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ABSTRACT

VALUATION OF PUBLIC GREAT LAKES BEACHES IN MICHIGAN

By

Min Chen

The objective of this dissertation is to measure the monetary values of public Great Lakes
beaches using the travel cost approach. To decide which econometric model to use,
Monte Carlo simulations were developed, and results showed that the nested logit model
was robust and reliable. To collect beach use data, a two-stage survey of over 29,000
people was conducted from 2011 to 2012. A mail survey went out in 2011 to identify
people who participated in beach recreation with a random sample from Michigan’s
driver license list. Respondents who said they visited a Great Lakes beach since June 1,
2010 were invited to a follow-up web survey about trips to public Great Lakes beaches in
the summer of 2011. A repeated nested logit model with a participation hurdle was
estimated for the day trip data. The estimated beach recreation participation rate was 58%
for adults living in Lower Peninsula of Michigan, and an estimated 20.9 million day trips
were taken by Michigan adults to public Great Lakes beaches in the summer of 2011. The
value of access to a public beach for a day trip was estimated to be $32-$39 per person
per trip in 2011 dollars. Access to all Lake Michigan public beaches, in Michigan, was
estimated to be worth over $400 million per season for day trips for adults living in
Lower Peninsula of Michigan. To value long trips of four nights or more, a model was
developed allowing people to visit combinations of single and multiple sites on a trip.

The resulting values were about $53 per person per beach day for access to a site for a



trip of four nights or longer. The more common approach of using the main destination
for multi-site trips has larger welfare measures compared to the approach permitting

combinations of multiple sites to be visited.
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INTRODUCTION

Michigan has the longest freshwater coastline in the United States, and large numbers of
people visit public Great Lakes beaches every year. Beach recreation not only facilitates
the economic development of coastal areas, but also brings welfare to people that use
them. Although for public beaches there is generally no price, they do have economic use
values. The objectives of this dissertation are to quantify the demand for beach recreation
and measure the associate use through Random Utility Models (RUM) with data from
two surveys. The outcomes of our work can be applied to benefit-cost analysis in the
decision-making process. In addition, the estimated demand model structure can be

transferred to other locations for valuation of freshwater beaches.

Within the widely used random utility modeling framework, there are several
types of econometric model specifications. The latent class model assumes heterogeneity
in preferences while the nested logit model captures similarity in alternatives. The
conditional logit model is the simplest, since preferences are assumed to be the same and
alternatives are independent. The first chapter investigates relative performance of the
latent class model compared to the conditional logit and nested logit models. Monte
Carlo simulations are used to investigate model performances under several scenarios.
Results show that the latent class model does not always work as expected, and the nested
logit model was found to be more robust than the other two. Thus, the nested logit RUM

is applied in chapters 2 and 3.



The second chapter estimates use values of public Great Lakes beaches. A mail
survey on the leisure activities of Michigan residents was conducted to identify who did
and did not participate in Great Lakes beach recreation. People who participated were
then recruited to a web survey about their trips to public Great Lakes beaches for an
entire summer season. Day trip data was used in a nested logit model to produce
estimates of the value of Great Lakes beach use. Unlike most literature, nonusers, those
who had not visited Great Lakes beaches in the past two years, also enter the model to

test how this alters the way that results are generalized to the population.

The third chapter models multiple day recreation trips by chaining recreation sites.
In the recreation demand literature, multiple day trips are rarely modeled, but when they
are, the traditional way of modeling these trips is to assume only the primary destination
is visited (for the trips with more than one destination). In our web survey, participants
who take overnight trips of four days or more are asked to report on multiple beaches
they have visited in one randomly selected trip, which makes it possible to relax the
traditional single-site assumption and allow for visitation of a second beach on overnight
trips. The results are compared to those from the traditional model to see if the added

complexity and survey cost is warranted.



Chapter 1

Relative Performance of the Latent Class Model Compared to the Conditional Logit and
Nested Logit Models for Environmental Valuation

1 Motivation

Random Utility Models (RUMs) have been widely applied to recreation demand analysis
and valuation. Within its framework, according to Train (2003), different distribution
assumptions lead to different models such as conditional logit, nested logit (generalized
extreme value), probit and mixed logit models. Preferences over attributes are the same in
the conditional logit and nested logit models, while alternatives in the choice set can be
correlated in the latter. The probit model requires a normal distribution. The mixed logit
model is the most inclusive. Random parameter (or mixed logit models) and latent class
models are both frequently used to model preference heterogeneity. The random
parameter model imposes distributional assumptions over individual preference. The
latent class model assumes there are a number of latent groups in the population, and
people in different groups have different preferences. It can be treated as a discrete and
semi-parametric version of the random parameter model (Greene and Hensher (2003)).
Although not as flexible, the latent class model may have more power in interpretation
since it can link demographic characteristics to heterogeneous preferences. For example,
young people may value water quality more than old people and care less about travel
distance, as they are more likely to have contact with water. Hence, many studies have

valued recreation activities through the latent class model (Boxall and Adamowicz (2002),



Scarpa and Thiene (2005), Morey et al (2006), Owen and Videras (2007), Patunru et al

(2007), Scarpa et al (2007), Burton and Rigby (2009)).

Several studies have investigated how the latent class model performs against
others. Greene and Hensher (2003) compared the latent class and random parameter
models through an empirical data set from a stated choice experiment. They evaluated
willingness to pay indicators and elasticity and concluded that one was not absolutely
better than the other. Each model had its advantages and disadvantages. In their data set,
they found the latent class model was preferred statistically. Provencher and Bishop
(2004) examined the forecasting ability of the logit, random parameter and latent class
models based on salmon fishing on Lake Michigan. They showed that the latter two
performs equally well in trip prediction, and for other measures, the logit model could
have more reliable results. Hynes, Hanley and Scarpa (2008) studied preference
heterogeneity of kayakers using the latent class and random parameter models, and stated
that the latent class model might provide better interpretation. Kosenius (2010) analyzed
water quality data with the multinomial logit, random parameter and latent class models.
The author elucidated that when there were correlations among alternatives, the random
parameter model had a better fit to the data than the multinomial logit model. The latent

class model used demographic information to explain the heterogeneity in preferences.

Nonetheless, using real data, it is hard to tell whether or not the latent class model
can successfully recover the true preferences, because those true values are not known. In
the literature applying the latent class model to different areas, it is not uncommon to see
the estimated preference in one class be more than 10 times that of another class (Scarpa

and Thiene (2005), Train (2008), etc.). It is possible that discrepancies in preferences



among people are large, but it may also be that the model has drawbacks. A model that
cannot correctly reflect the real preferences could be misleading in empirical studies.
Therefore, in this chapter, Monte Carlo simulations are employed to test the reliability of
the latent class model, where the truth is known, and compare its performance to the
conditional logit and nested logit models in the context of environmental valuation. The
random parameter model is not under investigation as several studies above have
demonstrated that it performs similarly as the latent class model. The one that displays

robustness will be used for valuation in the following two chapters.



2 Models

The utility from visiting a recreation site can be expressed as:

where subscripts n and j denote individuals and sites. The construction of the covariate

matrix X depends on the specific model. It can include variables only varying across sites,
like site characteristics, variables only varying across people, like demographic variables,
variables varying across both sites and people, like travel cost, and their interaction terms.

The parameter vector f reflects people’s preferences. It can be fixed for all or different
for different groups. The random term ¢ represents individual and site factors influencing

utilities.

Based on the utility equation, a person will go to the site that generates the highest
utility in his/her choice set. Since individual errors cannot be observed from the
perspective of researchers, each site has a probability of being visited. Different models
have different expressions for the probability because of different distribution
assumptions of the errors. The maximum likelihood estimation searches parameter values
to maximize the joint probability of observed choices. Welfare measures of site loss or

characteristic change can then be computed from parameter estimates.

2.1 Conditional Logit Model



The conditional logit model assumes that the errors are independent and follow a Type |

extreme value distribution. The parameters are constants, and variables that are invariant

to sites must be excluded or interacted with X, j- Following Chapter 3 of Train (2003),

the probability of a site to be visited is:

eXn]ﬁ

Z{:l ean,B

Prn(i) =

Let y be the binary variable indicating people’s choices. The log-likelihood
function is:

N

J
LL = z Z Ynj * log(Pr,(j))

n=1j=1
where N is the total number of people and J is the total number of sites.

Because the model measures use value, person n only cares about the site he/she
visits, so only a loss of the chosen site or change on that site (if it is small enough not to
affect the original choice) affects this person’s welfare. Suppose person n chooses site g,
the loss of other sites or any changes on other sites are of no value to him/her. When site

g is closed, person n has to go to the site that gives the second highest utility, say site f;

then the reduction in utility is (Upg — Unf), and the monetary loss is (Up g —

Uny)/Bum. where ) is marginal utility of income, the absolute value of the travel



cost parameter. When a marginal change happens on site j, the change in utility for

visitors is 3, the parameter of site characteristic I, and ,Bl/ﬁM Is its monetary value.

From a researchers’ point of view, however, uncertainty exists due to the error
term. Each site has a probability of being visited by anyone. Thus, those probabilities
need to be taken into account in welfare estimates. According to Chapter 8 of Haab and

McConnell (2002), the estimated welfare change for person n caused by the loss of site j
is: In(1 — Ij\r}l(]))/,g,\\,l the estimated value of a marginal change on site

characteristic | of site j is: P/T\‘n(]) X (B\I/BI\\/I) where EI\VI and E are estimates of

P and ;. The calculation applies to all sites, j=1, 2, ..., J.

2.2 Nested Logit Model

Consider the simplest form, a two-level nested logit model, where the choice set is
divided into several nests based on site similarities. Within one nest, errors are correlated;
for two sites in different nests, errors are still independent. Following Chapter 4 of Train

(2003), the probability that a site is visited becomes:

Xn].B Xnit P
XniB

Ll(z{zae Am ) m

Pr(j) =




where /1k measures the degree of independence in errors among sites in nest k. This
parameter is normally assumed to be the same across all nests, so we will replace /1k

with A.

Compared with the conditional logit model, the calculation of estimated welfare
change from the loss of a site in the nested logit model is slightly more complicated. The

probability that person n chooses a site in nest Kk is:

an.B
Tk A
(2. 4)
PrnUk) - l 1] an'B

And the probability that person n chooses site j conditional on the fact that nest k is

chosen is:

anﬁ
- e A
Pr‘n(l)ljk = XuB

ke

According to Chapter 8 of Haab and McConnell (2002), the estimated welfare

change due to closure of site j is:

AW, =In <(1 =PRI PR + (1- @UR)D

/(=Bum)



The estimated value of a marginal change on site characteristics has the same expression
as in the conditional logit model where the relevant site choice probabilities are from the

above nested logit formulas.

2.3 Latent Class Model

The latent class model relies on the assumption that people’s preferences are not the same
and they can be categorized into different classes, each having its own set of parameters.
Individuals know which class they are in, but researchers don’t. Within one class, people
behave exactly the same as in the conditional logit model. From researchers’ perspective,
a person can belong to any class with a probability. Then the probability that person n

chooses site j is the weighted average of the conditional logit probabilities in all classes.

In Chapter 6 of Train (2003), the probabilities of membership in each class are the
same for all people, which are actually the shares of people in the population for each

class. Suppose there are C classes in total, the choice probability is:

C

anﬁc
Prn(i) = zsc( ° )

2121 eanﬁc

c=1

The shares S, c=1, 2, ..., C can be estimated together with ,BC, c=1,2,...,C.

Instead of fixed shares, researchers may assume the probability of membership to

class ¢ has a multinomial logit form, and can be predicted by individual information:

10



e ZnYc

- Zg=1 eZnYh

T[nc

where Z, is a covariate of individual characteristics, and ), is a vector of parameters

specific to class ¢, which can be estimated together with ﬁc. The choice probability in

this case becomes:

C

Pr(i) = ) e

c=1

BX
1

%1

njﬁc ¢ eZn)’c eanBC
eanB"’) B ;( ¢ eZth)(Z{zl ean.Bc)

According to Boxall and Adamowicz (2002), the way to calculate the estimated
welfare measures is similar to what has been discussed above. The measure is an average
of welfare estimates from each class weighted by the corresponding estimated shares or

predicted probabilities of membership to each class.

C
AWy = z S¢ * AWy lc
c=1
C C
eZn)’c
AW, =ZnnC*AWnJ-|c=EZC Zy * AWn;lc
h=1e nth
c=1 c=1

11



3 Simulations

Monte Carlo analysis will be used to compare the three possible econometric
specifications. Three scenarios are constructed, where the data generating process follows
the latent class, conditional logit and nested logit models respectively. Under each
scenario, pseudo data is estimated using the three models. It is assumed that there are 3
sites, 1,000 people, and the utility equation contains two explanatory variables, travel cost

and site quality.

Unj = TCyhjBrc + Q;Bg + &ij

3.1 True Model-Latent Class Model
3.1.1 Simulation Steps

Suppose there are two classes with 700 people in the first class and 300 people in the

second class. Let the true parameters and shares of the two classes be:

Btc = —0.06, B = 0.49,s, = 0.7

B3. = —0.10,53 = 0.21,s, = 0.3

12



where ,B%C and ﬂé are set to match the model estimates reported in Chapter 8, Haab and
McConnell (2002). ,872~C and ,8(22 are assigned to make sure there is obvious distinction

: . 1
between two classes. The Monte Carlo simulation steps are as follows:

(Step 1) Take 3,000 random draws uniformly over the range from 0 to 100 as the
travel cost variable, since it varies across both sites and people. Take 3 uniform
random draws for the quality variable from 0 to 2, which just vary across sites.

Next, produce random errors for 1,000 people from a Type | extreme value

distribution with a normalized variance of 7'[2/6. From Chapter 9 of Train

(2003), the cumulative distribution function for &;j IS:

F(g;;) = exp(—exp(—&;;))
and its inverse function is: &;; = —ln(—ln [F(SU)D. Since F(Eij) falls

between 0 and 1, we take random draws from a (0, 1) uniform distribution first

and then use the inverse CDF function to compute correspondent random

numbers for Eij (Train 2003).

(Step 2) For the 700 people who are in the first class, extract their travel costs, site
quality and errors to compute their utilities. For each person, pick the maximum
among the three site utilities, mark it as one and others as zero, and we get the
pseudo observation for the chosen site. Table 1 shows an example of a person’s

randomly generated data for travel costs and for site quality for each of three sites.

1 . . .
Simulations are programmed in R.

13



The resulting utility is computed and implies site 1 is the best for this person. The
same approach is done for the 300 people who are in the second class, but with
different parameters in the utility equation. The choices of all 1,000 people form
the data for the dependent variable.

(Step 3) Compute the true welfare measures. Since we know exactly which class
each person belongs to, the calculation for individual welfare measures is the
same as in the conditional logit model. Averaging site values and values of
marginal quality change over 700 people in class 1 and 300 people in class 2 will
produce true welfare measures in class 1 and class 2; averaging them over the

entire 1,000 people will produce the population’s true welfare measures for each

site.
Table 1: Simulating One’s Choice
Site Travel Cost Quality Error Utility Observation
1 7.79 1.02 -0.12 -0.09 1
2 61.90 0.64 0.54 -2.86 0
3 31.95 1.71 0.62 -0.46 0
(Step 4) Regress site choices on two explanatory variables (travel cost and site

quality) to get the estimated parameters, using conditional logit, nested logit and

o . . 2
latent class models. When estimating with the nested logit model ™, we try three
combinations for sites: site 1 and 2 as a nest, site 2 and 3 as a nest, and site 1 and
3 as a nest. Since our objective is to see whether the latent class model recovers

the truth, we set the number of classes to be two in the estimation, the same as the

2 . . . .

The starting values are based on the conditional logit model estimates. For the travel
cost parameter, it is the estimate minus or plus 0.01; for the quality parameter, it is the
estimate minus or plus 0.1. BFGS is used to locate MLE estimates.
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truth3. Also, following Scarpa and Thiene (2005), we assume the probabilities of

membership to each class are:

B 1 _exp(a)
1+ exp(cx)'n2 1+ exp(a)

Ty

which is equivalent to fixed shares, s and 1-s. The share needs to be between 0
and 1, and the expressions above embed the constraint in the estimation process.

(Step 5) The estimated welfare measures are then derived from those parameter
estimates. When it comes to the latent class model, individual welfare estimates
are averages of each class weighted by estimated shares. To make comparisons
with the true values, since we know 700 people are in class 1 and 300 people are
in class 2, we take the means of the former as the welfare estimates for class 1,
and the means of the latter as for class 2. The means over the entire 1,000 people
are compared to the population’s true welfare measures.

(Step 6) Repeat the last part of step (1), which is generating new errors while
keeping explanatory variables the same, and step (2) to (5) 1,000 times. We then
have a random sample of size 1,000 for each set of estimates. For each sample,
compute the descriptive statistics, such as mean, median, variance, quartiles and

mean squared error (MSE).

3 When estimating with the latent class model, how many classes should be considered is
a big issue. Train (2008) illustrated how the EM algorithm would estimate parameters
with three types of discrete distributions. With the latent class model, the researcher tried
different numbers of segments varying from 1 to 30, and found that class number of 8
(indicated by Bayesian Information Criterion) and 25 (indicated by Akaike Information
Criterion) worked the best for that specific data set.
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3.1.2 Simulation Results
With two classes, the probability expression of the latent class model is:

eXnjb1 e Xnjb2

) = — ¢ _
Prn(]) Ust Z]=1 eanﬁl + Uy 2]=1 eanﬁz
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Table 2: Performance of Latent Class Model When It Is the True Model4

rd
True Mean Var. MSE Min. 1St Quartile Median 3 ] Max.
Quartile
/%\C 006 | -0.20 0.704 0.723 -8.97 -0.069 -0.063 -0.056 278
,Eg 0.49 1.84 276.47 278.02 12223 0.40 0.48 0.64 142.7
/TZTC 010 | -0.46 2.10 223 -8.83 -0.14 -0.075 -0.068 6.89
[/33 0.21 0.36 29.38 29.38 -41.09 0.14 0.36 0.45 62.98
775 0.70 0.49 0.069 0.112 0.007 0.35 0.50 0.71 0.99
1 1
BY/BEc | 817 | -9.16 | 656795 | 656145 | -1940 -10.42 -7.44 -6.13 7318.0
n2 /102
B2/B2. | 210 | -334 12.49 14.02 -10.62 -6.08 -4.44 -1.04 9.59
Bre 007 | -0.147 0.061 0.066 -1.98 -0.093 -0.075 -0.068 -0.024
,5’57 0.41 0.51 2.08 2.09 -9.45 0.35 0.42 0.49 15.44
f ,ZA L | 63 | 612 70.03 70.01 42,6 -6.83 -6.28 -5.65 246.9
TC

0o ~N oo o1 b~

Iterations in which the estimation fails to converge are excluded. The results come from the remaining 996 iterations.

This is computed from &, and it matches the class 1 estimates.

It is the estimated travel cost parameter on average, weighted by 7T, and 7T,.

It is the estimated site quality parameter on average, weighted by 777 and TT.

It is the ratios of estimated parameters in two classes, weighted by 777 and T, .
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The two terms are interchangeable, i.e. we cannot tell which set of estimates are
for class 1 and which for class 2 simply by the orders showing in the log-likelihood
function. The true parameter ratios of class 1 and 2 are -8.17 and -2.10 respectively. Thus,
we take ratios of the two sets of estimated parameters, and treat the one with a ratio larger
in absolute value as class 1 estimates. Table 2 shows the descriptive statistics of class 1
estimates, class 2 estimates, their weighted averages, and estimated shares. For parameter
estimates and their averages, the medians are much closer to true values than the means,
which are influenced by extreme values. Variances and mean squared errors (MSE) are
also affected by extreme values. Class 1 estimates perform better than class 2, which may
be attributed to its larger number of people. If we look at the quartile ranges, the

estimates are somewhat acceptable half of the time; but still, for the travel cost estimate

of class 1, :871"0 which is the least biased, the range is around +/- 10%; for the site

quality estimate of class 1, ,B(‘l?, the range grows to +/- 20%.

The share of class 1 is underestimated by 28.5%. On average though, the latent
class model performs fine, a 4.2% downward bias in the travel cost estimate, a 2.2%
upward bias in the site quality estimate and a 1.1% upward bias in the ratio. Variances
and MSEs are much smaller. Although there are extreme values that get estimated for
some of the preference parameters within the classes, these extreme values receive a
weight close to 0 because the class probability becomes close to 0, as shown in Figure 1
and 2. In fact, it is the weighted average of probabilities that enter the likelihood function,

so the latent class model works well on average.
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The results above are based on two classes in the population. In empirical studies,
estimation will be conducted under different numbers of classes and Akaike Information
Criteria (AIC) or Bayesian Information Criteria (BIC) are used to decide which is optimal.

Scarpa and Thiene (2005) used the following expression:
Information Criterion = —2 xlog(L) + ] * k

where J is the number of estimated parameters, log(L) is the log-likelihood function
valued at estimated parameters, and x is a constant. AIC has k=2; BIC has xk=log(N),

where N is the sample size. We re-estimate the data assuming three classes in each
iteration. Over all iterations where both estimations converge, AIC will select two classes
93% of the time, and BIC 100% of the time. So the latent class model can self-detect the

true number of classes using both criteria.

When the true model is the latent class model, the conditional logit and nested
logit models measure the average effects, so the true values of the parameters are
weighted averages of two classes. The true value of 1 in the nested logit model is 1 as
sites are all uncorrelated, and how the nests are constructed doesn’t matter, which can be
seen from Table 3. Both models produce similar and reliable estimates, about a 7%
upward bias in the travel cost estimates, a 3% upward bias in the site quality estimates
and a 2.5% upward bias in the ratios. Since variances are very small, the distributions of

the estimates are well described by the median, minimum and maximum.
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Table 3: Performance of Conditional Logit and Nested Logit Models When Latent Class model Is the True Model

9

True Mean Var. MSE Min. Median Max.
Bre 0072 | -0067 | 11e05 | 33e05 | -0.080 | -0.067 | -0.057

Corl‘_do‘gi‘:”a' Bq 0.406 042 | 33¢-03 | 34e03 | 0238 | 0417 | 0591
Bo/Brc | 635 6.19 0.69 0.72 -9.15 6.23 -3.52

hl 1.00 1.02 8.5¢-03 | 8.8e-03 0.70 1.01 1.43
Nested Bre 0072 | -0068 | 20e-05 | 3.6e05 | -0.084 | -0068 | -0.053
Logit™” Bo 0.406 0.42 35e-03 | 37e03 | 0.226 0.419 0.610
Bo/Brc | -635 -6.18 0.70 0.73 -8.94 -6.20 -3.61

hl 1.00 1.01 8.8e-03 | 9.0e-03 0.78 1.01 1.38
Nested Bre 0072 | -0.068 | 21e-05 | 38e-05 | -0.088 | -0.068 | -0.055
Logit™ Bo 0.406 0.42 3.3e-03 | 3.5e-03 0.23 0.42 0.59
Bo/Brc | -635 6.17 0.74 0.77 -8.97 -6.16 5.61

1 1.00 0.98 0.010 0.011 0.69 0.98 1.36
Nested Bre 0072 | -0.067 | 16e-05 | 43e-05 | -0.080 | -0.067 | -0.055
Logit"” Bo 0.406 0.41 4.0e-03 | 4.1e-03 0.21 0.41 0.63
Bo/Brc | -635 6.13 0.75 0.79 -8.50 6.14 -3.18

’ The values are the averages of true parameters in two classes, weighted by true shares.
10 . .
Site 1 and 2 are in one nest.
1 Site 2 and 3 are in one nest.
12 Site 1 and 3 are in one nest.
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There is a side note on the parameter 4 in the nested logit model. It normally falls
within 0 and 1, but based on Train (2003), it can be greater than 1, so the main concern is
a positive 4. The estimation results in Table 3 are from unconstrained maximization.
Actually, when 4 is constrained to be between 0 and 1, we have an estimate very close to
1, and other parameter estimates are almost identical to those of the conditional logit
model. Hence, in our cases, it makes little difference whether the constraint is imposed or

not.

The welfare estimates of the latent class model have similar patterns as its
parameter estimates. The quartile ranges suggest somewhat acceptable performance, and
extreme values from some iterations distort the means. But average welfare measures
perform well because the extreme values within a class receive a low weight since the
estimated class share is small. The conditional logit and nested logit model produce
welfare measures close to true average values. And all three nest structures lead to the

same results.
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Table 4: Estimated Values of Marginal Quality Change of Latent Class Model When It Is the True Model

st rd
Site True13 Mean Var. MSE Min. 1 . Median 3 . Max.
Quartile Quartile
1 -2.09 -2.08 5446.8 5441.4 -1562 -2.13 -1.86 -1.60 1438
Class 1 2 -3.68 -6.81 24521.6 | 24506.8 -1938 -4.94 -3.32 -2.64 4075
3 -2.40 -0.26 3314.7 3316.0 -114.9 -2.76 -2.12 -1.79 1805
1 -0.64 -0.87 1.10 1.15 -2.51 -1.65 -1.26 -0.32 3.92
Class 2 2 -0.83 -1.50 2.03 2.47 -5.19 -2.64 -1.84 -0.39 2.25
3 -0.62 -0.97 1.18 1.30 -2.92 -1.80 -1.34 -0.33 3.42
1 -1.65 -1.53 3.14 3.15 -19.75 -1.72 -1.59 -1.42 48.13
Average 2 -2.82 -2.90 24.43 24.41 -39.68 -3.29 -2.88 -2.56 138.1
3 -1.87 -1.69 3.99 4.02 -4.26 -1.93 -1.78 -1.59 60.62

1 o . .
3 The true values are averages over 1,000 iterations. It is the same with all the true welfare measures below.
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Table 5: Estimated Site Values of Latent Class Model When It Is the True Model

st rd

Site True14 Mean Var. MSE Min. 1 . Median 3 . Max.

Quartile Quartile
Class 1 7.28 3.25 8950.2 8956.7 -2744 6.81 7.41 7.73 1715
15 2 16.06 14.58 129200 | 129062 | -10210 14.63 15.82 18.09 2666
1 3 8.72 4.30 13828 13832 -3551 8.21 8.53 8.80 162.5
Class 1 8.22 7.91 2.30 2.40 -10.11 7.43 7.75 8.29 15.48
16 2 11.65 12.61 8.34 9.24 -11.59 10.72 13.59 14.65 19.15
2 3 8.18 8.46 1.93 2.00 -10.46 8.29 8.50 8.70 15.84
Average 1 7.56 7.46 11.40 11.40 -87.04 7.38 7.58 7.80 9.76
17 2 14.74 14.55 164.6 164.4 -338 14.32 14.79 15.26 65.3
3 8.56 8.34 18.73 18.76 -114 8.33 8.49 8.66 10.55

14 . . . .
The true values are averages over 1,000 iterations. It is the same with all the true welfare measures below.

15 In some iterations, we could get very abnormal estimates for both classes. The very large scale of the travel cost estimate
makes travel cost extremely important in the decision-making process of where to go. A person will just go to the nearest site.
If that site is closed, the welfare loss is huge. As a result we will have infinite site values. So we exclude those iterations in the
analysis of welfare estimates. The results here are from 920 iterations.

16 The results are from 881 iterations.
17 The results are from 805 iterations.
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Table 6: Welfare Estimates of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model

Site Site Loss/Closure Quality Change

True Estimate True Estimate
Conditional 1 7.56 7.57 -1.65 -1.67
Logit 2 14.74 14.62 -2.82 -2.70
3 8.56 8.55 -1.87 -1.83
Nested 1 7.56 7.60 -1.65 -1.67
o 2 14.74 14.64 -2.82 -2.69
Logit (Site 1 and 2) 3 8.56 8.50 187 182
Nested 1 7.56 7.55 -1.65 -1.66
o 2 14.74 14.63 -2.82 -2.69
Logit (Site 2 and 3) 3 8.56 8.57 187 182
Nested 1 7.56 7.55 -1.65 -1.65
L 2 14.74 14.67 -2.82 -2.68
Logit (Site 1 and 3) 3 8.56 8.52 187 181
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3.2 True Model-Conditional Logit Model

To apply simulations in the scenario where the true model is the conditional logit model, the
steps are almost the same as in the previous section, except that all 1,000 people have the same
preferences in the true world. The true parameters, again taken from Haab and McConnell as in

class one above, are:

BTC = _006, BQ = 0.49

The simulation results are summarized in Table 7, Table 8 and Table 9.
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Table 7: Performance of Latent Class Model When Conditional Logit Model Is the True Model18

1St

3rd

True Mean Var. MSE Min. ) Median ] Max.
Quiartile Quiartile
ﬁ;c -0.06 -0.085 0.017 0.018 -2.17 -0.067 -0.062 -0.059 -0.012
BE 0.49 0.65 3.26 3.28 -28.78 0.39 0.52 0.66 16.85
'fg),\ -8.17 -9.37 570.6 5715 -298.6 -10.3 -8.40 -6.61 401.0
TC

27
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Table 8: Performance of Conditional Logit and Nested Logit Models When Conditional Logit Model Is the True Model

True Mean Var. MSE Min. Median Max.
Bre -0.06 -0.06 9.6e-06 | 9.6e-06 -0.07 -0.06 -0.05
Conditional N
L ogit Bo 0.49 0.49 0.020 0.020 0.01 0.48 1.00
Bo/Brc| -817 -8.13 5.65 5.64 17.2 -8.04 0.23
1 1.00 1.01 9.0e-03 9.0e-03 0.71 1.01 1.34
Nested Bre -0.06 -0.06 1505 | 16e-05 -0.08 -0.06 -0.05
Logit (Site ——
1and 2) Bo 0.49 0.49 0.024 0.024 -0.003 0.49 1.02
Bo/Brc| -817 -8.16 6.05 6.04 -16.57 -8.05 0.06
hi 1.00 1.00 9.8¢-03 | 9.8¢-03 0.72 1.00 1.32
Nested Bre -0.06 -0.06 17e-05 | 1.7e-05 -0.07 -0.06 -0.05
Logit (Site —
2 and 3) Bo 0.49 0.49 0.023 0.023 -0.08 0.49 1.01
Bo/Brc| -817 -8.20 7.21 7.20 -17.48 -8.11 1.40
1 1.00 1.00 9.2e-03 9.2¢-03 0.72 1.00 1.41
Nested Bre -0.06 -0.06 16e-05 | 1.6-05 -0.08 -0.06 -0.05
Logit (Site =
1and 3) Bo 0.49 0.49 0.023 0.023 -0.05 0.49 1.10
Bo/Brc| -817 -8.13 5.96 5.96 -17.98 -8.07 1.05
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Table 9: Welfare Measures of Conditional Logit, Nested Logit and Latent Class Models When Conditional Logit Model Is the

True Model
Site Site Loss/CIosure_ Quality Change _
True Estimate True Estimate
Conditional 1 9.01 9.01 -2.39 -2.35
Logit 2 12.06 12.06 -3.00 -3.00
3 10.92 10.90 -2.78 -2.78
Nested 1 9.01 9.02 -2.39 -2.36
Logit (Site 1 and 2 12.06 12.08 -3.00 -3.01
2) 3 10.92 10.89 -2.78 -2.78
Nested 1 9.01 9.02 -2.39 -2.37
Logit (Site 2 and 2 12.06 12.06 -3.00 -3.02
3) 3 10.92 10.90 -2.78 -2.79
Nested 1 9.01 9.01 -2.39 -2.35
Logit (Site 1 and 2 12.06 12.07 -3.00 -3.00
3) 3 10.92 10.9109 -2.78 -2.78
Latent 1 9.01 9.31 -2.39 -1.69
Class 2 12.06 12.04 -3.00 -3.78
3 10.92 10.91 -2.78 -3.90

3 After we exclude iterations with infinite site values, 901 iterations are used to compute the averages.
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The latent class model performs fairly well based on the quartile ranges. For the
medians, there’s a 3.3% downward bias in the travel cost estimate, a 6.1% upward bias in
the site quality estimate and a 2.8% downward bias in the ratio. The means are not as
good due to extreme values from some iterations. Parameter estimates of the conditional
logit model and nested logit model are very close to true values. In the nested logit model,
how the nests are constructed doesn’t matter as sites are all uncorrelated. As discussed

above, if the parameter A is constrained to be between 0 and 1, its estimate will be nearly

1, and other estimates are almost identical to those of the conditional logit model.

The estimated site values of the latent class model perform quite well, which
makes sense because the travel cost estimate has good properties. The estimated values of
marginal quality change are somewhat different from true values, which is attributed to
the bias in the estimated parameter ratio. For site 1, there is a 29% upward bias; for site 2,
there is a 26% downward bias; for site 3, there is a 40% downward bias. The conditional

logit and nested logit models give very good welfare measures.

3.3 True Model-Nested Logit Model

3.3.1 Simulation Steps

To simulate the true world with the nested logit model as the true model, instead of
generating random errors from a multivariate extreme value distribution, we follow what

has been done in Herriges and Kling (1997) as detailed below.
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With the true parameters as B¢ = —0.06, 8, = 0.49,4 = 0.5, we can

compute the probabilities each person visits each site, say Py, Py and P3. Thena
number is drawn from a [0, 1] uniform distribution, denoted as x. If x is less than Py, this
person will choose site 1; if x is greater than Py but less than (P + P,), this person

will choose site 2; if x is greater than (P1 + Pz), this person will choose site 3. By

repeating this procedure for all people we get the pseudo observations. In different
iterations, the probabilities remain the same, but x is newly drawn, so the observations are

different.

When the true model is the nested logit model, some sites are correlated. The 1A
assumption no longer holds in the true world, so both the conditional logit and latent class
models would produce biased parameter and welfare estimates. The site quality estimate
is more biased than the travel cost estimate, so the estimated values of marginal quality
change deviate more from true values than the estimated site values. For the latent class
model, the median of the average quality estimate is more than two times the true value;
the bias in the median of the average travel cost estimate is about 45%. The bias in the

means is larger.

The nested logit model recovers the truth very well if the nest structure is correct.
When the nest structure is incorrect, however, the model approaches the conditional logit
model. We find that with a correct nest structure, the results from unconstrained and

constrained maximization are the same; with an incorrect nest structure, the estimate of A

is closer to 1 in constrained maximization than in unconstrained maximization, and other
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estimates are also closer to those of the conditional logit model. Therefore, the nested
logit model will perform at least as well as the conditional logit model regardless of the

true nest structure.

3.3.2 Simulation Results

The simulation results are shown in Table 10, Table 11 and Table 12.
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Table 10

: Performance of Latent Class Model When Nested Logit Model Is the True Model

lst 3rd
True Mean Var. MSE Min. ) Median ] Max.
Quiartile Quartile
'B/T\ c -0.06 -0.099 9.4e-03 0.011 -1.86 -0.095 -0.087 -0.078 -0.050
,[/35 0.49 1.86 12.26 14.13 -23.98 0.82 1.07 1.61 62.81
’ig/\ -8.17 -13.65 242.6 272.4 -285.9 -16.28 -14.05 -11.44 272.4
TC
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Table 11: Performance of conditional logit and nested logit models when nested logit model is the true model

True Mean Var. MSE Min. Median Max.
ﬁ/T\C -0.06 -0.07 1.3e-05 1.9e-04 -0.09 -0.07 -0.06
Conditional o
Logit ﬁQ 0.49 0.88 0.03 0.19 0.29 0.88 1.46
:BQ/,BTC -8.17 -12.05 6.19 21.30 -19.94 -12.04 -3.68
,i 0.50 0.50 3.5e-03 3.5e-03 0.34 0.50 0.73
Nested ’B/T\ c -0.06 -0.06 1.4e-05 1.4e-05 -0.07 -0.06 -0.05
Logit (Site ——
1 and 2) ,BQ 0.49 0.49 0.024 0.024 0.01 0.49 1.00
,BQ/.BTC -8.17 -8.16 6.11 6.11 -14.83 -8.08 -0.14
/i 0.50 1.24 0.012 0.56 0.93 1.23 1.58
Nested ﬁ?c -0.06 -0.081 2.9e-05 4.7e-04 -0.10 -0.081 -0.067
Logit (Site —
2 and 3) ,BQ 0.49 0.96 0.042 0.27 0.30 0.97 1.57
ﬁQ/ﬂTC -8.17 -11.93 6.41 20.55 -19.74 -11.94 -3.562
1 0.50 1.28 0.016 0.62 0.89 1.28 1.69
Nested .B/T\ c -0.06 -0.083 3.5e-05 5.6e-04 -0.11 -0.083 -0.067
Logit (Site ——
1 and 3) 'BQ 0.49 0.79 0.044 0.13 -0.018 0.80 1.44
.BQ /,BTC -8.17 -9.63 7.36 9.49 -18.32 -9.52 0.20
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Table 12: Welfare measures of conditional logit, nested logit and latent class models when nested logit model is the true model

Site Site Loss/Closure Quality Change

True Estimate True Estimate
Conditional 1 9.54 10.35 -2.71 -4.07
Logit 2 7.38 7.64 -2.29 -3.32
3 13.27 12.12 -3.17 -4.66
Nested 1 9.54 9.54 -2.71 -2.70
Logit (Site 1 and 2 7.38 7.39 -2.29 -2.27
2) 3 13.27 13.28 -3.17 -3.19
Nested 1 9.54 9.71 -2.71 -3.93
Logit (Site 2 and 2 7.38 8.03 -2.29 -3.35
3) 3 13.27 12.47 -3.17 -4.65
Nested 1 9.54 10.81 -2.71 -3.31
Logit (Site 1 and 2 7.38 7.30 -2.29 -2.63
3) 3 13.27 12.1220 -3.17 -3.68
Latent 1 9.54 9.79 -2.71 -3.57
Class 2 7.38 7.72 -2.29 -1.70
3 13.27 12.64 -3.17 -8.39

0 After we exclude iterations with infinite site values, 838 iterations are used to compute the averages.
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3.4 Sensitivity Analyses

To see how sensitive the results are to underlying factors, we conduct sensitivity analyses.
In the simulations above, the parameter ratio of travel cost over site quality in one class is
about four times of that in the other class. We picked two pairs of true parameters from
Hynes, Hanley, et al. (2008) so that the difference between parameter ratios becomes

even larger, around 24 times. Preferences of the two classes are very distinct, which

might help to identify a person’s membership. Second, we increase the number of sites
from three to seven. With more sites, there is more variation in people’s site choices with
different preferences, and it might be easier to tell which class one belongs to from their
observations. Also, we changed the true shares of two classes as 50% and 50%. By

having equal number of people, any disadvantage of having a smaller group is removed.

. 21
It turns out that all results display the same pattern as before ~. Hence, we conclude that
the inherent functioning of the latent class model produces outcomes that work well on
average but not necessarily for the individual classes since the above assumptions used in

the simulations had little influence on the patterns of the results.

21 See Appendix A for results.
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4 Discussion and Conclusions

The latent class model has been broadly applied in many areas, including within
environmental economics for valuation studies and for recreation demand analyses. In
this chapter, we use Monte Carlo simulations in the context of recreation site choices to
test whether the latent class model will successfully recover the truth and how it performs
compared to two other widely used site choice models, the conditional logit and nested
logit models. By conducting simulations under three true scenarios, we find that the latent
class model works at best the same as the conditional logit model, and is inferior to the

nested logit model when alternatives are no longer independent.

The latent class model aims to capture preference heterogeneity by assuming
there are a number of latent groups in the population. However, even if this is the true
scenario, we don’t know the true number of groups or everyone’s membership. For the
former, we can try a set of group numbers and let the data tell which is optimal. Based on
our findings, the two information criteria frequently used select the correct one at least 90%
of the time, which indicates that the latent class model can recover the true number of
preference groups in the population at an acceptable confidence level. For the latter, we
either rely on the data using fixed group shares in the estimation, or infer the probabilities
to each group through demographics. No matter how small a group is or how low a
probability could be, the uncertainty exists over which group a person belongs to. Thus, it
is the averages weighted by group shares or personal probabilities that enter the log-
likelihood function. That is to say, the values of preference parameters in each group and
corresponding shares do not matter, as long as the averages, which are their combinations,

maximize the log-likelihood function. So in the simulations, we see that the latent class
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model performs very well on average for both parameter and welfare estimates. But for
each individual class, the estimated parameters and group shares can deviate from the
true values, sometimes substantially. The latent class model does not always do a good
job identifying classes of a population with distinct preferences as is designed to do. It
could misallocate individuals in groups together with biased preferences. The positive
finding was that 50% of the time the bias from poorly estimated class sizes or parameters
may not be very large. In addition, the commonly applied information criteria are likely

to self-detect the true number of groups using the latent class model.

The conditional logit model has the simplest form, yet it has very good
performance when the unmeasured site characteristics in the errors are truly uncorrelated
with one another. When the true model is the conditional logit model itself, estimates are
close to true values, and variances and MSEs are quite small; when the true model is the
latent class model, conditional logit does well in recovering population averages. The
conditional logit estimated parameters and welfare measures sometimes even have even
better properties than population average estimates of the latent class model. In fact, the
conditional logit model can be viewed as a degenerate latent class model with the
constraint that preferences in all groups are the same. So we may be better off by
imposing constraints in maximum likelihood estimation. Both models are expected to be

biased if there is correlation among sites.

In all true scenarios, the nested logit model has the best performance among the
three models considered regardless of the true model. When sites are independent, how
the nests are constructed is irrelevant. When the true model is the nested logit model, a

correct nest structure gives estimates almost identical to true values. If the nest structure
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IS wrong, the results are very similar to the conditional logit model. Hence, the nested
logit model can detect an incorrect nest structure and go with no nesting as a solution. As
discussed in Herriges and Kling (1997), some nesting works better than no nesting, which

may be attributed to the additional degrees of freedom available in the nested logit model.

In conclusion, for future use of the latent class model, one should be cautious
interpreting the meanings of estimated class-specific parameters and the population
segment sizes. If the estimates seem extreme when compared to the other classes or when
a class membership is of very small size, one may be better off using a conditional logit
model. In addition, the robustness and reliability of the nested logit model justifies its
application to the Great Lakes beach survey data in the following two chapters.

For future research, it is worth considering true scenarios with more preference
groups in the population and estimating a latent class model with a variety in the number
of classes. For example, in applications, Greene and Hensher (2003) and Provencher and
Bishop (2004) had three classes, Scarpa and Thiene (2005) had four, Hynes, Hanley and
Scarpa (2008) had six, and Train (2008) had eight and twenty-five. It is possible that
having more latent groups in the truth might help the latent class model identify
individual class preferences. More variation in the true scenarios may make the
estimation more stable, and the ability of the latent class model to detect the true number
of classes can be further tested by using a variety of class numbers. Another possible
future direction would be to extend the modeling of class memberships to include a rich
set of demographic variables. Also, instead of generating explanatory variables,

simulations may be applied to survey data with real travel cost and site quality as well as
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demographic information, with which individual-specific membership to each group can

be modeled.
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Chapter 2

Estimating Use Values of Public Great Lakes Beaches in Michigan

1 Motivation

People often take trips to public beaches in their leisure time to participate in recreation
activities. Although there is no explicit market for pricing, through recreation demand
models, monetary use values of public beaches can be derived, which have important
policy implications. If policy-makers consider initiating environmental protection or
remediation projects related to beaches, they might apply benefit-cost analysis and weigh
costs against benefits, which come from increased trips. Moreover, establishing the
economic value of beach recreation can help policy makers think about the relative value
of various natural assets as they consider funding allocations among competing areas of

need.

Many researchers have evaluated the economics of beaches along the coastlines
of oceans. For instance, Deacon and Kolstad (2000) summarized several studies in 1970s
and 1980s on saltwater beach valuation, the results of which ranged from $0.70 to $13.55
per beach day in 1990 dollars. Hilger and Hanemann (2006) used data from a survey on
households in Southern California about their annual beach trips, and computed an
average willingness to pay of $5.71 in 2001 dollars, for an increase of one letter grade on
a water pollution rating scale. Lew and Larson (2008) had a telephone-mail-telephone
survey on randomly chosen households in San Diego County and asked eligible

participants about their trips to beaches. They computed the value of having access to
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beaches to be between $21 and $23 per day in 2000 dollars. Parsons et al (2009) surveyed
Texas residents living within 200 miles of the Gulf of Mexico and showed that if all

Padre Island beaches were closed, the mean loss would be $20 per trip in 2008 dollars.

Nonetheless, very few studies have focused on public Great Lakes beaches, which
are located along the largest group of freshwater lakes on the Earth and have unique
characteristics of their own. Murray, Sohngen and Pendleton (2001) took an on-site
survey at Maumee Bay and Headlands State Park beaches on Lake Erie and calculated
the value per beach day to be $25 for the former and $15 for the latter, in 1998 dollars.
However, because Lake Erie is smaller and its coastline is quite different when compared
with Lake Michigan and Lake Huron, it is unclear if their results can be generalized to
the entire Great Lakes. Song, Lupi and Kaplowitz (2010) did a web survey on visitation
to public Great Lakes beaches using a convenience sample from a consumer web panel of
Michigan adults and concluded that the welfare loss of eliminating a beach was around
$50 per visitor in 2006 dollars. However, the web panel was not representative of the

general population and their trip location data was only for the beach visited most often.

In addition, recreation demand models are usually applied to people who
participate in the activities. Although this assumption has some efficiencies for activities
that require a license (e.g., fishing), it is worth investigating how to generalize the results
to the entire population for activities that are more general such as beach use. Shaw (1988)
addressed the issues of truncation and endogenous stratification for on-site sampling
using a Poisson model. Englin and Shonkwiler (1995) proposed the negative binomial
model with count data to improve estimation. Shonkwiler and Shaw (1996) defined three

groups of people in recreation as “nonusers”, who never participated, “potential users”,
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who would participate but didn’t in the survey season, and “users”, who always
participated, and put single and double hurdles into the count data model. But these
solutions are for single site models. In the context of multiple sites, von Haefen et al
(2005) took the day trip data from a survey to Delaware residents on their visitation to
Mid-Atlantic ocean beaches, and integrated single and double hurdles into discrete choice
models to model the behavior of not taking a day trip in the season, where the total
number of day trips was zero over all choice occasions. Instead of distinguishing people
by the number of trips, English (2008) treated people who held licenses for shrimp
baiting as participants, the rest as nonparticipants. He derived a participation hurdle by
equating seasonal consumer surplus with the cost of license. The hurdle was added to the
nested logit model where one chose to purchase a license or not. The survey was only
sent to license holders. Information on nonparticipants was obtained in aggregate form

from the census data at ZCTA (Zip Code Tabulation Areas) levels.

If we adopt the definitions in Shonkwiler and Shaw (1996), nonusers and
potential users were pooled in von Haefen et al (2005), because both groups would have
no day trip in the season. The hurdles modeled the difference between the aggregation of
these two groups and the user group. In English (2008), nonusers were separated from the
pool by not holding the license. Potential users would pass the participation hurdle as
users and decide not to go for shrimp baiting in every choice occasion. However, there
was no survey on nonusers. Also, identification of the three groups would not be that
straightforward in beach recreation. To fill the gap, we conducted a two-stage survey of
Michigan residents where a screener mail survey was followed by a web survey. The

purpose of the mail survey was to find users and potential users of beach recreation and
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collect data on nonusers at the individual level. The web survey was implemented on
users and potential users, who were asked to report seasonal trips on public Great Lakes.
In this chapter, we apply the repeated nested logit model to the survey data to estimate
use values of public Great Lake beaches in Michigan, and the model is augmented with a
participation hurdle to examine how different forms of generalizing to the population

affect the results.
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2 Models
2.1 Random Utility Models

Random Utility Models are widely applied for recreation demand with multiple sites.
Following Train (2003), the utility person n receives from visiting a beach j in choice

occasion t is the sum of a deterministic term and a random term:

Unjt = ant + &njit
where the so called indirect utility Vy, j; = BXyj: + aQj¢. Q ¢ is a vector of beach
characteristics, or simply beach-specific constants. X, jt varies across people and

beaches and may include travel cost and interactions between demographics and beach

characteristics. €, j captures all other factors that affect utilities but cannot be observed

by researchers.

In a choice set with J beaches, person n will choose beach j in choice occasion t if

and only if:

Unjt > Unit, Vi # ]

Suppose Enjt is independently, identically distributed as Type | extreme value

distribution, from researchers’ point of view, person n will have a one-level decision tree

as in Figure 3. The probability of choosing beach j in choice occasion t is:
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2{=1 gVnit

Pnt(i) =

It is called the conditional logit model, and implicitly assumes the property of
independence from irrelevant alternatives (I1A). That is, the relative probability of

choosing beach j over beach i in every choice occasion is not influenced by the number or

attributes of other alternatives. In reality, this does not hold most of the time. If &, j; has

a generalized extreme value distribution, the 1A assumption will be relaxed to some

extent. And the decision tree will have two levels as in Figure 4.

Beach j

Figure 3: Decision Tree of Conditional Logit Model

Level 1

Nest k

Level 2
Beach j

Figure 4: Decision Tree of Two-Level Nested Logit Model
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The probability of person n going to beach j in nest k in choice occasion t is:

Vnjkt ; Valkt
e Mk (Xk e A )l

Pnt(ir k) =

K )i Valmt 1
m=1(21211€ Am ) m

where [}, is the number of alternatives in nest k. This model is referred to as the nested

logit model. 1A holds within nests, but not across nests. The parameter /1k measures the

degree of independence among the alternatives in nest k. The higher it is, the lower
correlation between these alternatives and the closer the nested logit model to the
conditional logit model. It can also be interpreted as the parameter on the lower level’s

inclusive value. It is normally assumed to be the same across all the nests so that the
model will converge. And we can replace A;, with A. P,¢(j, k) can be decomposed

into the multiplication of the probability to choose beach j conditional on nest k, and the

probability to choose nest k in choice occasion t.

Vnjkt
- e A
Pre (k) = . Va
Yile A
v
J nlkt
(ke )
P‘nt(k) - Vaimt

Ko (e 2 )
Pnt(i: k) = Pnt(f|k) * Pnt(k)
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We use a repeated nested logit model on day trips (Morey et al (1993)) for our
analysis, since there are a number of choice occasions in one summer season. Following

English (2008), with a participation hurdel, the decision tree is illustrated in Figure 5.

One-time Decision

Participate —_—

Not Participate

Take a day trip
Not take a day trip Repeated
Choices
Lake k
Beach j "

Beaches on Beaches on Beaches on Beaches on
Lake St. Clair Lake Erie  Lake Huron Lake Michigan

Figure 5: Decision Tree with Participation/Nonparticipation

At the top level, nonusers will not participate. People who overcome this hurdle
will decide whether to take a day trip in each choice occasion. Potential users have the
status quo utility exceed the utility of visiting a public Great Lakes beach in every choice
occasion and take no day trip. Otherwise, they will become users and take at least one
day trip over the season. The nests are defined by different Great Lakes, since they have

their own characteristics.

For users and potential users, in choice occasion t, the probability that person n

chooses beach j conditional on going to lake k is:
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Pnt(ilk; t?"lp) =

The probability of going to lake k conditional on taking a day trip is:

V kt

)/’l

(Zl 1€
§1=1(Z{21 e

P (k|trip) =

Imt

)A

Denote the indirect utility of not taking a day trip in the current occasion as Vnt,no trip-

The probability of taking a day trip in this occasion is:

LI ow e )’1)"

eVnt,no trip 4 (an=1(2{7=nl e )Lm )A)O'

Py (trip) =

Then, the unconditional probability of person n visiting beach j on lake Kk is:

Po:(, k) = Pp(jlk, trip) * Py (kltrip) x Py (trip)

Vn]kt

w (S e A1 (5 1<211e TRyt

eYnotw 4 (S (NI, & 4 )ye

The probability that person n doesn’t take a day trip in choice occasion t is:
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e Vntno trip

P,;(no day trip) =

v : K L
e’/ ntnotrip 4 (Zm=1(21=18 A ) )O‘

For users and potential users, the so called inclusive value, which is the maximum

utility person n can attain in choice occasion t, is:

Wy = log(eVnenowriv + (i (Z %)

As shown in Figure 5, the participation hurdle is imposed for the overall season.
To derive the participation hurdle, unlike activities requiring licenses, the cost of entry is
zero for beach recreation, although parking fees or access fees may apply on some public
beaches. Following English (2008), people who participate will have positive consumer
surplus, which means that the seasonal utility of participating is greater than the status
quo utility of not participating. The sum of every choice occasion’s inclusive value gives

person n’s seasonal maximum utility:

T
IVn,season = z IVt
t=1

where T is the number of choice occasions in the season. Denote the indirect utility of not

participating as Vn,not participate the behavior of participating and not participating

can be described by a logit model:
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e P1Vn season

P,(participate) =

ePIVn,season + eVn,not participate

e Vanot participate

P, (not participate) =

epIVn,season + eVn,not participate

where p is the parameter on the seasonal inclusive value.

Hence, the log-likelihood function is:

LL =

S
w, * log(Ps(not participate))

s=1
N
+ z wy, * log(P, (participate))
n=1

K Jk

+
=2
~

Wn * Ynt * log(Pnt(j: k))

S
I
P A
L
I
S
=

n
N]=
N~

Wy * (1 - ynt) * log(Pnt(nO trip))

S
Il
[uxy
o~
Il
=

where S is the number of nonusers, N is the number of users and potential users, T is the
number of choice occasions, and w is the personal weight. V¢ is 1 for the beach visited

in occasion t and O for all other beaches. The total number of day trips taken by person n

can be computed as: Y, = Yir_1 Ve
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2.2 Predicted Trips

With the estimated parameters, we can predict individual probabilities of taking day trips,
P, (trip), and visiting certain beaches, P, (j, k). Then for person n, the predicted

total number of day trips is:
T
P = Puultrip)
t=1
The predicted total number of trips taken to beach j on lake k is:
T
PG k) = ) PGk
t=1

If beach j is closed or there is a marginal increase in the length of beach j, the changes in

total trips or the trips taken to beach j can be calculated.

AY, = Y,|scenario — Y, |status quo

AY, (j, k) = Y, (j, k)|scenario — Y, (j, k)|status quo
2.3 Welfare Measures
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A change on one or more beaches will cause welfare changes to users and potential users.
It is of no value to nonusers. Based on Haab and McConnell (2002) and Champ et al
(2003), for person n, in choice occasion t, the welfare change are computed as the change
of the maximum utility this person can attain in this choice occasion, i.e. the inclusive
value, before and after a scenario happens, divided by marginal utility of income.

1V, |scenario — Tr/nt|status quo

A/V\Vnt: ,é
~Ptc

The seasonal welfare change will be:

A/M\/n,season = Z A/V\Vnt

T
t=1

Taking the weighted average of AWn,season across all users and potential users gives

the seasonal value per person.

N —
A/Vl\/ _ n=1 WTl * AWn,season
season — ZN
n=1Wn

To make seasonal welfare estimates comparable to those from single-site demand
models, they can be normalized by two kinds of factors: changes in total trips or trips
taken to the changed site, both of which were presented in the previous section. The way
we apply the normalization is to divide the weighted sum of seasonal values by the
weighted sum of trip changes, so that the results may not be distorted by possibly almost

zero probabilities to visit certain beaches at the individual level.
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Season Y1 Wi ¥ AW season
Total Trip Change ~ ¥N_. w, * AY,

Season =1 W % AW, seqson
Site Trip Change  YN_. w,, * AY,(j, k)

All the estimates above are per person measures. How to generalize them to the

population depends on specific models.
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3 Survey and Data
3.1 Surveys
3.1.1 Screener Mail Survey

To recruit people who might participate in beach recreation and collect data on nonusers,
a screener mail survey was sent to Michigan residents in 2011. A stratified sample was

drawn from Michigan’s driver license list, which has similar demographic characteristics
22 . ]
as the census data.  The two strata are for coastal and non-coastal counties, with 60% of

the sample drawn from coastal counties and 40% from noncoastal countiesZB. Within the
two strata, we drew randomly proportional to each counties’ population to further ensure
geographic representativeness of the sample. To manage the survey costs, people who
lived in the Upper Peninsula were excluded as the majority of population lives in the
Lower Peninsula. The original sample size drawn was 32,230, and the number went down

to 29,613 after removal of deceased people and those with bad mailing addresses.

The short four-page mail survey had three parts. The first part asked people about
their participation in various everyday activities, recreation activities and indoor activities.
Only one question was about Great Lakes beaches in order to reduce potential self-
selection bias that could occur if people knew the survey was aimed at identifying Great

Lake beach-goers. The second part was about participation obstacles, such as time or

22 See Appendix B.

2 . . .
3 The ratio of 60% over 40 % was decided through sensitivity analyses to balance

between recruiting as many people who participated in beach recreation as possible

within the project budget and not losing the representativeness of the general population.
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money constraints. The third part contained demographic questions like race, education,

employment status, household income, etc.

From June, 2011 to November, 2011, three waves of survey packages were
mailed out and two waves of automated phone calls were sent to household landlines as
reminders. 11,028 people returned their questionnaires for a 37.24% response rate, and
9,591 respondents were kept for data analysis according to the criteria of living in the

Lower Peninsula and being the persons to whom the mail survey was addressed, among

which 5,556 said they had visited a Great Lakes beach since June 1, 201024.

3.1.2 Follow-Up Web Survey

5,476 users and potential users from the screener mail survey were invited for the follow-

up Great Lakes beach web surveyzs. In-person and on-line pretesting was implemented
to test survey instruments (see Weicksel (2012)). There were additional 85 people
participating in beach recreation (their responses were received after the mail survey was
closed for data collection) chosen for a pilot survey, the purpose of which was to test the

functionality and data storage of the web survey.

24 Please refer to Weicksel (2012) for complete mail survey details.

23 The 80 people not invited to the web survey actually had multiple answers to the
question “Where do you live”. They might own properties in the Upper Peninsula of
Michigan or other States. We decided to include them for data analysis after the web
invitation went out. All these discrepancies are taken care of through weights.
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There were two sections in the follow-up web survey: the beach trip section26 and
the choice experiment section analyzed by Weicksel (2012). In the beach trip section,
following the survey in Parsons et al (2009), trips are categorized into three types: trips
lasting a day or less (day trip), overnight trips of less than four nights (short overnight
trip), and overnight trips of four nights or more (long overnight trip). People are asked to
report trip numbers of each type during the time frame from Memorial Day weekend,
2011 to September 30, 2011 (the primary beach-going season). Detailed questions were
asked for up to two randomly selected trips, such as date, activities and the number of
adults and children. If one had not gone to any public Great Lakes beaches in Michigan

in the past two years, the beach trip section would be automatically skipped.

Four waves of contacts were sent to potential web respondents. The first wave
mail package included an invitation letter with the invitee’s unique survey website
address and a $1 cash incentive; postcard reminders with the unique survey web
addresses were used in the second and third waves, differing in sizes. In the last wave, a
letter invitation was sent with a completion incentive strategy. The survey started in April,
2012, and closed right after the Memorial Day weekend, 2012. In total, 3,197 people

logged on the survey and answered our initial trip questions, giving a response rate of

58.38%27. The overall response rate of the two-stage survey was 21.7%.

26 In the survey, “Great Lakes beaches” were defined with a labeled graphic along with
the following bulleted list: “For this survey, Great Lakes beaches in Michigan include
beaches on the shorelines of « Lake Michigan, * Lake Huron, « Lake Erie, * Lake
Superior ¢ All connecting waters (Lake St. Clair, St. Clair River, Detroit River, etc.)”.

! Please refer to Weicksel (2012) for complete web survey details.
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3.2 Data

Out 0f 9,591 mail survey respondents, 3,838 said they didn’t visit any Great Lakes
beaches, so they are defined as nonusers for beach recreation. Within the 3,197 people
who responded to the web survey, 2,544 are the persons to whom the web survey was
addressed, and are kept for data analysis. 7 of them skipped the beach trip section, which

leaves us 2,537 effective respondents as users and potential users.

This chapter follows most recreation demand studies and only day trips are used

. . : . 28
in the model. Trips are removed where beaches are on inland lakes or Lake Superior , or

out of Michigan, and where no trips are reported for the beaches. If total trip numbers in

each month exceed the upper Iimitszg, excess trips are dropped. After these steps, we
have 1,538 users who took at least one day trip in the summer of 2011, and 999 potential

users with no day trip.

28 Web respondents all live in the Lower Peninsula and it is impossible for most of them
to go to Lake Superior and come back on one day. Some people may have a second home
in the Upper Peninsula, so they report day trips to beaches on Lake Superior. Their trips
are not included in the analysis as we consider trips originating from permanent
residence.

29 For day trips, the upper limit in June (including Memorial Day weekend) is 34, 31 in
July and August, 30 in September.
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Table 13: Demographic Characteristics of Users, Potential Users and Nonusers30

Effective Web Survey Respondents
All* Users Potentijll Nonusers*
Users
Age (Mean) 44.4 43.9 45.0 49.5
Income (Mean, $1000) 81.9 79.0 85.7 61.0
Education Years (Mean) 14.8 14.8 14.8 13.8
Male (%) 47.8 50.0 44.8 49.7
White (%) 90.9 90.7 91.1 80.1
Employed Full-Time (%) 52.2 54.3 49.4 40.1
Retired (%) 19.2 17.5 215 29.9
Children under 17 (%) 35.0 34.2 36.0 29.2

*Note: Nonusers were significantly different at 1% level from the group of Users and
Potential Users for each characteristic except “Male”. Nonusers were significantly
different at 1% level from Potential Users for each characteristic. Potential Users are
significantly different at 5% level from Users for “Income”, “Employed Full-Time” and
“Retired”.

We use demographic data from the web survey for users and potential users as it
is the most recent. It can be seen from Table 13 that nonusers have very different
characteristics from the group of users and potential users. People are more likely to
participate if they are young, with higher income, more educated, white, employed full-
time, not retired and with children under 17. Between users and potential users, we would
expect the employment status to affect the behavior of taking or not taking a day trip in
one choice occasion. Furthermore, nonusers are significantly different from potential
users for each characteristic suggesting that pooling these two categories as in von
Haefen et al (2005) may lose some accuracy. It is worth noticing that nonusers are

identified based on the screener mail survey in this study. Although the chances are likely

30 These are weighted by corresponding weights.
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small, those nonusers who responded the mail survey before September 30, 2011 might

have taken trips to public Great Lakes beaches in the survey season.

; Qe
859 PR AL R R
RO QSN
o . Q’Sb «’(9 (’Op

»

ODNO)Y

O

IE (
8(99 g&\‘%*woo
o

9

Google earth
(@
087/ft; eye alt 421.65 mi

Figure 6: Public Great Lakes Beaches for Day Trips31

For interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this dissertation.

According to the official beach list from Michigan Department of Environmental
Quality (DEQ), there are 588 public Great Lake beaches in Michigan, 454 on Lake Erie,
Lake St. Clair, Lake Huron and Lake Michigan. Removing 3 beaches with no length
information, we have 451 beaches as candidates in people’s choice sets (Figure 6).
Choice sets can be different among individuals based on the maximum driving distance

on one day. Following the literature, we set the cut point to be 500 miles for a round

31 Figure 6, 7, 10, 11 and 12 are Google Earth images. File conversion is through the
website: http://www.earthpoint.us/Excel ToKml.aspx
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trip32, which means beaches more than 250 miles away from one’s permanent residence
are not available for day trip visitation. The resulting choice set is quite large compared to
previous studies on beach visitation, which often have fewer than 100 alternatives. For
instance, Murray, Sohngen and Pendleton (2001) conducted their survey on 15 Lake Erie
beaches, and Parsons et al (2009) had the maximum number of sites in the choice set as

65.
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Figure 7: GLOS Points on Great Lakes in Michigan

Individual beach Iength33 and the previous year’s closure information were
provided by Michigan Department of Environmental Quality. The number of closure

days is the sum of all closure periods in the year of 2010, the year prior to our trip data.

32About 1% of people who took day trips visited beaches more than 250 miles away.
33 It is defined as the length of shoreline reach.
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Data on water surface temperature in the survey season was obtained from National

Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research

Laboratory (GLERL) using Great Lakes Observing System (GLOS) Point Query tooI34.
56 grid points are selected on Lake Huron along the coastline, 79 on Lake Michigan and

2 on Lake Erie (there are two beaches on Lake Erie in the DEQ list), as shown in Figure 7.
Daily temperatures were retrieved at these points and averaged into monthly temperatures,
because we know the month of the trips but not the exact days. Monthly data was directly
used for Lake St. Clair as its daily data was not available. Individual beaches were

matched to the nearest location with temperature data.

3.3 Model Specification

In the repeated nested logit model with a participation hurdle, the specification of the

indirect utility person n obtains from visiting beach j on lake k in choice occasion t is:
Vnjke = Bp * pricey i + Bq * beach qualityjy,
= Bic * travel costyj, + B * log(beach lengthjk)
+ B; * temperatureji. + Beq
* closure days of 2010, + -

* regional dummies j

4 )
3 http://glos.us/data-tools/point-query-tool-glcfs
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Vit no trip @d Vi not participate are described by the demographic variables in

Table 13.

The computation of travel cost is:

Travel cost = monetary cost + time cost
= round trip travel distance * $0.476 per mile

+ round trip travel time * (annual income/2,000)
* (1/3)

$0.476 per mile is the total driving cost minus maintenance and insurance costs for an

average size car in 2011, reported by American Automobile Association (AAA)35. Time
cost is the opportunity cost. A person employed full-time works approximately 2,000
hours per year, and the hourly wage can be derived. As discussed in Chapter 9 of Champ
et al (2003), for people working with fixed time schedule, normally one third of the

hourly wage is treated as the time cost. Travel distance and travel time are calculated in

PC miler, the logistic software, and their measures are mile and hour respectively36.

The definition of regions is from Center for Geographic Information in the State
of Michigan, where there are six regions in the Lower Peninsula plus one for the Upper

Peninsula. Beaches are assigned to different regions based on counties they belong to,

3 This is one way to compute travel cost. Another way would be the operating cost (gas,
maintenance and tires) plus depreciation caused by driving, which gives $0.2422 per
mile. Results using this travel cost are available upon request.

36 . . .
The travel cost in this study is for each adult, not household. It does not count the
number of people in one vehicle.
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which is available in the official beach list from Michigan Department of Environmental
Quality (DEQ). Since a few Lake Michigan beaches are on the Upper Peninsula, we

include six regional dummies for the Lower Peninsula in the estimation.

In the survey data, instead of reporting beach names, people might only report the
nearest town or city to the beach. That is to say, we don’t know the exact beach but the
area. There could be multiple beaches in that area. Given that all beaches are mutually

exclusive, the probability that person n visits area a can be expressed as:

Pae(@, k) = ) PG K)

j€Ea

It can be inferred from the official beach list how many beaches are in certain areas and
what they are. Also, for some trips, we are not able to locate the beaches or the areas, and

have to count these trips at the level of taking or not taking a day trip. That is to say,
P, (trip) is used to describe the trip information. Data from these two groups takes

about 35.3% and 8.8% of the total day trips respectively.

Since nearly half of the trip data is non-regular, the estimation is programmed in
Matlab so that the log-likelihood function can be adjusted to incorporate all available
information, although the estimation burden greatly increases. Depending on the speed of
computers, it takes 2 to 4 days to estimate the proposed model in Figure 5 with starting
values from sequential estimation. To remove the effect of cluster standard errors in
repeated trips, bootstrapping is applied through High Performance Computing Center in

Michigan State University, where it is possible to execute many single-process jobs at a
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time. Regarding the time constraint, we set the number of runs in bootstrapping as 100,

which still requires about four weeks before getting all the results.

We also estimate two traditional repeated nested logit models without the
participation hurdle for comparison. For convenience, we call them Model 1 and Model 2,
where Model 3 is the proposed model. Model 1 only uses the web survey data and
excludes nonusers, which is normally applied with list sampling and some studies with a
screener survey, such as Lew and Larson (2008). Model 2 and Model 3 include users,
potential users and nonusers, and individual weights are adjusted to maintain the relative
ratio of participation to nonparticipation. So the data for both models is representative of
the general population. Like the models in von Haefen et al (2005), Model 2 does not
differentiate potential users from nonusers because they all took no day trips in the survey
season. Model 3 follows the procedure in English (2008), and has a similar structure as
Model 1 except for the added participation hurdle. Nonusers do not enter the nests below

the hurdle (Figure 5).

The computation of welfare measures at the individual level in Model 1 and 2
follows the equations in Section 2.3, since Model 2 pools nonusers with potential users.
In Model 1, to calculate welfare measures at the population level, we need to take into

account the fact that these individual estimates are for users and potential users. The

participation rate inferred from the mail survey was 58.01%37. The total number of adults
living in Lower Peninsula of Michigan is 7,289,085 according to 2010 census, which

implies 4,228,398 users and potential users. Multiplying the number of users and

3 See Appendix D.
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potential users to Model 1 individual estimates gives welfare changes for the population.
In Model 2, multiplying 7,289,085 to individual estimates will produce welfare measures

for the population.

For Model 3 where there are three groups of people, changes in beaches cause
welfare loss to users and potential users, not to nonusers (because of the nature of the use
values being estimated). Although the data shows which group one belonged to during
the survey, generally, researchers will have no information on the membership. Also,
people switch between groups all the time. Therefore, we can predict one’s probability to
participate and not to participate in status quo, and apply them to conditional estimates to
derive unconditional welfare measures. For person h in Model 3, we have the welfare

changes in choice occasion t and total estimated trips as:

TVht|scenario — Tr/ht|status quo

_IBtc

AW, = P, (participate) *

+ P, (not participate) * 0

T
Y, = P, (participate) * z P,.(trip) + P, (not participate) * 0
t=1

T
Y, (j, k) = P, (participate) * Z P..(j, k)

t=1

+ P, (not participate) * 0
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These will generate individual welfare measures for a random person in the population,

and the calculation of population welfare measures is the same as Model 2.
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4 Estimation Results

Table 14 shows full information estimation results of two traditional repeated nested logit
models, Model 1 and Model 2, and the proposed model with a participation hurdle,
Model 3. All models display the same pattern at the beach level, and have similar
estimates, since information at this level mainly comes from users. The estimated
parameter on travel cost has a negative sign and is statistically significant at 1% level,
which is consistent with demand theory. The higher the price is, the lower the demand.
Following the literature, logarithm of beach length is used. The length matters a lot when
beaches are short, and its importance decreases for longer beaches. All else equal,
warmer beaches are preferred to colder beaches. Total closure days in the previous year
have a negative effect on beach visitation, suggesting that previous beach closures have a
lasting stigma impact on future visitation. The estimated parameters on regional dummies
indicate that all else equal, beaches on Lake Michigan are more popular compared to

Lake St. Clair, Lake Erie and Lake Huron.

The two nesting parameters at the lake level and the trip/no trip level are
statistically significant at 1% level and within the unit interval, which is consistent with
utility maximizing behaviors. Thus, nesting works better than no nesting. At the trip/no
trip level, how demographic variables affect the behavior of taking or not taking a day
trip in one choice occasion is different in Model 2 compared to Model 1 and 3. The
estimated parameters as well as their significance are quite different, or even have
opposite signs, because nonusers are identified at this level together with potential users
in Model 2. Model 1 and Model 3 show that within the population of beach-goers, people

who are male, non-white and not full-time employed take more day trips, as Table 13
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indicates that the employment status may influence the behavior of taking or not taking a
day trip in one choice occasion; whereas Model 2 suggests that in the general population,

people who are more educated take more day trips.

Comparing Model 1 and with the part of Model 3 that is conditional upon
participating in beach recreation shows that they produce almost identical results. Recall
that Model 3 is essentially Model 1 plus the participation hurdle; nonusers do not enter
the nests below the participation hurdle. In Model 3, the nesting parameter at the top level
(the hurdle level) is statistically significant at 1 % level and between 0 and 1, so adding
the participation hurdle to the model works better than no hurdle. The variable for being
full-time employed is dropped from the hurdle because otherwise the model would not
converge, which might be caused by its higher correlations with other demographic
variables for nonusers. In the general population, the hurdle model suggests people who
are young, white and more educated are more likely to participate in beach recreation.
The three variables are all significantly different between nonusers and the group of users

and potential users in Table 13.

Based on the estimation results, preferences on travel cost and beach
characteristics are not affected much by the model structure or whether the data is from
the population or a sub-population. The preferences are revealed when people actually
take trips. The distinction of the three models is what behaviors are being modeled.
Model 1 and Model 2 both incorporate the behavior of taking or not taking a day trip in
one choice occasion, the former in the group of beach-goers, the latter in the general
population. Model 3 separates the behavior of participating or not participating in one

season from the behavior of taking or not taking a day trip in one choice occasion through
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the participation hurdle. Although it is not a conceptual hurdle derived from an objective
utility function with constraints, it can explain how people behave to some extent, and

make use of more information compared to Model 2.
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Table 14: Full Information Maximum Likelihood (FIML) Estimation Results

Model 1 Model 2 Model 3
Model Levels Variables Estimates t Statistics Estimates t Statistics Estimates t Statistics
Beach Level Travel Cost -0.0280*** -20.0 -0.0312*** -21.1 -0.0281*** -17.3
Log(Length) 0.126*** 4.85 0.139*** 5.20 0.126*** 4,93
Temperature 0.0589*** 5.96 0.0601*** 5.95 0.0581*** 5.69
Closure Days of 2010 -0.0189*** -4.47 -0.0207*** -4.54 -0.0189*** -4.03
LP Northeast -0.0642 -0.173 -0.197 -0.534 -0.0621 -0.196
LP Mid-East -1.29*** -3.32 -1.56*** -4.00 -1.30*** -3.57
LP Southeast -1.38*** -3.23 -1.68*** -4.03 -1.39*** -3.30
LP Northwest 1.16*** 4.70 1.15%** 3.76 1.17*** 4.25
LP Mid-West 0.901*** 3.49 0.992*** 3.30 0.903*** 3.65
LP Southwest 0.321 1.20 0.406 1.22 0.325 1.23
Lake Level Nesting Parameter 0.644*** 11.7 0.705*** 12.6 0.645*** 12.5
Trip/No Trip Level Nesting Parameter 0.547*** 9.00 0.596*** 9.89 0.544*** 7.45
No Trip Male -0.152* -1.65 -0.118 -1.31 -0.151 -1.56
Age -0.0027 -0.768 0.00391 1.13 -0.0026 -0.757
White 0.378* 1.91 0.014 0.0682 0.383 1.61
Education Years -0.0106 -0.483 -0.0918*** -6.30 -0.0098 -0.490
Full-Time Employed 0.212** 2.31 0.106 1.04 0.215** 2.38
Retired 0.187 1.12 0.18 1.12 0.186 1.12
Children under 17 0.133 1.54 0.097 1.09 0.136 1.52
Constant 5.30*** 9.29 7.23%** 12.5 5.23*** 9.59

Note: *10% significance level; **5% significance level; *** 1% significance level
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Table 14 (cont’d)

Model 1 Model 2 Model 3

Model Levels Variables Estimates t Statistics Estimates t Statistics Estimates t Statistics

Participation Hurdle | Nesting Parameter - - - - 0.00511*** 21.4

Not Participate Male - - - - 0.0579 0.591
Age - - - - 0.0148*** 4.98
White - - - - -0.767*** -4.02
Education Years - - - - -0.176*** -9.16
Retired - - - - 0.124 0.998
Children under 17 - - - - 0.0704 0.738
Constant - - - - 5.59*** 17.3

Note: *10% significance level; **5% significance level; *** 1% significance level
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Table 15: Welfare Estimates of Changing a Beach in 2011 Dollars at Individual Level

Season Season/Total Trip Change Season/Site Trip Change
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3

Huron North -0.0408 | -0.0254 | -0.0232 375 333 38.2 12.2 13.2 12.4
Closure | Huron South -0.113 | -0.0685 | -0.0713 36.7 31.9 37.2 12.7 13.3 12.8
of One St. Clair -0.989 -0.645 -0.694 36.4 325 36.6 13.3 14.2 13.3
Beachin | Erie -1.81 -1.08 -1.27 36.4 32.4 36.5 14.8 15.5 14.7
the Michigan North -0.0600 | -0.0368 | -0.0278 38.1 335 39.0 11.9 13.3 11.7
Region>® | Michigan Central | -0.700 | -0432 | -0.324 | 385 | 340 | 383 12.7 13.6 12.7

Michigan South -0.370 -0.228 -0.172 38.3 33.7 38.0 12.8 13.6 12.7
Marginal | Huron North 0.0262 | 0.0162 | 0.0152 39.8 33.6 42.5 13.0 13.4 14.0
Increase | Huron South 0.0419 0.0254 0.0262 38.0 31.8 36.8 13.3 13.4 12.8
in Length | St. Clair 0.469 0.310 0.326 36.7 323 36.4 14.4 15.0 14.2
of One Erie 0.449 0.280 0.317 36.5 32.5 36.3 17.1 17.4 16.8
Beach in | Michigan North 0.0232 | 0.0144 | 0.0110 31.2 34.7 36.8 9.82 135 11.4
the Michigan Central 0.186 0.116 0.0877 38.3 33.7 38.4 12.9 13.7 12.9
Region Michigan South 0.134 0.084 0.0634 38.0 335 38.1 12.8 13.7 12.9

38 As described in the text, we construct 451 scenarios where one of the 451 beaches is closed in one scenario, which will give us the
value of each beach. A region has multiple beaches, so we use the average value of these beaches to represent “One Beach in the
Region”. It is the same with marginal increase in beach length.
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Table 16: Welfare Estimates of Changing a Beach in 2011 Dollars (Million) at State Level

39
Season
Model 1 Model 2 Model 3

Huron North -0.172 -0.185 -0.169
Huron South -0.477 -0.499 -0.520

.| St. Clair -4.18 -4.70 -5.06

Srosure of One Beech i [ e 7.65 7.86 9.26
Michigan North -0.254 -0.268 -0.203

Michigan Central -2.96 -3.15 -2.36

Michigan South -1.56 -1.66 -1.25

Huron North 0.111 0.118 0.111

Huron South 0.177 0.185 0.191

Marginal Increase in St. Clair 1.98 2.26 2.38
Length of One Beach in | Erie 1.90 2.04 2.31
the Region Michigan North 0.098 0.105 0.0802
Michigan Central 0.787 0.848 0.640

Michigan South 0.569 0.613 0.462

39 As described in Section 2.3, for the seasonal value, in Model 1, the average individual values were multiplied by the population of
adults living in the Lower Peninsula of Michigan adjusted by the participation rate 58.01%. In Model 2 and Model 3, the population
values are the average individual values multiplied by the population of adults living in the Lower Peninsula of Michigan.
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Table 17: Estimated Trips and Welfare Changes of Closing All Beaches on a Great Lake in 2011 Dollars

Individual Level

Number of Trips Season Season/Total Trip Change Season/Lake Trip Change
Model | Model | Model | Model | Model | Model | Model | Model | Model | Model | Model | Model
1 2 3 1 2 3 1 2 3 1 2 3
Erie 0.236 0.136 0.167 -5.16 -2.84 -3.59 36.4 324 36.4 21.9 21.0 21.5
St. Clair 0.422 0.260 0.298 -9.43 -5.63 -6.59 36.4 32.4 36.4 22.3 21.6 22.1
Huron 0.820 0.472 0.496 -20.6 -11.2 -12.0 36.9 32.7 36.8 25.0 23.6 24.2
Michigan | 3.46 2.00 1.62 -118.1 -62.0 -53.8 37.4 33.2 37.3 34.1 31.0 33.2
State Level (Million)
Number of Trips Season

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Erie 1.00 0.99 1.22 -21.8 -20.7 -26.2
St. Clair 1.79 1.90 2.17 -39.9 -41.0 -48.0
Huron 3.47 3.44 3.61 -86.9 -81.4 -87.5
Michigan 14.6 14.6 11.8 -499.2 -451.6 -391.8
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To compare valuation results, three scenarios are constructed: closing one beach
in different regions, marginally increasing the length of one beach in different regions,
and closing all beaches on one Great Lake. As described in Section 2.3, there are two
measures of welfare for each scenario, per season (columns titled “Season” in Table 15,
16 and 17) and per trip (columns titled “Season/Total Trip Change”, “Season/Site Trip
Change” and “Season/Lake Trip Change” in Table 15, 16 and 17). The per trip measures
come from normalizing per season measures by the change in the expected number of
trips to the affected site(s), or the change in the number of trips to any sites, so that results
of multiple-site demand models are comparable to those of single-site demand models or

models with different choice sets.

Take the per season measure as an example. When a beach is closed or there is a
marginal increase in beach length, we consider the change as happening separately at

each of the 451 beaches. In the case of beach j, we compute the welfare change for each

person in the sample, which can be denoted as Aan'Season following the previous

notation, and take the weighted average across people as the average per person welfare

estimate of beach j, AVV]-,SMSOTL. Then with the average per person welfare estimates

for all 451 beaches, we calculate the mean values within every region to represent a

beach in one region.

AVl/vbeach inregion,season — E * Zj:l AI/Vj,season

where R is the total number of individual beaches in that region. When all beaches on one

Great Lake are closed, the computation is the same except that the last step is not applied.
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Aggregating per person estimates to the population gives welfare estimates at the
population level, which includes adults living in the Lower Peninsula of Michigan in our

study.

Regarding per season measures, when a beach is closed, seasonal welfare losses
are larger for Lake Erie and Lake St. Clair because they have much fewer beaches
compared to Lake Huron and Lake Michigan. If one beach is closed, there are not many
substitutes, and the utility decreases a lot. When the length is increased by 1 mile on one
beach, seasonal welfare changes are also larger for Lake Erie and Lake St. Clair. Beaches
on these two lakes are all shorter than 0.5 mile, while beaches on the other two lakes tend
to be much longer. With the logarithm, a marginal increase in length will lead to more
utility increase for short beaches than for long beaches. Hence, the welfare gains for

changes in length at single sites are much smaller for Lake Huron and Lake Michigan.

When one entire lake is closed, seasonal welfare loss is the largest for Lake
Michigan, then Lake Huron. Lake St. Clair and Lake Erie have much smaller values.
Lake Michigan has the largest number of beaches. The maximum utility one could attain
would greatly decrease if all beaches on Lake Michigan were closed. There is much less
variation in per trip measures across regions and lakes because they are normalized by
trip changes. Thus, closures at more valuable beaches/lakes will lose more trips. Hence,
these normalized measures tend to remove the difference in demand for different sites,
and are comparable to those from single-site demand models that assume only one site is

available.
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To compare across three models, it can be seen that at the individual level,
seasonal welfare estimates in Model 2 and 3 are about 55% to 60% of those in Model 1,
which can be explained by the fact that only users and potential users are included in
Model 1 and the participation rate in the sample is 58.01%. At the State level, when all
the results are generalized to the population, seasonal welfare changes in Model 1 are a
little smaller than Model 2 if the change is for one beach, and bigger if the change is for
one lake. Possible explanations could be that users and potential users have slightly less
elastic demand than nonusers with small changes, and more elastic demand with big

changes. Model 1 and 2 predict almost the same number of trips to each lake.

Model 3 has somewhat different patterns: higher values for beaches on Lake Erie,
Lake St. Clair and Lake Huron, and lower values for beaches on Lake Michigan. It is the
same case for estimated trips. Compared to Model 1 and 2, Model 3 has different
allocations across lakes, fewer trips to Lake Michigan and more trips to the other three
lakes. The total number of predicted trips is also smaller. English (2008) also found that
the hurdle model tended to smooth the variation in trip prediction for different areas. For
population estimates, we would expect models to produce similar results if the population
mean is preserved by the model. However, Model 3 loses the mean-fitting property that
Models 1 and 2 possess for the total trips and for trips by region. One reason is the use of
individual-level participation rates. With the participation hurdle, the predicted
participation rate on average is 58.06%, almost identical as the sample, but there may be
a lot of variation across people. When inserting the participation rate at the individual
level, differences in each person’s welfare changes and estimated trips could be enlarged

rather than being averaged out. For instance, even though the means of two random
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variables are the same in two models, the product of the means in one model is not
necessarily equal to the mean of the two variables’ products in other model. Considering
Model 1 and Model 3, which are essentially the same model except the participation
hurdle, in Model 1, web survey respondents receive a 100% participation rate. Mail
survey respondents are not included so their participation rates are 0. In Model 3, the
estimated participation rate is positive for each person in users, potential users and
nonusers. The noise associated with individual estimates of the participation rates may

not go away in the aggregation process.
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5 Discussion and Conclusions

In this chapter, a repeated nested logit model is estimated with data from a two-stage
survey of the general population, providing policy makers with monetary values of public
beaches on Lake Erie, Lake St. Clair, Lake Huron and Lake Michigan. We find that 58%
of Michigan adults living in the Lower Peninsula of Michigan participate in Great Lakes
beach recreation during the summer season. In the general population, people who are
young, white and more educated are more likely to participate. Once participating, people

who are male, non-white and not employed full-time tend to take more day trips.

The value of an individual public beach is about $32-$39 per trip, depending on
the region. If length on one beach is increased by one mile, the welfare gain is about $31-
$43 per trip. About 20.9 million day trips in total are taken to public Great Lakes beaches
(excluding Lake Superior) each summer by Michigan adults from the Lower Peninsula,
with about 14.6 million for Lake Michigan. The results show that access to beaches for
day trips on Lake Michigan is worth over $400 million each year to Michigan adults
living in the Lower Peninsula of Michigan. These values are relevant to decisions on
beach issues such as quality maintenance and beach facility construction, and to policy

decisions about the value and environmental improvement of Great Lakes beaches.

This chapter also clarifies whether including nonusers and differentiating them
from potential users will make a difference. In previous studies, if only one survey was
implemented, the two groups were pooled and nonusers were treated as potential users
who took no trip during the season; if there was a screener survey, the purpose was to

recruit a sample for follow-up surveys and the data was rarely used. We follow what was
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done in English (2008) with the improvement that we also collected individual-level data
for nonusers. The estimation results of three models show that pooling nonusers with
potential users will produce different parameter estimates and welfare estimates
compared to using information only from users and potential users. When the behavior of
participation/nonparticipation is explicitly modeled, it hardly influences estimated
parameters for the beaches because nonusers provide no trip information; however, it
does tell us what factors could play a role in determining whether to participate or not.
We can predict the participation rate for any individual. However, the unconditional
results for total trips and welfare measures for the hurdle model are somewhat different
because presence of the hurdle leads to different spatial allocations of trip-taking
behaviors when results are aggregated to the population level. The loss of prediction
power might also be attributed to the lack of theoretical support for the participation
hurdle. As stated in English (2008), the hurdle could inadequately capture people’s
economic response to factors other than their own demographics, like site characteristics

and possible investments for participating in beach recreation (e.g. buying a boat).

Future work may focus on deriving a participation hurdle with an objective utility
function and relevant constraints. In this chapter, the seasonal inclusive values are used to
represent the utility of participation. English (2008) also incorporated cost of licenses as
another factor in the hurdle. If data is available on beach access fees, it could be
combined with people’s leisure activities in the mail survey to derive the equations for
participating and not participating from more comprehensive utility maximizing
behaviors. It is worth further investigating the implications of losing the mean-fitting

property of the typical repeated logit models when a hurdle is incorporated. In addition,
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we have only a few quality variables in this chapter. Although regional dummies can
explain site characteristics to some extent, choices among beaches will be more
accurately modeled with more data at the beach level, such as beach width, facilities,

whether a beach is located in the state park, etc.
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Chapter 3

Modeling Long Overnight Trips by Chaining Recreation Sites

1 Motivation

In recreation studies, valuation often applies to trips where recreation is the single
objective and only one site is visited, so day trip data is the most widely used as it
normally meets the two requirements (Caulkins et al (1986), Lew and Larson (2005),
Moeltner and Shonkwiler (2005), Scarpa and Thiene (2005), Smith (2005), von Haefen et
al (2005), Kim et al (2007), Timmins and Murdock (2007), Parsons et al (2009), etc.).
Some studies, most of which are for fishing or hunting trips, do not explicitly
differentiate overnight trips from day trips, or give the same treatment to the two types of
trips, where the single-objective and single-site assumptions are still imposed (Morey et
al (1993), Englin and Shonkwiler (1995), Haab and Hicks (1997), Provencher and Bishop
(1997), Shrestha et al (2002), Schuhmann and Schwabe (2004), Morey et al (2006),
Cutter et al (2007), Hynes et al (2007), Haab et al (2008), von Haefen and Phaneuf

(2008), etc.).
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Table 18: Examples of Literature Not Differentiating Overnight Trips from Day Trips

Papers Activities Models Comments
Recode all trips to Maine rivers as
Morey et al (1993) Fishing Random Utility Models day trips, and all trips to Canadian

rivers as four-day trips

Englin and Shonkwiler (1995)

Boating, Swimming and
Fishing

Count Data Models

Haab and Hicks (1997)

Visiting Beaches, Fishing

Random Utility Models

and Boating
Provencher and Bishop (1997) Fishing Dynamic Programming -
Shrestha et al (2002) Fishing Count Data Models -
Schuhmann and Schwabe _ -
(2004) Fishing Random Utility Models -
Morey et al (2006) Fishing Latent Class Model -

Cutter et al (2007)

Visiting National Parks

Random Utility Models

Hynes et al (2007) Kayaking Random Utility Models -
Haab et al (2008) Fishing Random Utility Models -
von Haefen and Phaneuf (2008) Hunting Random Utility Models -
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Table 19: Studies Dealing with Overnight/Multiple-Objective/Multiple-Site Trips

Papers Activities Models Welfare Measures Comments
. _ Demand Theory of 19.5 per Day in 1978 Explicitly model the number of
Kealy and Bishop (1986) Fishing Single Site Dollars recreation days
Mendelsohn et al (1992) Visiting National | System of _Demand 16.8 per Day in 1982 Combln_e multiple sites as one
Parks Equations Dollars composite
_ Random Utility 66.7 per Multiple-Day | Put day and overnight trips in
Hoehn et al (1996) Fishing Models Trip in 1994 Dollars two separate nests
McKean, Walsh and I 69.2 per Trip in 1986 Include price and time variables
Johnson (1996) Fishing Count Data Models Dollars for secondary sites
Tay, McCarthy and Fishin Random Utility N/A Use portfolios of destination,
Fletcher (1996) g Models duration and frequency
Parsons and Wilson . 58.8-76.9 per Day Trip in | Define one dummy variable for
(1997) Fishing Count Data Models 1989 Dollars incidental consumption
Shaw and Ozog (1999) Fishing Random Utility 268 in 1988 Dollars on | Test two structures with a level

Models

Catch Rate Improvement

of trip length

Loomis, Yorizane and
Larson (2000)

Whale Watching

Count Data Models

75.0 per Day in 1993
Dollars

Distinguish incidental trips from
joint consumption

Lupi et al (2003)

Fishing

Random Utility
Models

125.0 per Multiple-Day
Trip in 1994 Dollars

Allow different preference
parameters for day and overnight
trips

Yeh, Haab and Sohngen
(2006)

Visiting Beaches

Random Utility
Models

1.45 in 1998 Dollars on
Reducing One Advisory

Make an adjustment to travel
cost for multiple-objective trips
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Although most recreation trips are day trips, overnight trips make up a nontrivial
portion of recreation trips, and demand for recreation activities will be more accurately
modeled if these trips are accounted for. Previous studies have proposed several
approaches to deal with overnight trips. Kealy and Bishop (1986) derived the demand
equation from utility theory and used the total number of recreation days as the dependent
variable. Explanatory variables included demographic characteristics, travel cost, daily
on-site costs, daily overnight expenditures, etc. Multiple sites were not involved though.
Hoehn et al (1996) proposed a repeated nested logit model with a trip length level for
fishing trips where day trips and overnight trips were in two separate nests. Trip duration
was taken into account as well as locations and target species. In Tay, McCarthy and
Fletcher (1996), a multinomial logit model was applied to annual fishing trips. The
alternatives were not only individual sites, but also included trip duration and frequency
information. A subset of the universal set was used in estimation, and sampling
correction was applied. Shaw and Ozog (1999) specified two nesting structures in a
repeated nested multinomial logit model. One put the trip length level above the site level,
and the other had the opposite order. The first model had independence parameters within
the unit interval. Lupi et al (2003) implemented a repeated nested logit model with a trip
length level for single and multiple day trips. They allowed different parameters for day
and overnight trips, and the estimated results showed that the marginal utility of income

was lower for overnight trips.

However, these studies still assume only one site is visited on overnight trips. To
address the issue of multiple—sites or multiple-objective trips, Mendelsohn et al (1992)

combined all sites people visited as composites, which were added to the system of
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demand equations as additional alternatives. People could substitute between these
composites and individual sites. McKean, Walsh and Johnson (1996) included price and
time variables for secondary sites when estimating the demand function of the primary
site. Since the secondary sites were close to the primary site in their study and shared
similar characteristics, these variables were automatically dropped from estimation due to
multicollinearity. Parsons and Wilson (1997) proposed a theory to incorporate incidental
and joint consumption in count data models using a dummy variable as a proxy. It could
be interacted with site quality and demographic variables. Both multiple-objective and
multiple-site trips would be allowed in this approach. They found that incidental
consumption was a complementary good for recreation trips. Loomis, Yorizane and
Larson (2000) distinguished incidental trips from joint consumption using two sets of
dummy variables if both were incurred on a trip. They asked a screening question in the
survey to identify whether a trip was single-purpose or involved incidental and
consumption. Yeh, Haab and Sohngen (2006) applied a nested logit model to day and
overnight trips, and adjusted travel cost based on the proportion of time spent on the

recreation purpose for multiple-objective trips.

Nonetheless, these methods either process the data in a way that multiple-site trips
can be fit into the framework of single-site trips, or model the existence of multiple-site
trips using dummy variables. As yet, there are no applications where allowing people to
decide how many sites to visit and where to go have both been incorporated into a site
choice model. To fill this gap, in this chapter, we extend the traditional model where only
the main destination is visited on overnight trips, to a three-level nested logit model

which explicitly incorporates people’s decision on the number of sites and choice of sites
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to visit on an overnight trip. The data is from overnight trips where the main purpose is
recreation and people may visit any combination of 49 distinct sites. We want to see
whether the proposed model does a good job on explaining people’s behaviors and
produces different welfare estimates compared to the models based on the main

destination assumption.
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2 Models

The traditional way to model overnight trips is to assume people only visited their main
destination. With this assumption, we will have a simple conditional logit model as in

Figure 8.

Site 1

Figure 8: Decision Tree of Main-Destination Model

Following Train (2003), on the overnight trip, the utility person n obtains from

visiting site i as the main destination is:

Uni = Vni + &y

where the indirect utility 1/;,; may include travel cost, site characteristics, and their

interactions with demographic variables. &;,,; measures unobserved factors. Person n will

go to site i if and only if:

Uy > Upy ¥YM % i
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When &,,; follows an i.i.d. Type | extreme value distribution, suppose the number of

alternatives is K in the choice set, the probility of visiting site i is:

eVni

Zrlfl=1 eVnm

Pn(i) =

All the sites are independent, and the relative probility of visiting site i over site m is not
affected by other sites. The assumption of independence from irrelevant alternatives (11A)

holds.

Visit one site Visit two sites

Site j

Figure 9: Decision Tree of Model Allowing Multiple Sites per Trip

To build multiple sites into the model, we propose the structure in Figure 9. A
person will simultaneously decide whether to visit one or two sites and where to go.
Within the nest of visiting two sites, the first level represents the primary site, on which

one spends the most amount of time; starting from there, one chooses the secondary site
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from the rest of alternatives.With K sites, the number of alternatives is also K in the nest
of visiting one site, and K>(K-1) in the nest of visiting two sites. The total is K>K, which

greatly enlarges the choice set compared to the traditional model.

As described in chapters 1 and 2, if person n decides to visit one site, the

conditional probability of choosing site i is:

P,(i|visiting one site) =

If person n decides to visit two sites, the probability to choose j as the secondary

site conditional on k being the primary site is:

Vnjk

- - - - - e Ak

P, (jlk, visiting two sites) = T
Y niK

A
llek

k-1 means k is excluded from candidates for the secondary sites.

The conditional probability that a person n chooses k as the primary site is:

P, (k|visiting two sites) =
1( =1 le Am )Am

Then for person n, the inclusive values of visiting one site and two sites are:
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K V
[Vone = log Z e

m=1
A
K m-1 m
Vaim
Ve, = log Z Z e Am
m=1 \l=1

which is the maximum utility person n can attain if visiting one site and two sites

respectively.

To investigate whether demographic variables have any effects on selecting the

number of sites, we put them into the indirect utility of visiting one site:
Vone = 0 * IV, +y * demographics
Viwo = 0 * [V
Then the maximum utility person n can attain from taking an overnight trip is:
1V,, = log(eVone + eVtwo)

The probabilities of visiting one site and two sites are:

eVone

P, (visiting one site) =
n( g ) eVone + thwo

e VtWO

P,(visiting two sites) = eVone + eVewo
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Hence, the unconditional probabilities of choosing only site i or the pair of site k

and j are:

P,(i) = B,(i|visiting one site) * P, (visiting one site)

Vni
e o eVone
== k
K Vam eVone + eVtwo
1€ O
m=1

P,(k,j) = B,(jlk, visiting two sites)

* P, (k|visiting two sites) * B, (visiting two sites)

Vnjk Vi \ M1
e &k x ;‘__113 Ak
- thWO
= k
Valm Am eVone + eVtwo
K m-1_, 1
m=1( =1 €™ )

The log-likelihood function will be:

Nq

K
LL = 2 anl * Y, * log (Pnl(i))

n1=1 i=1

N K k-1

NN Wi, # 90, #108(Bu, (K )

n2=1 k=1 ]=1
j#k
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where N7 people visit one site and N, people visit two sites; y is the binary indicator for

the chosen alternative.

The indirect utilities /;;; and ank are composed of the price variable, i.e.

travel cost, and quality variables.

Vni = Btc * travel costy; + B, * site quality;

Vnjk = Bec * travel cost, i + Bg1 * primary site qualityy

+ B4z * secondary site quality;

Bgq. Bq1 and Bg2 could be different, so that we can test their relationships, for

instance, whether the sum of B4 and 3,5 is equal to B .Unlike previous studies

where day trips are estimated together with overnight trips, in this case, the marginal

utility of income is the same no matter how many sites one visit.

Welfare estimates in the conditional logit and nested logit models are per trip
measures with respect to the choice set since the “don’t go” option is not available. If one
site is closed, or there is a marginal increase on the length of one site, the estimated

welfare change for person n is:

__ 1V, |scenario — IV, |status quo
L A A q
_.Btc

The weighted average gives the per person value:
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N T
__ n=1 Wn * AW,
AW = ~
w.
n=1%n

Where N is the sample size for the model, and Wy, is person n’s weight.

To facilitate comparison of the model results to those of single-site models or
models with different choice sets, welfare measures can be normalized by
increase/decrease in the probability of visiting the changed site. Denote the changed site

as m, it is straightforward in the conditional logit model.

AW,

N n
g Zn=1Wntgp
APy, n=1Wn

In the nested logit model, however, site m appears at multiple nodes. If it is closed, the
number of alternatives reduces to K-1 in the nest of visiting one site, and (K-1)*(K-2) in

the nest of visiting two sites. If its length increases, characteristics of more than one

alternative will be affected. In other words, P, is the sum of person n’s estimated

probabilities to visit site m and alternatives including site m.

P = mz (m])+ZP(km)

In the second term, m is the primary site, and in the third term, m is the secondary site.

Following Parsons and Wilson (1997), a pooled truncated Poisson model is also
estimated. We refer to it as a pooled model because it is an ad hoc single site demand

formulation that ignores the complexities of multiple substitute sites and models a generic
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trip demand using data on the site a person visited. Because people visit different sites
and take different numbers of trips, the effects of quality can be generically entered and

identified. With main destinations, we have:

log(x) = a + B, * travel cost + B, * site quality +y

* demographics

It is assumed that each site has the same demand function. This is a pooled model, so
generic site quality variables can be included. The dependent variable x is the number of

overnight trips.

For the multiple-site version of this model, denote the dummy variable for visiting

two sites as D, and the equation becomes:
log(x) = a + B, * travel cost + B, * primary site quality
+ 60, *D + 0, x D x second site quality + y;

* demographics +y, * (1 — D) * demographics

The last interaction term uses 1-D instead of D in order to be consistent with the nested

logit model above, so that it captures how people visiting one site differ from those

visiting two sites. The access value per trip is 1/(—,81) in the pooled count model.

96



3 Data

The data comes from a two-stage survey we conducted in 2011 and 2012. A screener
mail survey went out to Michigan residents to recruit participants in beach recreation.
The sample was drawn from Michigan’s driver license list, and the surveys asked about
people’s leisure activities and participation obstacles. To reduce potential self-selection
bias, the screening question was but one of many questions on the screener survey.
People who said they had visited a beach on the Great Lakes since June, 2010 were
invited to the follow-up web survey, which asked about trips taken to public Great Lakes

beaches in Michigan in the summer of 2011.

Following the approach in Parsons et al (2009), the web survey categorized trips
into three types: day trip (lasting a day or less), short overnight trip (less than four nights)
and long overnight trip (four nights or more). In the web survey section on long overnight
trips, beside trip frequency information, detailed questions were presented for one
randomly selected trip. People were asked to report the beaches on which they spent the
most/second most/third most amount of time, as well as the number of days on each
beach. With information on how many sites people visited and where they went, we are

able to apply the proposed model with multiple sites to value long overnight trips.

To construct the choice set, given there are 588 public Great Lakes beaches in
Michigan according to Michigan Department of Environmental Quality (DEQ). We will
have a 588>588 choice set if individual beaches are used, and this is extremely
computationally burdensome. Based on literature on site aggregation (Lupi and Feather

(1998), Haener et al (2004), etc.), we aggregate the 588 public beaches into 49
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aggregated sites, where the key factors to consider are beach popularity, geographic
distribution and heterogeneity of travel cost (Figure 10 and Figure 11). A beach is more
likely to stand on its own if many people go there. Beaches with no visits are dropped.
Since the travel cost parameter is the denominator of all welfare estimates, to minimize
the distance heterogeneity in all aggregated sites, we keep the average distance between
two individual beaches under 18 miles within one site. Even with aggregation, a choice
set of 49 sites is relatively large compared to previous literature. For instance, Shaw and
Ozog (1999) aggregated 13 rivers into 8 groups, and Kaoru et al (1995) had 29
aggregates from 80 sites. In the web survey, 447 people took long overnight trips in the
summer of 2011. Before aggregation, 337 visited one beach, 81 visited two beaches and
29 visited three beaches. After aggregation, 355 visited one site, 71 visited two sites and
21 visited three sites. Hence, although we use 49 aggregated sites to represent 588
individual beaches, there is not much information on trips with multiple sites that is lost

with aggregation.

Following the aggregation literature, characteristics of these sites are averages of
individual beach characteristics, and the number of elemental beaches within an

aggregate is included in the estimation (Ben-Akiva and Lerman (1985), Parsons and

Needelman (1992)). Individual beach Iength40 was provided by Michigan Department of
Environmental Quality. Data on water surface temperature in the survey season was
obtained from National Oceanic and Atmospheric Administration (NOAA) Great Lakes

Environmental Research Laboratory (GLERL) using Great Lakes Observing System

40 It is defined as the length of shoreline reach.
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(GLOS) Point Query tool41. Daily temperatures were retrieved and averaged into
monthly temperatures, because we know the month of the trips but not the exact days.
Monthly data was directly used for Lake St. Clair as its daily data was not available.
Individual beaches were matched to the nearest location with temperature data. All
individual beaches’ characteristics are averaged to get the quality data for aggregated

sites.
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Imagery Date: 4/9/2013  44°37'10.27"'N  86°12'11.66" W' elev. 579'ft: eye alt 553.27 mi

Figure 10: Public Great Lakes Beaches Visited On Long Overnight Trips

41 .
http://glos.us/data-tools/point-query-tool-glcfs
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Figure 12: GLOS Points on Great Lakes in Michigan
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In data analysis, for the 21 people who visited three sites, the third site was
truncated, and they were pooled into people visiting two sites, because the group is too
small to identify, and the model may become intractable. The descriptive statistics of
participants taking long overnight trips are shown in Table 20. It can be seen that people

visiting two sites are not very different from people visiting one site.

Table 20: Demographic Characteristics of Participants with Long Overnight Trips42

Participants Visiting One Site* | Visiting Two Sites*
Age (Mean) 45.5 45.7 44.9
Income (Mean, $1000) 95.7 95.1 98.3
Education Years (Mean) 15.2 15.2 15.5
Male (%) 44.7 45.3 42.4
White (%) 96.8 96.2 99.1
Employed Full-Time (%) 54.9 54.9 55.1
Retire (%) 18.1 18.6 16.3
Children under 17 (%) 39.6 38.4 44.1

*Note: People visiting two sites were not significantly different from people visiting one
site except for the race variable “White”, where the difference was statistically significant
at 5% level.

To compute each person’s travel cost, we have:

Travel cost = monetary cost + time cost
= round trip travel distance * $0.476 per mile

+ round trip travel time * (annual income/2,000)

*(1/3)

42 These are weighted by corresponding weights.
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$0.476 per mile is the total driving cost minus maintenance and insurance costs for an

average size car in 2011, reported by American Automobile Association (AAA)43. Time
cost is the opportunity cost. A person employed full-time works approximately 2,000
hours per year, and the hourly wage can be derived. As discussed in Chapter 9 of Champ
et al (2003), for people working with fixed time schedule, normally one third of the

hourly wage is treated as the time cost. Travel distance and travel time are calculated in

. - . ' .44
PC miler, the logistic software, and their measures are mile and hour respectively . For
alternatives in the nest of visiting two sites, the round trip travel distance and travel time
is counted from permanent residence to the primary site, the primary site to the secondary

site, and the secondary site back to permanent residence.

Demographic variables included in the model are those listed in Table 20 as well
as three dummies indicating whether one’s income is within 0 to 25% percentile, 25%-50%
percentile, or 50%-75% percentile. The dummy variables for income are considered here
to test if income tends to play a role in the decision process for visiting multiple sites on

long overnight trips.

We estimate four models for comparison: the traditional model with main
destination, the proposed multiple-site model with and without demographics, and the
pooled truncated Poisson model. The maximum likelihood estimation of the first three

models is programmed in Matlab, and the standard errors are computed using the inverse

4 . .

3 This is one way to compute travel cost. Another way would be the operating cost (gas,
maintenance and tires) plus depreciation caused by driving, which gives $0.2422 per
mile. Results using this travel cost are available upon request.

44 L .
The travel cost in this study is for each adult, not household. It does not count the
number of people in one vehicle.

102



of Hessian. It takes about 8-10 hours to estimate the multiple-site model with

demographics. The pooled truncated Poisson model is estimated in Stata.

103



4 Estimation Results

It can be seen from Table 21 that estimated parameters for the travel cost variable are
different in the three models. If we take into account the scale effect, for visiting one site
in the two nested logit models, f/o is -0.00413 and -0.00404 respectively, which are both
bigger than the main destination model. The length variable has positive estimates in all
the models, but it is only statistically significant with visiting one site. The sign for water
temperature is negative, which may be counterintuitive and is the opposite of what we
expected. In fact, water temperature is highly correlated with regions. After analyzing the
data of long overnight trips, we find that more people go to Lake Superior and the north
part of Lake Michigan and Lake Huron, where the water is cold. Beaches on these areas
may have distinct unmeasured characteristics, compared to beaches in the south, and
people who take long overnight trips might care more about such unmeasured beach

quality than about water temperature. Thus, the regional effects are confounded with the

temperature variable and influence the signs of estimates45. The scale parameters in two
nested logit models are all statistically significant and within the unit interval, which is
consistent with the utility maximization behavior and indicates that nesting with multiple
sites is better than no nesting. . However, we don’t find significant difference between

people who visit one site and people who visit two sites.

45 It is shown in Appendix E that with regional dummies to control the unmeasured
regional beach characteristics in the main destination model, the estimated parameter of
water temperature turns positive. However, both multiple-site models will not converge
with these regional dummies variables as explained in Appendix E.

104



Table 21: Full Information Maximum Likelihood (FIML) Estimation Results

Main-Destination Model

Multiple-Site Model w/o

Multiple-Site Model w/

Variables Demographics Demographics
Estimates t statistics Estimates t statistics Estimates t statistics
Travel Cost -0.00327*** -6.47 -0.00172*** -2.96 -0.00226*** -3.51
One: Length 0.283* 1.90 0.140*** 2.76 0.187*** 3.04
One: Temperature -0.0602 0.658 -0.0241** -2.15 -0.0305** -2.4
One: # of Beaches 0.0287** 2.25 0.0111* 1.89 0.0153* 1.94
Two: Primary Length - - 0.0748 0.479 0.101 0.646
Two: Primary Temperature - - -0.102*** -4.44 -0.112%** -4.29
Two: Primary # of Beaches - - 0.0341 1.63 0.031 1.45
Two: Secondary Length - - 0.0412 1.41 0.0545 1.46
Two: Secondary Temperature - - -0.0242** -2.41 -0.0326*** -2.67
Two: Secondary # of Beaches - - 0.00651 1.49 0.00848 1.54
Two: Primary Level Parameter - - 0.161*** 2.68 0.213*** 3.08
One/Two Sites Level Parameter - - 0.416*** 3.22 0.560*** 3.69
One: Male - - - - 0.0321 0.125
One: Age - - - - 0.00553 0.544
One: White - - - - -1.2 -1.39
One: Education Years - - - - -0.0406 -0.85
One: Full-Time Employed - - - - 0.122 0.403
One: Retired - - - - 0.137 0.293
One: Children under 17 - - - - -0.0619 -0.231
One: 0-25% Income - - - - 0.484 1.34
One: 25%-50% Income - - - - -0.311 -0.851
One: 50%-75% Income - - - - 0.122 0.305

Note: *10% significance level; **5% significance level; *** 1% significance level
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Table 22: Estimated Welfare Changes per Person in 2011 Dollars

Main-Destination Model

Multiple-Site Model w/o
Demographics

Multiple-Site Model w/
Demographics

Per Trip/Trip

Per Trip/Trip

Per Trip/Trip

Per Trip Change Per Trip Change Per Trip Change
Closing One Site -6.31 308.7 -5.17 211.0 -5.38 218.4
Marginal Length 2.03 313.0 1.68 217.7 1.74 225.0

Increase on One Site
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As discussed in the previous section, for the length variable, with the null
hypothesis that the one site parameter is equal to the sum of the primary site parameter
and the secondary site parameter, we have t statistics to be 1.16 and 1.39 in the two

multiple-site models, so we cannot reject the null hypothesis at 10% significance level.

Estimated welfare changes are shown in Table 22, including per person per trip
measures and normalized per trip measures comparable to those of single-site demand
models or models with different choice sets. We consider the change as happening at
each of the 49 sites, and compute the welfare change for each site. The weighted average
across people is the welfare estimate for each site. The numbers in the table are mean
values of 49 sites. The two multiple-site models have similar measures, and the inclusion
of demographics makes the numbers a little bigger. The estimates of the main-destination
model are about 20% higher for per trip measures, and 40% higher for normalized
measures. The reciprocal of the scaled travel cost parameter estimate is -305.8 in the
main-destination model, -242.1 in the multiple-site model without demographics, and
247.5 in the multiple-site model with demographics. This explains part of the difference
among three models since the marginal utility of income is the denominator of welfare
estimates. Another factor causing the discrepancy is that the choice of multiple sites is
available in two multiple-site models. If one site is closed, the maximum utility one can
attain does not decrease that much since combinations of other sites may still give similar
utilities. It is the same with a marginal length increase. Therefore, ignoring the possibility
of people visiting multiple sites on overnight trips will have larger welfare changes

relative to the models allowing multiple sites per trip.
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Additionally, in the survey, on average, people who took long overnight trips
spent 4.20 days on one beach. Dividing normalized access values in Table 22 by 4.20 will
produce per beach day values for one site of $73.5 in the main-destination model, $50.2
and $52.0 in two multiple-site models. Considering we are valuing long overnight trips,

these numbers are comparable to other beach recreation studies in Table 19.

As another point of comparison, we also estimate a pooled truncated Poisson
model following Parsons and Wilson (1997). The pooled model is truncated because the
data excludes people who didn’t take long overnight trips, but there is no need to adjust
for endogenous sampling as in Shaw (1988) because we survey from the general
population. The results in Table 23 show that people with children under the age of 17
take fewer long overnight trips. People who are full-time employed or retired might be
more likely to visit two sites. The dummy variable indicating a second site is not
statistically significant. The access values are more than twice those in the Random
Utility Models. Thus, the pooled count data model which assumes an ad hoc single
demand equation does not appear to be well-suited to modeling long overnight trips with

multiple sites.
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Table 23: Estimation Results of Truncated Poisson Models

Variables _Main Destinatiop _ _ Multiple Sites __
Estimates t Statistics Estimates t Statistics

Travel Cost -0.00136** -2.26 -0.0013** -2.276
Primary Length 0.0511 0.316 -0.00351 -0.0248
Primary Temperature 0.00773 0.583 0.00977 0.692
Primary # of Beaches -0.012 -0.417 -0.0223 -0.774
Secondary Dummy: D - - 1.9 0.399
D xSecondary Length - - 0.221 0.714
D xSecondary Temperature - - -0.0248 -0.484
D xSecondary # of Beaches - - -0.00478 -0.124
Male 0.224 1.19 -0.268 -0.635
Age -0.00398 -0.537 -0.00856 -0.474
White 0.656 1.11 -0.552 -0.535
Education Years -0.0425 -0.951 -0.0322 -0.337
Full-Time Employed -0.165 -0.596 1.36* 1.75
Retired 0.246 0.689 1.75* 1.897
Children under 17 -0.693*** -3.06 -0.978** -2.24
0-25% Income -0.16 -0.405 -0.157 -0.274
25%-50% Income -0.358 -0.933 -0.988 -1.4
50%-75% Income -0.0303 -0.0724 -0.556 -0.846
(1-D) xMale - - 0.598 1.27
(1-D) xAge - - 0.0041 0.21
(1-D) xWhite - - 1.4 1.15
(1-D) x<Education Years - - -0.0136 -0.125
(1-D) xFull-Time Employed - - -1.75** -2.13
(1-D) x<Retired - - -1.68* -1.75
(1-D) =< Children under 17 - - 0.338 0.684
(1-D) =<0-25% Income - - 0.0536 0.0801
(1-D) % 25%-50% Income - - 0.769 0.953
(1-D) x50%-75% Income - - 0.588 0.738
Constant 0.676 0.392 0.566 0.296
Access Value per Trip in 7374 767.9

2011 Dollar

Note: *10% significance level; **5% significance level; *** 1% significance level
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5 Discussion and Conclusions

In this chapter, we build a model structure for long overnight trips where people can
simultaneously decide how many sites to visit and where to go. The options of visiting
one or two sites are significantly different. If two sites are visited, unobserved
characteristics are shared among secondary sites within one primary site. We find that the
value per beach day per person is about $50-$52 for one site in 2011 dollars. The
traditional approach assuming only the main destination is visited on overnight trips tends
to have larger welfare estimates relative to the models where all possible combinations of

sites are included.

Since we have trip frequency data, we originally sought to apply a repeated nested
logit model which added a level of taking or not taking a long overnight trip. It took
about 1-2 days to estimate this four-level repeated nested logit model in Matlab. However,
after many tries with different sets of explanatory variables and different nesting
structures, such as separating or integrating the primary and secondary sites, using
regional dummies and assigning different scale parameters to the nests, either the
repeated nested logit model does not converge even with starting values from sequential
estimation, or the estimated parameter on the inclusive value for the trip is negative.
Recall that in 447 people taking long overnight trips, 92 visited two sites, about 25% of
the data. But in the nest of visiting two sites, there are 49>48, 2352 alternatives, and only
4% of them have visitation information. Therefore, it is probable that our relatively small
sample of people visiting multiple sites on long overnight trips leads to the problem of

not converging.
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One direction of future work would be to find more data on beach characteristics
and regional amenities, as it may be that regional amenities may be more important than
individual beach quality with aggregated sites. More factors beside the length and water
temperature could also have significant influence on people’s choices of where to go, like
facilities, the convenience of lodging and whether a beach is located in the state park, and
may avoid some of the regional correlations that appear especially problematic for the
estimated temperature parameter. Other detailed information for the trip may also be
included, such as activities, the number of adults and children, etc. Another direction
might be to add short overnight trips to the model to fully take into account all the
information of overnight trips. In addition, more complicated models like the mixed logit
model could be applied, which is flexible on the substitution patterns across people,
alternatives and even choice occasions. Nonetheless, these all seem to greatly increase the

estimation burden, and more efficient programming may be required.
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APPENDICES
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Appendix A

Results of Sensitivity Analyses for the Monte Carlo Simulations in Chapter 1
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Sensitivity analyses are conducted to investigate whether changing underlying factors
will have significant effects on the results of the Monte Carlo simulations in Chapter 1.
We apply the simulations to three situations below: (1) a new set of true parameters, (2)
seven sites in the choice site, and (3) the same number of people in each group. Based on
baseline simulation results, in the sensitivity analyses, the nested logit model has site 1

and 2 in one nest, and there are two classes in the latent class model.

A.1 Different True Parameters

A.1.1 True Model-Latent Class Model

Simulation results are shown in the following tables.
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Table A-1: Performance of Latent Class Model When It Is the True Model46

True Mean Var. MSE Min. Median Max.
/%\C -0.12 -0.43 1.71 1.81 -8.89 -0.12 -0.033
,Eg 0.15 -0.33 75.54 75.70 -106.1 0.37 56.32
/%\C -0.07 -0.17 0.30 0.30 -9.11 -0.079 0.43
Bg 2.15 5.82 458.8 4717 -120.5 1.81 217.2
) 0.7 0.615 0.062 0.070 0.083 0.615 0.993
ﬁ% /B, | L2 -2.33 31.05 32.20 1186 273 16.45
/’3\5 / [fo o | -7 -57.12 186278 | 186785 -11330 -24.41 206.5
Brc -0.105 -0.177 0.074 0.080 -2.39 -0.112 -0.083
Bo 0.75 0.84 5.31 5.31 -20.98 0.84 14.41
Bo/Brc | -1009 -10.62 21.24 21.50 -122.4 -10.36 -4.66

46 Results are from 978 iterations.
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Table A-2: Performance of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model

True Mean Var. Min. Median Max.
Bre 0105 | -0.092 | 23e-05 | 20e-04 | -0.11 0091 | -0.078

Corl‘_doi;‘i‘ina' Bq 0.75 0.89 0.018 0.40 0.87 1.36
Bo/Brc | -1009 -9.67 2.00 -14.52 -9.62 -4.03
Bre 0105 | -0.096 | 40e-05 | 13e-04 | -0123 | -0.095 | -0.077

'\I'_ejé?td Bq 0.7 0.92 0.022 043 091 1.42
Bo/Brc | -1009 -9.64 2.02 -14.63 -9.59 -4.12

Table A-3: Estimated Values of Marginal Quality Change of Latent Class Model When It Is the True Model

True Mean Var. MSE Min. Median Max.
-0.41 -0.61 3.72 3.75 -4.69 -0.91 7.44
Class 1 -0.40 -0.95 3.38 3.68 -7.84 -0.91 3.66
-0.44 -0.77 3.39 3.50 -6.07 -0.91 5.35
-6.62 -4.56 11.35 15.56 -37.65 -4.90 28.62
Class 2 -15.00 -42.56 168717 169304 -10670 -10.89 183.2
-9.10 -10.00 474.2 474.5 -623.1 -7.82 44.85
-2.27 -2.36 0.30 0.30 -3.70 -2.41 -0.015
Average -4.78 -5.01 18.61 18.64 -110.8 -4.70 0.011
-3.03 -3.26 0.28 0.33 -8.86 -3.25 -1.46
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Table A-4: Estimated Site Values of Latent Class Model When It Is the True Model

True Mean Var. MSE Min. Median Max.
9.08 8.87 0.86 0.90 6.21 8.75 14.32
Class 177 8.33 8.83 1.62 1.86 5.03 8.78 14.88
9.41 8.77 0.12 0.53 8.13 8.80 14.67
5.30 5.41 7.24 724 | 2731 | 6.07 19.86
Class 2°8 1716 | 27.46 | 33034 | 33094 | -86.44 | 1461 | 4621
8.32 8.85 1521 | 1547 | -46.73 | 9.0 91.99
7.94 7.01 0.075 | 0.076 7.05 7.92 8.87
Average™ 1098 | 11.07 3.96 3.97 8.35 10.95 | 56.73
9.08 8.94 0.039 | 0.060 8.36 8.95 9.85

Table A-5: Welfare Estimates of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model

Site Site Loss . Quality Changg
True Estimate True Estimate

Conditional 1 7.94 7.91 -2.27 -2.86
Logit 2 10.98 10.64 -4.78 -3.61

3 9.08 9.14 -3.03 -3.20

Nested 1 7.94 8.03 -2.27 -2.87
Logit 2 10.98 10.74 -4.78 -3.60

3 9.08 8.95 -3.03 -3.16

47 . . e . .
After we exclude iterations with infinite site values, 884 iterations are used to compute the averages.
48 . . P . .
After we exclude iterations with infinite site values, 913 iterations are used to compute the averages.
4 . . P . .
’ After we exclude iterations with infinite site values, 819 iterations are used to compute the averages.
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A.1.2 True Model-Conditional Logit Model

Simulation results are shown in the following tables.
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Table A-6: Performance of Conditional Logit, Nested Logit and Latent Class Models When Conditional Logit Model Is the

True Model
True Mean Var. MSE Min. Median Max.
ﬁfr\c -0.07 -0.07 1.4e-05 1.4e-05 -0.087 -0.070 -0.060
Conditional ==
Logit Bo 2.15 2.16 0.014 0.014 1.83 2.16 2.59
Bo/Brc | -3071 -30.79 1.51 1.51 -34.47 -30.74 -26.31
ﬁ?c -0.07 -0.07 2.2e-05 2.2¢-05 -0.089 -0.07 -0.058
Nested Logit BE 2.15 2.16 0.023 0.023 1.75 2.16 2.69
Bo/Brc | -3071 | -3079 1.52 1.52 3446 | -3075 | -26.31
[?T\C -0.07 -0.098 0.014 0.015 -1.53 -0.073 -0.015
Latent —_—
2.15 2.76 6.40 6.77 1.12 2.22 35.24
Class50 A’B QA
Bo/Brc | -3071 -31.28 17.28 17.59 -97.39 -30.92 3.20

50 Results are from 988 iterations.
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Table A-7: Welfare Estimates of Conditional Logit, Nested Logit and Latent Models When Conditional Logit Model Is the

True Model
Site Site Loss _ Quality Changg
True Estimate True Estimate

Conditional 1 27.00 27.06 -19.41 -19.47
Logit 2 2.57 2.57 -3.67 -3.67
3 6.96 6.96 -7.63 -7.65

Nested 1 27.00 27.06 -19.41 -19.47
Logit 2 2.57 2.57 -3.67 -3.67
3 6.96 6.9651 -7.63 -7.65

Latent 1 27.00 27.58 -19.41 -20.15
Class 2 2.57 2.59 -3.67 -3.59
3 6.96 6.91 -7.63 -7.55

> After we exclude iterations with infinite site values, 876 iterations are used to compute the averages.
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A.1.3 True Model-Nested Logit Model

Simulation results are shown in the following tables.
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Table A-8: Performance of Conditional Logit, Nested Logit and Latent Class Models When Nested Logit Model Is the True

Model
True Mean Var. MSE Min. Median Max.
Bre -0.07 0093 | 26e-05 | 53e04 | -011 0092 | -0.079
Conditional PN
Logit Bo 2.15 253 0.040 0.18 2.02 2.52 3.33
Bo/Brc | -3071 | -27.33 2.71 1418 | -3263 | -27.35 | -22.16
Bre -0.07 0071 | 2805 | 29e05 | -0095 | 0070 | -0.058
Nested Logit | S, 2.15 2.17 0.026 0.026 1.72 2.16 2.85
Bo/Brc| -3071 | -3076 3.34 3.34 3719 | 3077 | -25.49
Bre -0.07 011 | 5903 | 352 -1.86 0.10 -0.079
Latent Bo 215 322 | 7.8:-03 | 467 1416 | 283 26.22
CIaSSSZ _ QA . . . . . . .
Bo/Brc | -3071 | -27.94 3.47 1114 | -3361 | 2796 | -22.37

52 Results are from 993 iterations.
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Table A-9: Welfare Estimates of Conditional Logit, Nested Logit and Latent Models When Nested Logit Model Is the True

Model
Site Site Loss _ Quality Chang(_a
True Estimate True Estimate

Conditional 1 8.56 9.38 -9.68 -9.01
Logit 2 16.79 16.70 -15.48 -13.55
3 4.32 3.74 -5.565 -4.77

Nested 1 8.56 8.56 -9.68 -9.69
Logit 2 16.79 16.81 -15.48 -15.53
3 4.32 4.323 -5.55 -5.53

Latent 1 8.56 9.04 -0.68 -9.06
Class 2 16.79 16.93 -15.48 -14.92
3 4.32 3.87 -5.55 -3.96

>3 After we exclude iterations with infinite site values, 965 iterations are used to compute the averages.
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A.2 Seven Sites

A.2.1 True Model-Latent Class Model

Simulation results are shown in the following tables.

124



Table A-10: Performance of Latent Class Model When It Is the True Model54

True Mean Var. MSE Min. Median Max.

'},\C -0.06 -0.12 0.46 0.46 -11.06 -0.062 6.12

[;g 0.49 2.22 2928 2955 -120.6 0.52 289
/72,\6, -0.10 -0.23 0.82 0.84 9.75 -0.073 0.27
Eg 0.21 0.15 14.84 14.82 -58.55 0.33 30.95
T 07 0.42 0.086 0.16 0.0030 05 0.994
[;g / [3/%\ c -8.17 -28.54 1.7€05 1.8¢05 -8638 -7.93 3692
B\é /ﬁ%\c -2.10 -3.28 15.99 17.37 -13.48 -4.28 12.74
Bre -0.072 -0.097 0.015 0.015 -1.55 -0.073 -0.038
EE 0.406 0.44 0.74 0.74 -9.91 0.409 11.65
Bo/Brc | -635 -6.68 56.7 56.7 -197.1 -6.28 475

54 Results are from 999 iterations.



Table A-11: Performance of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model

True Mean Var. MSE Min. Median Max.
Bre 0072 | -0.068 | 67e-06 | 23e05 | -0.077 | -0068 | -0.061
Conditional | 5~ 0406 | 0408 | 5803 | 58-03 | 0125 | 0407 067
Logit Q
Bo/Brc | -635 -6.01 1.23 1.34 -9.60 -6.02 -1.72
Bre 0072 | -0.068 | 23e-05 | 37e05 | -0.088 | -0.068 | -0.055
Nested B, 0.406 0410 | 6.6e-03 | 6.6e-03 | 0.149 0.409 0.68
Logit Q
Bo/Brc | 635 -6.01 1.23 1.35 -9.61 -6.03 -1.76
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Table A-12: Estimated Values of Marginal Quality Change of Latent Class Model When It Is the True Model

True Mean Var. MSE Min. Median Max.
-0.93 -4.78 18686 18681 -4256 -0.86 404.9
-1.02 -0.90 34.3 34.3 -87.19 -0.95 59.48
-1.45 -12.88 95285 95320 -8115 -1.39 2172
Class 1 -0.86 -1.92 2290.1 2289.0 -1415 -0.75 277.3
-1.17 -1.31 38.03 38.01 -81.52 -1.09 112.9
-1.53 -4,98 8065 8068 -1644 -1.50 1635
-1.22 -1.79 102.6 102.8 -142.9 -1.16 218.6
-0.30 -0.36 0.31 0.31 -1.23 -0.55 2.78
-0.28 -0.40 0.30 0.32 -1.44 -0.57 2.30
-0.32 -0.60 0.38 0.46 -2.85 -0.69 0.94
Class 2 -0.24 -0.32 0.23 0.24 -1.12 -0.48 2.32
-0.30 -0.46 0.34 0.36 -1.78 -0.62 1.95
-0.37 -0.64 0.47 0.54 -3.04 -0.76 1.14
-0.31 -0.50 0.33 0.36 -2.12 -0.63 1.37
-0.74 -0.66 0.41 0.42 -18.28 -0.68 3.76
-0.80 -0.73 0.037 0.042 -2.43 -0.74 0.45
-1.11 -1.51 40.63 40.75 -181.5 -1.15 32.17
Average -0.67 -0.58 0.10 0.11 -6.46 -0.62 2.40
-0.90 -0.86 0.047 0.048 -3.87 -0.86 0.076
-1.18 -1.38 2.25 2.28 -26.12 -1.24 22.53
-0.95 -0.96 0.085 0.085 -6.34 -0.95 0.73
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Table A-13: Estimated site values of latent class model when it is the true model

True Mean Var. MSE Min. Median Max.

2.40 2.34 90.52 90.43 -224.1 2.32 58.33

2.69 2.70 21.44 21.42 -43.02 2.56 68.64

4.08 5.39 682.4 683.4 -394.9 3.99 241.7

Class l55 2.19 2.26 315 315 -75.54 2.03 59.51

3.11 3.12 29.5 29.5 -51.65 291 83.18

4.46 5.46 430.2 430.7 -351.6 4.39 227.4

3.21 3.51 55.56 55.59 -103.3 3.10 101.0

2.26 247 0.41 0.45 -1.66 238 10.76
215 254 0.35 0.50 1.79 250 10.69
274 311 0.79 0.93 2.35 3.35 10.95
Class 2°° 158 2.08 0.41 0.66 141 2.02 10.62
2.23 272 0.40 0.65 -1.90 276 11.04
312 353 0.75 0.92 -1.96 3.76 11.25
237 2.69 0.49 0.59 -2.02 2.82 10.88
2.36 238 0.028 | 0.029 1.14 237 3.79
253 255 0021 | 0021 1.87 254 4.27
3.68 371 0.28 0.28 2.25 3.67 12.69
Average®’ 2.00 2.05 0024 | 0027 0.92 2.02 3.50
2.85 2.84 0025 | 0.025 2.10 2.84 4.97
4.06 411 0.21 0.21 -0.42 4.08 1253

2.96 2.96 0.041 0.041 1.98 2.95 5.74

55 . . e . .
After we exclude iterations with infinite site values, 953 iterations are used to compute the averages.
56 . . L g s . .
After we exclude iterations with infinite site values, 963 iterations are used to compute the averages.
> After we exclude iterations with infinite site values, 917 iterations are used to compute the averages.
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Table A-14: Welfare Estimates of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model

Site Site Loss Quality Change
True Estimate True Estimate

1 2.36 2.37 -0.74 -0.72

2 2.53 2.55 -0.80 -0.77

Conditional 3 3.68 3.61 -1.11 -1.02
Logit 4 2.00 2.04 -0.67 -0.64
5 2.85 2.86 -0.90 -0.86

6 4.06 4.02 -1.18 -1.11

7 2.96 2.96 -0.95 -0.90

1 2.36 2.37 -0.74 -0.72

2 2.53 2.55 -0.80 -0.77

Nested 3 3.68 3.61 -1.11 -1.02
Logit 4 2.00 2.04 -0.67 -0.64
5 2.85 2.86 -0.90 -0.86

6 4.06 4.02 -1.18 -1.11

7 2.96 2.96 -0.95 -0.90
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A.2.2 True Model-Conditional Logit Model

Simulation results are shown in the following tables.
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Table A-15: Performance of Conditional Logit, Nested Logit and Latent Class Models When Conditional Logit Model Is the

True Model
True Mean Var. MSE Min. Median Max.
Bre -0.06 -0.060 54e-06 | 5.4e-06 -0.069 -0.06 -0.054
Conditional | 5~ 0.49 049 | 51e-03 | 51e-03 | 0.8 0.49 071
Logit Q
Bo/Brc | -817 -8.18 1.44 1.44 -11.62 -8.18 471
Bre -0.06 -0.060 1.7e-05 | 1.7e-05 -0.077 -0.060 -0.047
Nested 5=
L g Bo 0.49 0.49 6.5¢-03 | 6.56-03 0.28 0.49 0.79
Bo/Brc | -817 -8.18 1.46 1.46 -11.84 -8.18 -4.76
Bre -0.06 -0.084 0.017 0.017 -1.69 -0.061 -0.024
Latent Class ,[?5 0.49 0.60 0.95 0.96 -5.44 051 11.85
Bo/Brc | -817 -8.32 14.86 14.86 -71.36 -8.26 59.98
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Table A-16: Welfare Estimates of Conditional Logit, Nested Logit and Latent Models When Conditional Logit Model Is the

True Model
Site Site Loss ' Quality Chang(_e
True Estimate True Estimate

1 3.15 3.16 -1.18 -1.18

2 3.56 3.55 -1.29 -1.29

Conditional 3 3.32 3.33 -1.20 -1.21
Logit 4 1.86 1.87 -0.76 -0.75
5 2.34 2.34 -0.91 -0.90

6 4.54 4.55 -1.59 -1.60

7 3.44 3.43 -1.24 -1.24

1 3.15 3.16 -1.18 -1.18

2 3.56 3.55 -1.29 -1.29

Nested 3 3.32 3.33 -1.20 -1.21
Logit 4 1.86 1.87 -0.76 -0.75
5 2.34 2.34 -0.91 -0.90

6 4.54 4.55 -1.59 -1.60

7 3.44 3.43 -1.24 -1.24

1 3.15 3.15% -1.18 -1.19

2 3.56 3.55 -1.29 -1.32

Latent 3 3.32 3.32 -1.20 -1.22
Class 4 1.86 1.89 -0.76 -0.69
5 2.34 2.34 -0.91 -0.87

6 4.54 4.62 -1.59 -1.77

7 3.44 3.42 -1.24 -1.27

>8 After we exclude iterations with infinite site values, 904 iterations are used to compute the averages.
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A.2.3 True Model-Nested Logit Model

Simulation results are shown in the following tables.
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Table A-17: Performance of Conditional Logit, Nested Logit and Latent Class Models When Nested Logit Model Is the True

Model
True Mean Var. MSE Min. Median Max.
,57; c -0.06 -0.090 1.1e-05 9.1e-04 -0.10 -0.090 -0.079
Conditional | 5~ 0.49 064 | 4203 | 0.026 043 0.64 0.84
Logit Q
Bo/Brc| -817 -7.10 0.47 1.61 -8.97 -7.13 4.74
,57; c -0.06 -0.060 1.7e-05 1.7e-05 -0.073 -0.060 -0.057
Nested Logit E& 0.49 0.49 2.4e-03 2.4e-03 0.33 0.49 0.53
Bo/Brc| -817 -8.17 0.52 0.52 -10.28 -8.19 -5.40
ET\C -0.06 -0.095 1.2¢-03 2.5¢-03 -0.95 -0.091 -0.079
Latent —_—
0.49 0.72 0.48 0.53 -1.33 0.65 16.07
Class59 Aﬁ QA
Bo/Brc| 817 -7.02 0.55 1.88 -9.50 -7.04 4,32

59 Results are from 999 iterations.
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Table A-18: Welfare Estimates of Conditional Logit, Nested Logit and Latent Models When Nested Logit Model Is the True

Model
Site Site Loss _ Quality Chang(_a
True Estimate True Estimate

1 3.67 3.69 -1.60 -1.38

2 1.84 2.14 -0.88 -0.85

Conditional 3 2.61 2.80 -1.17 -1.07
Logit 4 3.59 3.66 -1.55 -1.35
5 2.34 2.12 -1.12 -0.91

6 1.66 1.56 -0.82 -0.70

7 2.23 1.98 -1.02 -0.84

1 3.67 3.66 -1.60 -1.60

2 1.84 1.84 -0.88 -0.88

Nested 3 2.61 2.61 -1.17 -1.17
Logit 4 3.59 3.59 -1.55 -1.56
5 2.34 2.34 -1.12 -1.12

6 1.66 1.66 -0.82 -0.82

7 2.23 2.23 -1.02 -1.01

1 3.67 3.69% -1.60 -1.47

2 1.84 2.15 -0.88 -0.77

Latent 3 2.61 2.76 -1.17 -1.07
Class 4 3.59 3.67 -1.55 -1.45
5 2.34 2.11 -1.12 -0.85

6 1.66 1.58 -0.82 -0.62

7 2.23 1.97 -1.02 -0.79

00 After we exclude iterations with infinite site values, 986 iterations are used to compute the averages.
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A.3 Equal Probability of Membership in Latent Class Model

Simulation results are shown in the following tables.
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Table A-19: Performance of Latent Class Model When It Is the True Model61

True Mean Var. MSE Min. Median Max.

’%\C -0.06 -0.27 0.909 0.953 -8.14 -0.072 3.21
,Eg 0.49 2.08 789.1 794.5 -186.5 0.58 179.1
/%\C -0.10 -0.22 0.946 0.961 -8.76 -0.078 2.98
IE’E 0.21 0.025 8.47 8.50 -46.16 0.22 24.13
7 0.50 0.33 0.062 0.091 0.0038 0.32 0.995
,Eg / [,7%\ o | 817 -116.6 9.2606 9.2606 -68980 -7.26 22980
'ES /E;,Z\C -2.10 -2.19 23.96 23.95 -22.23 -2.63 255
Bre -0.08 -0.14 0.045 0.048 22.02 -0.082 -0.039
By 0.35 0.47 5.52 5.52 -22.26 0.375 17.16
Bo/Brc | 513 -5.68 12136 | 12127 | -7724 -5.00 512.3

61 Results are from 992 iterations.



Table A-20: Performance of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model

True Mean Var. MSE Min. Median Max.
5’T\C -0.08 -0.075 1.3e-05 | 3.9e-05 -0.086 -0.075 -0.064
Conditional =
Logit Bo 0.35 0.35 0.031 0.031 0.18 0.35 0.83
Bo/Brc| 513 -4.62 5.45 11.11 -4.61 2.35
5’T\C -0.08 -0.076 2.6e-05 | 4.3e-05 -0.092 -0.076 -0.061
Nested 5=
Logit Bo 0.35 0.33 0.035 0.036 0.30 0.33 0.85
Bo/Brc| 513 441 6.49 -13.33 -4.39 3.51

Table A-21: Estimated Values of Marginal Quality Change of Latent Class Model When It Is the True Model

True Mean Var. MSE Min. Median Max.
-2.96 -101.1 5.7e06 5.7e06 -65810 -2.52 9373
Class 1 -2.83 -5.05 59411 59356 -3165 -2.48 6066
-2.38 -10.5 2.6e06 2.6e06 -45320 -2.08 22390
-0.68 -0.80 2.66 2.67 -8.63 -0.89 6.77
Class 2 -0.69 -0.77 2.61 2.61 -8.12 -0.88 7.16
-0.73 -0.62 2.79 2.80 -5.48 -0.86 11.57
-1.82 -2.78 777.3 777.5 -737.4 -1.87 309
Average -1.76 -1.70 52.4 52.4 -36.08 -1.78 199.7
-1.56 -1.19 149.8 149.8 -284.8 -1.22 239.6
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Table A-22: Estimated Site Values of Latent Class Model When It Is the True Model

True Mean Var. MSE Min. Median Max.
1148 | 13.83 | 32004 | 32062 | -1864 | 10.22 | 3966
Class 1% 10.83 700 | 52409 | 52496 | -1535 | 9.97 326.7
8.91 1.18 | 633723 | 633058 | -20840 | 893 | 10120
8.63 9.63 1.06 2.07 6.60 9.71 2522
Class 2% 9.06 9.59 0.88 1.16 712 9.64 2511
9.67 9.67 1.38 1.38 6.27 9.50 26.4
10.06 9.88 1485 | 1481 | -61.03 | 10.0 53.7
Average™ 9.95 9.68 7.38 742 | 5506 | 9.82 1757
9.29 9.28 39060 | 39.42 | -1214 | 935 117.9

Table A-23: Welfare Estimates of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model

Site Site Loss _ Quality Chang_e
True Estimate True Estimate

Conditional 1 10.06 9.94 -1.82 -1.60
Logit 2 9.95 9.81 -1.76 -1.56

3 9.29 9.32 -1.56 -1.45

Nested 1 10.06 9.95 -1.82 -1.53
Logit 2 9.95 9.84 -1.76 -1.50

3 9.29 9.29 -1.56 -1.39

62 . . L g e . .
After we exclude iterations with infinite site values, 874 iterations are used to compute the averages.

63 . . P . .
After we exclude iterations with infinite site values, 953 iterations are used to compute the averages.

4 : . e . .
° After we exclude iterations with infinite site values, 835 iterations are used to compute the averages.
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Appendix B

Comparison between Driver License List and Census Data
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The mail survey sample was drawn from Michigan’s driver license list (from the

Michigan Office of the Secretary of State). Its demographic statistics are compared to

2010 census data for age and gender. The cut points in the age are from the census.

Table B-1: Age and Gender Distribution of Census and Driver License List in Michigan
for People Age 16 or Older

Michigan | Census Driver Census Driver Census Driver

Male Male Female Female
Age 16+ | 100.00% | 100.00% 48.50% 49.78% 51.50% 50.22%
Age 18+ | 96.26% 97.76% 46.57% 48.63% 49.69% 49.13%
Age 21+ | 90.46% 92.78% 43.62% 46.08% 46.84% 46.70%
Age 62+ | 21.54% 22.48% 9.51% 10.20% 12.04% 12.27%
Age 65+ 17.38% 18.20% 7.50% 8.12% 9.89% 10.08%

Table B-2: Age and Gender Distribution of Census and Driver License List for People

Age 16 or Older, for the Upper Peninsula and Lower Peninsula

Census Driver Census Driver Census Driver
Male Male Female Female

Upper Peninsula
Age 16+ 3.29% 3.09% 1.71% 1.56% 1.59% 1.53%
Age 18+ 3.20% 3.02% 1.66% 1.52% 1.54% 1.50%
Age 21+ 3.00% 2.89% 1.55% 1.46% 1.45% 1.43%
Age 62+ 0.86% 0.89% 0.40% 0.42% 0.46% 0.46%
Age 65+ 0.71% 0.73% 0.32% 0.34% 0.38% 0.39%

Lower Peninsula
Age 16+ 96.71% 96.91% 46.69% 48.22% 49.92% 48.69%
Age 18+ 93.07% 94.74% 44.92% 47.11% 48.15% 47.63%
Age 21+ 87.46% 89.89% 42.07% 44.62% 45.39% 45.27%
Age 62+ 20.68% 21.59% 9.10% 9.78% 11.58% 11.81%
Age 65+ 16.68% 17.47% 7.17% 7.78% 9.50% 9.69%

As shown in the tables, the joint distribution of age and gender in the driver

license list is very close to that of the census data. Therefore, the driver license list

reasonably represents the general population of adults in the Lower Peninsula.
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Appendix C

Data Weights
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The survey weights are constructed in stages, starting with the mail survey sample and
ending with weights for the web survey respondents. This section describes each stage of

the weights.

C.1 Mail Survey Sample Weights

The mail survey has a weighted random sample, with the purpose of recruiting as many
participants in beach recreation as possible. Thus, the data need to be weighted back for
the analysis. Originally, 60% of the sample was drawn from coastal counties and 40%

from noncoastal counties in the Lower Peninsula. With removal of people who deceased

or moved, this may not be the case, so the weights are calculated by county and applied

to the effective sample of 29,613, where the base is the driver license Iist65.

6> Weights are computed as ratios of the percentages in driver license list to the
percentages in the sample, so that they are normalized and do not distort the original
sample size.
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Table C-1: Mail Survey Sample Weights for Counties in the Lower Peninsula

County Code County Name Sample Weight
1 Alcona 0.67
3 Allegan 0.73
4 Alpena 0.69
5 Antrim 0.69
6 Arenac 0.68
8 Barry 1.12
9 Bay 0.65
10 Benzie 0.68
11 Berrien 0.85
12 Branch 1.24
13 Calhoun 1.43
14 Cass 1.32
15 Charlevoix 0.67
16 Cheboygan 0.69
18 Clare 1.30
19 Clinton 1.18
20 Crawford 1.16
23 Eaton 1.21
24 Emmet 0.72
25 Genesee 1.39
26 Gladwin 1.11

28 Grand Traverse 0.67
29 Gratiot 1.10
30 Hillsdale 1.30
32 Huron 0.69
33 Ingham 1.34
34 lonia 1.03
35 losco 0.68
37 Isabella 0.96
38 Jackson 1.24
39 Kalamazoo 1.35
40 Kalkaska 1.40
41 Kent 1.40
43 Lake 1.21
44 Lapeer 1.21
45 Leelanau 0.71
46 Lenawee 1.22
47 Livingston 1.16
50 Macomb 0.71
51 Manistee 0.64
53 Mason 0.76
54 Mecosta 1.08
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Table C-1 (cont’d)

County Code County Name Sample Weight
56 Midland 1.18
57 Missaukee 1.06
58 Monroe 0.73
59 Montcalm 1.19
60 Montmorency 1.26
61 Muskegon 0.72
62 Newaygo 1.31
63 Oakland 1.40
64 Oceana 0.81
65 Ogemaw 1.22
67 Osceola 141
68 Oscoda 1.15
69 Otsego 1.29
70 Ottawa 0.67
71 Presque Isle 0.68
72 Roscommon 1.27
73 Saginaw 1.36
74 St. Clair 0.71
75 St. Joseph 1.49
76 Sanilac 0.66
78 Shiawassee 1.16
79 Tuscola 0.65
80 Van Buren 0.83
81 Washtenaw 1.42
82 Wayne 0.90
83 Wexford 1.29
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C.2 Mail Survey Respondent Weights

A probit response/nonresponse model over the effective sample of 29,613 is run with the
mail survey sample weights (Table C-1) and with independent variables from the driver’s
license data (age, gender and counties). Variables that are not statistically significant at

90% confidence level are not shown.

Table C-2: Results of a Probit Response/Nonresponse Model for the Mail Survey Using
Sample Weights

Probit without County Probit with County
Variables Dummies Dummies
Estimates t Statistics Estimates t Statistics

Age 0.0139*** 31.9 0.0138*** 31.3
Gender 0.138*** 8.79 0.143*** 9.05
Constant -0.917*** -38.4 -0.782*** -5.28
Macomb County (Coastal) -0.256* 1.73
Wayne County (Coastal) -0.412*** -2.80

Note: *10% significance level; **5% significance level; *** 1% significance level

The results above are suggestive of demographic differences in respondents to the
mail survey. To correct for possible response/non-response bias together with the
sampling scheme, additional weights for the 9,591 eligible mail survey respondents are
computed according to the joint distribution of age, gender and counties, where the base
is still the driver license list. There are eight age ranges (16-24, 25-34, 45-54, 55-64, 65-
74, 75-84 and 85+) and four county categories (Macomb, Wayne, other coastal counties
and noncoastal counties). For the category of age 85+, there are only two county
categories, coastal and noncoastal counties; otherwise, the number of people in some

cells will be smaller than 30, which may have negative impacts on the weighting.
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Table C-3: Joint Age, Gender and County Distribution of Driver License List*

Age 16-

Age 25-

Age 35-

Age 45-

Age 55-

Age 65-

Age 75-

Gender County 24 34 44 £ 64 74 84 Age 85+
Male Macomb 0.62% 0.71% 0.77% 0.84% 0.65% 0.35% 0.21%
Male Wayne 1.43% 1.71% 1.81% 1.82% 1.42% 0.71% 0.42%
Male Other Coastal | 1.31% 1.45% 1.45% 1.73% 1.50% 0.91% 0.50%
Male Coastal 0.73%
Male Noncoastal 3.98% 4.82% 4.61% 4.99% 4.11% 2.26% 1.21% 0.72%
Female Macomb 0.59% 0.69% 0.77% 0.85% 0.68% 0.41% 0.29%
Female Wayne 1.36% 1.54% 1.64% 1.72% 1.46% 0.82% 0.59%
Female | Other Coastal | 1.20% 1.31% 1.37% 1.69% 1.51% 0.96% 0.62%
Female Coastal 1.12%
Female Others 3.76% 4.40% 4.41% 5.00% 4.28% 2.47% 1.57% 1.15%

Table C-4: Joint Age, Gender and County Distribution of 9,591 Eligible Mail Survey Respondents*

Age 16- | Age 25- | Age 35- | Age45- | Ageb5- | Age65- | Age 75-
Gender County 924 934 g44 954 964 974 984 Age 85+
Male Macomb 0.34% 0.69% 0.62% 0.97% 1.06% 0.66% 0.33%
Male Wayne 0.46% 0.74% 0.82% 1.25% 1.45% 1.06% 0.47%
Male | Other Coastal | 0.82% 1.26% 1.55% 2.77% 2.93% 2.29% 1.15%
Male Coastal 0.50%
Male Noncoastal 1.42% 2.37% 2.43% 4.08% 4.29% 2.76% 1.23% 0.38%
Female Macomb 0.47% 0.78% 0.90% 1.70% 1.38% 0.65% 0.50%
Female Wayne 0.71% 1.14% 1.19% 2.02% 1.91% 1.27% 0.77%
Female | Other Coastal | 0.94% 1.65% 2.07% 3.29% 3.54% 2.25% 1.24%
Female Coastal 0.90%
Female Others 1.74% 3.24% 3.45% 5.89% 5.60% 3.43% 1.65% 0.57%

*The distributions use the mail survey sample weights (Table C-1).
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Table C-5: Mail Survey Respondent Weights66

Age 16- | Age 25- | Age 35- | Age45- | Age55- | Age 65- | Age 75-
Gender County 92 4 93 4 g 44 95 4 96 4 97 4 98 4 Age 85+
Male Macomb 1.79 1.04 1.25 0.86 0.62 0.54 0.62
Male Wayne 3.11 2.31 2.20 1.46 0.98 0.67 0.90
Male Other Coastal 1.59 1.15 0.93 0.62 0.51 0.40 0.44
Male Coastal 1.47
Male Noncoastal 2.81 2.04 1.90 1.22 0.96 0.82 0.99 1.91
Female Macomb 1.26 0.88 0.85 0.50 0.50 0.64 0.58
Female Wayne 1.92 1.36 1.38 0.85 0.77 0.64 0.76
Female Other Coastal 1.28 0.79 0.66 0.51 0.43 0.42 0.50
Female Coastal 1.25
Female Others 2.16 1.36 1.28 0.85 0.76 0.72 0.96 2.01

06 They are normalized to the size of eligible mail survey respondents.
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C.3 Web Survey Respondent Weights

Similarly, before calculating the weights for web survey data, a probit
response/nonresponse model is run over the web sample of 5,476. The dependent
variable is response/nonresponse to the web survey, and the independent variables are
gender, age, race, education and employment, which were reported in the mail survey.
The analysis is performed using the mail survey respondent weights (Table C-5).

Variables that are not statistically significant at 90% confidence level are not shown.

Table C-6: Results of a Probit Response/Nonresponse Model for the Web Survey Using
Mail Survey Respondent Weights

Variables Estimates t Statistics
Age 0.00476*** 2.72
White 0.381*** 2.84
Asian 0.564** 2.34
Some Schooling 4.54*** 15.7
High School or Equivalent 4.73*** 19.9
Associate’s or Technical Degree 4.90*** 20.5
College Degree 5.19*** 21.8
Advanced Degree 5.16*** 21.7
College or Equivalent 0.323*** 7.07
Graduate Degree 0.450*** 7.33
Constant -5.52*** -12.5
Benzie County (Coastal) 1.03** 2.49
Hillsdale County (Noncoastal) 0.842* 1.95
Isabella County (Noncoastal) 0.704* 1.76
Leelanau County (Coastal) 0.797* 1.90
Roscommon (Noncoastal) 0.647* 1.85

Note: *10% significance level; **5% significance level; *** 1% significance level
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Table C-7: Results of a Probit Response/Nonresponse Model for the Web Survey

Using Mail Survey Respondent Weights With Fewer Variables

Variable Estimates t Statistics
Age 16-24 0.401*** 3.89
Age 25-34 0.338*** 3.57
Age 35-44 0.438*** 4.70
Age 45-54 0.561*** 6.38
Age 55-64 0.751*** 8.47
Age 65-74 0.587*** 6.17
White 0.289*** 3.96
College degree 0.413*** 9.81
Significant counties 0.446*** 3.98
Constant -0.712*** -6.65

Note: *10% significance level; **5% significance level; *** 1% significance level

If many factors are taken into account to correct the response/nonresponse bias,
the number of people in each elementary cell will be small and the weight will be big,
which could inflate variances. Therefore, to reduce the number of factors, we run the
following regression. All variables that are not statistically significant in previous
regression are dropped. Age dummy variables replace the continuous age variable for the
purpose of weighting. There are only 56 Asians in the respondents, so the corresponding
variable is not included. For the education, the effects of having a college degree and an
advanced degree are very similar, so a new dummy variable is created indicating whether
a person has a college degree or not. All county dummies collapse into one where it

equals one if a person lives in the five statistically significant counties in Table C-6.

Hence, four factors, age, county, race and education, have significant effects on
the weights for 2,544 eligible web survey respondents. Since the number of people can be
quite small in some categories, the approach of raking weights is used, rather than

comparison of joint distributions. The computation is implemented in SAS raking
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67 . .
macro , and the mail survey respondent weights apply to both the web survey sample

and eligible respondents. Only people with no missing data in race and education enter

.68
the computation

Table C-8: Raking Weights for Web Survey Respondents with No Missing
69 ._ 10
Data ~ (Non-Normalized )

Age Category | Significant County | College Degree White Web Weights
Age 16-24 0 0 0 1.60
Age 16-24 0 0 1 1.25
Age 16-24 0 1 0 1.15
Age 16-24 0 1 1 0.89
Age 16-24 1 0 1 0.90
Age 16-24 1 1 1 0.65
Age 25-34 0 0 0 1.60
Age 25-34 0 0 1 1.25
Age 25-34 0 1 0 1.15
Age 25-34 0 1 1 0.89
Age 25-34 1 0 0 1.16
Age 25-34 1 0 1 0.91
Age 25-34 1 1 1 0.65
Age 35-44 0 0 0 1.58
Age 35-44 0 0 1 1.23
Age 35-44 0 1 0 1.13
Age 35-44 0 1 1 0.88
Age 35-44 1 0 1 0.89
Age 35-44 1 1 0 0.82
Age 35-44 1 1 1 0.64

o It is developed by David Izrael, Abt Associates, June 1999.

08 Missing data could be treated as a separate category; however, the percentage of
missing data is too low to make the raking weights converge.

69 Outcomes of the macro are individual-specific when input data has weights, in our
case, the mail survey respondent weights. If the outcomes are divided by the input
weights, the results are very similar among people in the same age, county, race and
education category. Differences come from rounding errors. Therefore, we take averages
of those results in the finest category and treat them as the raking weights for web survey
respondents.

0 The original outcomes are normalized to the total number of people with no missing
data. When we divide them by the input weights, the normalization no long holds.
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Table C-8 (cont’d)

Age Category | Significant County | College Degree White Web Weights
Age 45-54 0 0 0 1.44
Age 45-54 0 0 1 1.12
Age 45-54 0 1 0 1.03
Age 45-54 0 1 1 0.80
Age 45-54 1 0 1 0.81
Age 45-54 1 1 1 0.58
Age 55-64 0 0 0 1.33
Age 55-64 0 0 1 1.03
Age 55-64 0 1 0 0.95
Age 55-64 0 1 1 0.74
Age 55-64 1 0 1 0.75
Age 55-64 1 1 1 0.54
Age 65-74 0 0 0 1.45
Age 65-74 0 0 1 1.13
Age 65-74 0 1 0 1.04
Age 65-74 0 1 1 0.81
Age 65-74 1 0 0 1.05
Age 65-74 1 0 1 0.82
Age 65-74 1 1 1 0.59

Age 75+ 0 0 0 3.26
Age 75+ 0 0 1 2.53
Age 75+ 0 1 0 2.33
Age 75+ 0 1 1 1.81
Age 75+ 1 0 1 1.84
Age 75+ 1 1 1 1.32

For people with missing data in race, we match them according to their age,
county and education in Table C-8, and use weighted web weights. For example, a person
has Age 16-24 in the age category, 0 in county and 0 in college. Under these criteria, we
have 12 non-White people and 106 White people in Table C-8, with a weight of 1.60 and

1.25 respectively. Then the weight of this person is calculated as:

12 % 1.60 + 106 * 1.25

12 + 106 =128
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The same procedure is applied to people with missing data in education and in both race

and education.

Table C-9: Raking Weights for Web Survey Respondents with Missing Data

Age Category Slgrcm)ll]‘:lct;nt College Degree White Web Weights
Age 16-24 0 0 151
Age 16-24 0 1 1.15
Age 16-24 0 0 1.28
Age 16-24 0 1 0.91
Age 25-34 0 1 1.04
Age 25-34 0 0 1.29
Age 25-34 0 1 0.93
Age 35-44 0 1 1.02
Age 35-44 0 0 1.26
Age 35-44 0 1 0.90
Age 45-54 0 0 1.21
Age 45-54 0 1 0.99
Age 45-54 0 0 1.14
Age 45-54 0 1 0.82
Age 45-54 0 1.00
Age 55-64 0 1 0.91
Age 55-64 1 1 0.65
Age 55-64 0 0 1.05
Age 55-64 0 1 0.75
Age 55-64 0 0.92
Age 65-74 0 1 0.96
Age 65-74 1 1 0.79
Age 65-74 0 0 1.14
Age 65-74 0 1 0.81
Age 65-74 0 0.97

Age 75+ 0 1 2.19
Age 75+ 0 1 1.83

When all 2,544 eligible web respondents have their web survey weights, we
multiply them with corresponding mail survey weights, and normalize the products to the

size of 2,544, which gives us the final weights for eligible web survey respondents.
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Table C-10: Distribution of Normalized Final Weights for Web Respondents

Final Weight Count Percent
0.21t00.3 5 0.20%
0.3t00.4 158 6.21%
0.4t00.5 256 10.06%
0.51t0 0.6 425 16.71%
0.6t00.7 179 7.04%
0.71t00.8 302 11.87%
0.81t00.9 109 4.28%

09to1l 267 10.50%
1tol1l5 389 15.29%
15t02 259 10.18%
2t03 156 6.13%
3to4 35 1.38%
4105 3 0.12%
5t06 1 0.04%

The big range between individual weights may distort the analysis and inflate the
variation. Therefore, we use three censoring rules to trim the weights. The first is ad hoc,
keeping the weights between 0.3 and 3; the second range is 0.4 to 2.3, where 163 people
are censored on both sides; the third range is 0.37 to 2.45, where approximately 5% of
people get censored. Trimmed weights are then normalized to the size of 2,544. The three
new sets of weights, as well as the original weights, are applied to eligible web

respondents to compare the joint distribution on age, county, education and race with the
. . .71 . . .

web sample with mail survey respondent weights ~. Although some discrepancies exist

because of missing data, especially for old people, the differences are very small, so all

four types of weights can be used in data analysis to correct for possible sampling and

nonresponse bias. The analyses in chapters 2 and 3 use the non-censored weights.

71 : I . :
There are 87 possible combinations of values in age, county, education and race for

the web sample, and 72 for web respondents, because people in some categories did not

respond. All missing categories take about 0.6% of the sample, so this is negligible.
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Appendix D

Great Lakes Beach Recreation Participation
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D.1 Participation in Various Activities

The summary of the mail survey data on leisure activities is presented below. The items
are presented in the same order that they appeared in the mail survey. The Great Lakes

beach question is show in bold in the bottom one-third of the table.
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Table D-1: Participation in Leisure Activities

Participation Rate
. Mail Surve
Participation Rate (Respon denty
Weights)

Eat Dinner at a Restaurant 97.18% 97.26%
Go for a Walk or a Hike 87.50% 88.24%
Attend or Participate in Outdoor Sports 65.59% 68.17%
Swim at a Pool, Lake or River 64.27% 68.70%
Go to a Movie in a Theater 66.95% 70.80%
Attend a Music Concert 48.50% 49.69%
Attend a Cultural or Arts Festival/Fair 59.91% 59.35%
Visit County, City, or Township Park 73.72% 74.54%
Visit State Park or State Campground 52.09% 53.76%
Visit State Forest or State Game Area 25.04% 25.41%
Visit National Park or National Forest 20.44% 19.89%
Camping 30.75% 33.56%
Hunting 15.84% 16.77%
Fishing 32.30% 34.31%
Boating 45.96% 47.93%
Picnicking at Public Parks 45.79% 46.30%
Visiting a Beach 64.20% 65.34%
Driving an All-Terrain Vehicle (ATV) 14.20% 15.81%
Snowmobiling 6.82% 7.71%

Skiing or Snowboarding 11.01% 12.73%
Visiting a Beach on the Great Lakes 59.14% 58.01%
Fishing on the Great Lakes 14.39% 14.22%
Boating on the Great Lakes 21.86% 21.08%
Read Books 77.48% 75.29%
Indoor/Outdoor Exercise 82.79% 83.39%
Watch Television 96.91% 96.58%
Use the Internet 83.56% 85.82%
Play Video Games 21.24% 26.31%
Play a Musical Instrument 10.56% 11.92%
Volunteer 37.22% 35.53%

The three Great Lakes activities have slightly lower participation rates when the

weights are applied, which should be the case since coastal counties were oversampled.
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D.2 Participation in Great Lakes Beach Recreation

To investigate what factors influence participation in beach recreation, a probit model is

used with mail survey respondent weights. The dependent variable is a binary variable of
visiting a Great Lakes beach or not, and the independent variables include demographics
and county dummies. Variables that are not statistically significant at 90% confidence

level are not shown below.

The results illustrate that these kinds of people are more likely to visit Great
Lakes beaches: young people and couples with children age 6 to 17; these kinds of people
are less likely to: African American, people unemployed and couples with children age
under 5. Although most of the education and income categories have negative effects,
people with higher education and income are more likely to visit Great Lakes beaches.
Also, as expected, people living in coastal counties are more likely to visit Great Lakes
beaches than people from noncoastal counties. The only exception is Wayne County, a

highly urbanized county.
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Table D-2: Factors Influencing Participation in Great Lakes Beach Visitation

Variable Estimates t Statistics
Age -0.00849*** -5.44
Black/African American -0.597*** -4.56
Some Schooling -0.430*** -3.28
High School or Equivalent -0.328*** -5.76
Income: Less than $25,000 -0.432*** -6.34
Income: $25,000 to $49,999 -0.320*** -5.47
Income: $50,000 to $99,999 -0.0859* -1.65
Unemployment -0.227* -1.66
Household: Couple with Children Age 5 and Under -0.162* -1.66
Household: Couple with Children Age 6 to 17 0.138* 1.89
Constant 1.21%** 3.76
Arenac County (Coastal) 1.10** 2.42
Barry County (Noncoastal) -0.5978 -1.79
Benzie County (Coastal) 0.833** 2.26
Berrien County (Coastal) 0.674** 2.42
Cheboygan County (Coastal) 0.832* 1.95
Emmet County (Coastal) 0.824** 2.45
Grand Traverse County (Coastal) 0.543* 1.91
losco County (Coastal) 0.617* 1.72
Jackson County (Noncoastal) -0.485* -1.67
Lenawee County (Noncoastal) -0.752** -2.38
Manistee County (Coastal) 1.13*** 3.39
Muskegon County (Coastal) 0.75*** 2.68
Oakland County (Noncoastal) -0.503* -1.93
Oceana County (Coastal) 1.11%** 291
Ottawa County (Coastal) 0.654** 2.4
Saginaw County (Noncoastal) -0.493* -1.77
Washtenaw County (Noncoastal) -0.52* -1.93
Wayne County (Coastal) -0.543** -2.1

Note: *10% significance level; **5% significance level; *** 1% significance level
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Appendix E

Model Sensitivity in Chapter 3
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When the regional dummy variables are added to the traditional model with main

destination, the estimated parameters on travel cost and the number of beaches in the

aggregated site do not change much, so these two variables are robust to these dummies.

The estimated length parameter decreases about 43.8%, and the estimated temperature

parameter turns positive with a 122.6% increase. Both variables are sensitive to the

regional dummies, which demonstrate that beach quality is correlated with regional

geographic characteristics.

Table E-1: Parameter Estimates of Main Destination Model with and without Regional

Dummies
Variables No Regional Dummies Regional Dummies
Estimates t Statistics Estimates t Statistics
Travel Cost -0.00327*** -6.47 -0.00381*** -6.67
Length 0.283* 1.90 0.159** 1.96
Temperature -0.0602 0.658 0.0136 0.679
# of Beaches 0.0287** 2.25 0.0272** 2.32
LP Northeast - - -0.853*** -2.83
LP Mid-East - - -1.67*** -3.66
LP Southeast - - -2.28%** -4.23
LP Northwest - - -0.55* -1.84
LP Mid-West - - -0.566 -1.54
LP Southwest - - -1.45%** -3.25
UP Lake Michigan - - -0.941** -2.21

Note: *10% significance level; **5% significance level; *** 1% significance level

However, when regional dummy variables are added to multiple sites, they will
appear in three different places: in the nest of visiting one site and in both primary and
secondary sites in the nest of visiting two sites. When any model with this formulation
was attempted, the model estimation would not converge. Thus, we have dropped these
regional dummies from the model in chapter 3, and their effects are manifested in part

through the estimates for the length and temperature variables.
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