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ABSTRACT

THE NATURE OF THE SOLUTIONS OF
DAMPED LINEAR DYNAMIC SYSTEMS

By

Daniel John Inman

An analysis of the qualitative nature of the solutions of
viscously damped linear dynamic systems is presented. Both
lumped parameter and distributed parameter systems are considered.
Conditions illustrating whether or not a given system will os-
cillate are derived. These conditions can be checked without
having to solve the governing differential equations.

The conditions applied to the lumped parameter case are shown
to imply certain closed form solutions for arbitrarily forced sys-
tems. Several examples are given illustrating how these conditions
may be used to design a specified system so that it will either os-
cillate or not, as desired.

The theory developed here is compared with previous results
by other authors. In the case of distributed parameter theory,
the results derived here are compared to specific problems from
the literature. New information is provided about certain classes

of damped beams and plates.
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Chapter 1
INTRODUCTION

1.1 Motivation

The simplest linear system with damping is a single degree of
freedom system with a mass suspended by a parallel spring and damper
arrangement. Such a system can be described by a second order or-
dinary differential equation with constant coefficients corres-
ponding to the physical parameters; mass, spring constant and
damping constant. The resulting initial value problem is easily
solved. It is well known that the qualitative nature of the solu-
tion can be determined by examining certain ratios of these coef-
ficients.

The intent of this dissertation is to define and investigate
the concepts of critical damping, overdamping and underdamping
associated with the single degree of freedom problem, for more
general damped linear systems. The purpose being to find condi-
tions which are easy to apply and which will indicate the quali-
tative nature of the solution of a complicated damped linear

system without having to solve the governing differential equations.

1.2 Physical Systems

The work here examines certain classes of both lumped parameter
systems and distributed parameter systems. Lumped parameter systems
are written in matrix form and the problem is to derive conditions
for the resulting coefficient matrices which, when satisfied, will

insure that each mode of the system will have the desired damping
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characteristic. The physical problems may stem from complicated
arrangements of stiffness, inertia and damping elements, and re-
present unusual geometry. The restrictions are that the system

is asymptotically stable and that the coefficient matrices satisfy
the unusual symmetry and definiteness conditions.

The distributed parameter systems considered here are those
described by linear partial differential equations with appropriate
boundary and initial conditions. The spatial coefficient operators
of the governing differential equation must be self-adjoint, posi-
tive definite and possess Hilbert-Schmidt inverses. The physical
problems to which the theory applies includes various problems
concerning strings, beams, membranes and plates with either in-
ternal and/or external damping of the type that may be caused

by immersion in a fluid.

1.3 Previous Work

There has been some interest in the lumped parameter case.
In previous work Duffin [1] defined an overdamped system in terms
of a function of quadratic forms of the coefficient matrices.
Later Lancaster [2] developed and added to Duffin's work. Con-
currently Meirovitch [3] commented briefly on a matrix concept of
overdamping and underdamping in terms of characteristic roots for
the special case when the equations of motion are decoupled.

More recently, Nicholson [4] defined an underdamped system
in terms of the eigenvalues of the mass, stiffness and damping
matrices. Muller [5] responded to Nicholson's attempts and de-

fined an underdamped system in terms similar to those of Lancaster
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and Duffin. He then derived a sufficient condition for a system
to be underdamped. The condition is stated in terms of the de-
finiteness of a certain combination of the coefficient matrices.

The conditions offered by the above authors fall short of
a complete theory. Each author has considered only one possi-
bility. Some of the results apply only in special cases or are
difficult to check. These results have not been applied to
example problems.

Extensions of the damping problem to distributed parameter
systems has been untouched in the literature. However, most
analysis of forced problems tacitly assumes the nature of the
damped time response [2], [3]. Stakgold [6] discusses the nature
of the time response in terms of periodic and aperiodic solutions.
Conditions, which when satisfied, guarantee that the time response
can be uncoupled from the spatial eigenvalue problem were presented
by Caughey and 0'Kelly [7] as an extension of the lumped parameter
case. More recently, Strenkowski and Pilkey [8] have discussed
a closed form solution for the time response of a general forced
distributed parameter system with damping, without any restrictions
on the stiffness operator. However, they require the damping
operator to be free of derivatives and they make no attempt to
characterize the nature of the solution. Other autﬁors who have
addressed damped distributed parameter systems recently have assumed
a constant damping term in their analysis (see for example Leissa
[9]). This approach is common but excludes such examples as a

beam or string vibrating in a fluid.



1.4 New Results

In this dissertation conditions are found which can be
easily applied to the coefficients of the governing differential
equations and which when satisfied will guarantee that the re-
sulting solutions will be damped in a specified manner. The pre-
sentation of the results is as follows:

Chapter 2 presents a review of basic mathematical definitions
and theorems needed to treat both the lumped parameter case (linear
algebra) and the distributed parameter case (functional analysis).

In Chapter 3, the definitions and problem for the lumped
parameter case are formulated. Sufficient conditions are stated
and derived in terms of the definiteness of various combinations
of the coefficient matrices. Examples are offered illustrating
the correctness and use of the conditions. This chapter is con-
cluded with a comparison to previous results of other authors.

In Chapter 4, the results of Chapter 3 are applied to the
general theory of forced lumped parameter systems. In addition,
examples are given illustrating that the results can be used as
a design tool for systems of low order.

In Chapter 5 the problem and definitions for distributed
parameter systems are formulated. Proofs of sufficient conditions
to determine the nature of the time solutions are offered and
examples are solved illustrating the correctness and use of the
conditions.

Chapter 6 presents a brief summary of the dissertation as

well as an indication of further areas of investigation.



Chapter 2
MATHEMATICAL PRELIMINARIES

This chapter presents basic definitions and theorems from linear
algebra and functional analysis which will be used in presenting the
results in subsequent chapters. Here, background theorems are stated

without proof except those which are not found in the references.

2.1 Concepts from Linear Algebra

The material in this section can be found in any number of ref-
erences [2, 10] and is presented here for completeness.

In the subsequent presentation, the following notation will be
used. Any n-dimensional column vector will be denoted by x, y, z,
etc.; the transpose and complex conjugate of the transpose of the vector
x will be denoted by x| ith

Xx and 5?, respectively. The i~ element of a

vector x will be denoted by x,. This is not to be confused with the

th

vector x; which denotes the i™" vector in a sequence of indexed vectors.

Any nxn real matrix will be denoted by A, B, C, etc.; the transpose of a

th .th

matrix A will be denoted by AT. The element in the i~ row and j

column of the matrix A is denoted by aij'
Definition (2.1-1): The inner product of two vectors x and y, denoted

*
X ¥y, is defined by



Definition (2.1-2): The norm of the vector x, denoted by ||x||, is

defined by

Theorem (2.1-3): The norm and inner product are related by the Cauchy-

Schwarz inequality

1] < eI Tyl

with equality if and only if y = ox where o is a scalar.

Definition (2.1-4): Two vectors x and y are said to be orthogonal if

*
xy=0.

Definition (2.1-5): A scalar A is called an eigenvalue or a charac-
teristic value of a matrix A and the vector x # 0 is called the

corresponding eigenvector of A if Ax = ix.

A necessary and sufficient condition for x» to be an eigenvalue of A is
that A satisfy det (A-AI) = 0, where det(+) indicates the determinant
of (-) and I is identity matrix of appropriate dimension.

In the rest of this dissertation all matrices are considered to be

real symmetric arrays unless otherwise stated.



Definition (2.1-6): The matrix A is said to be positive definite if
ETAé > 0 for all non-zero real vectors x. This is denoted

A > 0.
Definition (2.1-7): The matrix A is said to be positive semi-definite
if 5TA5_3_0 for all non-zero real vectors x. This is denoted

A > 0.

Theorem (2.1-8): Al1 the eigenvalues of a real symmetric matrix are

real numbers.

Theorem (2.1-9): The matrix A is positive definite if and only if

all of its eigenvalues are positive.

Theorem (2.1-10): The matrix A is positive semi-definite if and only

if all of its eigenvalues are non-negative.

Theorem (2.1-11): If the matrix A is positive definite, then

x*Ax > 0 for all non-zero complex vectors x.
Let [Ail denote the determinant of minors as follows:

|A

1

1A, |



|An| = det (A).

Theorem (2.1-12): The matrix A is positive definite if and only if

|Ai| > 0 for all i=1,2...n.

Definition (2.1-13): The inverse of the matrix A, denoted A'] is a

1

matrix such that A~'A = 1. If A'] exists, A is said to be non-

singular.

1

Theorem (2.1-14): The matrix A”' exists if and only if det(A) # O.

Theorem (2.1-15): If A > 0 and B > 0 then A+B > 0.

Theorem (2.1-16): If A > 0 and B > 0 then the product matrix AB is
positive definite if and only if AB = BA.

Definition (2.1-17): A set of vectors {ﬁj}g=] are said to be linearly

independent if

implies that o5 = 0 for all j, where the o5 are scalars.
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Definition (2.1-18): A set of vectors éj is said to be orthonormal
if

Theorem (2.1-19): (Gram-Schmidt) Any set of n linearly independent

vectors can be used to generate a set of n orthonormal vectors.
Theorem (2.1-20): An nxn real symmetric matrix has n linearly in-
dependent eigenvectors associated with its eigenvalues regard-

less of eigenvalue multiplicity.

Definition (2.1-21): The rank of a matrix A is the largest number of

linearly independent rows (columns) of A.
Theorem (2.1-22): If A > 0, the rank of A is n.

Definition (2.1-23): The matrix A is diagonal if aij 0 for all

i and j such that i # j.

Definition (2.1-24): A matrix S is orthogonal if STS

n
—
.

Theorem (2.1-25): Every real symmetric matrix A can be diagonalized by
an orthogonal matrix S, consisting of the eigenvectors of A, such
that the resulting diagonal matrix has the eigenvalues of A, Ais

as its elements. Notationally A = STAS, where STS = I, and
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Theorem (2.1-26): Let Ay denote the diagonal matrix of eigenvalues of
A and g the diagonal matrix of eigenvalues of B. Then there

exists an orthogonal matrix S such that Ay = STAS, and

A =T

B BS, if and only if AB = BA.

Definition (2.1-27): The matrix A is said to be orthogonally similar

to a matrix B, denoted by A“B, if there exists a matrix U such

T

that UTAU = B and U'U = 1.

Theorem (2.1-28): 1If A"B, then A and B have the same eigenvalues.

Definition (2.1-29): The square of a matrix A, denoted A2, is de-

2:

fined by A AA.

Definition (2.1-30): The square root of a matrix A is defined as a

1/2

matrix, denoted A"/ “, such that A = A]/ZA]/Z.

Theorem (2.1-31): If the matrices A and B commute so do A and B]/z.

Theorem (2.1-32): If A > 0 then there exists a unique positive de-

1/2

finite square root of A. The eigenvalues of A are the posi-

tive square roots of those of A. If A; are the eigenvalues of

A then A]/2 = STAA/ZS where
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1/2 _ A

0 /2

and S is the orthogonal matrix of eigenvectors of A.

If A-B is a positive definite matrix this is denoted by A > B.

1/2 1/2

Theorem (2.1-33): [11] If A>B > 0, then A >B/°,

It should be noted that if A > B it does not necessarily follow

2 2

that A~ > B™.

Theorem (2.1-34): [12] If A >0, B > 0 and AB = BA then A > B implies

k

A" > Bk where k is a positive integer.

2.2 Concepts from the Theory of Lambda Matrices

The definitions and theorems stated here can be found in Lancaster's

excellent text [2] except where otherwise indicated.

Definition (2.2-1): A lambda matrix, denoted Dz(x), is a polynomial
in the scalar 1 with matrix coefficients where 2 denotes the

highest power of .

The lambda matrix that is of interest here is

DZ(A) = AAZ + Bx+C
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where A, B and C are nxn real symmetric matrices such that A and C are

positive definite while B is positive semi-definite.

Definition (2.2-2): A vector x # 0 is an eigenvector (latent vector)
of DZ(A) and A is the associated eigenvalue (latent root) if
Dz(x)5_= 0. The eigenvalues are thus the 2n roots of the scalar

equation det[DZ(x)] = 0.

Definition (2.2-3): The lambda matrix DZ(A) is said to be simple if
the rank of Dz(xi) is equal to n-o where A is an eigenvalue of

multiplicity a, for each A

This definition implies that there exist o linearly independent
vectors associated with the repeated root A Hence, 02(A) is simple if
there exist n linearly independent eigenvectors of DZ(A). Otherwise
DZ(A) is said to be degenerate.

Note that in section (2.1) the simplicity of D](A) is guaranteed by
the symmetry (theorem 2.1-20). This is not the case for Dz(x). Lan-

caster has settled the question with the following theorem.

Theorem (2.2-4): The lambda matrix DZ(A) is degenerate if and only if
there exists an eigenvalue A with associated eigenvector q such

that
T -
r' [2)A+B]lq = O,

for all left eigenvectors r associated with a.
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If the lambda matrix DZ(A) is simple, then its eigenvectors can be

used to generate an n-dimensional vector space.

Definition (2.2-5): The lambda matrix DZ(A) is said to be asymptoti-
cally stable if the real parts of all the eigenvalues are nega

tive numbers.

Theorem (2.2-6): [13] The lambda matrix DZ(A) is asymptotically

stable if and only if the rank of

is equal to n.

2.3 Concepts from Functional Analysis

The majority of the material in this section can be found in any
text on functional analysis or linear operator theory, see for example
[14], [15]. Kato [16] should be consulted for information on operator
square roots.

The underlying Hilbert space is taken to be LZ(Q), the space of all
functions whi;h are square integrable in the Lebesgue sense over the

bounded region Q. The functions u(x) and v(x) are real valued func-
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tions depending on x which may be vector valued in Q. The symbol L

denotes a real linear operator whose domain is dense in LZ(Q).

Definition (2.3-1): The inner product of two functions u(x), v(x)

in LZ(Q), denoted <u,v>, is defined by
<UyV> = fnu(x) v(x) dx.

Definition (2.3-2): The norm of a function u(x) is denoted and defined

by |lu]| = <u,u>!/2.

The Cauchy-Schwarz inequality (2.1-3) stated for vectors holds in

terms of the norm and inner-product defined here.

Definition (2.3-3): The operator L is bounded if there exists a finite
constant ¢ > 0 such that ||Lu|| < c||u]| for a1l u in the domain of
L, denoted D(L).

If such a constant does not exist, L is said to be unbounded.

Definition (2.3-4): The numerical range of L, denoted W(L), is defined

to be the set

W(L) = {<Lu,u>|ueD(L) and ||u]] = 1}.
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Definition (2.3-5): The operator L is positive definite if <Lu,u> > 0

for all u in D(L).

Theorem (2.3-6): If every element of W(L) is positive, then L is

positive definite.

Proof: Suppose <Lu,u> < 0 for some u in D(L). Then

u u
< TIT T <

for some u in D(L) or <Lv,v> < 0 for v in D(L) with ||v|]| = 1,
j.e., for v in W(L). Thus, L must be positive definite if W(L)

is positive.
Let D(L) denote the closure of the set D(L).

Definition (2.3-7): The set D(L) is dense in Lz(n), denoted D(L) =
Lz(n), if for every u in LZ(Q) and every € > 0 there exists a v in

D(L) such that ||u-v]|| < e.

Theorem (2.3-8): Let L be a linear operator with D(L) = LZ(Q), then
L has a unique adjoint operator denoted L*. The domain of L*,
denoted D(L*) is defined as follows: v(x) is in D(L*) if and only
if there exists a function g such that <Lu,v> = <u,g> for all u
in D(L). The adjoint operator is defined by g = L*v so that if

3 I 3 3 * *
u is in D(L) and v is in D(L ) then <Lu,v> = <u,L v>.
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Definition (2.3-9): The operator L, with D(L) = Lz(n), js self-adjoint
if D(L*) = D(L) and Lu = L*u for all u in D(L).

Definition (2.3-10): The square of the operator is defined by

2

L°u = L(Lu) for all u in D(Lz).

Theorem (2.3-11): [16] If L is a positive self-adjoint operator then

1/2

there exists a unique positive self-adjoint operator L' '", called

1/2(L1/2

the square root of L, such that L u) = Lu for all u in D(L).
Definition (2.3-12): Let A and B be two self-adjoint operators, then
A >Bif
i)  <Au,u> > <Bu,u> for all u in D(A); and

ii) D(B) D(A).

Definition (2.3-13): A complex scalar A is in the point spectrum of L,

denoted op(L), if (A-L)-] does not exist.

Definition (2.3-14): A non-zero function u such that, Lu = au, is
called an eigenfunction of the operator L, and A in op(L) is
called the eigenvalue of L associated with u.

Theorem (2.3-15): If L is self-adjoint, op(x) is real.

Definition (2.3-16): An operator K defined by
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Ku(x) = ka(x,c)u(c)dc, where fnfglk(x,c)lzdxdc <w
is called a Hilbert-Schmidt operator.
Theorem (2.3-17): [17] If the inverse of the self-adjoint operator
L is a Hilbert-Schmidt operator, then every function u in

D(L) can be written as the uniformly convergent series

u(x) =
n

neo 8
—-—

<¢psu> ¢ (x)

where the ¢n(x) are the complete set of eigenfunctions

of L.

Theorem (2.3-18): If the operator L satisfies the conditions of
(2.3-17) and has a positive point spectrum, then L is a

positive definite operator.

Proof: Since the convergence in (2.3-16) is uniform, (2.3-17)
yields (cn = <cn,u>)

<Lu, ¥ ¢z >
n=1 "

<Lu,u>

"

o I, Ty (Lu) dx

bX cnﬂf;nLu dx

z Cn <;n,Lu>
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_ 2
=z An c, > 0

since each A is positive.

Lemma (2.3-19): If A and B are two self-adjoint linear operators

with common domains such that A is positive and the inverse

2

of A-B is a Hilbert-Schmidt operator, then A2 > B” implies

A > B.

Proof: Choose u < 0 and let u be an arbitrary element in N(Az).

Consider
2 2
[ [(A-w)ul | - [|Bu]|
<(A2-Bz)u,u> - 2u<Au,u> + uz.

Since A2-82 > 0 and -2u > 0 this becomes

[1(A-w)ul 1% = [1Bul[% = ]| (A-u)ul|~[|Bul | }(]| (A-w)u][+][Bu] |} > w

or

[ A-wul |-118ul | 2 TAsTel TTBaTT > O

The triangle inequality combined with this last inequality yields

| 1(A-B-w)u| |=| | (A-B)u-ul|>]|(A-u)u||-||Bu]| > O.

2
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Hence (A-B)u # wu for any u in D(A). Thus u < 0 is not in

op(A-B), so that op(A-B) > 0 and, by theorem (2.3-18), A > B.

The above proof follows the method used by Shiu [18] in a proof

of the same theorem for bounded operators.

Theorem (2.3-20): Let L] and L2 be self-adjoint commuting
operators with no repeated eigenvalues where a and b are two

real scalars, then the eigenvalues of (aL] + bLg) are
2
a )\,i + bui

th th

where A is the i~ eigenvalue of L] and My is the i~ eigen-
value of L2.
Proof: Let o be an eigenvalue of aL] and bLg with eigenfunction

u, then
aL.u + bL2u = au
1 2
or

(aL + bL3) (Lqu) = a(Lqu)

so that Lyu is an eigenfunction of (aL]+bL§) with eigen9a1ue

a. Since there are no repeated roots this yields

Lyu = yu,
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and u is also an eigenfunction of L]. That u is an eigenfunction

of L2 follows similarly. Hence the above becomes
(ax + buz)u = au

u # 0 and the associated eigenvalue is

2

a = ax + by

where A is an eigenvalue of L] and u an eigenvalue of L2.



Chapter 3
SOME RESULTS FOR LUMPED PARAMETER SYSTEMS

3.1 Problem Description

In this chapter a special class of lumped parameter systems,
i.e., systems with multiple degrees of freedom which can be
described by a set of coupled second order ordinary differential
equations with constant coefficients is examined. Interest will

be focused on equations of the following form
(3.1-1)  Mx + Cx + Kx = 0

with arbitrary initial conditions, where M, C and K are real nxn
symmetric matrices, and x is an n-dimensional column vector whose
elements represent the displacement from an established equilibrium
position. The independent variable, denoted by t, is time. It

is assumed that M and K are positive definite and that C is
positive semi-definite. It is also assumed that the system is
asymptotically stable in the sense that all motions eventually
decay to zero [13].

The intent here will be to derive conditions which, when satis-
fied, will guarantee certain qualitative aspects of the solution x(t),
i.e., oscillation or non-oscillation. The conditions should require
less calculation to check than that required to find the actual solu-

tion x(t).

21
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3.2 One Degree of Freedom Systems

The solution to the problem posed above is well known for the
case of a single degree of freedom system with viscous damping.
In fact the nature of the solution is determined by a straight-
forward examination of the coefficients.

The describing scalar differential equation is
(3.2-1) mx + cx + kx = 0

where x = x(t) is the displacement from equilibrium, m is the mass,
c is the viscous damping constant and k is the spring constant. The

t

solution of this equation is of the form e"" where r satisfies the

scalar binomial equation
(3.2-2) mr2 +cr+k=0.

Since m, ¢ and k are all positive real numbers, the solution x(t) can
be characterized in terms of the critical damping constant (denoted

cc) defined by C. = 2/km. It is then common to classify the one degree
of freedom system by the nature of the roots of (3.2-2) which are

determined by the sign of (c-cc) in the following way:

Definition (3.2-3): If c = Cc the system in (3.2-1) is said to be

critically damped.

Theorem (3.2-4): If (3.2-1) is critically damped then (3.2-2) has one
repeated negative real root and the solution x(t) does not oscillate

and decays exponentially.
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Definition (3.2-5): If c-cc>0 the system in (3.2-1) is said to be

overdamped.

Theorem (3.2-6): If (3.2-1) is overdamped then (3.2-2) has two negative
real roots and the solution x(t) does not oscillate and decays

exponentially.

Definition (3.2-7): If cc-c>0 the system in (3.2-1) is said to be

underdamped.

Theorem (3.2-8): If (3.2-1) is underdamped then (3.2-2) has a pair
of complex conjugate roots with negative real parts and the

solution x(t) is an exponentially decaying oscillation.

Hence, the problem for one degree of freedom is easily solved. It
is this fact that has motivated the research presented in this dis-
sertation. The premise that the physical nature of the solution is
determined by the coefficients of the describing differential equation

is explored in the following section.

3.3 Multiple Degree of Freedom Systems

Before considering the multiple degree of freedom case, it is

convenient to make the simplifying transformation

x= w2y



o

De
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where the (-1/2) indicates the inverse of the positive definite square
root of the matrix M. This exists since M is positive definite.

Substitution of this transformation into (3.1-1) yields

w2 o2y s 2y - o,

Pre-multiplying this expression by M']/2 yields
(3.3-1) y+Cy+Ky=0
where C = M1/ 2eM /2 anq & = M 1/271/2 Note that C and K have

retained the same symmetry and definiteness as C and K. The expression
(3.3-1) is more tractable notationally than (3.1-1) but still reflects
the same geometry and coefficients as the original system.

The characteristic equation associated with (3.3-1) is

(3.3-2) 22T+ aC +K| =0

where |-| denotes the determinant of the indicated matrix and I is the
identity matrix. The eigenvalues of (3.3-1) are the roots of (3.3-2).
Motivated by the definitions of section 3.2, the following

definitions are stated:
Definition (3.3-3): The critical damping matrix denoted Cc is defined as

- oxl/2
CC = 2K ",
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Definition (3.3-4): The system described by (3.3-1) is critically
damped if C = C_.

Definition (3.3-5): The system described by (3.3-1) is overdamped

if the matrix E-Cc is positive definite.

Definition (3.3-6): The system described by (3.3-1) is underdamped if

the matrix cc-f: is positive definite.

Definition (3.3-7): The system described by (3.3-1) is said to exhibit

mixed damping if the matrix E-Cc is indefinite.

These definitions are consistent with the one degree of freedom
case and it will be shown that they have similar implications. Note,
that for the matrix case a fourth possibility presents itself in the
form of definition (3.3-7). The following theorems and proofs com-

plete the analogy.

Theorem (3.3-8): If (3.3-1) is critically damped then (3.3-1) has at
most n negative real eigenvalues and no complex eigenvalues.
Each of the modes of (3.3-1) behaves in a critically damped
fashion and none of them oscillate.

1/2

Proof: Since C = 2K , (3.3-1) becomes

y+ 2k/% + ky = o
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Let S be the orthogonal matrix that diagonalizes K (note
that S is the undamped modal matrix) and apply the transformation

y = Sx which yields, after pre-multiplication by ST,

x+2s kKM% x+sTks x =0

From theorems (2.1-25) and (2.1-32), it follows that

and

A1/2 =T g1/2 s,

where A is the diagonal matrix of eigenvalues of K. Hence, the

above becomes

/25 4 Ax =0

X + 21

which is a diagonal system of n ordinary differential equations,

the iEﬂ-equation of which is the scalar equation

o 1/2 . _
Xj +2(077) 55 x5+ (K)g4 %4 = 0.

. denotes the i-jth element of the matrix A. The dis-

J
criminant of the characteristic equation associated with the

Here Ai

above is
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1/2,2 -
Therefore, each of the n equations yields a repeated real eigen-
value. Similarity transformations such as S preserve eigenvalues.
Hence, equation (3.3-1) has at most n negative real eigenvalues and
no complex eigenvalues. Each mode will behave in a critically

damped fashion.

Lemma (3.3-9): [7] A necessary and sufficient condition for the or-

thogonal modal matrix of K to diagonalize (3.3-1) is that KC = CK.

Proof: This follows as a corollary of theorem (2.1-26) with A = C

and B = K where S denotes the orthogonal modal matrix of K.

Corollary (3.3-10): If (3.3-1) is critically damped then it is
diagonalized by the undamped modal matrix.

1/2

Proof: Since E = ZR , then 6 and R commute and the result follows

from lemma (3.3-9).

Theorem (3.3-11): If (3.3-1) is overdamped then the eigenvalues of
(3.3-1) are all negative real numbers and each mode behaves in an

overdamped manner with no oscillation.
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Proof: Consider the eigenvalue problem associated with (3.3-1)
A2y + ACy + Ky = 0.
Premultiplying by xf and solving for A yields
(3.3-12) ZXfx} = -xf&x_i_((xféx)2-4xfxxka)]/2.

Clearly the discriminant in this expression determines the nature
of the eigenvalues A, as y ranges through the set of eigenvectors.

Motivated by this, define the form

1/2

for all non-zero complex vectors x. Since, C-2K is positive

definite there exists a positive definite matrix P such that
E-ZR]/Z = eoP, where €0 is a positive constant. Substitution of
C=2K + soP into this expression defines the scalar function D(eo)
by

w1/2

D(ey) = [x*(2K™7" + Eop)5J2 - Ax*x 5}E£

for all non-zero complex vectors x. Now fix e, and P. Then

E-ZR]/Z

D(e) by

= eoP > ¢P, for all ¢ such that €y > €2 0. Now define

D(e) = 4(§fk]/25)2 + 455fkl/2x X*Px + e? (x*P5)2 - 45f5_§f§5.
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Note that D(eo) > D(e) for all € such that € > € > 0. Thus if
D(e) is positive, D(eo) will also be positive. Differentiating

with respect to ¢ for fixed P yields

D'(e) = 45*?/25 X*Px + 2ex*Px.

Now note that if C-2K'/2

is positive definite then D'(e) > O for
all non-zero complex vectors x since K12 and P are positive de-
finite and € > 0. In particular, D'(e) > O for all eigenvectors of
(3.3-1).

Now consider D(e) defined on the set of all eigenvectors of (3.3-1)

1/2

denoted by y. When e=0, C=2K'/“ and from Corollary (3.3-10) and

[7] the damped modal vectors are the eigenvectors of K. Thus

D(0)

4L (y*k'/%y)2 - yry y*Ky]

4Ly /2y)% - yry yaay]

a0 (y*y)? - A(yry)?]
= 0,

where A is the eigenvalue associated with the eigenvector y. Hence,
D(e) defined on the set of eigenvectors of (3.3-1) is

positive for all e such that €y > € > 0 and D(eo) is positive on
this set. But €y May be arbitrarily large so that the discriminant

of (3.3-12) is always positive for overdamped systems.
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Therefore, the eigenvalues of (3.3-1) are all negative real
numbers and the eigenvectors must all be real (y* = xT).
The sign of the eigenvalues follows from the assumption that
C is positive definite. For the overdamped case none of the

modes will oscillate.

Note that if (3.3-1) is overdamped the assumption of asymptotic

1/2

stability can be relaxed. Since C>2K >0, C is positive definite

and hence all of the eigenvalues will have negative real parts and

the system is already asymptotically stable.

Theorem (3.3-13): If (3.3-1) is underdamped then the eigenvalues of
(3.3-1) are all complex conjugate pairs with negative real parts

and each of the modes oscillates in damped harmonic motion.
Proof: The definition of underdamping implies that
X (2k1/2-¢)x > 0
for all real x. By theorem (2.1-11) this becomes
2x* K% > x* Cx

for all complex non-zero vectors x. C is positive semi-definite

so squaring the above yields

4(x* k1/2£)2 > (x* Ci)2
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. . Cer s =x1/2
The Cauchy-Schwarz inequality (2.1-3) with x=x and y=K''“x

yields
xx x* kx> (xx KV 2002,

Combining the last two inequalities yields
(x*Cx)% - 4x*x x* Kx < 0

for all complex vectors x. Thus the discriminant of (3.3-13)

is always negative and all the eigenvalues of (3.3-1) must appear
in complex conjugate pairs. The real part of A is negative or
zero via the definiteness condition on C. However, zero is ex-
cluded as a possibility by the assumption of asymptotic stability.

Hence, each mode will be a damped oscillation.

Note that the above theorem shows that the eigenvectors of an

underdamped system are complex. For a physical interpretation of these

eigenvectors as modes consider the real part of y in the following

sense. Suppose the eigenvector y is of the form

y = et

where ¢ is a vector of constants and A is a complex scalar i.e.,

)\=u+j“’a
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where j = /=T. The physical displacement from equilibrium is given by
the real part of y denoted R(y). The velocity is given by R(y), and the
acceleration by R(y).

Theorem (3.3-14): Let ER=RE, then (3.3-1) exhibits mixed damping if and
only if there is at least one real eigenvalue and at least one
complex eigenvalue. At least one mode will oscillate and one will
mode will not.

Proof: Since CK=KC there exists an orthogonal transformation S such

that

CS

=
|

and

= s'ks

-
|

are both diagonal (lemma 3.3-9). Hence, the substitution y=Sx
in (3.3-1) followed by premultiplying by ST yields the diagonal

system
. . i}
X+ AXx+Ax=0.

Since (E-Cc) ~ (AC-ZAl/z). and (AC-ZAL/Z) is diagonal, (E-Cc) is

indefinite if and only if there is one value of i such that
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1/2
(A = 20 %) < 0
and another value of i such that

1/2
(Ac -2 )ii > 0.

th

Now note that the i~ pair of eigenvalues is found from

2
2 = =(a) gy 2 LA G; - 4l ) gy

]1/2'
There will be one complex A and one real A if and only if there is

one value of i such that

2
(A3 - 4(n)g5 <0

and one value of i such that

2
(A)5y - 4n )y > 0.

That these last two inequalities are the same as the previous pair
follows from the fact that each matrix is diagonal with nonnegative
elements, since C is positive semi-definite and K is positive
definite.

Except for this last theorem, the definiteness of (E-Zk]/z

) is in
general only sufficient to determine the nature of the solution of (3.3-1).

However, all of the above theorems become both necessary and suf-



34

ficient for the special class of problems in which the damping matrix

can be diagonalized by the undamped modal matrix transformation. Thus
for systems such that CK=KC the theory is complete. This special case

is of practical importance in as much as in many cases the damping
matrix is unknown and hence modeled as a matrix which can be diagonalized

by the undamped modal matrix.

3.4 Examples

Several two degree of freedom examples serve to illustrate the
validity of the above results.

Consider the theorem for critically damped systems. In equation

(3.3-1) let
- 2.5 1.25
K=Th.2s 1.25
which is positive definite. Then

3 1
- owh/2 _
Cc - 2K = [-l 2] 'Y

which is also positive definite. Choosing E=CC the associated eigen-

value problem is

X0 I A 2.5 1.25
0 lor o ot s 1.zsff X0

The characteristic equation is
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3 2

A+ 527 + 8,750 + 6.251 + 1.5625 = 0

which has the following roots

-.690983005,
-1.809016994.

M,2
23,4

Thus, there are at most n=2 negative real roots as predicted by theorem

(3.3-8). Also note that CK=KC.

Next consider the theorem for underdamped systems. Here the most
interesting eiamp]es are those which do not diagonalize by the undamped
modal matrix transformation. Hence, this example is chosen so that

~~ .~

CK#KC. In (3.3-1) let

(e Ki
"
—
—_—
eeeed
L J

and

so that

Note that E is positive semi-definite while R and Cc are positive

definite. The system is underdamped since
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- 3 -1
cc'C = h 2l

which is positive definite. The characteristic equation becomes

Maeadeslasi+a=0

which has roots

Moo -.754042874 + .911291349j

and

A3 4 = -.245957125 + 1.672908736j

where j = /-T. A1l the roots are complex conjugate pairs in agree-
ment with the results stated in theorem (3.3-15).

For the last example consider the overdamped case. Again a system

is considered such that Ek # RE. Let

1 0 . B
o 4f ad C= |1

N

so that

and
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which is positive definite and theorem (3.3-12) indicates that
the eigenvalues should all be negative real numbers. The charac-
teristic equation is

4

A+ 9)3

24182 +4 =0

+ 22

which has roots

A o= -.354243688,

Az = ‘]oO,
A3 = -2-0’

Ay = -5.645751311,

all negative real numbers as predicted.

In using the theorems of this chapter the following comments may
be useful. The definiteness of (E-Cc) can easily be checked by examin-
ing the determinant of each of its minors as indicated in theorem (2.1-12).
Another check is to calculate the eigenvalues of the matrix (E-Cc)
(theorem 2.1-9). This involves calculating the eigenvalues of an nxn
array as opposed to a 2n x 2n array needed to solve the full problem.
The square root of K can be found by finding the eigenvalues and eigen-
vectors of K and using theorem (2.1-32), Newton's method or a general-
ization o7 Newton's method given by [19]. For an easier first check

v1/2

which avoids calculating K'/“, one can look at the definiteness of
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(62-4E) since an application of theorem (2.1-33) yields that; (62-4k)
positive definite implies (E-Zk]/z) is positive definite and; (4R-E )
positive definite implies that (2&1/2-6) is positive definite. Also,

62

= 4K if and only if C = ZR]/Z. However, if (62 - 4k) is

indefinite (E-Cc) should still be checked since it yields stronger
results than those based on the definiteness of (62-4k).

More examples are considered in the next chapter where the theorems

stated here are used as a design tool.

3.5 Comparison with Previous Work

Duffin's definition states that an overdamped system is one such

that
(x1Cx)? > ax'x x'kx

for all real non-zero vectors x. However, it was shown in the proof
of theorem (3.3-12) that this condition, when restricted to the set of
eigenvectors of (3.3-1), follows from the definition of overdamping
stated here. It should also be noted that buffin's condition is dif-
ficult to check given a specific system.

Nicholson's definition of underdamping states that a system is
underdamped if all the modes of (3.3-1) are underdamped. He then
states that a sufficient condition for (3.3-1) to be underdamped is for

¢y < Z/E;

where < is the largest eigenvalue of the matrix C and km is the smallest
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eigenvalue of the matrix K. This test requires substantial calculation

since it involves finding the eigenvalues of both C and K.
Muller improves this result and extends it by showing that a
sufficient condition for (3.3-1) to be underdamped is for (4k-6 ) to
be positive definite. If CK = ké, Muller's condition is equivalent
to the one stated here. To see this in one direction substitute
6 and R into theorem (2.1-33). The other direction follows from
theorem (2.1-34) with k=2.

Each of the above mentioned authors discusses only one type
of damping, i.e., either the overdamped case or the underdamped
case, but not both. The results reported here are complete and

stronger than those of other researchers.



Chapter 4
APPLICATIONS OF LUMPED PARAMETER THEORY

In this chapter the results of the previous chapter are applied
in two ways. The first section applies the theorems of section 3.3 to
the theory of forced vibrations of lumped parameter systems. The
second section consists of an example illustrating how the theorems
of section 3.3 can be used to design a given structure so that it

will have the desired type of eigenvalues.

4.1 Implications for the Forced Problem

The theorems of chapter 3 have some interesting implications

for systems of the form
(4.1-1)  x(t) + Cx(t) + K x(t) = £(t)

where x(t), C and K are as defined in chapter 3, and f(t) represents
an n-vector of applied external forces which are arbitrary.

Lancaster [2] as well as others have shown that if

(4.1-2)  D,() = A%T + Ca + K

is simple then the solution of (4.1-1) is given by

2s -a:t “AsT

- = J t, 3T
(4.1-3) x(t) jil gje ol e 9; f(t)dt
) n+s tR -Aj(t-r) (0)
+ z JR{e 9.:9%1f(x)d
Jj=2s+1 0 33 e

40
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where Aj are the 2n eigenvalues of'Dz(A)5_= 0; the real roots of
det(Dz(A)) = 0 are numbered 1 through 2s, the complex conjugate pairs
are numbered 2s + 1 through 2n, g_j indicates the eigenvector associated
with Aj and R{+} indicates the real part of {-}.

The intent of this section is to investigate when statements
similar to (4.1-3) can be made without assuming a simple structure
for Dz(x). To this end consider the following lemma which is needed

to prove the main result for oVerdamped systems.

Lemma (4.1-4): If the homogeneous system corresponding to (4.4-1) is

overdamped then DZ(A) is simple.

Proof: From theorem (2.2-4), DZ(A) is degenerate if and only if there

exists an eigenvector q associated with the eigenvalue A such that
T P P
r[2al +Clq=0

for all latent vectors r associated with A. Since I, 6 and k

are symmetric r = q and this becomes
T cla =
q'[2xI +Clqg=0

for all eigenvectors q associated with the eigenvalue A. Since

A is an eigenvalue it must satisfy

\“q"q + 2g"Cq + kg = 0.

Solving this for A yields
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(4.1-5) Zng_A + QTEQ = 1[(3TE£1)2 - 4&T£l ﬂTkﬂ]]/z

Since the system here is overdamped theorem (3.3-11) shows that
and q are both real and that the right hand side of (4.1-4) is non-

zero. Thus, theorem (2.2-4) is violated and Dz(x) is simple.

The following theorem can now be stated for arbitrarily forced

overdamped systems.

Theorem (4.1-6): If the homogeneous equation associated with (4.1-1)

is overdamped then the solution for any f(t) of (4.1-1) is given

by

2n -ast AT
x(t) = £ ge I sfe Jq.' f(r)dr.
j='|J J -
Proof: Since (4.4-1) is overdamped all its eigenvalues are real by
theorem (3.3-12) so that s=n in equation (4.1-3). Lemma (4.1-4)

yields the required simplicity, thus this result follows from

(4.1-3).

Next consider the (special) case that occurs when the undamped

modal matrix diagonalizes the damping matrix, i.e., when CK=KC. Again

a lemma is needed before the result for underdamping can be stated.

Lemma (4.1-7): If CK=KC, then D,(A) is simple.

~ o~

Proof: If CK=KC, then by lemma (3.3-9), the eigenvectors of K are
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those of DZ(A) and they form n linearly independent vectors since

K is symmetric. Therefore theorem (2.1-20) applies and DZ(A)

is simple.

Now a concise statement can be made about forced underdamped

systems in the special case where the undamped modal vectors decouple

the system.

Theorem (4.1-8): If the homogeneous equation associated with (4.1-1)

~~

is underdamped and if CK=KC, then the solution of (4.1-1) for any

f(t) is given by

-x:(t-1)
t J *
o/ Rie gdgjf(r)}dr.

Proof: Lemma (4.1-7) yields the simplicity of DZ(A) and expression

(4.1-3) yields the solution. The underdamping condition implies

that all the eigenvalues are complex by theorem (3.3-15). Hence,

s=0 and the theorem follows.

One is tempted to try and prove theorem (4.1-8) for the case where

Ekfké by mimicking the proof of lemma (4.4-4). However a counter example

exists to this conjecture as pointed out by Lancaster [20]. For complete-

ness, it is presented here.

Consider Dz(x) with

: 1 /3/2
/3/2 2
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and
- 1 0
K:
0 4
so that
1 -v/3/2
k2 . ¢ -
-v3/2 2

which is positive definite, so that this DZ(A) is underdamped.

~~ o~

note that CK#ZKC. The characteristic equation is

)\4+3)\3+-2—2)\2+6>\+4

det(D, (1))

(L + 3+ /235)20 + 3 - /235)%/4%

Now consider the repeated root i, = (-3 + ¥23j)/4. Then

-10-2/23j -6/3+2/69j
_ 1
D,(0) = 15
-6/3+2v/69j 26+2/23j
so that

det DZ(A]) = -184-38/23j # 0.

Also,

Thus, the rank of DZ(A]) is 2. From the definition of simple, DZ(A)

is simple if and only if the rank of DZ(A) is n-a = 2-2 = 0.

Hence,

the underdamping condition by itself is not enough to guarantee that

DZ(A) has a simple structure.
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4.2 System Design

The well known result that a matrix is positive definite if and
only if the determinant of each principal minor is positive allows
the theorems of chapter 3 to be used as design tools. That is, the
cdnditions stated here can be used to choose the values of the masses,
spring constants and damping coefficients so that all the systems modes
will oscillate or not as desired.

To illustrate this use, consider the following two degree of free-

dom system.

A
A
— W —W—
/ k1 k2
y m m
/ 1 2
: = T
/ 4 ¢
/
/
Ve
| S— .
X X2
Fig. 1
The equations of motion are
m 01. Cc,+cC -C kytk, -k
1 X+ 172 2 £_+ 172 2 x=0

For the sake of simplicity assume my =m, = 1. Then
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- -

2 2 2
ZC]+ZC]C2+CZ -ZC]-C]CZ
c? =
2 2
:ZCI'C]CZ 2C] i
and
P 2 2 ]
ZC]+2C]CZ+C2-4(k]+k2) 4k]°2C]'C]C2
24K =
-4k]‘2C$‘C]CZ 2(C$-2k])

Now attempt to choose Cys Cps k] and k2 so that 52-4R is positive

c owl/2

definite, i.e., so that C-2K is positive definite. Then the system

will be overdamped. The determinant condition yields the following
inequalities which must be satisfied
2¢% + 2¢c,c, + €2 > B(ky+k,)
1 1-2 2 172
and
2 2 2
Z(C] -Zk])(ZC] + ZC]C2+C§) > (4k]‘2C$-C]C2) ’

which cannot be satisfied unless

2
C] > 2k]-
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One possible solution is

¢y = 4 ky = 1
c, = 5 k2 = 2.
This yields
9 -4 3 -1
C = and K =
-4 4 -1 1

Also note that

o - [85 -8
C4-4K =
-48 28

which is certainly positive definite. Thus, according to the definitions
of chapter 3 this system is overdamped.
The eigenvalues for this system are found from

det[DZ(A)] =44 13A3 + 24A2 + 132 + 2 =0,

which yields
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M o= -0.2662
Ay = -0.5323
Ay = -1.2941
Ag = -10.9074.

Thus, applying the overdamping condition allows the system in figure 1

to be designed in such a way that each of its modes are overdamped.
Suppose now that it is desired to design the system in figure 1 in

such a way that each mode will oscillate. Enforcing the underdamping

condition yields the following inequalities for C1s Cps k] and k2.

4(k]+k2) > 2c$ + 2c]c2 + cg

and

2 2
4(ky-2c8-c;c,)? > 2(c2-2k;) (2cP+ac e wcd).
One solution of these inequalities is

c]=], c2=2, k]=4 and k2=].

The underdamping condition is satisfied since

-, [0 o
4K-C2=
0 2
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which is positive definite so that Zk]/z-é is positive definite.

Again, note that
.- 16 -5 16 -6 —
Ck = 4 = KC.
-6 2 -5 2
The eigenvalues for this system are found from
det[D,(2)] = 0 = Mradealiar+a=o,

and have the values

A

1,2 = -0.338 * 0.8327j,

A3’4 = -1.6662 + 1.4813],

so that each mode will oscillate as desired.

Now consider an attempt to design the system in figure 1 so that
each mode is critically damped. Note that in this case since the
damping and stiffness matrix commute the definition becomes both necessary

and sufficient. It is more interesting to allow the masses to be

chosen. Hence

C1*cy ¢
- m Y m.,
C = M-]/ZCM-]/Z = -c ] ] 2
2 3

/m]m2 m2

and
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- ha
™ /m]m2
k=M Voul/2.
'kz 53
| /nym, M2 |
Then
[ 2 2 ]
2
™ mym2 mygmy  my/ym,
& - ,
2 2 2
Lm]/m]m2 mz/m]m2 m,  mm, ]

-~

Demanding that C"=4K yields the following three equations for the six

design parameters

c$+c§+2c1c2 cg
(4.2-]) m + a—z‘ = 4(k]+k2)a
Cg °§*C1C2
(4.2-2) ﬁ"'+ —— = 4k2,
2 1
and
<5 <5
(4.2-3) EE-+ ET-- 4k2.

provided both m and m, are non-zero. Also note that there are six
other conditions on the parameters, namely that they all be positive.

In total the six parameters must satisfy nine conditions.

Yy .2 4 =
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The last two equations imply that CiCy = 0. Suppose c]=0. Then
(4.2-1) yields

2 2
i'n-]- + @' = 4(k]+k2).

But (4.2-2) yields

so that k] must also be zero. This eliminates one degree of freedom,
hence, c]fO.

Now suppose c, = 0. Then equation (4.2-3) requires kp=0. Thus
the system in figure 1 cannot be critically damped in both modes at
once.

One might expect that this should not be the case since a critically
damped system can be decoupled by the undamped modal matrix. However,
while the undamped modal matrix transformation yields separate equations
for each mode, the coefficients do not uncouple. For example the
equation for x](t) will have coefficients involving all of the
parameters mys My, k1, k2’ S and C,. Thus forcing X to be critically
damped puts further constraints on My, k2 and Cye

The design process illustrated here is limited by ones ability
to solve n nonlinear algebraic inequalities in 3n variables subject

to 3n constraints (each parameter must be positive).



Chapter 5
SOME RESULTS FOR DISTRIBUTED PARAMETER SYSTEMS

5.1 Problem Description

This chapter examines distributed parameter systems which can
be described by linear partial differential equations of the following

form

(5.1-1)  wge(x,t) + Lug(x,t) + Lyu(x,t) = 0, in g,

where @ is a bounded open region and u(x,t) is a function of the
spatial coordinate x = (x],xz,x3). The independent variable is
time, denoted by t, and the subscript t indicates partial dif-
ferentiation with respect to time. The operators L] and L2 are
self-adjoint spatial differential operators independent of t. In
addition, the solution to (5.1-1) is subject to spatial boundary

conditions denoted by

(5.1-2) B(u) = 0 on 3Q

where 3q is the boundary of @, and initial conditions denoted by

(5.1-3) I(u) = f(x) at t = 0.

Many physical problems can be described by this general form. For

instance with L] a positive constant and L2 defined by

52
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y 2, 2, )2 )
ax7 3;2 axz ’
1 2 3

2

L2='v

equation (5.1-1) describes the transverse vibrations of a membrane
with external damping such as air resistance. Other examples are
available from string, beam, membrane and plate theory.

The problem of interest here is to derive conditions on L]
and L2 which are easily checked and which indicate whether or not the

solution of (5.1-1) will be oscillatory in time.

5.2 Basic Assumptions

Results similar to those derived for the lumped parameter case can
be formulated for the distributed parameter case if certain restrictions
are imposed. The operators L] and L2 are taken to be positive
definite self-adjoint operators with inverses that are Hilbert-

Schmidt operators. Furthermore, they must have these properties
on the same domain. Let s be the order of L1 and n, the order

of L2 and define this domain as follows:

Definition (5.2-1): The domain D(L) is defined to be the set of
all functions u(x) in LZ(Q) satisfying the spatial boundary
conditions (5.1-3) and having derivatives in LZ(Q) of order

max(Zn],nZ).

Note that the functions in D(L) may be smoother than the solution

of (5.1-1) requires. The set W(L) will denote all those functions

in D(L) with |]ul| = 1.
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It is further assumed that any solution of (5.1-1) can be

written as

(5.2-2)  u(x,t) = ;] a(t) op(x)
n=

(-

where the set of spatial functions {¢n(x)}n=] form a complete ortho-

normal set of real functions in LZ(Q).

5.3 Definitions

Motivated by the definitions for the lumped parameter case, it is
tempting to define critical damping, overdamping, underdamping and
mixed damping in terms of the operator (L]-ZL;/Z). However, the operator
L2 may be unbounded and the literature does not offer useful techniques
to compute the positive definite square root of a positive definite
unbounded operator. Thus, the following definitions are formulated in

terms of the operator (L$ - 4L2), which is straightforward to compute.

Definition (5.3-1): The system described by (5.1-1) is said to be

critically damped if L% = 4L2 on D(L).

Definition (5.3-2): The system described by (5.1-1) is said to be
overdamped if the operator (L? - 4L2) is positive definite on

D(L).

Definitior (5.3-3): The system described by (5.1-1) is said to be
underdamped if the operator (4L2 - L?) is positive definite
on D(L).
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Definition (5.3-4): The system described by (5.1-1) is said to
exhibit mixed damping if the operator (L% - 4L,) is indefinite
on D(L).

As in the lumped parameter case there is a special class of
problems that occur when the eigenfunctions of the undamped problem
(L] = 0) are also the eigenfunctions of the damped problem. This
class of problems was termed "classical" by Caughey and 0'Kelley [7]

and is stated as a definition here.

Definition (5.3-5): The system described by (5.1-1) is said to possess
classical normal modes if the eigenfunctions for the related un-

damped problem (L] = 0) are also eigenfunctions of (5.1-1).
If the system described by (5.1-1) does not possess classical normal
modes it will be referred to as a non-classical system. Likewise,

if definition (5.3-5) is satisfied the system will be called classical.

5.4 Results

In this section results similar to those of section (3.3) will
be derived that will indicate something about the nature of the
functions an(t) in (5.2-2). First, consider two results due to Caughey

and 0'Kelley. The proofs can be found in [7].

Theorem (5.4-1): The system described by (5.1-1) possesses classical

normal modes if and only if the operators L1 and L2 commute on
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D(L), if and only if L and L, have a common set of

eigenfunctions.

Theorem (5.4-2): If the system described by (5.1-1) possesses classical
normal modes, then the functions an(t) in (5.2-2) are solutions

of the initial value problems given by
ap(t) + <ops Lyop> 8,(t) + <4, Log > ap(t) = 0
I(an) =0att=0, forn=1, 2...

where o = ¢n(x) are the spatial eigenfunctions of the undamped

problem, and "+" indicates differentiation with respect to time.

Thus, when a system possesses classical normal modes, the solution can
be calculated term by term from the eigenfunctions of the undamped
spatial eigenvalue problem. The following theorem illustrates a

special situation for systems with classical normal modes.

Theorem (5.4-3): If the system described by (5.1-1) is critically
damped then each of the functions an(t) are critically damped
and the solution u(x,t) decays exponentially in time without
oscillation.

Proof: Suppose L% = 4L2 on D(L). Then L and L, of (5.1-1) commute on
D(L) and by theorem (5.4-2), each an(t) is a solution of the

initial value problem
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;n(t) *<tps Lyop> én(t) * %'<¢n’ L% ¢p> ap(t) = 0.

By theorem (5.2-1), the ¢, are eigenfunctions of L] so that
“On> Ll N N

since the ¢n(x) are orthonormal. Also since L] is self-adjoint
e L$¢n> N <L1 ons Lydy

T A s Aty

Substitution of these last two calculations into the expression

for an(t) yields

2
A
. ] n )
an(t) + Anan(t) i = an(t) =0,
for each an(t). Trivially,

a (t) = e /2t (a ¢ 45 )

where An and Bn are constants determined by the initial
conditions I(u) = 0, at t = 0. Since the operator L, is assumed

to be positive definite the eigenvalues, A,» are all positive.
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Thus, each of the functions an(t) will be critically damped and
u(x,t) is an exponentially decaying function of time without

ocillation.

Something can be said about the oscillatory nature of the functions
an(t) even when the system does not possess classical normal modes. To

this end consider solutions to (5.1-1) of the form

u (x,t) = a(t) ¢ (x)

where the ¢n(x) are taken from the complete set of orthonormal functions
of (5.2-2), and in general are not necessarily classical normal

modes. Substitution of this form into (5.1-1) yields
(5.4-4) a (t)e,(x) + & (t) Lye,(x) + a (t) Lys,(x) = 0

Multiplying this expression by ¢n(x) and integrating over Q yields,
assuming |[¢ || = 1,

(5.4-5)  a(t) + & (t) <o, Lygp> + ap(t) <o, Ly 6> = 0.

Note that the functions ¢n(x) in (5.4-5) are not necessarily eigen-
functions of L] and L2 but rather functions taken from a complete set
of orthonormal functions. The product function an(t)¢n(x) is a solution

of (5.1-1) if an(t) satisfies (5.4-5). Since the system is linear the

function
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u(x,t) = I ay(t) #,(x)
n

is also a solution of (5.1-1). Convergence is guaranteed by the com-

pleteness of the ¢n(x).

Theorem (5.4-6): If the system described by (5.1-1) is overdamped then
each of the functions an(t) are overdamped and the solution

u(x,t) decays exponentially in time without oscillation.

Proof: Consider equation (5.4-5). The related characteristic equation
has roots

(5-4'7) 2!‘]’2 = "'<¢n’ L]¢n> :‘_ [<¢n’ L-I¢n>2 = 4<¢n’ L2¢n>]]/2

The values of r and ry clearly determine the oscillatory nature
of an(t). In order to analyze the nature of 1.2 consider the
9

scalar d defined on the set of all functions ¢(x) in W(L) by
(5.4-8)  d(¢) = <, L% - 4<o, Lpo>

and investigate the sign of d(¢).

Since (L% - 4L2) is positive definite on W(L), the operator

(L] - ZL;/Z) is also positive definite on W(L) by Temma (2.3-19).

Thus, there exists a positive scalar e¢. and a positive definite

()
operator P defined on W(L) such that

] 1/2 _

)
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on W(L). Now suppose e, and P are chosen so that e is arbitrarily

(]
large and consider any e such that €y > € > 0. Then for all ¢
in W(L)

<bs(Ly-2Ly D)e< = € <0,Po> > € <o,Po>

where P is fixed and ¢ takes any value in the interval (O,eo).

Rearranging this inequality yields

1/2
2

<¢9L]¢> > 2<¢,L ¢> + e<¢,P¢> > 0.

Squaring this inequality and subtracting 4<¢,L2¢> yields upon

comparison with (5.4-8)

d(6) = c2<p,Po> + Be<s,Po><o, L1/ 20> + d<q, L)/ 245"

-4 <9, L2¢>.
Define de(¢) as the expression on the right and the above becomes
d(e) > d_(6) .
for all ¢ in W(L) and ¢ such that €y > € > 0. If d€(¢) is positive
for all ¢ in W(L) then d(¢) will be since € is arbitrary. To

this and consider the sign of de(¢).

The derivative of d€(¢) with respect to € for fixed P is
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d;(¢) = 2e<¢,P¢> + 4<¢:P¢><¢al-;/2¢>

which is obviously positive for all functions ¢(x) in W(L),
for all ¢ > 0. In particular d;(¢) > 0 for all functions ¢n(x) in
the expansion of (5.2-2).
Now consider the evaluation of de at ¢ = 0. By (5.4-9),
2

Ly = 4L, on W(L) when € = 0. Then by theorem (5.4-1) the functions

¢n(x) become the eigenfunctions of L; and L,. Therefore,

H<ops L;/2¢n>2 = <oy Loog>)

do(ey,)

4{ln<¢n: 0> 2. Ap <bp» ¢n>}

4(An-An)

where ) are the eigenvalues of L, associated with ¢n(x).

The function d€(¢n) defined on the set of functions ¢n(x) of
(5.2-2) has a positive derivative and passes through zero and hence
is positive for all € > 0. Since € is arbitrary, D(¢) is always
positive and the discriminant in (5.4-7) is positive if (L% -

4L2) is positive definite, and the theorem easily follows.

Theorem (5.4-10): If the system described by (5.1-1) is underdamped then
each of the functions an(t) are underdamped and the solution

u(x,t) decays exponentially with oscillation in time.
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Proof: Since (4L2-L$) is positive definite, the following holds
2
<45 Ly¢> < 4 <¢,L,¢>

for all ¢ in W(L). The Cauchy-Schwarz inequality for the two
functions ¢(x) and L1¢(x) yields

< L]¢>2 < <¢, L$¢>

for ¢ in W(L). The above two inequalities imply

2

<¢;L]¢> < 4<¢’L2¢>

so that
2
<¢, L]¢> = 4<¢’ L2¢> < 0;

for all ¢ in W(L). In particular, this is true for the set of
functions ¢n(x) so that the discriminant in equation (5.4-7) is

always negative, and the theorem easily follows.

The next two theorems again deal with the special case of systems
which possess classical normal modes, i.e, for systems which have
solutions that can be expanded in the eigenfunctions of the undamped

system. Stronger results can be derived for these systems than those

for non-classical systems.
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Theorem (5.4-11): If the system described by (5.1-1) possesses classi-
cal normal modes then the solution of (5.1-1) exhibits mixed
damping if and only if there exists at least one value of n such
that an(t) is overdamped and at least one value of n such that

an(t) is underdamped.

Proof: Since (5.1-1) possesses classical normal modes, theorem

(5.4-2) yields the following expression for each an(t):
an(t) + <ops Ligp> & () + <4, Lyo > a (t) =0,

where ¢n(x) is an eigenfunction of both L] and L2' Let

th

Aél) be the n”" eigenvalue of L] associated with the eigen-

h

function ¢n(x) and let l§2) be the n® eigenvalue of L,.

Then the above expression reduces to
(5.4-12) 4 (t) + a1 & (t) + (8 4 (2) = 0.

forn=1, 2, 3... Hence, a particular an(t) will be over-

damped if and only if
(5.4-13) (1{1)2, 4, (2)
n n
and underdamped if and only if

(5.4-18) a(2) 5 (\(10)2,
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Next consider the operator L defined by

L=1%-a,
on d(L) and note that it is self-adjoint. By theorem (2.3-20),
the eigenvalues of L, denoted u, are

- 0402 - 4
and the eigenfunctions are, obviously, ¢n(x). Furthermore, from

theorem (2.3-17) any function u(x) in D(L) can be written as the

uniformly converging series

u(x) = n£] Chtn(x)

where Cp = <bps U Since the convergence is uniform, for all

u(x) in D(L),

(5.4-15) <Lu,u> = <Lu, I c_¢ >

]

™M
=
(2)

following the proof of theorem (2.3-18).
To prove sufficiency, assume L is indefinite. Then there is a

function u in D(L) such that

(5.4-16) <Lu,u> =z p_c. <0
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and a function v in D(L) such that
(5.4-17)  <Lv,v> = I b2 > 0,

where b = <v,¢ >, via (5.4-15). Since cﬁ > 0 for all n there
must be at least one value of n such that u < O. Then (5.4-14) is
satisfied and there is at least one an(t) that is underdamped.
Since bﬁ > 0 for all n there exists at least one value of n such
that My > 0 and (5.4-13) is satisfied. Thus, there is also at
least one an(t) that is overdamped.

To prove necessity, suppose there is a value of n such that
an(t) is overdamped and another value of n such that an(t) is
underdamped. Then from (5.4-13) there is one u, < 0 and another
eigenvalue of L say Mo such that oy > 0. Thus, there exists a

function v = ¢m(x) in D(L) such that

<Lv,v> = <um¢m, ¢m>

and a function u(x) = ¢n(x) in D(L) such that

<Lu,u> = Hy < 0.

Hence, the operator L = L% - 4L2 is indefinite on D(L).
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Theorem (5.4-18): If the system described by (5.1-1) possesses classical
normal modes, then (5.1-1) is
(I) critically damped if and only if each of the an(t)
are critically damped,
(II) overdamped if and only if each of the an(t) are over-
damped,
(ITI) wunderdamped if and only if each of the an(t) are under-

damped.

Proof: This set of theorems follows directly from the proof of the
previous theorem. The oscillatory nature of an(t) is determined
by the sign of M The sufficiency of each of these results
follow as corollaries to theorems (5.4-3), (5.4-6) and (5.4-10).

To see necessity for (I), suppose that each an(t) is cri-

tically damped. Then each My T 0, so that L%

= 4L, on D(L). For
(IT) suppose each an(t) is overdamped, then u > 0 for all n and

it follows from equation (5.4-15) that L = L% - 4L2 is positive
definite on D(L). Likewise for (III), if each an(t) is underdamped,
each uy < 0 and (5.4-15) shows that the operator (-L) is positive

definite, so that 4L, - L% is positive definite on D(L).

5.5 Examples of Systems with Classical Modes

In this section some examples with known solutions are examined
to illustrate the validity of the results in seétion 5.4. The problems
here all satisfy the commutivity and self-adjoint conditions so that
closed form solutions can be found by separation of variables or

series solution techniques.
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Example 5.5-1

Consider the longitudinal free vibration of a bar with internal
damping. The describing equation of motion is

Upy = AU+ 2butx on (0,1)

X
with a > 0 and b > 0 and where u = u(x,t) is the axial displacement
of the bar. The subscripts t and x indicate partial derivatives with
respect to these variables. For a clamped bar the boundary

conditions are

u(0,t)
u(1,t)

n 1]
o o

It is well known that the eigenfunctions are
¢n(x) = sin nmx, n=1,2,3...

and the eigenvalues are
Ap = N, n=1,2,3...

for this problem. The time functions an(t) are determined from

ag(t) + 202 3 (t) + axl a (t) = 0



68

Demanding that the discriminant of the resulting characteristic

equation be positive yields

Since n > 1, if b > Ya/n all of the solutions will be decaying
exponentials without oscillation. Even if b is small, as n
increases the corresponding an(t) will eventually be overdamped
functions. Hence, the internally damped beam is inherently
overdamped.

The above analysis of the closed form solution of this example

is exactly predicted by theorem (5.4-6). To see this note that

—

1}

1
N
o

[+%)
-

and

D(L) = {u(x)|u(0) = u(1) = 0 and u, Uy U

are in L2(0,1)}

> Uy and u

XX XX XXXX

These operators are both positive definite and self-adjoint. To see
this requires some simple integration by parts.

1

<u,L]v> = -2b of uv"dx



|

J
N
o
——
[ =
<

o

[,
o
<
[=8
>
(-

]
nN
o
\
<
Q.
x

which shows that L] is positive, since with v = u(x) this becomes
_ 1, 112
<U,Lyu> = 2b s (u*)dx > 0
for all u in D(L). Proceeding with the computation yields

2b{u“v|l - of] u"vdx}

<u,L]v>

<L]u,v>

where the adjoint boundary conditions become v(0) = v(1) =
Hence, L] is self-adjoint. The calculation showing that L2 is posi-
tive and self-adjoint is identical.

In order to apply theorem (5.4-6), note that

4 2
2 2 3 3
(LY - 4L,) = 4{b =7 +a =7}
1 2 aX oX
2 o 442 32

The eigenvalues of b

-nznza From theorem (2 3-19) the eigenvalues of (L] - 4L2) are

——z-on D(L) are n"w b°. Those of a ——? are

then

4(n4n4b2 - nznza).
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A1l the eigenvalues of (L% - 4L2) will be positive if b > va/n. Thus,
if L% - 4L2 is positive definite then b > !é.and theorem (3.4-6) agrees
with the actual solution. Note, that b would have to be a function of

n in order for this system to be critically damped.

Example 5.4-2

Consider the transverse free vibration of a membrane in a surrounding
medium furnishing resistance to the motion that is proportional to the

velocity. The equation of motion is
u., + 2yu, - v2u =0ongQ
tt T Yt

with boundary conditions

u(x,t) = 0 on 3Q,

where v2

is the two dimensional harmonic operator, x = (x], xz) and
u-= u(x], Xos t) is the deflection of the membrane in the direction
perpendicular to the X| X, plane. Here Q is a plane in two dimensional

space and 3q represents one or more curves in that space. If An are

the eigenvalues of v2, then the known time solution [6, page 258,
Vol. 2] is
Lt osl0y )%t
a (t) = e’

g/



n

if A > 72. Thus for A 2 YZ all the time solutions are underdamped.
In terms of the theory presented here the operators of interest

are

-
—
[}
N
<

and

Ly is obviously a positive self-adjoint operator on D(L) since y > O.

To see that L2 is, note that

‘<U,Vzu>

<u, L2u>

2
-Qf uv-u dx.

Using Green's identity and the fact that u(x) = 0 on 3 yields
<u, Lou> = f(VU)de
> 2 Q
so that L2 is positive definite. Also, from Green's identity

au
Jv an ds

<V, Lou>= or(vu)(w) dx - 30

= <L2v,u>
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as long as v(x) is taken to be zero on 3Q. Thus L2 is self-adjoint

on D(L).

Theorem (2.3-20) yields the eigenvalues of

aL, - L2

_ 2 2
2 ]"4(V+Y)

to be 4(An-yz). This will be positive, making 4L2-L¥ positive definite,

2

if \g > Y for all n. Thus theorem (5.4-10) correctly predicts when

each of the functions an(t) will be underdamped.

Example 5.4-3

Consider the longitudinal free vibration of a bar with both internal

and external damping. The equation of motion is

2
Upp ¥ 2[y - bi;?Jut -au,, =0on (0,1)
where u = u(x,t) is the displacement of the bar and the constants

Y, b and a are positive. The boundary conditions for a clamped bar

are
u(0,t) = u(1,t) = 0.

One method of solution is to assume a series expansion for

u(x,t) of the form

u(x,t) = n£] a (t) o (x)
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where
4a¢n“(x) = An¢n(x), A, > 0

and bpr > = Smn® the Kronecker delta. Substitution into the equation

of motion yields

n‘g]{an(mn(x) + 2v8 (£)o, (x) + 24 () o (x)

+ an(t)xn¢n(x)} = 0.

Multiplying this expression by ¢m(x) and forming an inner product

yields
a(t)+2[y+ 214 (t)+xal(t)=0,

form=1,2,3... The discriminant of the corresponding characteristic

equation is then
b, \2
Ay + )% - 2l
The obvious conclusions are as follows

(i) each an(t) is critically damped if (y+ gan)z =2, for all n,

(ii) each an(t) is overdamped if (y + gﬂn)2> An for all n, and

b

(111) each a (t) is underdamped if (y + 2 ).n)2< A, for all n.
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Now consider this same problem in terms of the theory presented
here. The operator L, = - a N Y positive and self-adjoint as shown
2 e
in example 5.5-1. Consider
2
)
L,=y-b—.
2 axz
It is self-adjoint since it is the sum of two self-adjoint operators

and positive definite for the same reason. Thus the theorems apply.

Note that
2 4

2 2 ) 2 9

L7 =4(y" - 2yb=—, + b )

1 2 k8 ad

so that
2 4 2

2 2 3 29 3
LY - 4L, = 4(y° - 2¢yb +b +a ).
17 o

A repeated application of theorem (2.3-20) yields the eigenvalues

of L% - 4L2 which are

2
4(y2 + 2y g-xn + EZ A
a

SN

- An).

Demanding that these eigenva{ues, and hence the appropriate operator,
be positive, negative or zero leads to exactly the same conditions stated

in (i), (ii) and (iii) above.
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An analysis of these three conditions leads to some physical insight.
Note that condition (i) cannot be met for all n because y is not a

function of n. Also since

An=/5nn>/a—n,
the only condition that can possibly be met for all n is (ii). Hence
this system is either overdamped or exhibits mixed damping with the

higher modes all being overdamped.

Example 5.4-4

As an illustration of the importance of the theorems stated in
this work, consider the usual attack on solving a damped vibration
problem. Commonly one assumes a solution of the form

o

u(x,t) = ¢n(x) e %nt sin w ts ¢
n=1

>0, w, > 0.

n n

However, theorem (5.3-13) states necessary and sufficient conditions
under which an(t) will have this specific form so that one does not
have to make any such assumption (which may or may not be correct).

As an example of this pitfall consider the free flexural vibrations
of a damped plate. This problem was solved by Murthy and Sherbourne [21].

They give the equation of motion as

4 4
v4u(x,t) + Egi_ utt(x,t) + 5%— ut(x,t) =0
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where v4

, the biharmonic operator, and m, h, a, k and D are
various physical parameters of the problem and are all positive

constants. The boundary conditions are those of a clamped support
u(x,t) = 0 on 3gq,

and

au _
an = 0 on 39,

where %ﬁ-indicates the derivative normal to aQ.

Proceeding in terms of the theory presented here, note that

_k _ ,1/2
L]-m_h'-B

which is obviously a positive definite self-adjoint operator. The

operator L2 is of the form

L. = 4 D
mha

> 0.

i}

To see that this is positive and self-adjoint, recall Green's identity

for v4:

4 _ .22 3 2 2,,3u
Vv U = svvvtu dx - 3QI(U53(V V) -V vsﬁ)ds.
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Since the last integral vanishes from the application of the boundary

conditions, L2 is obviously positive definite. A second application
of Green's identity yields

<v,L2u> = vav4u =QIV2vv2u

2 v
fVUﬁ'dS

4 3 2
QI(V viu - an(VEF veu)ds + .

<L2v,u>

where the adjoint boundary conditions become v = %%-= 0 on 3Q. Thus,
L2 is self-adjoint as well.

To apply the overdamping condition note that
Ly -4, = 8 - ayv?
so that an application of Green's identity yields

cu, (LB-ay)u> = gl ]ul|? - ay| |7
It is not clear from this expression what the definiteness of (L$-4L2)
is. However, the eigenvalues of (L$-4L2) can be computed using theorem

(2.3-20). They are

B - 47An
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2 on D(L). These eigenvalues will be

where A, are the eigenvalues of v
positive or negative depending on the value of n and the physical
parameters k, m, D, h and a. From theorem (5.4-11) the values of
(B-4yxn) for a specific n determine whether or not an(t) for that

n oscillates. Thus, while it is clear that this system will have time
solutions of the form (B<4yAn)

a (t) e tntsin w,t

for large values of n, the actual solution may have terms of the

form (s>4yxn)

a (t) = e Cntsinhe nts T, > wp
for lower values of n.

Murthy and Sherbourn consider, in their numerical treatment of
this problem, the first ten modes of the spatial eigenvalue problem.
It is possible that the damping constant k is large enough in

comparison to the thickness of the plate h and the width of the plate

a, that
2
k D
—7 > 4 — Ap>
mh mha n

for the first ten modes (n < 10). Hence, the results presented by the
above authors should be modified to include the possibility of mixed

damping.
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5.5 Non Classical Mode Example

Systems with non-commuting operators are difficult to solve. This
is reflected in the lack of such examples in texts and current literature.
As an example of such a system, consider the bending vibrations of a beam
with non-uniform area moment of inertia (denoted I(x)) and with a damping
mechanism which yields a velocity dependent force resisting the bending
moment.

The equation of motion of such a non-uniform beam without damping

is well known [3] and given by (E is the elastic modulus)

utt(x,t) + (EI(x)uxx(x,t))xx = 0.

Attaching a damping force resisting the bending moment yields

utt(x’t) - 2cutxx(x,t) + (EI(x)uxx(x,t))xx = 0.
where ¢ is a damping constant assumed to be positive.

For this example consider a hinged-hinged configuration. The
boundary conditions are that the deflection at the boundaries be zero
so that

u(o,t) = u(1,t) =0
and that the bending moments at the boundaries be zero

I(0) u"(0,t) = I(1) u"(1,t) = O.

Suppose also that the area moment of inertia is bounded. That is that
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O<m<I(x) <sM<a

for all x in the interval [0,1] where m and M are known constants. In

particular then I(0) and I(1) are non-zero so that the last set of

boundary conditions becomes
u"(0,t) = u"(1,t) = 0.

These boundary conditions define the domain D(L) described in
(5.2-1). The domain D(L), in this example, is the set of all functions
satisfying the above boundary conditions and having derivatives through

the fourth order. The operator L is then defined on D(L) by

which was shown in example (5.5-1) to be self-adjoint and positive

definite on D(L). The operator L, defined on D(L) is

L =g 2 (1()32)
= X
2" " 52 ax

which is also a self-adjoint positive operator. To see this, again

integrate by parts

E of]v(Iu")"dx

vggg{)'ll-E of]v](Iu")'dx
0

<V, L]u>

ap s gy
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Sf?/ 1 1
vl u)l + E f (Ivu)uudx
o 0 0

1

Iv'u"dx, (>0 for v=u)

E o/

L1} ] ] ] ny1
(?v °u lg = E of (Iv")'u'dx

1 1
-(Iv")%” |+ E s (Iv")"u dx
4?0 0 0
= <L]v,u>

Thus, the adjoint boundary conditions are v(0) = v(1) = 0 and v"(0) =
v"(1) = 0 so that L, is self adjoint and positive definite. Hence,
the theorems of section 5.4 can be applied to this problem.

A calculation quickly shows that L]L2 # LZLl and Caughey and
0'Kelley's work [7] suggest that attempts to solve this problem by modal
analysis will fail. However, the theorems of section (5.4) can still
be applied to see if the nature of the solutions can be determined.

To this end consider the operator L = (L% - 4L2), which becomes in this

example

4 2 2
L(-) = 4 {c® 24 (4) - £ 25 (1(x) &5 (+))).
(o 3 () ;;7‘( (x) ;;g ()

aX

Letting L act on v(x) an arbitrary element in D(L) and forming the

inner product with v(x) yields

1

<V,Lv> 4{c2 ol V vIde - E 0f]v(I(x)v")"dx}

4 (c? vk - £ oM 1(x) (v 2ax),
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after integrating by parts and using the boundary conditions. Here

vIv indicates the fourth derivative of v(x), v" the second, etc. Thus

the condition of overdamping or underdamping will depend on the sign of
c2 of](v“)zdx -E 0f]I(x)(v")zdx.

Suppose it is desired to have this system be overdamped. It is

well known from calculus that if g(x) < f(x) for all x in [a,b] then
afb g(x)dx < afbf(x)dx.
If the operator L is to be positive, then
c2 0f](v")zdx - E 0I]I(x)(v")zdx >0
must hold. But (v")2 > 0, so by the assumption on I(x)
M(v')% > 1(x) (v)? > m(v*)?,
for all x in [0,1] and by the above result
EM of](v")zdx_>_ E oI]I(x)(v")2 dx > Em of](v")zdx.
Combining these inequalities yields
CZ

<V,Lv> = 0f](v")zdx -E OI]I(X)(V")de
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C2

>

] ll2 ] ||2
o (v")%dx - EM of (v")“dx
= (c2 - EM) oJ‘](v")zdx >0

if c2 - EM > 0. Hence, if the damping constant c, the elastic modulus

E and the largest value of the area moment of inertia M are such that

then all of the time solutions of this problem will be overdamped by
theorem (5.5-6) and the solution will not oscillate with time.

Next suppose it is desired to have this system be underdamped so
that each of the time solutions will oscillate. Since it is assumed
that I(x) > m for all x in [0,1] the computation above can be repeated

with the sign reversed. That is
<v,(4L2-L$)v> 3_(Em-c2) 0J‘](v")zdx >0
for all v(x) in the domain D(L) if
Em > ¢

Theorem (5.4-10) then yields that the time solutions of this system
are all damped oscillations.

In summary, a problem has been considered which does not have
a solution which can be computed in closed form by the usual methods.
It was then shown that if the area moment of inertia is bounded the

systems time solutions will oscillate if
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Em > ¢

and will not oscillate if

Thus, the nature of the solution of this system is determined by the
elastic modulus E, the value ("size") of the damping constant and the
maximum and minimum values of the area moment of inertia. This is

information about the solution of this example that has not been pre-

viously available.

T™ Am———— 1



Chapter 6
SUMMARY AND FURTHER STUDY

6.1 Summary

A set of conditions have been stated and derived which deter-
mine whether the solution of a given linear dynamic system with
damping will oscillate. Several classes of both lumped parameter
and distributed parameter systems were treated. These conditions
involve checking the definiteness of certain matrices or operators
and are in general easier to check than solving the governing dif-
ferential equations.

It was further shown how these conditions can be used to de-
sign systems in such a manner that their solutions will either
oscillate or not, as desired. In the case of lumped parameter
systems, some of the conditions were shown to imply completeness
of the eigenvectors associated with the damped system, thus allow-
ing a closed form solution of a system with arbitrary forcing
functions.

A selection of example problems were presented illustrating
the use of the conditions to predict the qualitative nature of
the free response to arbitrary initial conditions. These examples
serve to verify the theorems. For the lumped parameter case
examples using the conditions as design tools were also pre-
sented. For the distributed parameter case, the conditions were
applied to several problems with known solutions to verify the

theorems. Two examples which do not have known closed form
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sofutions were also considered. For these examples, inequalities were
found from enforcing the conditions which indicate the qualitative
nature of the time response.

Comparisons were made to results found by other researchers.
For the lumped parameter case, several results by other authors
were available for comparison. In the distributed parameter case,
no results related to the problem stated here have appeared in the
literature. Thus, comparisons were made to specific examples
treated in the literature.

A complete theory has been presented with illustrative
examples and applications for viscously damped linear systems

possessing the usual symmetry (self adjointness) and definiteness.

6.2 Suggestions for Further Research

There are several topics of study which may emanate from this
dissertation. From the lumped parameter case there is motivation
to examine the theorems of chapter 3 when the definiteness and real
symmetric conditions on M, C and K are relaxed so that these coef-
ficient matrices are just square arrays of numbers. In fact a
discrete model of an acoustically coupled panel leads to a
complex matrix.

Another possible topic is to formulate the method of system
design following the examples in section 4.2. This would involve
looking for an algorithm to solve a system of non-linear algebraic
inequalities subject to constraints. Existence of a solution is
an important question and it may be possible to insure uniqueness

by imposing some optimality criteria. The result would be a
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practical method of designing systems which will not vibrate when
perturbed.

The distributed parameter case also lends itself to further
study in terms of relaxing the assumptions on L] and LZ‘ The most
restrictive assumption is the self-adjointness. Many problems with
varying moment or cross-sectional area do not have self-adjoint
boundary conditions.

Another interesting extension of the distributed parameter
theory is to consider systems having internal boundary conditions
or so called "in-span" conditions. An example is a beam supported
on a uniform viscous foundation. These problems involve both

distributed and Tumped parameter elements.
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