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ABSTRACT 

EXPLOITING DESIGN PRINCIPLES IN NATURE TO SYNTHETIC COMPOSITES 

By 

Abhishek Dutta 

The current need of technology demands the generation of light-weight, durable and 

energy efficient structural materials. In order to attain this goal, over the last few decades there 

has been an increasing trend towards understanding design guidelines existing in natural 

composites and to implement the same in the development of synthetic composites. Of the 

innumerable structural biological composites existing in Nature, the nacreous layer in the 

seashells has received significant attention owing to its unique architecture and exceptional 

mechanical properties. Over the past decade, researchers all over the globe have addressed the 

reasons which are responsible for this attribute, and also attempted to synthesize them in the 

laboratory. However from the perspective of structural application, it is imperative to 

understand the suitability/applicability of these type of composites, should they be subjected to 

a variety of loading rates. In our investigations, we have attempted to address as to why bio-

inspired nacre-mimetic composites are suited for impact loading conditions. We have also tried 

to understand the mechanics of these type of composites when subjected to impact loading 

and unearth the parametric attributes that are responsible for superior resistance. Additionally, 

we have also tried to interpret what does it take for the nacreous layer to promote not only 

significant fracture resistance but at the same time attain light-weight as well. Excerpts from 

our investigations provide beneficial guidelines in designing tough bio-inspired composites at 

any length scale. 
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1.1. Introduction 

Biological materials are composites structures synthesized by nature via bottom-up 

route and exhibit complex hierarchical design over several length scales. Nacre, or the mother-

of-pearl, is one of the most widely studied biocomposites since it is inherently light weight and 

strong (high stiffness and specifically, superior toughness) [Jackson et al., 1988; Sarikaya et al., 

1990; Menig et al., 2000; Kamat et al., 2000; Barthelat and Espinosa, 2007]. Nacre is 

composed of polygonal mineral tablets (width=5-10 µm & thickness=0.4-0.5 µm) of high weight 

fraction (Φ=0.95) which are cemented together with very small amount of polymeric matrix 

(thickness=20-30 nm) which is composed of proteins and polysaccharides. Irrespective of the 

degree of hierarchical complexity exhibited by the biocomposites, at the most elementary level, 

they exhibit a generic microstructure comprising of nanometer sized inorganic crystals 

embedded in a soft organic matrix (biopolymers) in the form of a staggered architecture [Gao 

et al., 2003], otherwise known as a brick-and-mortar type structural arrangement (Figure 1.1). 

 

Figure 1.1. Brick and mortar type structural arrangement observed in seashells. For 

interpretation of the references to the color in this and all other figures, the reader is referred 

to the electronic version of this dissertation. 
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Nature cleverly uses aspect ratio and ceramic content for fine tuning properties for 

functions. For instance, bone is primarily designed for withstanding time-dependent or, impact 

loading (for example, withstanding stresses while running, jumping, accidental fall) and hence 

the microstructure is designed primarily from enhanced toughness point of view and moderate 

stiffness. On the contrary, seashells (which lie in the abyss of oceans) apart from providing 

defense to the organism (it is hosting) against predatory attacks, is also subjected to quasi-

static loading (for example, enormous hydrostatic pressure). Hence, emphasis on the shell 

structure evolution is directed primarily towards providing enhanced stiffness. Such an amazing 

capability of tuning properties based on a function has rarely been seen in synthetic 

composites. Although bone and nacre differ from each other in varying aspects, deformation 

and toughening mechanisms in both these materials are similar. Thus, in order to synthesize 

composites having brick and mortar architecture, freeze-casting technique can be used to first 

synthesize the ceramic relic. It consists of four principal steps: (1) ceramic slurry preparation, (2) 

freezing the ceramic-solvent system, (3) sublimation of the frozen solvent, and (4) sintering of 

the porous ceramic relic. A short summary of the recent work in the literature of freeze-casting 

is given as follows. Porous alumina (Al2O3) and silicon nitride (Si3N4) ceramics were produced 

using water as the carrier where growth of dendritic shaped ice crystals was observed upon 

freezing which produced elliptical pores (dendritic channel) having a lengths of major and minor 

axis equal to 500 μm and 30 μm respectively [Fukusawa et al., 2002]. Simultaneously, 

camphene (C10H16) was also being used as a freezing vehicle because of its environment 
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friendliness and its ability to cast at room temperatures dense Al2O3 ceramics [Sofie and 

Dogan, 2001]. Araki and Halloran, 2005 produced Al2O3 ceramics by using an amine derivative 

of a fatty acid condensation polymer as a dispersant in addition to the Al2O3-C10H16 slurry 

which was cast on polyurethane molds and subsequently sintered at 1600°C for 4 hours and 

obtained circular cross-sectional channels. Porous silica (SiO2) ceramics were produced using 

polyvinyl alcohol (PVA) as the binder by casting the slurry onto glass tubes which was 

subsequently immersed in liquid nitrogen at a controlled speed [Zhang et al., 2005]. Porous 

hydroxyapatite (HAP) scaffold were produced using glycerol as the carrier, PVA as a binder (1.5 

wt%) and Dynol 604 as the dispersant (0.75 wt%) by casting the solutions on PVC tubes which 

was covered with polyurethane foam [Fu et al., 2008]. Similarly, porous HAP ceramic scaffold, 

titanium foam and HAP/tricalcium phosphate (TCP) ceramic scaffold respectively using 

camphene as the freezing vehicle [Chino and Dunand, 2008; Macchettaa et al., 2009; Yoon et 

al., 2007]. Pore channels generated were greater than 100 μm which enabled their use for 

bone-tissue engineering applications. Porous HAP have been produced which were modified by 

silica [Blindow et al., 2009], with functionally graded core-shell structure (using camphene as 

the carrier) [Soon et al., 2011], and using distilled water as the carrier, PVA as a binder and 

ammonium polyacrylate as the dispersant [Zuo et al., 2011]. Titanium foams [Li and Dunand, 

2011] and porous Si3N4 ceramics [Ye et al., 2010] have been produced using distilled water as 

the media and using a variety of compounds as an addition agent to observe subsequent pore 
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structure and geometry (for example, ammonium polymethacrylate anionic dispersant, 

polyacrylamide dispersion agent, etc). Macroporous alumina ceramics [Jing et al., 2010], Al2O3-

ZrO2 ceramic (20:80 with a 40-80 wt% solid loading) [Liu et al., 2010], and porous alumina 

ceramic using Al2O3 sol [Yoon et al., 2010] as a substitute for water and as a medium for 

making ceramic slurry have also been produced. The authors [Yoon et al., 2010] also discussed 

the use of PVA both as a binder as well as an emulsifying agent to stabilize air bubbles during 

magnetic stirring. Following the manufacturing of the ceramic backbone, the ceramic-polymer 

composites can be synthesized via infusion of polymer into the porous ceramic. Deville and co-

authors [Deville et al., 2006] were the first to produce Alumina epoxy lamellar composite by 

filling the porous IT scaffolds by epoxy. Al2O3-PMMA brick and mortar and lamellar composites 

[Launey et al., 2009] have been synthesized by introducing a polymeric phase (by free radical 

polymerization of methylmethacrylate (MMA) initiated by 2,2’-azobisisobutyronitrile (AIBN)) 

into the porous Al2O3 freeze cast component. By grafting the Al2O3 with another polymeric 

component [3-(trimethoxysilyl)propyl methacrylate (γ-MPS)], significant improvement in 

mechanical properties have been obtained in comparison to the non-grafted, Al2O3 and PMMA 

counterparts alone.  

All the above mentioned researches have attempted to mimic lamellar/brick and mortar 

microstructure in its entirety. In our current investigation, we are not trying to mimic brick and 

mortar microstructure of nacre; rather, what we are interested is in drawing inspiration from 
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staggered architecture in biological composites at their elementary level (such as nacre: 0.90-

0.95 ceramic content [Jackson et al., 1988], bone: 0.50 ceramic content [Currey, 2002], dentin: 

0.43 ceramic content [Currey, 2002], etc.), we want to (a) synthesize synthetic ceramic-polymer 

composites with varying ceramic content and aspect ratio, and (b) experimentally understand 

the structure-property correlationship of these composites when subjected to external loading. 

Excerpts drawn from this investigation would thereby help in custom-design manufacture of 

hybrid bio-inspired composite materials. 

1.2. Materials and Methods 

Sodium dodecyl sulfate (C12H25NaO4S) was obtained from Sigma Aldrich (St. Louis, MO, 

USA). Poly (vinyl alcohol) [-CH2CH(OH)-]n 98% hydrolyzed having an average molecular weight 

Mw 13,000-23,000 was obtained from Aldrich Chemical Company, Inc. (Milwaukee, WI, USA). 

Sucrose (C12H22O11) crystals were obtained from Roche Diagnostics Corporation (IN, USA). Two 

types of ceramic powders were purchased: Silica (SiO2) spheres of 8µm and 1µm diameter were 

obtained from Fiber Optic Center Inc (New Bedford, MA, USA). SC-15 epoxy resin (toughened 

two phase) was obtained from Applied Poleramic Inc. (Benicia, CA, USA).  

The ceramic scaffolds were prepared following the sequence of steps as have been 

carried out by authors [Deville et al., 2006; Launey et al., 2009] and for brevity purposes not 

described in detail. Suspension of micrometer sized ceramic powders were prepared by 

dispersing ceramic powders of different concentrations (30 wt%, 40 wt%, and 50 wt%) into a 

solution composed of 2 wt% polyvinyl alcohol (PVA), 4 wt% sucrose and 5 wt% sodium dodecyl 
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sulfate (SDS) in order to produce ceramic scaffolds having varying porosity. The colloidal 

solutions were sonicated for 10 minutes duration (Fisherbrand, FB 11021) at 35W. The ceramic 

suspensions were casted in teflon (PTFE) molds on top of a metal plate which was cooled by 

liquid nitrogen. The frozen samples were subsequently transferred to a freeze dryer (Freeze 

Dryer 1.0, Labconco, Kansas City, MO) for a period of 48 hours which in turn promotes 

sublimation of ice and thereby, we are left behind with the ceramic green body. Densification of 

the ceramic was by obtained by sintering at 1550°C for 2 hours. The epoxy is prepared by 

mixing 100wt% SC-15 Part A (resin) and 30wt% of SC-15 Part B (hardener). The mixture is 

stirred gently for approximately 10 minutes followed by degassing for another 10 minutes. 

Finally, the scaffolds were infiltrated with the two-phase epoxy followed by curing of the epoxy 

at 60°C for 2 hours and 94°C for 4 hours. 

Morphological features of the samples were acquired using a JEOL JSM-6400V scanning 

electron microscope (JEOL Ltd., Tokyo, Japan). Samples thermogravimetric analysis (TGA Q500 

V20.10 Build 36, TA Instruments) were conducted at a heating rate of 20°C min
-1

 up at 

temperatures up to 550°C. ASTM D695 was followed for the determination of compressive 

strength of these ceramic polymer composites under quasi-static rates of loading. The 

specimen dimension chosen for testing was 5mm × 5mm × 10 mm and was performed in a MTS 

machine (10kN load cell) at a crosshead speed of 1mm/min. ASTM C1421 was followed for the 

determination of fracture toughness of the synthesized composites. The specimen dimension 

http://www.astm.org/Standards/D695.htm
http://www.astm.org/Standards/C1421.htm
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chosen for testing was 4mm × 4mm × 16 mm (with an initial crack length of 1.40 mm), and was 

performed in a MTS machine (10kN load cell) at a crosshead speed of 0.01 mm/s. 

1.3. Results and Discussion 

The first task in the current investigation involves synthesizing composites with varying 

ceramic content and aspect ratio. As mentioned earlier, freeze-casting technique followed by 

infusion of polymer (into the porous ceramic) has been employed for synthesis of ceramic-

polymer composites. The most critical stage of the entire freeze-casting process is the 

controlled solidification of the slurry. Formation of the structure and future porosity are 

determined in this step. The cooling rates, for freezing the water to ice, typically will range from 

0.1°C min
-1

 to 10°C min
-1

. Freezing front velocity, which is directly proportional to cooling rate, 

plays an important role in the final microstructure development. With reference to the basic 

crystallography of ice, water solidifies into anisotropic hexagonal ice crystals during freeze 

casting. Empirically, the inter-ceramic spacing w has been found to vary with freezing-front 

velocity v [Deville, 2008] as follows: 
1

w
nv

 . In order to control the freezing rate and thereby, 

the porosity of the ceramic, we employ a simple and fundamental approach. The ceramic 

suspensions are casted in PTFE molds on top of a metal plate which in-turn is cooled by liquid 

nitrogen. The freezing velocity or the solidification rate of the solution can be tuned by 

changing the base metal plate. In current experiments, we have employed two types of metal  

plate: aluminum and copper. Since, thermal conductivity of copper (401 W/m-K) is greater than 

the thermal conductivity of aluminum (167 W/m-K), for the same ceramic concentration in 
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solution, denser ceramic backbone (or, lower porosity ceramics) will be obtained which in-turn 

implies, higher weight fraction of ceramic content in synthesized ceramic-polymer composites. 

Additionally, the starting particle size is seen to have an effect on the solidification kinetics, and 

subsequently on the structural wavelength (or rather, the final thickness of the ceramic bricks). 

Hence, we employed two different sized powders (particle diameters of 8µm and 1µm) to 

control the structural wavelength and thereby, the aspect ratio of the ceramic blocks in the 

synthesized composite. Thus following this simple approach, both ceramic content and aspect 

ratio were controlled in the synthesized silica-SC 15 composites. Figure 1.2(a,c) and Figure 

1.3(b) shows the staggered microstructure of a representative sample. 

 

Figure 1.2. Microstructure of the synthesized composites (c,d) exhibiting staggered 

arrangement (a, b)-shown as blown-out view to obtain aspect ratios associated with various 
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Figure 1.2. (cont'd) 

samples. ρ and Φw indicate the aspect ratio and ceramic content respectively in the synthesized 

composites. 

 

Figure 1.3. TGA curves of the samples identifying varying ceramic content (Φw) in the 

synthesized composites (a); blown-out view another sample to obtain aspect ratios associated 

with it. ρ indicates aspect ratio. 

Table 1.1. Influence of starting powder size & metal (base) plate on ceramic content and aspect 

ratios of the synthesized silica-SC 15 composites. 

Ceramic 
Conc. in 
Solution 

Plate  
Type 

Initial 
Particle 

Size 

Ceramic Content 

in composite (Φw) 

*From TGA 

Aspect 
Ratio (ρ) 

*From SEM 

ID 

30% Aluminum 1-μm 35% 15 Φw=0.35/ρ=15 

30% Copper 1-μm 40% 15 Φw=0.40/ρ=15 

40% Aluminum 8-μm 55% 10 Φw=0.55/ρ=10 

40% Copper 8-μm 58% 10 Φw=0.58/ρ=10 
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Table 1.1. (cont'd) 

45% Aluminum 8-μm 60% 10 Φw=0.60/ρ=10 

50% Aluminum 8-μm 65% 7 Φw=0.65/ρ=7 

50% Copper 8-μm 70% 6 Φw=0.70/ρ=6 

Table 1.1 lists the details of the above set of processes for different starting ceramic 

concentrations & powder size. Figure 1.3(a) demonstrates the TGA curves of different samples 

for subsequent evaluation of ceramic content in the samples, the values of which are tabulated 

in Table 1.1. Aspect ratio of the ceramic platelets is defined as the ratio of length to the width 

of the ceramic platelet. Corresponding to each sample ID, SEM was done to obtain the aspect 

ratio of the ceramic platelets. Figure 1.2(a-d) shows the microstructure of the synthesized 

samples which helps in identifying the aspect ratio of the ceramic platelets in the composite. 

For a given particle size as a precursor, as the ceramic content in the composite increases, the 

aspect ratio of the platelets decreases which is intuitive as the thickness of the platelets 

remains constant; however, the length of the platelets decreases owing to higher particle 

distribution in the interdendritic space [Deville, 2008].  Nevertheless, the aspect ratio of the 

ceramic platelets varied from 6-10 & 15-16 for 8µm and 1µm ceramic spheres respectively. 

Ceramic concentration in solution greater than 30wt% & 50 wt% for 1-µm and 8-µm were not 

probed into as it was difficult to maintain suspension of ceramic particles in solution under 

those conditions. 

An integral part of understanding predator-prey interactions is to first understand the 

mechanisms operating in food web dynamics. For instance in a marine food chain, otters and 

crabs can be considered as the predators who use their molar tooth and claws respectively to 
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prey the protein-rich flesh of the organism (acting as the prey) hosted by seashells. Similarly, 

bone has to be durable enough to withstand high stresses associated with biting of tooth, 

sudden fall, etc. Predatory attacks involve application of compressive loads to the structural 

component associated with the prey that has to be not only durable but fracture-resistant as 

well. However, it can be pointed out that mechanical behavior of structural biocomposites is 

tuned predominantly for the function that it is specifically designed for. For instance, bone is 

primarily designed for withstanding time-dependent or, impact loading (for example, 

withstanding stresses while running, jumping, accidental fall) and hence the microstructure is 

designed primarily from enhanced toughness point of view and moderate stiffness. On the 

contrary, seashells (which lie in the abyss of oceans) apart from providing defense to the 

organism it is hosting against predatory attacks, is also subjected to quasi-static loading (for 

example, enormous hydrostatic pressure). Hence, emphasis on the shell structure evolution is 

directed primarily towards providing enhanced stiffness. In order to observe whether the 

synthesized composites also exhibit this variance in mechanical behavior for varying ceramic 

content and aspect ratio, quasi-static compression and fracture experiments were performed 

to better understand this aspect. 

1.3.1. Effect on composite stiffness and strength 

Figure 1.4(a) shows the representative stress-strain plots obtained upon quasi-static 

compressive loading of the synthesized composites. It has been shown theoretically, as shown 

in Figure 1.5(a,b), that the stiffness of a staggered architecture composite can be tuned via 
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controlling its aspect ratio for a given ceramic content under both static [Gao et al., 2003] and 

dynamic rates [Dutta et al., 2013] of loading.  

 

 

Figure 1.4. Compressive stress-strain plots (a) for different sample ID's as indicated in Table 1.1; 

variation of Young's modulus of elasticity (b) and maximum compressive strength (c) of silica-SC 

15 epoxy staggered composites for varying ceramic content and aspect ratio; 
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Figure 1.4. (cont'd) 

(d) sample used for compressive experiments (specimen dimensions mentioned in Materials 

and Methods); failure of the specimens along the interface (e). 

Indeed similar observations have been observed from experimentally obtained data as 

shown in Figure 1.4(b,c) where as the aspect ratio increases, the stiffness of the composite 

increases as well even if high polymeric content is present in the composite. 

For a ceramic polymer composite having a staggered microstructure, the ceramic forms 

the load-bearing component and load transfer from one platelet to another is accomplished via 

shear-deformation of the polymer. Larger is the aspect ratio, larger will be the force that would 

be transmitted from one ceramic brick to another via the polymer matrix. Failure of the 

interfacial matrix is initiated at the extremities of the polymeric layer joint via nucleation and 

growth of plastic zone from either ends of the overlap length towards the center [Apalak and 

Gunes, 2007; Ouinas et al., 2010; da Costa et al., 2012; Sayman et al., 2013]. Indeed failure of 

the synthesized composite has been observed along the interfaces as shown in Figure 1.4(e). 

Hence, aspect ratio of the ceramic platelets plays a superior role in its contribution to the 

composite's stiffness. 

It might be speculated that the shear model might not be applicable under compressive 

loading scenario for staggered architecture composites, because microbuckling has been 

observed as the failure mode operational under quasi-static and dynamic rates of loading in 

seashells [Menig et al., 2000]. This aspect, however, can be addressed as follows [Dutta et al., 

2012]: 
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Figure 1.5. Dependence of stiffness of a staggered architecture composite as a function of 

aspect ratio and ceramic content as investigated theoretically under quasi-static [Gao et al., 

2003] and dynamic rates of loading [Dutta et al., 2013] (plot adapted from [Dutta et al., 2013]). 

The ceramic backbone in a ceramic polymer composite is brittle in nature. Hence, in 

these composites failure initiates at the micro-scales in the form of interfacial matrix failure 

starting at the joint extremities. The nacreous layer in seashells is a exhibits a hierarchical 

architecture (2-3 levels) where the staggered architecture is exhibited only at the level of micro-

scales; however, the meso-scale is representative of a lamellar architecture (equivalent to a 

fiber-reinforced composite structure) comprising of 300 μm layers between nearly 20 μm layers 

of viscoplastic material [Menig et al., 2000]. Plastic microbuckling is the dominant failure 

mechanism in fiber-reinforced composites under the action of compressive loads, and thereby 

based on this analogy, microbuckling was hence observed in seashells under compressive 

loading conditions. Similar inferences have been laid down [Menig et al., 2000] where it has 

been observed in the lamellar structures of seashells that cracks initiates first in the viscoplastic 

layers separating the mesolayers. Additionally, with reference to the microstructure of the 
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synthesized composites, ceramic bridges present amidst the ceramic layers (an attribute 

associated with nacre at micro-scales) also cripples Euler buckling of the ceramic layers at 

microscopic scales [Deville et al., 2006]. Similarly, buckling is restrained at micro-scales, under 

rapid-compression ballistic conditions, via synchronized deformation twinning of the nano-scale 

particles [Huang et al., 2011]. 

 Similarly, for a staggered ceramic-polymer composite, the strength [Gao et al., 2003] 

can be expressed as follows: 

 
S Sp mS min ,

2 2

 
  

 
 (1.1) 

where, Sp is the strength of the polymer (or, polymer-ceramic interface) and Sm is the 

compressive strength of the ceramic bricks. Based on the experimentally obtained data and the 

theoretical foundation [Gao et al., 2003; Ji and Gao, 2010], it can be clearly seen from Figure 

1.4(c) that aspect ratio (ρ) plays a superior role than ceramic content in its contribution towards 

the strength of the staggered ceramic-polymer composite and confirms that fine tuning of 

properties can be obtained in synthetic composites by varying ceramic content and aspect 

ratio. Thus, from the point-of-view of stiffness and strength, the aspect ratio of mineral crystals 

significantly affects the mechanical properties of the composite materials in a number of 

aspects (for instance, microstructural load transfer) as is evident from established theoretical 

models [Ji and Gao, 2010] and current experimental observations. 

1.3.2. Effect on composite toughness 
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Figure 1.6. Representative load-displacement curves obtained upon fracture testing of samples 

in accordance with ASTM C1421 (a), variation of fracture toughness of silica-SC 15 brick and 

http://www.astm.org/Standards/C1421.htm
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Figure 1.6. (cont'd) 

mortar composites with varying ceramic content and aspect ratio and their comparison against 

the fracture toughness of silica (ceramic) and SC 15 (polymer) alone (b). 

What makes bioinspired staggered architecture very promising from structural point of 

view is its unique structural arrangement which confers it superior toughness in comparison to 

its ceramic and polymer counterparts alone. Whether similar attributes exist in the synthesized 

composites, fracture toughness of the composites were measured to observe this effect and 

the results are shown in Figure 1.6(a,b). 

ASTM C1421 was followed for the determination of fracture toughness of the 

synthesized composites. Figure 1.6(a) shows the representative load-displacement curves 

obtained during fracture testing of the samples in a three-point bending set up. As per ASTM 

C1421, determination of KIc, as shown in Figure 1.6(b) is as follows:  

 

 

 

      

 

1/23 a / WP SmaxK gIc 3/2 3/2BW 2 1 a / W

where,

2
1.99 a / W 1 a / W 2.15 3.93 a / W 2.7 a / W

a
g g

W 1 2 a / W

 
       
      

    
      
 

 (1.2) 

As it can be seen from Figure 1.6(b), the measured fracture toughness of all the 

synthesized composites is significantly greater than the fracture toughness of the ceramic 

(silica: 0.64 MPa m
0.5

) and the polymer (SC 15: 1.54 MPa m
0.5

) [Robinette et al., 2007]. Once 

again, the effect of both aspect ratio and ceramic content of the ceramic can be seen to 

http://www.astm.org/Standards/C1421.htm
http://www.astm.org/Standards/C1421.htm
http://www.astm.org/Standards/C1421.htm
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contribute a superior role to the composite's fracture toughness even if high polymeric content 

is present in the composite. This can be explained as follows.  

Dugdale's cohesive strip model [Gao et al., 2003; Ji and Gao, 2010] is given by the 

following equation, 

      J 1 L d 1 L min S ,S ,p p p p int p         (1.3) 

where, J is the fracture energy, Θp denotes the effective strain to which the polymer can 

deform before failure, Sp denotes the yield strength of the polymer, Sint denotes the ceramic-

polymer interface strength, and τp denotes shear strength of the polymer. With reference to 

equation (1.3), the expression under the integral is representative of the dissipation energy by 

the polymer per unit volume and thus, Θp is a key parameter which contributes to fracture 

energy. The polymeric matrix is thereby essential for enhancing toughness via energy 

dissipation due to its viscoelastic nature that contributes to large deformation. Also it is 

discernible that inelasticity is a key material parameter that renders a material notch insensitive 

by enabling a material to eliminate stress concentration at strain concentration locales. 

However, the aspect ratio also plays an important role which is explained as follows. The 

staggered microstructure provides a strain amplification mechanism [Ji and Gao, 2010] and 

contributes to full utilization of large deformation capability of the polymer. 

 
 

m
p

2 1 L

  
      

  
 (1.4) 
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As it can be seen from equation (1.4), the capability of the polymeric matrix to be 

strained is magnified over composite strain by the aspect ratio of the ceramic platelets, thereby 

allowing the polymer to deform and dissipate energy at the microscopic level without giving 

rise to large deformation on the composite level. For composites having high ceramic content, 

fracture is often triggered before plastic instability inception via abrupt percolation of damage 

across the material [Mortensen and Llorca, 2010]. This explains, that why toughness decreases 

in composites with high ceramic content and lower aspect ratios. As is evident from Figure 

1.4(c) and Figure 1.6(b), higher toughness comes at a cost of decreasing strength; this is in 

agreement with analytical foundation [Zhang et al., 2010] where this behavior can be 

attributed to increasing difficulty in driving the polymeric matrix deformation unless smaller 

aspect ratios are used. Another way to enhance toughness of the composites is by grafting the 

ceramic platelets with polymeric chains. This in turn will lead to increase in S int which in current 

non-grafted synthesized composites is one of the most vulnerable entities under contemporary 

loading conditions.  

From structural engineering application view point, a knowledge and an understanding 

of the synthesis-structure-property relationship in these composites is vital for the 

development of advanced ceramic-polymer composites with enhanced mechanical stiffness, 

strength and toughness. Based on the information obtained from experimental data, we can 

summarize our observations as follows. If high stiffness and strength is desired, it would be 

advantageous to have composites synthesized having low aspect ratios and high ceramic 

content. Similarly, if high toughness is desired, it would be advantageous to have composites 
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synthesized having high aspect ratios and low ceramic content. This is in agreement with 

Wilbrink and co-authors [Wilbrink et al., 2010] where they demonstrated, via development of a 

unit-cell model, that as the aspect ratio of the bricks increases, a trade-off exists between 

increasing strength and decreasing ductility. Indeed, the same set of phenomena can be 

observed in biological composites as well. As mentioned earlier, bone comprises of plate-like 

crystals (having an aspect ratio varying from 25-50) embedded in a collagen-rich protein matrix 

(~0.40) resulting in variation of elastic modulus from ∼2−25 GPa and a strength varying from 

∼150−200 MPa. Similarly, nacre is made of enormously high ceramic content (~0.90-0.95) of 

plate-like inorganic tablets (having an aspect ratio from 10-20) resulting in variation of elastic 

modulus from ∼40−70 GPa and a strength varying from ∼20−120 MPa [Espinosa et al., 2009]. 

From literature, it can be recalled that toughening rate of bone is higher than that of nacre; 

corresponding to a crack extension of 0.6 mm, resistance increases to 30 kJm
−2

 in bone but 

only to 1.5 kJm
−2

 in nacre [Barthelat and Espinosa, 2007; Wang and Gupta, 2011]. Similarly, elk 

antler falls in the realm of tougher side of the bone family materials, exhibits a toughness 

increase of 60 kJm
−2

 at a crack extension of 0.6 mm [Wang and Gupta, 2011]. 

1.4. Conclusion 

'Mother Nature' cleverly uses the aspect ratio and content of inorganic matter to 

synthesize composites having varying degrees of stiffness, strength and toughness. Such an 

amazing capability of fine-tuning the properties for functions has rarely been demonstrated in 

synthetic composites. In this article, an attempt has been made to synthesize staggered 
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ceramic-polymer composites having varying ceramic content and aspect ratio using freeze-

casting technique. Inferences obtained from experimental investigation provides us useful 

information as to their effects on the mechanical properties of synthesized composites. This will 

in-turn help us in custom-design manufacture of hybrid bio-inspired composite materials. 
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CHAPTER 2: HIGH STRAIN RATE MECHANICAL BEHAVIOR OF SEASHELL-MIMETIC 
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2.1. Introduction 

Superior strength and light weightiness are two discernible facets in biological 

composites, like bone and nacre, and has caught substantial attention of the scientific 

community. Biological composites have been tried, tested and designed by the theory of 

evolution over millions of years.  Nacre and bone exhibit high stiffness, strength and 

specifically, superior toughness [Barthelat and Espinosa, 2007; Jackson et al., 1988; Kessler et 

al., 1996; Kamat et al., 2000; Menig et al., 2000, 2001; Sarikaya et al., 1990] which is orders of 

magnitude higher with respect to its inorganic (brittle minerals) and organic (ductile polymers) 

components. The brittle minerals tend to have different structures and compositions. With 

specific reference to mollusks, the shell material is typically composed of aragonite and/or 

calcite where the orientation of the inorganic component may be prismatic, nacre, crossed-

lamellar or foliated in nature. Nacre is composed of mineral tablets (of high weight fraction 

Φ~0.95) and soft polymeric matrix, composed of proteins and polysaccharides, laid in a brick-

and-mortar structural arrangement. Significant macroscopic deformations have been observed 

in nacre in the form of high values of failure strains of the order of nearly 5%. Quasi-static 

compression tests [Menig et al., 2000], at loading rates of 1–500 MPas
-1

, were performed on 

nacre under two loading configurations: (a) load applied perpendicular to the lamellar bricks 

and (b) load applied along the plane of bricks. Probability estimation using Weibull function was 

employed which showed that there is a 50% chance of failure at stress levels of 450 MPa and 

200 MPa for loading configurations (a) and (b) respectively. Similar observations (for static case 

only) were inferred in the works of [Barthelat et al., 2006; Barthelat and Espinosa, 2007; 
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Jackson et al., 1988; Sarikaya et al., 1990]. In nacre, a number of factors contribute to 

toughening mechanisms, namely (a) pull–out of tablets [Jackson et al., 1988], (b) crack 

deflection by the organic layers [Menig et al., 2000], (c) platelet interlocks [Katti et al., 2005], 

and (d) presence of nanoasperities & tablet waviness and sliding which results in high inelastic 

strains and hence whitening [Barthelat and Espinosa, 2007], which in-turn is responsible for its 

superior fracture resistance. 

An underlying course in the evolutionary process of shells is shell-crushing predation by 

crustaceans [Kitching and Lockwood, 1974; Vermeij, 1976, 1977, 1978; Zipser and Vermeij, 

1978]. Shell breaking methods is recognizable in other tropical and subtropical crab species 

[Rossi and Parisi, 1973; Shoup, 1968; Vermeij, 1976, 1978; Zipser and Vermeij, 1978 ]. 

Predatory attack by fishes on larger gastropods, living in the open, is also pretty common 

[Bertness and Cunningham, 1981]. Similarly, bone suffers fracture and failure due to impact 

loading from falls, accidents, ballistic impact and blast loading.  Note that a number of the 

studies in literature are limited to quasi-static loading scenario. This is intriguing given the fact 

that both this material is fundamentally used as a basic structural material for synthesizing and 

in orchestrating complex load bearing/shielding structures against predatory attack. 

Understanding the mechanics of failure of the biological composites under such a wide range of 

impact loading will provide us design strategies for fabrication of hybrid bio-inspired 

composites. 

Biological composites are synthesized by nature via bottom-up route exhibiting complex 

hierarchical design over nano-micro-meso-macro scales. For instance, seashells and bone 
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(vertebral) exhibit 2-3 [Currey, 1977; Jackson et al., 1988; Menig et al., 2000, 2001] and 7 levels 

[Currey, 1984; Landis, 1995; Rho et al., 1998; Weiner and Wagner, 1998] of hierarchy 

respectively. Biocomposites, notwithstanding the degree of hierarchical complexity, at the most 

elementary level, exhibit an analogous microstructure comprising of nanometer sized inorganic 

crystals reinforced in a soft biopolymer (organic) matrix in the form of a staggered architecture 

[Fratzl et al., 2004; Gao et al., 2003; Jager and Fratzl, 2000], otherwise known as a brick-and-

mortar type structural arrangement (shown in the inset in Figure 2.1).  

 

Figure 2.1. Dependence of stiffness of biocomposites (exhibiting brick and mortar type of 

architecture at its most elementary level) as a function of aspect ratio of ceramic bricks and 

volume fraction of ceramic as laid down by Gao et al., 2003. Inset shows the brick and mortar 

type microstructural arrangement observed in seashells, and microstructure of bone. 

Crystalline plate-like (2–4nm thick and up to 100nm long) reinforcements (Φ~0.50-0.67) 

in  collagen-rich protein matrix [Landis, 1995; Landis et al., 1996; Roschger et al., 2001] are 
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present in bone and dentin. As discussed earlier, nacre is made of enormously high volume 

fraction (0.90-0.95) of plate-like inorganic tablets (0.4-0.5 μm thick and 5-10 μm long) with a 

small amount of soft matrix (thickness of around 20-30 nm) in between the platelets [Currey, 

1977; Jackson et al., 1988; Kamat et al., 2000; Menig et al., 2000; Wang et al., 2001]. In the 

literature, there have been attempts to analyze the stiffness of the staggered nanostructure of 

bone [Jager and Fratzl, 2000; Kotha et al., 2000]. A mechanical model was proposed by Jager 

and Fratzl (2000), to estimate the maximum stress and strain of the composite, by advancing 

previously established models for the mechanical properties of mineralized collagen fibrils 

[Wagner and Weiner, 1992] by setting forth inorganic crystals in a staggered arrangement in 

agreement with the distribution of gaps in the collagen fibril [Hulmes et al., 1995; Landis, 1995; 

Veis and Sabsay, 1987]. Micromechanical model developed by Kotha et al. (2000) was based 

on shear-lag theory for deriving axial and shear stress distribution in platelets on the 

assumption of a fundamental basis that the load carried by the platelets remains constant and 

inter-platelet load transfer occurs via shear deformation of the matrix. Tension-shear chain 

(TSC) model developed by Gao et al., (2003) and Ji and Gao (2004), as shown in Figure 2.1. and 

given by equation (2.1) below, unraveled the reason for high stiffness of the biocomposites. 

 
 4 11 1

2 2E EmGp


 

 
     (2.1) 

On the basis of the mathematical expression as given by equation (1), the composite 

stiffness estimate (E) is dependent on factors, namely,  mineral Young's modulus (Em), protein 
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shear modulus (Gp), mineral volume fraction (Ф), and aspect ratio of the mineral crystals (ρ). 

Additionally, beyond a certain value of aspect ratio, the composite stiffness (E) becomes nearly 

constant. Also, the TSC model predicts the stiffness with a reasonable good accuracy. However, 

all the different theoretical models developed earlier predict material behavior under quasi-

static loading conditions. 

Several questions still remain unanswered when we shift our focus to the dynamic 

regime, such as (1) Is the material behavior better under dynamic loading conditions than its 

static counterpart? (2) what are the parameters that govern the material behavior of 

particulate composites under dynamic loading conditions? Menig et al. (2000, 2001) carried out 

dynamic compression test on abalone and conch shells in a Split Hopkinson Pressure Bar (SHPB) 

and found out that dynamic compressive strength of abalone is approximately 50% higher than 

static compressive strength. However, a theoretical analysis would provide guidance on the 

development of nanostructured materials by tailor-designing materials from a scale of 

nanometers and up. Currently we barely have any theoretical basis on how to design a 

hierarchical material to achieve a particular set of macroscopic properties. Recently, Wei et al. 

(2012) developed a continuum model, under static loading conditions, which communicates the 

existence of characteristic overlap length (a function of cross-linking chemistry of the matrix 

with its reinforcement and mechanical properties of reinforcement) which contributes to 

optimization of both strength and toughness in nacre, collagen molecules and spider-silk fibers. 

In order to understand the mechanical response of staggered and lamellar composites under 

dynamic rates of loading, in the current research we attempt to use the fundamental aspect of 



34 

 

shear-lag theory i.e., ceramic scaffold serves as the load-bearing member and the polymer 

contributes to transfer of load via shear, however applying it under compressive loading 

scenario en-route to the development of a theoretical model followed by subsequent 

experimental investigation in a SHPB. 

2.2. Mathematical Formulation 

 

Figure 2.2. (a) Schematic of the brick and mortar type structural arrangement subjected to 

external loading; (b) load acting on the ceramic and transfer of load between ceramic platelets 

by shearing of the intermediate polymer layers; (c) variation of shear stress and displacement  
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Figure 2.2. (cont'd) 

 profile along the ceramic thickness for the outer ceramic; (d) variation of shear stress and 

displacement profile along the ceramic thickness for the inner ceramic. 

Figure 2.2. shows the schematic of the representative element of a ceramic polymer 

composite having a brick and mortar structural arrangement at its elementary level. Following 

assumptions have been taken into consideration:  

(a) ceramic blocks are linear elastic,  

(b) constant axial stress distribution throughout the ceramic thickness,  

(c) constant shear stress distribution throughout the polymer thickness, and  

(d) inconsequential peeling thickness. 

Performing force equilibrium on the outer ceramic and inner ceramic, we obtain 

    T T T 2 dx hdx ao o o p c o      (2.2) 

 
2T uo o2 ha hp c o c 2x t

avg

 
   

 
 (2.3) 

    T T T 2 dx hdx ai i i p c i      (2.4) 

 
2T ui i2 ha ha c i c 2x t avg

 
   

 
 (2.5) 

where, subscripts 'c', 'p', 'o, and' 'i' denotes the ceramic, polymer, outer (ceramic) and inner 

(ceramic) respectively. T represents the axial stress resultant (positive in tension) in the 

ceramic, τp represents the shear stress in the polymer, a is the average acceleration of the 
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cross-section of the ceramic, h represents the thickness of the ceramic and u represents the 

horizontal displacement of the ceramic brick. Let τo and τi denote the shear stress in the outer 

and the inner ceramic respectively with z' and z'' as its origins. Assuming linear variation of 

shear stress through the ceramic thickness, we obtain 

 
2 p

z'o
h


   (2.6) 

 
2z''

1i p
h

 
    

 
 (2.7) 

If Gc denotes the shear modulus of the ceramic, then the shear strains in the outer (γo) 

and inner ceramic (γi) can be represented as 

 
2 p

z'o
G hc


   (2.8) 

 
2z''p

1i
G hc

  
   

 
 (2.9) 

Integrating shear strains given by (2.8) and (2.9) over the thickness of the ceramic, we 

obtain the following expressions for horizontal displacement of the outer ceramic (uo) and 

inner ceramic (ui), given by 

    
   2x z' x hp p

u x,z' u xo op
G h 4Gc c

 
    (2.10) 

    
  2x z''p

u x,z'' u x z''i ip
G hc

 
   
 
 

 (2.11) 
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where uop and uip represent the displacement of the ceramic at the interface between the 

outer ceramic block and the intermediate polymer and between the polymer and the inner 

ceramic respectively. The axial forces in the outer (To) and inner ceramic (Ti) is given by  

 

h

2 du du hop poT E dz' E ho c c
x dx 6G dxch

z'
2

 
    

  


 (2.12) 

 
h du du hip piT E dz'' E hi c c

x dx 6G dxcz'' 0

 
    

  

 (2.13) 

Assuming polymeric shear thickness to be constant throughout the thickness of the 

polymer layer, the shear strain in the polymer (γp) may be expressed as follows 

 
u uip op

p
tp


   (2.14) 

where, tp represents the thickness of the polymer. Thus, it can be shown that  

 

2 2 2u u1p ip op
2 2 2tpx x x

    
  
    

 (2.15)  

Rearrangement of the terms in equation (2.12) and (2.13) yields 

 
du dT hop po

dx hE 6G dxc c


   (2.16) 

 
du dT hip pi
dx hE 6G dxc c


   (2.17) 
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Substitution of equations (2.16) and (2.17) in equation (2.15) followed by 

rearrangement of the terms leads to the following expression 

 

2hGTT p poi hE tc p 2x x 3Gc x

  
   

   
 (2.18) 

where Gp denotes the shear modulus of the polymer. The average accelerations of the outer 

and inner ceramic layers is given by 

  

 

h
* 2L 2 u x,y,z',to dz'dy

2t* hy L 2 2z'2 u hGu op p po 2a x,to 2 h 2 26Gmt t t*avg L 2
dz'dy

* hy L z'
2


 


    

   
  

 

 

 (2.19) 

  

 
* 2L h u x,y,z',ti dz'dy

2 2 22 t* z'' 0 u hGu y L ip p pia x,ti 2 * 2 26Gmt L h t tavg
dz'dy

* z'' 0y L


 

    
   
  

 


 (2.20) 

where, 2L* represents the width of the ceramic layer. Combining equations (2.19) and (2.20) 

together, taking into account (2.14) and rearranging the terms, we get 

 

2hGp p
a a ti o p 23Gc t

  
   

 
 (2.21) 

Subtracting equation (2.3) from (2.5), we get 
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  
TT oi 4 h a ap c i o

x x

 
     

  
 (2.22) 

Replacement of bracketed terms in the right-hand side and left-hand side of equation 

(2.22) by (2.18) and (2.21) respectively followed by rearrangement of the terms leads us to the 

generation of the governing differential equation of the system, given by  

 

2 2
1 1p p

p2 2 2x c tc

   
  

 
 (2.23) 

where cc denotes the wave velocity through the ceramic 
Eccc

c



and, α is given by 

 

 
12G G1 p c

2E 3G ht h Gc c p p


 

 (2.24) 

Combining equations (2.14), (2.16) and (2.17), we get  

 
   

 
Gp p

1 T Ti o23G 1 xc h E 1c

   
   

   

 (2.25) 

The initial conditions and the boundary conditions of the problem, given by equations 

(2.26-2.29), can be represented as 

 0t 0 


 (2.26) 

 0
t t 0




 
 (2.27) 

At x = 0, Ti = 0 and To = -F(t)                                     (2.28) 

At x = L, Ti = -F(t) and To = 0                                       (2.29) 



40 

 

where, F(t) is the prescribed loading at the inner and outer ceramic and the negative sign is 

representative sign of compressive load (as in a SHPB experiment) and L denotes the overlap 

length. Note that the prescribed loading is equal on both the ends which in turn ensures that 

the specimen is in a state of dynamic equilibrium with minimal wave propagation effects.  

Solution of the governing equation is carried out using Galerkin method of weighted 

residuals [Cook et al., 2007] as follows: 

For a finite element x1≤ x ≤ x2, the residual equation for the element is  

 

2x2 1 1p p
N x 0i p2 2x x c tx1

           
     

, i = 1, 2 (2.30) 

where p  represents the approximate shear strain, given in equation (2.31) as 

    N x N xp 1 p 2 p1 2
      (2.31) 

N1(x) and N2(x) are first order interpolation functions and correspond to weighted 

residuals in Galerkin Method. Substituting i =1,2  in equation (2.30) followed by rearrangement 

of the terms leads to the following equation, given as 



41 

 

 

x x2 2N N N N1 11 1 1 2N N x N N x1 1 1 2
x x x xx x p1 1 1

x x2 2 pN N N N1 1 22 1 2 2N N x N N x2 1 2 2
x x x xx x1 1

x x2 21 1
N N x N N x1 1 1 22 2c cx xc c1 1

x2 1 1
N N x2 12c cx c1

       
                       

          
                 
 

  



p

xp x1 1
x p2 p2

N N x2 2 x2 x2x c1

    
   

             
     

        

 (2.32) 

which is equivalent to  

          e e e(e) (e)K M fp p
     

        
     

 (2.33) 

where (2.32) can be simplified to obtain  

  
 

 1 1 2 1x x1e 2 1K
1 1 1 2x x 62 1

     
            

 (2.34) 

     1 0x xe 2 1M
2 0 12c

   
   

   
 (2.35) 

The elemental mass matrix given by equation (2.32-2.33) is consistent mass matrix and 

has been converted into diagonally lumped mass matrix, as shown in equation (2.35), using HRZ 

lumping scheme. 

For the representative element, total displacement is the sum of deformation 

corresponding to the ceramic element and the deformation corresponding to the shear 

deformation of the protein, and thus strain can be expressed as given by equation (2.36). 
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 uo h 1avg p

eff o x x
x L

 
  

  


 (2.36) 

Based on the condition of velocity compatibility on the specimen incident bar interface, 

it can be laid down that particle velocity of the specimen and that of the incident bar are equal. 

Thus, the predicted strain εpredicted, as given by equation (2.37), can be computed as follows 

 c cpredicted eff co
    (2.37) 

where c represents stress-wave velocity in the incident bar. Taking into consideration our initial 

assumption that the load is carried by the ceramic skeleton, the stress in the specimen, 

σpredicted, can be computed by taking into consideration, on the basis of similar grounds, strain 

continuity between adjacent elements and is given by equation (2.38) as  

 
E A c Tb b c i

predicted
A c hEs c

  
    

  
 (2.38) 

where Eb, Ab and As correspond to Young's modulus of the transmission bar, cross-sectional 

area of the transmission bar and cross-sectional area of the specimen respectively. Lamellar 

microstructure can be visualized as an extension of brick and mortar microstructure where 

inter-ceramic brick spacing in a given zero is essentially equal to zero (can be imagined as 

ceramic bricks in a given row are fused together and forming a rod). Note that this 

mathematical formulation is thereby equally applicable for composites having lamellar 

architecture as its elementary microstructure. 

2.3. Materials and Methods 
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Sodium dodecyl sulfate (C12H25NaO4S) was obtained from Sigma Aldrich (St. Louis, MO, 

USA). Poly (vinyl alcohol) [-CH2CH(OH)-]n 98% hydrolyzed having an average molecular weight 

Mw 13,000-23,000 was obtained from Aldrich Chemical Company, Inc. (Milwaukee, WI, USA). 

Sucrose (C12H22O11) crystals were obtained from Roche Diagnostics Corporation (IN, USA). Two 

types of ceramic powders were purchased for synthesizing two types of ceramic polymer 

composite. Silica (SiO2) spheres having Ф 8µm were obtained from Fiber Optic Center Inc (New 

Bedford, MA, USA). Aluminum oxide (Al2O3) spheres having Ф 10µm were obtained from Sigma 

Aldrich (Milwaukee, WI, USA). SC-15 epoxy resin (toughened two phase) was obtained from 

Applied Poleramic Inc. (Benicia, CA, USA). 

Ceramic-polymer composites were prepared by freeze-casting technique [Deville et al., 

2006; Launey et al., 2009], as shown in Figure 2.3(a,b,c). Samples thermogravimetric analysis 

(TGA Q500 V20.10 Build 36, TA Instruments) were conducted at a heating rate of 20°C min
-1

 up 

at temperatures up to 600°C. ASTM D695-10 was followed for the determination of 

compressive strength of these ceramic polymer composites under static rates of loading. The 

specimen dimension chosen for testing was 5mm × 5mm × 10 mm and was performed in a MTS 

machine (10 kN load cell) at a crosshead speed of 1mm/min. For dynamic compression 

behavior, material properties have been investigated using SHPB technique. A conventional 

SHPB or the Kolsky Bar [Kolsky, 1963, 1964)] consists of a striker bar, an incident bar and a 

transmitter bar, as illustrated in Figure 2.4(a). The specimen is sandwiched between the 
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incident and transmitter bar (made of high strength aluminum alloy (alloy 7075), each of which 

was 6ft (1.8 m) long and 5/8 inch (15.9 mm) in diameter. The specimen dimension chosen for 

testing purpose was 11.22mm × 11.22mm × 9.161 mm. Choice of this dimension has been 

explained in the Discussion section. The responses were measured with electrical resistance 

strain gages, bonded to the middle of the incident and transmitter bars, connected to Vishay 

Signal Conditioning Amplifiers (Model 2310B), and the response from the strain gages were 

recorded using a LeCroy digital oscilloscope (Model354A). The specimen can be subjected to a 

wide range of strain rates by employing striker bars of various lengths. Performing one 

dimensional wave analysis on the strain signal obtained from the incident and transmitter bars, 

and coupling an important assumption that wave propagation effects within a short specimen 

may be neglected, we can obtain the stress-strain profile in the specimen as given below. 

 

Figure 2.3. (a) Typical specimen and its representative microstructure (b, c); (d) schematic 

showing distribution of ceramic platelets in polymeric matrix in brick and mortar type  
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Figure 2.3. (cont'd) 

microstructural composites; (e) region under consideration highlighting the overlap region; (f, 

g) deformed platelets and intermediate polymer upon tensile and compressive loading 

respectively; (h) specimen for quasi-static experiments; (i) fractured specimen under quasi-

static loading. 

The specimen strain is calculated from the reflected pulse which is as follows: 

    
t2c

t t dts r
ls 0


    (2.39) 

where, c and ls denote the wave speed in the bar and the thickness of the specimen 

respectively. The average stress in the specimen is given by 

 
AbEs b t
As

    (2.40) 

where, As is the instantaneous cross sectional area of the specimen. 

2.4. Results and Discussion 

Typically, cylindrical samples are employed for determination of mechanical behavior of 

specimens under dynamic rates of loading. Specimen design in a cylindrical specimen is 

governed by choice of an appropriate slenderness ratio (which is the ratio of the length to 

diameter of the sample). However, for non-cylindrical specimens, corresponding slenderness-

ratio has not been defined. In recent studies [Sen, 2011], a general design criterion for non-

cylindrical samples, as given by equation (2.41), has been proposed by suggesting an 
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appropriate cross-sectional dimension and a slenderness ratio for a specimen with arbitrary 

cross-sectional geometry.  

 
ls1.4 2.8

J

As

   (2.41) 

where J denotes the polar moment of inertia of the cross-section of the specimen. In our 

current investigation, we chose a ratio of 2 and cross-sectional dimension of 11.22 mm× 

11.22mm, which in turn based on the design criterion, gives ls = 9.161mm. 

A composite having a brick and mortar type of architecture at its most elementary level 

can be visualized as an adherend (the ceramic) held together by an adhesive (the polymer). In 

our model, we have combined the effects of both inelastic deformation of the polymer and 

shear deformation of ceramic by including the effects of shear strain acceleration of the 

polymer and out-of-plane thickness of the ceramic. Figure 2.3(d) shows the schematic of the 

distribution of ceramic platelets in the polymeric matrix as observed in staggered architecture 

composites. The overlap region, as shown in Figure 2.3(e), is responsible for inter-platelet load 

transfer via shear deformation of the polymer under the action of tension (Figure 2.3(f)) and 

compressive (Figure 2.3(g)) loading respectively. One might speculate micro-buckling of the 

platelets to be the dominating deformation mechanism in compression based on compressive 

experiments on nacre by Menig et al., 2000. It is to be noted that the basic load transfer 

mechanism at the micro-scales still remains the same as is depicted in Figure 2.3(g). The 

inorganic matter associated with nacreous layer (or, ceramic in a ceramic polymer composite) is 

brittle and inflexible in nature. Hence, failure initiates in these types of composites in the 
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interfacial matrix at the extremities of the joint at micro-scales; the coordinated sliding of layer 

segments of the same approximate length produces an overall rotation of the specimen in the 

region with a decrease in length and hence, it appears to be buckled at meso-scales. The 

following points illustrate this aspect further: (a) seashell is a hierarchical material which 

exhibits brick and mortar construction of ceramic and biopolymer is exhibited in the micro-

scale, whereas a lamellar architecture is exhibited in the meso-scales as shown in the figure 

below (comprising of 300 μm thick layers, spaced apart by layers of viscoplastic material of 

thickness of about 20 μm); (b) under compressive loading conditions, microbuckling governs 

failure mechanism of fiber-reinforced composites [Espinosa et al., 1998] when loading is in a 

direction parallel to reinforcements, and hence based on the similarity of mesostructure in 

seashells against that of fiber-reinforced composites, microbuckling was thereby observed 

under compressive loading conditions in nacre. In the lamellar structures associated with the 

mesostructure in seashells, cracks initiate first in the at the viscoplastic material layers 

separating the mesolayers [Menig et al., 2000; Su et al., 2012]. Presence of ceramic bridges in 

between the ceramic layers (an attribute associated with nacre at micro-scales) also hinders 

Euler buckling of the ceramic layers at micro-scales [Deville, 2006]. Similarly, as was postulated 

by Huang et al., 2011, under rapid-compression ballistic conditions, buckling of the material is 

restrained at micro-scales via deformation twinning of the coordinated nano-scale particles. 

Under the application of an external loading, hence the failure of the specimen is pronounced 

along the interface for both static, as shown in Fig. 3(i), and under dynamic loading conditions 
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via nucleation and growth of plastic zone from either ends of the overlap length towards the 

center.  

 

Figure 2.4. (a) Schematic of a Split Hopkinson Pressure Bar (SHPB); (b) plot of pulses traced in 

the oscilloscope based on the pulses recorded by the strain gages in the incident bar (solid pink) 

and transmission bar (solid yellow); (c) specimen for SHPB experiments; (d) fractured specimen 

upon impact loading; (e) ratio of force on the transmission face to the incident face over time; 

(f) plot of strain-rate versus time.  

With reference to studies [Gao et al., 2003; Ji and Gao, 2004], for a brick and mortar 

type of composite, the strength of the staggered composite is dependent on the strength of the 
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ceramic-polymer interface, yield strength of the polymer, shear strength of the polymer and 

maximum compressive strength of the ceramic bricks. Typically, in a ceramic-polymeric 

composite, the most vulnerable entity under loading conditions (both, static and dynamic) is 

the interfacial ceramic-polymer strength which in turn is thus representative of the ceramic-

polymer joint strength. Note that, the ceramic in the current synthesized ceramic-polymer 

composites were not grafted. Thus, dynamic compression experiments on these type of 

composites would provide us ceramic-polymer interfacial strength of the composite under high 

rates of loading.  

Two types of ceramic-polymer composites were synthesized: (a) SiO2-SC 15 epoxy resin, 

and (b) Al2O3-SC 15 epoxy resin. Furthermore, corresponding to each type, (a) & (b), ceramic-

polymer composites were synthesized having varying weight fractions (Φw) of the ceramic 

content in them. Figure 2.4(b) shows a typical plot of pulses obtained during dynamic 

compressive loading on the ceramic-polymer composites. The solid pink line represents the 

incident record (εi) and reflected record (εr). The solid yellow line represents transmitted 

record (εt). Note that, a large opposite unloading wave can be observed in the later part of the 

reflected wave. This is a very special phenomenon and this can be attributed to occurrence of 

an elastic hysteresis effect, which may be caused by viscoelastic response of this kind of 

polymer [Hao et al., 2005]. Figure 2.4(e,f) shows a typical force-equilibrium and strain rate vs. 

time plot obtained under these strain rates. As it can be seen from Figure 2.4(e), reasonable 

equilibrium was attained. Figure 2.4(f) shows a plot of strain-rate versus time. Constant strain 
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rate was achieved, however for a short period of time. Corresponding value was thereby 

chosen as the representative strain-rate corresponding to a given loading condition. 

 

 

Figure 2.5. Dynamic stress strain curves obtained for SiO2 SC-15 ceramic polymer composite (a) 

and Al2O3 SC-15 ceramic polymer composite (b) corresponding to varying ceramic contents and 

strain-rates. 
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The dynamic stress-strain curves for SiO2 SC-15 & Al2O3 SC-15 composite systems are 

shown in Figure 2.5(a,b) respectively. Post peak stress, the stress-strain data is representative 

of the unloading behavior. Figure 2.4(c) shows the specimen used for testing in SHPB. Failure of 

the specimens, as shown in Figure 2.4(d) initiates at the peak stress. Table 2.1 and Table 2.2 

lists the results obtained from dynamic compression experiments using SHPB on SiO2 SC-15 & 

Al2O3 SC-15 composite systems respectively. Static compressive strengths of SiO2 SC-15 

composite system having ceramic weight fractions of 0.45, 0.55 & 0.60 (as determined from 

TGA) were found out to be 134 MPa, 170 MPa and 213 MPa respectively. Similarly, Static 

compressive strengths of Al2O3 SC-15 composite system having ceramic weight fractions of 

0.45, 0.55, 0.60 & 0.70 (as determined from TGA) were found out to be 105 MPa, 108 MPa, 115 

MPa and 130 MPa respectively. 

Table 2.1. Results of dynamic compression experiments on SiO2 SC-15 composites. 

Φw 
ἑmax 

(s
-1

) 

σpredicted  

(MPa) 

σexperiment  

(MPa) 

Error  
(%) εcal εexp 

Error  
(%) 

0.45 1310 165.11 167.02 1.15 0.0344 0.0354 2.70 

0.45 1580 176.06 189.79 7.23 0.0388 0.0425 8.61 

0.45 1640 175.99 182.21 3.42 0.0409 0.0431 5.01 

0.55 1200 191.51 198.27 3.41 0.0291 0.0310 6.22 

0.55 1330 198.23 208.99 5.15 0.0354 0.0371 4.61 

0.55 1500 195.78 202.47 3.30 0.0372 0.0412 9.81 

0.60 1140 197.91 203.57 2.78 0.0263 0.0292 9.90 

0.60 1160 203.20 211.64 3.99 0.0308 0.0321 4.01 

0.60 1250 210.24 219.71 4.31 0.0290 0.0308 5.88 
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Table 2.2. Results of dynamic compression experiments on Al2O3 SC-15 composites. 

Φw 
ἑmax 

(s
-1

) 

σpredicted  

(MPa) 

σexperiment  

(MPa) 

Error  
(%) εcal εexp 

Error  
(%) 

0.45 1170 165.30 169.40 2.42 0.0345 0.0373 7.41 

0.45 1230 171.23 175.77 2.58 0.0364 0.0402 9.54 

0.45 1490 174.84 172.10 1.59 0.0379 0.0406 6.64 

0.55 860 162.81 173.39 6.10 0.0229 0.0245 6.59 

0.55 890 162.93 168.61 3.37 0.0230 0.0256 10.21 

0.55 1120 195.73 196.97 0.63 0.0266 0.0287 7.38 

0.60 1160 182.13 190.15 4.22 0.0294 0.0319 7.76 

0.60 1180 184.98 189.01 2.13 0.0277 0.0297 6.60 

0.60 1190 195.63 201.90 3.11 0.0251 0.0276 8.96 

0.70 960 217.63 232.01 6.20 0.0228 0.0240 4.98 

0.70 1070 213.77 230.34 7.19 0.0257 0.0267 3.58 

0.70 1100 210.17 224.07 6.20 0.0165 0.0186 11.06 

 

Figure 2.6. Plot of (a) experimental stress, and (b) strains (at peak stress) for SiO2 SC-15 ceramic 

polymer composite corresponding to varying ceramic contents at different strain-rates. 
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Figure 2.7. Plot of (a) experimental stress, and (b) strains (at peak stress) for Al2O3 SC-15 

ceramic polymer composite corresponding to varying ceramic contents at different strain-rates. 

As it can be seen from Table 2.1. and Table 2.2., the peak stresses and strains (εcal - at 

peak stress) as predicted by the analytical model are in reasonable agreement with the 

experimentally obtained stresses and strains. Dynamic compressive strength of ceramic-

polymer composites is significantly higher than its static counterpart (especially, for Al2O3 SC-

15 composite) and this large discrepancy in fracture strength values is indicative of a strong 

strain-rate dependence of the mechanical properties of this type of ceramic polymer 

composites. However maximum strains, as it can be seen from Figure 2.5(a,b), in dynamic 

regime (~5%-6%) are approximately the same with respect to its static counterpart (~6%-6.5%). 

From microstructural point of view, this could possibly be attributed to the occurrence of two 

deformation mechanisms, under high strain-rate loading, in the ceramic bricks: (a) partial 

dislocation emission, and (b) deformation twinning as it can be inferred from the recently 
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conducted studies [Huang et al., 2011] on their outlook towards uncovering high-strain rate 

protection mechanism in nacre. In fact, an additional observation can be noted from Table 2.1 

and Table 2.2. It can be seen that for a fixed ceramic weight fraction strain levels increase, 

though minimal, with increasing strain-rate (shown in Figure 2.6(b) and Figure 2.7(b) for SiO2 

SC-15 & Al2O3 SC-15 composite system respectively), which again follows the reasoning stated 

above. Also, it can be seen that ceramic-polymer composites having 0.55-0.60 weight fraction 

of ceramic provide the optimal performance in terms of stresses and strains (at peak stress). 

The current model predicts failure strength within ±10%. Nevertheless, future studies will be 

undertaken towards understanding the effect of kinking in these type of composites to 

determine if it plays a major role in strength determination. 

Typically, ceramics exhibit rate-insensitive or even negative rate dependence behavior. 

If compared against the mechanical behavior obtained by brick-and-mortar ceramic-polymer 

composites, these composites exhibit dynamic self-stiffening behavior [Huang et al., 2011], 

which is similar to that observed in nacre. This kind of self-stiffening behavior under dynamic 

rates of loading will find particular relevance in application of these types of composites on 

their usage as protective materials when subjected to ballistic impact. The outcome of the 

current research will provide highlights on the applicability of hybrid bio-inspired composites as 

body armored materials. 

2.5. Conclusion 

Investigation on the mechanical behavior of ceramic-polymer composites, having brick 

and mortar structure as its most elementary level of architecture, under dynamic rates of 



55 

 

loading have been performed in a SHPB. An analytical model has been formulated, for dynamic 

rates of loading, based on the mechanism that mineral platelets serve as the principle load 

bearing member & intermediate polymeric layer serve to transfer load between the platelets 

following shear deformation) and considering the fact that a composite having a brick and 

mortar type of architecture can be visualized as an adherend (the bricks/ceramic) held together 

by an adhesive (the mortar/polymer). In a ceramic-polymeric composite, the interfacial 

ceramic-polymer strength is representative of the ceramic-polymer joint strength and the 

analytical model attempts to predict the same. The results obtained from the analytical model 

are in reasonable agreement with the experimentally obtained stresses and strains. It was 

found that dynamic compressive strength of ceramic-polymer composites is significantly higher 

than its static counterpart and this can be attributed to strong strain-rate dependence of the 

mechanical properties of this type of ceramic polymer composites. From microstructural point 

of view, this could possibly be attributed to the occurrence of two deformation mechanisms, 

under high strain-rate loading, in the ceramic bricks: (a) partial dislocation emission, and (b) 

deformation twinning. Additionally, it was seen that for a fixed ceramic weight fraction, strain 

levels increase with increasing strain-rate which follows the justification stated above. Thus, 

these composites exhibit dynamic self-stiffening behavior which will find particular relevance in 

application of these types of composites as protective material when subjected to ballistic 

impact. 

 

 



56 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 



57 

 

REFERENCES 

 

ASTM D695-10: Standard Test Method for Compressive Properties of Rigid Plastics, 
ASTM International. 

Bertness, M.D., Cunningham, C. 1981. Crab shell-crushing predation and gastropod 
architectural defense. J. Exp. Mar. Biol. Ecol. 50, 213-230. 

Barthelat, F., Li, C-M, Comi, C., Espinosa, H.D. 2006. Mechanical properties of nacre 
constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977-1986. 

Barthelat, F., Espinosa, H.D. 2007. An Experimental Investigation of Deformation and 
Fracture of Nacre-Mother of Pearl. Exp. Mech. 47, 311–324. 

Currey, J.D. 1977. Mechanical properties of pearl in tension. P. R. Soc. London B 196, 
443-463. 

Currey, J.D. 1984. The Mechanical Adaptations of Bones. Princeton University Press, 
Princeton, NJ, pp 24–37. 

Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, J.R. 2007. Concepts and applications of 
finite element analysis. 4th edition. India:Wiley. 

Deville, S., Saiza, E., Nalla, R.K., Tomsiaa, A.P. 2006. Freezing as a path to build complex 
composites. Science 311, 515–518. 

Espinosa, H.D., Lu, H.C., Xu, Y. 1998. A Novel Technique for Penetrator Velocity 
Measurement and Damage Identification in Ballistic Penetration Experiments. J. Comp. Mater. 
32(8), 722-743. 

Fratzl, P., Gupta, H.S., Paschalis, E.P., Roschger, P. 2004. Structure and mechanical 
quality of the collagen–mineral nano-composite in bone. J. Mater. Chem. 14, 2115–2123. 

Gao, H., Ji, B., J¨ager, I.L., Arzt, E., Fratzl, P. 2003. Materials become insensitive to flaws 
at nanoscale: lessons from nature. P. Natl. Acad. Sci. USA 100, 5597–5600. 

Hulmes, D.J.S., Wess, T.J., Prockop, D.J., Fratzl, P. 1995. Radial packing, order and 
disorder in collagen fibrils. Bioph. J. 68, 1661–1670. 



58 

 

Hao, X., Gai, G., Lu, F., Zhao, X., Zhang, Y., Liu, J., Yang, Y., Gui, D., Nan, C-W 2005. 
Dynamic mechanical properties of whisker/PA66 composites at high strain rates. Polymer 46, 
3528-3534. 

Huang, Z., Li, H., Pan, Z., Wei, Q., Chao, Y.J., Li, X. 2011. Uncovering high-strain rate 
protection mechanism in nacre. Sci. Rep. 1:148, 1-5. 

Jackson, A.P., Vincent, J.F.V., Turner, R.M. 1988. The mechanical design of nacre. P. R. 
Soc. London B. 234, 415–440. 

Jager, I., Fratzl, P. 2000. Mineralized collagen Fibrils: a mechanical model with a 
staggered arrangement of mineral particles. Biophys. J. 79, 1737–1746. 

Ji, B., Gao, H. 2004. Mechanical properties of nanostructure of biological materials. J. 
Mech. Phys. Solids 52, 1963–1990. 

Kolsky, H. 1963. Stress Waves in Solids. Publisher: Dover Publications, Inc., New York, 
N.Y. 

Kolsky, H. 1964. Stress Waves in Solids. J. Sound Vib. 1, 88-110. 

Kitching, J.A., Lockwood, J. 1974. Observations on shell form and its ecological 
significance in thaid gastropods of the genus Lepsiella in New Zealand, Marine Biology, 28, 131-
141. 

Kessler, H., Ballarini, R., Mullen, R.L., Kuhn, L.T., Heuer, A.H. 1996. A biomimetic 
example of brittle toughening: (I) steady state multiple cracking. Comp. Mater. Sci. 5, 157–166. 

Kamat, S., Su, X., Ballarini, R., Heuer, A.H. 2000. Structural basis for the fracture 
toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040. 

Kotha, S.P., Kotha, S., Guzelsu, N. 2000. A shear-lag model to account for interaction 
effects between inclusions in composites reinforced with rectangular platelets. Compos. Sci. 
Technol. 60, 2147–2158. 

Katti, K.S., Katti, D.R., Pradhan, S.M., Bhosle, A. 2005. Platelet interlocks are the key to 
toughness and strength in nacre. J. Mater. Res. 20, 1097-1110. 

Landis, W.J. 1995. The strength of a calcified tissue depends in part on the molecular 
structure and organization of its constituent mineral crystals in their organic matrix. Bone 16, 
533–544. 



59 

 

Landis, W.J., Hodgens, K.J., Song, M.J., Arena, J., Kiyonaga, S., Marko, M., Owen, C., 
McEwen, B.F. 1996. Mineralization of collagen may occur on fibril surfaces: evidence from 
conventional and high voltage electron microscopy and three dimensional imaging. J. Struct. 
Biol. 117, 24–35. 

Launey, M.E., Munch, E., Alsem, D.H., Barth, H.B., Saiz, E., Tomsia, A.P., Ritchie, R.O. 
2009. Designing Highly Toughened Hybrid Composites Through Nature-Inspired Hierarchical 
Complexity. Acta Mater. 57, 2919-2932. 

Menig, R., Meyers, M.H., Meyers, M.A. & Vecchio, K.S. 2000. Quasi-static and dynamic 
mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48, 2383–2398. 

Menig, R., Meyers, M.H., Meyers, M.A. & Vecchio, K.S. 2001. Quasi-static and dynamic 
mechanical response of Strombus gigas (conch) shells. Mater. Sci. Eng. A 297, 203–211. 

Rossi, A.C., Parisi, V. 1973. Experimental studies of predation by the crab Eriphia 
verrucosa on both snail and hermit crab occupants of conspecific gastropod shells. Bollettino di 
Zoologia 40, 117-135. 

Rho, J.Y., Kuhn-Spearing, L., Zioupos, P. 1998. Mechanical properties and the 
hierarchical structure of bone. Med. Eng. Phys. 20, 92–102. 

Roschger, P., Grabner, B.M., Rinnerthaler, S., Tesch, W., Kneissel, M., Berzlanovich, A., 
Klaushofer, K., Fratzl, P. 2001. Structural development of the mineralized tissue in the human 
L4 vertebral body. J. Struct. Biol. 136, 126–136. 

Shoup, J.B. 1968. Shell opening by crabs of the genus Calappa. Science 160, 887-888. 

Sarikaya, M., Gunnison, K.E., Yasrebi, M., Aksay, J.A., 1990. Mechanical 
property­microstructural relationships in abalone shell. Mater. Res. Soc. 174, 109-116. 

Sen, O., Tekalur, S.A., Jilek, C. 2011. The determination of dynamic strength of single lap 
joints using the split Hopkinson pressure bar. Int. J. Adhes. Adhes. 31, 541-549. 

Sen, O. 2011. Radial Inertia in Non-cylindrical Specimens in a Kolsky Bar. Conference 
Proceedings of the Society for Experimental Mechanics Series 17, 169-170. 

Vermeij, G.J. 1976. Interoceanic differences in vulnerability of shelled prey to crab 
predation. Nature 260, 135-136. 

Vermeij G.J. 1977. Patterns in crab claw size: the geography of crushing. Syst. Zool. 26, 
138-152. 



60 

 

Vermeij, G.J. 1978. Biogeography and adaptation: patterns of marine life, Harvard 
University Press. Cambridge, Page: 416. 

Veis, A., Sabsay, B. 1987. The collagen of mineralized matrices. In Bone and Mineral 
Research/5, W. A. Peck, editor. Elsevier Science Publications, New York, Amsterdam, Tokyo. pp: 
1-63. 

Wagner, H.D., Weiner, S. 1992. On the relationship between the microstructure of bone 
and its mechanical stiffness. J. Biomech. 25, 1311–1320. 

Weiner, S., Wagner, H.D. 1998. The material bone: structure–mechanical function 
relations. Annu. Rev. Mater. Sci. 28, 271–298. 

Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., Aksay, I.A. 2001. Deformation mechanisms in 
nacre. J. Mater. Res. 16, 2485–2493. 

Wei, X., Naraghi, M., Espinosa, H. 2012. Optimal Length Scales Emerging from Shear 
Load Transfer in Natural Materials--Application to Carbon-Based Nanocomposite Design, ACS 
Nano 6(3), 2333–2344. 

Zipser, E., Vermeij, G.J. 1978. Crushing behavior of tropical and temperate crabs. J. Exp. 
Mar. Biol. Ecol. 3I, 155-172. 

 

 

 

 

 

 

 

 

 

 



61 

 

 

 

 

 

 

 

 

 

CHAPTER 3. OPTIMAL OVERLAP LENGTH IN STAGGERED ARCHITECTURE COMPOSITES UNDER 

DYNAMIC LOADING CONDITIONS 

 

 

 

 

 

 

 

 

 



62 

 

3.1. Introduction 

Nacre refers to the inner shining layer in seashells. Microstructure of nacre reveals the 

existence of mineral tablets in a soft polymeric matrix in a brick-and-mortar structural 

arrangement [Jackson et al., 1988; Sarikaya et al., 1990]. Two of the most discerning aspects of 

nacre are exhibition of superior strength and synergistic toughness [Barthelat and Espinosa, 

2007; Jackson et al., 1988; Kessler et al., 1996; Kamat et al., 2000; Menig et al., 2000, 2001; 

Sarikaya et al., 1990]. Multifarious factors contribute to toughening mechanisms, namely tablet 

pull-out [Jackson et al., 1988], crack deflection by the polymeric matrix [Menig et al., 2000], 

platelet interlocks [Katti et al., 2005], presence of nanoasperities [Evans et al., 2000; Wang et 

al., 2001], diffusive tablet sliding [Barthelat and Espinosa, 2007] arising from tablet waviness, 

aragonite bridge reinforcements at interface [Song et al., 2003], and re-locking of tablets 

[Meyers et al., 2008] due to persistent contact of broken aragonite bridges, all contribute to 

interfacial strengthening and thereby, superior fracture resistance. 

So far, literature studies have addressed the interdependence of material properties 

and geometrical parameters on mechanical behavior of the staggered architecture materials 

under quasi-static loading conditions. Analytical model proposed by Jaeger and Fratzl (2000) 

estimated the maximum stress and strain of the composite, by advancing previously 

established models for the mechanical properties of mineralized collagen fibrils [Wagner and 

Weiner, 1992] by setting forth inorganic crystals in a staggered arrangement in agreement with 

the distribution of gaps in the collagen fibril [Hulmes et al., 1995; Landis, 1995; Veis and 

Sabsay, 1987]. Micromechanical model developed by Kotha et al. (2000) derived axial and 
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shear stress distribution in platelets on the assumption of a fundamental basis that the load 

carried by the platelets remains constant and inter-platelet load transfer occurs by shear. 

Tension-shear-chain (TSC) model postulated by Gao et al. (2003) established the relationship 

between stiffness, aspect ratio of minerals, mineral volume fraction and material properties. 

Additionally, a critical overlap length, using Griffith’s fracture criterion, was developed which 

attributed to the existence of an optimal aspect ratio of mineral crystals in biological 

composites. Shuchun and Yueguang (2007) used shear-lag model to study the interdependence 

of the overall elastic modulus and number of hierarchical levels in bone-like materials, and 

compared their results against TSC model and finite element simulations. Investigations by 

Chen et al. (2009) were directed towards understanding characteristic length for efficient stress 

transfer in staggered biocomposites via derivation of an analytical model followed by numerical 

simulations. Zhang et al. (2010) employed homogenization method to investigate the effect of 

platelet distribution (regular, stairwise, random), in staggered architecture materials, on the 

stiffness, strength, failure strain and energy storage capacity. Zhang et al. (2011) developed a 

quasi-self-similar hierarchical model to investigate the cause responsible for determination and 

existence of optimal number of hierarchical levels in staggered architecture materials, for 

varying mineral content, to obtain maximal toughness. Liu et al. (2011) used perturbation 

method to obtain analytical expressions for displacement and stress fields in the staggered 

nanocomposite structure, under quasi-static loading conditions, when subjected to uniaxial 

tension. Recently, Wei et al. (2012) laid down a criterion which reveals the existence of a 
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unique overlap length in biological composites that contributes to an optimization on both, 

strength and toughness fronts. 

Resistance to crushing against crustacean predators is an integral part of shell evolution. 

Shell breaking methods by predators is representative of a dynamic loading event. It has been 

observed that under high strain-rates (using a Split-Hopkinson Pressure Bar(SHPB)), nacre 

exhibits superior damage tolerance and elevated fracture strength [Huang et al., 2011]. This 

behavior has been attributed to, based on electron microscopic analyses, on the existence of 

phenomenon's like partial dislocation emission and the onset of deformation twinning within 

the mineral crystals. However, minimal literature exists which addresses analytically the factors 

responsible for this behavior under dynamic rates of loading. 

The following sections attempt to investigate and answer the following questions with 

regards to composites having staggered microstructure as its most elementary level of 

architecture under impact loading conditions. (1) Does there exist a structure-property 

correlationship for these materials under dynamic events? (2) Critical overlap length exists 

under quasi-static loading conditions which optimizes both strength and stiffness; is there any 

associated critical overlap length involved in load transfer mechanism between the adjacent 

reinforcements in dynamic regime? (3) As had been postulated by Gao et al. (2003), building 

blocks in biological composites are at nanometer scales under quasi-static loading conditions; is 

the same argument true under impact loading? In order to address these questions, we based 

our analyses in the following manner: (a) Analytical model development for staggered 

microstructural materials under time dependent loading considering linear elastic behavior, (b) 
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identification of the critical overlap length criterion involved in these events, (c) predicting 

overlap lengths for other biocomposites exhibiting staggered microstructure as its most 

elementary level of architecture, for example nacre, spider-silk and collagen in bone/tendon, 

(d) predicting & validating the joint strength, using the analytical model, of aluminum-Loctite  

lap joint under impact loading using SHPB [Sen et al., 2011], (e) provide an explanation, based 

on the analytical model, for superior damage tolerance and elevated dynamic compressive 

strength of nacre, and (f) insights into the effect of loading rate.   

3.2. Mathematical Formulation 

We begin our analysis by taking into consideration the simplified 2D unit cell, as shown 

in Figure 3.1(a), and by employing 'shear-lag theory' [Volkersen, 1938]. 

 

Figure. 3.1. (a) Schematic of brick-and-mortar microstructure identifying the overlap region; 

Representative loading pulses obtained from SHPB experiments: (b) triangular pulse, and (c) 

half-sinusoidal pulse. 
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Applying force equilibrium to the upper and lower ceramic bricks, we obtain  

 
2u1 1

2x b t

 
 

 
 (3.1) 

 
2u2 2

2x b t

 
 

 
 (3.2) 

where,  x,t1 1   and  x,t2 2  denotes the normal stress developed in the upper and 

lower ceramic bricks,  denotes the shear stress developed in the polymer, b denotes half the 

ceramic brick width and h, the polymeric thickness. Assuming a state of pure shear in the 

polymer, we have 
u u1 2G

h

 
   

 
 where,  u u x,t1 1 ,  u u x,t2 2 denotes in-plane 

displacement of the upper and lower ceramic bricks respectively and G denotes the shear 

modulus of the polymer. Assuming linear elastic behavior of the ceramic bricks, i.e., 
u

E
x


 


, 

where E denotes Young's modulus of elasticity of the ceramic, equations (3.1) and (3.2) can we 

rewritten as equations (3.3) and (3.4), to obtain the governing differential equation of the 

system, given by 

  
2 2u uG 11 1u u1 22 2 2Ebhx c t

 
  

 
 (3.3) 

  
2 2u uG 12 2u u1 22 2 2Ebhx c t

 
  

 
 (3.4) 

where 
E

c 


denotes the wave velocity through the ceramic and,  denotes the density of the 

ceramic. The boundary conditions of the system are given by 
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    
 

 tu20,t t2
x E0,t


   


 (3.5) 

  
 

u10,t 0 01
x 0,t


   


 (3.6) 

  
 

u2L,t 0 02
x L,t


   


 (3.7) 

    
 

 tu1L,t t1
x EL,t


   


 (3.8) 

The initial conditions of the system are given by 

  u x,0 01   (3.9) 

  u x,0 02   (3.10) 

 
 

u1 0
t x,0





 (3.11) 

 
 

u2 0
t x,0





 (3.12) 

We thus have coupled partial hyperbolic differential equations subjected to non-homogenous 

boundary conditions. Given the nature of the problem, we employed advanced separation of 

variables technique coupled with rearrangement of terms to obtain a closed-form solution for 

the displacements in the ceramic blocks.  

We now introduce a variable,  u u x,t4 4 which is defined as follows: 

      u x,t u x,t u x,t4 1 2   (3.13) 
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Additionally, we define  u u x,t4 4 in an alternative manner as follows: 

      u x,t v x,t w x,t4    (3.14) 

where  w x,t represents a smoothing function satisfying only the boundary conditions, i.e.,  

 
 

 tw

x E0,t


 


 (3.15) 

 
 

 tw

x EL,t





 (3.16) 

Subtracting equation (3.4) from equation (3.3) and substituting equation (3.14), we obtain 

another governing differential equation of the system, given by 

 
2 2 2 2v 1 v w 1 w

kv kw
2 2 2 2 2 2x c t x c t

   
     

   
 (3.17) 

where, 
2G

k
Ebh

 , and is subjected to boundary conditions and initial conditions, given by 

equations (3.18-3.21) respectively.  

 
 

v
0

x 0,t





 (3.18)  

 
 

v
0

x L,t





 (3.19) 

    v x,0 w x,0   (3.20) 

 
   

v w

t tx,0 x,0

 
 

 
 (3.21) 
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Since boundary conditions are to be satisfied, choice of  w x,t  is made on the basis of 

Neumann boundary conditions, and is thus represented by  

  
  2t x

w x,t x
E L

 
  
 
 

 (3.22) 

Substituting equation (3.22) into right hand side of equation (3.17), we thus have the following 

differential equation of the system, given by 

      
2 2v 1 v n x

kv p x,t p t p t cos4 04 n42 2 2 Lx c t n 1

   
       

   

 (3.23) 

where, 

  
   22 2t d t2 x 1 x

p x,t k x x4 2 2L L E Lc E dt

     
         

    
    

 (3.24) 

      
 22L d t1 12 kL L

p t p x,t dx t04 4 2 2L 6EL 6c E dtx 0

    
       
     

 (3.25) 

 

   
 

 

   

L 1 cos n2 n x 2LK
p t p x,t cos dx tn4 4 2 2L L E nx 0

21 cos n d t2L
,n 1

2 2 2 2c E n dt

     
       

     

    
   

  

 (3.26) 

Assume,      v x,t X x T t4 4 . The Eigen values and functions are thus given by 

 
2n

,n 0n4
L

 
   

 
 (3.27) 

  
n x

X x cos ,n 0n4
L

 
  

 
 (3.28) 
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Hence the formal solution of the problem is given by formal Fourier series, as 

        
n x n x

v x,t T t cos T t T t cosn4 04 n4
L Ln 0 n 1

    
      

    

 (29) 

Substituting equation (3.29) into left hand side of equation (3.23) and equating both sides, we 

get 

  
22d T n2 2n4 c k T c p t ,n 1n4 n42 Ldt

           
     

 (3.30) 

  
2d T 2 204 kc T c p t04 042dt

    (3.31) 

The initial conditions, equations (3.20, 3.21), can be rewritten as follows:  

 

     

 
 

 
 

 
   

n x
v x,0 T 0 T 0 cos04 n4

Ln 1

2 0x
w x,0 x

L E

L 0 2L 0 1 cos n
T 0 ,T 004 n4 2 26E E n

 
    

 

  
     
 
 

    
     

 

 (3.32) 

 

 

   

 

 
 

 
 

 

 
 

 

dT 0 dT 0v n x04 n4 cos
t dt dt Lx,0 n 1

2d 0w 1 x n x
x q x q q cos4 04 n4

t E dt L Lx,0 n 1

LdT 0 d 01 L04 q q x dx ,and04 4
dt L 6E dtx 0

LdT 0 1 cos n d2 n x 2Ln4 q q x cos dxn4 4 2 2dt L L E nx 0

  
    

  

   
               


   



    
       

   

 0
,n 1

dt


 (3.33) 
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Equation (3.30) can be rewritten as follows: 

 
   22 k t d td T 12 2n4 e T c a ,n 1n4 n4n42 2 2Edt c E dt

  
     
 
 

 (3.34) 

where, 
 1 cos n

a 2Ln4 2 2n

  
  

 
, and 

2n
e c kn4

L

 
   

 
. Equation (3.34) can be rearranged 

further to obtain equation (3.35) as follows: 

 

 
 

   
 

22 d td T a a2n4 n4 n4e T tn4n42 2E Edt dt

22 2e a tc a k t a n cn4n4 n4 n4 t
E E E L

            
 

  
    

 

 (3.35) 

Equation (3.35) can be written in a simplified manner to obtain equation (3.36) as follows:  

 
 

   
2d y t4 2e y t g t4 4n42dt

    (3.36) 

where,  

 

   

   

an4y t T t ,and4 n4
E

2a n cng t t4
E L

  

 
  

 

 (3.37) 

We use Laplace Transform to solve equation (3.36). Let us denote     L y t Y s4 4 , and 

    L g t G s4 4 . Thus, we obtain 
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   
 

   

   
 

 

     
   

    

dy 042 2s Y s sy 0 e Y s G s4 4 4 4n4dt

dy 0s 1 14Y s y 0 G s4 4 42 2 2 2 2 2dts e s e s en4 n4 n4

tdy 0 sin e t 14 n4y t y 0 cos e t sin e t g d4 4 n4 n4 4
dt e en4 n40

   

     
        
            

       


 (3.38) 

Note that,  

 

     

       

     

       

an4y 0 T 0 04 n4
E

2L 0 1 cos n 2L 0 1 cos n
0,and

2 2 2 2E En n

dy 0 dT 0 d 0a4 n4 n4
dt dt E dt

1 cos n d 0 1 cos n d 02L 2L
0

2 2 2 2E dt E dtn n

   

        
     

    


  

        
     

    

 (3.39) 

and thus, using equations (3.37-3.39), we finally obtain 

         
2 ta a n cn4 n4T t t sin e t d ,n 1n4 n4

E Ee Ln4 0

 
          

  

 (3.40) 

Lets us now solve equation (3.31). We proceed as follows. Equation (3.31) can be rewritten as 

follows: 

  
 22 d td T 2 204 d T c a t b04 04 04042 2dt dt

 
     
 
 

 (3.41) 

where, 
212 kL

a04
6EL

 
  
 
 

, 
L

b04 26c E

 
  

 
, and d c k04  . Equation (3.41) can be rearranged 

further to obtain equation (3.42) as follows: 
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 
 

     

22 d td T 2 2 204 c b d T c b t04 04 04042 2dt dt

22c2 2 2c a t d c b t t04 0404 EL

        
   

 

 
      
 
 

 (3.42) 

Equation (3.42) can be written in a simplified manner to obtain equation (3.43) as follows:  

 
 

   
2d m t4 2d m t f t4 4042dt

    (3.43) 

where,  

 

   

   

2m t T c b t ,and4 04 04

22c
f t t4

EL

  

 
  
 
 

 (3.44) 

We use Laplace Transform to solve equation (3.43). Let us denote     L m t M s4 4 , and 

    L f t F s4 4 . Thus, we obtain 

 

   
 

   

   
 

 

     
   

    

dm 042 2s M s sm 0 d M s F s4 4 4 404dt

dm 0s 1 14M s m 0 F s4 4 42 2 2 2 2 2dts d s d s d04 04 04

tsin d tdm 0 1044m t m 0 cos d t sin d t f d4 4 04 04 4
dt d d04 040

   

     
        
            

       


 (3.45) 

Note that,  

 

         

         

L L2m 0 T 0 c b 0 0 0 0,and4 04 04
6E 6E

dm 0 dT 0 d 0 d 0 d 0L L4 04 2c b 004
dt dt dt 6E dt 6E dt

   
          

   

     
       

   

 (3.46) 
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and thus, using equations (3.44-3.46), we finally obtain 

         
2 t2c2T t c b t sin d t d04 04 04

ELd04 0

        


 (3.47) 

Substituting the expressions T ,Tn4 04 obtained from equations (3.40, 3.47) into equation (3.29) 

and finally into equation (3.14), we finally get 

          
  2tn x x

u x,t u x,t u x,t T t T t cos x4 1 2 04 n4
L E Ln 1

  
             

 (3.48) 

We now introduce another variable,  u u x,t3 3 which is defined as follows: 

      u x,t u x,t u x,t3 1 2   (3.49) 

Additionally, we define  u u x,t3 3 in an alternative manner as follows: 

      u x,t r x,t s x,t3    (3.50) 

where  s x,t represents a smoothing function satisfying only the boundary conditions, i.e.,  

 
 

 ts

x E0,t





 (3.51) 

 
 

 ts

x EL,t





 (3.52) 

Adding equations (3.3) and (3.4), and substituting equation (3.50), we obtain another governing 

differential equation of the system, given by 

 
2 2 2 2r 1 r s 1 s

2 2 2 2 2 2x c t x c t

   
   

   
 (3.53) 
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subjected to boundary conditions and initial conditions, given by equations (3.54-3.57) 

respectively.  

 
 

r
0

x 0,t





 (3.54)  

 
 

r
0

x L,t





 (3.55) 

    r x,0 s x,0   (3.56) 

 
   

r s

t tx,0 x,0

 
 

 
 (3.57) 

Since boundary conditions are to be satisfied, choice of  s x,t  is made on the basis of 

Neumann boundary conditions, and is thus represented by  

  
 x t

s x,t
E


  (3.58) 

Substituting equation (3.58) into right hand side of equation (3.53), we thus have the following 

differential equation of the system, given by 

      
2 2r 1 r n x

p x,t p t p t cos3 03 n32 2 2 Lx c t n 1

   
      

   

 (3.59) 

where, 

  
 2d tx

p x,t3 2 2c E dt


  (3.60) 

    
 2L d t1 L

p t p x,t dx03 3 2 2L 2c E dtx 0

  
   

 

 (3.61) 



76 

 

    
   2L cos n 1 d t2 n x 2L

p t p x,t cos dxn3 3 2 2 2 2L L c E n dtx 0

     
     

    

 (3.62) 

Assume,      r x,t X x T t3 3 . The Eigen values and functions are thus given by 

 
2n

,n 0n3
L

 
   

 
 (3.63) 

  
n x

X x cos ,n 0n3
L

 
  

 
 (3.64) 

Hence the formal solution of the problem is given by formal Fourier series, as 

        
n x n x

r x,t T t cos T t T t cosn3 03 n3
L Ln 0 n 1

    
      

    

 (3.65) 

Substituting equation (3.65) into left hand side of equation (3.59) and equating both sides, we 

get 

  
22d T n c 2n3 T c p t ,n 1n3 n32 Ldt

 
    
 

 (3.66) 

  
2d T 203 c p t032dt

   (3.67) 

The initial conditions, equations (3.56, 3.57), can be rewritten as follows:  

 

     

 
 

 
 

 
   

n x
r x,0 T 0 T 0 cos03 n3

Ln 1

x 0
s x,0

E

L 0 2L 0 cos n 1
T 0 ,T 003 n3 2 22E E n

 
    

 


   

    
      

 

 (3.68) 
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 

   

 

 
 

 
 

 

 
 

   

dT 0 dT 0r n x03 n3 cos
t dt dt Lx,0 n 1

d 0s x n x
q x q q cos3 03 n3

t E dt Lx,0 n 1

LdT 0 d 01 L03 q q x dx ,and03 3
dt L 2E dtx 0

LdT 0 cos n 1 d 02 n x 2Ln3 q q x cos dx ,n 1n3 3 2 2dt L L E dtnx 0

  
    

  

  
         

  


    



    
        

   

 (3.69) 

Equation (3.66) can be rewritten as follows: 

 
 22 d td T 2 2n3 e T c a ,n 1n3 n3n32 2dt dt


     (3.70) 

where, 
 cos n 12L

an3 2 2 2c E n

   
   

  
, and 

n c
en3

L

 
  
 

. Equation (3.70) can be rearranged 

further to obtain equation (3.71) as follows: 

 
 

   
22 d td T 2 2 2 2 2n3 c a e T c a t e c a t ,n 1n3 n3 n3 n3n3 n32 2dt dt

          
   

 

 (3.71) 

Equation (3.71) can be written in a simplified manner to obtain equation (3.72) as follows: 

 
 

   
2d y t3 2e y t g t3 3n32dt

    (3.72) 

where,  

 
   

   

2y t T c a t ,and3 n3 n3

2 2g t e c a t3 n3n3

  

 
 (3.73) 
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We use Laplace Transform to solve equation (3.72). Let us denote     L y t Y s3 3 , and 

    L g t G s3 3 . Thus, we obtain 

 

   
 

   

   
 

 

     
   

    

dy 032 2s Y s sy 0 e Y s G s3 3 3 3n3dt

dy 0s 1 13Y s y 0 G s3 3 32 2 2 2 2 2dts e s e s en3 n3 n3

tsin e tdy 0 1n33y t y 0 cos e t sin e t g d3 3 n3 n3 3
dt e en3 n40

   

     
        
            

       


 (3.74) 

Note that,  

 

     

       

     

       

2y 0 T 0 c a 03 n3 n3

2L 0 cos n 1 2L 0 cos n 1
0,and

2 2 2 2E En n

dy 0 dT 0 d 03 n3 2c an3
dt dt dt

cos n 1 d 0 cos n 1 d 02L 2L
0

2 2 2 2E dt E dtn n

   

        
     

    


  

        
     

    

 (3.75) 

and thus, using equations (3.73-3.75), we finally obtain 

         
t

2 2T t c a t e c a sin e t d ,n 1n3 n3 n3 n3 n3
0

         


 (3.76) 

Lets us now solve equation (3.67). We proceed as follows. Equation (3.67) can be rewritten as 

follows: 

 
 22 d td T 203 c a032 2dt dt


   (3.77) 
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where, 
L

a03 22c E

 
  
 

. Equation (3.77) can be rearranged further to obtain equation (3.78) as 

follows: 

 
 22 d td T 203 c a 0032 2dt dt

 
  
 
 

 (3.78) 

Equation (3.78) can be written in a simplified manner to obtain equation (3.79) as follows: 

 
 2d m t3 0

2dt
   (3.79) 

where,  

    2m t T c b t3 03 03    (3.80) 

We use Laplace Transform to solve equation (3.79). Let us denote     L m t M s3 3 . Thus, we 

obtain 

 

   
 

   
 

   
 

dm 032s M s sm 0 03 3
dt

dm 01 1 3M s m 03 3 2s dts

dm 03m t m 0 t3 3
dt

  

  
     

   

  

 (3.81) 

Note that,  

 

         

         

L L2m 0 T 0 c a 0 0 0 0,and3 03 03
2E 2E

dm 0 dT 0 d 0 d 0 d 0L L3 03 2c a 003
dt dt dt 2E dt 2E dt

   
           

   

     
        

   

 (3.82) 

and thus, using equations (80-82), we finally obtain 



80 

 

    2T t c a t03 03    (3.83) 

Substituting the expressions T ,Tn3 03obtained from equations (3.76, 3.83) into equation (3.65) 

and then into equation (3.50), we finally get 

          
 x tn x

u x,t u x,t u x,t T t T t cos3 1 2 03 n3
L En 1

 
      

 

 (3.84) 

Thus, we have  

 
 

   

 
   

u x,t u x,t3 4u x,t ,and1
2

u x,t u x,t3 4u x,t2
2







 (3.85) 

3.3. Results and Discussion 

As mentioned earlier, the current formulation has been derived with respect to any 

arbitrary pulse loading. In SHPB experiments, obtained loading pulses typically exhibit either 

triangular   maxt t
ta


   or, half-sinusoidal  

t
t sinmax

2ta

 
    

 
 waveforms. Both type of 

loading pulses were applied to the staggered composite. As per the formulation carried out by 

Wei et al. (2012), under quasi-static loading conditions, shearing stress at the ends of the 

overlap ( max ) is given in terms of the maximum applied stress ( 0 ) as follows: 

 
b 2G L 2G0 cothmax x 0 x L 2 Ebh 2 Ebh

 
         

 
 (3.86) 

 Substitution of the geometrical and material properties of nacre [Barthelat et al., 2005; 

Espinosa et al., 2011, Meyers et al., 2008, Jackson et al., 1988] into equation (3.85), results in 
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0 =133 MPa. In order to visualize the variation of shear strength in the joint throughout the 

overlap length and over time, a maximum stress ( max ) of 133 MPa is hence applied and the 

time taken to attain this stress level (ta) is chosen to be 133 μs. Shear stress distribution profiles 

obtained were almost identical corresponding to both types of loading. Figure 3.2 shows the 

shear stress distribution profile. As it can be seen from Figure 3.2, the shear stresses are 

maximum at the either ends of the overlap. With progressing time, sliding between the ceramic 

bricks continues to increase and thereby, shear stress at the ends continues to increase along 

with increasing stress levels toward the center of the joint. Indeed similar behavior has been 

observed under quasi-static loading conditions [Wei et al., 2012] as well as under finite element 

(FE) simulations [Sen et al., 2011] which justifies the efficacy of the analytical model. 

 

Figure 3.2. Shear stress distribution profile over the overlap length at varying times under the 

application of triangular loading pulse. 
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 Biological composite structures such as nacre, bone, etc. exhibit a generic 

microstructure (brick and mortar) at their most elementary level of architecture [Gao et al., 

2003] where inorganic reinforcements serve as the load bearing member and the organic 

matrix mediates the load between adjacent ceramic bricks via shear. Under impact loading 

conditions, the total time for the event is in the order of tens of microseconds. Experimental 

studies [Sen et al., 2011] on adhesively bonded lap-joints account shearing failure of the 

adhesive as the predominant mode of failure under high-strain rate loading. Therefore, 

optimization of overlap length to provide maximum shearing resistance (at the ends) under 

dynamic loading conditions is a decisive parameter in the evolution of shells. Once the 

inorganic and organic constituents are fixed, nature cleverly chooses a characteristic overlap 

length such that shearing stress is a minimum and is thus, below or at par with the shear 

strength of the organic matrix. In order to prove this hypotheses, three natural materials were 

chosen (nacreous layer in abalone shell, spider silk and collagen in tendon/bone) and their 

characteristic overlap length scales were predicted based on this hypothesis. Figure 3.3-3.5. 

identifies those critical overlap length scales for nacreous layer in abalone shell, spider silk and 

collagen in tendon/bone respectively. 
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Figure 3.3. Variation of shear stress at the extremities of the joint against overlap length for 

nacre (a), and its dependence on loading rate (b). 

In nacre, microscopic observations [Meyers et al., 2008] reveals the existence of 0.5μm 

(≡ 2b) thick aragonite bricks bonded together by 25 nm (≡ h) thick organic matrix and, an 

average overlap length of 1.6 μm [Barthelat et al., 2005; Espinosa et al., 2011].  The Young's 

modulus of elasticity (≡ E) of the aragonite bricks is chosen to be 105.39 GPa  and the shear 

modulus of the biopolymer matrix (≡ G) is approximately 1.4 GPa [Wei et al., 2012]. As it can be 

seen from Figure 3.3(a), shear stress at the ends is minimum for an overlap length of ~2.5 μm. 

Note that the predicted value is reasonably close to the value observed in nature and that 

predicted by critical length scales [Wei et al., 2012] (of approximately 1.69 μm) under quasi-

static loading scenario. Additionally, this critical overlap length remains constant even under 

increasing rates of loading as shown in Figure 3.3(b) and clearly justifies why this particular 

overlap length is chosen by nature once the material parameters (E, G) and geometrical 

parameters (b, h) are fixed. Also, note that shear stress distribution profile, as shown in Figure 
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3.2, was developed for an overlap length of 1.6 μm and interestingly, the maximum shear stress 

at the extremities at the end of the event matches exactly with the average shear strength of 

the polymer (≡ 37 MPa) [Jackson et al., 1988], which justifies the choice of this overlap length 

by nacreous layer corresponding to time-dependent loading event.  

Next the analytical model is applied to identify the critical overlap length between β-

sheets in spider silk, the constituents of which are in nanometer scale levels. The building 

blocks for spider silk fibrils are β-sheets. Molecular dynamic simulations [Keten and Buehler, 

2008; Keten et al., 2010] report an elastic modulus (≡ E) of approximately 22.6 GPa, and shear 

modulus (≡ G), which is representative of the crosslinking between b-sheets, of 4.6 GPa. β-sheet 

has a thickness (≡ 2b) of about 1 nm, and the distance between β-sheets (equal to the length of 

H-bond), is approximately 0.3 nm (≡ h). Experimental studies have revealed β-sheet length in 

the range from 2 to 8 nm [Penel et al., 2003]. Once again, substitution of these values predicts 

the critical overlap length of ~5 nm (shown in Figure 3.4) for dynamic loading event, which is in 

good agreement with experimental data. Additionally, the observed value is also in close 

agreement with those obtained by Wei et al. (≈ 5.7 nm) [Wei et al., 2012] in their analyses 

under quasi-static loading conditions. 

Finally, we apply the analytical model to identify the critical overlap length of collagen 

fibrils in tendon/bone. Experiments on tropocollagen molecules [Sun et al., 2002] reveal a wide 

distribution of elastic modulus ranging from 0.35-18 GPa has been attributed probably to varied 

strain rates used in the studies. An elastic moduli (≡ E) of approximately 1 GPa was chosen for 

the tropocollagen molecule corresponding to the current scenario. For wet environmental 
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conditions, over the overlap length, crosslinking shear modulus (≡ G) in collagen fibrils was 

chosen to be approximately 3.4 MPa following measurements by micromechanical bending 

[Yang et al., 2008].  

 

 

Figure 3.4. Variation of shear stress at the extremities of the joint against overlap length 

for spider-silk (a), and its dependence on loading rate (b). 

Tropocollagen molecule has a diameter (≡ 2b) of about 1.23 nm, and intra-tropocollagen 

molecular gap (≡ h) is about 0.24 nm [Landis et al., 1993]. Electron microscopy 3-D 

reconstruction technique identifies an overlap length of 27 nm [Landis et al., 1993]. 
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Substitution of the above mechanical and geometrical parameters into the analytical model 

predicts the critical overlap length of ~36 nm (shown in Figure 3.5) for dynamic loading event, 

which once again is in close agreement with experimental data and also in close agreement 

with those obtained for characteristic length scales (≈ 31 nm) [Wei et al., 2012] under quasi-

static loading conditions. 

 

 

Figure 3.5. Variation of shear stress at the extremities of the joint against overlap length for 

collagen in tendon/bone (a), and its dependence on loading rate (b). 
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Next, we utilize our analytical model to predict the joint strength of an aluminum-

Loctite adhesively bonded lap joint under impact loading conditions. Experiments, using SHPB, 

were carried out under high rates of loading for these lap joint specimens [Sen et al., 2011]. In 

order to predict the joint strength we proceeded as follows: 

 
 

u1
x

x L,tf


 


 (3.87) 

 

 v L,t vx f t

c
t x

ct

A Eb b t
predicted

Als



 
    

 


 

 (3.88) 

where, c, ct represent stress-wave velocity in the aluminum, and wave velocity through the 

transmission bar (Aluminum alloy 7075) respectively. Transmitted strain is calculated on the 

basis of velocity compatibility condition at the specimen transmission bar interface. Ab, Als 

represent the cross-sectional area of the transmission bar, and area of the adhesive lap joint 

respectively. Eb, tf denotes the Young's modulus of elasticity of the transmission bar and failure 

time of adhesively bonded lap joint. Table 3.1 lists the predicted joint strength against 

experimentally measured data and they are found to be in reasonably close agreement with 

each other. Based on this observation, the efficacy of our analytical model can be validated.  
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Table 3.1. Comparison of experimentally measured joint strength against those predicted by 

analytical model for varying overlap area and loading rates. 

Loading Rate 
(kN/μs) 

σMaximum 

(MPa) 

tf 

(μs) 

Overlap 
Length 
(mm) 

Overlap 

Area (mm
2

) 
σExperimental 

(MPa) 

σPredicted 

(MPa) 

0.64 
27.68 12 

10 158.75 
34.62 33.78 

37.77 24 47.24 40.44 

1.08 
40.51 16 

10 158.75 
50.67 49.44 

38.22 18 47.80 46.64 

0.87 

41.08 16 

10 158.75 

36.29 35.38 

38.22 12 47.51 46.32 

38.22 18 34.91 34.03 

0.65 

21.22 12 

15 238.5 

17.67 17.22 

25.67 18 21.37 20.83 

30.76 20 25.61 24.96 

1.08 

43.59 13 

15 238.5 

36.29 35.38 

57.07 18 47.51 46.32 

41.94 20 34.91 34.03 

1.52 
72.42 16 

15 238.5 
60.29 58.77 

66.04 16 54.98 53.59 

 
E = 71.7 GPa, G = 1.2 GPa, h = 0.5 mm, 2b = 15.9 mm  

Thus, once the material properties and geometrical parameters are fixed, choice of 

overlap length can be based upon the essence of minimization of shear stress at the extremities 

to promote maximum load transfer by polymer via shear and to withstand the entire dynamic 

event. Too far a deviation from the optimal length will raise shear stress at the ends 

appreciably, which will in-turn will result in premature failure of the joint (will not be able to 

withstand the whole incident pulse) and thereby, reduce joint efficiency. Thus, perspectives 

drawn from this point-of-view can be utilized as a vital design guideline in tailoring adhesively 

bonded single lap composite joints (at micro/meso/macro scales). Note that, the current 

observations are based on triangular pulse loading. However, similar set of observations are 



89 

 

encountered if a half-sinusoidal pulse loading is applied, and for brevity purposes are not 

discussed here. 

Based on fracture mechanics concepts, Gao et al. (2003) postulated the adoption of 

nanometer sized inorganic reinforcements in order to achieve a state of flaw-intolerance. 

Presence of nanometer sized inorganic crystals can be visualized from another point-of-view. 

Shear transfer efficiency of staggered architectural composites can be qualitatively interpreted 

by consideration of elastic strain-energy density via shear transfer mechanism. The effective 

strain, eff , and the effective stress, eff , can be written as 

 
 

2u1limeff
Lt t L,ta

 

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and the elastic strain energy density, weff , is thus given by 

 
1

w deff eff eff
2

       (91) 

for triangular loading pulse loading. Similar to our previous analyses, once the material 

properties and geometrical parameters are fixed, weff becomes a function of overlap length (L). 

A plot of elastic strain energy density variation against overlap length is shown in Figure 3.6(a). 

As it can be seen from Figure 3.6(a), as the length of the overlap decreases and reaches 

nanoscale dimensions, elastic strain energy density of the staggered composite increases. Note 

that, the plot in Figure 3.6(a) corresponds to dimensions and properties for nacreous layer in 
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seashell. In fact, this phenomena has been observed experimentally (for macro-scale 

specimens) where for a given loading rate, joint-strength increases with decreasing overlapping 

area [Sen et al., 2011]. It has been observed that the toughening rate (tearing modulus) in bone 

is higher than in nacre [Wang and Gupta, 2011], which can be inferred from Figure 3.6(a). and 

attributed to the presence of nanometer sized building blocks in its staggered architecture. This 

explains why nature chooses nano-sub-micrometer scale overlapping feature for biocomposites 

structural integrity.  

One of the other interesting outcomes of the current analytical model is that as the 

loading rate increases, the elastic strain energy density (weff) of the staggered composite 

increases as well. As it can be seen from Figure 3.6(b), dependence of weff is markedly 

pronounced towards increasing stress-levels than for time rise of the loading pulse. Thus, 

staggered composites showed increasing energy absorption behavior with increasing loading-

rates and thereby, exhibit dynamic self-stiffening behavior [Huang et al., 2011]. This aspect of 

self-stiffening behavior under impact loading conditions will find particular relevance in 

application of these types of composites as protective materials under impact. 
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Figure 3.6. Variation of elastic strain energy density against varying overlap length at different 

intervals of time under the application of triangular pulse loading (a), and dependence of elastic 

strain energy density on loading rate, under the application of triangular pulse loading, shown 

via (1) varying max stress (keeping time at maximum stress fixed)-shown in red and (2) varying 

time at  max stress (keeping maximum stress fixed)-shown in black;  dependence of weff is 

markedly pronounced towards increasing stress-levels than for time under the application of 

triangular pulse loading. 

Note that, based on the current model, we can also explain the reason as to why the 

dynamic compressive strength of abalone nacre is nearly 50% higher than its static counterpart, 

as observed from SHPB experiments by Menig et al. (2000) and Huang et al. (2011). As was 

postulated by Gao and coworkers [Gao et al., 2003; Gao, 2006], under quasi-static conditions, 

nature uses, particularly, aspect ratio of the mineral crystals to promote strain amplification 

mechanism and thereby obtain an optimal balance for deformation in organic and inorganic 
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components to obtain maximum potential. de Gennes and Okumura (2000) and Okumura and 

de Gennes (2003) presented an analytical solution for a layered system, based on laminar 

architecture of the seashells, and accounted the existence of weaker stress concentration 

ahead of the crack tip in these materials in comparison to traditional isotropic elastic materials, 

under quasi-static loading conditions. In our current investigation, we have attempted to 

establish a link between superior strength of nacre, under impact loading conditions for a given 

loading-rate, and its microstructural dependence, via the existence of an optimum overlap 

length during shear-transfer. The loading rates applied for dynamic compression testing [Menig 

et al. (2000)] of abalone nacre varied from 15-25 GPas
-1

. Corresponding to loading rates of 15 

GPas
-1

, 20 GPas
-1

 and, 25 GPas
-1

, the current analytical model predicts an effective strain of 

0.0070, 0.0090, and 0.0117 respectively, which are in reasonable agreement with the 

experimentally observed values of 0.008, 0.0095, and 0.0145 respectively, obtained by Menig 

et al. (2000). Additionally, the predicted maximum compressive strength is approximately 450 

MPa which is again in reasonable agreement with experimentally obtained strengths of nearly 

500 MPa [Menig et al., 2000; Huang et al., 2011]. Predicted shear strains corresponding to 

loading rates of 15 GPas
-1

, 20 GPas
-1

 and, 25 GPas
-1

 were 0.178, 0.237, and 0.297 respectively 

which is less than experimentally obtained maximum shear strains of approximately 0.45 

[Menig et al., 2000]. This accounts for the reason as to why staggered architecture composites 

exhibit elevated compressive strength under time-dependent loading conditions. Additionally, 

under the current model, the elastic strain energy density (weff) will thereby turn out to be 
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higher for dynamic loading than for quasi-static loading conditions, which can explain the 

reason for superior damage tolerance of staggered architecture composites. The outcome of 

the current research will thus provide beneficial guidelines in custom-design manufacture of 

hybrid bio-inspired protective composite materials. 

 
(a) 

 
(b) 

Figure 3.7. Plot showing the dependence of maximum shear stress (at the ends of overlap) as a 

function of aspect ratio and volume fraction of the ceramic bricks for: aspect ratio varying  



94 

 

Figure 3.7. (cont'd) 

between 4 to 200 (a) and, 4 to 800 (b) under the application of triangular pulse loading, 

corresponding to a given loading-rate. 

Ji and Gao (2004, 2010) and Ji (2008) had analyzed the staggered arrangement of the 

biological structure previously under quasi-static loading conditions. They postulated that 

under quasi-static conditions, two parameters play a significant role: (a) presence of 

nanometer-sized crystals to obtain a state of maximum flaw tolerance and, (b) presence of an 

optimum aspect ratio of the mineral crystals to promote strain amplification mechanism and 

thereby obtain an optimal balance for deformation in organic and inorganic components to 

obtain maximum potential. Apart from visualizing the design in staggered architecture 

materials from optimal overlap length point of view, the current model can also be visualized 

from aspect ratio and volume fraction of the ceramic point of view, for a given thickness of the 

ceramic brick.  

Under time-dependent loading conditions, optimum aspect ratios exist for varying 

volume fractions of ceramic in staggered architecture materials, as shown in Figure 3.7(a,b). 

For lower volume fractions of the ceramic, a wide range of optimal aspect ratio exists which 

would correspond to maximum load transfer capability of the joint via attainment of a state of 

minimum shear. For example, bone and dentin comprise of plate-like crystals having aspect 

ratio varying from 25-50 and a volume fraction of 0.40-0.55 [Ji and Gao (2004)]. For very high 

volume fraction of the ceramic, the range of aspect ratio available to obtain a state of minimum 
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shear is narrow, as shown in Figure 3.7(a). Similarly, nacre comprises of ceramic bricks having 

an aspect ratio varying from 10-16 and a volume fraction of nearly 0.95 [Ji and Gao (2004)]. 

 
(a) 

 
(b) 

Figure 3.8. Plot showing the dependence of the ratio of composite modulus to Young's modulus 

of the ceramic bricks for varying aspect ratio and volume fraction of the ceramic bricks: 

correlation between dynamic (a) and quasi-static (b) regime, corresponding to a given loading 
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Figure 3.8. (cont'd) 

rate. 

In order to obtain a more clearer understanding of the interdependence of aspect ratio, 

volume fraction of the ceramic, and constituent material properties under impact loading 

conditions, a plot of ratio of composite modulus to the ceramic Young's modulus as a function 

of aspect ratio and volume fraction is shown in Figure 3.8(a). Figure 3.8(b) shows the 

dependence obtained under quasi-static conditions using the Tension-Shear-Chain (TSC) model 

as was postulated by Ji and Gao (2004). 

It should be noted that extensive literature exists quantifying role of microstructure and 

material parameters on the behavior of staggered architecture, however under quasi-static 

loading conditions. Note that, in our current investigations, what we are trying to establish is 

that staggered architecture in biological composites is designed in such a unique manner that 

the structure would be able to provide maximum resistance both under quasi-static loading 

conditions, and when subjected to severe dynamic loads when attacked by predators (as 

resistance to shell crushing is an integral part of shell evolution process). 

3.3.1. Limitations of the analytical model and future directions  

Formulation of the model is laid on the foundation of linear elastic material behavior 

only, i.e. the stresses are linearly dependent on strain only (via material properties E,G which 

are considered constant); however, the organic matrix being a visco-elastic material, under 

dynamic loading conditions, strain-rate ( s


 ) of the organic matrix is expected to play a key role 
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in load transfer via shear. Incorporation of strain-rate ( s


 ) dependent terms and large-scale 

deformation aspects would help in understanding mechanical behavior of these composites 

under very high-strain rate loading; for example under blast loading conditions. Additionally, 

incorporation of plastic behavior of the intermediate matrix is also expected to contribute to 

the cause. This could possibly account for the difference obtained between experimentally 

observed and theoretically predicted overlap length values in nacre as shown previously. Work 

is in progress in this direction. To further and better understand this aspect, the model can be 

extended to include strain-rate dependence and large-scale deformation of the intermediate 

polymer, effect of alignment (regular, stairwise, random), number of hierarchical levels, etc. 

These can be identified as future directions of the current work. Additionally, the current model 

is restricted to the scenario where adherends are made of same materials. Work is in progress 

to understand the behavior of staggered architecture composites where adherends are made 

of dissimilar materials.  

Under static loading conditions, characteristic lengths predicted were essentially based 

on (a) stress  transfer point of view, 
2Ebh

L
G

  , as was postulated by Chen et al. (2009) and, 

(b) an optimization on both strength and toughness fronts, 
Ebh

L 2.318
G

  , as postulated by 

Wei et al. (2012). Under dynamic rates of loading, the shear stress developed at the interface is 

also a function of the overlap length (L). If a joint has to withstand the entire dynamic event,  

critical overlap length exists based on the essence of minimization of shear stress at the 
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extremities to promote maximum load transfer capability by polymer via shear (once the 

material properties and geometrical parameters are fixed). Thereby, in order to obtain 

optimum joint efficiency, an optimal overlap length is evaluated as follows:  
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 (3.92) 

It is to be noted that there does not exist a direct relationship between dynamic overlap length 

and static overlap length. This can be better addressed with reference to the figure shown 

below. 
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Figure 3.9. Variation of shear stress at the interface as a function of overlap length in a material 

(in the current case, nacreous layer in seashells) under (a) static, and (b) dynamic rates of 

loading. 

Under static loading conditions, the shear stress (at the extremities of the interface) 

[Wei et al. (2012)] as given by the equation below, decreases till a critical value is attained and 

remains constant thereafter. 

 
b L 2G

L cosh ;static x 0, L 2 Ebh2 2sinh
2

   
           
   

 

  (3.93) 

On the contrary, it can be clearly seen (Figure 3.9) that critical overlap length exists under 

dynamic rates of loading, and thus addresses the vitality of optimal overlap length under 

dynamic rates of loading. 

Under quasi-static loading conditions, choice of critical overlap length in staggered 

biocomposites attempts to optimize mechanical performance on both strength and toughness 

fronts. However under impact loading conditions, since shear transfer mechanism is the most 
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versatile parameter, choice of critical overlap length is mainly directed towards minimization of 

peak shear stresses at the extremities of the joint. However, nature simultaneously addresses 

the nano-sub-micro overlap length scales in an attempt to improve on toughness perspective as 

well. This feature can be adapted as an important guideline in the design of adhesively bonded 

lap joints, gradient microstructural composites, etc. under dynamic rates of loading. The 

outcome of the current research will thus provide beneficial guidelines in custom-design 

manufacture of hybrid bio-inspired protective composite materials. 

3.4. Conclusions 

In our current investigation, we have addressed the following aspects with regards to 

materials exhibiting staggered microstructure as its most elementary level of architecture 

under impact loading conditions, by considering a triangular loading pulse: (1) Identifying the 

structure-property correlationship for these materials, (2) existence of a critical overlap length 

which optimizes load transfer mechanism between the adjacent reinforcements, (3) ratify the 

choice of nanometer building blocks in biological composites under time-dependent loading, (4) 

generalizing the application of the concept to the case of macro-scale adhesively bonded lap 

joints, (5) explaining the reason behind superior damage tolerance and elevated dynamic 

compressive strength of nacre, and (6) theoretically justify the applicability of staggered 

microstructural composites under impact loading conditions. The outcome of the current 

research will provide beneficial guidelines in custom-design manufacture of hybrid bio-inspired 

protective composite materials. 
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CHAPTER 4. ENHANCING RESISTANCE AND LOAD TRANSFER VIA CHOICE OF OPTIMAL 

OVERLAP LENGTH 
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4.1. Introduction 

Over the past decade, increasing attention has been focused towards producing 

composites that are both light-weight and durable via extracting design principles from 

structural biological composites for example, nacre. The inner shining layer in seashells is 

referred to as the nacreous layer and exhibits a staggered architecture in the form of an 

overlapping arrangement of mineral tablets in a soft polymeric matrix [Jackson et al., 1988; 

Sarikaya et al., 1990]. What confers nacre an ideal model for biomimetic inspiration are two 

promising aspects: light weight and superior toughness [Barthelat and Espinosa, 2007; Jackson 

et al., 1988; Kessler et al., 1996; Kamat et al., 2000; Sarikaya et al., 1990]. Light weight is 

accomplished via embedding a polymeric matrix in a network of ceramic/mineral bricks, 

whereas toughness has been attributed to existence of a multitude of toughening mechanisms, 

namely tablet pull-out [Jackson et al., 1988], crack deflection through the biopolymer [Menig 

et al., 2000], platelet interlocks [Katti et al., 2005], presence of nanoasperities [Evans et al., 

2000; Wang et al., 2001], diffusive tablet sliding [Barthelat et al., 2007] arising from tablet 

waviness, aragonite bridge reinforcements at interface [Song et al., 2003], re-locking of tablets 

[Meyers et al., 2008] due to persistent contact of broken aragonite bridges, and synchronized 

deformation twinning of the nano-scale particles in ceramic bricks [Huang et al., 2011]. All the 

aforementioned factors contribute to both interfacial strengthening and fracture resistance in 

varying degrees of resistance. 

Till date, a number of literature studies have attempted to address the behavior of the 

staggered architecture materials on the basis of interdependence of material properties and 
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geometrical parameters. Table 4.1 provides the references and the approach adopted by 

various researchers with reference to modeling of biological composites, in a brief manner.  

Table 4.1. Recent advances on modeling staggered architecture biological composites by 

various researchers. 

Authors Description 

Jaegar and Fratzl, 
2000; Kotha et 
al., 2001 

Predicted modulus of staggered architecture composites along the 
longitudinal direction of the inclusions as a function of aspect ratio and 
concentration of the inclusions. 

de Gennes and 
Okumura, 2000; 
Okumura and de 
Geness, 2003 

Developed an analytical model based on laminar architecture of seashells 
to account for the existence of weaker stress concentration ahead of the 
crack tip in these materials in comparison to traditional isotropic elastic 
materials along with an examination of  the effect of differential stiffness 
of inclusions and interfaces. 

Gao et al., 2003 
Developed the Tension-shear-chain (TSC) model to describe the 
mechanics of staggered architecture composites and study the 
mechanical properties of these type of biological composites. 

Shuchun and 
Yueguang, 2007 

Studied the interdependence of the elastic modulus of the composite 
and number of hierarchical levels in bone-like materials via comparison 
of their results against TSC model and FE (finite element) simulations. 

Zhang et al., 2010 
Investigated the effect of platelet distribution (regular, stairwise, 
random) on stiffness, strength, failure strain and energy absorption 
capability in materials exhibiting staggered architecture. 

Zhang et al., 2011 
Used a quasi-self-similar hierarchical model to comprehend the existence 
of an optimal number of hierarchical levels in biological composites.  

Liu et al., 2011 
Provided analytical expressions for displacement and stress fields in 
staggered nanocomposite structures under static loading conditions 
under uniaxial tension. 

Barthelat and 
Rabiei, 2011 

Developed a micromechanical model taking into consideration the effect 
of toughening associated with the process zone. 

The nacreous layer can be visualized as translation of unit cell structure in 2-dimensions 

comprising of overlapping mineral tablets having distinct overlap and core regions. The overlap 

region is responsible for inter-mineral load transfer via shear deformation of the polymer. One 

might consider what could possibly be the reason associated with the existence of specific 
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overlap length in the nacreous layer in seashells. Analytical models and numerical simulations 

have been developed and certain criterion been proposed to address this aspect as listed in 

Table 4.2 below. 

Table 4.2. Recent advances on investigating existence of characteristic overlap length in 

staggered architecture biological composites by various researchers. 

Authors Description 

Chen et al., 2009 
Under static rates of loading, the existence of characteristic length was 
attributed to attainment of efficient stress transfer in staggered 
biocomposites. 

Wei et al., 2013 

Under static rates of loading, the existence of unique overlap length in 
biological composites was attributed to an attempt to optimize both 
strength and toughness frontiers in staggered architecture biological 
composites. Note that, the toughness in their investigations was 
defined in terms of elastic strain energy density. 

Dutta et al., 2013 
From the perspective of impact rates of loading, existence of optimal 
overlap length was attributed to an attempt to obtain maximum shear 
transfer efficiency. 

What contributes to the superior load-transfer and energy dissipative capabilities of the 

nacreous layer is the meandering nature of the crack path throughout its architecture. Higher is 

the level of tortuousness associated with the crack path, higher will be the energy required to 

drive the crack throughout the individual microscopic unit cells and thereby, superior will be 

the toughness of the nacreous layer on a macroscopic level. Note that, the current scenario 

under consideration is representative of an interface fracture problem. On a conservative 

approach, it is opportune to consider that an interface is as much fracture resistant as the least 

tough participating component in the system. As per Griffith criterion, cracks will initiate and 

delamination or cohesive failure will occur in the unit-cell once the crack driving force (rate of 

energy input) ahead of the crack tip exceeds the fracture resistance (rate of energy dissipated) 
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of either the biopolymer itself, or that of the interface. The objective thus is to find out how 

structural overlap length is responsible for minimizing this event to the maximum extent 

possible. Under given set of loading conditions, if overlap length is adopted such that crack tip 

driving forces required for crack initiation can be kept to a minimum, higher will be load that 

further needs to be applied to elevate the energy required to attain the fracture resistance of 

the barrier(s) to promote delamination (shown later in Figure 4.5) in the unit-cell. This would 

in-turn raise the toughness associated with the individual unit-cells which would contribute to 

global toughness of the composite. The main outcome of the developed analytical model in the 

current study is to obtain a simplified expression for crack driving force in terms of local finite 

stress concentrations in the biopolymer layer of nacre. This would in-turn provide an insight 

into the severity of load carried and transferred by the joint. Finally, the article concludes with 

validation of the hypothesis against previously published experimental data followed by 

proposing a design guideline to guide staggered architecture composite development to obtain 

optimized performance in terms of stiffness, load-transfer and toughness. 

4.2. Analytical model 

The remarkable macroscopic toughness of nacre is as a result of all the microstructural 

mechanisms taking place ahead of the crack tip (otherwise referred to as intrinsic toughening), 

behind the crack tip (otherwise referred to as extrinsic toughening), around the crack tip and at 

the crack tip [Launey and Ritchie, 2009] as shown in Figure 4.1. Extrinsic toughening is 

associated with mechanisms such as crack-bridging and in-situ phase transformations. On the 

contrary, intrinsic toughening is associated with the role of type, size, distribution of 
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reinforcement and it's interfacial properties with the binding matrix. Crack growth ensues from 

extrinsic toughening whereas crack initiation is primarily dependent upon intrinsic toughening. 

So, the question is how does the nacreous layer allay crack initiation in its micro-architecture? 

In the current study, we will try to better understand the design principle in the nacreous layer 

from a fracture mechanics perspective from the point-of-view of intrinsic toughening. 

 

Figure 4.1. Toughening mechanisms associated with nacre and region under consideration. 

In order to address this, we develop our analytical model by taking into consideration a 

unit cell with plane strain infinitesimal deformations, as shown in Figure 4.2. Following are the 

assumptions associated with the analytical model: 

(1). One-dimensional analysis. 

(2). Participating members exhibit linear elastic behavior (ceramic bricks, bio-polymer). 

(3). Normal stress distribution in the ceramic bricks (no bending). 
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(4). Shear stress distribution in the bio-polymer.  

(5). Since the bio-polymer is very thin in comparison to the brick thickness, the stress 

distribution is considered constant throughout the joint thickness [Luo and Tong, 2004]. 

(6). There is no rotation of the transverse normal about the y-axis, which is directed into the 

plane of the paper.  

The unit cell has been discretized into four elemental blocks (labeled 1 to 4). The total 

width of the mineral tablets is 2b and thickness of the biopolymer is given by  . Local 

rectangular Cartesian coordinate system for elemental blocks 1-4 have been defined as shown 

in Figure 4.2. It has also been assumed that there is no rotation of the transverse normal about 

the y-axis. 
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Figure 4.2. (a) Schematic of staggered architecture of calcium carbonate bricks (shown in green) 

in biopolymer matrix (shown in yellow); (b) expanded view of the 2-dimensional unit cell 

structure (with plane strain infinitesimal deformation) showing the pre-cracked length (L1) and 

instantaneous overlap length (L2) and coordinate systems; (c) expanded view of the 2-

dimensional unit cell structure (with plane strain infinitesimal deformation) highlighting the 

elemental blocks and the original overlap length (LO); (d) splitting of parent crack tip for crack 

driving force calculations; (e) schematic identifying shear and normal force resultants NC and 

QC respectively. 
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With reference to Figure 4.2, x, x1, and x2 represents horizontal axes with different 

origins (along the longitudinal direction of the bricks) and the z direction is associated in the 

thickness direction. With reference to Figure 4.2(b), as a starting point, it has been considered 

that there is a pre-existing void (of length, a0), an incremental crack (of length, da) in the cell. 

Subsequent analyses are based on the value of that instantaneous crack length. The 

displacements are denoted by u and are associated with a subscript and superscript. The 

subscript corresponds to direction of displacement (either x, x1, x2, or z) whereas the 

superscript corresponds to elemental block number (labeled 1 through 4). We assume that in 

all the elemental blocks, the variation of displacements is a function of either x, x1, or x2. The 

elemental strains are thus defined as follows: 

Elemental block #1: 

  
1du1 x

xx
dx1

 (4.1) 

  1 0zz  (4.2) 

  
1du1 z

xz
dx1

 (4.3) 

Elemental block #2: 

  
2du2 x

xx
dx2

 (4.4) 

  2 0zz  (4.5) 
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  
2du2 z

xz
dx2

 (4.6) 

Elemental block #3: 

  
3du3 x

xx
dx

 (4.7) 

  3 0zz  (4.8) 

  
3du3 z

xz
dx

 (4.9) 

Elemental block #4: 

  
4du4 x

xx
dx

 (4.10) 

  4 0zz  (4.11) 

  
4du4 z

xz
dx

 (4.12) 

The stresses in the elemental blocks (i = 1..4) have been computed as follows: 

     i c i c iC Cxx xx zz11 22  (4.13) 

     i c i c iC Czz xx zz22 33  (4.14) 

   i c iCxz xz44  (4.15) 

The strains and the stresses in the biopolymer are obtained as follows: 
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 
   
 
 

3 4du du1p x x
xx

2 dx dx
 (4.16) 

    


1p 4 3u uxz x x  (4.17) 

    


1p 3 4u uzz z z  (4.18) 

     
p p p p pC Czz xx zz22 33  (4.19) 

   
p p pCxz xz44  (4.20) 

where, p
zz  and p

xz  denotes the normal (peel) stress and shear stress in the polymer 

respectively.  

4.2.1. Solution scheme for elemental displacements 

Force equilibrium on the elemental blocks leads to the development of following 

governing differential equations of the system, given by 

 
2 1d ux 0

2dx1

 (4.21) 

 
2 1d uz 0

2dx1

 (4.22) 

 
2 2d ux 0

2dx2

 (4.23) 

 
2 2d uz 0

2dx2

 (4.24) 
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    
2 3d u 3 4x M u u 01 x x2dx

 (4.25) 

    
2 4d u 3 4x M u u 01 x x2dx

 (4.26) 

  
 
     
 
 

2 3 3 4d u du du 3 4z x xM M u u 02 3 z z2 dx dxdx
 (4.27) 

  
 
     
 
 

2 4 3 4d u du du 3 4z x xM M u u 02 3 z z2 dx dxdx
 (4.28) 

where 


pC44M1 cb C11

, 

pC22M2 c2bC44

, and 


pC33M3 cb C44

. The boundary conditions of the 

system are given by 

 


1u 0z
x 01

 (4.29) 

 


2u 0x
x 02

 (4.30) 

 



1dux 0
dx1

x 01

 (4.31) 

 



1duz 0
dx1

x 01

 (4.32) 

 



4duz 0
dx

x L2

 (4.33) 
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





3dux
cdx C11x L2

 (4.34) 

 






2dux
cdx2 C11x 02

 (4.35) 

 



4dux 0
dx

x L2

 (4.36) 

 



2duz 0
dx2

x 02

 (4.37) 

 



3duz 0
dx

x L2

 (4.38) 

where, L a1 0  and  L L a2 o 0 . The continuity equations for forces across the element 

boundaries are thus given by 

 

 

1 3du dux x
dx dx1

x L x 01 1

 (4.39) 

 

 

1 3du duz z
dx dx1

x L x 01 1

 (4.40) 

 

 

2 4du dux x
dx dx1

x L x 01 1

 (4.41) 
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 

 

2 4du duz z
dx dx1

x L x 01 1

 (4.42) 

The continuity equations for displacements across the element boundaries are defined 

as follows: 

 
 

1 3u ux x
x L x 01 1

 (4.43) 

 
 

1 3u uz z
x L x 01 1

 (4.44) 

 
 

2 4u ux x
x L x 02 1

 (4.45) 

 
 

2 4u uz z
x L x 02 1

 (4.46) 

We thus have coupled second-order linear differential equations subjected to 

homogenous boundary conditions. The governing equations corresponding to each elemental 

blocks are solved first which results in 16 constants of integration. The unknown constants of 

integration are determined from the boundary conditions and continuity conditions of the 

system to finally obtain the generalized displacements associated with each elemental block.  

4.2.2. Computation of crack driving force (CDF) 

As per linear elastic fracture mechanics, energy released from the propagation of a crack 

is equivalent to work needed to close that small crack propagation. The energy release rate (or 

rather, rate of energy input) is representative of the severity of load acting on the infinitesimal 

crack in the biopolymer layer. It is also representative of energy-flux to crack tip which acts a 
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driving force for quasi-static advancement of crack and subsequently fracture. Thus in our 

present analyses energy release rate ahead of the crack tip will be henceforth perceived as 

crack driving force. 

As mentioned previously, considering plane strain conditions, we assume a virtual crack 

tip displacement by an amount da . The parent crack tip at point C splits into points A and B, 

and translates to point C'. Crack driving force ahead of a crack-tip due to an incremental 

increase in crack length is equivalent to work (or rather, energy) required to close that 

infinitesimal increment and is thus computed as follows [Yang et al., 2008]: 

         
  

W 1 B A B AG N u u Q u uc x x c z z
da 2da

 (4.47) 

where, W represents the work required to close the virtual crack. As shown in Figure 

4.2(d,e), shear and normal force resultants Nc and Qc respectively can be computed as follows: 

   


da
pN dxc xz

x 0
 (4.48) 

  


da
pQ dxc zz

x 0
 (4.49) 


p
xz and p

zz  are obtained from the solution of the problem prior to virtual crack-tip 

extension. Aux , Auz , Bux  and Buz are found out by solving the problem by substitution of overlap 

length  L L a2 o 0  by   L L a da2 o 0 and by using the following relations: 

 
 

A 2u ux x
x a da2 0

 (4.50) 
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 
 

A 2u uz z
x a da2 0

 (4.51) 

 
 

B 1u ux x
x a da1 0

 (4.52) 

 
 

B 1u uz z
x a da1 0

 (4.53) 

Practically speaking the unit-cell structure in the nacreous layer of seashells is 

representative of an adhesive joint and in order to better understand the crack initiation and 

growth process, it is imperative to extract the crack driving force contributions associated with 

both mode-I and mode-II, and thus we introduce the mode-mixity parameter. In order to 

investigate the effect of components of crack driving force that contributes to crack initiation, 

Equation (4.47) can alternatively be written as  

    
  

1 B AG N u uII c x x
2da

 (4.54) 

    
  

1 B AG Q u uI c z z
2da

 (4.55) 

 
   
 

G1 IIMMP tan
GI

 (4.56) 

where, GII , GI  and MMP denotes mode I crack driving force, mode II crack driving force 

and mode mixity parameter respectively. For pure mode I failure, MMP=0 and for pure mode II 

failure, MMP = 


2
. 

4.2.3. Limitations associated with the analytical model 



122 

 

In our current study, the microstructural resistance to crack initiation has been 

associated from a local perspective in terms of crack driving force. Lower the value of crack 

driving force, higher is the microstructural resistance associated with the unit-cells to crack 

initiation. At this stage, we would like to point out that applied stress levels responsible for 

crack initiation could possibly be higher than the strength of the nacreous layer. Since the 

foundation of the model is based upon linear elastic deformation conditions, specific levels of 

external energy needed to be applied to generate appropriate level of rate of energy input 

(CDF) to surpass corresponding fracture resistance might possibly be over predicted. As we 

know, inelastic energy dissipation associated in the process zone [Barthelat and Espinosa, 

2007], viscoplastic deformation and microvoid coalescence mechanisms do contribute to a 

significant extent on the rate of energy dissipation in the forward zone associated with the 

crack-tip (as was shown in Figure 4.1). 

However, note that under quasi-static rates of loading, the precursor to inelastic 

deformations is tablet sliding where the tablets start to slide upon one another once the shear 

strength of the material has been reached and is subsequently accompanied by interface 

strengthening. Additionally, under high strain-rate loading, the bio-polymer in the nacreous 

layer is expected to behave in a hard and brittle manner [Zachary and Burger, 1980] which 

would lead to conditions favoring brittle fracture and thereby, linear elastic conditions can be 

assumed without significant loss of fidelity.  

The question that can be posed at this stage is under either of those scenarios what is 

that optimal overlap length which would delay this event (crack initiation following tablet 
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sliding) and enhance interface strengthening to the maximum extent possible? It can be 

envisaged that a crack will advance only if the crack driving force (rate of energy input) 

associated with the local crack tip exceeds the fracture toughness (rate of energy dissipated) of 

(a) the bio-polymer, and/or (b) the interface. Thus, in our analyses we have focused our 

attention to the abovementioned perspective only. 

4.3. Results and Discussion 

It has already been reported in the past by Jackson et al., 1988 that approximately a 

third of the toughness of wet nacre samples has been associated with tablet pull-out. As per 

the TSC model postulated by Gao et al., 2003 the inter-platelet load transfer occurs via shearing 

deformation of the polymer in its existing overlap length. The question is whether this length 

scale is just an arbitrary random number chosen by Nature or, is it associated with optimizing 

the structure-property correlationship? If the latter one, what are those mechano-biological 

principles that are operating underneath? 

In order to test the validity of the analytical model, the variation of shear stress at 

mineral biopolymer interface is plotted for varying overlap lengths and pre-crack in the unit cell 

as shown in Figure 4.3. The properties of the mineral component in the nacreous layer 

[Barthelat et al., 2006] are: E1=144 GPa, E2=76 GPa, E3=82 GPa, G12=47.2 GPa, G13=25.6 GPa, 

G23=41.3 GPa, ν12=0.44, ν13=-0.06, ν23=0.18, 2b=0.5 μm. The properties of the biopolymer 

layer in nacre [Xu et al., 2011] are: Ep=10.57 GPa, Ga=1.4 GPa, νa=0.45, η=20 nm. The observed 

overlap length in the nacreous layer is reported to be 1.67μm [Espinosa et al., 2011]. 
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Figure 4.3. Variation of interfacial shear stress (at the extremities of the overlap) as a function 

of varying overlap length and pre-crack. The figure in the inset shows the expanded view for 

lower shear levels in the unit cell. 

When an external load is applied, interfacial shear stress attains a maximum value at the 

extremities of its overlap. As it can be seen from Figure 4.3, the maximum interfacial shear 

stress (at the ends of the joint) attains a minimum value for overlap length exceeding 2-2.5 μm 

and reaches the shear strength of the biopolymer ≡ 37 MPa [Jackson et al., 1988]. This 

observation is in direct agreement with those obtained by Dutta et al., 2013 in their estimation 

of characteristic overlap length in nacre under dynamic rates of loading respectively. The region 

to the right-hand side of 2-2.5 μm might be considered as the preferred zone as it contributes 
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to a minimization of shear stress at the interface and optimizes intertablet load transfer via 

shear deformation of the intermediate biopolymer. 

Resistance to crack advancement is an attribute associated with extrinsic toughening 

that takes place in the wake of the crack, and thus is responsible for R - curve. On the contrary, 

microstructural damage mechanisms in the cohesive zone and in bounded material are 

responsible for crack initiation which can be attributed to intrinsic toughening. Intrinsic 

toughening is dependent upon material properties and independent of length of crack or 

geometry of test specimen (except plane stress/plane strain). This brings into forefront that 

crack driving force to initiate fracture is a result of dissipation mechanism associated with 

intrinsic toughening. The current scenario under consideration is representative of an interface 

fracture problem. Note that an interface is as much fracture resistant as the least tough 

participating component in the system. As per Griffith criterion, cracks will initiate and 

delamination or cohesive failure will occur in the unit-cells once the crack driving force (rate of 

energy input) ahead of the crack tip exceeds the fracture resistance (rate of energy dissipated) 

of either the biopolymer itself, or that of the interface. The objective at present is to find out 

how structural overlap length is responsible for minimizing delamination in the unit-cells to the 

maximum extent possible. 

Fracture toughness of the organic matrix varies between 20-160 mJ/m
2

 [Song et al., 

2003] whereas intrinsic fracture toughness of the organic interface has an upper limit varying 

between 400-1000 mJ/m
2

 [Rabiei et al., 2012]. This value is comparable to the mineral 

toughness in the nacreous layer. This wide variation can be associated with viscoelastic nature 
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of the biopolymer, presence of nanoasperities, mineral bridges or a combination of all the 

modes. Once the crack driving force ahead of the crack-tip reaches fracture resistance of the 

biopolymer and/or the interface, the crack will initiate and start to grow in the unit-cell. 

Resistance to crack advancement is an attribute associated with extrinsic toughening 

that takes place in the wake of the crack, and thus is responsible for R - curve. On the contrary, 

microstructural damage mechanisms in the cohesive zone and in bounded material are 

responsible for crack initiation which can be attributed to intrinsic toughening. Intrinsic 

toughening is dependent upon material properties and independent of the length of the crack 

or geometry of the test specimen (except plane stress/plane strain). This brings into forefront 

that crack driving force to initiate fracture is a result of dissipation mechanism associated with 

intrinsic toughening. Under a given set of loading conditions, if overlap length is adopted such 

that crack tip driving forces required for crack initiation can be kept to a minimum, higher will 

be load that further needs to be applied to elevate the energy required attain the fracture 

resistance of the barrier(s) to promote delamination in the unit-cell. This would in-turn raise the 

toughness associated with the individual unit-cells which would contribute to global toughness 

of the composite. Figure 4.4 shows the variation of crack driving force against overlap length 

for varying pre-crack  lengths in the nacreous layer. 
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Figure 4.4. Plot of crack driving force as a function of overlap length in nacre for varying pre-

crack lengths. 

As it can be seen from Figure 4.4, under the application of a given stress, crack driving 

force is limited to a minimum value for an overlap length of approximately 1.6-2.5μm. In fact, 

the crack driving force value corresponding to this overlap length scale range is less than or 

comparable to the fracture resistance of the biopolymer. Thus it can now be clearly understood 

as to why nacre adopts 1.69μm as its characteristic overlap length, not only to maximize its 

load-transfer capability but at the same time provide resistance to crack initiation to the 

maximum extent possible via minimization of crack driving force. 
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Figure 4.5. Variation of crack driving force against applied stress for overlap length on either 

end of the characteristic value in the nacreous layer. 

In order to better understand the influence of overlap length on the response 

associated with the unit cells, Figure 4.5 highlights the effect of stress levels needed to 

generate appreciable crack driving force for crack initiation corresponding to values of overlap 

length on either side of the characteristic length in the nacreous layer. Clearly it can be seen 

that if overlap lengths are smaller than characteristic length, significantly lower stress levels are 

sufficient to reach crack driving force values to surpass biopolymer fracture resistance 

(horizontal dotted blue line). Similarly, if the overlap lengths are larger than characteristic 

length, it does not contribute to any additional property enhancement; it simply increases the 

weight of the entire bonded unit. That explains the reason behind choice of characteristic 
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length scales by Nature in the nacreous layer. Additionally, at this stage we would like to 

highlight the fact the stress levels that are needed to be actually applied would be less than 

those reported above. This can be explained as follows. Energy input to initiate and drive the 

crack is obtained from the energy that is applied to the system externally. Since linear elastic 

deformation was a key assumption en route to model development, corresponding stress 

values are thereby very large. In reality, the same energy is input to the system via elastic-

plastic deformation (shown in the inset) and thereby stress levels required for crack initiation 

would be less than those predicted above. 

 

Figure 4.6. Mode mixity parameter as a function of overlap length for varying pre-crack lengths. 
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As mentioned previously, the unit-cell structure in the nacreous layer of seashells is 

representative of an adhesive joint and in order to better understand the crack initiation and 

growth process, it is imperative to extract the crack driving force contributions associated with 

both mode-I and mode-II, and thus we introduce the mode-mixity parameter. Clearly it can be 

seen with reference to Figure 4.6 that the relative magnitude associated with mode-I and 

mode-II are dependent upon the overlap length in a premeditated manner. For pure mode-I 

failure, MMP=0° and for pure mode-II failure, MMP=90°.  

With reference to Figure 4.6, substantial contributions from mode-II component are 

likely to ensue crack initiation and subsequent growth via interfacial failure within the unit cell. 

The inset in Figure 4.6 shows the strength of the nacreous layer under different loading 

configurations [Menig et al., 2000]. Of all the loading configurations, it can be seen that the 

nacreous layer is extremely weak under peeling. In order to provide maximum resistance 

against peeling, choice of overlap length is kept at a characteristic value (≡ 1.6-2.5μm) in order 

to promote maximum resistance against peeling and thereby ensuing initiation and propagation 

via shear within the unit cells. 

Existing literature in the experimental work on the nacreous layer associates toughness 

with significant contribution of inelastic deformations [Barthelat and Espinosa, 2007] and 

occurrence of 'process zone' [Barthelat and Rabiei, 2011]. Nonetheless, these events are 

associated with sliding of ceramic bricks in a large region around the vicinity of cracks. The crack 

trajectory is extremely meandering. Upon the application of external loading, numerous micro-

cracks/voids are generated in all the unit-cells associated with the forward region in the 
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damage zone as shown in Figure 4.1. With progressive loading, these micro-voids coalesce 

together thereby rendering the crack path through the damage zone extremely tortuous. The 

question posed at this juncture how do these dispersed cracks in the unit-cells join together? 

 

Figure 4.7. Variation of crack driving force upon overlap length for varying pre-crack length 

associated with the primary crack. The figure in the inset identifies the angle (θ) at which crack 

driving force of the kinked crack attains a maximum value for varying pre-crack length (0.09-

1.29μm). 

The current problem at hand represents mixed-mode crack propagation. Taking into 

consideration Griffith's energy theory as the valid criteria which explains crack growth, kinking 

of the crack will take place and the crack will grow in the direction (θ) along which the elastic 
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energy release per unit crack extension attains a maximum value. As it can be seen from Figure 

4.7 and Figure 4.8, the initiation and propagation of the crack in the unit-cells is primarily shear 

dominated throughout a majority of the overlap length. As the overlap length narrows down 

appreciably, the crack kinks at an angle through the biopolymer at an angle of approximately 

75°. This probably accounts for the reason as to why the crack does not run through completely 

in a given row. 

 

Figure 4.8. Variation of crack driving force upon overlap length for varying pre-crack length 

associated with the primary crack. The figure in the inset identifies the angle (θ) at which crack 

driving force of the kinked crack attains a maximum value for a pre-crack length of 1.49 μm. 
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By the time crack driving force attains a value which is comparable to the fracture 

resistance associated with the mineral or tablet, it has almost reached the very edge of the 

joint. The sharp kinking angle thereby is responsible for connecting associated cracks in unit-

cells of other columns, and thereby rendering the overall trajectory extremely tortuous as 

shown in Figure 4.9. 

 

Figure 4.9. (a) Schematic of staggered architecture of calcium carbonate bricks (shown in green) 

in biopolymer matrix (shown in yellow); (b) expanded view of the unit cell structure (with plane 

strain infinitesimal deformation) highlighting the elemental blocks and the original overlap 

length (Lo); (c) crack trajectory through the overlap length and kinking of the crack from one 

unit cell to another. 

The current analytical model is only an approximate model for the nanocomposite 

structure. It should be noted that crack propagation process is inelastic in nature (associated 
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with molecule bond breaking process); however in a simplified manner, growth of bondline 

crack can be perceived as alteration of geometry associated with the overlap to account for 

changes in the load path and thereby, this approach was followed to get a preliminary 

understanding of the crack propagation process. 

Under static loading conditions, characteristic lengths predicted were essentially based 

on (a) stress  transfer point of view, 
2Ebh

L
G

  , as was postulated by Chen et al., 2009 and, 

(b) maximizing elastic strain energy density, 2.318
Ebh

L
G

  , as postulated by Wei et al., 

2012. Similarly under dynamic rates of loading, characteristic length was predicted based on 

maximum shear  transfer efficiency point of view,     L Minimize x,toptimal L
, as was 

postulated by Dutta et al., 2013. In this article, we have shown using fracture mechanics 

concepts (under quasi-static rates of loading) that characteristic length exists in the nacreous 

layer in seashells which is based upon the existence of upper and lower bounds as given by 

equation (4.57) below:  

    L CDF L Lcharacteristic min optimal characteristic min      (4.57) 

Too far a deviation of optimal length on the right hand bound of equation (57) would 

provide no additional structural property enhancement, but would only add to weight of the 

adhesively bonded unit. Similarly, too far a deviation of optimal length on the left hand bound 

of equation (4.57) might produce a further light weight design; however, it would at the same 

time reduce the load withstanding capability rendering it more prone to fracture via increasing 
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crack driving force ahead of the crack tip and simultaneously raising the shear stress in adhesive 

beyond its allowable limit/strength. Thus, the optimal length scale criterion, as given by 

equation (4.57), serves as an important design guideline in the not only in synthesizing 

adhesively-bonded structures but staggered architecture composites which would not only be 

light-weight but tough as well. In order to validate our claim, in the subsequent paragraphs we 

illustrate the unanimity that exists between our model predictions against previously published 

experimental data followed by additional illustrative example. 

4.3.1. Validation by experimental data 

Lucic et al., 2006 investigated the existence of optimal overlap length in single lap 

adhesive bonded joint comprising of Al99.5 as the adherend material and Loctite 3421 as the 

(two-component) structural adhesive. The thickness and width of the adherend was 30 mm and 

1.95 mm respectively. The thickness of the adhesive was 0.15 mm. The overlap length was 

varied from 15 - 60 mm to explore optimal overlap length which corresponds to maximizing the 

joint strength. Using the same geometrical and material parameters as were used in their 

investigation, in our current analysis we tried to explore whether our model predictions, as per 

our design criterion as given by equation (4.57), gave similar results against their experimental 

observations. As it can be seen from Figure 4.10, optimal length scale predicted by the model 

lies in the range of 30-35 mm. 
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(a) 

 
(b) 

Figure 4.10. Existence of optimal length scale, as predicted by the analytical model, for an 

Al99.5-Loctite 3421 single lap adhesive bonded joint. 
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Optimal length observed experimentally by Lucic et al., 2006 lie in the range of 35-50 

mm and thus, model predictions are in reasonable agreement with previously reported 

experimental data and thus, justifies the efficacy of our proposed design guideline. Note that, 

the unit for change in shear stress and CDF in Figure 4.10 and Figure 4.11 is MPa and J/m
2

 

respectively. 

4.3.2. An illustrative example 

Consider the adherend material in single-lap adhesive joint to be made of plain weave 

S2-glass/SC-15 epoxy laminate (Deka et al., 2007: E1=24.85 GPa, E2=24.85 GPa, E3=11.04 GPa, 

G12=2.67 GPa, G13=1.97 GPa, G23=1.97 GPa, ν12=0.11, ν13=0.18, ν23=0.18) and adhesive to be 

SC-15 epoxy resin (Applied Poleramic Inc.: Ep=2.00 GPa, Ga=1.40 GPa, νa=0.35). Fracture 

toughness of cured SC-15 epoxy resin, S2-glass/SC-15 epoxy laminate for initiation and 

propagation are 0.989 kJ/m
2

, 0.688 kJ/m
2

 and 1.104 kJ/m
2

 respectively. Figure 4.11 shows the 

variation of optimal overlap lengths for varying widths of adherend (10 mm, 40 mm and 100 

mm) and adhesive thickness (0.50 mm, 1.00 mm, 2.00 mm, 3.00 mm and 5.00 mm) where the 

hollow and solid circles are representative of characteristic length with respect to minimization 

of crack driving force, as shown in Figure 4.11(a,c,e), and shear stress, as shown in Figure 

4.11(b,d,f) respectively. With increasing adhesive thickness, crack driving force increases, 

interfacial shear stress decreases and bounds of characteristic overlap length shift toward 

higher numbers. 
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Figure 4.11. Existence of optimal overlap lengths for varying widths of composite adherend (10 

mm, 40 mm and 100 mm) and adhesive thickness (0.50 mm, 1.00 mm, 2.00 mm, 3.00 mm and  
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Figure 4.11. (cont'd) 

5.00 mm). The hollow and solid circles are representative of characteristic length with respect 

to minimization of crack driving force (a,c,e) and shear stress (b,d,f) respectively. 

Clearly, optimal overlap lengths exists in adhesively bonded structures which are 

governed by characteristic overlap length as given by equation (57). Note that in Figure 4.11, 

the hollow and solid circles are representative of characteristic length with respect to 

minimization of crack driving force and shear stress respectively. Thus under quasi-static 

loading conditions, choice of characteristic overlap length ensures optimal combinations both 

from the perspective of weight reduction, maximum interfacial shear resistance, resistance to 

crack initiation, and consequently superior toughness. In our current investigation, nacre has 

been chosen as the structural biological composite for illustrative purposes. Feature drawn 

from current analysis can be adapted as an important guideline for designing adhesive bonded 

structures and staggered architecture materials at any level of scale. The outcome of the 

current research will thereby provide beneficial guidelines in designing hybrid bio-inspired 

protective composite materials [Dutta et al., 2012]. 

4.4. Conclusions 

In our current investigation, we showed the influence of structural overlap length on 

minimizing delamination in the unit-cells to the maximum extent possible via development of 

an analytical model. The main outcome of the developed analytical model was to provide a 

simplified expression for crack driving force in terms of local finite stress concentrations in the 

biopolymer layer of nacre. Based on the above analysis, we have attempted to address that the 
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'well-made' structure of the nacreous layer is built with respect to two bounds: a lower-bound 

based on an energy criteria (to allay crack-initiation) and an upper-bound based on stress 

criterion (to improve load-transfer/shear-transfer efficiency). Excerpts drawn from the current 

study would provide beneficial guidelines in designing light-weight and tough adhesively 

bonded structures and staggered architecture composites.  
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CHAPTER 5: CONCLUSIONS 

 

 

 

 

 

 

 

 



146 

 

5.1. Design Guideline 

In the current study, an attempt was made to understand the mechano-biological 

principles existing in structural biological composites in Nature exhibiting staggered 

architecture. As mentioned previously, Nature optimizes stiffness, strength and toughness by 

fine tuning the ceramic content and aspect ratio of ceramic platelets. 

 

Figure 5. Design guideline for synthetic composite showing the interplay of optimization 

scheme and manufacturing technique. 

If the same strategy were to be applied to synthetic composite design, choice of 

participating materials and manufacturing technique need to go hand-in-hand so that an 
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optimized performance can be attainable in synthetic composites. Figure 5 shows the design 

guideline that can be adopted from the current study with the help of an associated example.  

Assuming that epoxy matrix, reinforcement material, starting particle size and volume fraction 

are known (fixed) beforehand, based on structural property enhancement desired, different 

optimized aspect ratios exist based on either stiffness, load-transfer and toughness via 

maximization of Young's modulus, minimization of maximum shear stress and minimization of 

crack driving force respectively. Based on a judicial choice of aspect ratio, the manufacturing 

technique (in the current case, freeze casting) technique can be adjusted accordingly to vary 

the cooling rate and/or freezing time to regulate the aspect ratio in the final composites and 

thereby, obtain optimized performance. 

5.2. Future Scope of Work 

Optimization scheme with respect to toughness carried in the current study addressed it 

from a quasi-static point of view. As a extension of the current work, it would be opportune to 

unravel the corresponding parameter and associated criterion for toughness optimization 

under dynamic rates of loading. In the current study, the ceramic material was same 

throughout and had the same thickness. As a future work, it would be interesting to investigate 

material response and establish a design criterion for gradient architecture (dissimilar materials 

and/or dissimilar thickness) materials. The manufacturing technique needs to be tuned 

accordingly to custom-design manufacture functional gradient architecture materials.  
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