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ABSTRACT

SOME TOPICS IN FINITE ELASTICITY

By

Abdol Hossein Jafari

This dissertation consists of two parts, both concerned with the

investigation of problems in the theory of finite elastostatics.

In Part I an analytic approach for obtaining bounds on stress

concentration factors in the theory of finite antigplane shear is

presented. The problem of an infinite slab with a traction free

'elliptical cavity subjected to a remotely applied finite simple shear
 

deformation is considered. It is assumed that the slab is composed of

a homogeneous incompressible elastic material. Explicit estimates
 

are obtained for the stress concentration factor in terms of the

dimensions of the cavity, the applied stress and the constitutive

parameters. The limiting cases in which the cavity is circular or

crack-shaped are also examined. The analysis is based on the

application of maximum principles for second-order uniformly elliptic

quasilinear partial differential equations.

In Part II the finite plane strain deformation of a circular

tube of homogeneous compressible elastic material of harmonic type,
 

subjected to simultaneous internal and external pressure, is considered.

Explicit closed form solutions for the deformation and stress fields

are obtained. The true stress distribution, expressed in terms of

undeformed coordinates, is shown to be essentially independent of



Abdol Hossein Jafari

material properties. The two cases of internal pressure only, and

external pressure only, are examined in detail. In the former case

there is a finite value of the applied pressure at which the

maximum hoop stress in the tube, occurring at the inner surface,

becomes unbounded. For the case of external pressure a finite value

of the applied pressure exists for which the cavity closes.

Furthermore the stability of the equilibrium in the two Special

cases described above is investigated by employing a standard

perturbation expansion. It is found that an internally pressurized

tube is always stable whereas an externally pressurized tube buckles

at a certain value'of pressure. In the latter case the smallest

buckling load is calculated and the existence of buckling loads

corresponding to higher modes established.
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PART I

ESTIMATES FOR STRESS CONCENTRATION FACTORS

IN

FINITE ANTI-PLANE SHEAR



I. INTRODUCTION

Qualitative methods have been used in linear elasticity for a

long time (see e.g.Villaggio (1977), Morgan 0982) and references

cited therein). The objective of such studies is to find information

about the solution of boundary-value problems without actually

solving them. The desired results are generally in the form of

a priori bounds for fieid quantities_in terms of geometric,

constitutive and boundary data. Analogous results in nonlinear

elasticity are rare. Estimates of this type are especially important

in the finite theory where exact solutionsare seldom available. In

addition to their inherent importance. such results are of value

as guides in computational analyses.

Pointwise stress estimates are particularly important in

problems involving stress concentration where localized stresses are

of primary concern. In the present study, following on recent

results of Abeyaratne and Morgan (1983), we shall consider the

application of a priori estimation techniques to a stress concentration

problem arising in finite elasticity theory.

He confine attention to the simplest possible setting within -

the exact theory of finite elasticity:. finite anti-plane shear of

an infinitely long cylinder composed of a homogeneous, isotropic,

incompressible material. Such deformations have been extensively
 

studied by Knowles (I976, l977) and others. Nhile of less practical

interest than their analogs in plane stress or plane strain, these



problems are much simpler to analyze analYtically and serve a

useful role as pilot problems.

We are concerned with the stress concentration arising in the

problem of an infinite slab with a traction-free elliptic cavity

subject to a state of finite simple shear deformation at infinity.

A cross-section of the slab is shown in Figure l. The constitutive

law is assumed to belong to a special class of such laws for which

nontrivial states of finite anti-plane shear do indeed exist.

The analogous problem for a circular cavity was treated

recently by Abeyaratne and Morgan (l983). One of the motivations

for the present study was to extend their techniques to the

elliptical cavity problem, with particular interest in the limiting

case modelling a straight crack. When the results of the present

investigation are Specialized to the case of a circular cavity.

the bounds obtained are sharper than those found by Abeyaratne and

Morgan (1983).

The boundary-value problem is formulated in Section 2. The

maximum shearing stress, of principal interest here, is known to

occur on the boundary of the cavity. Our purpose is to provide a

means for estimating this quantity. The main results necessary for

this task are given in Section 3. In Sections 4 and 5 these results

are applied to find explicit bounds on the stress concentration factor

for a wide class of materials in terms of the geometry, load and

constitutive parameters. The results are illustrated for a particular

constitutive law. We conclude with some general remarks in Section 6.
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2. STATEMENT OF THE PROBLEM

2.1 Displacement Formulation
 

Let the three dimensional open region R be the exterior of an

infinitely long right elliptical cylinder with semimajor axis A and

semiminor axis 8. Suppose that this open region is occupied by the

interior of a body in its undeformed configuration- Choose the

rectangular cartesian coordinates (x1, x2, x3) with the x3-axis

parallel to the generator of the cylinder and the origin at the

center. Let D be the cross section of R in the plane x3 = O,

and denote by F the boundary of the ellipticalfcavity (Figure 1).

Suppose now that the body is subjected at infinity to a simple

shear parallel to the (x1, x3) plane. The ensuing deformation maps

a point with position vector x in the undeformed configuration

to a point with the position vector y:

y = 5 + g (x) on R. (2.1)

The components of the displacement field are assumed to satisfy (1)

u = 0, U3 = kco x2 as xa xdf w , (2.2)

where kwi>0) is the amount of applied shear. The deformed surface

of the cavity is assumed to be traction-free.

 

(l) The components of all vectors and tensors are taken with respect to

the fixed rectangular coordinate system previously chosen. Greek sub,

scripts have range (1.2) and summation convention is assumed throughout.

A subscript preceded by a comma indicates partial differentiation with

respect to the corresponding x-coordinate.



i“ u = kwx2

225..
as (x1 + x2) +

  Z
B

 

2A

7
T
-

Cross-section of body, with cavity, coordinatesFigure l.

and boundary conditions.



Suppose that the body is composed of a homogeneous, isotropic,

incompressible elastic material with a strain-energy density function

w. Denoting by I], 12, and I3 the fundamental invariants of the

left (orrfight) Cauchy-Green deformation tensor we have I1 = I2 = 3

in the undeformed state and I1 3 3, 12 33 for all deformations.

Since only locally volume preserving deformations are admissible

I3 = l. The elastic potential N depends in general on I1 and 12,

w = R(Il, 12). For reasons that will become_apparent later it is

convenient to confine attention to the restriction of H(I], 12)

to the line I1 = 12 (= I) and define N(I) by

w = w(1) = fill, I), 133, w(3) = o, (2.3)

where w is assumed to be twice continously differentiable for

133.

The reSponse of this material in simple shear is described

by

i (k) = ka' (3+k2) , - w < k < m, , (2.4)

where $(k) is the shear stress associated with an amount of shear

k, and prime denotes differentiation with respect to the argument.

The (secant) modulus of shear is now given by

M(k) = 3%;9.= 2N'(3+k2) (>0). (2.5)

In order to satisfy the Baker-Ericksen inequality for the material

under consideration we will assume that M(k)>O. (At infinitesimal

deformations, we have from (2.5), M(O) = ZN'(3) which we will denote

by u: the shear modulus.) Following Knowles (1977) such a material

is said to be softening in shear if M'(k) <0 and hardening if M'(k) >0:



k 3E'.(k)< $(k) (softening), (2 6)

k 2' (k):> $(k) (hardening). .

Knowles has shown that for a certain class of materials, the

field equations and boundary conditions associated with the problem

described above are consistent with the assumption that

"a = 0, U3 = u(x], x2) on R, (2.7)

corresponding to a state of_anti:plane shear; Two points should be

noted. First. forall such deformations I1 = I2 (=3+|Vu|2).

Secondly a material governed by an arbitrary strain-energy density

function R (1], 12) cannot sustain a nontrivial state of anti-plane

shear. The entire class of materials which admit such a deformation

has been determined by Knowles (1976) and it is only these materials

that we consider here. (An example of such a material is the

familiar neo-Hookean material with the elastic potential N= %u(I]-3),

u>0-) The governing problem can then be shown, Knowles (1976, 1977),

to reduce to the following two dimensional problem for u:

div [N'(I) grad u] = O on D, (2.8)

with

I = 3+|Vu|2 , Vu = grad u, (2.9)

u(x], x2) = k0° x2 as xa xd+ m, (2.10)

Bu _
-—- - O on P (2.11)
an 9



where Bu/an denotes the outward normal derivative of u on P.

The corresponding components of Cauchy stress 11.3. are given by

= 2w'(I)U,a a (2.12)

T0L3 T3o.

. 2
TaB = o, r33 = 2w (I)|Vu| . (2.13)

Since we have assumed that M(k)>0 it can easily be verified

that the quasilinear partial differential equation (2.8) is elliptic

at a solution u and at a point (x1, x2) if and only if

¥'(k)>o , k =|Vu| , (2.14)

where T (k) is given by (2.4) and the prime denotes differentiation.

We shall impose a slightly stronger requirement: we assume that

i(k) satisfies

b? (k)3k ¥'(k)3 c $(k) for all k 3 o. (2.15)

for some positive constants b and c. The right hand side of (2.15)

together with (2.5) assures that (2.8) is uniformly elliptic (see

Gilbargnand Trudinger (1.977), P. 203) and implies in particular that

;'(k)>0 for all k as well as ;(m)= m» It follows that when (2.5) and

(2.15)h01d. T = ¥(k) can be inverted to give k as an odd, monotone

strictly increasing function of r: k = k(t) with k(m) e m;

It will be seen later that the left hand side of (2.15) is equivalent

to a uniform ellipticity assumption foraadifferential equation related

to (2.8). Henceforth the ellipticity constants b and c are taken
 

to be the smallest and largest constants respectively for which

(2.15) holds.

 



In view of (2.6) we note that a softening material automatically

satisfies the left inequality of (2.15) with b = 1, while a

hardening material conforms to the right one with c = 1.

Consequently, in the following we have

Softening: t(k) > k;'(k) c i(k) 0 <C< 1.>

. .. I (2.16)

Hardening: bt(k) 3 kt'(k) >t(k) b>1.

The final results derived subsequently will be given in terms of the

constitutive functions m(s) and n(s) which we define for all 530

in terms of the response function ¥(k) by

 m(s) = max ( A T - 1) , (s>0), (2.17)

Oftfs kt'(k)

n(S) =02; (TZEITTJ - 1). ( S>0). (2.18)

and m(0) = n(O) = 0, where k = E(T). From (2.4) we have

§'(k) = 2w'(3) =u as k+O and therefore 1im m(s) =1im n(s) = o

as 5+ 0. This shows that the functions are continuous at s = 0.

By their very definitions m(s) is a non-decreasing and n(s) is a

non-increasing function; it then follows that m(s)30 and n(s)50.

Thus in view of (2.16) we have

Ofm(s) f %—- 1 . (2.19)

03n(s) 3 g). - 1 . (2.20)



In the following, the existence of a smooth solution u(x], x2)

to the boundary value problem (2.8)-(2.11) will be assumed, where

u is twice continuously differentiable on D and once so on P.

On linearizing the partial differential equation (2.8) formally

by neglecting |Vu|2 in comparison with 3, we recover the analogous

problem in classical elasticity. This is a boundarysvalue problem

for Laplace's equation which also describes the steady irrotational

flow of an inviscid incompressible fluid past an elliptical cylinder.

In the flow problem u is identified with the velocity potential

and ka,with the free stream speed. The sblution 3 (unique to within

a constant) of the linearized problem may be found in standard text

books; its explicit form need not concern us here. From (2.12) the

corresponding linearized stresses are given by

O _ O O

T3a " 1111.0, 9 T (231 + i§2)i= ulvfll. (2.21)

It is wellknown that gmax occurs on F.

For the linearized problem, the stress concentration factor

0

K is defined by

° 0 0

K = Tmax/ too , (2.22)

where Tm =“kw. denotes the magnitude of the applied stress at

infinity. It can be shown (see e.g. Milne-Thomson (1962),p 171)

that

O

K = l+A/B. (2.23)

It should be noted that for a neo-Hookean material, the

problem (2.8)-(2.11) specializes exactly (rather than merely
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O

by linearization) to the linear problem. Thus K given by (2.23)

is exact for this material.

Our main concern here is with the nonlinear problem (2.8)-

(2.ll). For this problem, we define a stress concentration factor

K by

K = Tmax/Too 9 (2024)

where 2 2 I

T = max (T + T ) ,

max our 3‘ 32 (2.25)

and too = 2k» N'(3+k:) is the magnitude of the applied stress at

infinity. Our objective is to develop techniques for obtaining

bounds on Tmax, and so on K, which conform to the result (2.23)

on linearization. The argument is based on maximum principles

and comparison theorems for the second order quasilinear uniformly

elliptic equation (2.8). (See Protter and Weinberger (1957).

Gilbarg and Trudinger (1977)). Such maximum principles have been

used (see e.g. Bers (1958),P-41, Schiffer (l960),P.95) to show that

T occurs on the boundary P and so our taSk is to estimate
max

T on P.

2.2 Reformulation in Terms of Stress Function
 

It is convenient for our purposes to convert the basic problem

(2.8)-(2.11) to a problem of Dirichlet type. It follows from

(2.8) that there exists a function v, twice continuously

differentiable on D and once so on I such that

- 1 2 g
T301 - 211 (3+ [Vul )u,a €18 v,B on D, (2.26)
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where 5

a8

€12="€21 = l). The function v is a stress function for the shear

is the two-dimensional alternator (eH = 622 = 0,

 

stresses T3a . From (2.26), (2.4) one infers that

2 (Ivul) = |vv| . ‘ (2.27)

which upon inversion, yields

(w) = Eilwl) . (2.28)

We now define a function V by

vhz) = 12 (>0).-«m . (2.29)
2N'(3+k (1))

 

and note that (2.26) may then be written as

= _ 2
“la V(|Vv| )edB v (2.30)

’8

It then follows that the stress function v satisfies the differential

equation

I V’ E div [V(|Vv|2) grad v] = 0 on D. (2.31)

It can be verified that equation (2.31) is uniformly elliptic by

virtue of the left-hand-side of (2.15). From (2.26). (2.10) and

(2.11) v may be shown to satisfy the boundary conditions

v(x], x2) = Im x.I as Xa Xa'+ w . (2.32)

v = 0 on P. (2.33)
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It is convenient in the subsequent analysis to restrict

attention to 0+, the right half of D where x1>0. The notation

L_, L+ is also introduced for the line segments

{(xl, x2)| x1 = 0, -w <x2<-B} p, {(x], x2)| x1 = 0, B< x2< 00}

respectively; I‘+ denotes the part of P where x130. It follows from

symmetry considerations that v vanishes on L_ and L+. Thus the

boundary value problem for v is

L.v = 0 on 0+, (2.34)

v a 0 on r+ UL_UL+ , (2.35)

v = tmx] as xa xa‘+-w in 0+. (2.36)

From (2.2 6) we see that

2 2

r = (T31 + 132)5 =|vV| . (2.37)

and so by virtue of (2.35) we have

= |%%- on r+ . (2.38)

Thus to estimate T on r+ we need to estimate the outward normal

derivative avlan on P+.

 



3. COMPARISON THEOREMS

The following theorems are fundamental to the rest of this

study. They are quoted here without proof. The proofs can be

found in Abeyaratne and Morgan (1983), and are consequences of

standard comparison principles for the uniformly elliptic quasilinear

partial differential equation (2.31).

Theorem 1. Let v be a solution to the Dirichlet Problem (2.34)-
   

(2.36) 92 0+. Then

——- < 0 on P . (3.1)

From (3.1) and (2.38) one concludes that

- £31T - - an .25 F+ . (3.2)

Theorem 2. Let v be a solution of the Dirichlet problem
  

(2.34)-(2.36) gfl_0+. Suppose that a function w, with the same
  

 

smoothness 3§_v, exists pg D+ such that

 

L w 30 pfl_D+, (3.3)

w = v gfl_r+, (3.4)

w 5 v pn_L_, L+, (3.5)

lim w(x], x2) <10° x1‘a§_ xaxaf-w. (3.6)

Then

3%. f %%. gfl_ P+. (3.7)

13
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By virtue of (3.2), the inequality (3.7) provides the lower

bound

- §%- on P . (3.8)

If the inequality signs in (3.3), (3.5) and (3.6) are reversed,

then a conclusion similar to (3.7) follows with the inequality sign

reversed’thus yielding an upper bound result.

In the next section we will consider the construction of a

suitable comparison function w conforming to (3.3)-(3.6).



4. COMPARISON FUNCTION

In this section we will construct a comparison function

satisfying (3.3)-(3.6) and then use it to find a lower bound for

Tmax for a softening material. A Similar analysis yields an upper

bound for a hardening material and is briefly discussed in Section

6. It is convenient to work with the elliptic coordinates EAand n

defined (implicitly) by

x1 C cosh E cos n E > go.

(4.1)

C sinh 5 sin n - n 5 n < n ,
x2

where g = go represents the boundary of the elliptic cavity I and

2C is the distance between its foci. In terms of the semimajor and

semiminor axes A and B of the ellipse one has

5. .5 2n[(A+B)/(A-B)I.

c = (A2 - 32)5. (4.2)

The differential operator L appearing in (3.3) can be

(1)
written as

2

L w = 2v'(|vw|2) { V(lij ) (w + w ) 

2V'(|VWI2) ' 55 nn

1 2 2

+3 [”5 "£6 + ZWE "n "En +w11 wnn

1 2 2
- ‘fi'("g + wn ) (hgwg+ hnwn)]} , (4.3)

 

(1) Here and in the sequel subscripts E and nr denote partial

differentiation with respect to g and n respectively.

15
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Where h is the "scale factor" for elliptic coordinates and |le

is the magnitude of the gradient of w in these coordinates:

h = C (sinh2g+ Sinzn)i ,

2 (4.4)

+ w: )/h .

Since V and V' have lvwl2 as their arguments, the form of

the operator 1- given by (4.3) is quite complicated. However, we

note that by (3.3), we merely require L w 30, and it turns out

that a Simpler set of sufficient conditions is obtainable to ensure

that this holds.

To see this, we first note that from (2.4) and (2.29) one has

2V'(12) = 1 ( t

——7— —:.—-1). §=k(). (4.5)
V(T ) ';2' kt'(k) T

and so from the definition of m in (2.17) we have

2 2

m(s) = max §I_!%SI_1 . (4.6)

Oftfs V(t )

Consequently, one can readily verify that, if for any positive

number 5,, w satisfies

)+ m(so) [WE wgg+ 2w w w + w2 w'
2 2

("E + wn)(" E n En n no€€+wnn

1 2 2
- hi<wg + wn )(hE"g+hnwn)] 20

on D, (4.7)

"£6 + wrm 3 0, 05|vw| 5 so on D, (4.8)
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then L w30 on 0+. Therefore, we can in Theorem 2 replace (3.3)

by the Simpler requirements (4.7) and (4.8).

Consideration of (2.35) and (3.4)-(3.6) motivates us to seek

a comparison function of the form

w(€.n) = f(£) cosn . f(€)30. (4 9)

It is seen that w vanishes on L_ and L+ and so, in view of (2.35)

satisfies (3.5) with equality. Substituting (4.9) into (4.7) shows

that the inequality holds if the following four ordinary differential

inequalities are satisfied

(m+l) sinth"- m coshgf‘ - Sinhgfz 0, (4.10)

sinhgff"+ 2m sinhgf'z- m coshgff' - (m+l) sinhgfzg o, (4.11)

(m+1)f" + (m-1)f3 O, (4.12)

ffII + mel2 _ f2 > 0,
(4.13)

for g > go where m = m(so) and primes denote differentiation with

respect to E. Substitution of (4.9) into the first of (4.8), (3.4)

and (3.6) gives

f" - f3 0 for g>g° , (4.14)

i(g.) = o , 1im (2e'g f(£)/C) <1” . (4.15)
g-roo

We now construct a function f(§) conforming to (4.10)-(4.15) and

' then show that the second of (4.8) holds. To this end we solve

(4.10) with equality subject to (4.15) to find

f(5) = Cr0° costh(g), (4.16)



where

[(sinhgflm

coshz;2

F(E) = l (3 0 ) - (4.17)

Ill

. TTPT
(Sinhg) d;

cosh;

5o

 

Direct computation shows that (4.16) satisfies (4.14) with inequality.

We next rearrange (4.12) and using the fact that f30, m30,cbbtain

fH + $1.14”: f"- f+ fig?- f3f" - f>0, (4-18)

the last inequality following from (4.14) with inequality. Thus

(4.12) is seen to hold. To verify (4.13) we note that

2
ff" + 2mf' - f23f(f" - i)> o, (4.19)

where (4.14) has again been used.

Finally, we turn to the verification of (4.11). We observe

that from (4.10) (with equality) and (4.14) we have

costh'3 sinth for E 3 E, , (4.20)

which in particular implies that

f'(E) 30 for E 3 Es . (4.21)

Multiplying (4.11) by (1+m) and making use of (4.20) we find that

(4.11) holds provided that

Sinth' - costh 30 for E>E° . (4.22)



19

To verify (4.22) let

¢(E) = sinhE f' - coshE f . for E 3 Eo . (4.23)

Differentiation yields

<I>'(E) = (f" - f) sinhE 30, for E_>E° , (4.24)

where the inequality holds by virtue of (4.14). 4(g) is thus a

nondecreasing function of E. But

Mao) = sinh: Pita): 0. (4.25)

by virtue of the first of (4.15) and (4.21). The inequality

(4.22) now follows.

We now Show that |Vw| attains its maximum at the point

6 =€o.n = 0. From (4.4) and (4.9) we have

.2 2 2 . 2
IVWIZ = f cos n + f sin n . (4.26)

C2(sinh2g+sin2n)

Simple calculations Show that. On using (4.20).

 

2 2 2 2 2
_2 _ f' cos n+f sin n f'(E) _ 2

VW(€,T]) - < '—E' " m(gs 0) 0

I I C2(sinh2E+sin2n) ' ( CS1" 5‘) I I

(4.27)

It is readily shown that the right hand side of (4.27) decreases

with E so that

. 2 . 2

(fl) 5 (653%?) ‘ IMEO. 0H2. (4.28)
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Thus from (4.27), (4.28), (4.16), (4.17) we have

1

 

 

h-mli o
oslvwl s lvwlmax = t” (chsfigz g(Eo;m) . (4.29)

where

(D £1—

m-I-

9(€;m) = I (Sinh%) dc: m = m (so). (4.30)

cosh ;

Therefore if a positive number so exists such that

 

l

- MTT

Tco (51:25:20 51%“ f so: m = 111(50): (4031)

then the second of (4.8) is satisfied. Assuming for the moment

the existence of 50 (>0) we note that w(E,n) given by (4.9),

(4.16) and (4.17) satisfies all of the requirements fer an

admissible comparison function. We can therefore use it, in

conjunction with (3.8), to find a lower bound on the stress

concentration factor K:

 

1

'm
Isinhgo) 1

K3 coshao 9mm) . ”-32)

where m = m(s.) is defined by (2.17), g(E ;m) is given by (4.30),

and So is any positive number conforming to (4.31).

We now prove that such a number can always be found. Furthermore

s. can be determined in such a way that the right hand Side of

(4.32) is maximized. In other words the optimum value for so can be

determined.
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To show the existence of a number so conforming to (4.31),

we define a function y(t) by

_ l

- A» (sinheo) E1T

Y(t) ' coshao 915°:t)
 for t 3 o, . (4.33)

Differentiation with respect to t Shows that y'(t) f 0.

Now let

z(s) = y(m(s)) a s for s 3 O. (4.34)

Using the chain rule and recalling that m(s) is a non-decreasing

function of S we find z'(s) < 0. Thus 2 is a decreasing function

of 5. Moreover 2(0) = y(O) > 0 and z(a0=- «<0. Therefore there

exists a unique positive number 5* such that z(S*) = 0, 2(5) <0

for s > 5* and z(s)> 0 for 0< s< 5*. Thus any number S > 5*

satisfies (4.31). It can be easily shown that 5* is the optimum

value of S. To see this we note that the "best value" of s is a

positive number which conforms to (4.31) and maximizes the right

hand side of (4.32)which meanSnmximizing y(m(s)) given by (4.33).

Since y(m) is a decreasing function of m the optimum value must

minimize m(s). There is only one such value of 5 namely 5 = 5*.

From (4.34) then we have that 5* is the unique positive root 0f

5* = y(m(5*)). (4.35)

and

K = It0° 3 5*/T . (4.36)
noTmaX

The lower bound on the stress concentration factor K given by

(4.36) depends in particular on 1”,, the applied stress at infinity.
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A weaker (and simpler) "load independent" lower bound can be found

which is independent of I”. We simply recall that y(m) is a

decreasing function of m and m 5 -%7- - 1 (see (2.19)). It then

follows that y(m) 3 y(-%— - 1) and so we have

 

s y(-%—-- 1)
K 3 -—:F- 3 T (4.37)

To summarize, an admissible comparison function has been

constructed (see (4.9), (4.16) and (4.17)) and expressionSLfor_lower

bounds on the stress concentration factor for a softening material

deriVed ((4.37))-



5. RESULTS

In this section we first discuss the load independent lower

bound given in (4.37). Then we provide an example of how the

general load dependent lower bound given by the first of (4.37)

can be found explicitly by considering a Special constitutive law.

We conclude with a brief discussion of the limiting case of a

"thin" ellipse.

5.1 The Load Independent Lower Bound
 

Denoting the load independent lower bound in (4.37) by K* we

 

have 1

K = “E '1): (sinhE.)'c 1 (51)

* t W —,-T— . -
°° g(EOS‘E‘l)

where

1 w ( , h f—c

9(Eo 3 5" 1) = I 51" C d; . 0<c<1. (5.2)

50 cash;

It appears that the integral on the right-hand-side of (5.2) cannot

be evaluated analytically and so we seek an upper bound for it. It

can be shown that (see Appendix A)

1 1 l+c

g(go; E ' 1) f 1:? [2(1" tanhE°)]T . (5-3)

SubstitUting into (5.1) and simplifying we find

l-c l+c

B 2 A+B 2

K*3(1+C) (T) (T) 3 (5-4)

where A and B are the semimajor and semiminor axes of the ellipse

respectively.

23
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Specializing to the neo-Hookean material, we set c = 1 in

(5.4) and obtain

K* 3 l + A/B . (5.5)

Recalling the exact result (2.23) we see that the lower bound is

optimal' in this case. We note also that for the special case of

a circle (A = B) (5.4) reduces to

K* 3 1 + c 3, (5.6)

which is the result found by Abeyaratne and Morgan (1983).

5.2 The Load Dependent Lower Bound;
 

Results for a Ramberg-Osgood Material

A Ramberg-Osgood material is a material with a response function

in simple Shear given by

l

k = (((T) e T + .1— T‘? , Q> o, 0<c<1, (5,7)

where k is the amount of shear and T is the corresponding

nondimensionalized shear stress (“I/u); 0 > 0 is a material constant

and c is.a. softening parameter 0 <c <1. From (4.6) we find

that for this material

m(s) = (717-1) -—‘——T . (5.8)
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and by (4.35) the optimum value of s is the unique positive root

of

1

Tm (SIHhEo) ”(5*ll'

5* = 6655:. 915.; m(s.)1 . (5'9)
 

where m(s) and g(E; m) are given by (5.8) and (4.30) respectively. Thus

with a simple change of variable u = e'g we can write (5.9) in the form

‘ 'go 1 I'll

E s ETT 2 fiTT 2 ‘

I [-5- (sinhEo) coshE, (11%) (—£2-) um - e€°] du = 0 .

o °° ”“ (5.10)

Solving (5.8) and (5.10) numerically, the value of 5*, and hence by

(4.37), a lower bound on the stress concentration factor K can be

determined.

Obviously the lower bound depends on the geometry of the cavity

and the material properties. In Figure 2 the effect of geometry

is shown where we have drawn the graphs of S*/Tm versus Tm for a

material with the constant 0 = 100 and the softening parameter c = .1

for different ellipses. Similar results are shown in Figures 3 and 4

for values of c = .2 and .5 respectively. Figure 5 on the other hand

shows the effect of the softening parameter.‘ Here we have drawn the

lower bound versus 1m for a circle. The material constant has again

been taken as Q = 100 but the softening parameter varies.

It can be seen from these Figures that for small values of the

applied stress, the graphs are almost horizontal with the load

dependent lower bound nearly equal to the exact value for the

linear case i.e. l + A/B , as one would expect. 0n increasing the

applied stress the load dependent lower bound S*/Tm, as expected.
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decreases, Since the material is softening. The decrease in the

lower bound at higher loads depends on the softening parameter as

is shown in Figure 5.

5.3 Limiting Results for a Thin Ellipse
 

The case of a thin ellipse in which B/A <<l is of interest

since it can be used to model a straight crack. If in (5.4) we

assume that B/A <<l we find that

_ l+c c

K*“‘ 2 T (1+C) (_%_) .’ (5.11)

where p = 82/A is the radius of curvature at the "tip" of the

ellipse.



6. CONCLUDING REMARKS

In this section we first discuss the question of obtaining

an upper bound for the stress concentration factor for softening

materials. We will then briefly consider upper and lower bounds for

hardening materials and conclude with some suggestions for further

work.

6.1 Upper Bound for a Softening Material
 

We recall that Theorem 2, Section 3, will yield an upper bound

on Tmax and hence on the stress concentration factor if one reverses

the inequality Signs in (3.3) and (3.5) (or equivalently in (4.7),

the first of (4.8) and (3.5)). Again it is natural to seek

comparison functions of the form (4.9) which leads to (4.10)-(4.14)

with inequality Signs reversed. Since by the first of (4.15)

fig.) =0. both (4.11) and (4.13) require that 2mi'2(g,) 5 o (m is

positive, see (4.6)), which yields f'(Eo) = OI Consequently,

comparison functions of this form are not of interest. Attempts to

construct admissible comparison functions of a different type have

so far proved .unsuccessful. Since the stress response curve for

a softening material always lies below the corresponding curve for a

linear material, one might conjetture'tha't 1+ MB is a universal

upper bound for K. We have not, however, been able to provide a

proof for this conjecture.
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6.2 Upper Bound for a Hardening Material
 

AS was pointed out at the beginning of Section 4, the results

found there for a softening material can be modified to yield an

upper bound for a hardening material.

We first note that from (4.5) and (2.18) one has

2 . 2

n(s) = min 2T V (T ) . (6.1)

03155 V(T )

Now if for any positive number so, w satisfies

2

(we;
2 2 2

+ wn) (wEa + who) + n(so) [wE wgg + ng wn wEn + wn wnn

1 2 2

- fi'("g t wn )(h€w€+ hnwn)] 50

on D, (6.2)

+ w < 0£5 nn _ , O<|Vw|< so on D, (6.3)W

then L w f 0 on 0+. Therefore in the upper bound version of

Theorem 2 we can replace (3.3) by (6.2) and (6.3).

It can be verified that compariSdn functions of the form (4.9)

are admissable provided (4.10)-(4.14) hold with inequality signs

reversed and m(s) replaced by n(s). Equation (6.3) must of course

hold. For Simplicity here, we confine attention to a load

independent upper bound K*. Here we replace n(s) by %- - l (b>l)

and after some simple calculations strictly analogous to those

in the softening case we find

* = (sinhg.)'b 1.
(6.4)

coshgo g(Ea; %__1)

7
V

  



33

where g(Ea; %-- 1) is given by (5.2) with c replaced by b(>l).

It can easily be Shown that

l+b

914;... ‘3-1) 313,5 [2(1-tanh5all 2 . (5.5)

Substitution in (6.4) yields

123 1:92
K" 5 (Ma) 1—2—1 i—B-g—g— . (6.6)

where A and B are the semimajor and semiminor axes of the ellipse

respectively. In the special case of a circle (A = B) we find

*

K 5 l+b which is the result found by Abeyaratne and Horgan (1983).

6.3 Suggestions for Further Hork
 

We have established lower bounds for softening materials (and

upper bounds for hardening ones) (see (4.37), (5.4) and (6.6)).

As noted previously, we have been unable to find upper bounds for

softening materials (and lower bounds for the hardening case).

This issue should be resolved if possible. There are also some

places where the present work may possibly be improved. The

differential inequalities (4.10)-(4.14) are sufficient conditions

for -L w 3 0. While it is not difficult to establish necessary

and sufficient conditions they are rather complicated. It would be

worthwhile to investigate these and see if sharper results can be

established. Another area where improvement may be possible is in

connection with the integral on the right hand Side of (5.2).

Efforts have been made unsuccessfully to evaluate this integral

analytically; furthermore, it does not appear to be evaluated

explicitly in the standard integral tables. Finally, it would be
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of interest to use numerical methods (e.g. finite difference or

finite element schemes) to compare with the results obtained here.



APPENDIX



APPENDIX A

An Upper Bound for g(Eo; %-- 1) Defined by (5.2)
 

 

We wish to find an upper bound for the integral

Q

. 1-c

915.; 35- 1) = j ‘5‘“ ’ d-C . t.>o. 0<c<1. (4.1)
cosh c

Ea

Making the change of variable 2 = eZCL+ 1 one finds

. l - C 1 z-2 2
g(Eos 'c' - 1) ' 2 I 7 (2-2) (211-) (12. (A.2)

1+e25°

Since 0<c<l, 0<(z-2)/(z-l)<1 it follows that

°° l-c 0° _ 3+c

9(53; %-- 1): 2c 1 1$1§—--7— dz 5 2c 1 z -7_' dz =

z

1+92£° 1.1.9251:

21er 25 1‘23
= T;E-'ll+e °) . (A.3)

On using the identity l+e2€° = 2(l-tanhEo) we have

l+c

g(Ea: %-- 1) s T;E'[2(l'tanhgo)]-2— . (A.4)
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PART II

DEFORMATION AND STABILITY

OF

A PRESSURIZED TUBE OF HARMONIC MATERIAL



1. INTRODUCTION

The finite deformation of a circular tube of homogeneous,

compressible, elastic material of harmonic type subject to simultane-
 

ous internal and external pressure is considered. The fundamental

(plane strain, axisymmetric) solution is obtained. The stability of

this solution in the two special cases of zero external pressure, and

zero internal pressure is investigated.

The stability problem for a pressurized tube has been considered

by a numberaninvestigators but mostly for incompressible materials.
 

See e.g. Hill (1975, 1976), Haughton and Ogden (1979a, 1979b) and

references cited therein. This problem has also been studied

numerically for elastic-plastic materials by Chu (1979). Larsson et a1

(1982) and Reddy (1982) among others. Sensenig (1964) has inveStigated

the stability of a tube composed of a harmonic material of special

type - the so called standard harmonic material - under external

pressure. His work for this problem seems to be the only one to deal

with a compressible elastic material.

Larsson et a1 (1982) have conducted a numerical and experimental

investigation of the deformation of internally pressurized circular

tubes composed of ductile metals with slight geometric imperfections.

They examine in detail the onset and development of surface

instabilities as well as the subsequent initiation and growth of

shear bands until failure. The present study was undertaken in an

attempt to examine this problem analytically.
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In the following section the axisymmetric problem for the

pressurized tube is formulated and a brief description of harmonic

materials given. The deformation and stress fields are determined

explicitly. We observe that the stress field is essentially

independent of the constitutive details of the (harmonic) material
 

under consideration. The examination of the deformation field Shows

that in an externally pressurized tube the pressure must be restricted

to values less than 2p so that no interpenetration occurs. Here n

is the shear modulus of the material at infinitesimal deformations.

For an internally pressurized tube, one finds that the pressure must

be restricted to values less than n(l-azlbz) (a and b being the

inner and outer radii of the underformed tube respectively) because

the hoop stress at the inner wall becomes unbounded at this pressure.

This is an unexpected result since there are no discontinuities

in either loading or geometry and is clearly a consequence of the

nonlinearity of the constitutive relation.

In Section 3 the equilibrium problem for a tube with small

geometrical imperfections in both internal and external boundaries

is examined. It is assumed that the resulting plane strain

nonaxisymmetric deformation field is a small perturbation of the

axisymmetric deformation of a perfectly circular tube. A standard

perturbation expansion is then employed to derive the equilibrium

equations and the boundary conditions. The equilibrium equations

in terms of displacements consist of a set of two linear homogeneous

second order partial differential equations with variable

coefficients.
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In Section 4 we first solve the equilibrium equations and then

consider the problem of stability.

In the case of internal pressure only, the analysis shows that

no instability occurs. On the other hand, in the case of external

pressure the occurrence of an instability is established and the

corresponding smallest buckling load determined. Moreover, one finds

that for sufficiently thick tubes, and under a rather mild

restriction on the material behavior, the buckling loads corresponding

to different modes are distinct and form a bounded monotone increasing

sequence.

Finally, in Section 5 some numerical results for a special

constitutive law are presented.



2. THE PRESSURIZED CYLINDRICAL TUBE; HARMONIC MATERIALS

2.1 Statement of Problem
 

Let the open region 0. = {(r, d )1 a<r<b, o<¢5 211} denote the

cross section of a right circular cylinder with inner radius a, and

outer radius b, in its undeformed configuration. The cylinder is

subjected to internal and external pressure of magnitude pi and p0

respectively. The ensuing deformation is a one-to-one mapping which

takes the point with polar coordinates (r,¢ ) in the undeformed region

00 to the point (p,w ) in the deformed region 0. We assume that

a state of plane strain prevails with appropriate tractions being
 

applied to the ends of the cylinder.

In View of the symmetry of the problem. the deformation is

axisymmetric with

o = rf(r). w = d on 0a. (2.1)

where the function f(r) is to be determined. The polar components

of the deformation gradient tensor 5 associated with (2.1) (See e.g.

Malvern (1969), p. 652) are given by

Frr = rf'(r) + f(r), F¢¢ = f(r), Fr¢= F¢r = o, (2.2)

where the prime denotes differentiation with respect to the argument.

The left Cauchy-Green deformation tensor is defined as G = F FT

and its fundamental scalar invariants can be taken as

I = trG, J = (det 6);, (2.3)
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so that in the present problem

I = rzf'z + 2rff' + 2f2, J = f2 + rff'. (2.4)

The cylinder is assumed to be composed of a material of "harmonic

type" as introduced by John (1960), and investigated in detail by

Knowles and Sternberg (1975). The brief account of harmonic

materials given in the following sub-section follows closely the

work by Knowles and Sternberg cited above.

2.2 Harmonic Materials
 

Harmonic materials are compressible elastic materials with a
 

strain-energy density function in plane strain given by

w(1,.1) = 2u[H(R) - J] . R = (I+2.1)5, (2.5)

where u is a positive constant that can be identified with the

infinitesimal shear modulus and H'is a continuous function of .R,

defined for all R>'0, with continuous derivatives of all orders.

The Cauchy stress tensor g’ associated with a plane deformation

is given by

' _ 2 an an

1-33757ng (2.5)

= 2u{]jh(R)§+ [H(R)-l] 1}, on o,

where we have set

h(R) = fliégl- for R> 0, (2.7)

and El 715 the second order identity tensor. The Piola stress field

9 associated with the Cauchy stress field T is defined by

g = JIF'T = 2 u{h(R)f + J[h(R)-1] f'T}: on Da. (2.8)
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where PET is the transpose of the inverse of ‘F .

In order to ensure a physically reasonable response, one must

impose certain restrictions on the constitutive function H(R).

Since Cauchy stress and the strain-energy density should vanish

in the undeformed state, we must have

H(2) = 1, H'(2) = l. (2.9)

Furthermore, the strain-energy density function (2.5) should be

positive in every state, except the undeformed one. This requirement

entails the inequality

2
H(R) > R /4 for all R> 0, R: 2. (2.10)

Next, from consideration of the true stress field induced in a plane

isotropic deformation and the requirement, on physical grounds, that

stress should be monotone increasing with the amount of stretch one

deduces that h(R) = H'(R)/R must be monotone increasing, i.e.

h'(R) > 0 for 0<R<m . (2.11)

Finally, we will suppose that the material admits a regular state of

uniaxial tension in plane strain, for which it is necessary and

sufficient that there exist a-number R, 8 (1,2) such that

h(R*) = O, h(R) +.1 as R +»m and H"(R)>l for R*< Rcw. (2.12)

A more complete discussion can be found in the paper by Knowles and

Sternberg (1975).

2.3 Deformation and Stress Fields
 

Returning to the problem under consideration we have from (2.4)

and the second of (2.5) that

R = 2f + rf', ax r<b. (2.13)
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On substituting from (2.2) into (2.8) and making use of (2.13) one

finds that the components of Piola stress 9 are given by

Orr=ZUEH'(R)'f] 3 Cd) =2U[H'(R)- (R’f)] 9

¢

0 = O. (2.14)

r4 = Cor

Also from (2.8) we find the Cauchy stress components

Tno= Orr/1’ W = Goo/(f"f'.)’ Tow = Rio = 0' (2'15)

In the absence of body forces, the equilibrium equations div53= 0,
~

in the present case reduce to the single equation

0

a°"’ + -—EE———99 = o. (2.16)
or r

After substituting for the stresses from (2.14) and making use of

(2.13), one finds that (2.16) reduces to 3%" [H'(R)] = 0 for a<r<b

which is equivalent to

dH(R) = constant. (2.17)

R = 2f+rf'

Now by (2.12) H"(R)> 0 for R* <R<Gh Therefore,if for the deformation

considered here.

R > R*, (2.18)

where R is given by (2.13), then H'(R) is monotone increasing on the

interval of interest and hence may be uniquely inverted. It will be

Shown later that (2.18) indeed holds. Here we gggpmg that (2.18)

holds and so deduce from (2.17) that

2f(r) + rf'(r) = R0 (constant)for a<r<b. (2.19)
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Integration of (2.19) yields

f(r) = %— R0 + -§- . (2.20)

1‘

where R0 and C are constants to be determined.

The prescribed (pressure) boundary conditions are

Tpp =- P1. on P=01 ,Tpp =- P, on P = B, (2.21)

where a(=af(a)) and B(=bf(b)) are the inner and outer radii

respectively, in the deformed configuration. In view of (2.7),

(2.14) and (2.15) the boundary conditions (2.21) may be written as

20 R0 h(R.) = (2n — pi) f(a),‘ (2.22)

zu Ro h(R,) = (2n - po) f(b). (2.23)

Upon substituting for fie) and f(b) from (2.20) and rearranging,

one has

411 R.,a2 -2(2u - p1.) h(Ro) = (211 - p1.)a2R°

411R°b -2(211- p.) c (211- p°)b2R° , (2.24)

which can be solved for h(Ro) and C to yield

N

(52 - a2) (214 - p.) (211 - p1.)

4P[b2(2u - pi)’- a2(2P - pal]

 h(Ro) (2.25)

a2b2(p, - pa)Ra

c = 2 g 2 . (2.26)

2[b (2i‘- 9.) - a (an- 9a)]

 

In view of (2.1), (2.20), and (2.26) it is evident that the deformation

field is completely determined if (2.25) can be solved for R°(>0).

By virtue of the assumed monotonocity 0f h(R) the existence of a

unique positive solution to (2.25) is guaranteed provided that its
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right-hand-Side lies in the open interval (0,1) (see (2.11), (2.12),

(2.18)). It will be Shown later that this is always satisfied if

the applied pressures are appropriately restricted.

The correSponding components of Cauchy stress are found from

(2.7), (2.14), (2.15) in conjunction with (2.19), (2.25) and

(2.26) to be

r - Q

TDD = 211 LR;11£R°) _ 1] - 211 [01" + 02] ’ {23.27)

3 2

2

Q r + Q

Tww = 2 11[%:—:"£_%%;' '1] = 21-1 [fir—0'2- , (2.28)

3 ' 2

where

_ -2 2

Q] " p1 a (211' p0) " pub (21'1 " pl) 9 (2-29)

02 = 2)) 4213(1).i - p.). (2.30)

- 2 2
Q3 — 211 [b (211 - pi) - a (211 - p.)]. (2.31)

The deformed inner radius of the tube a is found from the first of

(2.1), (2.20), (2.25) and (2.26)to be

a = aR.(b2 - 32) (211 'Po) (2 32)

2 2 ° °2[b (211 - p1) - 41(211 - 9.)]

Examination of (2.27) - (2.31) Shows that the true stress distribution

in the cylinder is independent of the constitutive function H(R) and
 

depends on the (harmonic) material at most through its infinitesimal

Shear modulus p.
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He now examine the preceeding results in the two cases of

internal and external pressure separately:

(i) Internal Pressure Only (p1 > O, p. = O)
 

Considering the hoop stress T we find that - 02(Q]+Q3) <0,

WW

provided that pi <21). Assuming temporarily this to be the case

it then follows from (2.28) that T is monotone decreasing with r,

14

so that the maximum hoop stress occurs at the inner surface r-= a

and is

T “1% (b2 + 32) (2 33)

142 m2 _ a2)_pib2 - °
 

For this to be positive and bounded, one must have

p. q, (1 - azlbz) (< 2 a ). (2.34)
1

It is easy to check that (2.34) implies O<:h(R,)< l, i.e. the right-

hand-Side of (2.25) with po = 0 is a number in the open interval

(0,1). Thus (2.25) can be solved for a unique value of R. (> 0).

Moreover Since h(R) is monotone increasing it follows that Ro> R,

and (2.18) is thus verified.

 

(ii) External Pressure Only (pi = 0, p,>>0)

0n consideration of (2.32) with pi = 0, we see that as

p, + 2p , 0+0 i.e. the cavity closes at p. = 211 . (For values of

p.> 2“ one finds ot< 0!.) He therefore require that

p°< 2p . (2.35)

This also ensures that 0< h(R.)< 1, i.e. the right-hand-side of

(2.25) with pi = 0 lies in the open interval (0,1). The argument
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in the previous case applies and hence a unique solution R, (> 0)

for (2.25) is guaranteed and (2.18)is verified.

In the particular case when the applied pressures are small

(pi/Zn . p./20 <<‘1) it can be easily verified that upon

linearization, (2.27) - (2.31) yield the well known results according

to the infinitesimal theory of elasticity (see e.g. Timoshenko and

Goodier (l970),p 70)

  

  

a2b2(p° ‘ P-) p 92 ' pob2

T = 2. 2 1 712 I i 2 T ' (2°36)
pp b - a r b - a

a2b2(p° ' pl) 1 piaz ' pobz (2 37)

't = '-' + . .

W b2 - aZ— :72 a - a2

To summarize,in this section the plane axisymmetric deformation

of a hollow cylinder subject to simultaneous internal and external

pressure has been examined. The stress and deformation fields were

determined (see (2.1), (2.20), (2.25), (2.27)-(2.31)) and various

features of these fields were examined. In the following sections

the stability of the equilibrium solution obtained here will be

investigated. This investigation will determine whether the results

found here pertaining to an infinite hoop stress (in the internal

pressure case) and the closing of the cavity (in the external pressure

case) are indeed attainable.



3. GEOMETRICALLY PERTURBED PROBLEM

3.1 Deformation and Stress Fields

In order to investigate the stability'LI) of the equilibrium

solution found in Section 2, we consider the pressurizing of a right

hollow cylinder with "almost" circular boundaries

r=a+ €91(¢ ), r=b+ Ego(¢ )9 131 (<19 05¢: 211:

91.10) = 91(211) . 9.10) = 90(2111’ (3.1)

where gi, g, are bounded fuctions on [0,2n]. The resulting

‘deformation is assumed to be a slight perturbation of the purely

radial deformation already'discussed.'

To this end we introduce

o = rf(r) + 6170.9). 4= *9 + \7 (no). (3.2)

"
3
1
0
1

where (r,4>) are the polar coordinates of a generic point in the

undeformed configuration which is mapped to (0.41) by the deformation

(3.2), and e: is a measure of the "imperfection" of the boundaries.

Since it is assumed that e: is a small number, in all the

developments that follow.. terms which contain powers of 6: higher

than one are neglected.

 

(1) As mentioned in the Introduction the study of a geometrically

perturbed problem was undertaken in the hope of calculating

the buckling pressure for an internally pressurized tube as

well as obtaining detailed information regarding the deformation

field (from the prebifurcation state to beyond the occurrence

of instability). The buckling pressure itself can of course

be determined without the introduction of geometrical

inhomogenities. ‘

48
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The polar components of the deformation gradient tensor '5

associated with (3.2) are given by (see e.g. Malvern (1969), p. 651)

= ' ~ = E. ~ - ~F ‘f +-rf + cur , F r (u fv),
rr r0

'
9

(3.3)

= €(fv)r s F¢¢ = f +

$
1
1
0

where a prime denotes differentiation with respect to r and

subscripts r and 4 on E and (fv) denote partial differentiation

with respect to r and 4 respectively.

For the deformation given by (3.2) we find from (3.3) that

T

I = tr 155 = I,+eI, .1 = det f = d,+e3, R = (1+2J)5 = R,+cR, (3.4)

where 1,,J, and R, are the invariants in the axisymmetric case and

are given by the right-hand-sides of (2.3), (2.4), and (2.19)

respectively. The "first order invariants" I, J, and R are found to be

I = 2 {(f+rf')tlr + .§.[J+(t5)¢] } , (3.5)

$1 = for + I1-(1E+ri') [fi+(f§7)¢] , (3.5)

R= {Ir +1F WWW] . (3.7)

Next we expand h(R) = h(R,+cR) in powers of cR about R = R,.

To leading order we have

~

h(R)=h(R.) + J). 1=Rh'(R.)= gem-(12.) -h(R.)1. (3.8)

Substituting for I, J, and h(R) from (3.5), (3.6) and (3.8) into

(2.8) we find

° +eo
Orr = orr . rr ’ oro =80r¢ (3 9)

“4 r g ”or ’ “‘44 . “44> + 8°44 ’
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where o:r and 0° are the Piola stress components in the axisymmetric

¢¢

case and are given by the right-hand-sides of (2.14) and Err’ Ero’

5 , and 5 are found to be

¢F ¢¢

arr = 2n { H"(R,) [or + %. (a + (fV)¢)] - ;.[a + (fV)¢]} . (3.10)

5r¢ = 2n {%-h(Ra) (G¢ - t3) - [h(R,) - 1] (fv)r 1 , (3.11)

3¢r = 2v (h(R.) (f3), - 1-[h(R.) - 1] 16¢ - i5) 1 . (3.12)

6¢¢ = 2a {H"(R,) [ar + é-(a + (f;)¢)1 - Gr 1 . (3.13)

Having found expressions for the stresses, the equilibrium

equations, div 9 = Q in polar coordinates, can be written down

immediately. (See e.g. Malvern (1969),;L 655). These are

H"(R,) { r2 J + r [Ur + (f;)rqg - U - (f;)¢}

’1 (3.14)

+ h(Ra) Iu¢¢ - (f3)¢ - r (f5)r¢] = 0 .

on 0,:

H"(R,) [(rU + J) + (i?) 1

r ¢ ~ ¢¢ ~ ~ ~ (3.15)

- h'(R,) [r2(f;)rr - r(u¢ - fv)r + u¢ - fv] = 0 .

on Do

It should be noted that the equilibrium equations div 9 =_9 give

rise to two groups of terms; one of which does not involve 5 while

the other one does. The former consists of one equation which is,

of course, exactly the same as that found when considering the

equilibrium of the unperturbed cylinder (see (2.16)). The latter

consists of (3.14) and (3.15) above.
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3.2 Pressure Boundary Conditions on a Perturbed Surface
 

we next formulate the boundary conditions for a perturbed boundary

subject to pressure. Once this general form is derived, specialization

to the particular cases of internal and external pressure will be

immediate. To this end let the unit outward normal to a surface S

at point M in the undeformed configuration be N. Under deformation

the surface S wil be mapped to S and the point M to m. Let

p be the unit outword normal to S at m. Denote the area of a surface

element surrounding M on S by dA and its image under the given

deformation by da. Then (see e.g. Chadwick (1976), p.61)

9 = jE'T ! $9., (3.16)

If the deformed surface being considered is subject to a hydrostatic

pressure p then the appropriate traction boundary condition is given by

I p = - p g on s. (3.17)

It is often convenient to transform this condition into one which holds

on the (known) undeformed surface 5. To this end, we substitute for

I and g in (3.17) from (2.8) and (3.16) respectively. This gives

a §= - p Jf’T N on s. (3.13)

He now consider the particular case in which the surface S, in

the undeformed configuration, is a right cylindrical surface, with

the generator perpendicular to the (r,¢) plane. The intersection of S

with this plane is given by

r = r, + cg(¢), |e|<<l, 0<¢§2n . (3.19)

We approximate the boundary condition (3.18) to leading order in

c. In (3.19)above, r, (>0) and c are constants and 9(a) is a given
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bounded smooth function of 4) such tht ¢(0). = 0(211). (See Figure 6.)

As mentioned previously, 5 determines how much the curve under

consideration differs from the circle r = r,.

From elementary calculus one has

-1

tan 9 ”(3%) . (3.20)

where 6 is the angle between the radial line and tangent to the

curve at any point. The polar components of the unit normal 3

are "r = - Sine and N¢ = c050. Equation (3.20) in conjunction

with (3.19) yields

cote = eg'(¢)/r. 4 Mai). ( 3.21)

where a prime denotes differentiation with respect to ¢~ 0n

recalling the trigonometric identities sine = (1+cot20)'é and, ’

cose = cote (1+ cot26)'é, expanding their right-hand-sides by the

binomial formula, and making use of (3.21) one finds that to first

order in e

"r = - 1 , N¢ = cg (¢)/r, . (3.22)

We turn now to the evaluations of the remainingtquantitiesin (3.18).

T
By wayiyfillustration, expressions for one element of 5 = JE'

and g; each will be derived in detail. The derivation of other

elements is accomplished in a similar fashion.

From (3.3) and the second of (3.4) it follows that the element

All is given by f+e [5 + (f;)¢]/r with r = r, + eg(¢). Now
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r = r. + 89(9)

 

 

 
Figure 6. Geometry and coordinate system for the

perturbed boundary.
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Elf + E- [u + (fV)¢] } = f(r.+69(¢))

r = ro+€g(¢)

WEE—9175) [111m "’ 89191940

+ fir. + egia))i¢(r. + egit).¢):1. (3.23)

After expanding the right hand side in a power series and dropping

terms of order higher than unity in 5 one finds

w+ étfi+uhpi =flm)

r = r'o + €g(¢)

+e{rongw)+%wumn+ion%nuhii (an)

In a similar fashion one may write

 

Orr = orrlra + €9(¢).¢) = orr(r..¢)

Bo _

+ 3,7" ' e9(4). (3.25)

'r=r¢

to leading order in e. Substitution for Orr(r°’¢) in the above

from the first of (3.9) and (3.10) gives

3

0rr = 0° (r.)+-EIC3rr(ra.¢) + Orr 9(9)] .
r = r? + cg(¢) rr 3r

 

r=r,

(3.26)

T

Calculating the other elements of JE' and 9, making use of (3.18)

and (3.22), and after some algebraic manipulation.the order 8 terms

in the boundary conditions take the form
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. 20H"(R.) [railr + G (ii)¢] - (2n - p) (a + (fv)¢]

f 12v - plra f'g on r = r.. (3.27)

and

2u bin.) [roii31r - 6 + ii] + (Zu - p)(J¢ - f3)
9

LZPH'(Ro) - (R0 - f) (2p -p)] g' on r = r.. (3.28)

The boundary condition arising from the term of zero order is of course

Cir + pf = 0 as before.

3.3 Special Cases
 

He now specialize the results found in the previous subsection

to the two cases of internal and external pressure loading. In both

cases the inner and outer boundaries are assumed to have imperfections

as described by (3.1). The two cases differ only in the loading.

Case (i) Internal Pressure Only (pi> 0, p, = 0). From (3.1), (3.27)
 

and (3.28) with g(o) = gi(¢), p = pi, and r, = a, the boundary

conditions on the inner boundapy are found to be
 

ZpH"(R,) [aar + a + (i3)¢1 - (2v p.) [G + (i5)¢1

= (2p - pi)af'gi on r a, (3.29)

2ph(R,) [a(fii)r - G + f3] + (zu - pi) (5¢ - f5) =

= [ZuH'(R.) - (Ra-f) (Zn - 91)]9'1 on r a. (3.30)

Using the same equations as above with g(o) = g,(¢), p = 0, and

r, = b, one finds that the boundary conditions on the traction-free

outer boundary are given by
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H"(R,) [50'r + J + (fG)¢] - u - (inp = bf'g, on r = b, (3.31)

h(R,) [b(fv)r - u¢ + fv] + u¢ - fv '

= [H'(R01‘Ro + f] 95 on P = D. (3.32)

Case (ii) External Pressure Only (pi = 0, p,>0)
 

Again using (3.1), (3.27) and (3.28) with g(o) = gi(¢), p = O,

and r1 = a, the boundary conditions on the traction-free inner

boundary take the form

H"(R,) [aur + u + (fv)¢] - u - (fv)¢ = af'gi on r = a, (3.33)

h(R,) [a(fv)r - J + f5] + J - f5 = [H'(R,) - R, + f] 9%

¢ 4

on r = a. (3.34)

The above equations with g(o) = g,(¢), p = p. and r0 = b furnish the

boundary conditions on the outer boundary as follows
 

zuH"(R.) [b5r + G 1. (f3)¢]- (2n - p.) [5 + (fV)¢] =

= (2p - p,) f'g, on r = b, (3.35)

Zuh(R.) [b(i’v')r - G + ii] + (2n - p.) 16¢ - t5) =
¢

= [ZUH'1RO) ‘ (R0 ’ f) (2“ ’ po)] 93

on r = b. (3.36)

The formulation of the equilibrium problem for a pressurized

cylinder with "imperfect" boundaries is thus complete. The solution

of the equilibrium equations (3.14) and (3.15) subject to the
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boundary conditions (3.29) - (3.32) or (3.33) - (3.36) will be

considered in the following section. A unique solution of this

problem 'hnplies stability.



4. STABILITY

4.1 Solution of the Equilibrium Equations
 

Re now turn to the solution of the equilibrium equations

(3.14) and (3.15). Assume that the displacement components 5

and f5 can be expanded in trigonometric series of the form

5 = f an(r)cos no , (4.1)

n=o

f1? - 3"? r bn(r) sin no , (4.2)

“:0

where without loss of generality we take b,(r) a 0. Substituting

into the equilibrium equations (3.14) and (3.15) we find that, for

each n30,

H"(R,)(ar" + 1? afl + nbni'- nh(R,) (a;1 + f,— b" + a, an) = 0, (4.3)

hit.) in; + $.- bn +32%? 40;, +§an +£2.59]

- H"(R,) g2 (al;I + '17- an + on) = 0, (4.4)

for a<r<b, where the primes denote differentiation with respect to

r.

0n setting

- . 1
xn(r) - an + F'an + nbn . a<r<b, (4.5)

yn(r) = bl" + $- bn + "7 an, - a<r<b, (4.5)
r

58
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we can write (4.3) and~(4.4) as

H"(Ro) XA ' "h(Ro) Y" = 03 (407)

MR.) (y,',+1;yn)- H"(R.) 1, x,n = o. (4.8)
r

for a<r<b. This is a system of two first-order ordinary differential

equations for xn(r) and yn(r). In solving this system we distinguish

between the two cases n = O and n 3. 1.

Leaving the special case n 0 for later consideration, we

m-l
seek a solution of the form xn Arm, yn = Br , where m, A and

B are constants. Substitution into (4.7) and (4.8) yields the

general solution.

xn(r) = h(Anrn + 8n r'n) .2 (4.9)

-n-l)
yn(r) = H"(anr" - 9 r , (4.10)

n

n = 1,2... Here and in the following h,H', and H" are always

evaluated at R,. One can now solve the nonhomogeneous differential

equations (4.5) and (4.6) in conjunction with (4.9) and (4.10) for

an(r) and bn(r). This yields

1 2 1 D1
a](r) = 3- (3h-H")A]r +2— (h + H")B.I £14 r+ C1+:2- . (4.11)

b ( ) 3 1(3H" h)A + 1 (h H") 81 1 (h+H") B1 C1 + D1

1r 5 ' N 2 ‘ ‘7'2 'FPW‘F';3’

  

(4.12)

a (r) = 2h-n(H"-h) A r"+]- 2h+n(H"-h) 8n + C rn-l+ D11 (4 13)

n 4(n+1) n 4(n-1) rn-T. n rn+1 ’ ‘
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B
-h) n 2H"-n(H"-h) n n-Z n

g ZHII+n(HII

bum 4mm
  

n = 2, 3,...

Turning now to the special case n = 0, one may readily integrate

(4.7) to obtain

x°(r) = A0. (4.15)

Equation (4.5) then yields

aJH= ;mr+§. mam

Integrating (4.8) one finds that y°(r) = Bolr. 0n recalling that

b°(r) E 0, we find 80 = 0 and thus

yo(r) = o. (4.17)

A formal solution to the displacement equations of equilibrium

is thus given by (4.1), (4.2), (4.1l) - (4.14) and (4.l6). The

coefficients Ao. Do. A". Bn’ C", and D" (n = l, 2,...) are constants

which are to be determined from the boundary conditions. when the

imposition of the boundary conditions leads haunique values for

A0, Do, and An - Dn (n = l,2,...), the corresponding equilibrium state

of the tube is stable;, otherwise one has a bifurcation and

stability is lost.

4.2 Buckling of an Internallnyressurized Tube
 

In this sub-section we consider the boundary conditions for the

case of an imperfect cylinder subject to internal pressure only.

We suppose that the functions gi(¢) and g°(¢) defining the boundaries
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of the cylinder can be written in the form of infinite series

91. (o) = f qn cos ncp , (4.18)

n=o

go(¢) = fg sn cos no. (4.19)

n=o

Introducing the displacements (4.1) and (4.2) along with (4.l8)

and (4.l9) into the boundary conditions (3.29)-(3.32), making use

of (4.5)and (4.6), and equating the coefficients of cosno and sinn¢

leads to

II _ _ = _ I =

ZuH axn (2p pi) (an + nab") (2p pi)f aqn on r a,

(4.20)

2 -
Zuha yn - (Zu - pi) (nan + ab")-

: ' [ZUH' ' (Ra ' f) (2“ ' pi)]"qn on r = a’ (4'21)

H bxn - an - nbbn = f'bsn on r = b, (4.22)

2 - l =hb yn - nan - bbn - - (H - R°+f) nsn on r b, (4.23)

n = O, l, 2,...

The three cases n = 0, n = l and n 3 2 must be treated separately.

First we consider the case n = 0. Substituting from (4.l5) and

(4.l6) into (4.20) and (4.22) yields the following set of two linear

nonhomogeneous algebraic equations for A0 and Do.

2

2 H"'(2H'pi)/2 '(ZU'pi)/a Ao (Zn-Pi)f'(a)Qo

H"-l/2 -l/b2 o° f'(b)s°

(4.24)
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As mentioned at the end of Sub-section 4.l the question of importance

to us is whether a unique solution A., Do to (4.24) exists. To

investigate this we compute the determinant of the coefficient

matrix in (4.24) to find

A = E%§'[(2U'Pi) (I + 35§111-- 4uH"J. (4.25)

where A denotes the determinant and k = (a/b)2. Setting A = 0

and solving for pi we have pi = 2u(2H"-l) (l-k)/(2H"-(l-k)).

Recalling that H">l, by (2.l2), pi>2p(l-k). But for finite hoop

stress we must have p{<u(l-k) (cf.(2.34)). It therefore follows that,

for pi in the admissible range, A: 0 and hence a unique solution

exists.

Next we turn to the case n = l. Substituting from (4.9)-(4.12)

into (4.20)-(4.23) and simplifying we find the following set of

algebraic equations

y

[2“H""'(2“‘Pi)‘""+h)/4Ja [ZUH"h+(2v-pi)(H"-h)/2]a" -2(2u-Pi)a'3 ‘

2pH"h-(2u-pi)(H"+h)/4 -[2uH"h-(2u-pi)(H"-h)/2]a'2 -2(ZlJ-p1.)a'4

  
[H"h-(H"+h)/4]b [H"h+(H"-h)/2]b'1 -2b'3

i H"h-(H"+h)/4 -[H"h-(H"-h)/2]b'2 -2b"4 .

P A1 I = '(zu-pi)f'q] l

81 -[2m'-(R.-f)(2u-p,.)Ja'znl

o1 f'si

L . L-(H'-R.+f)b'zs1 J. (4.26)    
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The terms involving C1 drop out of these equations and thus its value

is arbitrary. It will be shown, however, that the expressions

involving C1 correspond to a rigid body translation and therefore

C1 can be taken to be zero.~ Two considerations concern us here as

regards equations (4.26). We must first show that the four equations

for the three unknowns A], B], and D1 are consistent so that they

can indeed be solved. We will then consider the uniqueness issue.

Algebraic manipulation of equations (4.26) and use of (2.25)

and (2.26) with pa = 0 gives 81 = 0. Thus (4.26) reduces to a

system of four equations in the two unknowns A1 and D]. Note that

this amounts to the removal of the second column of the coefficient

matrix in (4.26). In the new matrix thus found the first row

is a multiple of the second and the third row a multiple of the fourth.

To establish consistency it is necessary and sufficient to show that

the same relations hold between the elements of the right hand side

column. Simple calculations show that this is indeed the case.

Thus we are left with the following system of two equations in two

unknowns

ZUH"h'(ZU'pi)(H"+h)/4 ‘2(ZU'Pi)/a4 A] ' = (ZU’Pi)f'(a)q]/a

H"h-(H"+h)/4 -2/b4 o1 f'(b)s]/b1

(4.27)

To investigate the uniqueness of solutions we calculate the

determinant of the coefficient matrix. Denoting this by A we find

. (1-k)2(p.-2u) (k+1)(2u-Pi)-8ukH"
A = Buaq [2” 'I' pi+2(I(-1)]J ] , (4.28)
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where k = (a/b)2, Setting A = 0, one finds pi = 2p and

pi = Zu (k+l)(2H"-l)/[(2H"-l)-k]. The second of these is greater

than Zu (recall that by (2.l2) H">l). Since we require that

pi<u (l-k) none of these values can be attained and therefore a unique

solution to (4.27), in the range of interest, is guaranteed.

From (4.1) and (4.2) with n = l,and (4.ll), (4.l2) the

components of the diSplacement for the case under consideration are

given by

~ D

u = alcoso = [£—(3h-H")A1r2 + :Izgcoso + C1cos¢ , (4.29)

~ DI

fv -—- blr sin¢ [15(3HH-hM1r2 + :lz-Jsino - C‘sinda . (4.30)

(Recall that B1 - 0). Now Clcoso and -C1 sin¢ are the radial and

tangential components of a rigid body displacement parallel to the

x1 - axis of magnitude C], and therefore as noted earlier one can,

without loss of generality, set C1 = 0.

Finally, we turn to the case n? 2. Substituting from (4.9),

(4.l0), (4.l3) and (4.l4) into (4.20)-(4.23) we get for each n: 2,

a set of four linear algebraic equations for An - Dn which in matrix

form reads
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We first compute the determinant of the coefficient matrix. It

is convenient to introduce the parameter S defined by

2kH"p1

(2H"4T)(k-1)(2u-Pi7 ’

 k = (a/b)2(<l). (4.32)

Denoting the determinant of the four by four matrix in (4.31) by

A, after some lengthy algebra, one finds that

 A = “4(”"'“)2 (Zn-p.) [(h +k-2) $2+2(h +1) S+h -k] (4 33)
4k2(S+l)2 1 n n n ’ °

where we have set

2

h = g}-(l-k)2 (>0), An = k" + k'"-2(>o). (4.34)

n

For instability we must have A = 0, which according to (4.33)

yields a quadratic equation for 5. Solving this, we find values

of 5 given by s; and s; where

k-h

- " (4.35)s - . .

.]+hni [(l-k)2+4hn]i

 

3
H
-

Thus if there is a value of internal pressure pi(<u(l-k)) for which

the parameter S defined by (4.32) satisfies S = s: , then the

system 0f equations (4-31) becomes singular at that pressure

and the corresponding equilibrium solution is unstable.

We now show that there does not exiSt such a value of pi and

thus an internally pressurized tube of harmonic material does not

buckle. We will show this by demonstrating that s: and 5; given

by (4.35) are always positive, whereas by-definition, (4.32), S is
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negative (H">l, pi<u(l-k)<2u by (2.12) and (2.34) respectively),

and so s:si.
n

In order to show this, we need a result which we will state

here, the proof of which is given in APDGHle A, namely that

k . hn >0, n3 2. (4.36)

Considering first the case where the positive sign is chosen in

(4.33) it is obvious that s: is positive by virtue of (4.36). It

is easy to see that the negative sign is also inadmissible. Suppose

that s; is negative. For this the denominator of (4.35) must be

negative. Simple calculations show that this in turn implies that

k + hn >2. Now by (4.36) we have k + hn <2k<2 ,'which is a

contradiction.

Thus we are led to the conclusion that the tube is stable at

all values of the internal pressure pi <u(l-k).

4.3 Buckling of an Externally Pressurized Tube
 

The question of the stability of' the equilibrium solution of an

imperfect cylinder subject to external pressure will be considered

in this sub-section. The treatment will parallel the case of internal

pressure given in 4.2.

Introducing the diSplacements (4.1) and (4.2) in conjunction

with (4.18) and (4.19) into the boundary conditions (3.33)-(3.36),

making use of (4.5) and (4.6) and then equating the coefficients of

cos no and sin no leads to, for all n30 ,

II _ _ = I =
H axn an nabn f aqn , on r a, (4.37)
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2
ha yn - na - abn = - (H'-R° + f)ruh], on r = a, (4.38)

n

2pH"bxn-(Zu-p°)(an+nbbn) = (2p -p°) f'bsn, on r = b, (4.39)

Zuhbzyn - (Zn-po)(nan+bbn)= - [ZuH'-(Ro-f) (Zn-po)] nsn .

on r = b. (4.40)

Again the three cases n = 0, n = l and n 32 must be treated

separately.

Considering the case n = 0 first, we substitute from (4.15)

and (4.16) into (4.37) and (4.39) to get the following set of

linear algebraic equations.

H" - 1/2 - i/a2 A0 = f'(b)q°

ZUH'. ' (ZU'po)/2 ’(ZU'po)/bz Do (ZU'po)f'(b)so

(4.41)

As in the previous caseit is the question of the existence of a unique

solution of the above equations which is of special interest to us.

Computing the determinant of the coefficient matrix in (4.41) we find

that it vanishes if and only if

p. = 2n, $}§E%§%;$§+%l , k = (a/b)2. (4.42)

Recalling that H">l (by (2.12)), it is evident that the value of

po given by (4.42) is negative. Thus no loss of stability occurs

for n = 0.

We next consider the case n - 1. Substituting from (4.9)-

(4.12) into (4.37)-(4.40) and simplifying yields the following
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set of four linear equations in three unknowns

p

[H"h—(H"+h)/4]a [H"h+(H"-h)/2]a-] -2a

H"h-(H"+h)/4 -[H~h-(H"-h)/2]a'2 -2a

[ZuH"h-(Zu-po)(H"+h)/4]b [H"h+(2u-p.)(H"-h)/2]b'] -2(2u-p,)b'3

  _2uH"h-(2u-Po)(H"+h)/4 -[H"h-(Zu-Po)(H"-h)/Z]b'2 -2(2u-Po~)b-4
d

    

P ‘ = D . W

A1 f q]

. -2

D1 (Zu-po)f's]

. -Z

- J L'[2)JH ’(Ro'f)(2)1'po)]b 5] I. (4.43)

We note that the terms containing C1 have dropped out of the

equations (4.43). Thus the value of C1 is arbitrary.. As was shown

in the case of internal pressure the expressions containing Cl

corresponds to a rigid body translation and therefore one can set

C1 = 0. (The argument is exactly the same as before and will not

be repeated).

As in the previous case there are two questions concerning

(4.43) which are of importance: Consistency, which is necessary for

existence of a sOlution and uniqueness which implies stability.

Before investigating these issues, we note that B1 = 0 satisfies

the equations. (The calculations leading to this are somewhat

lengthy but straightforward.) He can thus remove the second column

of the coefficient matrix in (4.43) to obtain a 4 by 2 matrix in

which the first row is a multiple of the second and the third row a
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a multiple of the fourth. The consistency of the equations is

established if the same relations hold between the elements of the

right hand side column vector. It can be verified that this is

indeed the case, hence of the four equations only two are independent

and we have the following system

h"h-(H"+h)/4 -2/a4 A

ZuH"h-(2u-po)(H"+h)/4 -2(2u-po.)/b4 D]

-(H'-Ro+f)q]/a2

-[2uH'-(Ro-f)(2u-po)s1Jlbz (4.44)

To investigate the uniqueness of solution we look for values of

po for which the determinant of the 2 by 2 matrix above vanishes.

If any of these values lie in the range (0, 2p) it would be a

buckling load. Denoting the determinant by A we find

“2“;44-94 [4w'Uni:r.:aif§3;“-kz>(Zn-Po) - 4w ,
(4.45)

where k = (a/b)2. Setting A = 0 one finds po = 2p and

po = 2u(1+k)(2H"-l)/[k(2H"-l)el]. Since we are interested in values

of po<2u, we need consider the second expression only. By (2.12)

the numerator is positive. As for the denominator there are two

different cases: (i) the denominator is positive,ir|which case

po>2u which is inadmissible, (ii) the denominator is nonpositive

which results in p°<0 or p° infinite, bothcniwhich are unacceptable.

We are thus led to the conclusion that for values of external pressure

pO in the range of interest, no buckling will occur in the mode n = l.
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Finally, we take up the case n 3 2. Upon introduction of (4.9),

(4.10,).(4J3) and (4.14) into (4.37)-(4.40) we obtain. for each

n 3 2, a set of four linear algebraic equations for An - Dn which

in matrix form can be written as
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we again seek those values of po in the range 0<p°<2u for which

(4.46) becomes singular. To this end we introduce the parameter

: 2H” 0

T -W “'47)

in terms of which the determinant of the coefficient matrix in

(4.46) is found to be

u4(H"-h)zk

A = " (Zn-p0) {[h +(l-2k)k]T2+2(h +k2) T+h -k} , (4.43) 

where k = (a/b)2 and hn and An are given by (4.34). Setting A = 0

and solving the quadratic in T we find two values of T given by

+ -

Tn and Tn where

k-hn
i

T = 2r- (4.49)

k +hn:[(1-k)2+4hn]3

 

If for some value of pressure Po(<2u) the parameter T defined

by (4.47) has the values given by (4.49) then the system of equations

(4.46) is singular. We now address the question of the.

existence of a pressure for which T = Ti.

Since H">l and p°<2u, by (2.12) and (2.35) respectively,

T as defined by (4.47) is positive. Recalling that k-hn>0,

(4.36), it is evident that T; is positive. 0n the other hand, a

simple calculation shows that for thick enough cylinders (k<%~) T;

is negative and hence is not of interest. However, for values of

k in the range %-<k<l, one can verify that T; is negative for
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certain values of n (e.g. n = 2, 3, 4) and positive for others.

In what follows, wherever we consider T; it is understood that we

are restricting attention to those values of k and n which render

it positive.

Next we rearrange (4.47) to give

= 2n
p0 2H[[ . (4.50)

1+ T
Wan-":1

 

Now define functions 3+ (pa) for all p° EI[D,2u] by

 

 

 

 

z _ 2n ~
It (pa) - po 1+ .1 2H411R67—— . (4.51)

_ i H R0 "'

(l-k)Tn 2 l ) I

where RO is given in terms of po by (2.25) with pi = D.

Calculating W+(0) and W+ (2p) we find

4+(0) = - 2“ < o , (4.52)

- 1+ 1 2H"(2)

(l-k)T: 2H"(2)-l

4+ (2n) = 2n [1 - _ 1 ] >o. (4.53)

- 1+ 1 ZH'IJRo)

 

(l-k)T: 2H"(R,)-l

The inequalities in (4.52) and (4.53) follow from (2.12) and

k< 1. Since W+ depends continously on p0 it follows that there

i

exist numbers p.n 8 (0,2p) such that 3+ (p3) = 0, ‘Y_ (pa) = 0.

This establishes the existence (of two sequences) of bUckling

pressures p: , p' The former exists for tubes of arbitraryn O
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thickness ratio k and all modes n3 2, whereas the latter exists

for tubes with the thickness ratio k in the range (1/2, 1) and

sufficiently large modes n. (See paragraph preceeding (4.50)).

We show next that the buckling pressures p: corresponding

to a given value of n are unique. Clearly it is sufficient for

this purpose that W: (p,) be monotone increasing functions on

(0, 2p). Differentiation of W+ (p,) with respect to po yields

4u(l-k)Ti H"'
I _ n dRo

[2H"+(l-k)(2H"-1)T;

where dRoldpo may be calculated from (2.25) with pi = 0 to be

 

dR. = _ n(l-k) < o, (4.55)

35: [Zn-k(2u-Po)]7h' (Re)

the inequality holds by virtue of (2.11) and k<l. Thus a

sufficient condition for 4+ (po) to be monotone increasing is that
 

H"'(R)30 for R>0. . (4.56)

It follows that if (4.56) holds the buckling pressures p; , p;

corresponding to a given mode n are unique.

He now turn to determining the smallest buckling pressure. We

will first show that the buckling pressures p; form a monotone

increasing sequence (with respect to n) so that we then have

'p; < p; (n>2). Furthermore we shall also demonstrate that p; <p;

(n>2) as well. Thus p; is the smallest buckling pressure for an

externally pressurized tube.
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To show the monotonocity of p: with respect to n we replace

T by T+ in (4.47) and differentiate with respect to po to find

 

dT+ 1 4R
.35: = 2". 2(2 )2 [2(2H"-l)H"-pq(2u-p°)H"' 3623) 0. (4.57)

' U'Po “ o

The inequality follows from (2.12), (2.35), (4.55), and (4.56).

Treating n as a continuous variable and differentiating (4.49)

with respect to n gives dT+/dr1>0. Now

+

.%E2 = .91;£92_ >0, (4.58)

-" dT /dpo

which implies that dpgldn >0, i.e. p; form a monotone increasing

sequence.

To establish p; < p; we first observe that T;>T;>T:(n>2).

The last inequality follows since, as already mentioned, T: is

monotone increasing with n. Now writing W_ (p,) from (4.5l)

we have

 

“C(90) = 90 " 21.1 . (4-59)

1} 1 2H"

(l-k)T; 2” "

+

Calculating W_ (p2) we find

  

+

‘1'; (P2) = 2“ I: j: 2"” ' "' 1 1 2H” ] <09 (4'60)

1+.______ 1+

(l-k)T; 2” " (l-k)T; 2" 'l

which together with (4.56) verifies our claim.
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To summarize: a formal solution to the equilibrium equations

has been found (See (4.1), (4.2), (4.11)-(4.14) and (4.16)). The

stability of this solution in the two cases of internal and external

pressure was examined. The investigation showed that for an

internally pressurized cylinder the equilibrium is always stable

in the range of interest, whereas under external pressure the tube

becomes unstable. In particular, this implies that under external

pressure, the tube buckles before the cavity closes. 0n the other

hand,an internally pressurized tube reaches the "bursting pressure"

before any instability is encountered. The existence of buckling

pressures,ir|the former case, was proved (see remarks following

(4.53)) and a sufficient condition for the uniqueness of the buckling

loads corresponding to different modes established. Finally, the

smallest buckling load for a cylinder subject to external pressure

was determined. In the next section we illustrate some of these

results using a particular constitutive relation.

 



5. ILLUSTRATIVE EXAMPLE

In this section a special (hypothetical) harmonic material is

introduced to illustrate some of the results found preViously.

We recall that for harmonic materials the strain energy density

function is given by w = 2u[H(R)-J]. In the following we generalize

a particular power-law form of H(R) used by Knowles and Sternberg

(1977) and suppose that

l 2 R
H(R) = ,2- R + FT (_%__)m + Pfi’ m30, m¢l, R>0. (5,1)

Clearly H(R) is continuous and it is easy to verify that the

restrictions (2.9)-(2.12) are all satisfied.

Taking (2.25) with pi = 0 in conjunction with (5.1), we find

that the invariant RO is given by

l

HEW"
_ . 2E:£(2Ll'po)

R0 ’ 2 .[2u+po_k(2u_p°y] s (502)
 

where k (a/b)2. (Recall that a,b denote the inner and outer

undeformed radii of the tube.) Now from the first 6f (2.1), (2.20),

(2.25) and (2.26) with pi = 0 one has

= (l-kfilRa (5.3).6.

b 2u4k(2u-Pdl

 

Equations (5.2) and (5.3) provide a relation between the applied

external pressure po and the deformed outer radius 3. Graphs of

po/2p versus B/b for different values of the hardening exponent In

78
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and the geometric parameter t = b/a are shown in Figures (7) and

(8) respectively.

Moreover on using (4.34), (4.49), (4.50) and (5.2) (with

positive sign chosen in (4.49) and the resulting T+ used in (4.50))

we may calculate the smallest buckling load (pg) of the externally

pressurized tube. These buckling pressures are also marked on the

graphs.

As can be seen from Figure 7, the material hardens with

increasing values of m. Moreover the buckling pressure also

increasesas the hardening exponent increases. It is also evident

from Figure 8 that the buckling pressure increases as the tube

becomes thicker which is what one would expect.
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Figure 7. External pressure versus B/b for

different materials.
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6. CONCLUDING REMARKS

The equilibrium ofa pressurized tube of homogeneous, isotropic,

compressible material of harmonic type was considered and the

stability of the solutions investigated. In summary, the results

show that a tube subjected to internal pressure will fail by

bursting while an externally pressurized tube fails by buckling.

For the latter case the smallest buckling load was calculated and

the existence of buckling loads for higher modes proved. Furthermore,

a sufficient condition for the uniqueness and monotonocity of these

loads with respect to the mode number was established.

The results found in this study pertain to a special material

(harmonic) and a particular geometry (circular tube). Ideally one

would wish to establish results with few restrictions on the consti-

tutive law or geometry. This, however, is a formidable undertaking.

(Analytical determination of the stress field in a circular tube

composed of a general compressible homogeneous isotropic hyperelastic
 

material is a daunting task!) There are more modest goals that one

may pursue which can shed some light on these issues. These can be

summarized as follows:

(i) The effect of geometry; The question to be answered is whether
 

the result found here for an internally pressurized tube (sudden

bursting without any instability preceding it) depends on geometry

or is a ”property" of the material. Study of tubes with noncircular;

bores and/or noncircular outer boundaries would provide, at least, a
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partial answer to this. It would be interesting to see if externally

pressurized tubes with noncircular outer boundaries always become

unstable by buckling and if so whether all the modes are generated.

(ii) The effect of the material: Here there are two questions to
 

be examined. First the effect of hardening. The fact that no

buckling instability occurs in a circular tube subject to internal‘

pressure is apparently due to the very rapid hardening of the harmonic

material. Examination of other compressible materials (hypothetical

or otherwise) could provide some insight into this question.. It

would be interesting to see if a "critical" hardening rate can be

found such that materials which harden at a lower rate will "permit

buckling" while the ones which harden at a higher rate will not.

Secondly, it would be interesting to examine whether similar phenomena

arise when the material is incompressible.
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APPENDIX A:

Proof of Equation (4.36)
 

We wish to show that

k - hn>0 , for all3n 2, (A.l)

where k is a real number 0<k<l and hn is given by

n2(l-k)2
, n>2. (A.2)

n k"+k'n-2 '

The proof is by induction on n. We first note that for n = 2

one has

2

k-hz = “(“k1 >0. (A.3)

(1+k)

Now assuming that k-hn >0 for any n>2, we have to show that

>0. It is sufficient for this to show that hn is a1

monotone decreasing function of n. To this end we define the

k-hn+

function h(x) for all x>l by

h(x) = (l-k12/¢(x). (4.4)

where

X -X

46) = Liz—'3 . (4.5)
X

It would be sufficient for us to show that ¢(x) is a monotone

increasing function of x.

34
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Differentiating ¢(x) with respect to x and making the

k"x we findsubstitution y

¢'(X)

2
£3.21 (any + 2 1%). (A.6)

x y

We note that y k'x>l and therefore the problem reduces to showing

that ]_

v (y) =2ny + 2 11% >0. for all y>1. (A.7)

We observe that Y(l) = 0 and

(1- )2
Y'(y) = ——’L’Z >0 for all y>1. (A.8)

Thus ¢(x) istmonotone increasing and hence h(x) is monotone decreasing.

Therefore, hn is monotone decreasing and the result is thus

established.
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