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ABSTRACT
SOME TOPICS IN FINITE ELASTICITY

By
Abdol Hossein Jafari
This dissertation consists of two parts, both concerned with the
investigation of problems in the theory of finite elastostatics.

In Part I an analytic approach for obtaining bounds on stress

concentration factors in the theory of finite anti-plane shear is

presented. The problem of an infinite slab with a traction free

'elliptical cavity subjected to a remotely applied finite simple shear

deformation is considered. It is assumed that the slab is composed of

a homogeneous incompressible elastic material. Explicit estimates

are obtained for the stress concentration factor in terms of the
dimensions of the cavity, the applied stress and the constitutive
parameters. The limiting cases in which the cavity is circular or
crack-shaped are also examined. The analysis is based on the
application of maximum principles for second-order uniformly elliptic
quasilinear partial differential equations.

In Part II the finite plane sfrain deformation of a circular

tube of homogeneous compressible elastic material of harmonic type,

subjected to simultaneous internal and external pressure, is considered.
Explicit closed form solutions for the deformation and stress fields
are obtained. The true stress distribution, expressed in terms of

undeformed coordinates, is shown to be essentially independent of
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material properties. The two cases of internal pressure only, and
external pressure only, are examined in detail. In the former case
there is a finite value of the applied pressure at which the
maximum hoop stress in the tube, occurring at the inner surface,
becomes unbounded. For the case of external pressure a finite value
of the applied pressure exists for which the cavity closes.
Furthermore the stability of the equilibrium in the two special
cases described above is investigated by employing a standard
perturbation expansion. It is found that an internally pressurized
tube is always stable whereas an externally pressurized tube buckles
at a certain valueof pressure. In the latter case the smallest
buckling load is calculated and the existence of buckling loads

corresponding to higher modes established.
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PART 1
ESTIMATES FOR STRESS CONCENTRATION FACTORS
IN
FINITE ANTI-PLANE SHEAR



1. INTRODUCTION

Qualitative methods have been used in linear elasticity for a
Tong time (see e.g.Villaggio (1977), Horgan (1982) and references
cited therein). The objective of such studies is to find information
about the solution of boundary-value problems without actually
solving them. The desired results are generally in the form of
a_priori bounds for field quantities in terms of geometric,
constitutive and boundary data. Analogous results in nonlinear
elasticity are rare. Estimates of this type are especially important
in the finite theory where exact solutions are seldom available. In
addition to their inherent importance, such results are of value
as guides in computational analyses.

Pointwise stress estimates are particularly important in
problems involving stress concentration where localized stresses are
of primary concern. In the present study, following on recent
results of Abeyaratne and Horgan (1983), we shall consider the
application of a priori estimqtion techniques to a stress concentration
problem arising in finite elasticity theory.

We confine attention to the simplest possible setting within
the exact theory of finite elasticity: finite anti-plane shear of
an infinitely long cylinder composed of a homogeneous, isotropic,

incompressible material. Such deformations have been extensively

studied by Knowles (1976, 1977) and others. While of less practical

interest than their analogs in plane stress or plane strain, these



problems are much simpler to analyze analytically and serve a
useful role as pilot problems.

We are concerned with the stress concentration arising in the
problem of an infinite slab with a traction-free elliptic cavity
subject to a state of finite simple shear deformation at infinity.

A cross-section of the slab is shown in Figure 1. The constitutive
law is assumed to belong to a special class of such laws for which
nontrivial states of finite anti-plane shear do indeed exist.

The analogous problem for a circular cavity was treated
recently by Abeyaratne and Horgan (1983). One of the motivations
for the present study was to extend their techniques to the
elliptical cavity problem, with particular interest in the limiting
case modelling a straight crack. When the results of the present
invéstigation are specialized to the case of a circular cavity,
the bounds obtained are sharper than those found by Abeyaratne and
Horgan (1983).

The boundary-value problem is formulated in Section 2. The
maximum shearing stress, of principal interest here, is known to
occur on the boundary of the cavity. Our purpose is to provide a
means for estimating this quantity. The main results necessary for
this task are given in Section 3. In Sections 4 and 5 these results
are applied to find explicit bounds on the stress concéntration factor
for a wide class of materials in terms of the geometry, load and
constitutive parameters. The results are illustrated for a particular

constitutive law. We conclude with some general remarks in Section 6.



rel R TS




2. STATEMENT OF THE PROBLEM

2.1 Displacement Formulation

Let the three dimensional open region R be the exterior of an
infinitely long right elliptical cylinder with semimajor axis A and
semiminor axis B. Suppose that this open region is occupied by the
interior of a body in its undeformed configuration. Choose the
rectangular cartesian coordinates (x], Xos x3) with the xj-axis
parallel to the generator of the cylinder and the origin at the
center. Let D be the cross section of R in the plane Xq = 0,
and denote by T the boundary of the elliptic¢al cavity (Figure 1).

Suppose now that the body is subjected at infinity to a simple
shear parallel to the (x], x3) plane. The ensuing deformation maps
a point with position vector x in the undeformed configuration

to a point with the position vector y:

y=x+u (x) onR. (2.1)

The components of the displacement field are assumed to satisfy (1)
u = 0, ug = ke Xp aS X X > (2.2)

where k_(>0) is the amount of applied shear. The deformed surface

of the cavity is assumed to be traction-free.

(1) The components of all vectors and tensors are taken with respect to
the fixed rectangular coordinate system previously chosen. Greek sub-
scripts have range (1,2) and summation convention is assumed throughout.
A subscript preceded by a comma indicates partial differentiation with
respect to the corresponding x-coordinate.



X
* ? u = kmx2

2 . 2\
as (x] + x2) >

Figure 1. Cross-section of body, with cavity, coordinates
and boundary conditions.



Suppose that the body is composed of a homogeneous, isotropic,
incompressible elastic material with a strain-energy density function
W. Denoting by I], 12, and 13 the fundamental invariants of the
left (or right) Cauchy-Green deformation tensor we have =1, = 3
in the undeformed state and Il >3, I2 >3 for all deformations.

Since only locally volume preserving deformations are admissible

13 = 1. The elastic potential W depends in general on I] and 12,
W= ﬁ(I], 12). For reasons that will become apparent later it is
convénient to confine attention to the restriction of ﬁ(I], 12)

to the line I, =1, (= 1) and define W(I) by

W= W(I) = W(I, 1), I>3, W(3) = 0, (2.3)

where W 1is assumed to be twice continously differentiable for
I>3.
The response of this material in simple shear is described
by
T () =2k (34kF) , - wck<w , (2.4)

where ?(k) is the shear stress associated with an amount of shear

k, and prime denotes differentiation with respect to the argument.
The (secant) modulus of shear is now given by

M(K) = %f(" = 20" (3+K8) (>0). (2.5)

In order to satisfy the Baker-Ericksen inequality for the material

under consideration we will assume that M(k)>0. (At infinitesimal

deformations, we have from (2.5), M(0) = 2W'(3) which we will denote
by u: the shear modulus.) Following Knowles (1977) such a material

is said to be softening in shear i{f M'(k) <0 and hardening if M'(k) >0:




k T (k)< 1(k) (softening),

-~ ~ (2.6)
k ' (k)> (k) (hardening).

Knowles has shown that for a certain class of materials, the
field equations and boundary conditions associated with the problem

described above are consistent with the assumption that
u, =0, uys= u(x], xz) on R, (2.7)

corresponding to a state of anti-plane shear. Two points should be
noted. First, forall such deformations I, = I, (=3+|Vu|2).

Secondly a material governed by an arbitrary strain-energy density
function ﬁ (I], 12) cannot sustain a nontrivial state of anti-plane
shear. The entire class of materials which admit such a deformation
has been determined by Knowles (1976) and it is only these materials
that we consider here. (An example of such a material is the
familiar neo-Hookean material with the elastic potential W= %p(ll-B),
pu>0.) The governing problem can then be shown, Knowles (1976, 1977),

to reduce to the following two dimensional problem for u:

div [W'(I) grad u] =0 on D, (2.8)
with
I= 3+qu|2 s Vu = grad u, (2.9)
u(x], x2) = kg, X, as X, X ™ (2.10)
du - on T (2.11)

an ’



where 3u/on denotes the outward normal derivative of u on T.

The corresponding components of Cauchy stress Tij are given by

T3 T3y = W' (I)u,q » (2.12)

' 2
Ty = O T35 = 20" (I)|Wu]". (2.13)

Since we have assumed that M(k)>0 it can easily be verified
that the quasilinear partial differential equation (2.8) is elliptic
at a solution u and at a point (x], xz) if and only if

' (k)>0 , k =|w] , (2.14)

where TA(k) is given by (2.3) and the prime denotes differentiation.
We shall impose a slightly stronger requirement: we assume that

?(k) satisfies

bT (k)>k T'(k)> ¢ T(k) for all k >0, (2.15)

for some positive constants b and c. The right hand side of (2.15)
together with (2.5) assures that (2.8) is uniformly elliptic (see
Gilbarg and Trudinger (1977), p. 203) and implies in particular that
;'(k)>0 for all k as well as ;(w)= o, It follows that when (2.5) and
(2.15)hold, 1 = T(k) can be inverted to give k as an odd, monotone
strictly increasing function of t: k = ﬁ(t) with E(w) * o,

It will be seen later that the left hand side of (2.15) is equivalent
to a uniform ellipticity assumption fora differential equation related

to (2.8). Henceforth the ellipticity constants b and c are taken

to be the smallest and largest constants respectively for which

(2.15) holds.



In view of (2.6) we note that a softening material automatically
satisfies the left inequality of (2.15) with b = 1, while a
hardening material conforms to the right one with ¢ = 1.

Consequently, in the following we have

Softening: (k) > k;'(k) ¢ (k) 0 <c< 1,

>
R n - (2.16)
Hardening: bt(k) > kt'(k) >%(k) b>1.

The final results derived subsequently will be given in terms of the
constitutive functions m(s) and n(s) which we define for all s>0

in terms of the response function t{k) by

m(s) = max (—I—-1), (s>0), (2.17)
0<t<s kt'(k)
n(s) =02125 Gy -V (520), (2.18)

and m(0) = n(0) = 0, where g = ;(T). From (2.4) we have

%'(k) = 2W'(3) =u as k>0 and therefore 1im m(s) = 1im n(s) = 0
as s+ 0. This shows that the functions are continuous at s = 0.

By their very definitions m(s) is a non-decreasing and n(s) is a

non-increasing function; it then follows that m(s)>0 and n(s)<O0.

Thus in view of (2.16) we have

oan(s) <1-1, (2.19)

0on(s) > £ - 1. (2.20)



In the following, the existence of a smooth solution u(xl. x2)
to the boundary value problem (2.8)-(2.11) will be assumed, where
u is twice continuously differentiable on D and once so on T.

On linearizing the partial differential equation (2.8) formally
by neglecting |Vu|2 in comparison with 3, we recover the analogous
problem in classical elasticity. This is a boundary-value problem
for Laplace's equation which also describes the steady irrotational
flow of an inviscid incompressible fluid past an elliptical cylinder.
In the flow problem i is identified with the velocity potential

and k_ with the free stream speed. The solution ] (unique to within

a constant) of the linearized problem may be found in standard text
books; its explicit form need not concern us here. From (2.12) the

corresponding linearized stresses are given by

o - ]
T3a = Hu

s T (33] + %32)§= u|val. (2.21)

" o
It is well known that Tpax OCCUrs on T.

For the linearized problem, the stress concentration factor

o
K is defined by

° o o
K= 1./ T . (2.22)

where %w =1k, denotes the magnitude of the applied stress at
infinity. It can be shown (see e.g. Milne-Thomson (1967),p 171)

that
-]
K = 14A/B. (2.23)

It should be noted that for a neo-Hookean material, the

problem (2.8)-(2.11) specializes exactly (rather than merely
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by linearization) to the linear problem. Thus E given by (2.23)
is exact for this material.

Our main concern here is with the nonlinear problem (2.8)-
(2.11). For this problem, we define a stress concentration factor
K by

K = /T, , (2.24)

Tma X

where ) 2 3
T = max (15, + 15,)2 ,
max  pyp - 31 732 (2.25)

and 1_ = 2k N'(3+@i) is the magnitude of the applied stress at
infinitx. Qur objectjve is to develop techniques for obtaining
bounds on Tnax® aﬁd so on K, which conform to the result (2.23)

on linearization. The argument is based on maximum principles

and comparison theorems for the second order quasilinear uniformly
elliptic equation (2.8). (See Protter and Weinberger (1967),
Gilbarg and Trudinger (1977)). Such maximum principles have been
used (see e.g. Bers (1958),P.41, Schiffer (1960),p.95) to show that
Tpax OCCUrs on the boundary T and so our task is to estimate
TonT.

2.2 Reformulation in Terms of Stress Function

It is convenient for our purposes to convert the basic problem
(2.8)-(2.11) to a problem of Dirichlet type. It follows from
(2.8) that there exists a function v, twice continuously

differentiable on D and once so on I' such that

- 2 =
T3g = 2W' (3+ |V )u"x-ge Vog On D, (2.26)




n

where is the two-dimensional alternator (811 =€y = 0,

€
al
€12=- €91 = 1). The function vy is a stress function for the shear

stresses T3y * From (2.26), (2.4) one infers that

T(w)) = |w] o (2.27)

which upon inversion, yields
|| = k (|w]) . (2.28)

We now define a function V by

V(rz) = L (>0)s = w<t<m (2.29)

20" (3+k (1))

and note that (2.26) may then be written as

wg - VU )e g v, (2.30)

o

8 .
It then follows that the stress function v satisfies the differential

equation

L v = div [V(]w|?) grad vl =0  on D. (2.31)

It can be verified that equation (2.31) is uniformly elliptic by
virtue of the left-hand-side of (2.15). From (2.26), (2.10) and

(2.11) v may be shown to satisfy the boundary conditions

v(x], x2) =T, X s X X *e, (2.32)

v=0 on T. (2.33)
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It is convenient in the subsequent analysis to restrict
attention to D+, the right half of D where x]>0. The notation

L_, L, is also introduced for the line segments

{(xys x,)| %y = 0, -» x,<-B} , {(x)5 X,)| %y = 0, B< x,< }
respectively; T, denotes the part of T where x]go. It follows from
symmetcy ‘considerations that v vanishes on L_ and L+. Thus the

boundary value problem for v is

Lv =0 on D, (2.34)
e 0 on T, UL UL, , (2.35)
V=T X o as X X, e in D,. (2.36)

From (2.26) we see that
2 2
= (g + St =lw] (2.37)

and so by virtue of (2.35) we have

I-S—:- on T, . (2.38)

Thus to estimate T on I‘+ we need to estimate the outward normal

derivative 9v/9n on I‘+.




3. COMPARISON THEOREMS

The following theorems are fundamental to the rest of this
study. They are quoted here without proof. The proofs can be
found in Abeyaratne and Horgan (1983), and are consequences of
standard comparison principles for the uniformly elliptic quasilinear
partial differential equation (2.31).

Theorem 1. Let v be a solution to the Dirichlet Problem (2.34)-

(2.36) on D.. Then

v
n < 0 on F+. (3.1)

From (3.1) and (2.38) one concludes that

v onT

L (3.2)

T S -

Theorem 2. Let v be a solution of the Dirichlet problem

(2.34)-(2.36) on D,. Suppose that a function w, with the same

smoothness as v, exists on D_ such that

L w>0 onD., (3.3)
w=v onT, (3.4)
w<v ontkt, L., (3.5)
1im w(x]; xz) <T, Xy 88 X X > . (3.6)
Then
Joc: oon T, (3.7)

13
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By virtue of (3.2), the inequality (3.7) provides the lower

bound

M onT

Tnax > = 3n o0 T, - (3.8)

If the inequality signs in (3.3), (3.5) and (3.6) are reversed,

then a conclusion similar to (3.7) follows with the inequality sign

reverseds thus yielding an upper bound result.

In the next section we will consider the construction of a

suitable comparison function w conforming to (3.3)-(3.6).



4. COMPARISON FUNCTION

In this section we will construct a comparison function
satisfying (3.3)-(3.6) and then use it to find a lower bound for
Tnax for a softening material. A similar analysis yields an upper
bound for a hardening material and is briefly discussed in Section
6. It is convenient to work with the elliptic coordinates £ and n

defined (implicitly) by

Xy C cosh £ cos n E> Eo»

(4.1)
C sinh £ sinn -m<N<T,

X2
where & = g, represents the boundary of the elliptic cavity T and
2C is the distance between its foci. In terms of the semimajor and

semiminor axes A and B of the ellipse one has

€0 = .5 4tn [(A+B)/(A-B)],

¢ = (A% - 8%}, (4.2)

The differential operator L appearing in (3.3) can be
(1)

written as

= oyt 2 v(w|?)
= 2V'(|ww { +

1

t— [w, w +2W, W_ W + Wl w
h

X3 &€ m "&n n nn

e N

1 2 2
- —-ﬁ-(wE + W, ) (h£w£+ hnwn)]} , (4.3)

(1) Here and in the sequel subscripts £ and n:: denote partial
differentiation with respect to £ and n respectively.

15
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where h is the "scale factor" for elliptic coordinates and |Ww|

is the magnitude of the gradient of w in these coordinates:

h=¢C (sinh25+ sinzn)5 .

(4.4)

2 2

]2 = (2

2 2
(w, + W )/h™ .

Since V and V' have |vw|2 as their arguments, the form of
the operator L given by (4.3) is quite complicated. However, we
note that by (3.3), we merely require L w >0, and it turns out
that a simpler set of sufficient conditions is obtainable to ensure

that this holds.

To see this, we first note that from (2.4) and (2.29) one has

' (h) . ] (i - 1) k = k(1) (4.5)
W) 2Kk o

and so from the definition of m in (2.17) we have

2,472
m(s) = max ZI_‘szLl . (4.5)

o<t<s  V(1")

Consequently, one can readily verify that, if for any positive

number S,, w satisfies

(wg + wﬁ)(w )+ m(so) [w§ "gg+ W, w_w,_+ wz W

£€+"nn £ n&n n nn
- %i(wé + wﬁ )(h£w€+hnwn)] >0
on D, (4.7)

Weg t W20, 0<|W| < so on D, (4.8)
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then L w>0 on D .. Therefore, we can in Theorem 2 replace (3.3)
by the simpler requirements (4.7) and (4.8).
Consideration of (2.35) and (3.4)-(3.6) motivates us to seek

a comparison function of the form

w(g,n) = f(g) cosn , f(g)>0. (4.9)

It is seen that w vanishes on L_ and L_and so, in view of (2.35)
satisfies (3.5) with equality. Substituting (4.9) into (4.7) shows
that the inequality holds if the following four ordinary differential

inequalities are satisfied
(m+1] sinhEf"- m coshgf' - sinhgf> 0, (4.10)
SinhEff' '+ 2m sinhgf 2o m cosheff' - (m#1) sinhef?> 0,  (4.11)

(m1)f'* + (m-1) > 0, (4.12)

fe0 4+ 2mfl - 2 5 0, (4.13)

for £ > £, where m = m(s,) and primes denote differentiation with
respect to £. Substitution of (4.9) into the first of (4.8), (3.4)

and (3.6) gives

f'' - f> 0 for £58 , (4.14)

f(£0) = 0 , Vim (2¢™5 £(£)/C) <1 . (4.15)
£+

We now construct a function f(£) conforming to (4.10)-(4.15) and
" then show that the second of (4.8) holds. To this end we solve
(4.10) with equality subject to (4.15) to find

f(g) = Ct_ cosh&F(g), (4.16)
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where

F)
gsinh;

. cosh;2

fb(sinh%fiir dc

} coshg
€o

™
—~
v
o
~
L]
—~
o
.
—t
~
~

F(g) =1 -

Direct computation shows that (4.16) satisfies (4.14) with inequality.
We next rearrange (4.12) and using the fact that f>0, m>0,cbbtain

the last inequality following from (4.14) with inequality. Thus
(4.12) is seen to hold. To verify (4.13) we note that

2

fer + amf 2 - f2F(F10 - )3 0, (4.19)

where (4.14) has again been used.
Finally, we turn to the verification of (4.11). We observe

that from (4.10) (withequality) and (4.14) we have

coshef'> sinhgf for £ > & | (4.20)

which in particular implies that

f'(g) >0 for £ > & . (4.21)
Multiplying (4.11) by (14m) and making use of (4.20) we find that
(4.11) holds provided that

sinhEf' - coshEf >0 for £>&, . (4.22)
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To verify (4.22) let

®(g) = sinhg f' - coshg f » for & > £, - (4.23)

Differentiation yields

¢'(g) = (f'' - f) sinhg >0, for 228, , (4.24)

where the inequality holds by virtue of (4.14). ¢(£) is thus a

nondecreasing function of £. But

¢(Z) = sinhg f'(&)> 0, (4.25)
by virtue of the first of (4.15) and (4.21). The inequality
(4.22) now follows.
We now show that |Ww| attains its maximum at the point

£ =Eosn = 0. From (4.4) and (4.9) we have

2.2 2 .2
|VW|2 . f'"cosnm+ fsinn . (4.26)

cZ(sinhZe+sin’n)
Simple calculations show that, on using (4.20),

2 2 .2 .2 2
2 _  f'“cos n+fsinn f' (g 2
|vw(g,n) 1 = < ) = |w(g, 0)|"
Cz(sinh25+sin2n) - Csinh§
(4.27)

It is readily shown that the right hand side of (4.27) decreases

with £ so that

' 2 . 2
(;gTéﬁ%) N (§E§ﬁé%§l) = (g, 0)2. (4.28)
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Thus from (4.27), (4.28), (4.16), (4.17) we have

1
( ; m+l
= sinh&, 1
0<|ww| < |Vw|max T, coshes ST ° (4.29)
where
oo —mT
m+
g(gsm) = ‘5‘“"3’ dg, m=m (so). (4.30)
cosh™g
Therefore if a positive number s, exists such that
(sinhg,) ™ 1 ]
. COSF\go g(go;m) f Soy M = m(so)’ (4~31)

then the second of (4.8) is satisfied. Assuming for the moment
the existence of s, (>0) we note that w(&,n) given by (4.9),
(4.16) and (4.17) satisfies all of the requirements for an
admissible comparison function. We can therefore use it, in
conjunction with (3.8), to find a lower bound on the stress

concentration factor K:

1
- T
(sinhg,) 1
€2 “coshi, ST (4.32)

where m = m(s,) is defined by (2.17), g(£ ;m) is given by (4.30),
and s, is any positive number conforming to (4.31).
We now prove that such a number can always be found. Furthermore
Se can be determined in such a way that the right hand side of
(4.32) is maximized. In other words the optimum value for s, can be

determined.
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To show the existence of a number s, conforming to (4.31),

we define a function y(t) by

1
- T
T .
_ ® (sinhg,)
Y(t) = wshes T olEnst)

for t>0. . (4.33)

Differentiation with respect to t shows that y'(t) <0.
Now let

z(s) = y(m(s)) = s for s >0. (4.34)

Using the chain rule and recalling that m(s) is a non-decreasing
function.of s we find z'(s) < 0. Thus 2z 1s a decreasing function
of s. Moreover z(0) = y(0) > 0 and z(x)=- o<0. Therefore there
exists a unique positive number S, such that z(s,) = 0, z(s) <0
for s > s, and z(s)> 0 for O< s< s,. Thus any number s > s,
satisfies (4.31). It can be easily shown that S, is the optimum
value of s. To see this we note that the "best value" of s is a
positive number which conforms to (4.31) and maximizes the right
hand side of (4.32)which means maximizing y(m(s)) given by (4.33).
Since y(m) dis a decreasing function of m the optimum value must
minimize m(s). There is only one such value of s namely s = S,.

From (4.34) then we have that S, is the unique positive root of

Sy = y(m(sy)), (4.35)

and

K=t /1 > S/t . (4.36)

©0

Tma X

The lower bound on the stress concentration factor K given by

(4.36) depends in particular on T, » the applied stress at infinity.
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A weaker (and simpler) "load independent" lower bound can be found
which is independent of t_. We simply recall that y(m) is a
decreasing function of m and m < —-l— - 1 (see (2.19)). It then

follows that y(m) > y(—l— - 1) and so we have

s y(-l—-l)
K > —% > - . (4.37)

[~ (-]

To summarize, an admissible comparison function has been
constructed (see (4.9), (4.16) and (4.17)) and expressions for lower
bounds on the stress concentration factor for a softéning material

derived ((4.37)).



5. RESULTS

In this section we first discuss the load independent lower
bound given in (4.37). Then we provide an example of how the
general load dependent lower bound given by the first of (4.37)
can be found explicitly by considering a special constitutive law.
We conclude with a brief discussion of the 1imiting case of a

"thin" ellipse.

5.1 The Load Independent Lower Bound

Denoting the load independent lower bound in (4.37) by K, we

have

1
- y(E"])= (sinhg,)~C 1

* T cosh&, o(eo; T’ (5.1)
’c

[}

where

cosh'¢

1 * o l-c
o6 s - = [ ML T eca. (5.2)
&

It appears that the integral on the right-hand-side of (5.2) cannot
be evaluated analytically and so we seek an upper bound for it. It

can be shown that (see Appendix A)
1 1 14c
g(go; E - ]) f ‘r_;,'E [2(]" tanhﬁo)]T . (5-3)

Substituting into (5.1) and simplifying we find
1+c

1-c T+
Ke > (14c) (—R—)T (%) 2 , (5.4)

where A and B are the semimajor and semiminor axes of the ellipse

respectively.
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Specializing to the neo-Hookean material, we set ¢ = 1 in

(5.4) and obtain

Ke >1 +A/B . (5.5)

Recalling the exact result (2.23) we see that the lower bound is
optimal  in this case. We note also that for the special case of

a circle (A = B) (5.4) reduces to

Ke > 1 +c , (5.6)

which is the result found by Abeyaratne and Horgan (1983).

5.2 The Load Dependent Lower Bound}

Results for a Ramberg-0sgood Material

A Ramberg-0Osgood material is a material with a response function

in simple shear given by

1
K =k(t) =1 + ]T £ . 00, O<««l, (5.7)

where Kk is the amount of shear and t 1is the corresponding
nondimensionalized shear stress (t/u); Q > 0is a material constant
and ¢ 1is a softening parameter 0 <c <1. From (4.6) we find

that for this material

n(s) = (s D) ——y . (5.8)
s ¢
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and by (4.35) the optimum value of s is the unique positive root
of

1
Tw  (sinhgg) M
coshge g(Z.; m(s,)) ?

Sy = (5.9)

where m(s) and g(&; m) are given by (5.8) and (4.30) respectively. Thus

with a simple change of variable u = e"g we can write (5.9) in the form
'e‘go 1 —“-lT 1

S*
I [:[—(sinht;o) coshge (—5—) (—5) u
0 *® 14U

] du = 0.
(5.10)

Solving (5.8) and (5.10) numerically, the value of s,, and hence by
(4.37), a Tower bound on the stress concentration factor K can be
determined.

Obviously the lower bound depends on the geometry of the cavity
and the material properties. In Figure 2 the effect of geometry
is shown where we have drawn the graphs of s,/t_ versus 1 for a
material with the constant Q = 100 and the softening parameter ¢ = .1
for different ellipses. Similar results are shown in Figures 3 and 4
for values of ¢ = .2 and .5 respectively. Figure 5 on the other hand
shows the effect of the softening parameter.  Here we have drawn the
Tower bound versus t_ for a circle. The material constant has again
been taken as Q = 100 but the softening parameter varies.

It can be seen from these Figures that for small values of the
applied stress, the graphs are almost horizontal with the load
dependent lower bound nearly equal to the exact value for the
Tinear case i.e. 1 + A/B , as one would expect. On increasing the

applied stress the load dependent lower bound s,/t_, as expected,
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decreases, since the material is softening. The decrease in the
lower bound at higher loads depends on the softening parameter as

is shown in Figure 5.

5.3 Limiting Results for a Thin Ellipse

The case of a thin ellipse in which B/A <<1 is of interest
since it can be used to model a straight crack. If in (5.4) we

assume that B/A <<1 we find that
. e c
Ke=2 2 (i) (2, (5.11)

where p = BZ/A is the radius of curvature at the "tip" of the

ellipse.



6. CONCLUDING REMARKS

In this section we first discuss the question of obtaining
an upper bound for the stress concentration factor for softening
materials. We will then briefly consider upper and lower bounds for
hardening materials and conclude with some suggestions for further

work.

6.1 Upper Bound for a Softening Material

We recall that Theorem 2, Section 3, will yield an upper bound
on T .« and hence on the stress concentration factor if one reverses
the inequality signs in (3.3) and (3.5) (or equivalently in (4.7),
the first of (4.8) and (3.5)). Again it is natural to seek
comparison functions of the form (4.9) which leads to (4.10)-(4.14)
with inequality signs reversed. Since by the first of (4.15)
£(£,) = 0, both (4.11) and (4.13) require that 2mf'2(£,) < 0 (m is
positive, see (4.6)), which yields f'(g,) = 0. Consequently,
comparison functions of this form are not of interest. Attempts to
construct admissible comparison functions of a different type have
so far proved unsuccessful. Since the stress response curve for
a softening material always lies below the corresponding curve for a
linear material, one might conjetturethat 1+ A/B is a universal

upper bound for K. We have not, however, been able to provide a

proof for this conjecture.
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6.2 Upper Bound for a Hardening Material

As was pointed out at the beginning of Section 4, the results
found there for a softening material can be modified to yield an
upper bound for a hardening material.

We first note that from (4.5) and (2.18) one has

2,472
n(s) = min 2LV () (6.1)
0<t<s v(t©)

Now if for any positive number s,, w satisfies
2 2 2 2
.+
(wg + wn) (wgg + wnn) n(s,) ["g Wee + ng Yo Yen + W W
- %-(wz + wi )(h€w€+ hnwn)] <0
on D, (6.2)

W, +w <0 , 0<|W|< s, on D, (6.3)

33 m -

then L w<0 on D,. Therefore in the upper bound version of
Theorem 2 we can replace (3.3) by (6.2) and (6.3).

It can be verified that comparison functions of the form (4.9)
are admissable provided (4.10)-(4.14) hold with inequality signs
reversed and m(s) replaced by n(s). Equation (6.3) must of course
hold. For simplicity here, we confine attention to a load
independent upper bound K*. Here we replace n(s) by %- -1 (b>1)
and after some simple calculations strictly analogous to those

in thé softening case we find

* (sinhg,)~P 1

s (6.4)
coshge g9(gos %-—1)
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where g(&o; %-- 1) is given by (5.2) with ¢ replaced by b(>1).

It can easily be shown that

1+4b
(o3 ‘g 1) 21%5 [2(1-tanhg,) ] 2 i (6.5)
Substitution in (6.4) yields
K < () () (B (6.6)

where A and B are the semimajor and semiminor axes of the ellipse
respectively. In the special case of a circle (A = B) we find

K*f 1+b which is the result found by Abeyaratne and Horgan (1983).

6.3 Suggestions for Further Work

We have established lower bounds for softening materials (and
upper bounds for hardening ones) (see (4.37), (5.4) and (6.6)).
As noted previously, we have been unable to find upper bounds for
softening materials (and lower bounds for the hardening case).
This issue should be resolved if possible. There are also some
places where the present work may possibly be improved. The
differential inequalities (4.10)-(4.14) are sufficient conditions
for -Lw>0. While it is not difficult to establish necessary
and sufficient conditions they are rather complicated. It would be
worthwhile to investigate these and see if sharper results can be
established. Another area where improvement may be possible is in
connection with the integral on the right hand $ide of (5.2).
Efforts have been made unsuccessfully to evaluate this integral
analytically; furthermore, it does not appear to be evaluated

explicitly in the standard integral tables. Finally, it would be
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of interest to use numerical methods (e.g. finite difference or

finite element schemes) to compare with the results obtained here.
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APPENDIX A

An_Upper Bound for g(&o; %-- 1) Defined by (5.2)

We wish to find an upper bound for the integral

-}

. 1-c
9(&o; %'- 1) = J (sinhz ) dzt s E0>0, 0<c<1. (A.1)
cosh™g
€o
Making the change of variable z = eZC + 1 one finds
1 -
g(Eos 7 - 1) = 2° J ‘%2 (z-2) ¢ (EH 2 aa. (A.2)
]+e2€0

Since 0<c<1, 0<(z-2)/(z-1)<1 it follows that

© 1-c o _ 3+c
9(&o3 %-- 1)< 2° J ngg—-_?‘ dz < 2¢ J z ¢ dz =
z
1+e2€o 1+92€o
e o l2+£
= 1? (]"'e o) . (A.3)

On using the identity l+e2£° = 2(1-tanh&,) we have

1+c
9(Ees 1 - 1) < 1 [2(1-tanhge)] 2 (r.4)
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PART 11
DEFORMATION AND STABILITY
OF
A PRESSURIZED TUBE OF HARMONIC MATERIAL



1. INTRODUCTION

The finite deformation of a circular tube of homogeneous,

compressible, elastic material of harmonic type subject to simultane-

ous internal and external pressure is considered. The fundamental
(plane strain, axisymmetric) solution is obtained. The stability of
this solution in the two special cases of zero external pressure, and
zero internal pressure is investigated.

The stability problem for a pressurized tube has been considered

by a number of investigators but mostly for incompressible materials.

See e.g. Hi11 (1975, 1976), Haughton and Ogden (1979a, 1979b) and
references cited therein. This problem has also been studied
numerically for elastic-plastic materials by Chu (1979), Larsson et al
(1982) and Reddy (1982) among others. Sensenig (1964) has investigated
the stability of a tube composed of a harmonic material of special

type - the so called standard harmonic material - under external
pressure. His work for this problem seems to be the only one to deal

with a compressible elastic material.
Larsson et al (1982) have conducted a numerical and experimental

investigation of the deformation of internally pressurized circular
tubes composed of ductile metals with slight geometric jmperfections.
They examine in detail the onset and development of surface
instabilities as well as the subsequent initiation and growth of
shear bands until failure. The present study was undertaken in an

attempt to examine this problem analytically.
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In the following section the axisymmetric problem for the
pressurized tube is formulated and a brief description of harmonic
materials given. The deformation and stress fields are determined
explicitly. We observe that the stress field is essentially
independent of the constitutive details of the (harmonic) material
under consideration. The examination of the deformation field shows
that in an externally pressurized tube the pressure must be restricted
to values less than 2u so that no interpenetration occurs. Here y
is the shear modulus of the material at infinitesimal deformations.
For an internally pressurized tube, one finds that the pressare must
be restricted to values less than u(l-azlbz) (a and b being the
inner and outer radii of the underformed tube respectively) because
the hoop stress at the inner wall becomes unbounded at this pressure.
This is an unexpected result since there are no discontinuities
in either loading or geometry and is clearly a consequence of the
nonlinearity of the constitutive relation.

In Section 3 the equilibrium problem for a tube with small
geometrical imperfections in both internal and external boundaries
is examined. It is assumed that the resulting plane strain
nonaxisymmetric deformation f%eld is a small perturbation of the
axisymmetric deformation of a perfectly circular tube. A standard
perturbation expansion is then employed to derive the equilibrium
equations and the boundary conditions. The equilibrium equations
in terms of displacements consist of a set of two 1inear homogeneous

second order partial differential equations with variable

coefficients.
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In Section 4 we first solve the equilibrium equations and then
consider the problem of stability.

In the case of internal pressure only, the analysis shows that
no instability occurs. On the other hand, in the case of external
pressure the occurrence of an instability is established and the
corresponding smallest buckling load determined. Moreover, one finds
that for sufficiently thick tubes, and under a rather mild
restriction on the material behavior, the buckling loads corresponding
to different modes are distinct and form a bounded monotone increasing
sequence.

Finally, in Section 5 some numerical results for a special

constitutive law are presented.



2. THE PRESSURIZED CYLINDRICAL TUBE; HARMONIC MATERIALS

2.1 Statement of Problem

Let the open region Do = {(r,¢)| a<r<b, 0<¢< 27} denote the
cross section of a right circular cylinder with inner radius a, and
outer radius b, in its undeformed configuration. The cylinder is
subjected to internal and external pressure of magnitude Py and po
respectively. The ensuing deformation is a one-to-one mapping which
takes the point with polar coordinates (r,¢ ) in the undeformed region
Do to the point (p,y ) in the deformed region D. We assume that

a state of plane strain prevails with appropriate tractions being

applied to the ends of the cylinder.
In view of the symmetry of the problem, the deformation is

axisymmetric with

p=rf(r), v=2¢ on Do, (2.1)
where the function f(r) is to be determined. The polar components
of the deformation gradient tensor F associated with (2.1) (see e.g.

Malvern (1969), p. 652) are given by

Frr = rf'(r) + f(r), F¢¢ = f(r), Fr¢= F¢r =0, (2.2)

where the prime denotes differentiation with respect to the argument.
The 1eft Cauchy-Green deformation tensor is defined as 6 = F FT

and its fundamental scalar invariants can be taken as

I=trG, J= (det )2, (2.3)
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so that in the present problem

I=r262 & 20ff + 262, 3= 2 4+ rff'. (2.4)

The cylinder is assumed to be composed of a material of "harmonic
type" as introduced by John (1960), and investigated in detail by
Knowles and Sternberg (1975). The brief account of harmonic
materials given in the following sub-section follows closely the

work by Knowles and Sternberg cited above.

2.2 Harmonic Materials

Harmonic materials are compressible elastic materials with a

strain-energy density function in plane strain given by
W(I,9) = 2ulH(R) - 31 , R = (1+20), (2.5)

where u is a positive constant that can be identified with the
infinitesimal shear modulus and H is a continuous function of R,
defined for all R> 0, with continuous derivatives of all orders.

The Cauchy stress tensor T associated with a plane deformation

is given by
2 oW W
I-Uﬁ5+wl (2.6)
= 2ug h(R)G + [HR)-1] 1}, on D,
where we have set
h(R) = Eléﬂl for R> 0, (2.7)

and ‘1 "is the second order identity tensor. The Piola stress field
o associated with the Cauchy stress field 1 is defined by

I

o = JtF" = 2 uh(R)F + J[A(R)-1] FT}» on Do, (2.8)
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where F'T

is the transpose of the inverse of ’E .

In order to ensure a physically reasonable response, one must
impose certain restrictions on the constitutive function H(R).
Since Cauchy stress and the strain-energy density should vanish

in the undeformed state, we must have
H(2) =1, H'(2) =1. (2.9)

Furthermore, the strain-energy density function (2.5) should be
positive in every state, except the undeformed one. This requirement

entails the inequality
H(R) > R%/4 for all R> 0, Rs 2. (2.10)

Next, from consideration of the true stress field induced in a plane
isotropic deformation and the requirement, on physical grounds, that
stress should be monotone increasing with the amount of stretch one

deduces that h(R) = H'(R)/R must be monotone increasing, i.e.
h*(R) > 0 for O<R<o . (2.11)

Finally, we will suppose that the material admits a regular state of
uniaxial tension in plane strain, for which it is necessary and

sufficient that there exist a number R, € (1,2) such that
h(R,) =0, h(R) »1 as R+ and H''(R)51 for Ry R<w. (2.12)

A more complete discussion can be found in the paper by Knowles and

Sternberg (1975).

2.3 Deformation and Stress Fields

Returning to the problem under consideration we have from (2.4)
and the second of (2.5) that
R=2f +rf', ax r<b. (2.13)
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On substituting from (2.2) into (2.8) and making use of (2.13) one

finds that the components of Piola stress o are given by

o.=2u[H'(R) -], o o = 2u[H'(R) - (R - f)] ,

¢

o = 0, (2.14)

ré =~ %r

Also from (2.8) we find the Cauchy stress components

Top = Opp/ s Ty = 0¢¢/(ffrff), o = T © 0. (2.15)

In the absence of body forces, the equilibrium equations divo= 0,

~

in the present case reduce to the single equation

30 rr rr "%
= = 0. (2.16)

After substituting for the stresses from (2.14) and making use of
(2.13), one finds that (2.16) reduces to H% [H'(R)] = 0 for a<r<b

which is equivalent to

dH(R) = constant. (2.17)

R = 2f+rf!
Now by (2.12) H''(R)> 0 for R, <R<w. Therefore, if for the deformation
considered here.,

R > R,, (2.18)

where R is given by (2.13), then H'(R) is monotone increasing on the
interval of interest and hence may be uniquely inverted. It will be
shown later that (2.18) indeed holds. Here we assume that (2.18)
holds and so deduce from (2.17) that

2f(r) + rf'(r) = Ro (constant) for a<r<b. (2.19)
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Integration of (2.19) yields

f(r) = ‘7 Ro + 5 » (2.20)
r

where R, and C are constants to be determined.

The prescribed (pressure) boundary conditions are

on P=0 ,T =- P, on P = B, (2.21)

Top = P pp

PP i
where o(=af(a)) and B (=bf(b)) are the inner and outer radii
respectively, in the deformed configuration. In view of (2.7),
(2.14) and (2.15) the boundary conditions (2.21) may be written as

2u Ro h(Ro) = (2M - p,) fla), (2.22)
2U R, h(R,) = (2¥ - po) f(b). (2.23)
Upon substituting for f(@) and f(b) from (2.20) and rearranging,

one has
suRaa®  -22u- p)] [nRI] = [(2w - pya%Re
81 Rob -2(2u-po)| | € (21 - po)b%R, |, (2.24)

which can be solved for h(R,) and C to yield

N

(b7 - a%) (21 - po) (24 - Ps)
au[b’(2 - p) - (24 - po)]

h(R,)

(2.25)

azbz(Pi - Po)Ro

(2.26)
2[b%(2¥ - p;) - a(2u- po)]

In view of (2.1), (2.20), and (2.26) it is evident that the deformation
field is completely determined if (2.25) can be solved for Ro(>0).
By virtue of the assumed monotonocity of h(R) the existence of a

unique positive solution to (2.25) is guaranteed provided that its
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right-hand-side lies in the open interval (0,1) (see (2.11), (2.12),
(2.18)). It will be shown later that this is always satisfied if
the applied pressures are appropriately restricted.

The corresponding components of Cauchy stress are found from
(2.7), (2.14), (2.15) in conjunction with (2.19), (2.25) and
(2.26) to be

2
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