape of Eq. (4.14) was used, which should handle both conditions. A spectrometer HWHM of 0.05 cm"1 was used. For general reference this is N3 times smaller than that used by Aubel and Hause (63) for the 2-0 band. This was 64 possible due to greater dispersion in the region of the l-O band coupled with a larger percent magnetic rotation. In the calculations so far, a Gaussian form has been assumed for the spectrometer slit-function. In actual fact, for the mechanical slit—widths used, the slit-function should be more nearly trapezoidal. Eventually careful plots of a narrow emission line should be run for the region of in- terest and the exact slit-function input to the program. The integrated absorption coefficient was input as calcula— ted from Eq. (2.23). Zeeman splittings were calculated from Eq. (3.7) using program ZEEPUN, and input. The Zeeman splitting is symmetric to the order of ap- proximation considered here. Fig. 7.6 shows some of the pat- terns and relative intensities, including the A—doubling, for both the l- and 2-subbands. Each transition is a collection of (2J+l) symmetric doublets, the components of which are characterized by AM = +1 and —l, and which absorb, in equal amounts, right and left circularly polarized light respectively. The magnetic rotation signal, as will be seen later, is predominantly due to circular birefringence. Typical anomalous dispersion curves for a simple doublet along with the rotation angle 9, are shown in Fig. 7.7. e is directly prOportional to the integrated absorption coefficient, and the calculations show it can attain magnitudes of N70 radians for the 1-0 band. In the central region of the doublet, e is changing rapidly. One therefore expects sinze to oscillate rapidly between 0 and l. The frequency of this oscillation l-QEBAND «Inc I I I I mun J J 1"”- -Jl A 3'“ Fi . 7.6. Predicted Zeeman patterns for the l-0 band, P-branchuof ll“N160 strength of 6000 gauss. Lines drawn 65 Z-SUBBAND o'sm J-M _° Liza .4 IIIIIIIII 5 .L - The J-Il/Z -o‘B ' L 'IIIIIIIL A ohm . L 1 IIIlln .4 9.9/2 4 0.51: IIII II obi: I l 1 m l; v' I I 1 1 5 k 4*” -osoo I I I I o I I a 52 mg L 4 T J 1 pond to AM = +1 (-1) transitions. and relative intensities for a magnetic field upward (downward) corres— 66 .o 0» HMGOMHHOQOHQ ouomouosu cam A+c I lav ma o>uso oouuoo one .hao>fluoommou coauofloou ponwnoaom haumasouflo umoa mam ucmwu How cofiuomumou mo movatcw osu ouo I: can +c .uoansom cmEooN oHQEMm o How mobuso :onHonHC msonEoco Hmofimee .e.h . am 67 will decrease as one proceeds toward the wing of the tran- sition since there 6 changes less rapidly. Finally, as 9 becomes less than n/Z, the circular birefringence will de- crease to zero. In the extreme wings of the line, the Kramers- Kronig relations (i.e. Eq. (4.16a)) predict 6 a 1/v° The frequency range for n>e>o is consequently larger and this last oscillation in the sinze term is broad compared to those closer to the line center. Absorption is also taking place throughout this region. The absorption coefficients, for right and left circular polarizations, calculated from Eq. (4.14) and the path lengths used are such that the transmission fractions for even the weakest Zeeman components are zero near the center of the line. However, the absorp- tion coefficient decreases to zero, and the transmission fraction therefore goes to unity, more rapidly than does 6 as can be seen from Eq. (4.14). Fig. 7.8 shows the contri- butions of these various terms for the P1(15/2) line for one set of conditions. This line, like other lwsubband lines, displays nearly a simple doublet Zeeman pattern. The trans- mission fractions for right and left circular polarizations are shown in Fig. 7.8a. The circular birefringence term (Eq. (4.9b)) will appear, as in Fig 7.8b with nearly zero intensity near the zero field position due to the /T$T: coefficient, oscillate to a peak in the wings due to the sinze term and finally decrease to zero as 6 + 0. One notes that there can be no circular birefringence con— tribution to the magnetic rotation intensity in the absence 68 C) Fig. 7.8. Predictions of the terms making up the magnetic rotation signal of the 1—0 band, plus/2) line of ”N16 a) Transmission fractions, T+ and T“. b) Circular bire- fringence. c) Circular dichroism. d) Integration of the sum of (b) and (c) over the spectrometer slit—function. Field strength, 6000 gauss; pathlength, 315 cm; pressure, 1 torr; slit—function FWHM, 0.1 cm‘l. 69 of either component of circular polarization. The circular dichroism pattern, shown in Fig. 7.8c, is obtained directly from Eq. (4.9a). It is seen that this term is non-zero over a comparatively small frequency range and cannot attain a value greater than 0.25. When an integration over the slit—function is performed, it is found that the contribution due to this term is almost negligible. Finally, Fig. 7.8d shows the MR signal after integra- tion over the spectrometer slit-function. The intensity at line center is m0.25. Not enough checks of the observed intensity transmitted through parallel polarizer—analyzer were taken. Ultra-violet radiation progressively fogged the first plate of the AgCl polarizer thereby vitiating quantitative intensity measurements; however, earlier measurements indicate that the actual MR signal is m0.30. The calculated versus observed agreement is reasonable. As Aubel (63) points out, the magnetic rotation signal for the l—subband should follow the normal band intensity contour since 6 is proportional to the integrated absorption coefficient and all the Zeeman patterns are very nearly the same. Also, as he points out, the angle 6 is calculated to be positive in the wings of these lines, thereby giving rise to an enhancement of the magnetic rota- tion signal for positive polarizer setting. The 2-subband Zeeman patterns, Fig. 7.6, are quite different from the single doublet character of the l-subband. 70 However, after calculating the anomalous dispersion and trans- mission fraction for each line and performing the appropriate summations, one still ends up with a doublet character as regards right and left circularly polarized lignt. One expects the 2-subband to have slightly weaker magnetic rota- tion signals due to both a smaller integrated absorption coefficient and the greater amount of overlap of AM = +1 and -1 transitions. A series of plots similar to the ones ianig. 7.8 have been made for the 2-subband but essentially the same type patterns are obtained. Consequently they have not been included. Having discussed the makeup of the magnetic rotation signal, let's examine some specific features of Figs. 7.1— 7.4. Doublet Character 2£_M§ Lines As was stated earlier, Robinson (64) qualitatively attributed the effect to simple-absorption from a non- uniform background. This is certainly correct; however, going back to Fig 7.8a one can see exactly how it enters. The transmission fraction is zero near the zero field position. If, as was the case in Fig. 7.8, the spectrometer slit- function is much wider than this region of zero transmission, the magnetic rotation signal will appear as a single line. If the absorption coefficient or the pathlength is increased, the region of zero transmission will broaden and may eventu- ally become comparable to the slit-function. At the same 71 time the angle 9 extends its region of non-zero values so that it is always broader than the /T*T= term. Upon inte— gration over the slit—function a decrease in magnetic rota- tion signal will be observed. Figs. 7.9a and 7.9b show pre- dictions for the P1 and P2 (15/2) lines at two different pressures which demonstrate this effect. Both the integrated and unintegrated patterns are shown. It should be remarked that the absorption coefficient is increased by an increase in pressure (see Eq. 2.23 and 4.12). This will have a bigger effect than increasing the pathlength since by changing the pressure the lineshape is also altered. An increase in pres- sure makes the 1ine more nearly Lorentzian, its tail in- creasing and thereby adding to the doubling effect. 2-Subband Intensity Contour It was stated earlier that the 2—subband should be slightly weaker than the l-subband due to a smaller absorption coefficient and greater overlap of right and left circular polarization regions. It is this latter point which is giving rise to the intensity minimums near J = 9/2. Consider the 2-subband patterns in Fig. 7.6. If one calculates the ratio of the intensity of the strongest component and the nearest com- ponent of opposite polarization one finds a minimum for J = 9/2. That is, one can expect a smaller value in the calcula- tion of ¢ in Eq. (4.7) from these components. This can be extended over all (2J+l) components to predict a smaller magnetic rotation signal from this trans- «It 72 .HIso H.o .smsm aoHuocsquHHm “:6 mam .numcmarumm “mmsom ooow .numconum oaoflm .mcuonuom GOHpDHOmoM ouflcflwcfl cam ouflnflm onu on unmflu wan umoa onu co mo>uso one .Huou m.oa cam o.H mo monommoum um ocHH Am\mavnm .ocm on o u now Hmcwfim coanouou oeuonmoe onv mo mCOHuoHUoum .Mm.e .mHm afldI . _ I I I I . I _ I . . e I L I I Ianfléul 81.0 1 . a a . 1 . q a - q . _ a q 41 mac... 0.. an. §.O b- I I b I p I p I — I8“ OI jfiu _ I a — mmOe.N;N-a 73 .suso H.o .Zmzm aofiuoasouuaam “so mam .aumcmanuma “wmsmm ooow .numconum taoflm .mcuouumm coausaomou ouflcflmcfl new ouflcwm on» own unmflu onm umoa onu no mo>nso one .Huou m.oa cam o.a mo mmusmmmum um mafia nm\macmm .6cmn on may now Hmcmflw coaumpon oauoamme onp mo mQOHuOHooum .nm.e a O l. . DO vII i _ I a Ham. 1. l I I" I 1 fair l l 1 mm mmoe 0.. an. _ I b . .OI Sud. _ _ b (Ed: . 4 a I J q J n . 4 _ mmoe.mnmnm 74 ition. This is certainly not the entire story however. It is noted that the largest components of the P2 (9/2) line do not lie directly on top of a component of the opposite polarization. In order to get a large cancellation effect these components must overlap within their individual line widths. They are separated by 0.0064 cm'l, thus the absorp- tion coefficient must have a HWHM approaching this to get the maximum cancellation. On the other hand, the J = ll/2 components are separated by only 0.0003 cm—l. One might therefore expect the minimum in the magnetic rotation signal to move toward higher J-values for lower pressures, and therefore smaller absorption coefficients. This is borne out by experiment (see Fig. 7.1). By the same line of reasoning, at lower field strengths, where the Zeeman com— ponents are closer together, the minimum should move toward lower J—value (see Fig. 7.3). Predictions of the magnetic rotation signal agree very well with experiment as regards this minimum. Fig. 7.10 shows predictions for the P2 sub- band for J = 5/2 to 15/2 for two different pressures. It is seen that at the higher pressure the minimum is shifted by one to J = 9/2 in agreement with Fig. 7.1. Directions of Rotation The subject of the opposing rotations of the 1- relative to the 2—subband has been well explained (63). Let it suffice to say that the predictions made from the theory of Chapter 4 are in complete agreement with the x“ 75 P-I.O TORR P-IOS TORR J-IIQ A _ , M ..., Fi . 7.10. Predictions of the magnetic rotation signal for the 1-0 band, P2 subband of 1”N160 at pressures of 1.0 and 10.3 torr. Field strength, 6000 gauss; pathlength, 315 cm; slit-function FWHM, 0.1 cm‘l. 76 observation that the rotation is positive (negative) for the l- (2-)subband.‘ While there are no complete cancella- tions in the l-O band similar to those observed (63) in the 2-0 band, there are nevertheless partial cancellations which become obvious as the absorption is increased. In Fig 7.1 in the region from J = 7/2 to 19/2 for a pressure of 21.2 torr, it is noted that the inner components of the doublets are weaker than the outer. While some of this can be at- tributed to instrumental factors it is too regular to be explained solely on this basis. It is reasonable to assume that the Lorentz tail on the absorption coefficients for the l- and 2-subband lines is producing enough overlap to result in partial cancellation of rotations. Magnetic Rotation Spectra of the HES Fig 7.5 shows the meager traces of magnetic rotation spectra which were obtained from the 1”N160 HES. A wide range of conditions of pressure, field and pathlength were tried with no better success than this. The transmission for these lines is between 10-15%. There appears to be no one condition of field or pressure which will simultaneously maximize all lines. The weakness of the observed signals can be attributed to instrumental sensitivity. The failure to observe more lines must be attributed to the combination of line-width (yL = 0.1 cm-l), A—doubling, and Zeeman splittings being right to produce cancellation. This could 77 explain the non-existence of the Q-branch in Fig. 7.5 as there the overlap of components is great. (For the actual positions of the Q-branch lines see Fig. 5.1.) Fig. 7.11 shows predicted Zeeman patterns, including A-doublet split- tings, for the HES R-branch lines for J up to 11/2. It is seen that for J = 11/2, and therefore for all higher J-values, the most intense Zeeman components for both A-doublet com- ponents, are well within the Lorentz halfwidth of the lines. This will result in cancellation which will be less severe at higher values of the field. Also as the pressure, and therefore YL’ is increased there will be more overlap of the AM = +1 and -1 components resulting in smaller signals at higher J-values. This is observed in Fig. 7.5. Discussion The calculations, incorporating intensities determined quantum mechanically, inserted into an expression derived using classical dispersion theory and including the effects of a finite resolution spectrometer, have successfully pre- dicted the major features of the magnetic rotation Spectrum of the fundamental band of 1L‘Nl‘SO. The agreement is not perfect. This is perhaps due partly to the rather crude numerical integrating techniques in which basically the areas of rectangles with equal bases were added for all regions. It is quite conceivable that this led to a distortion of the form of the lineshape and of the rotation angle 6. Never- theless it would appear that the overall approach is correct. 78 -O m I——-¢-—-+— m+o uuzmuso «om .o<> can 6:8 cmm “usmcH HoEHe U¢> OHH nIIIIHnw . \IJI . nouazm e " ...Wmmz AW vapofiond¢.fl- ICIMQO unmum ou mmoHo fl «OMIO uaouso AW 30am Houmz . usouso Afiv oHSmmoum V. I I. - ooflum> oousom > I pom m o noomlo >ooMIo HoEHOanmHe mcfloaoz um>m ‘ U¢> CNN 85 Pressures as high as three atmospheres have been tried with no significant increase in rod life. It has been found that the rod output at 4400 cm"1 is about 30% better than the previously used Zr arcs and very stable throughout its lifetime. ForeOptics The basic Optical path in the foreoptics has been modified little from the work of Aubel (22), however, a vacuum polarizer assembly has been added to eliminate the last air path in the entire optical train. A false 1" aluminum baseplate has been added, and Can "windows" are used throughout to allow increased range. The baseplate provides a stable platform for mounting the mirrors and eliminates mirror displacement during tank evacuation. Fig. 8.3 shows the present mirror configuration. Table 8.1 lists the specifications on the various mirrors. The only significant change in foreoptics mirrors was to make M2 on a quartz blank. This was done because of its close proximity to the rod source and the small thermal expansion coefficient of quartz. The foreoptics mirrors are versatile enough to permit the use of a shorter 36.7 cm cell; however, the homo- geneity of the field of the present Magion solenoid is suf- ficient to obviate its use. The alignment procedure has been previously given (22). This has been facilitated by an assembly which positions a 25 watt Zr arc at the same point as the "carbon" rod. 86 .Uflocoaom can >HnEomm¢ uoNHumHom .moflumoouom .m.m .mflm g! 1!..-Io,_....II-I. -IIJ. >4m2umm< wamdnoa 23: .2 ”.338 ..ooq 5:. Jnmo mwmw>fluo mcflumuo mm >m mOhgui mDOZOmIoZ>m 2mm Com. muonomm .um 97 Fringe System The present Edser-Butler calibration train is shown in Fig° 807° The major alteration here is the use of a constant deviation Wadsworth (72) assembly for order sorting which replaces the interference filters formerly usedo This system was designed primarily by Dre Mo Do Olmano The source for the calibration system is a 100 watt Zr arco The chopper is driven by an 1800 RPM synchronous motor and interrupts the beam 450 times/seco L2 and L3 deliver an f/S beam to the monochromator by means of two front surface mirrors, M21 and M22o The fringe beam enters and leaves the monochromator symmetrically 201 cm above and below the axis of the paraboloid and traces basically the same path as the infrared beamc M23 directs the beam to a collimating lens, L4. The beam then passes through a Fabry- Perot etalon which has a spacing of 301102 i 000003 mmo The normal ring system is formed for each wavelength present in the beamo The condition for a maximum in trans- mission at the wavelength A is (73): 2t cos¢ = n1 (8°3) where ¢ is the angle between the axis and the nEE bright ring and t is the etalon spacingo If n is changed by unity this corresponds to a change: (8.4) Av(cm'1) = 5%:— 98 SOURCE D3 we CHOPPERx/ — x ‘ ‘~.W5 - P M24 1 “I, —L ‘12 M25 ’ I ETALON 5 L4 - » M2! \ M22 E T. IT M2 I N SL [EXIT SLIT Monochromator same as in Fig. 8.5 Fig. 8.7. Calibration System. 99 at the angle ¢ = 0. From the grating equation, the angle by which the grating must rotate to produce a change in n of one at the center of the pattern is found: A9 = (2d sinetane) (EVER) (8.5) where d is the grating space, 6 the grating angle and m the order of interference in the light coming from the grating. From this the relation between the change in v in the orders m and m" is: (8.6) M24 directs the beam to a prism in a Wadsworth mount which acts as an order sorter. The order sorter must be placed in the exit optics system so that the same light distribu— tion is maintained in the monochromator at all times. The prism is mounted at minimum deviation and the combination of the prism and M25 form a constant deviation device. L5 brings the various orders to focus in the plane D3. A lP21 photomultiplier with a slit taped on its face is placed on the axis of L5. By adjustment of a feed screw the Wads- worth assembly brings one of the orders into coincidence with this slit. Fringe System Alignment Since the fringe system uses the monochromator, it is assumed that part of the alignment is already done. 99 at the angle ¢ = 0. From the grating equation, the angle by which the grating must rotate to produce a change in n of one at the center of the pattern is found: . , 1 A6 — (2d Sinetane) \m) (8.5) where d is the grating space, 6 the grating angle and m the order of interference in the light coming from the grating. From this the relation between the change in v in the orders m and m0 is: " l '2'? n (806) l> C n BIB I> C u 318 M24 directs the beam to a prism in a Wadsworth mount which acts as an order sorter. The order sorter must be placed in the exit optics system so that the same light distribu- tion is maintained in the monochromator at all times. The prism is mounted at minimum deviation and the combination of the prism and M25 form a constant deviation device. L5 brings the various orders to focus in the plane D3. A 1P21 photomultiplier with a slit taped on its face is placed on the axis of L5. By adjustment of a feed screw the Wads— worth assembly brings one of the orders into coincidence with this slit. Fringe System Alignment Since the fringe system uses the monochromator, it is assumed that part of the alignment is already done. 100 Position source and chopper on the axis of L2 and L3° Position L2 so that the "bead" of the source is at its focal point. This may be done by observing the beam after L2 with a collimated teleSCOpe and adjusting L2 for the best image. L3, M21, and M22 must be simultaneously adjusted to give a sharp image of the source on the entrance slit 17.2 cm above the baseplate and to cover the paraboloid symmetrically. With this done the beam will automatically leave the monochromator 0.9 cm below the IR beam. M23 is now tipped and/or turned to give uniform coverage on L4. L4 should be adjusted so that the beam travels along its axis, With a collimated telesc0pe, observe the beam leaving L4 and adjust L4 for the best image of the exit slit. A collimated beam is now leaving L4. Insert M24 so that it intercepts the total beam and directs it to cover the face of the prism uniformly. Remove M25 and adjust the prism for minimum deviation with the feed screw. Insert M25 and adjust it until the beam travels along the axis of and uniformly covers L5. Lock down M25o Connect the external drive and counter to the feed screw. Insert the photomultiplier so that its slit is on the axis of L5 and the image of the exit slit is in focus on it. 101 10. Insert the etalon. Place a sodium lamp in the vicinity of L4 and observe output from the etalon with a telescope through W6 by removing M24. A ring pattern and image of the exit slit should be simultaneously visible. Adjust the etalon horizontally and vertically until the slit image is exactly centered in the ring pattern. The exit slit image is considerably smaller than the central spot in the ring pattern in order than good modulation is obtained. In this step it is assumed that the etalon plates are perfectly parallel by a previous adjustment. 11. Repeat Step 5 by using central image for sufficient in— tensity. This completes alignment and the entire train must now be carefully shielded to prevent stray light from reaching the photomultiplier. Detectors A number of new detectors have been obtained. These include Kodak types N—2, o-2, p-2 and E—2. The N—2, 0’2 and P-2 are PbS cells while the E-2 is a PbSe cell. All are: Coolable° The PbSe E~2 detector has a sensitive areal of 01,2 a for 4 nmland is most useful from ~4.25u - 6.5u. It.‘flas use: 009! this work. It has a room temperature resistance of ~23 E3e’ a 77°K resistance of WBMQ, and needs a 9V bias loatteryo gths C3ause of its sensitivity at comparatively long wavelen 102 the use of a cooled light shield which allows only radiation from the monochromator to strike it is absolutely essential. Without this shield it was found that the detectivity can be- reduced by as much as a factor of 10. The linearity of the PbSe E-2 detector has not been checked. This must be done before quantitative intensity measurements are made. These detectors are, or soon will be, mounted on a brass base by means of Dow Corning "Silastic". The brass base is recommended by Kodak to match the thermal expansion coefficient of the detector. Electronics With the exception of the infrared preamplifier the electronics is as described by Aubel (22). The preamp pres- ently in use is a battery operated solid state FET device obtained from Denro Labs. It has a frequency response flat within 2 db from 8 to 105 cps, a continuously variable volt- age gain of from 10-100 times that input, and an input impe- dance in excess of 140 M0. It has been found that the noise equivalent signal (i.e., that signal necessary to produce an SNR of unity) of this solid state device is essentially the same as the formerly used Tektronix Model 122 preamp, and requires three fewer power supplies. Recommendations During the course of work on this instrument, it was noted that a number of other changes could be made which would potentially improve its Operation. 103 New entrance and exit slit mounts and drives should be constructed. Presently these mechanisms do not even have the same pitch drive screw. Provision for more accurate setting and readout of the slit Opening should be made. A new detector housing should be constructed. It should have provision for mounting several detectors with a means of quickly changing them without first warming them. An adjustable and coolable light shield should be provided. The detectors are presently the limiting noise factor. Some evidence exists for obtaining improved detectivity by ad- justing the detector temperature for a given wavelength. It appears that with the use of a small heater coil, the temper- ature of a detector could be adjusted to and held at any tem- perature from 77°K to room temperature. Further tests should be run on this with the detectors and incorporated in any new housing if the improvement warrants it. Some improvement might also be obtained by selecting the Optimum chopping fre- quency, this however requires major modifications. S UMMARY An analysis of the vibration—rotation transitions for the 1-0 band including lines from the HES and LES for both 14N160 and 15N160 has been performed. Least squares fits of both combination differences and frequencies has led to improved values of the rotational, vibrational and spin- orbit constants. Values for the A-doubling constants have also been obtained. Isotopic substitution calculations were carried out and agree well with observation. Zeeman patterns were resolved for the lowest J-values of the fundamental band and the splittings agree reasonably well with theory. The magnetic rotation spectra of the fundamental band for the above two isotopes was recorded. Quantum mechanical calculation of Zeeman intensities, inserted into a classi- cally derived expression, and inclusion of the effects of a finite resolution spectrometer has led to predictions for the magnetic rotation spectra which agree with the major features of the observed spectra. These predictions have led to greater understanding of the magnetic rotation effect. Modifications were made on the high resolution infrared spectrometer which have increased its range, and improved its accuracy and ease of operation. These included addition of a rod source, a vacuum polarizer assembly and a new grating drive assembly. 104 REFERENCES 1. R. H. Gillete and E. H. Eyster, Phys. Rev. 26, 1113 (1939). 2. C. A. Burrus and W. Gordy, Phys. Rev. 22, 1437 (1953). 3. J. J. Gallagher, F. D. Bedard and C. M. Johnson, Phys. Rev. 93, 729 (1954). 4. N. L. Nichols, C. D. Hause and R. H. Noble, J. Chem. Phys. 23, 57 (1955). 5. J. J. Gallagher and C. M. Johnson, Phys. Rev. 103, 1727 (1956). 6. J. H. Shaw, J. Chem. Phys. 24, 399 (1956). 7. E. D. Palik and K. N. Rao, J. Chem. Phys. 25, 1174 (1956). 8. W. H. Fletcher and G. M. Begun, J. Chem. Phys. 21, 579 (1957). 9. P. G. Favero, A. M. Mirri and W. Gordy, Phys. Rev. 114, 1534 (1959). 10. Ph. Arcas, C. Haeusler, C. Joffrin, C. Meyer, Nguyen Van Thanh, and P. Barchewitz, Appl. Optics, 2, 909 (1953). 11. M. D. Olman, M. D. McNelis and C. D. Hause, J. Mol. Spectry. 14, 62 (1964). 12. T. C. James, J. Chem. Phys. 40, 762 (1964). 13. T. C. James and R. J. Thibault, J. Chem. Phys. 31, 2806 (1964). 14. C. Meyer, C. Haeusler, and P. Barchewitz, J. de Physique, 26, 799 (1965). 15. J. F. Watkins and J. H. Shaw, paper C3, Ohio State Uni- versity Symposium on Molecular Structure and Spectros— copy, (1966). 16. J. L. Griggs, K. N. Rao, L. H. Jones and R. M. Potter, J. Mol. Spectry. 22, 383 (1967). 105 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27° 28. 29. 30. 31. 32. 33. 34. 35. 36. 106 E. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928). J. H. Van Vleck, Phys. Rev. 33, 467 (1929). G. M. Almy and R. B. Horsfall, Jr., Phys. Rev. 51, 441 (1937). —— G. C. Dousmanis, T. M. Sanders, and C. H. Townes, Phys. Rev. 100, 1735 (1955). A. D. Buckingham and P. J. Stephens, "Magnetic Optical Activity", Annual Review of Physical Chemistry, Vol. 17. (Annual Reviews, Inc., PaTO Alto, California, 19667. _— pp. 399-432.' J. L. Aubel, Thesis, Michigan State University (1964). G. Herzberg, Spectra pf Diatomic Molecules, p. 149, 2nd Ed., D. Van Nostrand, New York (1950). Ibid., p. 92. Ibid., pp. 218-226. R. de L. Kronig, Z. Physik, fig, 814; 22, 347 (1928). R. S. Mulliken, Rev. Mod° Phys. 3, 89 (1931). L. Pauling and E. Bright Wilson, Introduction §Q_Quantum Mgghgnigs, pp. 271-274, McGraw-Hill, New York (1935). Herzberg, pp. cit. pp. 226-229, 268-271. W. Gordy, W. V. Smith and R. F. Trambarulo, Microwave S ectrosco , pp. 185-188, John Wiley and Sons, New York (1953;. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy, pp. 343-344, McGraw-Hill, New York (1955). Pauling and Wilson, pp. cit., pp. 302—306. Herzberg, pp. cit., p. 94. P. C. Cross, R. M. Hainer, and G. W. King, J. Chem. Phys. 13, 210 (1944). Herzberg, pp. cit., p. 241. Townes and Schawlow, pp. cit., pp. 19-200 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 107 J. R. Izatt, Self and Foreigp Gas Broadening in the Pure Rotation Spectrum of Water Vapor, p. 34, ProgFES§~Report, The JOhn Hopkins Ufiiversity Laboratory of Astrophysics and Physical Meterology, Baltimore 18, Maryland. (1960). L. L. Abels and J. H. Shaw, J. Mol. Spectry. 20, 11 (1966). C. C. Lin, Thesis, Harvard University (1955). L. I. Schiff, Quantum Mechanics, pp. 150-152, lst Ed., McGraw-Hill, New York. (1949). M. Faraday, Phil. Mag., 28, 294 (1846); Phil. Trans. Roy. Soc. London (1846) L. Rosenfeld, Z. Physik, El, 835 (1929). H. A. Kramers, Proc. Acad. Sci., Amsterdam, 33, 959 (1930)° "— R. Serber, Phys. Rev., 41, 489 (1932). T. Carroll, Phys. Rev. 52, 822 (1937). H. F. Hameka, J. Chem. Phys. pp, 2540 (1962). H. F. Hameka, J. Chem. Phys. 31, 2209 (1962). D. F. Hutchenson and H. F. Hameka, J. Mol. Spectry. 18, 141 (1965). “— S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities, Chaps. 3 and“4, Addison Wesley, Reading, Mass. (1959). Izatt, pp. cit., p. 37. C. Kittel, Elementary Statistical Physics, pp. 206-210, John Wiley, New York. (1958) ' E. U. Condon and G. H. Shortley, The Theory pf Atomic Spectra, p. 379, MacMillan, Cambridge, England (1935). K. N. Rao, C. J. Humphreys and D. H. Rank, Wavelength Standards i2 the Infrared, pp. 160-162, 171, Academic Press, New York. (1966). This system, originally used to digitize cloud chamber data, was recognized to be applicable to the reduction of spectroscopic data by Prof. T. H. Edwards. Line position measurements can be reproduced to better than 108 0.03 mm on the original charts and the X-Y coordinates punched out on computer cards. The system is described briefly by T. L. Barnett, Thesis, Michigan State Univ- ersity (1967) and T. H. Edwards, J. Opt. Soc. Am. 52,‘ 1311 (1962). “ 55. Herzberg, pp. cit., pp. 175—185. 56. J. W. Boyd, Thesis, Michigan State University (1963). H. Scheffe, The Anal sis of Variance, Chap. 3, Wiley, New York (1959). T e SCI"fieans that, for a level of significance a, there is a probability of (l-a) that all estimators for the constants will simultaneously be within their SCI of the "true" value of the constants. 57. American Institute pf Ppysics Handbook, pp. 8-6, McGraw- Hill, New York, (1967). "W 58. Herzberg, pp. cit., p. 175. 59. R. Beringer, E. B. Rawson, and A. F. Henry, Phys. Rev. 94, 343 (1954). 60. M. Mizushima, J. T. Cox and W. Gordy, Phys. Rev. 2g, 1034 (1955). 61. R. L. Brown and H. E. Radford, Phys. Rev. £41, 6 (1966). 62. G. A. Mann and C. D. Hause, J. Chem. Phys. 33, 1117 (1960). 63. J. L. Aubel and C. D. Hause, J. Chem. Phys. 44, 2659 (1966). 64. D. Wo Robinson, J. Chem. Phys. pp, 4525 (1967). 65. . D. Buckingham and G. A. Segal, Private communication. A 66. A. F. Stalder and W. H. Eberhardt, Private communication. 67. 'JU m Noble, J. Opt. Soc. Am. 42, 330 (1953). 68. R. G. Brown, Theses, Michigan State University (1957, 1959). 69. D. H. Rank, Private communication. 70. R. Spanbauer, P. E. Fraley and K. N. Rao, Appl. Opt. 2, 1340 (1963). 71. F. A. Jenkins and H. E. White, Fundamentals of Optics, p. 333, 3rd Ed., McGraw-Hill, New York (19577? 72. F. O. L. Wadsworth, Astrophys. 1, 232 (1895); 2, 264 (1895). 73. Jenkins and White, pp. cit., p. 2750 109 74. M. D. Olman, Thesis, Michigan State University (1967). 75. M. A. Efroymson, Mathematical Methods for Di ital Computers, Chap. 17, John Wiley, New York. (1960). APPENDIX I Assume the following phase convention: = i<0IJ Intl> = F(J) y X _ = i = F(S) y X - = i y X wvliere F(X) = £[X(X+l) - XZ(XZ*1)]£ 2%) Matrix Elements of Hé. = = B°[J(J+1)+1] + E s a = = B"{[J(J+1)+}‘] + [L(L+l)-A2]} a 81 = = BTr{[J(J+l)-Z] + [L(L+1)-A2]} a y, = BC = = B"[(J-£)(J+3)]2 E e = = —2 (J+5) s ; = = -2 x [ = = _2 5 61 110 APPENDIX I Assume the following phase convention: = i F(J) y x - = i F(S) - = i y X Vvhere F(X) = £[X(X+l) - XZ(Xzil)]i 2%) Matrix Elements of Hé. = = BG[J(J+1)+&] + E E a = = B“{[J(J+1)+£] + [L(L+l)-A2]} s 81 = = B"{[J(J+l)-Z] + [L(L+1)-A2]} 2 Y1 = BO(J+§) s a 1 = = B"[(J—§)(J+3)]2 s s = = -2 (J+fi) E = = -2 X 1 [(J-§)(J+3)]2 s n = = -2 s 61 111 Note: The phase conventions chosen are not those of VanVleck (15) or Dousmanis, Sanders and Townes (20). They are chosen in such a way as to agree with those of King, Hainer and Cross (34) used in calculating the direction cosine matrix elements and yet yield the energies as derived by VanVleck. The con- stant term LZ-A2 has been included. B) Matrix Elements of A(foS). :: = iA = Y2 = = -£A = 82 A fo§ z = II A f.§ = L = < _%l ( )|z_%> 62 To simplify notation the following definitions are made: 8 5 81 + 82 .< H _< b—‘ + Y2 APPEN INTERMEDIATE NAV DIX II-A E FUNCTIONS FOR THE 2 PI 1’2; V=U STATE OF 14N160 AS A FUNCTION OF J [SngM) 3 A [JIMaS> ' B [JOMOS> [1/7! 1/2;M) =1.000( 1/2IWt1/2> '0o000[ 1’20M13/2> [1/2: 3’2,M) =10000[ 5/2IW11/2> -00024[ 3/2;M,3/2> [1/93 S/QIM) =0.9°9[ 5/2:W;l/2> ‘0.U40[ 5’20M03/2> [1/2: 7’2:M) =00999[ 7/21501/2> ‘0.U54[ 7/23M33/2> [1/2: 9/2.M) =O.998[ 9/20W11/2> '0.069[ 9/29M,3/2> [1/2l11/20M) 30.997111/2fiWI1/2> "0.083[11/2:Mo3/2> [1/?)13/2:M) 30-995113/21W31/2> ‘0.096[13/21Mp3/2> [1/2,15/2,M) =0n994[15/2DWal/2> '00110t15/20M13/2> [1/2117/33M) =0.992(17/2IW11/2> '00123I17/21H33/2> [1/2'19/2;M) =0c991119/20W91/2> '0.137[19/2)M33/2> [1/2171/2;M) =0.9fl9[21/20W:1/2> FO.149[21/2:Mn3/2> [1/9193/2gM) [1/2175/21M) [1/?:?7/2:M) [1/2199/2nM) [1/2131/21M) =0.985[25/ =0.980I29/ [1/2.35/2.M) =0.973t35/ [1/2137/2,M) =o.970[37/ [1/2:39/2,M) [1/2o41/2.M) [1/2:43/2.M3 [1/2:45/2;M) [1/2:47/2.M) [1/2:49/2.M) =0.964[41/ =09956t47/ =0.953[49/ =0.982(27/2:W:1/2> =0.978(31/2:\4a1/2> :0.967[30/2:%a1/2> =0v962143/2IW01/2> =09959C48/21‘411/2> 30.987f23/ZIWp1/2> -0.162(23/2:M.3/2> 2!*nl/2> '0.175(25/29Mn3/2> '0.187(27/23M.3/2> 2vWI1/2> -09199I29/20M03/2> ”0.210(31/2pM13/2> 2:4:1/2> "0.222(33/23M93/2> 2’W01/2> -0.233[35/2aM.3/2> 23Wp1/2> ’0.244[37/29N33/2> '0.254[39/2:Mo3/2> -0.264(41/23M.3/2> '0.274(43/2aMp3/2> ~0.284[45/2oMo3/2> “0.293(47/21Mu3/2> “0.302(49/2ofin3/2> 2:”:1/2) 2!”;1/2’ 2'431/2> 112 113 INTERMEDIATE WAVE FUNCTIONS FOR THE 2 P1 312, [S:J;M) (3/2: [3/2: [3/2: 1/2pM) 3/2gM) S/ZnM) [3/2: 7/25M) [3/2: 9/23M) [3/?ITl/23M) [3/2113/2;M) (3/?;15/2oM) [3/?;17/2,M) [3/2n19/2aM) [3/2.91/2.M1 [3/2a73/21M) [3/?n95/2;M) [3/2ag7/2oM) [3/9179/2.M) [3/2331/2nM) [5/2133/2,M) [3/2135/23M) [3/7157/2,M) [3/2939/2.M) [3/2a41/2:M) [3/7943/2,M) [3/?:45/2oM) [3/2;47/2.M) [3/2p49/2.M) A tJ-M.S> 1/21M13/2> 3/2OW13/2> 5/2'W15/2) =0.999[ 7/2.4.3/2> =0.998t 9/2:w.3/2> =0.9o7t11/2.w.3/2> =0.995[13/2:w.3/2> =0.994[16/2aw.3/2> =0.992[17/2aw.6/2> =0.9°1t19/2-W.S/2> =0.9A9[21/2:W:S/2> =0.9a7[23/2aw.3/2> =0.985t25/2.w.3/2> =0.9R2[27/2:w.3/2> =0.980120/2.w.3/2> 80.978t31/2;w.5/2> =0.975(33/2oq.3/2> =0.973(36/2.w.5/2> =0097UT37/2lfll3/2> =0.967[39/2.%.3/2> =0.964[41/2»w.5/2> =0.962t41/2:w.3/2> =0.959[45/2:M.3/2> =0.956147/2.w.3/2> =0.963{4o/2:w,3/2> =1.000( =1.000T =0.999[ v=0 STATE OF 14N160 AS A FUNCTION OF J B [JJMDS> +0.000T ‘0.024[ *0.040[ 1/2pMa1/2> 3/23M91/2> 5/29M11/2> +0.054! 7/23M31/2> *0.069l 9/23M11/2> *0.083[11/2:M;1/2> *0.096[13/2:Mp1/2> +0.110I15/2oMp1/2> *0.123[17/2:M:1/2> +0.137ll9/2nf‘1all2) +0.149T21/2nMn1/2> +0.16?[23/2aHn1/2> +0.175l25/20Mo1/2> *0.187[27/2:Ma1/2> *0.199[29/2uM.1/2> *00210131/21Mp1/2> +0.222l33/2.M.1l2> +0.233T35/2oMal/2> +0.244T37/23M31/2> *0.254[39/2aM.1/2> +0.264T41/2:M.1/2> *0.274[43/2pMa1/2> +0.284l45/2nM.1/2> +0.293I47/20M01/2> *0.302T49/2oflo1/2> 114 INTERMEDIATE WAVE FUNCTIONS FOR THE 9 PI 1/2, V=1 STATE OF 14N160 AS A FUNCTION OF J [Sp.I;M) : A IJ!M;S> ‘ B [JIMJS> [1/9: 1/2.M) =1.000[ fl/2:w.1/2> ‘0.000I 1/2.M.3/2> [1/2: 3/2.M) =1.000[ 3/2aw.1/2> -n.024[ 3/2:M.3/2> [1/2: 5/2.M) =0.9°9t S/2t*:1/?> ~n.04ot 5/2.M.3/2> [1/9n 7/2,M) =0.999[ 7/2:W:1/2> -U.054I 7/2.M.3/2> [1/9. 9/2.M) =0.998[ 0/2:%.1/2> ~0.068I 9/2.M.3/2> [1/9,11/2.M) =o,997(11/2.q.1/2> '0.082I11/2:M.3/2> [1/2o13/2.M) :0.995113/2nw.1l2> -n.096[13/2.M.3/2> [1/2;15/2,M) =o.994[15/2.w,1/2> -0.109[15/2.M.3/2> [1/2a17/2.M) =0.902[17/2:W-1/2> -0.123£17I2.M.3/2> [1/9p19/2,M3 =0.991[1¢/2:W:1/2> -0.136[19/2.M.3l2> [1/2.?1/2.m> =0.9R9(21/2;%;1/2> -o.149[21/2.M.3/2> I1/2173/2.M) =0.9R7[23/2:w.1/?> -0.161[23/2:M.3/2> [1/?;?5/2.M) =0.985[25/2:W.1/2> ~0.174I25/2.M.3/2> (112.?7/2.M5 =0.983[27/2:Wa1/2> -0.186l27/2.M.5/2> I1/2:Q9/2,M) =o.9aor2o/2:W:1/2> -n.19e[29/2.M.3/2> [1/9:31/2.M3 =0.978[61/2:%a1/2> -0.209[31/2.M.3/2> I1/9133/2.M) =0.975I53/21W11/2> "0.221I33/20Mo3/2> [1/2:35/2.M> =0.973[68/2-W.1/2> '0.232I35l2.M.3/2> [1/2p37/2,M) =0.970[37/2:W.1/2> -n.242[37/2.M.3/2> I1/?.39/2.M3 =0.968t3o/2:w:1/2> 90.253I39/2.M.3l2> I1/2:41/2,M) =o.965[41/2.w.1/2> -o.263[41/2.M,3/2> [1/2.43/2.M) =0.962[43/2:w.1/2> -o.275[43/2.M.3/2> I1/2;45/2.M) =0.959[45/2a%:1/2> -0.263I45/2,M.3/2> [1/2»47/2.M) =0.966[47/2:w.1/2> -0.292I47/2aM.3/2> [1/2,49/2.M3 =o.954[4o/2.w.1/2> -o.301t49/2.M.3/2> 115 INTERMEDIATE WAVE FUNCTIONS FOR THE 2 PI 3/2. v=1 STATE OF [39J1h) 3 A IJDMDS) [3/2: 1/2.M) =1.000I 1/2:%o3/2> [1/2. 3/2.M> =1.000t 3/2:w.3/2> [3/2. 5/2.M3 =0.999[ 5/2:%.3/2> [3/2. 7/2.M) =0.999( 7/2:%.3/2> [3/2. 9/2.M) =o,998[ 9/2oW93/2> I3/2;11/21M) I3/?;IS/Z;M) I3/2115/2,M) I3/2117/2,M) I3/9319/?,M) I3/2t71/2,M3 [5’9’93/21MI [3/2’95/23M) [3/?1?7/23M) I3/2199/23M) l3/?.x1/2.M1 I3/2:33/2,M) I3/?.35/2,M) [3/2957/29M) I3/?:59/2.M) [3/?.41/2,M) [3/2o43/2,M) I3/2,45/2,M) [3/2.47/2,M) I3/2o49/2gM) =0o997I11/2aM33/2> =0o9°5I13/2IW:3/2> 30.994I15/2:W33l2> a09992I17/2fi‘4:3/2> 30:991I19/2:W:3/2> =0»9R9I21/2:%93/2> =0o9R7I23/234o3/2> 30.985I25/2:193/2> 30.933I27/21603/2> =00930I29/2IW33/2> 30.973T31/21193/2> 30.975I33/23W;3/2> 30.973I35/2:4:3/2> z0.970I37/2I4a3/2> =0.968I39/2:fln3/2> 309965I41/QIM;3/2> =09962I45/2:H:5/2> 30.959I45/2i*:3/2> 309956I47/2:W:3/2> =UQ9S4I49/20W03/2> + 14N160 AS A FUNCTION OF J B IJ9M03> +0.000l +0.024I +0.040I 1’28N31/2> 3/23M:1/2> 5’23M31/2> +0.054I 7/2aM.1/2> +0.068I 9’2:M31/2> *0.082I11/2aMo1/2> *0.096I13/2:M91/2> *0.109I15l2nM:1/2> *0.123I17/2aM:1/2> *Uo136I19/2anol/2> *0.149I21/2:Mo1/2> *0.161I23/21M:1/2> *0.174I25/2aM.1/2> *0.186I27/2oH91/2> *0o198I29/29N31/2> *0o209I31/21Ma1/2> *0.221I33/2:Mo1/2> +0.232l35/2.M.1/2> *0o242I37/21M01/2> *0.253I39/2oM,1/2> *0.263I41/2aM:1/2> +0.273I43/29M:1/2> *0.283I45/2:H.1/2> *0.292I47/2:Mn1/2> *Oo301I49/21Mo1/2> 2 PI I9: [1/2: I1/?; II/Z: I1/2) [1/2. 1/2. ling) 3/21M) 5/2.M) 7/2,M) 9’21M) I1/2911/2,M) IT/2913/2gM) IT/2115/21M) I1/2117/2,M) II/2)39/2pMI I1/2:?3/2pM) I1/2:?5/21M) (1/?:?7/2aM) I1/2:?9/2,M) IT/2p31/23M) I1/2’33/29M) I1/2a35/23M) Il/Qa37/2aM) I1/2939/2nM) I1/2t41/23M) I1/2:43/2oM) I1/2145/2gM) I1/?:47/2:M) [T/Zt49/29M) [1/2981/2gM) APPFNDIX INTERMFDIATE s-I I F. ) = A v=0 STATE =1.000[ =1o000I =0.999I 30.999! :0.998[ =0o997I11/23Mal/2> =0.996(13/2:Ha1/2> :09994I15/Zafltl/2> =0.993(17/2:*:1/2> =0.991[19/2.w.1/2> 30.989fi21/2:W.1/2> 30.988I23/2:M:1/2> 309936I25/21M11/2> =0.983[27/2.M,1/2> 30.931I29/2tfl:1/2> =0.979(31/2HM'1/2) 309977I33/28W11/2> =09974I35/23M11/2> =0.972[37/23W:1/2> =0.969(39/2n1nl/2) 30.966I41/20Ho1/2> 30.964I43/2ofial/2> 309961I45/2oW:1/2> 309958I47/29Ma1/2> 30-956I49/2:M:1/2> 30.953I51/2afi;1/2> II-B WAVE FUNCTIONS FOR THE OF (JIMoS> 1/2:W:1/2> 3/21W31/2> 5/23W11/2> 7/2:W:1/2> Q/Z:Wt1/2> 15N160 AS A FUNCTION OF J B IJ:MJS> ’00000[ “00024! 900039: 1’23M13/2> 3/2:M93/2> 5/2:M.3/2> 90.053I 7/2:M:3/2> “0.066I 9’29M:3/2> '0.080I11/2;M:3/2> “0.093(13/2:M.3l2> “0.106I15/2:M.3/2> 90.119I17/29Ma3/2> ”0.132(19/2:M.3/2> "0.145I21/2pM93/2> "0.157I23/20Ma3/2> ’00169I25/2’M33/2> 10.181I27/23Ma3/2> '0.193I29/2oM.3/2> ”0.204(31/21M93/2> 90.21SI33/23M,3/2> “0.226I35/29MJS/2> *0.237I37/2:M:3/2> ”0.247I39/23M13/2> 90.257I41/2:Ms3/2> P0.267I43/2oM.3/2> ”0.276I45/20H33/2> 20.286I47/2:M:3/2> V09295I49/23H13/2> ‘0o303I51/20M:3/2> 11/ INTEQMFDIATE WAVE FUNCTIONS FOR THE 2 PI 3/2. [5: h" M) I3/7p I3/2: Iz/Q: 1/2,M) 3/21M) 5/2gM) IS/Q: 7/2,M) [3/2. 9/2,M) I3/2:11/2oM) I3/2313/2aM) I3/2315/29M) I3/?:17/2,M) [3/9119/2,M) l3/2.91/g,M3 [3/?:73/23M) I1/7375/23M) [3/?:97/2,M) [3/?,79/2,M1 [3/?131/2,M) [3/7.33/2,M) I3/7:15/2:M) I5/2237/2,M) I3/?:39/2;M) I3/2141/2,M) [3/2143/23M) I3/?:45/23M) [3,2,47/2'M, I3/?:49/2.M) [3/2151/Z,MI A [J:M,S> 1/21W33/2> 3/2:W93/2> 5/2:”93/2> =00999I 7/29‘493/2> =Oo998I Q/Z:M:3/2> 30.997I11/23M33/2> 30.996[13/2:M:3/2> 30.994IIO/Ztfit3/Z> 309993I17/ZOW03/2> 2“3.991(10/2:‘4»3/2) “0.989I21/21W93/2> 30.938I23/ZoNoS/2> 30.996I25/2’Wt3/2> 30.983IZ7/2:M03/2> =01981I2Q/21M33/2> 300979I31/2aW33/2> 300977I33/21933/2> 30.974I35/2IW03/2> aI0g972I37/2:VHS/2) =00969I39/29Mp3/2> =Oo966I41/2’W:3/2> =00964I43/20%33/2> a0.961I45/29M93/2> 30.958I47/21Mp3/2> =0.956[49/29H:3/2> 30.953I51/20%33l2> =1.000T =10000I =Oo999I 4. v=0 STATE OF 15N160 AS A FUNCTION OF J B [JOM)S> +0.000I +0.024t +0.039l 1’21Mol/2) 3/29M91/2> 5’21M91/2> +0.053[ 7/2aM.1/2> *0.066I 9/21M91/2> *0o080I11/21M31/2> *Oo093I13/20M91/2> *0.106I15/2:M:1/2> *0.119I17/2oMo1/2> +0.132I19/2.M.1/2> *0.145I21/29Mo1/2> +0.157I23/2oMo1/2> +0.169I25/23N31/2> *0.181I27/2oM31/2> *0.193I29/2:M:1/2> *0o204I31/21N:1/2> *0o215I33/21M91/2> *0.226I35/29M:1/2> +0.237I37/2oMgl/2> +0.247I39/2;M.1/2> *0.257I41/20Mo1/2> *09267I43/20Mgl/2> *0.276I45/2pMo1/2> *0.286I47/2:Mn1/2> ‘09295I49/21M31/2> *Oc303l51/2oM.1/2> 115 INTERMEDIATE WAVE FUNCTIONS FOR THE 2 pl 1/2. V=1 STATE OF 15N160 AS A FUNCTION OF J [SIJIM) I1/2; 1/2.M) I1/?o 3/2,M) [1/2n 5/2;M) Ill?) 7/2pM) I1/?n 9/RaM) I1/?:11/2oM) [1/2th/20M) [1/2115/2,M) [1/?317/21M) [1/9u19/21N) [1/2171/2aM) I1/?:?3/2aM) Il/?:?5/21M) [1/?197/21M) [1/7n?9/2.M) [1/9131/2,M) IT/p033/21M) [1/2135/29M) I1/?o37/2pM) [1/2:39/2.M) [1/?:41/2.M) [1/7943/2,M) [1/?I45/21M) [1/2I47/23M) I1/2p49/2pM) I1/2151/2aM) = A IJDMOS> =10000I 1/21W31/2> =1.000I 3/21W31/2> =0.999[ 5/2:W.1/2> =0.999I 7/2-W11/2> =0.998I Q/Zafln1/2> =0o997I11/211p1/2> =0.996[13/2:W:1/2> =0.994[15/2:W.1/2> =0.993I17/2:W-1/2> =0.991(10/20491/2> =0.9°0[21/2:Mp1/2> =0.988I23/20W:1/2> =O.986I25/21W,1l2> =0.9“4[27/21W-1/2> =0o982I20/2’Wp1/2> =0.979[31/2:%:1/2> =0.977[63/2-W:1/2> 30.974t35/20W11/2> =0.972[37/2:W:1/2> =0.969t39/2.M.1/2> =0.9A7[41/2:M:1/2> =0c964I43/2-Wo1/2> =Oo962I45/Zlflnl/2> =0.959[47/2n%:1/2> =0.956I4°/2!Wpl/2> =0.953I51/2»W:1/2> ' B IJaMpS> “0.000I 1/2oM.3/2> ’0.023I 3/2cM.3/2> '0.038I 5/2:Mp3/2> “0.052I 7/20M’3/2> '0.066I 9/2oM.$/2> ‘0.079I11/2nM;3/2> ‘0.093I13/2:M.3/2> '0.106I15/29M:3/2> -n.118[17/2:M.3/2> '00131I19/25M13/2> '0.144I21/2pM.3/2> '0.156I23/2:Mp3/2> '00168I25/2,M13/2> '0.180I27/2.M.3/2> ~0.191I29/2:M.3/2> ‘0o203I31/20Ma3/2> '0.214I33/2:Mn3/2> ~0.224I35/29M13/2> '0.235I37/2:M;3/2> '0.245I39/2:Ma5/2> -0.255I41/2:M:3/2> “0.265I43/2oM.3/2> '0.275I45/2;M.3/2> '0.284[47/2:Ma3/2> ‘0.293I49/2aM,3/2> ’Oo302I51/2JM13/2> 119 INTERMEDIATE WAVE FUNCTIONS FOR THE 2 PI 3/2. v=1 STATE nF [S.J,M) A TJ,M,S> (3/2. 1/2,M) =1.000[ 1/2aw.3/2> I3/9; 3/2,M) =1.000I 5/23WI5/2> [3/2. 5/2,M) =0.999t 6/2:W:3/2> [3/2. 7/2.M) =o.999[ 7/2:«.3/2> [3/2, 9/2.M) =0.908[ n/2nw.3/2> I3/7111/2;M) [3/2113/2,M) I3/2115/21M) [3/2117/23M) [3/7319/21M) I3/?:?1/2,MI I3/7I73/2aM) [3/2I95/21M) I3/?,?7/23M) [3/7579/23M) [3/9131/2,M) [3/7133/2,M) [3/7035/21M) I3/?:57/23M) I3/2;39/2,M) [3/7:41/2,M) I3/?:43/2aM) I3/2145/2,M) [3/?v47/25M) I3/2949/21M) I3/9:51/2,M) =0.997[11/2:%,$/2> =0.9°6[13/2oW.5/2> =o.9o4r15/2:w.3/2> =o.993r17/2.w.5/2> =0.901[10/2»w.3/2> =0.990t21/2aw.3/2> =009R8I23/20q03/2> =0.986[25/2vw.3/9> =0.984[27/2.w.6/2> =0.9R2[20/2:w.5/2> =0.979(31/2:%:3/2> =0.977t33/2:w.3/2> =0.974[35/2:%,3/2> =0.972[57/2aW.5/2> =0.969I30/29W95/2> =0.967t41/2.w.3/2> =0.964[4x/2:w,5/2> =0.962[48/2:w,3/2> =o,9s9r47/2.w.3/2> =0.956!49/2-w.6/2> =0.953[51/2:w.3/2> 15N160 AS A FUNCTION OF J B [JnMnS> 40,000: +0.023I +0.038I 1’20Mp1/2> 3’21M31/2> 5’21M:1/2> ‘0.052[ 7/2pMpl/2> +0.066I 9/2:M.1/2> +OcU79I11/29M11/2) +0.093IlS/2:Ma1/2> *U.106I15/20M21/2> +0.118I17/2nf‘4al/2) *0.131I19/2pM11/2> +0.144I21/29Mp1/2> *Oo156I23/2:M11/2> +0.168I25/2pMn1/2> *0.180I27/29Mp1/2> +n.191[29/2pM.1/2> *0-203I31/2)M11/2> *0.214I33/2:Mp1/2> *0.224I35/2nM11/2> +0.235I37/2;M.1/2> +0.245I39/23Mn1/2> *O.255I41/21M31/2> *0.265I43/2:M:1/2> *0o275I45/21M01/2> +0.284I47/2pMp1/2> *0.293I49/2oMp1/2> *Oo302I51/29M:1/2> 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 3/2 5/2 7/2 9/2 11/2 13/2 APPENDIX III-A P1 0,0000 1.3325 2,3905 3.4264 4.4417 5.4512 6.4576 7.4621 8,4655 9.4681 10.4701 11.4717 12,4730 13,4741 14,4750 15.4758 16.4764 17,4770 18.4775 19,4779 20.4783 21,4707 22,4790 23,4793 24,4795 25,4790 P2 0.0000 1.6003 2.8576 4.0007 540918 6.1549 120 CALCULATED LINE-STRENGTHS FOR 14N160 BRANCH 01 0,6666 0,2673 0.1725 0.1285 0.1029 0,0862 0,0745 0.0658 0.0592 0.0540 0,0497 0.0463 0,0434 0.0410 0,0389 0,0371 0,0355 0,0342 0.0330 0.0319 0.0310 0.0301 0,0294 0,0281 0.0280 0.0275 02 2.3980 1.5395 1,1303 0.9033 0.7483 0,6381 R1 1.3325 2.3985 3,4264 4,4416 5,4511 6,4575 7,4621 8.4654 9.4680 10.4700 11.4716 12.4728 13,4739 14.4748 15.4755 16.4761 17.4767 16.4771 19,4775 20.4779 21.4763 22,4786 26,4708 24,4791 22.4793 26,4796 R2 1.6003 2,8576 4,0006 5.0917 6.1548 7.2012 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 2112 23/2 25/2 2772 29/2 31/2 3372 35/2 37/2 39/2 41/2 43/2 45/2 4772 49/2 51/2 3/2 5/2 7/2 792012 8,2367 9,2648 10.2875 11.3064 12.3222 13.3357 14,3474 15,3576 16,3666 17,3746 18,3817 19,3881 20.3939 21,3992 22.4040 23.4084 24.4125 25,4162 PH 0.000+000 0.000+000 2.402'003 7.776*003 1.680'002 3.003’002 4.784'002 7.048'002 9.805'002 1.305'001 1.677'001 2.095'001 2.555-001 3.053'001 3.585-001 4.146'001 4.733'001 5.340'001 5.963'001 6.596'001 7.237'001 7.880.001 8.522'001 9.159'001 9.789-001 1.041*000 PL 8.009'004 9.518'004 1.119*003 121 0,5555 0.4916 0.4399 0.3977 0.3625 0,3326 0.3069 0,2846 0.2651 0.2477 0,2323 0.2105 0.2061 0.1948 0.1845 0.1751 0.1666 0.1567 0.1514 0H 000000000 6,3906004 1.0913003 1,507=006 1,904a006 2.2886003 2,657P005 6.0166006 3,6546006 6.6819006 3.992=006 4,2873006 4,5663006 4,8283006 5,074=006 5,6029006 5.5142006 5,7105006 5,8906006 6.0542006 6,2043006 6,338=006 6.4599006 6,5679006 6.6628006 6,7453006 0L 6,442a004 1,100=003 1‘5193006 602666 902647 10.2874 11.6062 12,3220 16,3355 14,3472 15,6573 16,3666 17.6743 18.3814 19,3878 20,6936 21,6988 22,4066 26,4080 24,4120 25,4158 2604192 RH 8.041’004 9.634.004 1.141'003 1'521'006 14497-003 14665-003 14825-003 1.973'003 24110-003 26254-003 2.345.003 2:443'003 24527'003 20598'003 2.657-003 2.703'003 24737-003 24760-003 20772'003 24776-003 26770-003 2.756'003 2.735-003 2,708-003 2.675'003 2.638‘003 RL 10612'004 3.433?004 5.2909004 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 1.284-003 1.444'003 1.593'003 1.857~003 1.9709003 2.069-003 2.155'003 2.227'003 2.285.003 2.331*003 2.364-003 2.386'003 2.3974003 2.3989003 2.3909003 2.373-003 2.350'003 2.320'003 2.284'003 2.24$”003 2.198-003 122 1.9203005 2,306=005 2.6783003 3.037=005 3.3813006 3.7109005 4.0239003 4.3209003 4.6019003 4.8650006 5,111=005 5.3419006 5.555-003 5.7516003 5.932-006 6.0979006 6.247.003 6.382.003 6.5033003 6.6113005 6.7063006 6.789-005 70123'004 8.902'004 10°60'003 1.221'003 1.372-003 19511-003 10667-003 1.752'003 11854‘003 10943'003 2.020'003 2.085.003 2.158-003 2.180-003 2.212-003 2'254'003 20247'003 20252'003 29250'003 2.240'093 2.225-003 2.205-003 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 3/2 5/2 7/2 9/2 11/2 13/2 APPENDIX III-8 Pl 0,0000 1.3325 2,3986 3,4265 4.4418 5.4513 6,4577 7.4623 8.4656 9.4682 10.4702 11.4718 12,4730 13.4740 14.4749 15.4756 16.4762 17.4767 18,4771 19,4775 20,4778 21.4781 22.4784 23.4786 24.4789 25,4791 92 010000 116002 2.8575 4.0005 5,0916 6.1546 123 CALCULATED LINEnSTRENGTHS FOR 15N160 BRANCH 01 0.6666 0,2672 0.1724 0.1284 0.1028 0.0361 0.0743 0.0656 0.0589 0.0557 0.0494 0,0459 0,0430 0.0406 0.0385 0.0567 0.0351 0.0337 0.0325 0.0314 0.0305 0.0296 0.0288 0.0251 0,0275 0.0269 02 2.3981 1.5396 1.1386 0.9038 0,7488 0.6387 RI 1,3326 2,3986 6,4266 4.4419 5.4515 604580 7.4626 8.4660 9,4687 10.4708 11.4724 12.4738 13.4749 14,4759 15.4767 16.4774 17,4779 18.4785 19.4789 20.4793 21.4797 22.4801 23.4804 24.4807 25.4809 26.4812 R2 1,6002 2,8576 4.0006 5.0917 6,1549 7,2012 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 2572 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 3/2 5/2 7/2 7,2009 8,2363 9,2643 10,2870 11.3057 12.3215 13,3349 14,3465 15,3566 16.3656 17,3735 18.3805 19,3868 20.3926 21.3978 22.4025 23.4069 24.4109 25,4146 PH 0.000‘000 0.000‘000 2.236'003 7.2517003 1.570'002 2.811-002 4.489'002 6.629-002 9.244-002 1.234-001 1.590‘001 1.990'001 2.4347001 2.916-001 3.434-001 3.984-001 4.561'001 5.160'001 5.778-001 6.410'001 7.053‘001 7.701'001 8.351'001 9.001'001 9.646'001 1.028+000 PL 7.432'004 9.022'004 1.083'003 124 0,5563 0,4921 0.4407 0.3986 0.3655 0,3337 0.3080 0.2858 0,2662 0,2489 0,2336 0.2198 0.2076 0.1961 0.1858 0.1764 0.1673 0.1599 0,1527 0H 0,0004000 5,992=004 1,414-003 1.785=003 2,149=003 2,4985003 2,835=003 3,159a003 3,470=003 3.767=003 4,050=003 4,318;006 4,57js003 4,809=003 5,032c006 5,240=003 5.434s003 5.612.003 5,776=003 5,927=003 6,063:006 6,187-003 6,299-003 6.3983003 6,4862003 0L 5,794=004 9,896=004 1,368=003 8.2367 9.2648 10.2876 11.3064 12.3223 13,3358 14,3475 15,3577 16,3667 17,3747 18.3819 19.3883 20,3941 21.3994 22.4042 23,4086 24.4127 25,4164 26,4199 RH 7.308-004 8.578-004 9.958'004 11129-003 10254-003 1.368'003 1,469-003 1.5570003 18652'003 1.694-003 10746'003 1.780-003 1,806-003 1.820-003 1.824-003 1.819.003 1.805-003 1,783-003 10755'003 1.722-003 1.683-003 11640-003 1.593-003 14544-003 1,493-003 1.440'003 RL 10376'004 2.870'004 4.332-004 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 1.271'003 1.459'003 1.645'003 1.827’003 2.003‘003 2.172'003 2.332'003 2.482‘003 2.621'003 2.750'003 2.867'003 2.972'003 3.066.003 3.147'003 3.218'003 3.277-003 3.325-003 3.363-003 3.392'003 3.411'003 3.422*003 3.424-003 125 1,729a006 2.0799003 2,416;003 2,7439006 3.057a006 3.359a003 3,647v003 3,922w006 4.183=003 4,429=006 4.6629003 4.8799005 5,083°003 5.272.003 5.447.003 5.608a006 5,7562003 5.8913006 6.0133003 6.1239006 6,2229003 6.3109006 50716-004 6'998'004 81168-004 9.218.004 10014-003 1.095'003 1.163'003 1.219'003 11263-003 10297-003 1.321'003 1.335'003 1.341'003 1.336-003 10329-003 1.314-003 1.296-003 19268-003 10238'003 10206.003 1.170'003 1.136-003 PHHHHHF‘HHHHHHHHHHHHHHPHHHHPPHHHFH DC)00009090000OGODDDDOCDDCOOOOOODD 1i‘311‘14lleI‘lI‘l'Il’II’lflii‘li11lfilfl'0‘l APPENDIX IV IDENTIFICATION N40 372 N40 572 N40 772 N40 972 N40 1172 N40 1372 N40 1572 N40 1772 N40 1972 N40 2172 N40 2372 N40 2572 N40 2772 N40 2972 N40 3172 N40 3372 N40 3572 N40 3772 N40 3972 N40 4172 N40 4372 N40 4572 N40 4772 N40 4972 N40 5172 N40 172 N40 372 N40 572 N40 772 N40 972 N40 1172 N40 1372 N40 1572 FREQUENCY 1871,0000 1867,6000 1864,2000 1860,7000 1857,2000 1853,7000 1850,1000 1846,5000 1842,9000 1839,2000 1835,5000 1831,8000 1828,0000 1824,2000 1820,4000 1816,5000 1812,6000 1808,6000 1804,7000 1800,7000 1796,6000 1792,6000 1788,4000 1784,3000 1780,1000 1881,0000 1884,3000 1887,5000 1890,7000 1893,8000 1896,9000 1900,0000 1903,1000 CALCULATED VALUES FOR YHE INTtGRATEU ABSORPTION COEFFICIENT FOR 14N160 50 0,79 1,37 1,84 2,22 2,48 2,64 2,69 2,66 2,54 2,36 2,14 1,90 1,64 1,39 1,15 0,94 0,75 0,58 0,45 0,34 0,25 0,18 0,13 0,09 0.82 1,44 1.97 2,42 2,77 3,00 3,13 3,14 Hr‘HbéHF4H69H+4H64HruHh¢HraHraHrAHrJHrAHrAHrAprApkaH69H+AH+AH8AH+4H64HréHriwraer I am I! 11 11 I! 13 an I! ll 10 I! a 80.11 II a: 11 13 11 an mm mm 09 I! I: an IN ODOOOCODOOOCODDOQODODOODOCDC)ODDDDDOOODODODOOODOODOOOC’OO N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 1906,1000 1909,1000 1912,0000 1914,9000 1917,8000 1920,7000 1923,5000 1926,2000 1929,0000 1931,7000 1934,3000 1937,0000 1939,6000 1942,1000 1944,6000 1947,1000 1949,6000 1952,0000 1867,2000 1863,6000 1860,1000 1856,5000 1852,8000 1849,2000 1845,5000 1841,7000 1838,0000 1834,2000 1830,3000 1826,4000 1822,5000 1818,6000 1814,6000 1810,6000 1806,6000 1802,5000 1798,4000 1794,3000 1790,2000 1786,0000 1781,7000 1777,5000 1887,6000 1890,9000 1894,1000 1897,3000 1900,5000 1903,6000 1906,7000 1909,7000 1912,7000 1915,7000 1918,7000 1921,5000 3,07 2.91 2,69 2,43 2,15 1,85 1,57 1,30 1,06 0,84 0,66 0,50 0,38 0,28 0,20 0,14 0,10 0,07 0,61 1,03 1,34 1,55 1,69 1,74 1,73 1,67 1,56 1942 1,26 1,09 0.92 0,77 0,62 0,50 0,39 0.30 0,22 0,17 0,12 0,09 0.06 0.04 1,10 1,46 1,73 1.92 2,02 2,05 2,01 1.92 1.78 1.61 1,43 1,23 'IlIl-‘IIJI‘I‘I‘JZI‘I‘ll‘l‘llllll'lli‘l-IJ OODOCDODDOOODOD000C300000000009000OOOODODODODOCOOODODOC3 I‘l-‘IJ HP‘P‘Hrdk‘HIJF‘Hrdk‘HO‘P*Hr‘F‘HIJFAF‘HPJP‘Ht‘r‘Ht‘h‘H!‘P‘Hi‘b¢h¥HFJF‘HFJF‘HFJF‘Hl‘k‘Hr‘P‘H lliii'i-lelllflililllfifllflI N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 5/2 7/2 13/2 19/2- 19/2+ 21/2 23/2. 23/2+ 27/2- 27/2+ 29/29 29/26 31/2- 31/29 3/2 5/2 7/2 9/2 11/2 13/2 15/2- 15/2 15l2+ 17/2' 17/26 19/2- 19/2+ 21/2— 21/2+ 23/2- 23/26 25/2- 25l2+ 27/2. 27/26 29/2- 29/2+ 31/2- 31l2+ 33/Za 33/2+ 35/2. 1924,4000 1927,2000 1930,0000 1932,7000 1935,4000 1938,1000 1940,7000 1943,3000 1945,9000 1948,4000 1950,8000 1953,2000 1987,3000 1984,1000 1974,9000 1966,1000 1966,2000 1963,3000 1960,5000 1960,7000 1955,2000 1955,3000 1952,5000 1952,7000 1950,0000 1950,1000 1995,7000 1995,8000 1996,0000 1996,3000 1996,6000 1997,0000 1997,4000 1997,4000 1997,5000 1997,9000 1998,0000 1998,4000 1998,5000 1999,0000 1999,1000 1999,6000 1999,8000 2000,3000 2000,4000 2001,0000 2001,2000 2001,8000 2002,0000 2002,6000 2002,8000 2003,4000 2003,6000 2004,3000 1,04 0.87 0,70 0,56 0,44 0,34 0,25 0,19 0,14 0,10 0,07 0,05 1.46-003 4,45-003 2.08-002 1.879002 1187'002 4004-002 2109‘002 2.09—002 1.999002 1.99—002 1.84-002 1.84-002 1.66P002 1066-002 4.05-004 6065-004 8,67-004 1.02'003 1,12-003 1.179003 5,87-004 1,17-003 5,87-004 5,70-004 5.70-004 5.36'004 5,36-004 4.909004 4.90‘004 4,36-004 4.374004 3,79-004 3.79-004 3.22-004 3.229004 2968'004 21689004 2.17’004 2.17'004 1.739004 1.739004 1,359004 1-0 180 190 1'0 120 180 180 190 190 190 120 190 1:0 190 190 190 H 3 o 3 F3H+JF*HfJH‘HEJF*HPJ -81 :1 1:88 31 a caocacaocncpocacyo ‘I ‘0 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 N40 QH 0H 0H 0H OH OH OH OH 0H OH OH 0H 0H RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH PL PL pL PL PL 35/2+ 37/2. 37/2+ 39/29 39/2+ 41/29 41/2+ 43/2- 43l2+ 45/2— 45/2+ 47/29 47/2+ 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/29 15/2+ 17/22 17/2+ 19/Zr 19/2+ 21/29 21/2+ 23/Ze 23/2+ 25/2- 25/2+ 27/29 27/2+ 29/2- 29/2+ 31/2- 31/2+ 33/26 33/2+ 35/29 35/2+ 37/25 37/29 39/2. 39/26 41/29 41126 7/2 9/2 11/2- 11/2 13/2- 13/2 129 2004,5000 2005,2000 2005,4000 2006,1000 2006,3000 2007,1000 2007,3000 2008,0000 2008,3000 2009,0000 2009,3000 2010,0000 2010,3000 2000,7000 2004,2000 2007,7000 2011,3000 2015.0000 2018,7000 2022,5000 2026,3000 2026,4000 2030,2000 2030,3000 2034,1000 2034,2000 2038,1000 2038,2000 2042,1000 2042,2000 2046,2000 2046,3000 2050,3000 2050,4000 2054,4000 2054,6000 2058,6000 2058,7000 2062,8000 2063,0000 2067,0000 2067,2000 2071,3000 2071,5000 2075,6000 2075,8000 2079,9000 2080,1000 1743,7000 1739,8000 1735,8000 1735,8000 1731,6000 1731,7000 1135'004 1.035004 1.03fi004 7.71-005 7371-005 5.669005 5.669005 4.089005 4,08-005 2.88‘005 2.889005 2.009005 2.003005 5.242004 6.149004 7.006004 7.666004 8.089004 8.249004 8|14‘004 3.909004 3.909004 3.649004 3.649004 3.31’004 3.319004 2.939004 2.935004 2.54-004 2.549004 2.159004 2’15'004 1'78’004 11783004 1.449004 1.448004 1.149004 1,14-004 8.849005 8.849005 6.722005 6'729005 5.014005 5.019005 3.66-005 3.66’005 2.62-005 2.629005 3.779004 4.023004 2.062004 4112-004 20049004 4,084004 114211’0100-4iilrliQI‘Iiid-Iflfiicl‘lfl rdthPAPaprPtprawsH+APsHPAPIH+4P4H1486H64P6H+APsprfiksprahtprahsp+éPsH+APhHIa DOOOOGDOOOOOOOODDODC3000ODDOOOOODOQDDDDDOOODOOC) 11112011]IJ-‘ilal-I‘I‘lil 130 N40 PL 1572+ 1727,3000 1.969004 N40 PL 15/2 1727,4000 3.929004 N40 PL 15/2+ 1727,4000 1.96-004 N40 PL 1772+ 1723,0000 1.82-004 N40 PL 1772+ 1723,0000 1.826004 N40 PL 19/2- 1718,4000 1.659004 N40 PL 19/2+ 1718,5000 10653004 N40 PL 2172. 1713,8000 1.469004 N40 PL 21/29 1713,9000 1.46-004 N40 PL 23/2- 1709,0000 1.26-004 N40 PL 2372+ 1709,1000 1.266004 N40 PL 25/2» 1704,1000 1106-004 N40 PL 25/2+ 1704,3000 1.069004 N40 PL 2972. 1694,1000 6.989005 N40 PL 2972+ 1694,2000 6,98-005 N40 pL 31/2- 1688,9000 5.492005 N40 PL 3172+ 1689,0000 5,49+005 N40 PL 33/2- 1683,5000 4.22-005 N40 PL 33/2+ 1683,7000 4.226005 N40 PL 3572- 1678,1000 3,18-005 N40 PL 35/2+ 1678,3000 3.188005 N40 0L 372 1756,1000 2.419004 N40 0L 7/2 1755,3000 5.169004 N40 0L 9/2 1754,7000 6.06-004 N40 0L 1172+ 1754,0000 3.33-004 N40 QL 1372» 1753,1000 3,47,004 N40 0L 13/2 1753,2000 6.952004 N40 0L 1372+ 1753,2000 6.479004 N40 0L 1572 1752,2000 6.97-004 N40 0L 17/2 1751,1000 6.758004 N40 0L 19/2: 1749,8000 3.179004 N40 0L 21/2- 1748,5000 23909004 N40 0L 21/2+ 1748,6000 2.90-004 N40 UL 2372- 1747,0000 2.589004 N40 0L 2372+ 1747,2000 2.582004 N40 RL 7/29 1770,2000 90069005 N40 RL 7/2+ 1770,2000 9.06-005 N40 RL 1172! 1775,5000 1.30-004 N40 RL 17/2- 1782,5000 10399004 N40 RL 17/2+ 1782,6000 1.39-004 N40 RL 21/2~ 1786,6000 1.202004 N40 RL 21/29 1786,7000 1.209004 N40 RL 2772— 1791,8000 7.79-005‘ N40 RL 27/24 1791,9000 7.792005 N40 RL 29/2- 1793,3000 6.40-005 N40 RL 2972+ 1793,5000 6.404005 SUBSTATE ...... fUflJMFOfiJNFOfiJNf‘F‘HP‘r‘H4‘P‘HW‘P‘HP‘F‘PF‘F‘HF‘b‘Ht‘H‘HP; APPENDIX VwA G'FACTORS FOR 14N160 J 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 3572 37/2 39/2 41/2 4372 45/2 47/2 49/2 51/2 3/2 5/2 7/2 9/2 11/2 1312 15/2 17/2 19/2 131 V=0 0.0000 0.0230 0.0263 0.0273 0.0277 0.0279 0.0279 0,0278 0,0277 0.0276 0.0274 0,0272 0,0270 0.0267 0.0265 0,0262 0,0259 0,0256 0.0253 0.0250 0,0247 0,0244 0.0241 0.0233 0.0232 0.7770 0.3166 0.1632 0.0935 0.0561 0,0337 0.0192 0.0095 0.0025 VALUES V=1 0,0000 0.0228 0.0260 0.0270 0.0274 0.0276 0.0276 0.0275 0.0274 0.0273 0.0271 0.0209 0.0267 0.0265 0.0262 0.0260 0.0257 0.0254 0.0251 0.0208 0.0245 0.0242 0.0239 0.0236 0.0233 0.0230 0.7772 0.3168 0.1635 0.0938 0.0564 0.0340 0.0195 0.0097 0.0028 21/2 2372 2572 2772 2972 3172 3372 3572 3772 3972 4172 4372 4572 4772 4972 5172 132 v0.0025 90.0063 00,0092 "000119 90,0131 o0,0145 +0.01ss °0.0164 90,0170 °000175 '000179 ~I0,0102 190,0134 ~90.0186‘ 90,0187 90,0187 -0.0023 e0.0060 ”0,0089 90.0111 90.0129 ”0.0142 90.0153 90.01614 90.0168 90.0173 ”0.0177 90.0180 30.0183 90.0184 ”0.0185 ”0.0186 SUBSTATE ...; APPENDIX VaB GPFACTORS FOR 15N160 J 172 372 572 772 972 1172 1372 1572 1772 1972 2172 2372 2572 2772 2972 3172 3372 3572 3772 3972 4172 4372 4572 4772 4972 5172 372 572 772 972 1172 1372 1572 1772 1972 133 0:0 0.0000 0.0221 0.0252 0.0262 0.0266 0,0268 0.0263 0.0267 0.0266 0.0265 0.0204 0.0202 0.0200 0.0258 0.0255 0.0253 0.0251 0.0240 0.0245 0.0243 0.0240 0.0237 0.0230 0.0231 0.0220 0.0226 0,7779 0.3176 0.1643 0.0946 0.0572 0.0343 0.0203 0.0105 0.0030 VALUES V=1 0.0000 0.0228 0.0260 0.0270 0.0274 0.0275 0.0276 0.0275 0.0274 0.0272 0.0271 0.0269 0.0267 0.0264 0.0262 0.0259 0.0257 0.0254 0.0251 0.0248 0.0245 0.0242 0.0239 0.0236 0.0233 0.0230 0.7772 0.3169 0.1635 0.0933 0.0564 0.0340 0.0196 0.0093 0.0028 fURJNFUhJNHUDJNFURJNFURJN’N 2172 2372 2572 2772 2972 3172 3372 3572 3772 3972 4172 4372 4572 4772 4972 5172 134 90,0015 90,0053 90,0082 90.0104 “0.0122 90,0136 90,0147 90,0155 -D,0162 90,0168 =0.0172 90,0175 90,0177 =0.0179 90,0180 90,0181 -0.0022 90.0060 90.0089 90.0111 90,0128 '000142 '030153 ’000161 -0,0168 ”0.0173 90,0177 '0.0180 9000182 -000184 -0,0185 -0.0186 APPENDIX VI The expressions used in the combination difference, frequency and A—splitting fits are as follows: A) Combination differences AnFi(J,V) = [U(J+n)-U(J)] x Boi - [U(J+n)2-U(J)2] x Doi + (-l)i[U(J+n)3-U(J)3] x Hb - [U(J+n)-U(J)]V x ai - [U(J+n)2-U(J)2] v x Bi - (-l)i[U(J+n)3-U(J)3]V x y' , where i = l, 2 refers the the 20% and 203 states respectively, n = l, 2 corresponding to a difference of l, 2 in J respec- tively and U(J) = (J+§)2° B) Frequencies v(J,n,v,s) = 1.0 x AG(1) + (6H,s _ 6L,s) x C10 + (61,5 - 62,5 - 6H,s + 6L,s)v/2 X X + {[U(J+n)-U(J)]61’S - U(J)6H'S + U(J+n)5L’S} x 301 + {[U(J+n)-U(J)]c32’S + U(J+I‘1)6H’S - U(J)6L,S} X B02 135 136 (cont.) -'{[U(J+n)2-U(J)2](J+3) w .5 n (J+§) l-subband Av(J-l;J) = 2{1+U(J—1)[111-2]‘2 + U(J)[101-2]'2}pA + 4{U(J-1)[111-2]'1 + U(J)[101-2]"1}qA -AV(J;J) = -2{2F(J) - U(J)[111-2]'2 - U(JHAm-Zl-ZmA + 4 U(J){[A.1-2]'1 + [101-21‘1}qA -Av(J+l ;J) = -2{l-U(J+l)[>.11-2]"2 + U(J)[Aol-2]'2}PA + 4{U(J+1)[111-2]'1 — U(J)[101-2]'1}qA 2-subband Av(J—l;J) = 2{U(J)[102-2]'2 — U(J-1)[112—2]'2}pA + 4{U(J)[102-2]-1 - U(J-l)[112-2]-1}qA “AV(J7J) = '2 U(J) {[102-2]-2 + [112-21-2}pA -4 U(J){[102-2]-1 + [112-21'1}qA -Av(J+l;J) = 2{U(J)[102-2]-2 - U(J+1)[A.2-2]'2}pA + 4{U(J)[102-2]'1 - U(J+1)[112-21-1}qA 138 HES Av(J-l;J) = 2{F(J) - 0(J-1)[1.2-21"2 - U(J)[Ko1-2]-2}pA - 4{U(J)[AOl-2]‘1 + U(J-1)[112-2]'1}qA -Av(J;J) = -2{F(J) + U(J)[112-2]’2 = U(J)[101—2]"2}pA 4 U(J){[112-2]-2 - [101-21‘1}q A Av(J+l;J) = 2{F(J) U(J+1)[112--2]'2 - U(J)[Ao1-2]-2}p A -4{U(J+1)[x12-2]‘1 + U(J)[10,-21‘1}qA Egg -Av(J-l;J) = -2{F(J) - U(J-1)[111-2]"2 - U(J)[Aoz-2]'2}pA + 4{U(J-1)[111—2]-1 + U(J)[102-2]‘1}qA -Av(J;J) = —2{F(J) + 0(J)[102-2]‘2 - U(J)[All-2]_2}pA + 4 u(J){[All-2]‘1 - [102-21”}qA -Av(J+l;J) = -2{F(J) - U(J+1)[A11-2]'2 = U(J)[A02-2]'2}pA + 4{U(J+1)[111-2]‘1 + U(J)[Aoz-2]_1}qA APPENDIX VII COMPUTER PROGRAMS Many computer programs were written during the course of this worko The major ones are described below with op- erating instructions. A. SHAFT This intricate and very useful program written by Lo E. Bullock is designed to reduce the raw data, including code weights from up to eight separate Hydel measurements of a band to a tabulated output of the average fringe number, weighted average frequency, weighted standard deviation, individual measurements and weights of each line measured in the band° It will also identify these lineso SCAN and CALFIT (written by Mo D. Olman (74)) are used as subroutines. SCAN determines the fringe numbers of the individual lines including calibration lineso Standard calibration frequency decks are input and matched with the observed calibration lines° CALFIT performs a least squares fit of the calibra- tion lines to determine the fringe constants which are then used to obtain frequencies for the observed lines. The frequencies are ordered and a weighted average of identical transitions is performed. All this information is tabulated 139 140 in a convenient output which includes identification of the transitions, if this is known. This prOgram can also be used like a normal SCAN program with the Option of getting punched output of the frequencies, which can later be used in place of the raw Hydel data to obtain the tabulated out- put. The user provides the program with identification decks and a series of tolerances which indicate his maximum uncer— tainty in the frequency (in cm‘l) of any line so that the program is able to recognize separate measurements of the same line. All tolerances and other quantities necessary for operation are preset to typical values which will be used in the event they are omitted on input. STRUCTURE OF DATA DECK I. thion card Col. Variable Field Function 1 NGPS I Indicates number of groups :8 to be averaged. 2 IOP(l) H #0 indicates SCAN desired (see SCAN description for input). 3 IOP(2) I #0 indicates average desired. =2 indicates punch of identifi- cation, average frequency and weight in the identification deck format is desired. 4 IOP(3) H #0 indicates punch frequencies and weights (8/card) is desired from SCAN. 5 IDNT I #0 identification deck(s) is used. =2 identification deck(s) is input. Col. Variable 6 ICAL 7 IDON ll-20 TOLl 21-30 TOL2 31-40 TOL3 Field I II. IDENTIFY data deck 141 Function #0 calibration deck(s) is used. =2 calibration deck(s) is input. =3 causes fringe constants just determined to be used to obtain line frequencies (see below). :1 provides printout of single frequencies in the "group" tab- ulation. =2 omits punching weights as provided in IOP(2)=2. Frequencies within a group which differ by less than TOLl are con- sidered to be separate measurements of one line, and their non-weighted average is formed. TOLl is preset to 0.05. Frequencies in the various groups which differ by less than TOL2 are considered to be measurements of the same line. TOL2 is preset to TOLl. Frequencies which differ by less than TOL3 from input identification fre- quencies are assigned the correspon- ding identification. If two identi- fications within TOL3 are found, an asterisk field is printed. If TOL3 is greater than 100 the asterisk field is suppressed and the same identification may be punched and/or printed for all lines. This section handles both identification and calibration decks and appears if and only if IDNT or ICAL are equal to 2. 1. Order card: This card is used to convert input frequencies from.their value in the order in which they were recorded to their value in the order of the IR. It can be inserted any— where in the identification deck. 142 Col. Variable Field Function 8 IR I Order in which the IR radiation was recorded. 16 IICAL I Order in which the identification or calibration line would have been or was recorded. 75-80 ORDER A "ORDER" specifies an ORDER card. (Note: if the ORDER card does not appear IR and IICAL are assumed to be one.) 2. Ident deck cards: l-8 NAMEl A These two fields contain the 9-16 NAMEZ A identification title that is de- sired to be printed and/or punched beside the corresponding frequency. 20-33 XNU F Frequency of identification or calibration line. These cards are read until a value of XNU=O is encountered. III. SCAN data deck This section appears if and only if IOP(l) #0. A descrip- tion of the SCAN deck is given elsewhere. (The basic structure is: NEW SCAN card, Operator name card, heading cards, calibra- tion constants card (OptionL Hydel cards, and 8- or 9-parameter card.) A non-zero punch in cols. 23—27 of a l-parameter card acts as a switch to either begin or end punch/averaging depen- ding upon whether the switch was on or off before. If punch frequencies are obtained, the fringe constants used are also punched, whenever they are set, and included with the fre- quencies. This is done in a format recognized in the averaging section. The first NGPS groups must end with an 8-parameter card. The last group ends with a 9-parameter card. The 143 punch/averaging switch is off at the start of each group. IV. AVFRQ (averaging) data deck 1. Heading cards: Cols. 1-72 of these cards will be listed on the output. This will continue until END HEAD is found in cols° 73-80. Cols. l-72 of the last card will also ap- pear as a heading for the output of each page of this set of data. If IDNT #0 and the word "IDN HEAD" appears in cols. 73-80, the first 32 cols. of this card are used as a two line column heading over the identification titles. If this card does not appear, the word IDENTIFICATION is used. (Read by 10A8) 2. Group identification and data (appears NGPS times): Cards a,c must appear once and only once for each group. Cards b, d, e, and f may appear as many times as needed. Up to (lOOOO/NGPS+1) data points may appear in each group. a) Column heading £3391 Contains column headings for the tabulated output of individual measurements. Place the first line of heading in cols. 1-8, the second line in cols. 9-16. If non-zero numbers are found in cols. 21-35 and 36-50 they are treated as updated values of the fringe constants A and B respectively. These num- bers are used to convert all succeeding frequencies in this group, and a new set of punch frequencies is given. b) Punched frequency cards: Frequencies and weights punched from SCAN or a previous run may be entered here. The format is 8(4PF8,Rl,X). Frequencies and weights 144 are read from left to right across the card until the first three fields are zero. C) i) If the first field is zero, the card is treated as a fringe constants card. The last value read is used in fringe number calculations. Values may be input; A in cols. 16—19 and 21-25, and B in cols. 35—39 and 40-44. No decimal point is used!! ii) If the first two fields are zero, the card is treated as a code+weight specification card. If this card does appear the codes weights are read; 4, cols. 21-28; 3, cols. 31-38; 2, cols. 41-48; 1, cols. 51-58; blank, cols. 61-68. If this card does not appear the code weights are assigned: 4:1.0, 3:0.25, 2:0.62; l=0.l6; 0:10-20; blank=l.0. The last code weight card is used to assign all code weights for that particular group. Blank card: Card with first 20 columns blank to indicate the end of the punched data. d) Delete cards: DELETE in cols° ll-l6 with frequency to be deleted in cols. 2l-35. e) Change cards: CHANGE in cols. ll-l6 with frequency to be changed in cols. 21-35, new/old value of frequency in cols. 36-50 and weight code in col. 52. f) Punch card: PUNCH in cols. 12-16 causes average frequencies of this particular group, including changes and excluding deletes to be punched out in the normal format of b) above. 145 3. Calibration constants card: Fringe constant A in cols. 21-35, B in cols. 36-50. If this card is blank the last values of fringe constants will be used. V. SEARCH data deck This section appears if ICAL#0 and must be used in con— junction with the averaging section. Its purpose is to match SCAN fringe numbers with the corresponding calibration fre- quencies and finally do a least squares fit to determine the fringe constants. A punch deck of the assigned fringe numbers, frequencies and weights is punched out in the standard CALFIT format. 1. Number gf lines card: This card specifies the number of calibration line fringe numbers input from SCAN; cols. l—lO. The search is carried out twice unless the number of lines identified equals or exceeds the number of lines on this card on the first pass. 2. Initial identification cards: At least two initial identifications of calibration lines must be made and input. This input consists of the identification title exactly as it was read in for the calibration deck, and the approximate fringe number (within one) of the calibration line. The identification is put in cols. 1-16 (A-format) and the fringe number is in cols. 30-39. 3) 21225.2232i A blank card signals the end of initial identification cards. 146 4. Heading cards: These are heading cards for the CALFIT subroutine. Cols. 1-72 of the cards are read and printed until a card with END HEAD in cols. 73—80 is encountered. The last card is repeated at the tOp Of all succeeding pages. VI. New case NEW CASE in cols° 73—80 indicates that a new case be- ginning with the Option card follows. Note that if the fringe constants just determined in section V are to be used for new SCAN data, a new case is called for with ICAL=3. VII. Stop card STOP in cols. 77-80 ends execution of the program. A listing of the program follows. 147 FILEo69 MAIN.5 FILE END FTN.L,X PROGRAM SHAFT C SCAN HYDEL AVERAGE FRFUUENCIES TARULATE 6100 6200 1 O 100 160 FILE. C0040N71710P(3).ILS(5).TOL1.TOL2.TDL3.A,B.LP.IUNT.ICALalDON.JUMP COMMON/27 N COMMON/3/NAME1(2000).NAME2(2000),NU(20007.NMAX commoN/a/ICHLAD(9).IHEAD(9.2).IDN(4) COMMON/5/AVGFREQ(200).AWGT(200).NUM COMMON/97 CCWT(8.5) DIMENSION FRQ(1.10000).w75(1.10000) TYPE INTEGER WTT,wT,wTs READ 100.NGPS,IOP.IDNT,ICAL.IDON.TOL1.TOL2:TOL6.IFDONE Ircxrnnwe .20. SH STOP) STOP IDK(1):8H 0 IDN(2)=8H $ 10~) CALL OVERLAY(2,,2,J,FRO,WTS,NUPS.IDEM) IF(10P(2)) CALL OVERLAY(3..3.J.FRQ,HTS.NGPS.IUEM) IF(ICAL) 16.200 CALL UVERLA)(4. .4..) JUNP:1 ICAL=U IDNT=1 GO TO 14 READ 160. IFHONE IF!!FDONE.EO.8H ) so To 200 IF(JFDONE.EQ.8HEND HEAD) Go T0 200 IF.HTSINGPS.IDEM) DATA TYPE INTEGER NTT.WT.WTS PRINT 9701 READ 7, NAME.IFDONE FOPMAT (2A8,Sex,A8) IFIIFDONheaHNEw SCAN)11.13 IFIIFDONEaBHOLD SCAN)8.9 ¥ 9800 9900 411 410 PRINT 10 IORMAT (81 GO II) 13 TNEN=0 GU TD 1 INFN:1 149 Xt~N0 NAME CARD-ASSUMING MEN SCAN*) READ 5, IHEAD,IFDONE )FQTIVT' :3: I TFCIFDONEa IH=NIP:1 IFIIOP(3)) PUMCH 3.: I CIVITIIVUE fiFQflzNCAL= IH=1LT=IL= WD=1 XFREP=FSEP ASSIGN 360 HEAD BHEND HEAD) 1p2 9600,9900 HEAD IP=IFARDS:IFRQQ:IPUNCH:0 ILS(NAVF)=1 :0.0 0 To N60 IF(ICAL) 364.635 IF(ICAL .E 0. 5) GO To 4001 A:0.0 $ 8:1.0 $ NCAL=1 1F(.NUT.IOP(6)) GU T0 335 . IA=A $ IXA:(A-1A)*l,t5 5 18=B*1.E5 $ XB=d*1.t5 $ PUNCH 70:1 CQMTINUE READ lUU;( A.IXA,IB:1XB XM Q. 3) ICAL=D 104:107 ,5 URU31 IF(XM(NCUORU)) GO TO 104 GO F0 101 D0 201 I=1 ,NCOORD XM(1)=0MT2*XM(I)-THETA*YM(I) IF(1CODE-5) $UOO,SOOU,6000 XFRM:XM XFWNuszM FRNG=XFHNG-1.0 IPD: XM(2) IF(IPUNCH) IPHNCH:XM( GO TO 410 IFIXM(3)) CONTINUE GO TO 411 3) IPUNCH=U IXB=(XB'IB)*1.E5 150 GO TO 101 2000 SUMX=SUMY=SUMYY=SUMYX:D,0 GO TO N60 32 CONTINUE NOFR=O ASSIGN 6205 T0 NIR DO 201: 1:6 SUAY = SUMY + YMII) SUMX = SUMX + XMII) SUMYY = SUMYY + YM = (SUMY-THETAASUMY)/6. + THETAtYM(l) - XMII) IF(A88F(DELX(I)) .GT. 10.0) IBAD = 1 30 CONTIADfiE 00 T0 (101.31),IH 33 IF (.NDT. INFN) ENCODE(4.11,IFR) XFRM PRINT 9201,1HEAD,IFH.NAME IFTTHETA? .UT, 0.0000125) PRINT 6210 IPTIBAD) PRINT 6209 00 T0 101 3000 DDKOO7J=2,MCUOHD.2 [P = IP + 1 XFQEP=XFSEP+1,0 PSEPtIP):XM .Eo. 8H DELETE) GO TO 50 IFIIHEAD(N.2) .EQ. 8H CHANGE) GO TO 55 IFIIHEAD(N.2),FQ.8H PUNCH) 107,108 107 ILTM=ILS(NM1) I\) O‘- 1107 1207 1307 103 100? 71 70 7? 77 78 154 PUNCH 106, (FRQ(NM1,J).NTS(NM1.J).le,ILTM) 60 TO 1001 U0 1207 J21:4 IDP(J)=ICHEAD(J) GO TO 1 100(3):8H IDFNTIF $IDN(4)=8HICATIOV S GO TO 1 CUMTINUE IF (N .GT. NGPS) GO TO 15 C()ALTI NIJE CCDT(N,1)=.016 $ CCWT(N,2 :.062 $ CCWT 80,81 AZERO=1.EBtFRUT(?)+wTT(2)+FROT(3)w,1 AOhEzFRNTI4)+1.E~b*wTT(4)+1,F-bfiFRQTI5) IFIA) 77,70 SLPPE : B/AONE PRINT 79:1L. A,B 00 T0 2 PRINT 79:1Lo AZERO,AONE lXB=(XB°IB)*1.E5 79 FOPMAT(*0FREOUFNCIES BEGINNING NITH NJMBtR*l4* WERE CALCULATED U81 81 83 73 74 76 106 75 5 00 T0 9 IFIFPNTI3))85,84 CCNT(N,1):FROT(6) CCVTIN,2)=FR0T(5) CC»T(N,3)=FROI¢4) CCVTIN,4)=FEQTI3) CCNT 100*/« THE FULLONINC CONSTANTS, A:*F11,5* b:*F12.10) 1009 10 12 2084 3084 710 1762 762 709 711 712 760 761 720 750 WTSIN,ILT)=WTSIN.1LT-1) ILT = ILT - 1 IF (ILTIEQ. 1) GO TO 6 GO TO 5 FRO(N.ILT):FRQT(J) NTQINIILT):NTT(J) GO TO 10 FRQIN:ILT)=FRUT(J) WTS(N:ILT)=WTTIJ) IL = IL + 1 ILT = IL IFIFQQT) GO TO 2 CONTINUE IFIICAL .NE. 0) GO TO 3084 PRINT ?084.(CCAT(N.J),J=1,5) FUQMAT (*UNEIGHT-CODE CORRESPONDENCE*/5X* CUDEth,*1*9X,*2*9X,*6* 19x,t4*,7xtaLANK*/* NEIGHTi5F10,4) CONTINUE ILT=ILT-I FTOI:FR0(N.1) FROIN,IL)=1,E30 ISAME=1 IDQOP=0 ”C 750 J=1.ILT WGT=WTSINIJI IFIFRQIN,J+1)-FRG(N,J) ,GT. TOLl) GO TO 710 FTGTzFQOIN.J+1)+FT0T ISAME:ISAME+1 IDPOP=IDROP+1 00 T0 750 AVF=FT01/ISAME JTT=J-ISAME+1 IF(1PR1NT.LT.50) 00 T0 709 IPRINTzfl IF(.N0T.A) 00 TO 1762 PRINT 76?,ICHEAU,(IHEAD(NaL).L=1:2):A:5:I0L1 GO TO 709 PRINT 76?,ICHEAD.(IHEAD(N,L),L:1,2),AZERU,AUNE:TUL1 FORMAT(1H1,9A6/1H0:2A8/t0 CALIBRATION CUNSTANTS A=tF11,5 1* P=.F12.10/*0 THESE FREQUENCIES ARE NITHINrF7,3a HAVE N08, 0F 2EACH OTHER AVERAGE*/) IFIISAME-l) 71?,711 IFIIDDN.NE.1) 00 T0 720 PRINT 760. (FRO(NoK):NTS(N,K),K:JTT,J) FOPMATI5IF11.4.X.R1)) [PRINT=IPRINT+(JTT-J*4)/5 PRINT 761,AVF FOPMATI1H+.67XF10.4I FRO(N,J-IDROP)=AVF NTS(N.J-IDROP)=NGT ISAME=1 FTOT:FRQ(N.J+1) CONTINUE ILT=ILT~IDRUP 2013 15 13 1013 QC 3? 34 66 1L9 (N) = ILT IL=ILT+1 FROIN.IL>=1,E20 NM1:N I\. z N + 1 GO TO 1001 CONTINUE 00 15 NI=1,NGPS NILS:ILS(NI) DO 15 J=1,NIL9 FR0INI.J)=A+B*FRO(NI:J) Nzfl-T IFIICAL .NE. 0) GO TO 1013 pRINT 261,ICHEAD PRINT ?69, (1003(1):IDN (2),(IHEADIIH11),1H=13N)) PRINT 270,(IUN(3).IDN(4):(IHEAD(IH.2),IH=1,N)) PRINT 271 IPQT:0 CONTINUE IFIA .E0, 0.) A:AZERU IFIB .FQ. 0.) W=AONE NMI : M - 1 00 20 J=1.N IIJI=1 FS=F(1):FRO(1.I(1)) SISTzn, WIT(1):NTS(1.I(1)) 00 34 K=2,N F(K)=FRU(K.I(K)) IFIFIK) .LT. IS) FS=F(K) WIT(K)=NTS(K.I(K)) CONTINUE AVG=AVN=0 ICNT=0 I030 36 K311N IF(F(K)-FS nLE. TOL2) GO TO 35 F(K)=1.E20 NITIK):48 GO TO 36 XCNT:CNT(K,N1T(K)) AVG:AVG+F(K)*XCNT AVN=AVN+XCNI 1(K)=1(K)+1 ICNT=ICNT+1 CONTINUE AVG=AVG/AVW IAVG=AVG 00 38 K=1.N IFIF(K) .GT. 1.E10) GO T0 38 IFIICNT .LE- 1) GO TO 37 XCNT=CNT.1H=1;N)) PAINT 270.(100(3).IDN(4>.IIHEAD(IH.2);IH=1.N)> PRINT 271 IPPI:1 370 CONTINUE FPMG=(AVG-A)/R IFIIPNT) 8250,8300 8250 CALL IIDENTIAVG) 8300 IFIICAL) 2000,2001 2000 NUN:NUN+1 AVGFPEOINUMI=AVG i AWGTCNUM):AVW GU ID 1270 2001 PRINT210.NAME1(LP)INAME2(LP).FRNG,AVG,AVN.SIOT.(F(JIINIT(J),J=1,N) IF(IOP(2).NE.2) GO TO 570 IFIIOON.EU.2) 1280:1290 1280 PUNCH 1210. NAMEI) 240 5 O 51 52 53 1054 1053 1055 54 60 9500 161 210 261 262 269 270 158 PRINT 240.(ILS(J),J=1.N) FORMAT (. NO. OF LINES MEASURED*26X.8(6XI4)) PRINT 262.TOL2 GO TO 60 CONTINUE 00 52 K=1IILT IFIABSIFRO(NM1.K)-A) .GT. TOL) GO TO 52 DO 51 J=K.ILT NTS FORMAT (1X2A8,2X*NUMBER FREQUENCY WGT. DEV.*2X8A10) A 60 70 90 50 159 FOPMAT (1H ) TOPMAT (*+ IDENTIFICATION*) FOPMAT (*+*35X.1H?) FORMAT(*FREQUENCY OFrF10.4* NAS NOT PREStNT T0*A8) FORMAT<2A8.5X.F13,4.7x,F4,2) IONMAI (1018) FMD FUNCTION CNT(IA.IB) COMMON/9/ CCWT(8.5) IFTIB.E0.0) GO TO 3 IF(IR.GT.4) GO TO 4 CNT=CCNT.NU(2000),NMAX COMMON/4/ FNUMI200)pFREQ(200).NT(200)45UMWHTsNODATA,INDATA COMMON/S/AVGFREQ(200).AwGTczon).NUM DIMENSION IDENT1(200).IDENT2(200) TYPE RFAL NU READ 2. NUMLINES SUHNHT=NODATA=INDATA=0.0 L=1 LT=1 50 U‘: P7 31 32 54 91 33 3am 301 An 4. .3 49 50 59 6 C) 6? 64 160 READ 1,IIDENT1.IIDENT2,XFNOM IFIXFNHM,E0,0.0) 00 To 27 IFTL.E0.1) GO TO 6 IFIFNUM(LT-1).LE.XFNUM) Go To 6 FNHM(LTI=FNUM=AVOFREO(LL) WTfL)=ANGT(LL) FRFU(L)=NU(N) QU”WHT=SUMWHT+WT(L) IFTNT(L)) 300.301 NODATA=NOUAIA+1 NUM=NUM-1 0 II=II+1 00 41 K=LL.NUM AVCFWFO(K)=AVGFRFO(K+1) ANCT(K)=AWGT(K+1) SUVX=SUMX+FNUM(L) SUMV=SUMY+FHE0(L) SUWXY=SUMXY+FNUMTL)*FREQ(L) SUMX2=§UMX2+FNUM(L)#FNUM(L) GO TO 80 CONTINNE IL=IL’1 $ IFTIL.LT.2) GO TO 1000 CONTINUE IF!II.LT.2) 00 TO 1000 D:II*SUMX2-SUMX*SUMX A:(SUMY~SUMx?-SUMX*SUMXY)/D B=(II*SUMXY-SUMX*SUMY)/D LL=1 D0 ZUU IT=192 Do 100 1:1,NUM FRO=A+RiAVGFREO(I) X=FRO-NU(LL) IF(ABS(X).LE.TOL3) 76,62 IFTX) 100,100.64 LL=LL+1 $ IF(LL.GT.NMAX) 00 T0 101 $ GO TO 60 76 400 401 51 80 100 101 200 201 550 1000 500 600 1001 99 110 115 495 501 120 161 II=II+1 FRFU(II)=NU FORMAT (110) FORMAT (.2 «15* LINES OUT OF ~15. HAVE SEEN FOUND AND ENTERED*) FORMAT (2F15.4,F15.2) FORMAT(*2A WRONG IDENTIFICATION 0R FRINGt NUMBER HAS BEEN INPUTw) END SURROUTINE CALFIT COMMON/1/IOPI3I.ILSIa),T0L1,T0L2.T0L5.A.B.LP.IDNT.ICAL.100N.JUMP COMMON/4/ FRINGEI200I.FREOI200I,wHTI2ooI.suMNHT.NonAIA.INDAIA DIMENSION coth3I.DATA,IHI1o>.INnex<3>,SIGMAISI,sIGM00I3). lVECTOR(4.4)pIHEAD(2) DATA (IHEAD=8H CONST.8H SLOPE) TYPE DOUBLE COEN,SIGMA.SIGY,VECTOR PRINT 3 FORMAT(*1*) PEADZ.IH$IF(IH(10).EQ.8HLAST FITISTOPIIFIIHI1oI-BHEN0 HEAD>110p115 PRINT 2:IH$GO TO 99 PRINTZ.(IH(II.I=1.9)$NDEL=0 DEVMAX=FLEVEL=VAR=0.0$NOIN=K=NOENT=NOMIN=NOMAX=0 AVGNHT=SUMNHTlNODATA no 120 1:1.16 VECTORCI >=n.0$nATA=1,o DO?20N=1.INDATA 220 792 794 010 600 830 1000 1002 1010 1017 1020 104? 1060 1080 1100 934 1170 1160 1110 1210 1050 905 1240 1310 1311 1313 1514 71 72 1320 1340 1550 1370 1391 1392 1400 1430 1440 1410 1480 162 wT:NHT(N)/AVGHHT$DATA(2)=FRINGE(N)$DATA(5)=FREO(N) 9072012195$VECTORI1:4)=VECTOR(Ia4I+DATAII)*WI$DOZZUJ=113 VECTOR(I;J)=VECTORII:J)*DATA(I)*DATA(J)*NT VECTOR(4,4)=NODATA $PRINT900NODATAtAVGWHTJVECTOR<204)l 1VECTOH(3)4)IVECTOR(212)IVECTOR(203)’VECTUR(3Q3)$NOSTEP=’1 0EFR:VECTOR(4,4)-1.0$00800I:1;3$IF(VECTOH(I,1)) 792,794,810 pRINT795.I%GOT0100 PRINT795.I£SIGMA(I)=1.0$GOT0800 SIOMA(I>=0300TIVECT0R/SIGMAII) SIQNCO(NUIN)=DSURT(VEcTOR(I.I))tSIGY/SIGMA(I) IFIVMIN) 1150,1170.904 PRIVT906$GJT0100 VMIN:VAR$NOMIN=I$GOT01050 IFIVAR-VMIN>1080,1050,1170 I?(VAR-VMAX)1050,1050,1210 VWAX:VAR$NDMAX=I COuTINUEIIFINOIN>903.124U,1310 PRINT907$GOT0100 DQI1T05,SIGY*00T01350 IX=6HENTFRIN0$IF(NOtNT)l511:1311:1313 IxdeRFNOVEU PRINT91.NO§TEP,IX,IHEAD(K) PRINT 70.10EA0IK).FLEVEL.SIGY no 71 J=1.NOIN JK=INOEX(J) pRINT 72.IfiEA0(JK)ICOEN(J),SIGMCO(J) A=COENC1I 6 0=COFN(2) FORMAT (A17,F10.10,F16.10) FLEVEL:VMINtnEFR/VECTOR(5:3)$IF(FLEVEL+090000001I1550.1350.1340 K=NOMINONOENT=0$GUT01391 FLEVEL:VMAXw0EFR/(VECTOR<3,6)-VMAX) IFIFLEVEL=0.0000001I 1380,1370.137n N0ENT=K=NOMAX IFI<>1392.1392.1400 PRINT1395,NUSTEP$GOT0100 VK=1.U/VECTOHIK.K>0001410I:1.3$IF=-VECTOR(I.KIwVK 10429105091060 1520 1.560 1331 1580 1630 1610 1660 1624 1620 100 1 2 60 65 70 90 91 795 795 906 907 1004 1019 1044 1395 1506 9000 9001 9050 1? 75 FQPMAT 163 PO 1520 J3133 IFIJ.NE,K) VECTOR(K.J):vECT0R(K,J)tVK VECTORIK,KI=VK¢GOT01000 PRINT 79,NOSTEP CONTINUE PRINT1506.VECTOR(1:1),VECTOR(2o2)$VFIT=0t$DATA=lI$001600N=1,INDATA NTszTIN)N0ATAI2)=FHINGE (*USOUARE Xotllw NEGATIVE. SO L0N0*12v STEPS.) FOQWAT FORMAT FORMAT FORMAT FOWMAT FTHLWAT FORMAT I*0K=0 STEP*12*, SO LONGt) FORMAT(*OOIAGONAL ELEMENTS*5X*CONST*F9.4/23X*FRINOE*F8.4/*1*10X*RE 180LTS*/*0 RUN FRINGE FRFQ OBS FREQ CALC OBS-CALC wHTt/I FORMAT (3F15.27XA8) FORwAT <*+OELETING LINE NO,*14) FORMAT II4.F10.4,2F11.4.F9.4,F6,2) END 164 B. DIFF This program reads and stores punch output from SHAFT and obtains the A-doublet splittings, and the weighted average of all possible rotational combination differences, vibrational differences and spin-orbit differences. Average A-doublet frequencies are calculated and punched. STRUCTURE OF DATA DECK I. Frequencies Up to 600 lines may be input. Eel; Field Variable l I Upper vibrational state of line. 9 R Branch of the line (P, Q, and R). 10 R Subband (l, 2, H, L). 12-13 I Lower state J value times 2. 16 R +/— indicating A-doublet component. 20-33 F Line frequency. 41-44 F Weight of line. 73-80 A "END DATA" signals end of data. II. Options 1. EBEEE.EE£§L PUNCH in cols. 76-80 indicates that punch output of difference is desired for input to fitting programs. 2. Heading cards: Cols. 1-72 are printed until END HEAD is encountered in cols. 73-80. The last card is-printed at the tOp of each page. 165 3. Any of the following may appear: a) RTCOMDIF in cols. 73-80 indicates that rotational combination differences are desired. In the first 8 cols. of this card a tolerance may be read, equal to 0.001 times the integer number appearing. This is used to print a flag if two or more differences are averaged which differ by more than this number. bl VIBRADIF in cols. 73-80 indicates that Vibrational differences are desired. EL SPORDIF1,2 in cols. 73-80 indicate that spin-orbit differences are desired, for the ground and excited vibrational states respectively. d) END CALC in cols. 73—80 terminates execution. (Note: If A—doublets are present in the input data, a punch output of the average frequencies is automatically given in the frequency input format.) A listing of the program follows. 165 3. Any pf the following may appear: EL RTCOMDIF in cols. 73—80 indicates that rotational combination differences are desired. In the first 8 cols. of this card a tolerance may be read, equal to 0.001 times the integer number appearing. This is used to print a flag if two or more differences are averaged which differ by more than this number. EL VIBRADIF in cols. 73-80 indicates that vibrational differences are desired. 21 SPORDIF1,2 in cols. 73—80 indicate that spin-orbit differences are desired, for the ground and excited vibrational states respectively. d) END CALC in cols. 73—80 terminates execution. (Note: If A-doublets are present in the input data, a punch output of the average frequencies is automatically given in the frequency input format.) A listing of the program follows. 166 PROGRAH “IFF COMMON/llNU(GDn),NGT(600).JU(600),JL(600),VU(600):SU(600)nSL(600): 1JUHP.N.DSOUIFF(1WO.1).SODIFF(100.5):DNT(100:1):WT(100,3) COMMON/2l LAMUA(SOO):ISUR(600) COMMON/SI i“'CUDE(:‘;). IPUN COMMON/4/ TOL DIMENSION ICUDF(10) TYPE REAL MU TYPE INTEGER VU,SU.SL,RRANCH:5TP M31 NLINES=NT0TAL=0 1 READ 2,VH(N).HRAACH.ISHB(N1,JLd.rAMDA(N),NU(N).WGT(N),STP IFtsTP,EQ.nHENn KATA) GO In 20 JLN=(JLN+1)/? IFCBRAMCH'1R0)3.4.5 3 JUIN)=JLN" GO TO 6 4 JU(N)=JLW GO TO 6 6 JUCN)=JLN+1 6 JLIN)=JL4 IFIISUHIN)-2l 8.9111 8 SUKN)=SL(N)=1 ¢ 80 T0 7 9 SUIN):SL(N)=2 ¢ 50 TO 7 11 IFIISUR(N).EU.1RH) 12.13 19 SL(N)=1 % SU(N)=? I GO TO 7 12 SLIN)=? $ SUIN3=1 7 N=N+1 GO TO 1 2a N=M-1 DO 10 LL=1:N lF‘LAMUA(LL).NF.1R ) 15:10 15 CALL LAMDAWIF Go To 95 in CONTINUE GO TO 100 95 pRINT 50 PRINT 51 DO 18 1:1,,“ BRANCH=JU(I)*JL(T)+40 JLOWER=2*JL(I)'1 PRINT 300p VU(I),BRANCH:ISUB(1)pJLOWER,LAMDA(I):NU(1):WGT(I) PUNCH 301: VU(I),BRANCH:ISUB‘1)1JLONER:LAMDA(I):NU(I)ANGT(I) NLINEszNLINES+1 NTUTAL=NTOTAL+1 . IFCNLINES.GE.5n) 17:18 17 PRINT 53 PRINT 51 NLINES=0 1q CONTINUE pRINT 549 N 100 JUMP=0 IPUN=0 ASSIGN 75 70 N60 -q—‘wfl—fl 70 100” 7: an 96 20” 201 10? 103 104 105 105 107 103 109 11a 2 5m 51 53 54 101 15“ 300 301 16} READ 1n1. ICDUE IF‘ICOUE(1D).E0.9H PUNEH) GU ID 1000 GO T0 N60 IPUN=1 so To 70 IF!ICODEI1h)’8HEAD CALC) 6n.110 IFCICOUE(1n) .FQ. RHEND HEAD) 30 T0 200 PRINT 150: (ICODE(I).I=1,9) GO TO 70 ASSIGN 102 TD NBC NO 201 181,9 NCODE(I)=ICOHF(I) GO TO 90 IF(ICODEClh)-UHRTCOMDIF)104.103 TOL=,UU1*ICOUE(1) CALL RTCOMDIF GO TO 100 IF(1C0hE(1n)-UHSFORDIF1)106.105 TOL=.001* ICUDF(1) CALL SPORDIF1 GO TO 100 IFCICUDE(1n)-8HVIBRADIF)1UR.107 CALL VIBRADIF GO TO 100 IF!ICOUE(1n)-UHSPORDIF2)110,109 JUMP=1 CALL SPORDIF7 GO TO 100 CONTINUE FORMAT (11:7X17R19X112:2Y’R136x’F1304D7XIF402129X1A8) FORMATttiTHE FOLLOWING FREQUENCIES ARE THE AVERAGE LAMDA DOUBLFT F 1REOUENGIES¢) FORMAT(///w v LIVE FREQUENCY NGT*) FORMAT (*1*) FORMAT (tOAFTER AVERAGING. IHth ARE*IS* FREQUENCIES*I*5*) FORMAT (10A8) FORMAT (9A8) FORMAT‘4X!11*"n*:7x32R193Xp129*/2*:1x39104XQF10.404XIF1002) FORMAT(11t-0t5X,2H1,X,12*/?*R1p3XoF13.4:7X:F4o2) END SUBRQUTINE LAMDAFIF C CALCULATES THE LAMBEA SPLITTINGS AND THE AVERAGE FREQUENCIES T'“T “WW F'j COMMON/ilNU(600).HGT(600)pJUC600):JL(6OD):VU(600)oSUCéOO).SL(6DO)o 1JUMPnNaUSODIFFfln0p1)aSOnIFF(100p3)oDNT(100:1)oNTC10013) COMMON/Z/ LAMDA(600)JISUQ(600) COMMON/3/ NCODE(9)9 IPUN TYPE INTEGER VU:SU:SL:RRANCH TYPE REAL NU PRINT 60 NTQTALflNLINES=n $ NMAX3N PRINT 51 Do 50 1:11“ 3131*1 168 no 50 J=II.N Trcvucl).NE.VUTJT) 00 T0 50 3 TFTJUTT).NE.JU¢JT.UR.JLTT).NE.JL 00 T0 50 I IFISU(I).NE.SU(J).OR.SL(I).NE.SL(J)) so To 50 I IF(LAMDA(I).E0.1Q~.0R.LAHDA(I).EQ.TR+) 100,50 100 TFTLAMNATJT.E0.1R—.0R.LAN0A=vuch1> JU=SUTL+1> m SL(L)=SL(L+1) NUTLT=NUTL+1> 30 weTcL>=wGTTL+T> JLONER:2oJL 52.50 52 PRINT 53 PRINT 51 NLINES=0 CONTINUE PRINT 54. NMAX.NTOTAL RETURN 51 FORMATtll/o v LINE FREQUENCY' DIFF.!gX'HT.*) 53 FORMAT (01¢) 54 FORMAT (tOFROM A TOTAL or .15: FREQUENCIES. A TOTAL or 015/: LAMD 1A DOUBLETS HERE rou~no/*s«) 55 FORMAT(15*-O*.SX.291.3X.IZ.¢/2*.F15.4.F10.4.F10o2) 50 FORMAT (.1TABULATED BELON ARE THE AVERAGE LAMDA DOUBLET FREQUENCIE isal. AND THE DOUBLET SEPARATIONt) 355 FORMAT(!5¢a0*,2X.291.2X.12.*/2t:2X.F15.4-F10,4n5x.F10.2) END 5 :3 SUBROUTINE RTCOMDIF c CALCULATES THE ROTATIONAL CQMRTNATION DIFFERENCES COHMON/i/NUCéon).HGTCéOO).JU(600).JL(600>.VU(600)eSU(600)oSL(6DD). 1JUMP.N.DSODIFF¢1OOTI)'SODIFF(100a3! COMMON/Zl LAHDA(600).ISUB(600) COMMON/SI NCODE(9). IPUN COMMON/4/ TOL DIMENSION DcDIFF¢150.2.1).CDTFF4150.2.3).DuTt150.2.1).NT1150.2.3) DIMENSION DTTEST¢150.2.1).TTEST1150.2,3) TYRE INTEGER v.s.vu.su.sL TYaE REAL Nu TNeo 2000 21 23 24 25 26 27 35 36 37 38 39 169 BB 2000 14'10150 DO 2000 IBI1o2 DO 2000 1C31N.3 ITEST(!AUIBaIC)31R PRINT 53 PRINT 51 DO 50 1:1»N IFILAMDAtli.NE.10*.AND.LAMDA(I).NE.;R ) GO TO 50 1191*1 DO 50 JSlInN IFCLAHDAIJ)éNE.1R*oAND.LAMDA(J).NE.$R ) 30 T0 50 IF‘SU‘!)9NEOSU‘J)oORQSL‘!)9NEQSL‘J)’ GO TO 50 1F¢VU(X).NE,VU(J)) GO TO 50 IF‘JU(!).NEqJU(J)) GO TO 35 V30 S=SL(I) IFQJL(I).EQQJL(J)*1)21122 K31 CD!NU(J)3NU(!) NAT:2.NGT-NU(J) V=VU(J) JJnJUIJ) S:SU(I) INDEX=(K-1)fi100+JJ HAY:2*NGT(!)*NGT(J)/(NGT(I)+NGT(J)) IFIUT(INDEX.S.V)I42.41 VDIFF(INDEX)S:V)3VD UTtINDEXAS.V)=HAT GO TO 50 VDIFF(INDEX,S.V)I(VDIFF(INDEX:SAV)tNT(INDEX:S.V)+VD*WAT)/(HT(INDEX 1.8.V)*HAT) NT!INDEX.S.V)=NT(INDEX.S.VI+NAT CONTINUE PR!NT 51 NLINES=0 NT0TAL=0 ASSIGN 60 TO NGO DO 60 8:102 Do an v=1.3 D0 60 K=1I2 DO 60 JJ=1.50 INDEX=(K-1)*100+JJ C 172 IF(VDIFF(INDEX.5.V).E0.0.OI GU T0 60 JLOHERaZtJJwi PRINT 55.5.V1K.JL0WER:VDIFF(INDEX.S.V),NT(INDEX.S.V) IF(.NOT,IPuN) GO TO 107 PUNCH 355,5,V,K,JLONER.VOIFF(INDEX,S.V).HT(INDEX.S.V) GO TO 102 60 CONTINUE ASSIGN 100 TO NGO DO 100 K31,3 DO 100 3:102 D0 100 1:10N IFISU(I).NE,SL(II.OR,SU(I).NE.S) 100.5 6 IFCVU(I).NE.K) 100910 10 IFIJU(I).NE.JL(I)) 100.15 15 JLONER=2*JL(I)n1 V=VU(I) PRINT 55.8.V0K. JLONER.NU(I),WGT(1) IF(.NOT.IPUN) GO TO 102 PUNCH 355.8.V,K,JLONER.Nu(I).war(1) GO TO 102 100 CONTINUE GO TO 105 10? NLINES=NLINES+1 NTDTAL=NTOTAL+1 IFINLINES.GE.50) 52,101 52 PRINT 53 NLINES=0 PRINT 150.NCOUE PRINT 51 101 GO TO N60 105 PRINT 54DNINT0TAL 51 FORMAT (///1OXtSUB*4X*V1Q*3X*UELTA*6X*Jt7X*VIB'7Xin.t/9X*STATE* 12X‘STATE*ZOX*OIFF.*/l/) 53 FORMAT («1.) 54 FORMAT (*0 FROM +130 IMPUI FREQUENCIES A TOTAL 0F *13/* VIBRATIONA 1L DIFFERENCES WERE FOUNDt/05t) 59 FORMAT (* $10X91116X011:5X911'6X1129*I?*92X3 F9.404X:F492) 150 FURNAT (OAR) 355 FORMAT(4I5,*/2¢7x.F10.4.F10.2) ENn SURROUTINE SPORUIFl CALCULATES TH? SPIN-ORBIT DIFFERENCES FOR THE V=0 STATE COMMON/i/NUCOUO).NGT(600).JU(600).JLC600)pVU(600);SU(600):SL(600)a 1JUMPANoDSODIFF(10001):SODIFF(100,3IADNT(10001),wT(100,3) COMMON/ZI LAMUA(600):ISUR(600) COMMON/SI NCODE(0)o IPUN COMMON/4/ TOL DIMENSION DITESTC10091’9 ITE3T(100.3) TYPE INTEGER V.S:VU.SU.SL TYPE REAL NU INflo DO 2000 IA=10100 DO 2000 IB=IN,3 ‘2000 35 40 41 42 155 40 45 En 100" 52 173 ITEST(IA.IR)=1R PRINT 53 PRINT 61 DO SO 1:1.N IFILAMOAII).NE.1R0,AND.LAMOA(1).NE.1R ) GO TO 50 1131*1 DO 5n J=IIDN IFILAMOAIJ).NE.1Rt.AND.LAMOA(J).NE.1R I GO TO 50 IFIJU(I).NE.JU(JI.OR.JL(I).NE.JL.NE.1R*.AND.LAM0A(l).NE.1R ) GO TO 50 II=I*1 DO SO J=II,N IFILAMOAIJ).Nb.1R*.AND.LAMOA(J).NE.1R ) GO TO 50 IFISU(I).EO.SU(JI.OR.SL(I).EJ.SL(J).OR.SU+SOD*NAT)/(NET(JJ.V)+NAT> WET(JJ,V)=NET(JJ,VI+NAT CONTINUE PRINT 51 NLINES=0 NTOTAL=U DO 6” V3213 DO 60 JJalgSn IFISODIFF(JJIVI.EU.O.0) GO TO 60 JM=2tJJ'1 IFIsODIFF(JJAVI.LT.0.0> 56,57 56 57 10° 59 51 53 54 59 7a 15n 355 179 FRINT 75) VitJM r30 T0 1 - ”0? pRINT 95 r - 9 /) JM Sf' ;SféSOT.IPUN) n6 T;D:SZ(JJ'V)' WEI'JJ V) ' N. 355,V’JM Sr. ‘ ’ flL}NES=NL1~Es+; _DIFF(JJ.vx,dtT(JJ.V) gggTAL=NTOTAL+f NLINES.G MW v PRINT 53 "E°90) 52’60 SLINFS=0 RINT 15fi n pRINT 51 ’!CDUF CONTINUE PRINT 54:N.NT0TAL I ‘ ' - F E R E N ' .- EORMAT (*1.) ORmAT (*0 FR" p U M .13. Input FREQUENFIFS A TOT 3 , 'AL 0F tlilt FORMAT (* ‘ tlux,l1;7X.I?:*/Q*:6X:Fb 4 1 . , 0X:F4.2) SPIN URBI 1T DIFFFRfiNF“‘ _ _____ th F0” T ' " HE v-2 AND V=$tifi STATFS L m NERF FOUND: /*5*) I E EORMAT (OAR) ”ORMAT( ‘ "‘ ENG .215.*/:t7!.F10.4.10v Flo P a .. .,) 176 . ROTCONS ALLFIT LAMCON u STEPFIT *IJDZIUO Programs in sections C, D, and E use subroutine STEPFIT (Section F) which is a least squares routine written by M. A. Efroymson (75). ROTCONS fits rotational combination differ- ences, ALLFIT fits frequencies and LAMCON fits A—doublet splittings. All three have essentially the same input and thus a general description follows. STRUCTURE OF DATA DECKS I. Constants cards CONSTANT in cols. 73-80 indicates that the following cards have initial or fixed values of the constants. 1. Heading cards: Cols. 1—72 are read and printed until END HEAD in cols. 73—80 is encountered. 2. Values of the constants: Read in cols. 1—20 in the following orders: ROTCONS: 301,302: D01[Doer01[Hoztalraerlrfizrverzr H6,y'. ALLFIT: AG(1),H5,y'I10,X,B01,B02,D01,D02,a1,a2,sl,32, Heeroererzo LAMCON: pA,qA. II. Data cards NEW DATA in cols. 73-80 indicates that the following cards contain information to be fit. The formats are as follows: 177 Cols. Field Variable l. ROTCONS l—S I Substate of difference. 6-10 I Vibration level of difference. 11-15 I AJ 16-21 I 2J 25-36 F Combination difference. 41-46 F Weight. 2. ALLFIT l I Upper vibrational state. 9 R Branch (P, Q, or R). 10 R Subbranch (l, 2, H, L). 12-13 I 2J 20-33 F Frequency 41—44 F Weight 3. LAMCON 10 R Branch (P, Q, or R). 11 R Subbranch (l, 2, H, L) l4-15 I 2J 34-49 F A-doublet splitting 50—59 F Weight "END DATA" in cols. 73-80 signals the end of data. III. Information card Col. Field Function 1-5 I #0 indicates statistical infor- mation from STEPFIT is desired. Col. 6-10 20-29 30-39 40—49 50-59 70-72 73-80 Field IV. Option card 178 Function Number of data points to be deleted if subsequent fits warrant it. If the weighted observed minus predicted value is larger than this, the line is deleted and the fit is repeated. The largest deviation is deleted first. If the value of the diagonal ele- ment of the inverse matrix is less than this number, that variable is not included in the fit. Value of the minimum change in the value of a variable before it will be entered. Preset to 10's. Value of the minimum change in the value of a variable before it will be removed. #0 indicates a punch output of the fit is desired. Ident field for the molecule. This card controls which variables will be entered in the fit. given in I above. The order of the variables for each program is as Starting from column one, a non-zero punch in the column corresponding to a particular variable will cause it to be entered in the fit° V. Heading cards These cards are read and printed until END HEAD is encountered in cols. 179 VI. Control 2339 This card is read and depending upon the content of cols. 73-80, control is returned to the appropriate section: CONSTANT + Section I NEW DATA + Section II blank + Section IV (Option card data should appear) LAST FIT + Ends execution The listings of ROTCONS, ALLFIT, LAMCON and STEPFIT follow. 1000 100 110 120 130 150 160 200 210 230 300 350 360 1200 180 C, ROTCONS PROGRAM ROTCONS COMMON/1/NODATA,NOVMI.AVEWHT.STDY,N05TEP.N.NTN.FREGPRD.YPRED.DEV. 1DATA(20:5UO) . COMMON/ZIFOBS(500)aFCALC(500).NT(500).NK(17).INFO.INDATA.NDELMAX.X lDEVHAX.N1(25).MOL.CON(17.500).IH(10)aSS(DOO).VV(500).KK(500).JJ(50 20).NUMCON.ISTATE COMMON/S/ NOVAR.JUMP.CONST(20).EFIN.EFUUT COMMON/5i TOL COMMON/IOI IPUNCH COMMON/Cl NAME(30) DATAcNAME=3HBo1.3HBO2,3H001,3H002,3HH01.5HH02.6HALPHA1.6HALPHA2, 15HBETA1.SHBETA2.6HGAMMA1.6HGAMMA2.3HH02,6HGAMMA2) EXTERNAL RDTCONSl.ROTCONSZ.ROTCONS3 TYPE INTEGER SS.VV TYPE REAL J U(J.P)=(J¢P+.5)**2 F(J)=(J*.5)**2 NUMCON=14 $ ISTATE=0 JUMP=0 READ 50.1H IF(IH(10).EQ.8HLAST FIT) 900.110 IF(IH(10),EQ.8HEND DATA) 365.120 IF(1H(10).EQ.8HCONSTANT> 150.130 IF(IH(10),EQ.8HNEW DATA)300.900 JUMP=1 READ SUaIH PRINT 50.!IHKI).I=1.9) IF(IH(10),EQ.8HEND HEAD) 200.160 PRINT 53 J1=1 READ 220.CONST(J1).IH(10) 1FtlH<10),NE.8H ) 100,230 PRINT 240.NAME(J1).CONST(J1) J19J1*1 GO TO 210 M=1 READ 355. SStM).VV(M),KK(M).JJ(M),FOBS(M).WT(M).1H(10) IF¢IH(10).NE.8H ) 100.360 INDATA=M JaJJKM3/2. P=KK(M) _ GO TO (1200.1300) SS(M) 'CON(1.M)=U(J.P)~F(J) CON(2.H)80. CON(3.M)=-(U(J.P)**2vF(J)ct2) CON‘4.M)=0. CON(5.M)=U(J.P)**3~F(J)**3 CON(6;M’=0. CON(7.M)a-CON(1.M)*VV(M) CON‘BgM)‘00 ‘MCON(9.M)SCON(3.M)*VV(M) CPN(109N,30’ 1300 1400 380 385 390 365 40 20 45 25 900 50 51 53 54 220 240 355 181 C0N(11.M)=-CON(5.M)*VV(M) CON(12.M>=0. CON(13.M)::CON(5.M) CON(14,M)=-CON(11.M) GO TO 1400 CON(1.M)=0. CONCZ:M)=U(J.P)2F(J) CON(3.M)=0. CON(4.M)=-(U(J.P)**2-F(J)t*2) CON(5.M)=0. CON(6.M)=U(J.P)**S9F(J)**3 CON(7.M)=0. CON(31M)=?C0N(21M)*VV(M) CON(9.M)=0. CON(10.N)=CON(4,M)*VV(M) CON(11.M)=0. CON(12.M)=-CON¢6.M)tVV EXTERNAL FITALL1.FITALL2.FITALL3 TYPE INTEGER BRANCH.VV.SS TYPE REAL J.NU.K U(J.K)=(J+K*.5)t*2 F(J)=(J*.5)**2 JUMP=0 $ NUMCON=17 S lSTATE=0 READ 50a IH IF(IH(10),E0.8HLAST FIT) 900.110 IF(1H(10).E0.8HEND DATA) 365.120 IF(1H(10).EQ.8HCONSTANTJ 150.130 IF(1H(10).EO.8HNEN DATA) 300.900 JUMP=1 READ 50.1H FRINT 500 (IH(I)DI=109) IF(IH(10),E0.8HEND HEAD) 200.160 PRINT 53 J1=1 READ 220. CONST(J1).IH(10) IFtIHClO).NE.8H ) GO TO 100 IF¢CONSTtJ1).ED.0.0) GO TO 230 PRINT 240, NAME(J1).CONST(J1) J1=J1*1 GO TO 210 N=1 READ 355.VV(N).BRANCH,SS(N).JJ(N).FOBS(N),NT(N).IH(10) IFtIH<10).NE.8H ) GO TO 100 INDATA=N KK(N)=BRANCH-1RO K=KK(N) IF(SS(N).EO.1RL)SS(N)=4 IF(SS(N).EO.1RH)SS(N)=3 J=JJ(N)/2, GO TO (410.420.430a440) 35(N) C0N‘1QN’3IV1(VV=-(U(J.K)-.5)~VV GO TO 450 CON<1¢N)RIV1(VV(N)) CON‘4ON05'13 CON(5:N)=VV(N)/2. CON(6.N)=U(J.K) 450 380 385 390 365 20 25 900 45 so 220 240 355 184 CON(7.N)=- F(J) CON(8.N)=-(U(J.K)**2) CON(9.N)=F(J)*t2 CON(10.N)=-(U(J.K)+.5)*VV(N) CON(11.N)=-VV(N)/2. CON(12,N)=-(U(J.K)*t2+,5):VV(N) CON(13,N)=—VV(N)/2. CON<14.N)=U(J.K)'*3 CON<15,N)=-(F(J)**3) C0N(16.N>=a(U(J.K)tt3).vV(N) CON(17.N)=0. CON(2.N)=CON(15.N)~CON(14.N) CON(3.N)=-CON(16.N) CONTINUE FCALC(N)=0. IF(JUMP) 380.390 00 385 LL:1.NUMCON FCALC(N)=FCALC(N)+CONST(LL)*CON(LL.N) N=N+1 GO TO 310 READ 40. INFO,NDELMAX,XDEVMAX.TOL,EFIN.EEOUT.IPUNCH.MOL READ 45. (NK(II.I=1.17).IH(10) IFIIH(10),NE.8H ) GO TO 100 READ 500 1H PRINT 50. (IH(M).M=1.9) IF!IH(10),NE.8HEND HEAD) GO TO 25 CALL STEP FIT(PITALL1,FITALL2.FITALL3) GO TO 20 CONTINUE FORMAT<215.9X,4F10.1OX.16.A8> FORMAT (1711.55X.A8) FORMAT<10A8) F0RMAT(*-t) FORMAT(F20.52X.A8) FORMAT!A20.F30.10) FORMAT(11.7X.2R1.X.12.6X.F13.4.7X.F4.2.29X.A8) END 185 E. LAMCON PROGRAM LAMCON COMMON/1/NODATA.NOVMI,AVENHT.STDY,NOSTEP.N.NTN.FREOPRD.YPRED,DEV. 10ATA¢2015UOI ‘ COMMON/Z/Foas<500).FCALC<500).HT(500>.NK<17).INFO.INDATA.NDELMAx. 1XDEVMAX.N1(25).MOL.CON(17.500).IH(10).SS(500).VV(500).KK(500). 2JJ¢500).NUMCON.ISTATE COMMON/3i NOVAR.JUMP.CONST(20).EFIN,EFDUT COMMON/El TOL COMMON/io/ IPUNCH COMMON/CI NAMEI30) DATA(NAME:2HPL.2HQL) EXTERNAL LAMCON1.LAMCON2.LAMCON3 TYPE INTEGER BRANCH.SS TYPE REAL J U(J)8(J**2-.25)A(J+1.5) F(J)=(J*.50) ISTATE=0 $ NUMCON=2 $ JUMPao READ 9000, A0,A1.901.802.811.812 9000 FORMAT(6F10) xL01nA0/801 XXL01=XL01.XL01 XL02uA0/802 XXL02=XL02tXL02 XLlisAl/Bll XXL11=XL11tXL11 XL12=A1IB12 XXL12=XL12tXL12 1000 READ 50.1H 100 IF(IH<10),EQ.BHLAST FIT) 900.110 110 IF(1H(10),EO.BHEND DATA) 365.120 120 IFIIH(10),EQ.8HCONSTANT) 150.130 130 IF(IH(10).E0.8HNEN DATA) 300.900 150 JUMPci 160 READ 500 IH PRINT 501 (IHII).I=109) IF(1H(10).EO.8HEND HEAD) 200.160 200 PRINT 53 Jill . 210 READ 220.00NSTIJ1).IH(10) IFIIHI10).NE.8H ) 100.230 230 IPCCONST(013.E0.0.0) Go TO 235 PRINT 240 . NAME(01).CONST¢01) 235 Jisdifii 00 To 210 500 Mli' ‘ 1350 READ 301.SS(M).KK(M).JJ(M),FOBS(M),HT(M).1H(10) IFIIH<10).NE.8H )100.360 360 Ja.StJJ(M) BRANCH:SS(M)9100 _IGO:KK¢M) IFTIGO.EO.1RH) 100:3 IFIIGO.EO.1RL) 100:4 “flu—...?— ): 370 372 374 380 382 384 386 1370 1372 1374 1376 1380 1582 1384 1386 390 400 500 186 00 To (1370.1380.370.380) 100 GO TO (372.374.376) BRANCH CON(1.M)=2.'F(J>'2.*U(J31)/XXL12°2.*U(J)/XXL01 00N<2.M>:a<4.«U(Jel)IXL12.4.*U=-<1./xL12-1./xL01,.4,.u(J) F093!M)=.FOBS¢M) GO To 390 CON<1.M)=2.*F(J)-2.tU(J01)/XXL12=2.*U(J)/XXL01 CONC2.M)=-(4.*U(J*1)/XL12t4.tU(J)/XL01) Go To 390 00 T0 (382,384,386 ) BRANCH CON(1.M)=-(2.*P(J)'2.tUtJ-iTIXXL11a2.'U(4)/XXL°2’ CON(2.M)=4.tU(J-1)/XL11*4.*U(J)/XL02 FOBSIMIagFOBS(M) 00 70 390 CON(1.M)=-(2.fi?(J)*2.'U(J)/XXL02=2.*UIJ)/XXL11) coN<2.M)=(1./XL1121,IxL02>c4.«U(J> FOBS!M)=-FOBS(M) 00 To 390 00N(1.M)=-(2.tF(J)e2.tU(J+1)/XXL1122.00(J)/XXL02) CON(2.M)=4.*U(J¢1)IXL11*4,wU(J)/XL02 POBS(M)=-FOBS(N) GO To 390 Go To (1372.1374.1376) BRANCH coNt1.H):2.t2..U(J-1)/XXL11~2.oU(J)/XXL01 CON(2.M)=4..U(J-1)le1it4..UtJ)/XL01 00 TO 390 coN<1.M)=-4..F(J)~2.~U(J)/xxL11o2,~U FOBS(M):-F085=-4.cU(J-1)/xL1zo4..u(J>/XL02 GO TO 390 CONtl.M):=(1./XXL12*1./XXL02)V2.~U(J) CON(2.M)=-(1./XL12*1.IXL023t4.tU¢J) FOBS(M):-FOBS(M) 00 To 390 coN(1.M)==2.v0tJ»1)/xxL12*2.cU¢J)/xxL02 CONI2.M)==4.tU(J*1I/XL12*4.*U(J)/XL02 roas=-F085(M) FCALC(M)-0.o IF¢JUMP) 400.500 00 70 K01.NUMCON PCALCIM)=FCALC¢M>*CON(K.N)fiGONST(K) Mth1 00 TO 1350 365 30 340 21 20 187 INDATA=M91 READ 4o. INFO,NDELMAx,XDEVMAx.T0L.EFIN.EEOUT.IPUNCH.M0L READ 45.(NK{I).I31.2).IH(10) IP(IH(10),NE.8H )100.21 PRINT 51 READ 50.1H ~PRINT 50.(1H(I).I=1.9) IFIIHIID).EQ.8HEND HEAD) 350.20 CALL STEP FIT (LAMCON1.LAMCON2.LAMCON3) GO TO 340 CONTINUE PRINT 54 FORMAT(215.9X,4F10010X313.A8) FORMATI 211,70X,A8I FORMATCIDAB) FORMATI'l‘I) FORMATtist) FORMATIOSi) FORHATIF20.52X,A8) FORMAT:A20.F30.10) FORMATI9X.2R1.2X. 12119X.F15,4,F10,13X,A8) END _.._.___ -,-_._ _ 17% 159 8158 8159 157 251 259 49W 176 Son 511 512 -v——_._—-__. -r—‘ . 188 F. STEPFIT SURRDUTINE STEP FIT(HEA01:HEAUZ:0UTPUT) COMMON/1/NHDATA,KUVMIJAVENHTISTDY:NOSTEP:NngNpFREQPRoaYPRED:UEVI 10ATAf20,500) CONNON/2/F088(Son).FCALC(5n0):AT(500).NK(17):INFOaINDATA.NDELMAX. 1XDEVMAXpN1(25):MnLDCONC17,300):14(10):SS(500)3VV(500):KK‘500)o 2JJ(500).NUMCDN,IQTATE COMMON/S/ M0VAP,JUMP.C0NST(20).EFIN:EFOUT COMMON/Cl MAME(6n) COMMnN/S/ TOL COMMDN/ln/ IPUNCH DIMENSION VEC10R(ZC.20).INBEX(20).SIGMA(20)pCOEN¢20):SIGMCO(20). 1MoT1N(?0).~US&(5nU) DIMENSION XCONST(20) TYPE IflTEGFR SS.VV TYPE DOURLE VECTCR;SIGMA.CnEVoSIGMCOoSIGY.DEFRoVAR IFf.NOT.FFOUT) tFOU1=1.E-8 IF(.NOT.EFIN) FFYNzEFOHT=1.E-6 IFCTOL.ED.H,D) TCL=0o001 MOVAR = 1 no 167 I=1.NUmn0~ IFtNK(I))188»1S7 N1(N0VAR)=NAME(I+ISTATF) IrtJUMP) 8159,8169 chNST(NDVAR):CUhST(I) NOVAR=NOVAR+1 COMTINUE NODATAzo 00954 MHUNDATA IFCNT(W)i252o2%3 NUSEtN):n GO TO 254 NUSE(N)=1 NODATA=NODATA+1 CONTINUE NDEL=0 N0IN=K=N0ENT=N0MIN=N0MAX=VAR=rLEVEL=0.0 LOUP=U NOVM] : MOVAH - 1 NOVPL = NOVAR + 1 Do 176 1 = 1pNnVPL D0 176 J = lnNOVpL VECTORflaJ) 3 n.n IFtNDEL)BOfl.SOO SUMHHT=0.0 00626N=1.IHDATA NUM=0 DO 512 191.NUMCOF IFCNK(I))5119512 NUM=NUM+1 DATACNUM.N)=CON (I’M) CONTINUE DA¥A(NQVAR.N)=F0FS(N)-FCALC(V) 525 501 146 54a Sin 58B 1115 601 59° 180 604 1601 609 601 SUNwHT=SUMwHT+HT(N) AVENHTasuMwHY/NOEATA 00510N=1nlMDATA IFtNUSE(N))146.510 WHT=wT(N)/AVENHT DO 540 I = 1: NOUAP VECTOR 701 FORMAT (4F15) 702 FORMAT («ABOVE NCNHEIGENVALUE NOT nIAG. AFTER 10 CYCLESt) 793 FORMAT (* ERROR RESID so VAR*13* Is NEGt) _._- .___-.. ,-., LEVEL OF X**I1pt10.2.9XOSTD DEV 0F (O-P)¢F7.4//10X*V CORRECT 796 85” 904 907 100fi 1004 1019 1044 1395 1586 900m 9001 193 FORMAT (*OVAkttfie IS CUNST») FORMAT (X613»F20.F10.23XA83 FORMAT (*OERHOR. VMIN 908*) FORMAT (*OFRPOP NOIN NFGfi) FORMAT (*OLINE Nfitl4t “ELETED'5X613,2F10.4) FORMAT (*DY SQUARE NEG STEP*I5) FORMAT (*OZEHU DEG FREEDOM 3rE9«13> FUPMAT («SQUARF x-«IZw NEGATIVE STePtl3) FORMAT (*K=0 STEp*IS) FORMAT (*0 DIAG ELEMENTS*/t VAR N0 VALUE*//(I4.F12.6)) FOPMAT (PIS.F10) FORMAT (*+LIVE Nfitlat REING DELETED FROM FIT') END SURROUTINE PRIMTCUT COMMON/l/NHDATA,h0VMI:AVEHHT:5TDY.NOSTEP:N,NTN:FREQPRD.YPRE09DEV: inATAtzn.Son) COMMnN/Z/FNBS(50”)oFCALCt5n0)oATt500).NK(17):INFO:INDATAaNDELMAX: 1XDEVMAX,H1(25),MCL0CQN(17:EUU)p1H(10)p88(500)3VV(500)9KK(500)9 2JJ‘5”U3,NUMCUN,I§TATE COMMON/SI NOUAR:JUMPpCONST(20).EFIN:EF0UT COMMON/s/ TOL COMMON/1P/ IFUNCF COMMQN/c/ mAkE¢3n) TYPE INTEGER SS.VV.BRANCH ENTRY ROTCONsl PleT 167:M0L.NOPATA.NOVMI,NDtLMAX,XDEVMAX,AVEHHT,3Tny,N05TEp RETURN ENTRY ROTCGNSZ PRINT166 RETURN ENTRY ROTCON35 PRYNT 166. N.SS.YPHEW:DEV IFCIPUNCH) PUNCH 1165nM938(N):VV(N):KK(N):JJ(N)oWTNgFOBS(N)o 1FRFQPRD,DEV RETURN ENTRY SPORCON1 PRINT ?67: M0L.NPDAYA.MOVMI.MUELMAx.xDEVMAx,AVEwHT,STDY,NOSTEP RETURN ENTRY Sann0N2 PRINT 966 RETuRN ENTRY SPfiRcohé PRINT 265. N.vv.JJ(M).HTN.FOBS(N).FCALC¢N).FREUPRD.DATA(N0VAR.N 1,9VPREU,DEV HETUR‘N ENTRY PREQFITl PRINT 367;MOL,NOFATA:NOVMI.NUELMAX,XDEVMAonVENHT:STDY,NOSTEP RETURN ENTRY FRFQFITZ pRINT 366 RETURN ENTRY FREQFITS 194 BRANCH=KK(N)+5n PRINT 465.N.VV(NI,BRANCH.SR(VI.JJ(N).NTN:FOBS(V).FCALC(N),FREQPRD» 1DATAINflvaH.NI,YPnEn.nEv RETuRN ENTRY FITALLI PRINT 367,M0L,NUPATA.NOVM1.NDELMAX,XDEVMAX.AVEAHT,Spr,NOSTEp RETuRN ENTRY FITALL2 PRINT 466 PETURN ENTRY FITAILA IFISSIN).tU.3) SS(M)=19H IFISSIN).EQ.4) SS(N)=lPL BRANCH=KKINI+1PQ PRINT 466,N.VV(NI.RRANCH.S§(N).JJ(N).wTN:FOBS(V).FCALC(N).FREQPRD: iflATAINfiVAR,N),YPREH,DEV IFIIPUNCH) PUNCH 1465:N.VV(N):BRANCH:SS(N):JJ(N),NTN,FOBS(N), 1FREQPRn,DEV RETURN ENTRY LAMCONI PRINT 667.M0L.NUPAIA.NOVM1,NntLNAx,XDEVMAx,AVEAHr,srny,Nosrep RETuRN ENTRY LAMCCN? PRINT 566 RETURN ENTRY LAMCON3 PRINT 565:A.SSINIpKKIN).JJ(N):NIN.FOBS(N):FCALC(N).FPEQPRD: 1UATAINOVAH,N),YPHEH,DEV IFIIPUNCH) PUNCH 1565:“.SSIN): 195 565 FoPMATIti NO LINE NHT OBS CALC PRED O-C 1P-C U!P*) 567 FORMATIti LAMDA PIFFERENCE FII FDRoAB/ * FIT *I4* DATA POINTS 170. 12. VARIABLEStlt DELETES UP TO «12 w POINTS IF (0-P> IS 2 GT¢F6.3/* NPT NORMtFo.2/* STD DEV 0F (Q-C)* F9.4/* CU 3MPLETED «12* STEPS*) 1165 FORMATtl5’3l2:‘3t*/2*9F60203X’SF15¢4) 146a FORMATIIS.13.x.2R1.13.¢/2*.F6-2:3X.3F15.4> 1568 FORMAT!15.2X.291.13.*/?*.F8.2:3Xo3F15.4) EN n 196 G. ZEEPUN This program calculates the Zeeman splittings for all branches for the intermediate coupling case and for specified values of field strength. Punch output of these is provided for later input to the plotting program. Inputs include the spin-orbit and rotational constants for the transition under consideration, the Zeeman splitting constant, the vibration- rotation band, the fields to be used and the J-values desired. Also available is the option of adding a fixed value to all splittings. STRUCTURE OF DATA DECK I. Punch Option card Col. Field Function l-9 I #0 indicates punch section is desired. 10,11,12 R Beginning in col. 10; P, Q, and R indicates that punch output of these branches is desired. One or all may be used. 20-29 I #0 indicates punch output is desired. II. Constants card These three cards contain the values of the molecular constants A and B and the Zeeman splitting constant respect- ively. The cards are read from left to right and have 8 fields of 10 columns. The constants A and B are punched on the first two cards in the order v = 0, l, 2, 3 for 1”N150 and 15N150 respectively. The Zeeman constant is on the third card in (3015. 1’10. 197 III. Band card The band designation is typed in cols. l-lO of this card. The codes are: (l—O) = 1, (2-0) = 2, (3-0) = 3, HES = 4, LES = 5. The format is I10. IV. Field strength card Up to 8 values of field may be input and the splitting is automatically calculated for each. The value is input in gauss; there are 8 fields of 10 columns starting from the left of the card. The format is 8(F10.l). V. J-value card This card specifies the J-value(s) desired and provides for adding a constant value to the splittings. The option of choosing only one subband is also available. As many of these cards as needed may appear. Col. Field Function 12—13 I 2J 20-32 F #0 indicates that this value should be added to all splittings. 41—50 I A value of l or 2 will indicate that only that subband is desired. A blank will cause calculation for both. 73-80 A If the word COMPLETE appears, splittings of all transitions up to and including J are calculated. VI. Return card If RETURN appears in cols. 75-80, control is returned to I. VII. New case card If NEW CASE appears in cols. 73-80, control is returned to 198 section III. VIII. StoE card If STOP appears in cols. 77-80, execution is terminated. A listing of the program follows. 10fi 1001 100? 9999 1D03 199 PROGRAM ZEEPUN COMMON/1/ FREQ!3H0).XIMF(300) COMMON/4/ IJIM. {BRANCH(3).IPUVCH READ 1. IJIMo(IBRANCH(M).N:1:5)oIPUNCH FORMAT (19.3R1.7X.110) DO 3 L3103 IBRAMCH(L)aIBHANCH-1Rn CALL ZEEMAN GO TO ion END SURROUTINE ZEEMAN COMMON/1! FREU(3fl0).XINT(3DU) COMMON/4/ IJIM, IBRANCH(3).IPUVCH DIMENSION nA<1n).A(5plu).DR(1G):8(S.10).DG(100p2.1).G(100.2.5), Htlfl):Y(3) DIMENSION ISIGN(?).FRQ(50.?.3).lNIt50.2.3) DATA(ISIGN=1,-1) TYPE REAL INT N:O READ 10((A(19J):J=N:3)n1:1.2):((B(I:J):J=N13)oI=1:2):AMUO FORMAT (8F1005,/’8F10051/’F10) READ 3. tMOL FORMAT {10!}!2) READ 1001, IBANP FORMAT (110) READ 1fi02; (H(I).l=1.8) FORMAT (RF10.1) READ 1n03. JMAX.¥NU.ISHBANH.IPLT FORMAT (11x:12;6¥0F130419Xp110:22X.A8) IFtlpLT.EU.8H STOP) GO to 5000 IFCIPLT.EO.8HNEW CASE) G0 T0 2 IFCIPLT.EO.8H RFTURN) RETURN H(9)=0.0 JMOLBIMOL~13 CONTINUE LHAx=(JMAX+1)/p JF=8 DO 61 J=12JF IF(H¢J+1).E0.0.0)JF=J FLDFAczAMU0*H(J) FIELD=H(J) FU=FL=91.D GO TO (5.6.798.9).IBAND NJ=2 NU=NL=KU=1 KL=n EPSU‘EPSL='1ID GO TO 15 NJ=2 NUQNL=1 KUOZ KLIO EPSUaEPSL=-1.0 GO TO 15 200 7 NJ=2 NUBNL=1 KU'S KLBO EPSU3E95L=’1QO 60 T0 15 3 NJINL=KU=ITRL=1 NU'Z KLflO EPSU=1,0 EPSLB-1.D 1TRO=3 GO TO 15 9 NJINU=KU=ITRU=1 NL'Z KLfio EPSquton EP3L=1.0 ITRL=3 15 CONTINUE Y(KU)=A(JMOLaKU)/B(JMOL.KUs Y(KL)=A(JMDLoKL)/B(JMOL.KL) IFtISURAND) 9100:9200 9100 NBSNT=ISUBAN0 IF¢ISUBAND.E0.2) FU=FL=1.0 GO TO 9000 9200 NB¥1 NTQNJ 9000 DO 61 MzNBpNT lFtM.Em.2)NUENU*1 IF(M.EQ.2)NLINL+1 FUIFUtEPSU FLyFLrfiPSL JJQLMAX*1 160:1 DO 20 LsiaJJ IFCIPLY.NE.8HCOMPLETE) 202.201 20? IFtIGO) 200.201 200 L=LMAX91 180 I 0 201 A0-L2.5 AM.A0*(AQ*1QO) G(L.NU.KU)'(1.5+FU*((2.0!(AMec75))91.5wY(KU)*3.ODISORTC4.0tAM¢1.0+ 1Y¢KU)*(Y(KU)94,0)))IAM G(LaNLoKL’3(1q9*FL*(‘2.0*(AM9075))91Q5*Y(KL)*39U)/SQRT(4.0*AM¢1.0+ 1Y(KL)t(Y(KL)!4.0)))/AM 20 CONTINUE DO 61 LainLMAX IF!!PLT.NE.8HCOMPLETE) 300.301 30g LaLMAx 301 ASSIGN 51 T0 NGOTO AOHLFOS J0!2*Lu1 IFCNL.EG.2.AND.L.LT.2)GO To 60 201 IF‘NUoEQoNL) 200012100 2000 ISUB'NU PR‘NT 31: IMOLoKUoNUIJQ9H(J) GO TO 50 2100 IrtNU9NE¢NL) 2200:50 2200 IF‘ITRUBITRL’ 2300;230032400 2300 ISUB‘lRL GO TO 2500 2400 ISUBSlRH 2500 PRINT 41.1M0L.Ku.ITRL.ITRU.JQ.H(J) 50 JH'L‘L 182tJM SU"P¢1.333*A0*(2o*AQ*1o’*(2q‘AQ91.3 SUMQ'19333*AQ*CA0*1.3.02.*AO*1,) SUMR310333.(AQ*10)‘(29'A0‘1o)‘(20'AQ‘30’ DO 60 KalaJM LJBQL+K AJ‘LJ' g 5 ALPHA:G(L:NL0KL)*FLDFAC*AJ ZETAR=(AJ9190)*FLDFAC ZETAL=¢AJ*1.0)tFLDFAC DNUPLBDNUPRzDNUQL=DNUQR=DNURL=DNURR=RITNPL=RITNPRHRITNQLERITNOR= 1RITNRL8RITNRR=1o¢t10 IFCLcGE.3) GO TO NGOTO IFCNUoEQo2oAND.LuLTo3) ASSIGN 52 T0 NGOTO IF‘NUQEQoloANooLILTvZ) ASSIGV 52 TO NGOTO IFCNUQEQozoAND.L.LTg2) ASSIGN 53 TO NGOTO IF‘NLOEQ¢ZO‘~DQLQLTQZ’ ASSIGN 53 T0 NGOTO GO TO NGOTO 51 DNUPR=G(L*1pNU.KU)*ZETAReALPHA DNUPL‘G‘L‘ioNUoKU)*ZETAL9ALPHA RITNPR'((AfltflJ)*(AOtAJ51.0))*1009/3UMP RITNPL=((AOHAJ)*(AOQAJ91.0))Olooo/SUHP 52 DNUQRSGCLpNU:KU)VZETAR2ALPHA DNUQL=G(LpNU:KU)§ZETAL!ALPHA RITNQR3‘(A0*AJ,*(A09AJ*1QO,)‘1000/8UMQ RITNDL3((A0-AJ)*(A0+AJ*1.D))*1009/3UMQ 53 DNURR=G(L*1cNU,KU)*ZETAR9ALPHA DNURL=G(L*1pNU,KU)‘ZETALGALPHA RITNRR3((AO!AJ¢1.0)*(AQ-AJ*290))‘1009/SUMR RITNRL3((00*AJ*1.0)*(AQ*AJ5210))‘1009/SUMR IF‘RITNPLoEQo0.0)DNUPL8RITNPL310**10 IF(RITNPRoEQ.0.0)DNUPRIRITMPR310**1O IFCRITNQLoEog0.0)DNUQLIRITNQL510‘*10 IF‘RITNORqfiov0.0)DNU0R3RITNQR‘10**10 IF‘RITNRLQEQO0.0)DNURL'RITNRL310**10 IF(RITNRR.EQ.0.0)DNURR3RITNRR310**10 INDEX=2¢L421 PR1NT55:INDEX:DNUPLaanNPLaDNUPR:RITNPRJDNUQLoRITNQLoDNUQRnfilTNQRo inNURLianNRLoDNURRaRITNRR IF(IJIM) 500160 500 PRQ(Kp1:1)flDNUPL*XNU INYCKt1a1)IR!TNPL FRQ(K:291)§DNUPR¢XNU 60 801 5500 850 799 800 3000 5501 900 61 5000 59 31 41 202 INT(K:2;1)3RITNPR FRQ(K:1:2)=DNU0L*XNU INT(K:1:2)=RITNQL FR0(K:2:2)=DNUDRtXNU INT(K.2.2)=RITNQR FRQ(K91:3)=DNURL+XNU INT(K01:3)=RITNRL FRQCKa2:3)=DNURR+XNU INTIK,2.3)=RIT~RA CONTINUE TF(IJIM)801o61 DO 900 LI=1a3 IFIIBRANCHILI).GT.5) GO TO 61 NAME=IBRANCH¢LI)+1RO IF(IPUNCH) PUNCH 5500: NAMEolsdB:JQ:IMOL:FIELD FORMAT010X.2R13X9120'/2*32X1*N.12*0‘06X:F1091o*GAUSS*) DO 800 KI=1pJM DO 800 JI=112 IFIFROIKI:JIaIRRANCHCLID).GT.5000) 799:850 FREQIKI¢(JT91)OJV)=FRQ(KI:JIaIBRANCH(LI)) XINTIKI¢IJ191)*JV)=INTIKIaJI:IBRANCHILI))*ISIGN(JI) GO TO 800 FREQIKI¢IJ191)*JV)=0.0 XINTIKI+(J191)*JV)=0.0 CONTINUE NUM:0 DO 3000 N=1,I IFI.N0T.FREQIN)) NUMsNUM+1 FREOINUM3=FREQ(N) XINT(NUM)=XINIIN)/100. CONTINUE IFIIPUNCH) PUNCH 5501:(FREO(<0):XINT(KQ):K0=1:NUM) FORMAT (4(?(F7.4o3X))) CONTINUE CONTINUE GO TO 9999 CONTINUE FORMATII4i/2*dI2(2XF7.4.XF3)X)) GO TO 3000 FORMATIti CALCULATION OF ZEEMAN SPLITTINGS AND RELATIVE INTENSIT 11ES FOR.*/~ NtthO. «law-0. BAND, *Ilt-SUBBAND.t/t J = t12* 2/2, H =¢F5t GAUSS.*I*-*18X*P BRANCHt17xw0 BRANCH017X*R 3 BRANCHt/*n MJt3(t DELM+ I DELM~ ItX)/> FORMATtti CALCULATION OF ZEEMAN SPLITTINGS AND RELATIVE INTENSIT 1IES FOR,*/v N¢12w0. thweo. tI1*/2 - *Il*/2 BAND.t/t J = .1 22*/2. H = tFSt GAuss.-/t-¢18x*9 BRANCH*17X*O BRANCH*17X 3*R PRANOH*/*0 thatt nELM+ I DELM- [*XII) END 203 H. PLOTPUN This program accepts input of intensities and splittings symmetric about the origin, and calculates and plots the absorp- tion, Zeeman and magnetic rotation signals expected. Gaussian and intermediate lineshapes are available; Gaussian, triangular and trapezoidal slit-functions are available. The Doppler, Lorentz and slit—function HWHM, pressure, polarizer angle and path lengths are input. STRUCTURE OF DATA DECK I. Option card Col. Field Function 1 I = l, 2, or 3; indicates that a Gaussian, triangular or trape- zoidal slit—function is desired. 2 I #0; calculates rotation angle per unit path length. 3 I #0; calculates the individual transmission fractions for all components. =2; plots the unintegrated CD pattern. 4 I #0 calculates the unintegrated circular birefringence. =2, plots the unintegrated CB pattern. 5 I #0; plots the transmission frac- tion for right and left circular polarizations. 6 I #0; calculates the CD pattern integrated over the slit-function. =2; plots the above. 7 I #0; calcualtes the CB integrated over the slit-function. =2; plots the above. Col. 8 9 10 ll 12 l3 14 15 21-30 31-40 41—50 51-60 61—70 71-75 76—80 Field I I 204 Function #0; plots the integrated MR signal. #0; plots the unintegrated MR signal. plots a title according to the code; l-CIR. DICHROISM, 2—TRANS- MISSION, 3-ABS. COEFFICIENT, 4- MAG. ROTATION, 5—ZEEMAN, 6— ABSORP— TION, 7—blank. #0; causes all plots above to be superimposed. #0; plots the integrated absorption. #0; prints values of all quantities. =1; every 5th plotter unit printed. = - every plotter unit printed. =3- every 2nd plotter unit printed. =4; every 10th plotter unit printed. ~ ~ #0; suppresses the plot of the experi- mental conditions. #0; plots bar graph of the Zeeman patterns. Doppler HWHM. Lorentz HWHM, an intermediate (Dop- pler) lineshape is used if this is non—zero (zero). Range in cm_1/10" of the plot. Height of the plot in intensity units/inch. Slit-function HWHM. #0; uses trapezoidal slit-function. This is the halfwidth of the top of the trapezoid. A tolerance used to control the in- tervals of integration in calculating the lineshape. The intervals are nor- mally 0.001 times the range in cols. 41-50 above. The tolerance may be set to some fraction of this value. It is preset to 1.0. 205 II. Pressure gggg Values of the pressure are read by the format 8F10. The calculations specified on the option card are automatically repeated for every pressure. III. gay 3; Ehg following EEEEE mgy appear 1. Absorption SEEQ‘ The integrated absorption coefficient for the transition is input in cols. 1—10, the path length in cm. is in cols. ll-20 and the polarizer angle in degrees is in cols. 21-30. The splittings and relative intensities follow this card. 2. Ngw 9353 9339’ If NEW CASE is encountered in cols. 73-80, control is returned to section I. 3) Spgp EEEQ‘ If STOP is encountered in cols. 77-80 execution is terminated. IV. Splitting EEEEE These cards follow card III-1 above. The splittings and intensities must be symmetric about the origin as input. 1. Tiglg 233$: This card is the title card punched in ZEEPUN. It specifies the transition and field strength. 2. Splitting EEEQE‘ The splittings and fractional inten- sities from ZEEPUN are input here. 3. E1225 £359: A blank card signifies the end of input data. V. Control EEEE Upon completion of all options for the last pressure, con- trol is returned to section III. A listing of the program follows. 9% 9n 91 9Q 92 81 82 8% 87 86 85 88 206 PROGRAM PLOTPUN COMMON/1/ XNU(300).A(300) COMMON/z/ DABSCOFMIéOl).ABSCOFW(600).DABSCOFPI601).ABSCOFPIbooI COMMON/SI SY;SX.”AXPOS.GAML.GAAD¢ I0?(20>.NUMBER.XHAX.NUHM COMMON/4/ nsHAPEcbol).SHAPE(600).IMAX.IMIN.SLITWDTH.P0L.SLIITRAP COMMON/S/ ILABFL¢4IIFIELU COMMON/b/ RANGE.HETGHT.SO.O(8).PRES:0PL:XNUZERO:SLITNORM:T0L common/7; DTRAMSP(601):TRANSW(600).DTRANSP(601):TRANSPC600): 1DCD(601).CD(600) COMMON/Bl DPHII601).PHI(600) COMMON/9/ DFARADAYI601):PARADAY(600) CoMMON/10/ DCDINT(601)aCOIMT(600):DFARINT(601):FARINT(600) CONNON/11/ DLNSHP<601).XLNSHP(600) DIMENSION LABELIA) DIMENSION 11(4).I2t4) DIMENSION NAMESI10).NAME2(40) DATA(I1=1)'101.’1)a(l2=0311021) DATAINAME1=8HCIR. DIC:RHTRANSMIS:8HABS. COE:8HHAG. ROT.8HZEEMAN : 18HABSOWPTI.8H ).(NAME2=8HHROISH .aHSIou .BHFFICIENT.8HA 2TION .aH :BHON .AH I NUMBFRzo READ 9n, 10P.GAMP.GAML.RANGE.HEIGHT:SLITNDTH’SLITTRAP.TOL FORMAT (2011:5F10:2F5) IFIIUP(15)) IOP(14)=1 IF(.NOT.T0L) TOL=lo0 PLHT=6. IF‘HEIGHT) PLHT=FEIGHT/100. KALL=1 PTFSTzn, IF(.N0T.IOP(10)) IOP(10)=1 READ 91,P FORMATIBF10) READ 2.sn.nPL.POLANGLE.XNUZERU.ITEST FORMAT (3F10:19X,F10917X.A9) pOL=PULANGLE/57.99575 IF(ITEST.EG.RHNEW CASE) GO TO 95 IF(ITEST.EQ.QH STOP) GO TO 80 READ 9?: ILAHELIFIFLD FORMAT(1UX.2H1;Xp12:5Xa17:7X1010) N:1 T NM=4 READ 80: (XNU(J00A(J)1J=N0MM) FORMAT (4(7F105) DU 87 J3N1NM [F(XNUIJ)) GO TO 85 CONTINUE NzN-j IFIXNUINI) 80,86 N=N+4 NM=N+3 60 TD 02 IFREQ=N DO 4 ngnerEQ L=J+1 11 9000 15 17 19 20] DO 4 K=L91FREQ IF(XNU(J).LEoXNU(K))4.3 T:XNU(J) 0 S=A XNU(J)=XNU(K) $ A(J)=A(K) XNU(K)=T T A(K)=S CONTINUE PRINT 200.1LABEL.F1ELD PRINT ?02 pRINT 201: (XNU(J):AIJ).J=I.IFQED) NN=1 pRES=P(NN) NNsNN+1 IFI.N0T.GAML> GU T0 11 IF‘PTEST-PRES) KALL=1 PTEST=PRFS CONTINUE PRINT 203. GAME PRINT 1203, GAML pRINT 904: SLITNPTH pRINT 705: Sn PRINT 706: OPL PRINT 207. PRES PRINT 708. POLANGLF IM=~600 DO 7 IN=IM9600 ABSCOFM(TN)=0. $ ARSCOFPIIM)=0. TRANSM(IN)=1OU S TRANSP(TN5=100 f CD‘IN)=00 PHI‘IN)=UO PARADAVIINI=0. $ CUINTCIN)=0. % FARINTIIN)=0. XLNSHPIIN)=09 CONTINUE Xth=0 Numm=0 ASSIGN 150 T0 NGC IFINUMRER) GO TO 16 CALL PLOT(-4..31..0n100..100o) CALL PLOT(0..0..1) CALL PL0T(0.9'2..0) X=O, $ Y=0. T NU“BFR=1 S NHMBER1=1 $ JUM=1 5 GO TO 17 NUMBER=NUMHER+1 NUMBERI:NUMBER/2,+i NUM=XMODF(NUMBFR,4)+1 JUM=XMODFINUMBER.2) X=15,*11(NUM) Y=10.*I2(NUM) CALL PLOT‘Y,X.2,100.9100.) CALL PLOT(0..0..0) IF¢.NOT.JUM) GO TO 19 JU8:20.tNUMBER1 CALL PLOT‘JUB.0..3) CONTINUE IFCIOPI15II GO TO 21 XPLHT=PLHT+.1 CALL CHAR(XPLHT.1..NAME1(IOP(10))18.0...2o.2) 21 8000 8001 1000 1001 1009 1001 1004 1030 208 CALL CHAR‘XPLHT.3..NAME2(IOP(lD))a8:0.9923.2) CALL PL0T(PLHI.10..2) CALL PLOT(PLHT.0..1) CONTINUE CALL FLUTIO..5..?) CALL PLOTIn..0..n) IFIRANGE) 00 I0 8001 UEL=XNUIIFREO)-XAUI1) RANGE = OEL+0EL*.1 IFI(RANGE-DEL)/2..GT.6tGAMn) 03 I0 8001 RANGE:RANGE+.1.UPL GO TO 8000 CONTINUE XSCALE=10./RANGE Sx=1000./RANGE NAXPOS=SX SygénUO IFIHEIGHT) SY:HEIGHT M:fl TICS=RANGE/20. Du 1non J=N.6 XTICS=ITICS)*10.**J IFIXTICS.LT.1.I 00 TO 1000 IFIXTICS.LT.1.5) GO TO 1001 IFIXTICS.LT.2.5) GO TO 1009 GO TO 1003 comTINUE DELx=1.*(10.*t(-g)) ID=5 Go TO 1004 DELx=2.*(10.**(-g)) ID=5 GO TO 1004 DELx=5.*(1n.**(-q)) ID=2 NUMTICS=RANGF/I2.*0ELX) 0:5.IXSCALE CALL PLOTIO..-0.7.300..SK) MAX=NUMTICS*? X=EINUMTICS)*DFL¥ XNz-X NUMBIG=NUMTICSIIE LL=NUMTICS—NUMRIG*ID CALL PLOT(0.,X,1,100,:SX) Do 1010 L=N.MAX YUB.05 $ Y0=-.05 IFI GO TF 7000 IFIIOPI4).NE.2) 60 TO 7000 IFINUMW) 7010.7000 701m ASSIGN 7non T0 N00 CALL PLOTID..U..9.SY,S¥) CALL PLOT‘C.:'5.;21100.3100.) CALL PLOTIn..U..n) GO TO 9000 7000 CALL FARROT 7020 CONTINuE c PLOTS INDIVIDUAL TRANSMISSION CJHVES IFIIOPI53) 30.9300 30 IFIIOPI11I) 00 I0 7100 IFINUMM) 7110.7100 711a ASSIGN 7100 T0 N00 CALL PLOTIU..U..2.SY.SX) CALL PLOTIn..-5..2.100..100.) CALL PL0T(0.10.90) GO TO 9000 71am CONTINUE X=IJISX NUMM=1 CALL PL0T(TQJX:238YJSXT 00 31 LITJ.IT X=X+(1./SX) YT=TRANSMILI**2 31 32 930n 211 CALL PLOT(YT.X.1.SY.SXI X=IJISX CALL PLOT(1..X.2.SY.SX5 D0 32 L=1JnIT X=X+(1./SX) YTETRANSP(L)**7 CALL FLOT‘YT.X.1.SY.SX) CONTINUE CALCULATES AND/0H PLOTS INTEGRATED 0.0. PATTERN 940a 500 505 51” 9500 TFfIUPIé)’ 9400:9500 CONTINUE IFCIDP(11)) GU TC 500 IFIIOP(6).wEo2) GO TO 500 IF€NUMM) 7200,50” ASSIGN sno TU N00 CALL PLOTC0.:U.:?:SY15X) CALL PLOT(“.0‘5o.2n100.3100o) CALL PLOT(0.:0..0) GO TO 9000 CONTINUE N831J'IMTN N =-NB $ Xth/SX IF‘IOP(6,06002, AUMM=1 CALL PLOT(0..X,2,SV;SX) 00 510 N=NR.“I X:¥+(1,/SXT YS=0. DO 505 M=IM10:TMAX NM:N+M vs=y3+sHAPFtTRANSM(JK) TP=TRANSP(JK)*TRANSP(JK) YS:YS+SHAPF(H)*(7.-TM-TP) YT=YSISLITN0HM CALL PLOT(YT.X.1.SY,SX) CONTINUE C PRINTS VALUFS OF ALL QUANTITIFS 9950 9959 9955 9951 9960 20 80 100 10? 20’1 201 20? 203 1203 204 20% IF(IUP€13)) 9950,9960 CONTINUE PRINT 9952 FORMAT(t1 Xt7X*ABSURPIIUV* BXtTRANS.*10X*CD*9X*ROT. ANGLEtlflx .‘FR*12X*MR*9X*INT. MP*10XtQFt/) m=n % Y:n. INDEX=5 IF(IOP(13).EU.?) INDEX:1 IFCIOPC13).EW.3) IMDFX=2 IF(IOP(13).EQ.4) INDEX=10 DO 9951 I=~,bgn,INnex AB=ARSCOFM(I)+ABSCOFP(1) TR=TRAHSM(T)tTRAhSP(I) XMH=CD(I)+FARADAV(I) XMRI=CWINT¢I)+FAGINT(I) pRINT 9955.X:AQ.TR:CD(I).PHI(l)pFARADAY(I),XMRpXMRI.SHAPE(I) FDRMATtF10.4:4X.E10.3.4X,2(F10.4,4X).E1393,4X.4(F10.4.4X)) X=X+(IMDFX/SX) CONTINUE CALL PLOT(fio93.:?:SY03x) CALL PLOT(0.:-5.,2:100..100.) CALL PLOT(fi.:0.:0) Y:fi, X:n, IFtPtNM)) 00 [n 1 G0 T0 99 CALL PLOT (JUB.0.:-1) FoflmAT(2F20.2) FoRMATtSAB) ‘ FORMAT(*1*DZR1:XJI?:*/2 N*12*O*6XIF1001* GAUSS*) FORMATtt *4X.F10.4,2X:F10.4) FORMAT¢¢0*30X:12HVALUES INPUT/It *5Xa9HFREQUENCY:4X99HINTENSITY/) FORmATcanDnPPLER HALFNIDTH *F10.4¢ CM91*) FORMAT(xwLORENTZ HALFNIDTH *F10,4o Cn-1/ATM,*) FORMAT¢X¢SPECT. HALFNIDTH *F10.4* CM-1*) FORMAT(X*INT. ABSOWP. COEF. *F10.5* CM-Z/ATfigt) 206 207 209 50” 51m 600 21 20 an 214 FORMAT(X*0PTICAL PATHLENGTH *F10.1r CMt) FORMAT XLNSHPTI)=V*CUN IFTXLNSHP(T)0LTo7oF'8) GO TU 111 CONTINME PRZNT 100 IIMAX=I DU 150 L=1,IIMAX I=EL mesHPc1>=vLRSHPrL) KALL:0 RETURN FORMAT.#U.$3 00 T0 700 SLITMORM=SX*SLITmDTHt2.13 810:.694/(SL1T001H+*2) Nzfi SHAPE(N)=1.0 X=0. ”0 10 1:1:600 X=X+(1,/SX) SHAPE(I)=EYP(-SIG*(X**?)) IF¢SHAPE(I).LT.TFST) 20:10 CONTINUE PRINT 100 100 FORmATttiA RANGE T00 SMALL FOR THE SLITNIDTH HAS BEEN USED*) IMAX=I $ 1M1N:.INAX 20 21/ PRINT 900: X 20m FORMAT (waHE HALF-EXTENT 0F SLIT FUNCTION IS*F8.4w CM-1*) DU 30 J=1;IMAX =EJ SHAPE(L)=SHAPE(J) 30 CONTINUE GO TO 1000 500 SLITNORM=SX*SLIT00TH*2. 0:0 0 SHAPF(M)=1,0 in. 00 510 1:1.600 X:X+(1./SXJ SHAPE(I)=l.-<.6t¥/9LIT00TH) IrtsHAPE(I).LT.T£ST) 520.510 510 CONTINUE PRINT 100 52% IMAx=I $ IMIN=~I~AY pRINT 200,x 00 530 J=l.IMAX L:9J SHAPE(L)=SHAPL(J) 530 CONTINUE GO T0 1000 70m SLITNOQM=SxtfiLITwUTH*2.U 0:0 $ x=n. $ ITNAX=SLITTRAP*SX DU 710 I=N.ITMAX X=X+(1,/SX) SHAPF(T)=1.0 71H CONTINUE IT=ITMAX+1 SLP:SLITHUTH-SLITTRAP 00 720 I=IT.600 X:X+(1./SX) SHAPE(I)=1.-t.8'x/SLP) IFtsHAPE(I3.LT.TEST) 730.790 720 CONTINUE PRINT 100 730 Imhx=l $ HIM-INAx PRINT 200.x DO 740 J3131MAY L=9J SHAPE(L)=SHAPE(J) 74m CONTINUE 100m CONTTNUE IOP(1)=0 RETURN END SURROUTINE RFFPACT COMMON/ll XNU(300)oA(300) COMMON/ZI DABSCOFMK601)aABSCOFM(600)aDABSCOFP(601).ABSCOFPC600) COMMON/S/ SYQSYnflAXPOS:GAML:GAWD: 109(20):NUMBER:XMAX:NUHM COMMON/4/ DSHAPE(601)18HAPE(600):IMAX:IMIN.SLITHDTH:P0LaSLITTRAP COMMON/SI ILABFLt4).FIELD 1:"! 29 21 3“ 500 600 215 CONMDN/él HANGE,HEIGHT.80,P(8),PRES:0PL;XNUZERO.SLITNORM:TOL COMMON/7/ DTRAMS~(601).TRAMS%(500).DTRANSP(601):TRANSP(600). 1000(601).C”(000) COMMON/BI 0PH1(601),PHY(600) COMMON/9/ fiFARADAY(601).FARAOAY(600) CONMDN/10/ DCDTNT(601).CUIMT(600),DFAHINT(601):FAHINT(600) CUMMoN/ljl DLNSHP(601).XLNSHP(600) iJIV'ENSIOM DDIFcénO).HIF(Aoo) Isz-XMAX‘SY IT=~IJ M30 DO 10 L=IJ,IT ”IF(L)=ABSCOFM(L3'ABSC0FP(L) co~=1./(4.t3.14159) 00 gm J=N:%99 Prn=.5¢(01£<0+1)-DIF(J-1)) PTsn, 00 26 I:IJ,IT IF€I.E-’J..J) (50 T0 2‘) PT=PT+0IV(I)/(Y-J) CO”TINUE PHI(J)=CflNv(PT+PT0) 00 3n J=1.H99 Ksz pHT(K)=PHI!J) RfiTuRN ENn SUHROUTIHE TRANS COMMON/1/ YNU(Run).A(300) UOMMHN/Zl ”AhSCOFMtboi).ABQCDFW(600):DABSCQFP(501).ABSCOFP(600) COWMDN/E/ 3Y15Y9HAYPOS:GAML:GAWDo IOP(2U):NUMBER:XMAX9NUMM COMMON/4/ “SHAPE(601).SHAPF(600).IMAX.IMIN.SLITWDTH:P0L.SLITIRAP CUMMnN/S/ ILAHFLc4),FIFLO COMMON/b/ PA"(:iFAvE:IGHT.80»0<0).Fifi'iFSmPL.XI‘TLJZERL‘J.SLITNORWTOL 000MHN/7/ WThAMSN(601).TRAMSNT600).UTHANSP(601);THANSP(600): 10CU(801),CU(500) COMmfiN/SI "PHI(601),PHI(600) COMMnN/Ql “FAHADAY(601):FAPADAY(600) COMMUN/lfi/ DCUINT<601).CUINT(OOOJ.UFARINT(601)oFARINT<600) COMMON/11/ ULNSHP(601).XLN9HP(6UU) IJ=~XMAX*SX IT=~IJ X=IJISX ASSIGN 1n T0 Nno IFtlflP!3).F0.2> 900:600 CALL PLOTtfi..X.2.SY:SX) NUMM:1 ASSIGN 110 TV N00 00 10 L=TJ11T X:X+(1./SX) TM:(ABSCOFN(L)wOPL)/2o TP=(ABSCOFP(L)¢0PL)/2. TRANSM(L)=PXP(-TN) 219 TRANSP(L)=FXP(-TP) IFGTRANSM(L).LT.J.E-100) “HAVSH(L)=0. IFtTRANSP(L).LT.1.F-100) TRANSD(L)=0. CDtL)=¢TRAmSM(L)-TRANSP(L))**2/4. Go To “GO 110 CALL PLOT(CD(L).Y,1) 10 CONTINJE RETURN END SUQRGUTIME FAHPUT COMMON/1/ XNU(300):A(300) COMMUN/2/ HAPSCUFM(601).ABSCOF0(600).DABSCDFP(601),ABSCOFP(600) COHMUN/3/ SY:SY,VAXPOS,GAML:GAWU: IOP(20):NUMBER:XMAX;NUMM COMMON/4/ HSHAPE’bGl):SHAPE(600)aIMAX.IMINoSLITNDTH:POL;SLITTRAP COWMflN/S/ TLABFL<4).FIFLO COMMON/é/ PANGF,HEIGHT.SU.P(8):P4E810PL,XNUZER0:SLITNORMoTOL UO”MON/7/ ”THAMSV(601).T9AMSW(600).DTRANSP(601)oTHANSPCbOU)u 1000(601).CU(60n) COMMON/B/ HPHI(6”1):PHT(600) COWMUN/Q/ ”FARADAY(601):FAQADAY(600) COMMON/ln/ DCUINT(601),C010T(000).DFARINT(601)nFARINT(600) COMMON/lfl/ ULNSHP(fi01).XLNSHD(600) "H g f} no in ‘=m,a99 X=0PL*PHI(J)+PUL SN=(SINF(X3)**9 XX=TRANSM(J)*IQARSP(J) 10 FAHAHAY(J)=SW*XX DO 20 K=13599 =-K 2n PARADAY(J)=FAHADAY(K) IF'IWP(4).NE.2) RETURN MUMMal =9500 X=LISX CALL PlOTquc>u1acannpn 2: NNNNNNNNNNNNNNNNNNNNNNNMNMNNNNNNNNN (.0 APPENDIX Vlll-A GROUND STATE COMBINATION DIFFERENCE TIT FOR 14N160 V COOOCDOODDCOOCOODQOCOOCOOOCCOOCDCOO D E J NNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHPHHP L 7/2 9/2 13/2 15/2 17/2 21/2 23/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 59/2 61/2 HGT. 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.80 2.00 2.00 2.00 2.00 2.00 3.91 2.40 2.65 2.00 2.00 2.05 2.07 0.00 2.00 2.67 2.00 2.00 1.54 2.00 0.80 1.11 1.03 1.33 1033 1.33 0.00 0.44 OBS. 15.5088 18.8957 25.7884 29.2080 32.6486 39.5050 42.9153 27.5128 34.3930 41.2639 48.1382 55.0015 61.8636 68.7263 75.5783 82.4288 89.2735 96.1112 102.9425 109.7659 116.5903 123.3991 130.2025 137.0010 143.7910 150.5671 157.3424 164.1065 170.8638 177.6128 184.3452 191.0731 197.7962 211.1806 217.8931 220 PRtD. 15.4766 18.9137 25.7838 29.2164 62.6471 39.5018 42.9253 27.5150 64.3906 41.2632 48.1334 35.0003 61.8635 68.7227 /S.5774 02.4271 59.2715 96.1102 102.9428 109.7689 116.5883 123.4005 160.2054 167.0025 143.7916 190.5725 157.3449 164.1086 170.8635 1’7.6U94 184.3462 191.0737 197.7919 211.2003 217.8905 (O-P) 0.0322 20.0180 0.0046 90.0084 0.0015 0.0032 20.0100 20.0022 0.0027 0.0007 0.0048 0.0012 0.0001 0.0036 0.0009 0.0017 0.0020 0.0010 30.0003 90.0030 0.0020 90.0014 90.0029 90.0015 90.0006 90.0054 90.0025 90.0021 0.0003 0.0034 90.0010 30.0006 0.0043 90.0197 0.0026 94+5Hw¢+s9+:HHAh5PAAk5Hw¢hsH+4ktHwArtHw*hrpwar5pwarbpw4r5944rtfiwarswwér4944r~H+4t9wwunoNHu 000°CDDCDOOCCCOOOOOCOOOODCOOOODDDOOCDDOCOOOCCDOODOODDO NNNNNNNNNNNNNNNNNNNNNNNNNNNNMHPPHHHHHHPHPHHPHPPHHPNNNN 63/2 65/2 67/2 69/2 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 0.46 0.00 0.00 1.44 4.44 7.19 9.29 5.99 4.33 4.38 4.53 3.43 4.53 3.15 4.86 3.37 2.48 4.02 3.43 3.08 0.11 0.59 0.23 0.21 0.00 6.49 4.38 2.00 2.00 3.30 2.00 2.00 2.94 2.67 3.61 2.40 2.80 2.71 2.35 2.00 2.00 2.00 2.40 2.00 0.00 0.00 1.33 1.54 1.54 1.11 1.39 1.33 1.33 1.33 221 224.5773 231.2435 237.8608 244.5585 5.0109 8.3645 11.7037 15.0449 18.3922 21.7368 25.0740 28.4238 31.7664 35.1067 38.4527 41.7943 45.1351 48.4791 51.8164 55.1594 58.5008 61.8383 65.1691 68.5089 71.8436 13.3770 20.0689 26.7511 33.4398 40.1269 46.8150 53.5011 60.1896 66.8753 73.5613 80.2440 86.9284 93.6102 100.2959 106.9757 113.6508 120.3317 127.0052 133.6732 140.3340 147.0000 153.6709 160.3331 166.9848 173.6407 180.2830 186.9201 193.5584 200.1914 224.5713 231.2430 237.9055 294.5591 5.0165 8.3608 11.7050 15.0491 18.3931 21.7369 85.0505 28.4239 51.7669 35.1097 68.4520 41.7939 45.1352 48.4760 21.8161 35.1555 98.4940 61.8315 65.1680 98.5033 71.8372 13.3773 20.0658 26.7541 33.4422 90.1300 96.8174 53.5044 60.1908 66.8766 73.5617 90.2459 86.9291 93.6113 100.2921 106.9716 113.6494 120.3255 126.9995 153.6712 140.3405 147.0069 193.6703 190.3303 106.9365 113.6386 150.2862 166.9288 193.5660 200.1974 0.0060 0.0005 80.0447 90.0006 80.0056 0.0037 20.0013 90.0042 90.0009 :0.0001 10.0065 50.0001 60.0005 90.0030 0.0007 0.0004 90.0001 0.0031 0.0003 0.0039 0.0068 0.0068 0.0011 0.0056 0.0064 90.0003 0.0031 90.0030 90.0024 90.0031 20.0024 90.0033 30.0012 90.0013 90.0004 60.0019 90.0007 30.0011 0.0038 0.0041 0.0014 0.0062 0.0057 0.0020 20.0065 90.0069 0.0006 0.0028 30.0017 0.0021 80.0032 50.0087 90.0076 80.0060 90 92 93 94 95 HwAhbwwAkt OOOC.OCI NNNNNN 59/2 63/2 65/2 67/2 69/2 71/2 S.D. 0.54 0.00 0.46 0.54 0.00 0.89 = 0.0032 222 206.8169 220.0403 226.6589 233.2465 239.8322 246.4155 206.8224 220.0511 226.6535 263.2472 269.8315 246.4057 90.0055 20.0108 0.0054 90.0007 0.0007 0.0098 Z omuomauww < HF‘HW‘HLPF‘HW*H‘HF‘PW‘P‘PF‘HH4htHF¢HWAP‘Rr‘HHJF39*39W4F‘HF‘HW‘P*H+‘HW‘F*HP*FW‘ LINE 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 61/2 63/2 67/2 69/2 71/2 73/2 75/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 NGT. 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3.00 2.00 0.00 0.00 1.00 1.25 1.25 1.25 1.06 1.00 1.00 1.00 0.31 0.00 0.25 0.31 0.80 0.50 1.25 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 223 OBSERVED 1871,0621 1867,6678 1864,2372 1860,7738 1857,2751 1853,7426 1850,1777 1846,5784 1842,9420 1839,2729 1835.5705 1831.8345 1828.0622 1824.2581 1820.4175 1816,5447 1812.6403 1808,6959 1804,7237 1800,7203 1796,6884 1792,6158 1788,4977 1784,3583 1780,1857 1775,9811 1771,7412 1767.4719 1763.1680 1758,8344 1754,4648 1745,6376 1741,1611 1736,6771 1732.1552 1727.5964 1867.2154 1863.6850 1860.1206 1856,5204 1852,8884 1849.2157 1845,5164 1841,7786 1838.0078 1834,2044 1830,3675 1826,4956 1822.5922 FREQUENCY FIT FOR 14N16O INPUTING GSCD CONSTANTS PREULCTED 1571,0644 1967,6686 1864,2387 1560,7745 1957,2761 1853,7436 1850,1769 1846,5761 1642,9412 1939,2722 1535,5692 1831,8322 1528,0612 1824,2563 1820,4175 1816,5449 1812,6386 1808,6985 1804,7249 1800,7177 1796,6771 1792,6031 1788,4960 1784,3558 1780,1826 1775,9767 1771,7382 1767,4673 1763,1641 1758,8290 1754,4621 1/45.6343 1741,1768 1736,6828 1732.1615 1227,6104 1867,2050 1863,6762 1560,1123 1856,5135 1852,8801 1849,2122 1045,5102 1841,7743 1838,0046 1534,2014 1630,3650 1826,4954 1822,5930 (09F) 50.0023 20.0008 90.0015 80.0007 90.0010 60.0010 0,0008 0,0023 0,0008 0.0007 0.0013 0,0023 0.0010 0.0018 90.0000 90.0002 0.0017 80.0026 20.0012 0.0026 0,0113 0,0127 0.0017 0,0025 0.0031 0,0044 0.0030 0.0046 0.0039 0.0054 0.0027 0,0033 90.0127 80.0057 90.0063 30.0140 0.0104 0,0088 0.0083 0.0069 0.0083 0,0035 0,0062 0,0043 0,0032 0,0030 0,0025 0.0002 1”0.0005. 50 52 53 54 55 56 57 58 59 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 tavtwwar-Hw495uwartpw¢9994;639wa9-FHA».Hwah-H4A+.HwAhtH+‘H-Hwa9=Hw49tww¢9-H449-Hw49594aH-H 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 63/2 65/2 67/2 69/2 71/2 73/2 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 63/2 65/2 67/2 2.00 2.00 0.00 2.00 4.00 2000 2.00 1.25 2.00 0.50 1,25 1.06 1.00 1.00 1.00 0.00 0.25 0.25 0.25 0.00 0.87 2.00 0.12 2,00 2.00 2,00 2.00 2.00 2.00 4.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 2,00 2.00 2,00 2.00 2.00 2.00 3.00 2.00 224 1818,6562 1814.6895 1810.6848 1806,6560 1802,5904 1798,4906 1794,3653 1790,2101 1786,0183 1781.7936 1777,5433 1773.2571 1768,9423 1764,5973 1760,2179 1751.3985 1746,9073 1742,4046 1737.8741 1733.3576 1728.7216 1881.0430 1884,3080 1887,5249 1890,7149 1893.8708 1896,9927 1900,0795 1903.1310 1906,1482 1909,1314 1912.0785 1914,9911 1917,8670 1920,7128 1923.5204 1926.2911 1929,0276 1931,7259 1934.3935 1937.0224 1939.6158 1942,1686 1944,6914 1947,1705 1949.6218 1952.0242 1954.3920 1956,7264 1959,0258 1961.2817 1965,6779 1967.8200 1969,9236 1818.6580 1814.6904 1810,6906 1806,6586 1802,5947 1798.4990 1794,3716 1790,2127 1786,0224 1781,8008 1777,5480 1773,2641 1768,9491 1764,6031 1760.2260 1/51,3790 1746,9089 1742,4077 1737,8754 1733,3118 1’28,7168 1681,0459 1884,3044 1587.5286 1890,7183 1693,8765 1696,9943 1900,0804 1903,1320 1906,1488 1909,1308 1912,0781 1914,9903 1917,8676 1920,7097 1923,5165 1926,2880 1929,0240 1931,7244 1934,3889 1937,0176 1939.6101 1942,1663 1944,6861 1947,1691 194919153 1952,0244 1954,3961 1956,7302 1959,0265 1961,2846 1965,6854 1967,8274 1969,9301 80.0018 90.0009 30.0058 90.0026 30.0043 60.0084 30.0063 90.0026 r0,0041 90.0072 30.0047 s0.0070 80.0068 50.0058 80.0081 0.0195 90.0016 80.0031 80.0013 0.0458 0.0048 80.0029 0.0036 60.0037 80.0034 90.0027 80.0016 80.0009 80.0010 90.0006 0.0006 0.0004 0.0008 90.0006 0,0031 0,0039 0,0031 0.0036 0,0045 0,0046 0.0048 0.0057 0,0023 0.0053 0,0014 0.0065 80.0002 80.0041 80.0038 80.0007 80.0029 90.0075 90.0074 90.0065 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 O‘F‘PW‘H‘H H4‘P‘HW‘F‘HW‘F‘h‘HJ‘F‘H3HiJP3HJJF‘HW4r4F*HWJF‘“Wflf‘H‘HW‘F‘HJ‘F‘HW‘F‘HWAh‘HJ‘H‘HW‘ R1 R1 R1 R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 PH PH PH PH PH PH PH PH OH 69/2 71/2 73/2 77/2 79/2 81/2 83/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 61/2 63/2 67/2 69/2 71/2 73/2 75/2 79/2 81/2 5/2 7/2 13/2 19/2 21/2 23/2 27/2 29/2 31/2 3/2 0.00 4.25 4.06 3.27 1.02 0.25 0.03 0.50 2.00 2.00 2.00 2.00 2.00 4.00 3.00 3.00 2.00 2.00 2.00 2.00 2.00 2,00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 3,00 5.00 4.25 4.06 4,06 2.52 0.25 0.03 3,50 4.25 0.81 0.59 0.00 0,83 0.22 0.50 0.19 3.44 225 1971,9874 1974,0119 1975.9970 1979,8486 1981,7183 1983.5390 1985,3251 1887.6334 1890.9134 1894.1523 1897.3539 1900,5179 1903,6422 1906.7335 1909,7827 1912.7972 1915.7691 1918,7034 1921,5985 1924.4551 1927.2751 1930.0551 1932,7929 1935,4916 1938,1563 1940,7772 1943,3607 1945,9001 1948,4071 1950.8699 1953.2875 1955,6704 1958,0141 1960,3188 1962.5791 1964,8004 1966,9819 1971,2184 1973.2801 1975,2977 1977,2728 1979,2082 1982,9551 1984,7701 1987,3424 1984,1496 1974,9266 1966.2034 1963.3488 1960,6465 1955,2907 1952,6705 1950,0931 1995,7093 1971,9931 1974,0162 1975,9989 1979,8417 1981,7011 1983,5185 1985,2936 1887.6273 1890,9038 1594,1433 1897,3456 1900.5105 1203:6378 1906,7273 1909,7788 1912,7921 1915,7669 1713.7032 1921,6007 1924,4593 1927,2789 1930,0591 1932,8000 1935,5014 1938,1632 1940,7852 1943,3673 1945,9094 1948,4115 1950,8735 1953,2952 1955,6767 1958,0179 1960,3188 1962,5792 1964,7993 1966,9790 1971,2173 1973,2758 1975,2941 1977,2722 197912101 1982,9656 1984,7834 1987,3585 198411631 1974,9277 1966,1980 1963,3943 1960,6409 1955,2772 1952,6629 1950,0904 199517192 90,0057 50,0043 90,0019 0,0069 0,0172 0,0205 0,0315 0,0061 0,0096 0,0090 0,0083 0,0074 0,0044 0,0062 0,0039 0,0051 0,0022 0,0002 80,0022 80,0042 90,0038 90.0040 90,0071 $0,0098 80.0069 50.0080 80,0066 90,0093 30,0044 '0,0036 90,0077 90,0063 90,0038 0,0000 30,0001 0,0011 0,0029 0,0011 0,0043 0,0036 0,0006 '0,0019 ”0,0105 90,0133 80,0161 90,0135 60,0011 0,0054 90,0455 0,0056 0,0135 0,0076 0,0027 90,0099 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 away-HwnH-H+& PF‘Hd‘HH‘h‘P ...: Hw4rsuwartHwAravnHwarah-HwApuserH-HwA r-Hwah-Hr-HMA saw-H949w4 0H 0H OH OH 0H 0H 0H 0H 0H 0H OH OH OH OH 0H 0H 0H 0H 0H 0H 0H RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH PL PL PL PL PL PL PL PL PL ‘PL 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 29/2 3.44 5.75 5,75 6.50 4.25 6.25 7.25 7.25 5.25 7,25 6.71 5.71 6.25 6.25 6.52 0.06 5.47 2.02 0.75 0.37 0.12 0.02 6.25 4.06 5.25 6.25 3.25 2.25 2.25 2.25 2.25 2.25 2,25 2.25 1.25 2.06 2.02 2.02 0.50 0.31 0.12 0.12 0.00 0.02 0.00 0.33 0.14 0.45 0.00 0.00 0.89 2.35 0,41 0.31 226 1995.8561 1996,0692 1996,3367 1996,6594 1997,0403 1997,4819 1997,9706 1998,5101 1999.1019 1999.7395 2000,4216 2001,1481 2001,9131 2002.7202 2003,5586 2004,4293 2005.3351 2006,2678 2007,2268 2008,2061 2009,2108 2010.2235 2000.7202 2004,2184 2007,7710 2011,3816 2015,0516 2018,7790 2022,5563 2026.3944 2030,2763 2034,2086 2038,1911 2042,2159 2046,2841 2050.3927 2054.5361 2058.7180 2062.9301 2067,1735 2071,4369 2075,7358 2080,0497 1743.7736 1739,8602 1735,8506 1731,7099 1727,4296 1723,0406 1718.5314 1713.8731 1709.1216 1704.2579 1694,1797 1995,8681 1996,0758 1996,3416 1996,6646 1997,0437 1997,4776 1997,9649 1998,5039 1999,0928 1999,7297 2000,4125 2001,1389 2001,9065 2002,7131 2003,5559 2004,4324 2005,3399 2006,2757 2007,2372 2008,2214 2009,2259 2010,2478 2000,7357 2004,2289 2007,7808 2011,3907 2015,0577 2018,7806 2022,5581 2026,3888 2030,2709 2034,2025 2038,1817 2042,2064 2046,2741 2050,3826 2054,5292 2058,7113 2062,9263 2067,1714 2071,4437 2075,7404 2080,0587 1743,7518 1739,8601 1735,8411 1731,6960 1727,4259 1723,0325 1718,5175 1713,8825 1709,1298 1104,2613 1694,1865 60,0120 90,0066 90,0049 30.0052 30,0034 0,0043 0,0057 0,0062 0,0091 0,0098 0,0091 0.0092 0,0066 0,0071 0,0027 50,0031 60,0048 “0,0079 90,0104 90,0153 -0,0151 90.0243 80,0155 90,0105 90,0098 n0,0091 90,0061 90,0016 80,0018 0,0056 0,0054 0,0061 0,0094 0,0095 0,0100 0,0101 0,0069 0,0067 0,0038 0,0021 n0,0068 80,0046 20,0090 0,0218 0,0001 0,0095 0,0139 0,0037 0,0081 0,0139 20,0094 «0,0082 90.0034 80,0068 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 HHHHHRHPHPHPHHFP PL PL PL 0L CL CL 0L 0L 0L 0L 0L RL RL RL RL RL 31/2 33/2 35/2 3/2 7/2 9/2 13/2 15/2 17/2 21/2 23/2 7/2 17/2 21/2 27/2 29/2 S.D. 0.06 0.31 0.06 0.00 0.37 0.00 0.16 0.00 0.00 0.00 0.00 0.00 2.08 0.18 0.04 0.04 = 0.0065 227 1688.9736 1683,6705 1678,2606 1756.1344 1755,3554 1754,7463 1753,2180 1752,2486 1751,1800 1748,6199 1747,1732 1770,2551 1782,6006 1786,6781 1791,9257 1793,4459 1688,9851 1683,6777 1678,2672 1756,1146 1755,3367 1754,7548 1753,2098 1752,2490 1751,1646 1748,6315 1747,1866 1770,2314 1782,6053 1186,6884 1791,9278 1793,4467 90,0115 20,0072 20,0066 0,0198 0,0187 90.0085 0,0082 «0,0004 0,0154 90,0116 n0,0134 0,0237 90,0047 "0.0103 90.0021 50,0008 OQVO‘U‘IAOJNF‘ Z HtIHMJh-Hrfi <>UIthnJHw= Hw-r‘wudhswwartwwdrtHwAthAArnH44r9HwarhuwAb4HwAk4Hwathwa m APPENDIX VIlIeB GROUND STATE COMBINATION DIFFERENCE (IT FOR 15N160 V OOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOODO DEL J NNNNNNNNNNNNNNNNNHHHHFHHHHHHHHHHHHH 1/2 3/2 5/2 7/2 972 11/2 13/2 15/2 17/2 1912 21/2 23/2 25/2 27/2 29/2 31/2 35/2 37/2 ll? 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 3572 HGT. 1.00 0.68 2.18 3.59 2.67 4.94 2.42 1.49 3.00 2.74 2.67 1.78 0.72 2.67 0.89 0.23 0.04 0.00 2.68 0.80 2.00 1.69 2.00 2.00 2.00 2.14 2.00 2.00 2.00 2.00 2.00 2.40 1.33 0.80 2.00 083. 4.8429 8.0673 11.2901 14.5262 17.7559 20.9792 24.2039 27.4327 30.6579 33.8824 37.1118 40.3365 43.5676 46.7858 50.0139 53.2276 59.6744 62.8878 12.9071 95.8223 32.2769 38.7247 45.1835 51.6308 58.0887 64.5441 71.0020 77.4426 83.9015 90.3481 96.7960 103.2312 109.6903 116.1280 122.5677 228 FRED. 4.8418 8.0696 11.2973 14.5249 17.7523 20.9796 24.2066 27.4334 50.6599 63.8559 07.1116 40.3363 43.5614 46.7355 3000088 93.2314 59.6739 62.8936 12.9114 25.3222 62.2772 68.7320 45.1863 91.6401 3800935 54.5458 70.9975 77.4484 43.8982 90.3469 96.7943 103.2402 109.6345 116.1270 122.5674 (099) 0.0011 “0.0023 90.0072 0.0013 0.0036 «0.0004 '0.0027 90.0007 90.0020 ”0.0035 0.0002 90.0003 0.0062 0.0003 0.0051 90.0038 0.0005 90.0058 $0.0043 0.0001 90,0003 90.0073 20.0028 n0.0093 90.0046 .90,0017 0.0045 90.0058 0.0033 0.0012 0.0017 no.0090 0.0058 0.0010 0.0003 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHPHHPF.HPHH.HPHPHPH OOOOOD DODOODOOOOOOODOOCQDOOOOOOQCCOOCOOCDOOCQDO-DOODGDO N NMNNNNNNNNNNNNNNNNNNMNNNNNNNHPHHHHHHNNNNNNNNMNNNNNNNN 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 61/2 63/2 67/2 69/2 71/2 5/2 7/2 13/2 15/2 17/2 19/2 21/2 27/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 63/2 1.54 1.39 1.33 0.00 0.80 0.54 1.39 1.03 1.39 0.00 0.00 1.33 0.00 0.00 1.90 0.00 0.19 2.00 0.00 0.00 0.44 0.00 0.38 0.57 0.00 0.00 0.00 2.00 2.00 2.00 2.00 2.00 0.80 2.00 2.00 2.00 2.67 2.40 1.33 2.00 1.54 0.50 0.67 0.44 1.39 0.80 0.54 1.39 0.00 0.54 1.39 0.73 0.32 0.00 229 129.0145 135.4534 141.8769 148.3080 154.7355 161.1580 167.5793 173.9878 180.4014 186.7935 193.2074 199.5898 205.9870 212.3904 225.1080 231.5062 237.8236 11.6097 14.9253 24.7937 28.1714 31.4802 34.7920 38.0861 47.9772 26.5254 33.1269 39.7871 46.4139 53.0349 59.6518 66.2638 72.8835 79.4805 86.0813 92.6750 99.2700 105.8534 112.4393 119.0052 125.5706 132.1308 138.6845 145.2241 151.7599 158.2898 164.8074 171.3214 177.8485 184.3203 190.8109 197.2805 203.7513 216.6528 129.0057 165.4415 141.8746 148.3048 154.7317 161.1550 167.5745 173.9897 190.4003 186.8059 193.2061 199.6004 205.9884 212.3696 225.1092 231.4666 237.8148 11.6074 14.9225 24.8614 28.1715 31.4799 34.7863 68.0905 47.9886 26.5299 33.1592 39.7864 46.4111 23.0329 99.6514 66.2661 72.8768 79.4830 86.0844 92.6805 99.2712 105.8560 112.4346 119.0067 125.5720 152.1303 168.6813 145.2247 191.7604 158.2881 164.8077 171.3189 177.8217 194.3159 190.8015 197.2783 203.7464 216.6562 0.0088 0.0119 0.0023 0.0032 0.0038 0.0030 0.0048 20.0019 0.0011 $0.0124 0.0013 90.0106 90.0014 0.0208 90.0012 0.0396 0.0088 0.0023 0.0028 20.0677 20.0001 0.0003 0.0057 80.0044 30.0114 20.0045 20.0323 0.0007 0.0028 0.0020 0.0004 50.0023 0.0067 30.0025 90.0031 90.0055 60.0012 «0.0026 0.0047 20.0015 «0.0014 0.0005 0.0032 50.0006 50.0005 0.0017 80.0003 0.0025 0.0268 0.0044 0.0094 0.0022 0.0049 30.0034 230 90 2 0 2 6712 0.71 229.5218 229.5311 90.0093 91 2 0 2 71/2 0.12 242.3417 242.3713 30.0301 S.D. = 0.0044 Z O'QNO‘U‘IbCAMH HW‘F‘PJ‘F‘PW‘F‘P» ‘OGDQCI0156dn3943 NNNNNNNNN mqousumno < LINE I‘F‘PW‘V‘HW‘PPHW‘r‘Hn‘h‘HW‘r‘HW‘f‘HW‘F.HH‘F‘HW‘t‘HW‘F‘PW‘F‘HH‘F‘HW‘F‘HW‘P‘HW‘H‘HW‘ P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 77/2 75/2 73/2 71/2 67/2 65/2 63/2 61/2 59/2 57/2 55/2 53/2 51/2 49/2 47/2 45/2 43/2 41/2 39/2 37/2 35/2 33/2 31/2 29/2 27/2 25/2 23/2 21/2 19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 1/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 HGT. 0.50 0.12 0.00 4.00 0.00 0.00 1.00 0.00 0.00 1.06 1.06 1.06 0.31 0.50 0.00 1.00 1.06 1.25 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.50 2.00 0.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 231 OBSERVED 1695,7322 1700.1321 1704,4740 1708.8576 1717.4356 1721.7132 1725.9500 1730,1360 1734,3142 1738.4392 1742.5464 1746.6172 1750.6611 1754,6751 1758.6554 1762.6093 1766,5163 1770.4089 1774,2697 1778.0889 1781,8808 1785,6504 1789,3694 1793,0696 1796.7309 1800.3657 1803.9610 1807,5305 1811.0696 1814,5759 1818.0386 1821.4766 1824,8814 1828.2559 1831.5973 1834.9074 1838.1834 1847.8135 1854.0782 1857.1583 1860.2025 1863.2221 1866.2067 1869,1583 1872.0747 1874.9630 1877.8083 1880.6324 1883,4177 FREQUENCY FIT FOR 15N160 INPUTING GSCD CONSTANTS PREDICTED 1695,7341 1100,1370 1104.5111 1/03.8562 1717,4584 1721,7151 1725,9419 1730,1385 1734.3048 1738,4407 1142,5459 1/46,6203 1750,6638 1154,6761 1758.6573 1162,6072 1766,5256 1770,4125 1774,2678 1778,0914 1181,8832 1785,6432 1789,3712 1793,0673 1796,7313 1900,3633 1803.9631 1507,5308 1811,0662 1814,5694 1818,0404 1321.4790 1924,8853 1828,2592 1831,6007 1234.909? 1938,1863 1847,8211 1854,0813 1857,1625 1860,2109 1963.2266 1866,2095 1569,1595 1972,0766 1874,9606 1877,3117 1880,6295 1083:0102 (0!?) 90.0019 90.0049 20.0371 0.0014 90.0228 20.0019 0.0081 90.0025 0.0094 60.0015 0.0005 90.0031 30.0027 00.0010 20.0019 0.0021 I0.0093 80.0036 0.0019 90.0025 50.0024 0.0072 90.0018 0.0023 30.0004 0.0024 ”0.0021 20.0003 0.0034 0.0065 00.0018 80.0024 20.0039 20.0033 20.0034 90.0023 90.0029 ”0.0076 -0.0031 I0.0042 30.0084 R0.0045 !0.0028 90.0012 30.0019 0.0024 80.0034 0.0029 0.0035 HW‘F‘HW‘F‘FW‘F‘HW‘P‘HW‘P‘FH‘P‘H‘HW‘FPHW‘F‘PW‘F‘HW‘P‘HW‘F‘Hfl‘k‘flfl‘Flflwir‘HH‘FIPW‘P‘PW‘F‘HW‘ R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 61/2 63/2 65/2 67/2 69/2 71/2 75/2 75/2 73/2 71/2 67/2 65/2 63/2 61/2 59/2 57/2 55/2 53/2 51/2 49/2 47/2 45/2 43/2 41/2 39/2 37/2 35/2 33/2 31/2 29/2 27/2 25/2 23/2 21/2 19/2 17/2 15/2 2.00 3.00 1.00 0.50 2.00 2.00 2.00 2,00 2.00 2,00 2.00 2.00 1,00 2.00 2.00 1.00 2.00 2.00 2.00 2,00 1.25 1.25 0.50 0.00 0.12 0,50 0.50 0.00 0.00 0.19 1.37 1.06 0,31 0.00 1.06 0.31 0.50 1.06 0.25 1.00 1.25 1.25 2900 2.00 2,00 2.00 2.00 2.00 2.00 0.50 2.00 2.00 2,00 2,00 232 1886,1654 1888,8816 1891,5711 1894,2169 1896,8374 1899,4234 1901,9697 1904,4862 1906,9634 1909,4106 1911,8191 1914,1965 1916,5342 1918,8406 1921,1077 1923,3434 1925,5398 1927,7002 1929,8260 1931,9140 1933,9656 1935,9802 1937,9557 1941,8065 1696,8332 1701,2654 1705,6775 1714,4074 1718,7343 1723.0202 1727,2815 1731,5179 1735,7232 1739,8789 1744,0501 1748,1706 1752,2571 1756,3202 1760,3483 1764,3489 1768,3187 1772,2598 1776,1782 1780,0440 1783,8990 1787,7169 1791,5102 1795,2653 1798,9888 1802,6814 1806,3468 1809,9735 1813,5698 1817,1362 1886,1655 1888,8833 1891,5677 1894,2183 1696,8352 1899,4182 1901,9671 1?04,4818 1906,9621 1909,4078 1911,8188 1914,1948 1916I5356 1918:3410 1921,1108 1923,3446 1725,5423 1927,7036 1929,8280 1931,9154 1933,9654 1935,9776 1937,9518 1?41,7841 1696,8139 1701,2549 1705,6667 1714,4026 1718,7267 1723,0216 1727,2873 1731,5237 1735,7308 1139,9086 1744,0570 1748,1759 1752,2652 1756:3249 1160,3548 1764,3548 1768:3245 1172.2646 1776,1742 1780,0534 1783,9019 1737,7197 1791,5066 1795,2624 1798,9869 1802,6800 1906,3414 1409,9710 1813,5685 1817,1337 ”0,0001 80,0017 0,0034 30,0014 0,0022 0,0052 0.0026 0,0044 0,0013 0,0028 0,0003 0,0017 90,0014 90.0004 90,0031 90,0012 30,0025 00.0034 90,0020 80,0014 0,0002 0,0026 0.0039 0,0224 0,0193 0,0105 0.0108 0,0048 0,0076 90,0014 20,0058 20,0058 90,0076 I0,0297 80,0069 30,0053 «0,0081 ‘90100‘7 90.0065 90,0059 90.0061 90,0048 0,0040 l0,0094 u0,0029 90,0028 0,0036 0.0029 0,0019 0,0014 0,0054 0,0025 0,0013 0,0025 104 109 104 107 103 109 110 111 112 113 114 119 116 117 119 119 120 121 122 123 124 125 126 127 123 129 139 131 132 133 134 139 134 137 134 139 140 141 142 143 144 149 146 147 145 149 190 151 152 153 154 155 154 157 9+- tit-Pw3rtuwa+tHH¢FwaavsunartuwfiusuwfiusHwav-HHAp-nwa149wAr-Hw‘hsuuar-Huar-HuAr-uua+-Hw- 13/2 11/2 9/2 7/2 5/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 63/2 65/2 67/2 71/2 29/2 25/2 23/2 21/2 19/2 17/2 15/2 13/2 11/2 9/2 7/2 3/2 31/2 27/2 21/2 19/2 17/2 2,00 0.00 2.00 2.00 2.00 0.00 0.00 2.00 2.00 2,00 2.00 2,00 2.00 2.00 2.00 2.00 4.00 3.00 1.00 2.00 2.00 0.31 0.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.50 1.00 2.00 1.25 1.25 0.12 0.06 0.25 0.33 0.31 0.50 0.25 0.00 0.00 2.00 0.00 2.00 0.00 0.50 0.00 2.00 0.50 0.00 233 1820,6702 1824,1794 1827,6382 1831,0739 1834,4720 1854,1636 1857,3063 1860,4573 1863,5501 1866,6047 1869,6253 1872,6106 1875,5649 1878,4693 1881-3466 1884,1852 1886,9869 1889,7524 1892,4833 1895,1834 1897,8304 1900,4495 1903,0334 1905,5724 1908,0801 1910,5469 1912,9780 1915.3715 1917,7274 1920,0435 1922.3288 1924,5620 1926,7715 1931,0602 1933,1533 1935,1993 1939,1749 1663,5706 1673,1964 1677,8582 1682,4009 1686,8447 1691,1701 1695,4485 1699,4708 1703,4600 1707,3133 1711,0583 1718,1864 1708,0992 1711,5478 1715,9443 1717,1929 1718,3249 1820,6666 1924,1667 192716340 1831,0683 1834,4692 1954,1639 1857,3259 1060,4530 1963,5449 1966,6014 1§69,6223 1872,6075 1875,5568 1978,4699 1881,3468 1984,1872 1886,9909 1889,7579 199214379 1995,1809 1897,8367 1900,4551 1703,0361 1905,5795 1908,0853 1910,5533 1912,9835 1915,3759 1?17,7303 1?20,0467 1?22,3252 192415959 1926,7680 1931,0588 1?33,1472 1935,1978 1939,1856 1063,5802 1673,2099 1677,8654 1682,4120 1686,8477 1991,1710 1695,3800 1699,4733 1103,4497 140713030 1711,0471 1718,1648 110811137 1711,5688 1715,9559 1717,1982 1113,3276 0,0036 0,0127 0,0042 0,0056 0,0028 90.0003 90.0196 0,0043 0,0052 0,0033 0,0030 0,0031 0,0081 90.0006 90,0002 90.0020 00,0040 60,0055 n0,0046 0.0025 00,0063 00,0056 50,0027 50,0071 00,0052 90,0064 e0,0055 90.0044 20,0029 30,0032 0,0036 90,0036 0,0035 0,0014 0,0061 0,0015 80,0107 80,0096 90,0135 20,0072 20,0111 90.0030 00,0009 0,0685 90,0025 0,0103 0,0053 0,0112 0,0216 30,0145 20,0210 30,0116 30.0053 90,0027 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 IAPtHw‘HPHwAH-H HW‘H‘PW‘ HJAP‘HWAPAPPHw‘P-HwAPsHuaPPHWAP-HHAP-HHAPtH-H44k- F‘HW‘F‘FH‘?‘ CL CL CL 0L RL RL PH PH PH PH PH PH PH PH 0H OH OH OH OH OH OH OH OH OH OH 0H 0H 0H 0H 0H OH OH OH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH 15/2 13/2 7/2 5/2 7/2 27/2 21/2 19/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 37/2 39/2 41/2 1/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 S.D. 0.47 0.50 0.12 0.02 0.02 0.00 = 0,0059 234 1719,3415 1720,2422 1722,2386 1722,6680 1736,6579 1757,8669 1931,4675 1934,2000 1939,8185 1942,6763 1945,5907 1948,5692 1951,6154 1954,7006 1962,7679 1962,9055 1963,0996 1963,3476 1963,6441 1963,9958 1964,4011 1964,8510 1965,3521 1965,8982 1966,4860 1967,1174 1967,7831 1968,5015 1969,2411 1970,0260 1971,6784 1972,5484 1973,4387 1967,6108 1977,8723 1981,4000 1984,9774 1988,6050 1992,2837 1996,0100 1999,7806 2003,5978 2007,4539 2011,3507 2015,2872 2019,2551 2023,2536 2027,2882 2031,3528 2035,4363 1119,3425 1120,2414 1722,2305 1122,6545 1736,6089 1157,8816 1931,4602 1934,1894 1939,7941 1942,6722 1945,6023 194815352 1951,6218 1954,7127 1952,7822 1962,9191 1963,1101 1?63,3546 1963,6518 1964,0008 1964,4004 1964,8493 1965,3461 1265,8893 1966,4771 199711077 1967,7791 1968,4893 1969,2362 1970,0174 1971,6737 1972,5441 1973,4394 1997:6240 1977,8795 138114042 1984,9804 1988,6070 1992,2827 1996,0060 1999,7753 2003,5887 2007,4445 2011,3406 2015,2748 2019,2450 2023,2487 2027,2838 2031,3476 2035,4377 20,0010 0,0008 0,0081 0,0135 0,0490 90,0147 0,0073 0,0106 0,0244 0,0041 90,0116 30,0160 60,0064 ~0,0121 80,0143 60,0136 $0,0105 50,0070 30,0077 30,0050 0,0007 0,0017 0,0060 0,0089 0,0089 0,0097 0,0040 0,0122 0,0049 0.0047 0,0043 60,0007 30,0132 90,0072 20,0042 .0.0030 e0,0020 0,0010 0,0040 0,0053 0,0091 0,0094 0,0101 0,0124 0,0101 0,0049 0,0044 0,0052 90,0014 Z omuamaump < tap-94¢PIHwAthwaht944PPHwAPPHwa+4944»-HwérspwfipnnwaP-HwAw-H LINE P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 61/2 63/2 67/2 69/2 71/2 73/2 75/2 APPENDIX IXPA FREQUENCY FIT FOR 14N160 HGT, 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2,00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2,00 2.00 3.00 2.00 0.00 0.00 1.00 1.25 1.25 1.25 1.06 1.00 1.00 1.00 0,31 0.00 0.25 0.31 0.80 0950 OBSERVED 1871,0621 1867,6678 1864,2372 1860,7738 1857,2751 1853,7426 1850,1777 1846,5784 1842,9420 1839,2729 1835,5705 1831,8345 1828,0622 1824,2581 1820,4175 1816,5447 1812,6403 1808,6959 1804,7237 1800,7203 1796,6884 1792,6158 1788,4977 1784,3583 1780,1857 1775,9811 1771,7412 1767,4719 1763,1680 1758,8344 1754,4648 1745,6376 1741,1611 1736,6771 1732,1552 1727,5964 235 PREDICTED 1871,0603 1867,6650 1864,2355 1860:7719 1857,2742 1653,7423 1850,1763 1846,5762 1842,9420 1939,2736 1835,5712 1331,5346 1828,0640 1524,2593 1320,4206 1816,5479 1012,6412 1808,7007 1904:7264 1800,7183 1796,6767 1792,6016 1(88,4931 1784,3515 1780,1769 1775,9695 1771,7296 1767,4575 1763,1535 1758,8179 1254:4511 1745,6256 1741,1678 1736,6808 1132,1651 1727,6214 (O-P) 0,0018 0,0028 0,0017 0.0019 0,0009 0,0003 0,0014 0,0022 0.0000 90,0007 90,0007 90,0001 60,0018 90,0012 "0,0031 80,0032 20,0009 90,0048 90,0027 0,0020 0.0117 0,0142 0.0068 0,0088 0,0116 0,0116 0,0144 0,0145 0,0165 0,0137 0,0120 90,0067 '000037 80,0099 90,0250 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 53 54 55 56 57 58 59 60 61' 62 63 64 65 66 67 68 69 7o 71 72 73 74 75 76 77 7e 79 an 81 82 84 85 86 87 89 90 Pf‘FH‘F‘PW‘F‘HW‘P‘HW‘P‘HW‘P‘PWJF3HW‘P‘PM‘F‘Ht‘HH‘F‘HW‘#lHWJF‘HW‘k‘HwathW‘P‘PW‘F‘HH‘F‘PW‘ P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 91 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 63/2 65/2 67/2 69/2 71/2 73/2 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 1.25 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2,00 2,00 2.00 0.00 2,00 4,00 2.00 2.00 1.25 2.00 0.50 1.25 1.06 1.00 1.00 1.00 0.00 0.25 0.25 0.25 0.00 0.87 2.00 0.12 2.00 2,00 2,00 2,00 2.00 2.00 4.00 3.00 3.00 3.00 2.00 2.00 2,00 2.00 2,00 2,00 2.00 2,00 236 1867,2154 1863,6850 1860,1206 1856,5204 1852,8884 1849,2157 1845,5164 1841,7786 1838,0078 1834,2044 1830,3675 1826,4956 1822,5922 1818,6562 1814,6895 1810,6848 1806,6560 1802,5904 1798,4906 1794,3653 1790,2101 1786,0183 1781,7936 1777,5433 1773,2571 1768,9423 1764,5973 1760,2179 1751,3985 1746,9073 1742,4046 1737,8741 1733,3576 1728,7216 1881,0430 1884,3080 1887,5249 1890,7149 1893,8708 1896,9927 1900,0795 1903,1310 1906,1482 1909,1314 1912,0785 1914,9911 1917,8670 1920,7128 1923,5204 1926,2911 1929,0276 1931,7289 1934,3935 1937,0224 1367,2148 1063,6853 1860,1206 1856,5209 1952,8864 1§4912175 1845,5143 1841,7772 1838,0064 1834,2021 1830,3645 1926,4940 1822,5907 1818,6549 1814,6868 1510,6866 1806,6544 1802,5905 1798,4950 1794,3681 1790,2098 1786,0202 1781,7996 1777,5478 1773,2649 1768,9510 1764,6060 1760,2298 1751,3834 1746,9129 1/42,4106 1137,8762 1/33,3094 1728,7099 1881,0413 1884,2999 1837:5242 1090,7142 1093,8698 1896,9911 1900,0778 1903,1301 1906,1476 1909,1305 1912,0785 1914,9916 1?17,5697 1920:7126 1923,5202 1926,2923 1929,0288 1?31,7296 1934,3944 1937,0232 0,0006 90,0003 0,0000 0,0020 "0.0018 0,0021 0,0014 0,0014 0,0023 0,0030 0,0016 0,0015 0,0013 0,0027 20,0018 0,0016 90,0001 90,0044 60,0028 0,0003 ll.060019 R0,0060 20,0045 80,0078 70,0087 90,0087 90,0119 0,0151 90,0056 80,0060 90,0021 0,0482 0,0117 0,0017 0,0081 0,0007 0,0007 0,0010 0,0016 0,0017 0,0009 0,0006 0,0009 90,0000 30,0005 90,0027 0,0002 0,0002 20,0012 9010012 90,0007 £0,0009 90,0008 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 PF‘H‘HW‘F‘HW*F‘PW‘H*RF‘HHJP‘HW3F3H4‘HH‘F‘HW‘P‘HJJh699Jh‘HfibHH4F*H+‘HHJP‘HF‘HH4P‘HF*P‘Ht* R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 63/2 65/2 67/2 69/2 71/2 73/2 77/2 79/2 81/2 83/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 61/2 63/2 67/2 69/2 71/2 73/2 2,00 2.00 2.00 2.00 1,00 2.00 2.00 2.00 2.00 2.00 2.00 3.00 2,00 0.00 4,25 4,06 3.27 1.02 0.25 0.03 0.50 2.00 2.00 2,00 2.00 2.00 4.00 3.00 3.00 2,00 2.00 2.00 2.00 2.00 2,00 2.00 2.00 2.00 2.00 2,00 2.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 3.00 5.00 4.25 4.06 4.06 237 1939,6158 1942,1686 1944,6914 1947,1705 1949,6218 1952,0242 1954,3920 1956,7264 1959,0258 1961,2817 1965,6779 1967,8200 1969,9236 1971,9874 1974,0119 1975,9970 1979,8486 1983,5390 1985,3251 1887,6334 1890,9134 1894,1523 1897,3539 1900,5179 1903,6422 1906,7335 1909,7827 1912,7972 1915,7691 1918,7034 1921,5985 1924.4551 1927.2751 1930,0551 1932,7929 1935,4916 1938,1563 1940,7772 1943,3607 1945,9001 1948,4071 1950,8699 1953,2875 1955,6704 1958,0141 1960,3188 1962,5791 1964,8004 1966,9819 1971,2134 1973,2801 1975,2977 1977,2728 1939,0156 1942,1716 1944,6910 1947,1734 1949,6189 1952,0270 1954,3977 1?56,7306 1959,0257 1961,2827 1965,6815 1967,8228 1969,9253 1971,9886 1974,0125 1975,9970 1979,8467 1981:7117 1983,5365 1985,3211 1887,6378 1890,9138 1594,1526 1597,3541 190015180 1903,6442 1906,7325 1909,7827 1912,7946 1915,7680 1918,7029 1921,5990 1924,4563 1927,2745 1930,0536 1932,7935 1935,4940 1938,1550 1940,7765 1943,3583 1945,9004 1948,4027 1950,8651 1953,2875 1955,6698 125800121 1960,3141 1962,5759 1964,7974 1966,9784 1971,2190 1973,2783 1975,2968 1977,2745 0,0002 80,0030 0,0004 9'0,0029 0,0029 '0,0028 90,0057 90,0042 0.0001 90,0010 -0,0036 90,0028 10,0017 80,0012 80,0006 '0,0000 0,0019 0,0066 0,0025 0,0040 90,0044 90,0004 90,0003 90,0002 '0,0001 '0,0020 0,0010 0,0000 0,0026 0,0011 0,0005 30.0005 90,0012 0,0006 0,0015 90,0006 90,0024 0,0013 0,0007 0,0024 60,0003 0,0044 0,0048 0,0000 0,0006 0,0020 0,0047 0,0032 0,0030 0,0035 90.0006 0,0018 0,0009 90,0017 ......fi.._——_q.-—— ——v , 7 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 l‘b‘Pd‘b‘HW‘F‘P HwaH-HwaF-H» - HO‘F‘HW‘FIHWAF‘HHJFiF‘HJJF‘HW4F‘HW‘F‘Hfléhfiflwfih‘ HrAHwAw-Hwah-P 1.... R2 R2 R2 PH PH PH PH PH PH PH PH PH 0H 0H 0H 0H 0H 0H 0H 0H OH OH 0H 0H 0H 0H 0H 0H 0H 0H 0H OH OH OH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH RH 75/2 79/2 81/2 5/2 7/2 13/2 19/2 21/2 23/2 27/2 29/2 31/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 2.52 0.25 0.03 3,50 4,25 0.81 0.59 0.00 0.83 0.22 0.50 0.19 3.44 3.44 5.75 5,75 6.50 4,25 6.25 7,25 7.25 5.25 7.25 6.71 5,71 6.25 6.25 6.52 0.06 5.47 2.02 0.75 0.37 0.12 0.02 6,25 4,06 5.25 6,25 3,25 2.25 2.25 2,25 2,25 2.25 2.25 2.25 1.25 2,06 2,02 2.02 0.50 0.31 0.12 238 1979,2082 1982,9551 1984,7701 1987,3424 1984,1496 1974,9266 1966,2034 1963,3488 1960,6465 1955,2907 1952,6705 1950,0931 1995,7093 1995,8561 1996,0692 1996,3367 1996,6594 1997,0403 1997,4819 1997,9706 1998,5101 1999,1019 1999.7395 2000,4216 2001,1481 2001,9131 2002,7202 2003,5586 2004,4293 2005,3351 2006,2678 2007,2268 2008,2061 2009,2108 2010,2235 2000,7202 2004,2154 2007,7710 2011,3816 2015,0516 2018,7790 2022,5563 2026,3944 2030,2763 2034,2086 2038,1911 2042,2159 2046,2841 2050,3927 2054,5361 2058,7150 2062,9301 2067,1735 2071,4369 1979,2112 1982,9610 1984,7739 1987,3497 1984,1554 1974,9249 1966,2010 1963,3990 1960,6472 1955,2855 1952,6714 1950,0986 1995,7098 1995,8596 1996,0685 1996,3358 1996,6605 1997,0414 1997,4773 1997,9666 1998,5074 1999,0981 1999,7364 2000,4202 2001,1471 2001,9148 2002,7207 2003,5621 2004,4364 2005,3409 2006,2728 2007,2293 2008,2077 2009,2055 2010,2198 2000,7259 2004,2197 2007,7726 2011,3838 2015,0524 2018,7770 2022,5565 2026,3890 2030,2730 2034,2065 2038,1873 2042,2132 2046,2818 2050,3905 2054,5369 2058,7181 2062,9314 2067,1740 2071,4429 20,0030 90,0059 90,0038 90,0073 90,0058 0,0017 0.0024 80.0502 90,0007 0,0052 30,0009 10,0055 90,0005 90,0035 0,0007 0,0009 80,0011 90,0011 0,0046 0,0040 0,0027 0,0038 0,0031 0,0014 0,0010 !0,0017 £0,0005 90,0035 90,0071 90,0058 90,0050 90,0025 80,0016 0,0053 0,0037 90,0057 -0,0013 P0,0016 v0.0022 80,0008 -0,0002 0,0054 0,0033 0:0021 0,0038 0,0027 0,0023 0,0022 20,0008 90,0001 90,0013 90,0005 90,0060 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 Hk-HwarAHWAFusJHsH+¢HsH+¢HHJ0&HwAFAQWAPus3ktH RH RH PL PL PL PL PL PL PL PL PL PL PL PL PL PL 0L CL CL CL CL 0L 0L 0L RL RL RL RL RL 39/2 41/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 29/2 31/2 33/2 35/2 3/2 7/2 9/2 13/2 15/2 17/2 21/2 23/2 7/2 17/2 21/2 27/2 29/2 S.D. 0.12 0.00 0.02 0,00 0.33 0.14 0.45 0.00 0.00 0.89 2,35 0,41 0.31 0,06 0.31 0.06 0.00 0.37 0,00 0.16 0.00 0.00 0.00 0.00 0.00 2.08 0.18 0.04 0.04 = 0,0035 239 2075,7358 2080,0497 1743,7736 1739,8602 1735,8506 1731,7099 1727,4296 1723,0406 1718,5314 1713,8731 1709,1216 1704,2579 1694,1797 1688,9736 1683,6705 1678,2606 1756,1344 1755,3554 1754,7463 1753,2180 1752,2486 1751,1800 1748,6199 1747,1732 1770,2551 1782,6006 1786,6781 1791,9257 1793,4459 2075,7353 2080,0483 1743,7655 1739,8721 1135,8512 1131,7039 1727,4315 1723,0357 1715,5182 1’13,8810 1/09,1261 1704,2558 1694,1787 1888,9770 1683,6701 1678,2608 1156,1304 1155,3499 1754,7663 1753,2170 1/52,2539 1751,1670 1748,6294 1747,1825 1770,2441 1782,6071 1786,6858 1791,9211 1/93,4395 0,0005 0,0014 0,0081 -0,0119 90.0006 0.0060 90,0019 0,0049 0,0132 90,0079 90,0045 0,0021 0,0010 -0,0034 0,0004 90,0002 0,0040 0,0055 90,0200 0,0010 50,0053 0,0130 ”0,0095 "0.0093 0,0110 “0,0065 50,0077 0,0046 0,0064 Z CDVOUIAOJNH < HranaP-anHwAPsHranAHIH+aHuawsprAHwArsH+4H44hnprfiuwAw-9 LINE P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 77/2 75/2 73/2 71/2 67/2 65/2 63/2 61/2 59/2 57/2 55/2 53/2 51/2 49/2 47/2 45/2 43/2 41/2 39/2 37/2 35/2 33/2 31/2 29/2 27/2 25/2 23/2 21/2 19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 APPENDIX IXeB FREQUENCY FIT FOR 150160 HGT, 0.50 0,12 0.00 4.00 0,00 0.00 1.00 0.00 0,00 1,06 1.06 1.06 0.31 0.50 0,00 1.00 1.06 1.25 2,00 2,00 2.00 2,00 2,00 2,00 2.00 2,00 2.00 2,00 2,00 2,00 2,00 2.00 2,00 2.00 2.00 2.00 OBSERVED 1695,7322 1700,1321 1704,4740 1708,8576 1717,4356 1721,7132 1725,9500 1730,1360 1734,3142 1738,4392 1742,5464 1746,6172 1750,6611 1754,6751 1758,6554 1762,6093 1766,5163 1770,4089 1774,2697 1778,0889 1781,8808 1785,6504 1789,3694 1793,0696 1796,7309 1800,3657 1803,9610 1807,5305 1811,0696 1814,5759 1818,0386 1821,4766 1824,8814 1828,2559 1831,5973 1834,9074 240 PREDICTED 1695,7387 1700,1400 1704,5128 1708,8568 1717,4576 1721,7138 1725,9403 1730,1367 1734,3029 1738,4388 1742,5440 1746,6185 1750,6621 1754,6747 1758,6560 1/62,6061 1766,5247 1770,4118 1774,2672 1778,0909 1181,8829 1785,6429 1789,3710 1793,0671 1796,7311 1800,3631 1803,9628 1507,5304 1811,0657 1014,5688 1218:0396 1521,4780 1524,8841 1328,2578 1931,5991 1834,9080 (O-P) 30,0065 80,0079 00,0388 0,0008 ’010220 30,0006 0,0097 q0,0007 0,0113 0,0004 0,0024 90,0013 60,0010 0,0004 90,0006 0,0032 90,0084 90,0029 0,0025 -0,0020 20,0021 0,0075 90,0016 0,0025 90,0002 0,0026 90,0018 0,0001 0,0039 0,0071 90,0010 90.0014 50,0027 60,0019 *0,0018 20,0006 37 38 39 4o 41 42 43 44 4s 46 47 4a 49 so 51 52 53 54 55 56 57 53 59 60 61 62 63 64 65 66 67 68 69 7o 71 72 73 74 75 76 77 7e 79 an 82 83 84 85 86 87 88 89 90 HW‘F‘HW‘F‘HW‘P‘PW‘F‘Hm‘HH‘F‘HWJF‘HfiihbfiblhfiH)‘h‘HW‘F‘HF‘HW‘F‘HWJPPPt‘h‘HW‘P‘HW‘P‘HH‘P‘H‘H P1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 372 1/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 61/2 63/2 65/2 67/2 69/2 71/2 75/2 75/2 73/2 71/2 67/2 65/2 63/2 61/2 59/2 57/2 55/2 53/2 51/2 49/2 47/2 45/2 43/2 41/2 2.00 2,00 0,50 2,00 0.50 2,00 2,00 2.00 2.00 2,00 2.00 2.00 2.00 2.00 3.00 1,00 0,50 2,00 2,00 2.00 2.00 2.00 2.00 2.00 2,00 1.00 2.00 2.00 1,00 2.00 2.00 2,00 2.00 1.25 1.25 0.50 0.00 0.12 0,50 0,50 0,00 0,00 0.19 1037 1,06 0,31 0,00 1,06 0,31 0,50 1,06 0,25 1,00 1,25 241 1838,1834 1847,8135 1854,0782 1857,1583 1860,2025 1863,2221 1866,2067 1869,1583 1872,0747 1874,9630 1877,8083 1880,6324 1883,4177 1886,1654 1888,8816 1891,5711 1894,2169 1896,8374 1899,4234 1901,9697 1904,4862 1906,9634 1909,4106 1911,8191 1914,1965 1916,5342 1918,8406 1921,1077 1923,3434 1925,5398 1927,7002 1929,8260 1931,9140 1933,9656 1935,9802 1937,9557 1941,8065 1696,8332 1701,2654 1705,6775 1714,4074 1718,7343 1723,0202 1727,2815 1731,5179 1735,7232 1739,8789 1744,0501 1748,1706 1752,2571 1756,3202 1760,3483 1764,3489 1768,3187 1538,1844 1847,8187 1854,0787 1957:1598 1560,2032 1563,2238 1866,2068 1569,1568 1872,0740 1874,9583 1877,8095 1880,6276 1583,4125 158601641 1988,8823 1891,5670 1894,2181 1896,8354 1899,4187 1901,9681 1904,4831 1906,9638 1909,4098 1911,8211 1914,1972 1916,5382 1918,8436 1921,1132 1223,3468 1925,5440 1927,7045 1929,8280 1931,9142 1933,9627 1935,9731 1937,9450 1941,7716 1096,8213 1101,2611 1705,6716 1,1404051 1718,7282 1723,0221 1727,2869 1731,5226 1/35,7290 1739,9062 1744,0541 1748,1726 1752,2617 1756,3212 1760,3510 1164,3510 1768,3210 90.0010 90,0052 80,0005 30,0015 -0,0057 20,0017 60,0001 0,0015 0,0007 0,0047 90,0012 0,0048 0,0052 0,0013 90,0007 0,0041 90,0012 0,0020 0,0047 0,0016 0.0031 -0,0004 0,0008 90,0020 20,0007 90,0040 90,0030 40,0055 90,0034 90,0042 90,0043 90,0020 90,0002 0,0029 0,0071 0,0107 0,0349 0,0119 0,0043 0,0059 0,0023 0,0061 20,0019 “0.0054 90,0047 20,0058 90,0273 60,0040 90,0020 90,0046 90,0010 P0,0027 90,0021 60,0023 91 92 93 94 95 96 97 9a 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 146 141 142 143 144 HH‘E‘F‘PW‘F‘HWJF‘H‘HWJFPHWJP3F3HW4P3F3H43r1F*H%JF‘F‘H44F‘P‘PW‘F‘PW‘F‘HWJFAFPPWJP‘F‘P+3FPPW4F‘ P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 PL PL PL PL 39/2 37/2 35/2 33/2 31/2 29/2 27/2 25/2 23/2 21/2 19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 41/2 43/2 45/2 47/2 49/2 51/2 53/2 55/2 57/2 59/2 63/2 65/2 67/2 71/2 29/2 25/2 23/2 21/2 1,25 2,00 2,00 2900 2.00 2,00 2,00 2,00 0.50 2,00 2.00 2,00 2.00 2,00 0,00 2.00 2.00 2.00 0,00 0,00 2.00 2,00 2.00 2,00 2.00 2,00 2,00 2,00 2.00 4,00 3,00 1.00 2.00 2.00 0.31 0,50 2.00 2.00 2,00 2,00 2,00 2,00 2.00 2.00 0,50 1,00 2.00 1,25 1,25 0,12 0,06 0,25 0,33 0.31 242 1772,2598 1776,1782 1780,0440 1783,8990 1787,7169 1791,5102 1795,2653 1798,9888 1802,6814 1806,3468 1809,9735 1813,5698 1817,1362 1820,6702 1824,1794 1827,6382 1831,0739 1834,4720 1854,1636 1857,3063 1860,4573 1863,5501 1866,6047 1869,6253 1872,6106 1875,5649 1878,4693 1881,3466 1884,1852 1886,9869 1889,7524 1892,4833 1895,1834 1897,8304 1900,4495 1903,0334 1905,5724 1908,0801 1910,5469 1912,9780 1915,3715 1917,7274 1920,0435 1922,3288 1924,5620 1926,7715 1931,0602 1933,1533 1935,1993 1939,1749 1663,5706 1673,1964 1677,8582 1682,4009 1772,2610 1776,1708 1780,0503 1783,8992 1787,7174 1791,5047 1795,2610 1798,9860 1802,6796 1806,3415 1909,9716 1813,5697 1917,1355 1520,6688 1824,1694 192716372 1531,0718 1934,4731 1854,1687 1957,3306 1960,4575 1863,5491 1866,6053 1869,6258 1872,6105 1875,5592 1878,4718 1981,3480 1884,1876 1086,9907 1889,7569 1892,4862 1895,1784 1997,8334 1900,4511 1903,0314 1905,5743 1908,0796 1910,5473 1912,9773 1915,3697 1917,7243 1920,0412 1922,3204 1924,5619 1926,7657 1931,0607 1933,1520 1935,2060 1939,2024 1663,5676 1973,2011 1677,8589 1682,4079 '0,0012 0,0074 2"0.0063 90,0002 90,0005 0,0055 0,0043 0,0028 0,0018 0,0053 0,0019 0,0001 0,0007 0,0014 0,0100 0,0010 0,0021 90,0011 00,0051 90,0243 90,0002 0,0010 90,0006 90,0005 0,0001 0,0057 90,0025 90,0014 90,0024 90,0038 90,0045 90,0029 0,0050 "0.0030 90,0016 0,0020 90,0019 0,0005 90,0004 0,0007 0,0018 0,0031 0,0023 0.0084 0,0001 0,0058 90,0005 0,0013 90,0067 50,0275 0,0030 «0,0047 90,0007 90,0070 145 146 147 140 149 150 151 152 153 154 155 153 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 173 177 170 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 193 197 190 i‘t‘Pfl‘F‘Pfi‘F‘PP‘HflJ H 14%‘H‘H4¢F‘HW*F‘HH‘F3HH4P‘F‘HWJF‘P‘Hwih39W‘F‘H‘Pfl4f‘HPHW*F* 1artnw¢+~uw¢ PL PL PL PL PL PL PL PL 0L 0L 0L 0L 0L 0L 0L 0L 0L RL RL PH PH PH PH PH PH PH PH 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H 0H RH RH RH RH RH RH RH 19/2 17/2 15/2 13/2 1112 9/2 7/2 3/2 31/2 27/2 21/2 19/2 17/2 15/2 13/2 7/2 5/2 7/2 27/2 21/2 19/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 37/2 39/2 41/2 1/2 7/2 9/2 11/2 13/2 15/2 17/2 1972 0.50 0,25 0,00 0,00 2,00 0,00 2.00 0,00 0.50 0,00 2,00 0,50 0,00 2.00 2,00 2.00 2.00 0.00 0.06 0,04 0,00 0,00 0,50 0.00 0,52 1,50 0.52 1,00 4.00 4,00 4,00 4,00 5,00 3,06 1.19 3.00 4,00 4.00 1,60 0,47 4,00 4,00 2.00 0,50 0,12 0,03 1,00 2,00 2,00 2.00 2.00 2.00 2,00 2,00 243 1686,8447 1691,1701 1695,4485 1699,4708 1703,4600 1707,3133 1711,0583 1718,1864 1708,0992 1711,5478 1715,9443 1717,1929 1718,3249 1719,3415 1720,2422 1722,2386 1722,6680 1736,6579 1757,8669 1931,4675 1934,2000 1939,8185 1942,6763 1945,5907 1948,5692 1951,6154 1954,7006 1962,7679 1962,9055 1963,0996 1963,3476 1963,6441 1963,9958 1964,4011 1964,8510 1965,3521 1965,8982 1966,4860 1967,7831 1968,5015 1969,2411 1970,0260 1971,6784 1972,5484 1973,4387 1967,6108 1977,8723 1981,4000 1984,9774 1988,6050 1992,2837 1996,0100 1999,7806 1686,8461 1691,1717 1695,3830 1699,4785 1703,4569 1707,3169 1711,0574 1713,1770 1708,0993 1711,5574 1715,9509 1717,1956 1715,3274 1719,3446 1720,2457 1722,2403 1722,6655 1736,6181 1757,8696 1931,4640 1934,1913 1939,7920 1942,6683 1945,5967 1948,5781 1951,6135 1954,7034 1962,7726 196299102 1963,1023 1963,3481 1963,6469 1963,9977 1964,3991 1964,8501 1965,3489 1965,8941 1966,4837 1967,1161 1967,7890 1968,5004 1969,2481 1970,0298 1971,6858 1972,5553 1973,4492 1967,6141 1977,8723 1981,3984 1984,9763 1988,6047 1992,2824 1996,0077 1999,7789 90,0014 90,0016 0,0655 0,0031 90,0036 0,0009 0,0094 20,0001 -0,0096 30,0066 90,0027 90,0025 «0,0031 90,0035 90,0017 0,0025 0,0398 90,0027 0,0035 0,0087 0,0265 0,0080 90,0060 ~0,0089 0,0019 90,0028 90,0047 "0,0047 60,0027 30,0005 90,0028 80,0019 0,0020 0,0009 0,0032 0,0041 0,0023 0,0013 90.0059 0,0011 60,0070 90,0038 90,0074 90,0069 90,0105 P0,0033 e0,0000 0,0016 0,0011 0,0003 0,0013 0,0023 0,0017 199 200 201 202 203 204 205 206 207 F‘HW‘F‘HW‘F‘HW4 RH RH RH RH RH RH RH RH RH 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 8,0, 2,00 ,0035 244 2003,5978 2007,4539 2011,3507 2015,2872 2019,2551 2023,2536 2027,2882 2031,3528 2035,4363 2003,5943 2007,4519 2011,3496 2015,2852 2019,2564 2023,2609 2027,2962 2031,3599 2035,4494 0,0035 0,0020 0,0011 0,0020 90,0013 60,0073 90,0080 90.0071 20,0131 Z JVVChUWAid339 HLJP‘HF*P*H9*F‘H 0,fl\¢)\flbbw\3973(3 20 tunamronamranm CID‘JaifilibiMrJ 30 31 32 33 34 35 36 FIT UP THE LAMBDA DnUHLEI PL PL PL PL PL PL PL PL PL PL 0L 0L 0L RL RL RL RL HL PH PH PH PH PH 0H 0H 0H UH OH OH on 0H OH OH 0H 0H 0H LINF 35/2 33/2 31/2 29/2 25/2 23/2 21/2 19/2 17/2 15/2 23/2 21/2 13/2 7/2 17/? 21]? 27/2 29/2 31/2 29/2 27/2 23/2 19/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 33/2 35/2 37/2 39/2 ”GTO 0,06 0,31 0,06 0,31 0.41 7,35 0,89 0,00 0,00 0,33 0,00 0,00 0,08 0.00 0,00 0,18 0.04 0,04 0,19 0,50 0,22 0,83 0,59 0.00 0,00 1,00 3,84 6,10 6.71 5,71 6.25 6,25 6,52 0,06 5,47 2,02 APPPNDIX X-A 085, “001655 '001639 '0-1200 '0o1316 -0-1204 -0-1151 “001031 '0-1259 “090771 “090677 -0-1545 70,1101 “0.0692 ~0-0596 '001045 “091323 “001365 ~0,1424 0-1619 0,1543 0,1523 0,1282 0,1042 “090771 “090947 “001123 “091260 '091385 “091530 “0,1626 “091765 “091886 “091995 “092154 “092229 “002350 245 SPLITTINGS FOR 14N160 PREU, ‘0,1590 '0,1556 ‘0,1512 “0,1460 '0,1330 “0,1255 '0,1172 “0,1084 “0,0991 “0,0893 “0,1403 “0,0817 "0,0455 “0.0968 “0,1139 “0,1345 '0.1397 0,1514 0.1461 0,1400 0,1255 0,1085 “0,0933 “0,1050 “0,1167 '0,1284 “0,1401 “0,1518 “091636 “0,1753 “0,1571 “0,1988 ”0,2106 ’0,2224 ’0,2342 (O'P) '090065 ‘0,0083 0,0312 0,0144 0,0126 0,0104 0,0141 '0,0175 0,0220 0,0216 “090142 0.0185 0,0125 '0,0138 “0,0077 '0,0184 “0,0020 “0,0027 0,0105 0,0082 0,0123 0,0027 “090043 0,0162 090103 0.0044 0,0024 0,0016 '0,0012 0,0010 “090012 “090015 “000007 “090048 ‘0,0005 '0,0008 246 37 OH 41/2 0,75 '0,2520 '0,2460 '0,0060 38 GM 43/2 0,37 '0,2638 ”0,2579 "0,0059 39 OH 45/2 0,12 '0-2726 “0,2698 '0,0028 40 0H 47/2 0,02 “092701 ”0,2816 0,0115 41 RH 15/2 0,00 0,0651 0,0874 '0,0223 42 RH 17/2 0,00 0-0764 0,0963 “0,0204 43 RH 19/? 0,00 0,1016 0,1056 -0,0040 44 RH 21/2 0,25 0,1059 0,1138 “0,0079 45 RH 23/2 0,50 0,1170 0,1214 "0,0044 44 RH 27/2 2.06 0.1349 0.1343 0,0006 47 RH 29/2 2,02 0,1383 0,1396 "0,0013 48 RH 31/2 2,02 0,1476 0,1440 0,0036 49 RH 33/2 0.50 001479 0,1474 0,0005 50 RH 35/2 0,31 0,1544 0,1499 0,0045 51 RH 37/2 0,12 0-1542 0,1513 0,0029 5? RH 39/2 0,12 0-1595 0,1516 0,0079 53 RH 41/2 0.00 001789 0,1507 0,0282 54 P1 1/2 0.00 “0,0000 0,0117 “0,0117 55 P1 3/2 0.00 -0.0000 0,0117 '0,0117 56 P1 5/2 0,00 -0,0000 0,0118 “0,0118 57 P1 7/2 0.00 '0-0000 0,0120 "0,0120 58 P1 9/2 0600 “090000 090125 “000125 59 P1 11/2 0.00 ~0,0000 0,0132 '0,0132 6.0 P1 13/2 0,00 “0,0000 0,0142 70,0142 61 P1 15/2 0.00 7000000 0.0156 “0,0156 62 P1 17/2 0,00 '0-0000 0,0173 '0,0173 63 P1 19/2 0.00 -0.0000 0,0196 “0,0196 64 P1 21/2 0.00 7000000 0,0224 '0,0224 66 P? 1/2 0.00 -0,0000 0,0000 "0,0000 66 P? 3/2 0.00 “090000 0,0000 ‘0q0000 67 P9 5/2 0,00 “0,0000 0,0001 "0,0001 68 P9 779 0.00 -o-oooo 0.0002 -o.0002 69 P? 9/2 0.00 70,0000 0,0003 ‘0,0003 70 P2 11/2 0,00 “0,0000 0,0004 “0,0004 71 P2 11/2 0.00 -0.0000 0,0004 ‘0,0004 7? P9 15/2 0,00 '0-0000 0,0008 "0,0008 73 P2 17/2 0,00 "0,0000 0,0011 '0,0011 74 P2 19/2 0,00 '0-0000 0,0014 ‘0,0014 75 P9 21/2 0,00 "0,0000 0,0017 “0,0017 77 R1 3/2 0.00 0-0000 "0,0116 0,0116 78 R1 5/2 0.00 0,0000 ’0,0115 0,0115 79 R1 7/2 0,00 0,0000 ”0,0114 0,0114 80 R1 9/? 0,00 0,0000 ‘0,0112 0,0112 81 R1 11/2 0,00 000000 ’0,0111 0,0111 82 R1 13/2 0,00 0,0000 ”0,0109 0,0109 83 R1 15/2 0.00 0,0000 '0,0107 0,0107 84 R1 17/2 0,00 000000 ‘0,0105 0,0105 85 R1 19/2 0,00 0,0000 “0,0102 0,0102 86 R1 21/2 0,00 0,0000 90,0099 0,0099 87 R2 1/2 0.00 0,0000 ”0,0000 0,0000 88 R? 3/2 0.00 0,0000 90,0001 0,0001 89 R2 5/2 0,00 0.0000 “0,0002 0,0002 91 9? 93 94 95 96 97 98 99 10” 101 102 103 104 105 106 107 108 109 11n 111 117 113 114 1.1L3 116 117 118 119 123 121 122 123 124 125 126 127 128 R? R2 R2 R9 R2 R9 R9 01 Q1 Q1 01 01 U1 01 Q1 Q1 01 01 01 01 01 Q1 Q1 02 U? U? Q9 0? Q2 Q2 02 Q2 09 0? 02 09 Q? U? 9/2 11/2 13/2 15/2 17/9 19/2 21/2 1/2 3]? 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 21/2 25/9 27/2 29/? 51/2 3/2 5/7 7/? Q/? 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 51/2 S.D. 0,00 0.00 0,00 0,00 nfloo 0,00 0,00 0,00 0,00 0,00 0,00 0.00 0,00 0,00 0,00 0.00 0.00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0.00 0,00 0,00 0,00 0,00 0,0043 24/ 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 000000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0-0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 000000 0,0000 0,0000 0,0000 0-0000 0,0000 0,0000 0,0000 0,0000 “0,0004 ”0,0006 q'0,0008 ‘0,0010 '0,0013 ‘0,0015 '0.0018 “0,0233 '0,0466 ‘0,0697 ‘090927 '0,1154 ‘0,1379 ’0,1601 '0,1818 “0,2031 “0,2240 “0,2442 '0,2638 '0,2825 "0,3011 -005186 ‘0,3352 '0,0001 “0,0002 ‘000006 ‘0.0012 '0,0020 "0,0032 '0,0049 '0,0070 “0,0096 '0,0127 “0,0166 '0,0211 ‘0,0264 '0,0324 '0,0394 0,0004 0,0006 0,0008 0,0010 0,0013 0,0015 0,0018 0,0233 0,0466 0,0697 0,0927 0,1154 0,1379 0,1601 0,1818 0,2031 0,2240 0,2442 0,2638 0,2828 0,3011 0,3186 0,3352 0,0001 0,0002 0,0006 0,0012 0,0020 0,0032 0,0049 0,0070 0,0096 0,0127 0,0166 0,0211 0,0264 0,0324 0,0394 -fi\d)\nh{HNIH Hf‘F‘HFJP*H+4P‘H c,B\é®\nbmfl\L423O 20 21 22 23 24 28 26 27 28 29 50 31 39 33 34 35 36 FIT OF THE LAMBDA DOUDLEI PL PL PL 0L 0L 0L CL CL QL 0L UL RL PH PR PW P4 OH 04 UH OH 0“ OH OH QM UH 0H 0H QM OH OH OH R4 RH RH RH RH LINE 201? 25/2 21/2 31/2 29/2 27/2 25/2 21/2 19/2 17/2 16/2 27/2 21/2 191? 15/2 13/2 16/2 1612 17/2 19/2 21/2 23/? 25/? 27/2 29/2 61/2 33/2 65/2 37/2 39/2 41/? 17/2 10/2 21/2 23/2 25/2 HGT, 0,06 0.25 0,33 0,50 0,00 0,00 0.00 2,00 0,50 0,00 0,50 0,06 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,75 4,00 4,00 1,60 0,47 4,00 4,00 2,00 0,00 0.50 0,12 0,03 0,00 0,50 2,00 2,00 1.54 APPFNDIX X'R 033, “001422 “001197 ”001182 -0o1785 -002541 '001455 “001227 ’001296 ”001147 ’001042 -000879 “001350 0,1177 0,1099 0,1458 0,0737 "000671 ”000823 ”000968 -0,1111 ”001229 ’001335 ”001517 ”001556 "001713 “001827 "001965 "002335 “002160 -0,2273 ~0,2425 0,0909 001028 091117 0.1178 0,1225 248 SPLITTINGS FOR 15N160 PRED, '0,1440 '0,1307 ”0,1231 ”0,1825 “0,1595 '0,1480 “0,1251 '0,1137 ”091023 '0,0909 ‘0,1328 0,1149 0,1061 0,0872 0,0771 “0,0795 '0,0908 '001022 '0,1136 ‘0,1250 “0,1564 '0,1478 “0,1592 “0,1706 "0,1520 “0,1935 “0,2049 ”0,2164 “0,2279 ’0,2394 0,0948 0,1035 0,1117 0,1194 0,1264 (0am 0,0018 090110 090049 0,0040 ‘0,0831 0,0130 0,0253 “0,0045 q000010 ‘0,0019 0,0030 '000022 0,0028 0,0038 0,0566 ”0.0034 0,0124 0,0085 0,0054 0,0025 0,0021 0,0029 ‘0,0039 0,0036 ”090007 ”090007 ‘0,0028 ”090286 0,0004 0,0006 “0,0031 '0,0039 '090007 ”090000 ‘0,0016 -000039 37 38 39 40 41 4? 43 44 46 46 47 4P 49 50 51 5? 53 54 SS 56 57 SR 59 6m 61 6? 63 64 65 66 67 68 59 70 71 72 73 74 76 76 77 78 79 an 81 8? 33 84 85 86 87 88 89 9n RH RH RH RH RH RH P1 P1 P1. P1 P1 P1 P1 P1 P1 P1 P1 P? P? P9 P2 P2 P2 P2 P? P? P2 P2 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R? H? R? R? R? R? R2 R2 R2 R2 R2 01 Q1 Q1 01 277? 29/2 31/? 33/2 3572 37/2 1/2 37? SI? 7/? 9/? 117? 13/7 15/2 17/2 19/2 21/9 1/2 3/2 SI? 7/? 9/7 11/2 11/2 15/2 17/P 10/9 21/2 1/? 3/2 5/2 7/2 9/2 11/? 13/2 16/7 17/? 19/? 21/2 1/2 3/2 5/2 77? 97? 11/2 1372 15/? 17/2 19/2 21/2 1/2 3/2 572 772 2,00 0,50 0,12 0,02 0,02 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0.00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0.00 0.00 0.00 0.00 0,00 3,00 0,00 0.00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0.00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 249 0,1357 0,1413 0,1477 0,1583 0,1604 0,1723 “0,0000- ’000000 -0,0000 -0,0000 ’000000 -0,0000 -0-0000 “000000 “000000 ’000000 "000000 ”000000 -0o0000 ‘000000 ~0-0000 '000000 "000000 “0.0000 -0,0000 '0-0000 "0.0000 "0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 000000 0,0000 0,1327 0,1582 0,1430 0,1469 0,1499 0,1519 0,0113 0,0114 0,0115 0,0117 0,0121 0,0127 0,0136 0,0149 0,0165 0,0185 0,0211 0,0000 0,0000 0,0001 0,0002 0,0003 0,0004 0,0004 0,0008 0,0010 0,0012 0,0015 ”0,0113 “0,0113 -000112 ’0,0111 “0,0110 '0,0108 '0,0107 ‘0,0105 ’0,0103 ’0,0100 “0,0098 '0,0000 '0,0001 ”0,0002 '0.0003 “0,0004 '0,0005 “0,0007 ”090009 ”0,0011 “0,0014 "0,0017 ”0,0227 90,0453 “0.0679 ’090903 0.0030 0,0031 0,0047 0,0114 0,0105 0,0204 ”000113 ‘000114 “0.0115 '0,0117 -000121 “0,0127 “0,0136 ‘0-0149 “0,0165 '090185 '0,0211 ‘0,0000 '000000 '000001 '000002 ‘0,0003 '0,0004 ‘0,0004 '0q0008 “090010 ’090012 -000015 0.0113 0,0113 0,0112 0,0111 0,0110 090108 0,0107 0,0105 0,0103 0,0100 0,0098 0,0000 0,0001 0,0002 0,0003 0,0004 0,0005 0,0007 0,0009 0,0011 0,0014 0,0017 0,0227 0,0453 0,0679 0,0903 91 92 93 94 95 96 97 98 99 100 101 102 103 .104 105 10!1 107 110R 109 110 111 112 113 114 115 118 117 01 01 01 Q1 Q1 01 01 01 Q1 01 01 Q1 Q? Q? 02 02 0? U? Q? 02 02 U? Q? 0? Q2 09 Q9 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 27/2 29/2 31/2 3/ 2 5/2 7/2 9/2 11/2 13/2 15/2 17!? 10/2 21/2 23/2 25/2 27/7 29/2 51/2 SOD. - .. 0.0028 250 000000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 '0,1124 “0.1344 ”0,1560 "0,1773 "0,1982 '0,2186 '0,2385 “0,2579 '0,2766 ’0,2947 “0,3121 '0,3288 “0,0001 ”0,0002 "0,0005 ”0,0011 ‘0,0018 '0,0029 '0,0044 '0,0063 "0,0087 “0,0116 “0,0150 "0,0191 ’0,0239 '0,0294 '0,0357 0,1124 0,1344 0,1560 0,1773 0,1982 0,2186 0,2385 0,2579 0,2766 0,2947 0,3121 0,3288 0,0001 0,0002 0,0005 0,0011 0,0018 0,0029 0,0044 0,0063 0,0087 0,0116 0,0150 0,0191 0,0239 0,0294 0,0357 W 111111111 1840 110 1293