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ABSTRACT 

VALUATION OF PUBLIC GREAT LAKES BEACHES IN MICHIGAN 

By 

Min Chen 

The objective of this dissertation is to measure the monetary values of public Great Lakes 

beaches using the travel cost approach. To decide which econometric model to use, 

Monte Carlo simulations were developed, and results showed that the nested logit model 

was robust and reliable. To collect beach use data, a two-stage survey of over 29,000 

people was conducted from 2011 to 2012. A mail survey went out in 2011 to identify 

people who participated in beach recreation with a random sample from Michigan’s 

driver license list. Respondents who said they visited a Great Lakes beach since June 1, 

2010 were invited to a follow-up web survey about trips to public Great Lakes beaches in 

the summer of 2011. A repeated nested logit model with a participation hurdle was 

estimated for the day trip data. The estimated beach recreation participation rate was 58% 

for adults living in Lower Peninsula of Michigan, and an estimated 20.9 million day trips 

were taken by Michigan adults to public Great Lakes beaches in the summer of 2011. The 

value of access to a public beach for a day trip was estimated to be $32-$39 per person 

per trip in 2011 dollars. Access to all Lake Michigan public beaches, in Michigan, was 

estimated to be worth over $400 million per season for day trips for adults living in 

Lower Peninsula of Michigan. To value long trips of four nights or more, a model was 

developed allowing people to visit combinations of single and multiple sites on a trip. 

The resulting values were about $53 per person per beach day for access to a site for a 



 

 

trip of four nights or longer. The more common approach of using the main destination 

for multi-site trips has larger welfare measures compared to the approach permitting 

combinations of multiple sites to be visited. 
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INTRODUCTION 

 

Michigan has the longest freshwater coastline in the United States, and large numbers of 

people visit public Great Lakes beaches every year. Beach recreation not only facilitates 

the economic development of coastal areas, but also brings welfare to people that use 

them. Although for public beaches there is generally no price, they do have economic use 

values. The objectives of this dissertation are to quantify the demand for beach recreation 

and measure the associate use through Random Utility Models (RUM) with data from 

two surveys. The outcomes of our work can be applied to benefit-cost analysis in the 

decision-making process. In addition, the estimated demand model structure can be 

transferred to other locations for valuation of freshwater beaches. 

Within the widely used random utility modeling framework, there are several 

types of econometric model specifications. The latent class model assumes heterogeneity 

in preferences while the nested logit model captures similarity in alternatives. The 

conditional logit model is the simplest, since preferences are assumed to be the same and 

alternatives are independent. The first chapter investigates relative performance of the 

latent class model compared to the conditional logit and nested logit models.  Monte 

Carlo simulations are used to investigate model performances under several scenarios. 

Results show that the latent class model does not always work as expected, and the nested 

logit model was found to be more robust than the other two. Thus, the nested logit RUM 

is applied in chapters 2 and 3. 
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The second chapter estimates use values of public Great Lakes beaches. A mail 

survey on the leisure activities of Michigan residents was conducted to identify who did 

and did not participate in Great Lakes beach recreation. People who participated were 

then recruited to a web survey about their trips to public Great Lakes beaches for an 

entire summer season. Day trip data was used in a nested logit model to produce 

estimates of the value of Great Lakes beach use. Unlike most literature, nonusers, those 

who had not visited Great Lakes beaches in the past two years, also enter the model to 

test how this alters the way that results are generalized to the population. 

The third chapter models multiple day recreation trips by chaining recreation sites. 

In the recreation demand literature, multiple day trips are rarely modeled, but when they 

are, the traditional way of modeling these trips is to assume only the primary destination 

is visited (for the trips with more than one destination). In our web survey, participants 

who take overnight trips of four days or more are asked to report on multiple beaches 

they have visited in one randomly selected trip, which makes it possible to relax the 

traditional single-site assumption and allow for visitation of a second beach on overnight 

trips. The results are compared to those from the traditional model to see if the added 

complexity and survey cost is warranted.  
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Chapter 1 

Relative Performance of the Latent Class Model Compared to the Conditional Logit and 

Nested Logit Models for Environmental Valuation 

 

1 Motivation 

Random Utility Models (RUMs) have been widely applied to recreation demand analysis 

and valuation. Within its framework, according to Train (2003), different distribution 

assumptions lead to different models such as conditional logit, nested logit (generalized 

extreme value), probit and mixed logit models. Preferences over attributes are the same in 

the conditional logit and nested logit models, while alternatives in the choice set can be 

correlated in the latter. The probit model requires a normal distribution. The mixed logit 

model is the most inclusive. Random parameter (or mixed logit models) and latent class 

models are both frequently used to model preference heterogeneity. The random 

parameter model imposes distributional assumptions over individual preference. The 

latent class model assumes there are a number of latent groups in the population, and 

people in different groups have different preferences. It can be treated as a discrete and 

semi-parametric version of the random parameter model (Greene and Hensher (2003)). 

Although not as flexible, the latent class model may have more power in interpretation 

since it can link demographic characteristics to heterogeneous preferences. For example, 

young people may value water quality more than old people and care less about travel 

distance, as they are more likely to have contact with water. Hence, many studies have 

valued recreation activities through the latent class model (Boxall and Adamowicz (2002), 
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Scarpa and Thiene (2005), Morey et al (2006), Owen and Videras (2007), Patunru et al 

(2007), Scarpa et al (2007), Burton and Rigby (2009)).      

Several studies have investigated how the latent class model performs against 

others. Greene and Hensher (2003) compared the latent class and random parameter 

models through an empirical data set from a stated choice experiment. They evaluated 

willingness to pay indicators and elasticity and concluded that one was not absolutely 

better than the other. Each model had its advantages and disadvantages. In their data set, 

they found the latent class model was preferred statistically. Provencher and Bishop 

(2004) examined the forecasting ability of the logit, random parameter and latent class 

models based on salmon fishing on Lake Michigan. They showed that the latter two 

performs equally well in trip prediction, and for other measures, the logit model could 

have more reliable results. Hynes, Hanley and Scarpa (2008) studied preference 

heterogeneity of kayakers using the latent class and random parameter models, and stated 

that the latent class model might provide better interpretation. Kosenius (2010) analyzed 

water quality data with the multinomial logit, random parameter and latent class models. 

The author elucidated that when there were correlations among alternatives, the random 

parameter model had a better fit to the data than the multinomial logit model. The latent 

class model used demographic information to explain the heterogeneity in preferences. 

Nonetheless, using real data, it is hard to tell whether or not the latent class model 

can successfully recover the true preferences, because those true values are not known. In 

the literature applying the latent class model to different areas, it is not uncommon to see 

the estimated preference in one class be more than 10 times that of another class (Scarpa 

and Thiene (2005), Train (2008), etc.). It is possible that discrepancies in preferences 
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among people are large, but it may also be that the model has drawbacks. A model that 

cannot correctly reflect the real preferences could be misleading in empirical studies. 

Therefore, in this chapter, Monte Carlo simulations are employed to test the reliability of 

the latent class model, where the truth is known, and compare its performance to the 

conditional logit and nested logit models in the context of environmental valuation. The 

random parameter model is not under investigation as several studies above have 

demonstrated that it performs similarly as the latent class model. The one that displays 

robustness will be used for valuation in the following two chapters. 
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2 Models 

The utility from visiting a recreation site can be expressed as: 

           

where subscripts n and j denote individuals and sites.  The construction of the covariate 

matrix X depends on the specific model. It can include variables only varying across sites, 

like site characteristics, variables only varying across people, like demographic variables, 

variables varying across both sites and people, like travel cost, and their interaction terms. 

The parameter vector β reflects people’s preferences. It can be fixed for all or different 

for different groups. The random term ε represents individual and site factors influencing 

utilities. 

Based on the utility equation, a person will go to the site that generates the highest 

utility in his/her choice set. Since individual errors cannot be observed from the 

perspective of researchers, each site has a probability of being visited. Different models 

have different expressions for the probability because of different distribution 

assumptions of the errors. The maximum likelihood estimation searches parameter values 

to maximize the joint probability of observed choices. Welfare measures of site loss or 

characteristic change can then be computed from parameter estimates. 

 

2.1 Conditional Logit Model 
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The conditional logit model assumes that the errors are independent and follow a Type I 

extreme value distribution. The parameters are constants, and variables that are invariant 

to sites must be excluded or interacted with     . Following Chapter 3 of Train (2003), 

the probability of a site to be visited is: 

   ( )  
     

∑      
 
   

 

 Let y be the binary variable indicating people’s choices.  The log-likelihood 

function is:  

   ∑∑        (   ( ))

 

   

 

   

 

where N is the total number of people and J is the total number of sites. 

Because the model measures use value, person n only cares about the site he/she 

visits, so only a loss of the chosen site or change on that site (if it is small enough not to 

affect the original choice) affects this person’s welfare. Suppose person n chooses site g, 

the loss of other sites or any changes on other sites are of no value to him/her. When site 

g is closed, person n has to go to the site that gives the second highest utility, say site f; 

then the reduction in utility is (       ), and the monetary loss is (    

   )   , where    is marginal utility of income, the absolute value of the travel 
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cost parameter. When a marginal change happens on site j, the change in utility for 

visitors is   , the parameter of site characteristic l, and     ⁄  is its monetary value.  

 From a researchers’ point of view, however, uncertainty exists due to the error 

term. Each site has a probability of being visited by anyone. Thus, those probabilities 

need to be taken into account in welfare estimates. According to Chapter 8 of Haab and 

McConnell (2002), the estimated welfare change for person n caused by the loss of site j 

is:   (     ̂( ))   ̂; the estimated value of a marginal change on site 

characteristic l of site j is:    ̂( )  (  ̂   ̂⁄ ), where   ̂  and   ̂ are estimates of 

   and   . The calculation applies to all sites, j=1, 2, …, J. 

 

2.2 Nested Logit Model 

Consider the simplest form, a two-level nested logit model, where the choice set is 

divided into several nests based on site similarities. Within one nest, errors are correlated; 

for two sites in different nests, errors are still independent. Following Chapter 4 of Train 

(2003), the probability that a site is visited becomes: 

   ( )  
 
    

  (∑  
    
  

  
   )    

∑ (∑  
    
  

  
   )   
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where    measures the degree of independence in errors among sites in nest k. This 

parameter is normally assumed to be the same across all nests, so we will replace    

with  . 

 Compared with the conditional logit model, the calculation of estimated welfare 

change from the loss of a site in the nested logit model is slightly more complicated. The 

probability that person n chooses a site in nest k is: 

   (  )  
(∑  

    
 

  
   ) 

∑ (∑  
    
 

  
   )  

   

 

And the probability that person n chooses site j conditional on the fact that nest k is 

chosen is: 

   ( )    
 
    

 

∑  
    
 

  
   

 

According to Chapter 8 of Haab and McConnell (2002), the estimated welfare 

change due to closure of site j is:  

    ̂    ((     ̂( )|  )
 ̂
    ̂(  )  (     ̂(  )))

 (   ̂) 
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The estimated value of a marginal change on site characteristics has the same expression 

as in the conditional logit model where the relevant site choice probabilities are from the 

above nested logit formulas. 

 

2.3 Latent Class Model 

The latent class model relies on the assumption that people’s preferences are not the same 

and they can be categorized into different classes, each having its own set of parameters. 

Individuals know which class they are in, but researchers don’t. Within one class, people 

behave exactly the same as in the conditional logit model. From researchers’ perspective, 

a person can belong to any class with a probability. Then the probability that person n 

chooses site j is the weighted average of the conditional logit probabilities in all classes.  

 In Chapter 6 of Train (2003), the probabilities of membership in each class are the 

same for all people, which are actually the shares of people in the population for each 

class. Suppose there are C classes in total, the choice probability is: 

   ( )  ∑  (
     

 

∑      
  

   

 

   

) 

The shares   , c=1, 2, …, C can be estimated together with   , c=1, 2, …, C. 

 Instead of fixed shares, researchers may assume the probability of membership to 

class c has a multinomial logit form, and can be predicted by individual information: 
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∑       
   

 

where    is a covariate of individual characteristics, and    is a vector of parameters 

specific to class c, which can be estimated together with   . The choice probability in 

this case becomes:  

   ( )  ∑   (
     

 

∑      
  

   

 

   

)  ∑(
     

∑       
   

)(
     

 

∑      
  

   

 

   

) 

 According to Boxall and Adamowicz (2002), the way to calculate the estimated 

welfare measures is similar to what has been discussed above. The measure is an average 

of welfare estimates from each class weighted by the corresponding estimated shares or 

predicted probabilities of membership to each class.  

     ∑         

 

   

 

     ∑          

 

   

 ∑
     

∑       
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3 Simulations 

Monte Carlo analysis will be used to compare the three possible econometric 

specifications. Three scenarios are constructed, where the data generating process follows 

the latent class, conditional logit and nested logit models respectively. Under each 

scenario, pseudo data is estimated using the three models. It is assumed that there are 3 

sites, 1,000 people, and the utility equation contains two explanatory variables, travel cost 

and site quality. 

                     

 

3.1 True Model-Latent Class Model 

3.1.1 Simulation Steps 

Suppose there are two classes with 700 people in the first class and 300 people in the 

second class. Let the true parameters and shares of the two classes be: 
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where    
 

 and   
 

 are set to match the model estimates reported in Chapter 8, Haab and 

McConnell (2002).    
 

 and   
 

 are assigned to make sure there is obvious distinction 

between two classes. The Monte Carlo simulation steps are as follows
1
: 

(Step 1) Take 3,000 random draws uniformly over the range from 0 to 100 as the 

travel cost variable, since it varies across both sites and people. Take 3 uniform 

random draws for the quality variable from 0 to 2, which just vary across sites. 

Next, produce random errors for 1,000 people from a Type I extreme value 

distribution with a normalized variance of     ⁄ . From Chapter 9 of Train 

(2003), the cumulative distribution function for     is: 

 (   )     (    (    )) 

and its inverse function is:        (   [ (   )]). Since  (   ) falls 

between 0 and 1, we take random draws from a (0, 1) uniform distribution first 

and then use the inverse CDF function to compute correspondent random 

numbers for     (Train 2003). 

(Step 2) For the 700 people who are in the first class, extract their travel costs, site 

quality and errors to compute their utilities. For each person, pick the maximum 

among the three site utilities, mark it as one and others as zero, and we get the 

pseudo observation for the chosen site.  Table 1 shows an example of a person’s 

randomly generated data for travel costs and for site quality for each of three sites.  

                                                            
1
 Simulations are programmed in R. 
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The resulting utility is computed and implies site 1 is the best for this person. The 

same approach is done for the 300 people who are in the second class, but with 

different parameters in the utility equation. The choices of all 1,000 people form 

the data for the dependent variable. 

(Step 3)  Compute the true welfare measures. Since we know exactly which class 

each person belongs to, the calculation for individual welfare measures is the 

same as in the conditional logit model. Averaging site values and values of 

marginal quality change over 700 people in class 1 and 300 people in class 2 will 

produce true welfare measures in class 1 and class 2; averaging them over the 

entire 1,000 people will produce the population’s true welfare measures for each 

site. 

Table 1: Simulating One’s Choice 

Site Travel Cost Quality Error Utility Observation 

1 7.79 1.02 -0.12 -0.09 1 

2 61.90 0.64 0.54 -2.86 0 

3 31.95 1.71 0.62 -0.46 0 

 

(Step 4) Regress site choices on two explanatory variables (travel cost and site 

quality) to get the estimated parameters, using conditional logit, nested logit and 

latent class models. When estimating with the nested logit model
2
, we try three 

combinations for sites: site 1 and 2 as a nest, site 2 and 3 as a nest, and site 1 and 

3 as a nest. Since our objective is to see whether the latent class model recovers 

the truth, we set the number of classes to be two in the estimation, the same as the 

                                                            
2

 The starting values are based on the conditional logit model estimates. For the travel 

cost parameter, it is the estimate minus or plus 0.01; for the quality parameter, it is the 

estimate minus or plus 0.1. BFGS is used to locate MLE estimates. 
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truth
3
. Also, following Scarpa and Thiene (2005), we assume the probabilities of 

membership to each class are: 

   
 

      ( )
    

    ( )

      ( )
 

which is equivalent to fixed shares, s and 1-s. The share needs to be between 0 

and 1, and the expressions above embed the constraint in the estimation process. 

(Step 5) The estimated welfare measures are then derived from those parameter 

estimates. When it comes to the latent class model, individual welfare estimates 

are averages of each class weighted by estimated shares. To make comparisons 

with the true values, since we know 700 people are in class 1 and 300 people are 

in class 2, we take the means of the former as the welfare estimates for class 1, 

and the means of the latter as for class 2. The means over the entire 1,000 people 

are compared to the population’s true welfare measures. 

(Step 6) Repeat the last part of step (1), which is generating new errors while 

keeping explanatory variables the same, and step (2) to (5) 1,000 times. We then 

have a random sample of size 1,000 for each set of estimates. For each sample, 

compute the descriptive statistics, such as mean, median, variance, quartiles and 

mean squared error (MSE). 

 

                                                            
3

 When estimating with the latent class model, how many classes should be considered is 

a big issue. Train (2008) illustrated how the EM algorithm would estimate parameters 

with three types of discrete distributions. With the latent class model, the researcher tried 

different numbers of segments varying from 1 to 30, and found that class number of 8 

(indicated by Bayesian Information Criterion) and 25 (indicated by Akaike Information 

Criterion) worked the best for that specific data set.  
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3.1.2 Simulation Results 

With two classes, the probability expression of the latent class model is: 

   ( )     
 
     

∑       
 
   

    
 
     

∑       
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Table 2: Performance of Latent Class Model When It Is the True Model
4
 

 True Mean Var. MSE Min. 1
st

 Quartile Median 3
rd

 

Quartile 
Max. 

   
 ̂  -0.06 -0.20 0.704 0.723 -8.97 -0.069 -0.063 -0.056 2.78 

  
 ̂ 0.49 1.84 276.47 278.02 -222.3 0.40 0.48 0.64 142.7 

   
 ̂  -0.10 -0.46 2.10 2.23 -8.83 -0.14 -0.075 -0.068 6.89 

  
 ̂ 0.21 0.36 29.38 29.38 -41.09 0.14 0.36 0.45 62.98 

  ̂5 0.70 0.49 0.069 0.112 0.007 0.35 0.50 0.71 0.99 

  
 ̂    

 ̂  -8.17 -9.16 65679.5 65614.5 -1940 -10.42 -7.44 -6.13 7318.0 

  
 ̂    

 ̂  -2.10 -3.34 12.49 14.02 -10.62 -6.08 -4.44 -1.04 9.59 

   ̂6 -0.07 -0.147 0.061 0.066 -1.98 -0.093 -0.075 -0.068 -0.024 

  ̂7 0.41 0.51 2.08 2.09 -9.45 0.35 0.42 0.49 15.44 

  ̂
    ̂8 

-6.35 -6.12 70.03 70.01 -42.6 -6.83 -6.28 -5.65 246.9 

                                                            
4
 Iterations in which the estimation fails to converge are excluded. The results come from the remaining 996 iterations. 

5
 This is computed from  ̂, and it matches the class 1 estimates. 

6
 It is the estimated travel cost parameter on average, weighted by   ̂ and   ̂. 

7
 It is the estimated site quality parameter on average, weighted by   ̂ and   ̂. 

8
 It is the ratios of estimated parameters in two classes, weighted by   ̂ and   ̂. 
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The two terms are interchangeable, i.e. we cannot tell which set of estimates are 

for class 1 and which for class 2 simply by the orders showing in the log-likelihood 

function. The true parameter ratios of class 1 and 2 are -8.17 and -2.10 respectively. Thus, 

we take ratios of the two sets of estimated parameters, and treat the one with a ratio larger 

in absolute value as class 1 estimates. Table 2 shows the descriptive statistics of class 1 

estimates, class 2 estimates, their weighted averages, and estimated shares. For parameter 

estimates and their averages, the medians are much closer to true values than the means, 

which are influenced by extreme values. Variances and mean squared errors (MSE) are 

also affected by extreme values. Class 1 estimates perform better than class 2, which may 

be attributed to its larger number of people. If we look at the quartile ranges, the 

estimates are somewhat acceptable half of the time; but still, for the travel cost estimate 

of class 1,    
 ̂ , which is the least biased, the range is around +/- 10%; for the site 

quality estimate of class 1,   
 ̂, the range grows to +/- 20%.  

The share of class 1 is underestimated by 28.5%. On average though, the latent 

class model performs fine, a 4.2% downward bias in the travel cost estimate, a 2.2% 

upward bias in the site quality estimate and a 1.1% upward bias in the ratio. Variances 

and MSEs are much smaller. Although there are extreme values that get estimated for 

some of the preference parameters within the classes, these extreme values receive a 

weight close to 0 because the class probability becomes close to 0, as shown in Figure 1 

and 2. In fact, it is the weighted average of probabilities that enter the likelihood function, 

so the latent class model works well on average. 
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Figure 1: Travel Cost Estimates over Some Iterations 

 

Figure 2: Site Quality Estimates over Some Iterations 
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The results above are based on two classes in the population. In empirical studies, 

estimation will be conducted under different numbers of classes and Akaike Information 

Criteria (AIC) or Bayesian Information Criteria (BIC) are used to decide which is optimal. 

Scarpa and Thiene (2005) used the following expression:  

                            ( )      

where J is the number of estimated parameters, log(L) is the log-likelihood function 

valued at estimated parameters, and κ is a constant. AIC has κ=2; BIC has κ=log(N), 

where N is the sample size. We re-estimate the data assuming three classes in each 

iteration. Over all iterations where both estimations converge, AIC will select two classes 

93% of the time, and BIC 100% of the time. So the latent class model can self-detect the 

true number of classes using both criteria. 

When the true model is the latent class model, the conditional logit and nested 

logit models measure the average effects, so the true values of the parameters are 

weighted averages of two classes. The true value of λ in the nested logit model is 1 as 

sites are all uncorrelated, and how the nests are constructed doesn’t matter, which can be 

seen from Table 3. Both models produce similar and reliable estimates, about a 7% 

upward bias in the travel cost estimates, a 3% upward bias in the site quality estimates 

and a 2.5% upward bias in the ratios. Since variances are very small, the distributions of 

the estimates are well described by the median, minimum and maximum. 
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Table 3: Performance of Conditional Logit and Nested Logit Models When Latent Class model Is the True Model 

  True
9
 Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.072 -0.067 1.1e-05 3.3e-05 -0.080 -0.067 -0.057 

  ̂ 0.406 0.42 3.3e-03 3.4e-03 0.238 0.417 0.591 

  ̂    ̂ -6.35 -6.19 0.69 0.72 -9.15 -6.23 -3.52 

Nested 

Logit
10

 

 ̂ 1.00 1.02 8.5e-03 8.8e-03 0.70 1.01 1.43 

   ̂ -0.072 -0.068 2.0e-05 3.6e-05 -0.084 -0.068 -0.053 

  ̂ 0.406 0.42 3.5e-03 3.7e-03 0.226 0.419 0.610 

  ̂    ̂ -6.35 -6.18 0.70 0.73 -8.94 -6.20 -3.61 

Nested 

Logit
11

 

 ̂ 1.00 1.01 8.8e-03 9.0e-03 0.78 1.01 1.38 

   ̂ -0.072 -0.068 2.1e-05 3.8e-05 -0.088 -0.068 -0.055 

  ̂ 0.406 0.42 3.3e-03 3.5e-03 0.23 0.42 0.59 

  ̂    ̂ -6.35 -6.17 0.74 0.77 -8.97 -6.16 -5.61 

Nested 

Logit
12

 

 ̂ 1.00 0.98 0.010 0.011 0.69 0.98 1.36 

   ̂ -0.072 -0.067 1.6e-05 4.3e-05 -0.080 -0.067 -0.055 

  ̂ 0.406 0.41 4.0e-03 4.1e-03 0.21 0.41 0.63 

  ̂    ̂ -6.35 -6.13 0.75 0.79 -8.50 -6.14 -3.18 

                                                            
9
 The values are the averages of true parameters in two classes, weighted by true shares. 

10
 Site 1 and 2 are in one nest. 

11
 Site 2 and 3 are in one nest. 

12
 Site 1 and 3 are in one nest. 
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There is a side note on the parameter λ in the nested logit model. It normally falls 

within 0 and 1, but based on Train (2003), it can be greater than 1, so the main concern is 

a positive λ. The estimation results in Table 3 are from unconstrained maximization. 

Actually, when λ is constrained to be between 0 and 1, we have an estimate very close to 

1, and other parameter estimates are almost identical to those of the conditional logit 

model. Hence, in our cases, it makes little difference whether the constraint is imposed or 

not. 

The welfare estimates of the latent class model have similar patterns as its 

parameter estimates. The quartile ranges suggest somewhat acceptable performance, and 

extreme values from some iterations distort the means. But average welfare measures 

perform well because the extreme values within a class receive a low weight since the 

estimated class share is small. The conditional logit and nested logit model produce 

welfare measures close to true average values. And all three nest structures lead to the 

same results. 
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Table 4: Estimated Values of Marginal Quality Change of Latent Class Model When It Is the True Model 

 Site True
13

 Mean Var. MSE Min. 1
st

 

Quartile 
Median 3

rd
 

Quartile 
Max. 

Class 1 

1 -2.09 -2.08 5446.8 5441.4 -1562 -2.13 -1.86 -1.60 1438 

2 -3.68 -6.81 24521.6 24506.8 -1938 -4.94 -3.32 -2.64 4075 

3 -2.40 -0.26 3314.7 3316.0 -114.9 -2.76 -2.12 -1.79 1805 

Class 2 

1 -0.64 -0.87 1.10 1.15 -2.51 -1.65 -1.26 -0.32 3.92 

2 -0.83 -1.50 2.03 2.47 -5.19 -2.64 -1.84 -0.39 2.25 

3 -0.62 -0.97 1.18 1.30 -2.92 -1.80 -1.34 -0.33 3.42 

Average 

1 -1.65 -1.53 3.14 3.15 -19.75 -1.72 -1.59 -1.42 48.13 

2 -2.82 -2.90 24.43 24.41 -39.68 -3.29 -2.88 -2.56 138.1 

3 -1.87 -1.69 3.99 4.02 -4.26 -1.93 -1.78 -1.59 60.62 

 

  

                                                            
13

 The true values are averages over 1,000 iterations. It is the same with all the true welfare measures below. 
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Table 5: Estimated Site Values of Latent Class Model When It Is the True Model 

 Site True
14

 Mean Var. MSE Min. 1
st

 

Quartile 
Median 3

rd
 

Quartile 
Max. 

Class 

1
15

 

1 7.28 3.25 8950.2 8956.7 -2744 6.81 7.41 7.73 171.5 

2 16.06 14.58 129200 129062 -10210 14.63 15.82 18.09 2666 

3 8.72 4.30 13828 13832 -3551 8.21 8.53 8.80 162.5 

Class 

2
16

 

1 8.22 7.91 2.30 2.40 -10.11 7.43 7.75 8.29 15.48 

2 11.65 12.61 8.34 9.24 -11.59 10.72 13.59 14.65 19.15 

3 8.18 8.46 1.93 2.00 -10.46 8.29 8.50 8.70 15.84 

Average
17

 

1 7.56 7.46 11.40 11.40 -87.04 7.38 7.58 7.80 9.76 

2 14.74 14.55 164.6 164.4 -338 14.32 14.79 15.26 65.3 

3 8.56 8.34 18.73 18.76 -114 8.33 8.49 8.66 10.55 

 

  

                                                            
14

 The true values are averages over 1,000 iterations. It is the same with all the true welfare measures below. 
15

 In some iterations, we could get very abnormal estimates for both classes. The very large scale of the travel cost estimate 

makes travel cost extremely important in the decision-making process of where to go. A person will just go to the nearest site. 

If that site is closed, the welfare loss is huge. As a result we will have infinite site values. So we exclude those iterations in the 

analysis of welfare estimates. The results here are from 920 iterations. 
16

 The results are from 881 iterations. 
17

 The results are from 805 iterations. 
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Table 6: Welfare Estimates of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model 

 Site 
Site Loss/Closure Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 7.56 7.57 -1.65 -1.67 

2 14.74 14.62 -2.82 -2.70 

3 8.56 8.55 -1.87 -1.83 

Nested 

Logit (Site 1 and 2) 

1 7.56 7.60 -1.65 -1.67 

2 14.74 14.64 -2.82 -2.69 

3 8.56 8.50 -1.87 -1.82 

Nested 

Logit (Site 2 and 3) 

1 7.56 7.55 -1.65 -1.66 

2 14.74 14.63 -2.82 -2.69 

3 8.56 8.57 -1.87 -1.82 

Nested 

Logit (Site 1 and 3) 

1 7.56 7.55 -1.65 -1.65 

2 14.74 14.67 -2.82 -2.68 

3 8.56 8.52 -1.87 -1.81 
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3.2 True Model-Conditional Logit Model 

To apply simulations in the scenario where the true model is the conditional logit model, the 

steps are almost the same as in the previous section, except that all 1,000 people have the same 

preferences in the true world. The true parameters, again taken from Haab and McConnell as in 

class one above, are: 

                  

The simulation results are summarized in Table 7, Table 8 and Table 9. 
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Table 7: Performance of Latent Class Model When Conditional Logit Model Is the True Model
18

 

 
True Mean Var. MSE Min. 1

st
 

Quartile 
Median 3

rd
 

Quartile 
Max. 

   ̂ -0.06 -0.085 0.017 0.018 -2.17 -0.067 -0.062 -0.059 -0.012 

  ̂ 0.49 0.65 3.26 3.28 -28.78 0.39 0.52 0.66 16.85 

  ̂
    ̂ 

-8.17 -9.37 570.6 571.5 -298.6 -10.3 -8.40 -6.61 401.0 

 

  

                                                            
18

 The parameters are averages of each class weighted by estimated shares. 
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Table 8: Performance of Conditional Logit and Nested Logit Models When Conditional Logit Model Is the True Model 

  True Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.06 -0.06 9.6e-06 9.6e-06 -0.07 -0.06 -0.05 

  ̂ 0.49 0.49 0.020 0.020 -0.01 0.48 1.00 

  ̂    ̂ -8.17 -8.13 5.65 5.64 -17.2 -8.04 0.23 

Nested 

Logit (Site 

1 and 2) 

 ̂ 1.00 1.01 9.0e-03 9.0e-03 0.71 1.01 1.34 

   ̂ -0.06 -0.06 1.5-05 1.6e-05 -0.08 -0.06 -0.05 

  ̂ 0.49 0.49 0.024 0.024 -0.003 0.49 1.02 

  ̂    ̂ -8.17 -8.16 6.05 6.04 -16.57 -8.05 0.06 

Nested 

Logit (Site 

2 and 3) 

 ̂ 1.00 1.00 9.8e-03 9.8e-03 0.72 1.00 1.32 

   ̂ -0.06 -0.06 1.7e-05 1.7e-05 -0.07 -0.06 -0.05 

  ̂ 0.49 0.49 0.023 0.023 -0.08 0.49 1.01 

  ̂    ̂ -8.17 -8.20 7.21 7.20 -17.48 -8.11 1.40 

Nested 

Logit (Site 

1 and 3) 

 ̂ 1.00 1.00 9.2e-03 9.2e-03 0.72 1.00 1.41 

   ̂ -0.06 -0.06 1.6e-05 1.6e-05 -0.08 -0.06 -0.05 

  ̂ 0.49 0.49 0.023 0.023 -0.05 0.49 1.10 

  ̂    ̂ -8.17 -8.13 5.96 5.96 -17.98 -8.07 1.05 
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Table 9: Welfare Measures of Conditional Logit, Nested Logit and Latent Class Models When Conditional Logit Model Is the 

True Model 

 
Site 

Site Loss/Closure Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 9.01 9.01 -2.39 -2.35 

2 12.06 12.06 -3.00 -3.00 

3 10.92 10.90 -2.78 -2.78 

Nested 

Logit (Site 1 and 

2) 

1 9.01 9.02 -2.39 -2.36 

2 12.06 12.08 -3.00 -3.01 

3 10.92 10.89 -2.78 -2.78 

Nested 

Logit (Site 2 and 

3) 

1 9.01 9.02 -2.39 -2.37 

2 12.06 12.06 -3.00 -3.02 

3 10.92 10.90 -2.78 -2.79 

Nested 

Logit (Site 1 and 

3) 

1 9.01 9.01 -2.39 -2.35 

2 12.06 12.07 -3.00 -3.00 

3 10.92 10.90 -2.78 -2.78 

Latent 

Class 

1 9.01 9.31
19

 -2.39 -1.69 

2 12.06 12.04 -3.00 -3.78 

3 10.92 10.91 -2.78 -3.90 

 

 

                                                            
19

 After we exclude iterations with infinite site values, 901 iterations are used to compute the averages. 
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The latent class model performs fairly well based on the quartile ranges. For the 

medians, there’s a 3.3% downward bias in the travel cost estimate, a 6.1% upward bias in 

the site quality estimate and a 2.8% downward bias in the ratio. The means are not as 

good due to extreme values from some iterations. Parameter estimates of the conditional 

logit model and nested logit model are very close to true values. In the nested logit model, 

how the nests are constructed doesn’t matter as sites are all uncorrelated. As discussed 

above, if the parameter λ is constrained to be between 0 and 1, its estimate will be nearly 

1, and other estimates are almost identical to those of the conditional logit model. 

The estimated site values of the latent class model perform quite well, which 

makes sense because the travel cost estimate has good properties. The estimated values of 

marginal quality change are somewhat different from true values, which is attributed to 

the bias in the estimated parameter ratio. For site 1, there is a 29% upward bias; for site 2, 

there is a 26% downward bias; for site 3, there is a 40% downward bias. The conditional 

logit and nested logit models give very good welfare measures. 

 

3.3 True Model-Nested Logit Model 

3.3.1 Simulation Steps 

To simulate the true world with the nested logit model as the true model, instead of 

generating random errors from a multivariate extreme value distribution, we follow what 

has been done in Herriges and Kling (1997) as detailed below. 



31 

 

 With the true parameters as                        , we can 

compute the probabilities each person visits each site, say       and   . Then a 

number is drawn from a [0, 1] uniform distribution, denoted as x. If x is less than   , this 

person will choose site 1; if x is greater than    but less than (     ), this person 

will choose site 2; if x is greater than (     ), this person will choose site 3. By 

repeating this procedure for all people we get the pseudo observations. In different 

iterations, the probabilities remain the same, but x is newly drawn, so the observations are 

different. 

When the true model is the nested logit model, some sites are correlated. The IIA 

assumption no longer holds in the true world, so both the conditional logit and latent class 

models would produce biased parameter and welfare estimates. The site quality estimate 

is more biased than the travel cost estimate, so the estimated values of marginal quality 

change deviate more from true values than the estimated site values. For the latent class 

model, the median of the average quality estimate is more than two times the true value; 

the bias in the median of the average travel cost estimate is about 45%. The bias in the 

means is larger.  

The nested logit model recovers the truth very well if the nest structure is correct. 

When the nest structure is incorrect, however, the model approaches the conditional logit 

model. We find that with a correct nest structure, the results from unconstrained and 

constrained maximization are the same; with an incorrect nest structure, the estimate of λ 

is closer to 1 in constrained maximization than in unconstrained maximization, and other 
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estimates are also closer to those of the conditional logit model. Therefore, the nested 

logit model will perform at least as well as the conditional logit model regardless of the 

true nest structure. 

 

3.3.2 Simulation Results 

The simulation results are shown in Table 10, Table 11 and Table 12. 
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Table 10: Performance of Latent Class Model When Nested Logit Model Is the True Model 

 True Mean Var. MSE Min. 1
st
 

Quartile 
Median 3

rd
 

Quartile 
Max. 

   ̂ -0.06 -0.099 9.4e-03 0.011 -1.86 -0.095 -0.087 -0.078 -0.050 

  ̂ 0.49 1.86 12.26 14.13 -23.98 0.82 1.07 1.61 62.81 

  ̂
    ̂ 

-8.17 -13.65 242.6 272.4 -285.9 -16.28 -14.05 -11.44 272.4 
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Table 11: Performance of conditional logit and nested logit models when nested logit model is the true model 

  True Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.06 -0.07 1.3e-05 1.9e-04 -0.09 -0.07 -0.06 

  ̂ 0.49 0.88 0.03 0.19 0.29 0.88 1.46 

  ̂    ̂ -8.17 -12.05 6.19 21.30 -19.94 -12.04 -3.68 

Nested 

Logit (Site 

1 and 2) 

 ̂ 0.50 0.50 3.5e-03 3.5e-03 0.34 0.50 0.73 

   ̂ -0.06 -0.06 1.4e-05 1.4e-05 -0.07 -0.06 -0.05 

  ̂ 0.49 0.49 0.024 0.024 0.01 0.49 1.00 

  ̂    ̂ -8.17 -8.16 6.11 6.11 -14.83 -8.08 -0.14 

Nested 

Logit (Site 

2 and 3) 

 ̂ 0.50 1.24 0.012 0.56 0.93 1.23 1.58 

   ̂ -0.06 -0.081 2.9e-05 4.7e-04 -0.10 -0.081 -0.067 

  ̂ 0.49 0.96 0.042 0.27 0.30 0.97 1.57 

  ̂    ̂ -8.17 -11.93 6.41 20.55 -19.74 -11.94 -3.52 

Nested 

Logit (Site 

1 and 3) 

 ̂ 0.50 1.28 0.016 0.62 0.89 1.28 1.69 

   ̂ -0.06 -0.083 3.5e-05 5.6e-04 -0.11 -0.083 -0.067 

  ̂ 0.49 0.79 0.044 0.13 -0.018 0.80 1.44 

  ̂    ̂ -8.17 -9.63 7.36 9.49 -18.32 -9.52 0.20 
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Table 12: Welfare measures of conditional logit, nested logit and latent class models when nested logit model is the true model 

 Site 
Site Loss/Closure Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 9.54 10.35 -2.71 -4.07 

2 7.38 7.64 -2.29 -3.32 

3 13.27 12.12 -3.17 -4.66 

Nested 

Logit (Site 1 and 

2) 

1 9.54 9.54 -2.71 -2.70 

2 7.38 7.39 -2.29 -2.27 

3 13.27 13.28 -3.17 -3.19 

Nested 

Logit (Site 2 and 

3) 

1 9.54 9.71 -2.71 -3.93 

2 7.38 8.03 -2.29 -3.35 

3 13.27 12.47 -3.17 -4.65 

Nested 

Logit (Site 1 and 

3) 

1 9.54 10.81 -2.71 -3.31 

2 7.38 7.30 -2.29 -2.63 

3 13.27 12.12 -3.17 -3.68 

Latent 

Class 

1 9.54 9.79
20

 -2.71 -3.57 

2 7.38 7.72 -2.29 -1.70 

3 13.27 12.64 -3.17 -8.39 

 

  

 

                                                            
20

 After we exclude iterations with infinite site values, 838 iterations are used to compute the averages. 
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3.4 Sensitivity Analyses 

To see how sensitive the results are to underlying factors, we conduct sensitivity analyses. 

In the simulations above, the parameter ratio of travel cost over site quality in one class is 

about four times of that in the other class. We picked two pairs of true parameters from 

Hynes, Hanley, et al. (2008) so that the difference between parameter ratios becomes 

even larger, around 24 times. Preferences of the two classes are very distinct, which 

might help to identify a person’s membership. Second, we increase the number of sites 

from three to seven. With more sites, there is more variation in people’s site choices with 

different preferences, and it might be easier to tell which class one belongs to from their 

observations. Also, we changed the true shares of two classes as 50% and 50%. By 

having equal number of people, any disadvantage of having a smaller group is removed. 

It turns out that all results display the same pattern as before
21

. Hence, we conclude that 

the inherent functioning of the latent class model produces outcomes that work well on 

average but not necessarily for the individual classes since the above assumptions used in 

the simulations had little influence on the patterns of the results. 

 

  

                                                            
21

 See Appendix A for results. 
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4 Discussion and Conclusions 

The latent class model has been broadly applied in many areas, including within 

environmental economics for valuation studies and for recreation demand analyses. In 

this chapter, we use Monte Carlo simulations in the context of recreation site choices to 

test whether the latent class model will successfully recover the truth and how it performs 

compared to two other widely used site choice models, the conditional logit and nested 

logit models. By conducting simulations under three true scenarios, we find that the latent 

class model works at best the same as the conditional logit model, and is inferior to the 

nested logit model when alternatives are no longer independent.  

The latent class model aims to capture preference heterogeneity by assuming 

there are a number of latent groups in the population. However, even if this is the true 

scenario, we don’t know the true number of groups or everyone’s membership. For the 

former, we can try a set of group numbers and let the data tell which is optimal. Based on 

our findings, the two information criteria frequently used select the correct one at least 90% 

of the time, which indicates that the latent class model can recover the true number of 

preference groups in the population at an acceptable confidence level. For the latter, we 

either rely on the data using fixed group shares in the estimation, or infer the probabilities 

to each group through demographics. No matter how small a group is or how low a 

probability could be, the uncertainty exists over which group a person belongs to. Thus, it 

is the averages weighted by group shares or personal probabilities that enter the log-

likelihood function. That is to say, the values of preference parameters in each group and 

corresponding shares do not matter, as long as the averages, which are their combinations, 

maximize the log-likelihood function. So in the simulations, we see that the latent class 
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model performs very well on average for both parameter and welfare estimates. But for 

each individual class, the estimated parameters and group shares can deviate from the 

true values, sometimes substantially. The latent class model does not always do a good 

job identifying classes of a population with distinct preferences as is designed to do. It 

could misallocate individuals in groups together with biased preferences. The positive 

finding was that 50% of the time the bias from poorly estimated class sizes or parameters 

may not be very large. In addition, the commonly applied information criteria are likely 

to self-detect the true number of groups using the latent class model. 

 The conditional logit model has the simplest form, yet it has very good 

performance when the unmeasured site characteristics in the errors are truly uncorrelated 

with one another. When the true model is the conditional logit model itself, estimates are 

close to true values, and variances and MSEs are quite small; when the true model is the 

latent class model, conditional logit does well in recovering population averages. The 

conditional logit estimated parameters and welfare measures sometimes even have even 

better properties than population average estimates of the latent class model. In fact, the 

conditional logit model can be viewed as a degenerate latent class model with the 

constraint that preferences in all groups are the same. So we may be better off by 

imposing constraints in maximum likelihood estimation. Both models are expected to be 

biased if there is correlation among sites. 

 In all true scenarios, the nested logit model has the best performance among the 

three models considered regardless of the true model. When sites are independent, how 

the nests are constructed is irrelevant. When the true model is the nested logit model, a 

correct nest structure gives estimates almost identical to true values. If the nest structure 
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is wrong, the results are very similar to the conditional logit model. Hence, the nested 

logit model can detect an incorrect nest structure and go with no nesting as a solution. As 

discussed in Herriges and Kling (1997), some nesting works better than no nesting, which 

may be attributed to the additional degrees of freedom available in the nested logit model.   

In conclusion, for future use of the latent class model, one should be cautious 

interpreting the meanings of estimated class-specific parameters and the population 

segment sizes. If the estimates seem extreme when compared to the other classes or when 

a class membership is of very small size, one may be better off using a conditional logit 

model. In addition, the robustness and reliability of the nested logit model justifies its 

application to the Great Lakes beach survey data in the following two chapters. 

 For future research, it is worth considering true scenarios with more preference 

groups in the population and estimating a latent class model with a variety in the number 

of classes. For example, in applications, Greene and Hensher (2003) and Provencher and 

Bishop (2004) had three classes, Scarpa and Thiene (2005) had four, Hynes, Hanley and 

Scarpa (2008) had six, and Train (2008) had eight and twenty-five. It is possible that 

having more latent groups in the truth might help the latent class model identify 

individual class preferences. More variation in the true scenarios may make the 

estimation more stable, and the ability of the latent class model to detect the true number 

of classes can be further tested by using a variety of class numbers. Another possible 

future direction would be to extend the modeling of class memberships to include a rich 

set of demographic variables. Also, instead of generating explanatory variables, 

simulations may be applied to survey data with real travel cost and site quality as well as 
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demographic information, with which individual-specific membership to each group can 

be modeled. 
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Chapter 2 

Estimating Use Values of Public Great Lakes Beaches in Michigan 

 

1 Motivation 

People often take trips to public beaches in their leisure time to participate in recreation 

activities. Although there is no explicit market for pricing, through recreation demand 

models, monetary use values of public beaches can be derived, which have important 

policy implications. If policy-makers consider initiating environmental protection or 

remediation projects related to beaches, they might apply benefit-cost analysis and weigh 

costs against benefits, which come from increased trips. Moreover, establishing the 

economic value of beach recreation can help policy makers think about the relative value 

of various natural assets as they consider funding allocations among competing areas of 

need.  

Many researchers have evaluated the economics of beaches along the coastlines 

of oceans. For instance, Deacon and Kolstad (2000) summarized several studies in 1970s 

and 1980s on saltwater beach valuation, the results of which ranged from $0.70 to $13.55 

per beach day in 1990 dollars. Hilger and Hanemann (2006) used data from a survey on 

households in Southern California about their annual beach trips, and computed an 

average willingness to pay of $5.71 in 2001 dollars, for an increase of one letter grade on 

a water pollution rating scale. Lew and Larson (2008) had a telephone-mail-telephone 

survey on randomly chosen households in San Diego County and asked eligible 

participants about their trips to beaches. They computed the value of having access to 
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beaches to be between $21 and $23 per day in 2000 dollars. Parsons et al (2009) surveyed 

Texas residents living within 200 miles of the Gulf of Mexico and showed that if all 

Padre Island beaches were closed, the mean loss would be $20 per trip in 2008 dollars. 

Nonetheless, very few studies have focused on public Great Lakes beaches, which 

are located along the largest group of freshwater lakes on the Earth and have unique 

characteristics of their own. Murray, Sohngen and Pendleton (2001) took an on-site 

survey at Maumee Bay and Headlands State Park beaches on Lake Erie and calculated 

the value per beach day to be $25 for the former and $15 for the latter, in 1998 dollars. 

However, because Lake Erie is smaller and its coastline is quite different when compared 

with Lake Michigan and Lake Huron, it is unclear if their results can be generalized to 

the entire Great Lakes. Song, Lupi and Kaplowitz (2010) did a web survey on visitation 

to public Great Lakes beaches using a convenience sample from a consumer web panel of 

Michigan adults and concluded that the welfare loss of eliminating a beach was around 

$50 per visitor in 2006 dollars. However, the web panel was not representative of the 

general population and their trip location data was only for the beach visited most often. 

 In addition, recreation demand models are usually applied to people who 

participate in the activities.  Although this assumption has some efficiencies for activities 

that require a license (e.g., fishing), it is worth investigating how to generalize the results 

to the entire population for activities that are more general such as beach use. Shaw (1988) 

addressed the issues of truncation and endogenous stratification for on-site sampling 

using a Poisson model. Englin and Shonkwiler (1995) proposed the negative binomial 

model with count data to improve estimation. Shonkwiler and Shaw (1996) defined three 

groups of people in recreation as “nonusers”, who never participated, “potential users”, 
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who would participate but didn’t in the survey season, and “users”, who always 

participated, and put single and double hurdles into the count data model. But these 

solutions are for single site models. In the context of multiple sites, von Haefen et al 

(2005) took the day trip data from a survey to Delaware residents on their visitation to 

Mid-Atlantic ocean beaches, and integrated single and double hurdles into discrete choice 

models to model the behavior of not taking a day trip in the season, where the total 

number of day trips was zero over all choice occasions. Instead of distinguishing people 

by the number of trips, English (2008) treated people who held licenses for shrimp 

baiting as participants, the rest as nonparticipants. He derived a participation hurdle by 

equating seasonal consumer surplus with the cost of license. The hurdle was added to the 

nested logit model where one chose to purchase a license or not. The survey was only 

sent to license holders. Information on nonparticipants was obtained in aggregate form 

from the census data at ZCTA (Zip Code Tabulation Areas) levels.  

If we adopt the definitions in Shonkwiler and Shaw (1996), nonusers and 

potential users were pooled in von Haefen et al (2005), because both groups would have 

no day trip in the season. The hurdles modeled the difference between the aggregation of 

these two groups and the user group. In English (2008), nonusers were separated from the 

pool by not holding the license. Potential users would pass the participation hurdle as 

users and decide not to go for shrimp baiting in every choice occasion. However, there 

was no survey on nonusers. Also, identification of the three groups would not be that 

straightforward in beach recreation. To fill the gap, we conducted a two-stage survey of 

Michigan residents where a screener mail survey was followed by a web survey. The 

purpose of the mail survey was to find users and potential users of beach recreation and 
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collect data on nonusers at the individual level. The web survey was implemented on 

users and potential users, who were asked to report seasonal trips on public Great Lakes. 

In this chapter, we apply the repeated nested logit model to the survey data to estimate 

use values of public Great Lake beaches in Michigan, and the model is augmented with a 

participation hurdle to examine how different forms of generalizing to the population 

affect the results.  
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2 Models 

2.1 Random Utility Models 

Random Utility Models are widely applied for recreation demand with multiple sites. 

Following Train (2003), the utility person n receives from visiting a beach j in choice 

occasion t is the sum of a deterministic term and a random term: 

               

where the so called indirect utility                .     is a vector of beach 

characteristics, or simply beach-specific constants.      varies across people and 

beaches and may include travel cost and interactions between demographics and beach 

characteristics.      captures all other factors that affect utilities but cannot be observed 

by researchers. 

 In a choice set with J beaches, person n will choose beach j in choice occasion t if 

and only if: 

               

Suppose      is independently, identically distributed as Type I extreme value 

distribution, from researchers’ point of view, person n will have a one-level decision tree 

as in Figure 3. The probability of choosing beach j in choice occasion t is: 
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It is called the conditional logit model, and implicitly assumes the property of 

independence from irrelevant alternatives (IIA). That is, the relative probability of 

choosing beach j over beach i in every choice occasion is not influenced by the number or 

attributes of other alternatives. In reality, this does not hold most of the time. If      has 

a generalized extreme value distribution, the IIA assumption will be relaxed to some 

extent. And the decision tree will have two levels as in Figure 4. 

 

Figure 3: Decision Tree of Conditional Logit Model 

 

Figure 4: Decision Tree of Two-Level Nested Logit Model 
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 The probability of person n going to beach j in nest k in choice occasion t is: 
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where    is the number of alternatives in nest k. This model is referred to as the nested 

logit model. IIA holds within nests, but not across nests. The parameter    measures the 

degree of independence among the alternatives in nest k. The higher it is, the lower 

correlation between these alternatives and the closer the nested logit model to the 

conditional logit model. It can also be interpreted as the parameter on the lower level’s 

inclusive value. It is normally assumed to be the same across all the nests so that the 

model will converge. And we can replace    with  .    (   ) can be decomposed 

into the multiplication of the probability to choose beach j conditional on nest k, and the 

probability to choose nest k in choice occasion t. 
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We use a repeated nested logit model on day trips (Morey et al (1993)) for our 

analysis, since there are a number of choice occasions in one summer season. Following 

English (2008), with a participation hurdel, the decision tree is illustrated in Figure 5.  

 

Figure 5: Decision Tree with Participation/Nonparticipation 

At the top level, nonusers will not participate. People who overcome this hurdle 

will decide whether to take a day trip in each choice occasion. Potential users have the 

status quo utility exceed the utility of visiting a public Great Lakes beach in every choice 

occasion and take no day trip. Otherwise, they will become users and take at least one 

day trip over the season. The nests are defined by different Great Lakes, since they have 

their own characteristics. 

For users and potential users, in choice occasion t, the probability that person n 

chooses beach j conditional on going to lake k is: 
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The probability of going to lake k conditional on taking a day trip is: 
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Denote the indirect utility of not taking a day trip in the current occasion as            . 

The probability of taking a day trip in this occasion is:  
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Then, the unconditional probability of person n visiting beach j on lake k is: 
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The probability that person n doesn’t take a day trip in choice occasion t is: 
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For users and potential users, the so called inclusive value, which is the maximum 

utility person n can attain in choice occasion t, is: 

         ( 
            (∑(∑ 

     
 

  

   

) 
 

   

) ) 

As shown in Figure 5, the participation hurdle is imposed for the overall season. 

To derive the participation hurdle, unlike activities requiring licenses, the cost of entry is 

zero for beach recreation, although parking fees or access fees may apply on some public 

beaches. Following English (2008), people who participate will have positive consumer 

surplus, which means that the seasonal utility of participating is greater than the status 

quo utility of not participating. The sum of every choice occasion’s inclusive value gives 

person n’s seasonal maximum utility:  

           ∑    

 

   

 

where T is the number of choice occasions in the season. Denote the indirect utility of not 

participating as                   , the behavior of participating and not participating 

can be described by a logit model: 
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where ρ is the parameter on the seasonal inclusive value. 

Hence, the log-likelihood function is: 
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where S is the number of nonusers, N  is the number of users and potential users, T is the 

number of choice occasions, and w is the personal weight.     is 1 for the beach visited 

in occasion t and 0 for all other beaches. The total number of day trips taken by person n 

can be computed as:    ∑    
 
   . 
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2.2 Predicted Trips 

With the estimated parameters, we can predict individual probabilities of taking day trips, 

   ̂(    ), and visiting certain beaches,    ̂(   ). Then for person n, the predicted 

total number of day trips is: 

 ̂  ∑   ̂(    )

 

   

 

The predicted total number of trips taken to beach j on lake k is: 

 ̂ (   )  ∑   ̂(   )

 

   

 

If beach j is closed or there is a marginal increase in the length of beach j, the changes in 

total trips or the trips taken to beach j can be calculated. 

  ̂   ̂            ̂             

  ̂ (   )   ̂ (   )           ̂ (   )            

 

2.3 Welfare Measures 



53 

 

A change on one or more beaches will cause welfare changes to users and potential users. 

It is of no value to nonusers. Based on Haab and McConnell (2002) and Champ et al 

(2003), for person n, in choice occasion t, the welfare change are computed as the change 

of the maximum utility this person can attain in this choice occasion, i.e. the inclusive 

value, before and after a scenario happens, divided by marginal utility of income. 

  ̂   
  ̂  |           ̂  |          

  ̂  
 

 The seasonal welfare change will be: 

  ̂         ∑  ̂  

 

   

 

Taking the weighted average of   ̂         across all users and potential users gives 

the seasonal value per person. 

  ̂       
∑    
 
     ̂        

∑   
 
   

 

To make seasonal welfare estimates comparable to those from single-site demand 

models, they can be normalized by two kinds of factors: changes in total trips or trips 

taken to the changed site, both of which were presented in the previous section. The way 

we apply the normalization is to divide the weighted sum of seasonal values by the 

weighted sum of trip changes, so that the results may not be distorted by possibly almost 

zero probabilities to visit certain beaches at the individual level. 
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All the estimates above are per person measures. How to generalize them to the 

population depends on specific models. 

  



55 

 

3 Survey and Data 

3.1 Surveys 

3.1.1 Screener Mail Survey 

To recruit people who might participate in beach recreation and collect data on nonusers, 

a screener mail survey was sent to Michigan residents in 2011. A stratified sample was 

drawn from Michigan’s driver license list, which has similar demographic characteristics 

as the census data.
22

 The two strata are for coastal and non-coastal counties, with 60% of 

the sample drawn from coastal counties and 40% from noncoastal counties
23

. Within the 

two strata, we drew randomly proportional to each counties’ population to further ensure 

geographic representativeness of the sample. To manage the survey costs, people who 

lived in the Upper Peninsula were excluded as the majority of population lives in the 

Lower Peninsula. The original sample size drawn was 32,230, and the number went down 

to 29,613 after removal of deceased people and those with bad mailing addresses. 

 The short four-page mail survey had three parts. The first part asked people about 

their participation in various everyday activities, recreation activities and indoor activities. 

Only one question was about Great Lakes beaches in order to reduce potential self-

selection bias that could occur if people knew the survey was aimed at identifying Great 

Lake beach-goers. The second part was about participation obstacles, such as time or 

                                                            
22

 See Appendix B. 
23

 The ratio of 60% over 40 % was decided through sensitivity analyses to balance 

between recruiting as many people who participated in beach recreation as possible 

within the project budget and not losing the representativeness of the general population. 
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money constraints. The third part contained demographic questions like race, education, 

employment status, household income, etc.  

From June, 2011 to November, 2011, three waves of survey packages were 

mailed out and two waves of automated phone calls were sent to household landlines as 

reminders. 11,028 people returned their questionnaires for a 37.24% response rate, and 

9,591 respondents were kept for data analysis according to the criteria of living in the 

Lower Peninsula and being the persons to whom the mail survey was addressed, among 

which 5,556 said they had visited a Great Lakes beach since June 1, 2010
24

. 

 

3.1.2 Follow-Up Web Survey 

5,476 users and potential users from the screener mail survey were invited for the follow-

up Great Lakes beach web survey
25

. In-person and on-line pretesting was implemented 

to test survey instruments (see Weicksel (2012)). There were additional 85 people 

participating in beach recreation (their responses were received after the mail survey was 

closed for data collection) chosen for a pilot survey, the purpose of which was to test the 

functionality and data storage of the web survey.  

                                                            
24

 Please refer to Weicksel (2012) for complete mail survey details. 
25

 The 80 people not invited to the web survey actually had multiple answers to the 

question “Where do you live”. They might own properties in the Upper Peninsula of 

Michigan or other States. We decided to include them for data analysis after the web 

invitation went out. All these discrepancies are taken care of through weights. 
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There were two sections in the follow-up web survey: the beach trip section
26

 and 

the choice experiment section analyzed by Weicksel (2012). In the beach trip section, 

following the survey in Parsons et al (2009), trips are categorized into three types: trips 

lasting a day or less (day trip), overnight trips of less than four nights (short overnight 

trip), and overnight trips of four nights or more (long overnight trip). People are asked to 

report trip numbers of each type during the time frame from Memorial Day weekend, 

2011 to September 30, 2011 (the primary beach-going season). Detailed questions were 

asked for up to two randomly selected trips, such as date, activities and the number of 

adults and children. If one had not gone to any public Great Lakes beaches in Michigan 

in the past two years, the beach trip section would be automatically skipped. 

Four waves of contacts were sent to potential web respondents. The first wave 

mail package included an invitation letter with the invitee’s unique survey website 

address and a $1 cash incentive; postcard reminders with the unique survey web 

addresses were used in the second and third waves, differing in sizes. In the last wave, a 

letter invitation was sent with a completion incentive strategy. The survey started in April, 

2012, and closed right after the Memorial Day weekend, 2012. In total, 3,197 people 

logged on the survey and answered our initial trip questions, giving a response rate of 

58.38%
27

. The overall response rate of the two-stage survey was 21.7%. 

 

                                                            
26

 In the survey, “Great Lakes beaches” were defined with a labeled graphic along with 

the following bulleted list: “For this survey, Great Lakes beaches in Michigan include 

beaches on the shorelines of  • Lake Michigan, • Lake Huron, • Lake Erie, • Lake 

Superior • All connecting waters (Lake St. Clair, St. Clair River, Detroit River, etc.)”. 
27

 Please refer to Weicksel (2012) for complete web survey details. 
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3.2 Data 

Out of 9,591 mail survey respondents, 3,838 said they didn’t visit any Great Lakes 

beaches, so they are defined as nonusers for beach recreation. Within the 3,197 people 

who responded to the web survey, 2,544 are the persons to whom the web survey was 

addressed, and are kept for data analysis. 7 of them skipped the beach trip section, which 

leaves us 2,537 effective respondents as users and potential users.  

This chapter follows most recreation demand studies and only day trips are used 

in the model. Trips are removed where beaches are on inland lakes or Lake Superior
28

, or 

out of Michigan, and where no trips are reported for the beaches. If total trip numbers in 

each month exceed the upper limits
29

, excess trips are dropped. After these steps, we 

have 1,538 users who took at least one day trip in the summer of 2011, and 999 potential 

users with no day trip.  

  

                                                            
28

 Web respondents all live in the Lower Peninsula and it is impossible for most of them 

to go to Lake Superior and come back on one day. Some people may have a second home 

in the Upper Peninsula, so they report day trips to beaches on Lake Superior. Their trips 

are not included in the analysis as we consider trips originating from permanent 

residence. 
29

 For day trips, the upper limit in June (including Memorial Day weekend) is 34, 31 in 

July and August, 30 in September. 
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Table 13: Demographic Characteristics of Users, Potential Users and Nonusers
30

 

 

Effective Web Survey Respondents 

Nonusers* 
All* Users 

Potential 

Users* 

Age (Mean) 44.4 43.9 45.0 49.5 

Income (Mean, $1000) 81.9 79.0 85.7 61.0 

Education Years (Mean) 14.8 14.8 14.8 13.8 

Male (%) 47.8 50.0 44.8 49.7 

White (%) 90.9 90.7 91.1 80.1 

Employed Full-Time (%) 52.2 54.3 49.4 40.1 

Retired (%) 19.2 17.5 21.5 29.9 

Children under 17 (%) 35.0 34.2 36.0 29.2 

*Note:  Nonusers were significantly different at 1% level from the group of Users and 

Potential Users for each characteristic except “Male”. Nonusers were significantly 

different at 1% level from Potential Users for each characteristic. Potential Users are 

significantly different at 5% level from Users for “Income”, “Employed Full-Time” and 

“Retired”.  

 

We use demographic data from the web survey for users and potential users as it 

is the most recent. It can be seen from Table 13 that nonusers have very different 

characteristics from the group of users and potential users. People are more likely to 

participate if they are young, with higher income, more educated, white, employed full-

time, not retired and with children under 17. Between users and potential users, we would 

expect the employment status to affect the behavior of taking or not taking a day trip in 

one choice occasion. Furthermore, nonusers are significantly different from potential 

users for each characteristic suggesting that pooling these two categories as in von 

Haefen et al (2005) may lose some accuracy. It is worth noticing that nonusers are 

identified based on the screener mail survey in this study. Although the chances are likely 

                                                            
30

 These are weighted by corresponding weights. 
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small, those nonusers who responded the mail survey before September 30, 2011 might 

have taken trips to public Great Lakes beaches in the survey season.   

 

Figure 6: Public Great Lakes Beaches for Day Trips
31

 

For interpretation of the references to color in this and all other figures, the reader is 

referred to the electronic version of this dissertation. 

 

According to the official beach list from Michigan Department of Environmental 

Quality (DEQ), there are 588 public Great Lake beaches in Michigan, 454 on Lake Erie, 

Lake St. Clair, Lake Huron and Lake Michigan. Removing 3 beaches with no length 

information, we have 451 beaches as candidates in people’s choice sets (Figure 6). 

Choice sets can be different among individuals based on the maximum driving distance 

on one day. Following the literature, we set the cut point to be 500 miles for a round 

                                                            
31

 Figure 6, 7, 10, 11 and 12 are Google Earth images. File conversion is through the 

website: http://www.earthpoint.us/ExcelToKml.aspx 

http://www.earthpoint.us/ExcelToKml.aspx
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trip
32

, which means beaches more than 250 miles away from one’s permanent residence 

are not available for day trip visitation. The resulting choice set is quite large compared to 

previous studies on beach visitation, which often have fewer than 100 alternatives. For 

instance, Murray, Sohngen and Pendleton (2001) conducted their survey on 15 Lake Erie 

beaches, and Parsons et al (2009) had the maximum number of sites in the choice set as 

65.  

 

Figure 7: GLOS Points on Great Lakes in Michigan 

Individual beach length
33

 and the previous year’s closure information were 

provided by Michigan Department of Environmental Quality. The number of closure 

days is the sum of all closure periods in the year of 2010, the year prior to our trip data. 

                                                            
32

About 1% of people who took day trips visited beaches more than 250 miles away.  
33

 It is defined as the length of shoreline reach.  
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Data on water surface temperature in the survey season was obtained from National 

Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research 

Laboratory (GLERL) using Great Lakes Observing System (GLOS) Point Query tool
34

. 

56 grid points are selected on Lake Huron along the coastline, 79 on Lake Michigan and 

2 on Lake Erie (there are two beaches on Lake Erie in the DEQ list), as shown in Figure 7. 

Daily temperatures were retrieved at these points and averaged into monthly temperatures, 

because we know the month of the trips but not the exact days. Monthly data was directly 

used for Lake St. Clair as its daily data was not available. Individual beaches were 

matched to the nearest location with temperature data. 

 

3.3 Model Specification  

In the repeated nested logit model with a participation hurdle, the specification of the 

indirect utility person n obtains from visiting beach j on lake k in choice occasion t is: 

                                     

                          (              )

                      

                          

                    

                                                            
34

 http://glos.us/data-tools/point-query-tool-glcfs  

http://glos.us/data-tools/point-query-tool-glcfs
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            and                    are described by the demographic variables in 

Table 13. 

The computation of travel cost is: 

                                   

                                           

                        (                  ⁄ )

 (  ⁄ ) 

$0.476 per mile is the total driving cost minus maintenance and insurance costs for an 

average size car in 2011, reported by American Automobile Association (AAA)
35

. Time 

cost is the opportunity cost. A person employed full-time works approximately 2,000 

hours per year, and the hourly wage can be derived. As discussed in Chapter 9 of Champ 

et al (2003), for people working with fixed time schedule, normally one third of the 

hourly wage is treated as the time cost. Travel distance and travel time are calculated in 

PC miler, the logistic software, and their measures are mile and hour respectively
36

. 

 The definition of regions is from Center for Geographic Information in the State 

of Michigan, where there are six regions in the Lower Peninsula plus one for the Upper 

Peninsula. Beaches are assigned to different regions based on counties they belong to, 
                                                            
35

 This is one way to compute travel cost. Another way would be the operating cost (gas, 

maintenance and tires) plus depreciation caused by driving, which gives $0.2422 per 

mile. Results using this travel cost are available upon request. 
36

 The travel cost in this study is for each adult, not household. It does not count the 

number of people in one vehicle. 
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which is available in the official beach list from Michigan Department of Environmental 

Quality (DEQ). Since a few Lake Michigan beaches are on the Upper Peninsula, we 

include six regional dummies for the Lower Peninsula in the estimation.  

In the survey data, instead of reporting beach names, people might only report the 

nearest town or city to the beach. That is to say, we don’t know the exact beach but the 

area. There could be multiple beaches in that area. Given that all beaches are mutually 

exclusive, the probability that person n visits area a can be expressed as: 

   (   )  ∑   (   )

   

 

It can be inferred from the official beach list how many beaches are in certain areas and 

what they are. Also, for some trips, we are not able to locate the beaches or the areas, and 

have to count these trips at the level of taking or not taking a day trip. That is to say, 

   (    ) is used to describe the trip information. Data from these two groups takes 

about 35.3% and 8.8% of the total day trips respectively.  

Since nearly half of the trip data is non-regular, the estimation is programmed in 

Matlab so that the log-likelihood function can be adjusted to incorporate all available 

information, although the estimation burden greatly increases. Depending on the speed of 

computers, it takes 2 to 4 days to estimate the proposed model in Figure 5 with starting 

values from sequential estimation. To remove the effect of cluster standard errors in 

repeated trips, bootstrapping is applied through High Performance Computing Center in 

Michigan State University, where it is possible to execute many single-process jobs at a 
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time. Regarding the time constraint, we set the number of runs in bootstrapping as 100, 

which still requires about four weeks before getting all the results.     

We also estimate two traditional repeated nested logit models without the 

participation hurdle for comparison. For convenience, we call them Model 1 and Model 2, 

where Model 3 is the proposed model. Model 1 only uses the web survey data and 

excludes nonusers, which is normally applied with list sampling and some studies with a 

screener survey, such as Lew and Larson (2008). Model 2 and Model 3 include users, 

potential users and nonusers, and individual weights are adjusted to maintain the relative 

ratio of participation to nonparticipation. So the data for both models is representative of 

the general population. Like the models in von Haefen et al (2005), Model 2 does not 

differentiate potential users from nonusers because they all took no day trips in the survey 

season. Model 3 follows the procedure in English (2008), and has a similar structure as 

Model 1 except for the added participation hurdle. Nonusers do not enter the nests below 

the hurdle (Figure 5). 

 The computation of welfare measures at the individual level in Model 1 and 2 

follows the equations in Section 2.3, since Model 2 pools nonusers with potential users. 

In Model 1, to calculate welfare measures at the population level, we need to take into 

account the fact that these individual estimates are for users and potential users. The 

participation rate inferred from the mail survey was 58.01%
37

. The total number of adults 

living in Lower Peninsula of Michigan is 7,289,085 according to 2010 census, which 

implies 4,228,398 users and potential users. Multiplying the number of users and 

                                                            
37

 See Appendix D. 
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potential users to Model 1 individual estimates gives welfare changes for the population. 

In Model 2, multiplying 7,289,085 to individual estimates will produce welfare measures 

for the population.  

 For Model 3 where there are three groups of people, changes in beaches cause 

welfare loss to users and potential users, not to nonusers (because of the nature of the use 

values being estimated). Although the data shows which group one belonged to during 

the survey, generally, researchers will have no information on the membership. Also, 

people switch between groups all the time. Therefore, we can predict one’s probability to 

participate and not to participate in status quo, and apply them to conditional estimates to 

derive unconditional welfare measures. For person h in Model 3, we have the welfare 

changes in choice occasion t and total estimated trips as:   

  ̂    ̂ (           )  
  ̂  |           ̂  |          

  ̂  

  ̂ (               )    

 ̂   ̂ (           )  ∑   ̂(    )

 

   

  ̂ (               )    

 ̂ (   )   ̂ (           )  ∑   ̂(   )

 

   

  ̂ (               )    
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These will generate individual welfare measures for a random person in the population, 

and the calculation of population welfare measures is the same as Model 2. 
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4 Estimation Results 

Table 14 shows full information estimation results of two traditional repeated nested logit 

models, Model 1 and Model 2, and the proposed model with a participation hurdle, 

Model 3. All models display the same pattern at the beach level, and have similar 

estimates, since information at this level mainly comes from users. The estimated 

parameter on travel cost has a negative sign and is statistically significant at 1% level, 

which is consistent with demand theory. The higher the price is, the lower the demand. 

Following the literature, logarithm of beach length is used. The length matters a lot when 

beaches are short, and its importance decreases for longer beaches. All else equal, 

warmer beaches are preferred to colder beaches. Total closure days in the previous year 

have a negative effect on beach visitation, suggesting that previous beach closures have a 

lasting stigma impact on future visitation. The estimated parameters on regional dummies 

indicate that all else equal, beaches on Lake Michigan are more popular compared to 

Lake St. Clair, Lake Erie and Lake Huron.  

The two nesting parameters at the lake level and the trip/no trip level are 

statistically significant at 1% level and within the unit interval, which is consistent with 

utility maximizing behaviors. Thus, nesting works better than no nesting. At the trip/no 

trip level, how demographic variables affect the behavior of taking or not taking a day 

trip in one choice occasion is different in Model 2 compared to Model 1 and 3. The 

estimated parameters as well as their significance are quite different, or even have 

opposite signs, because nonusers are identified at this level together with potential users 

in Model 2. Model 1 and Model 3 show that within the population of beach-goers, people 

who are male, non-white and not full-time employed take more day trips, as Table 13 
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indicates that the employment status may influence the behavior of taking or not taking a 

day trip in one choice occasion; whereas Model 2 suggests that in the general population, 

people who are more educated take more day trips. 

Comparing Model 1 and with the part of Model 3 that is conditional upon 

participating in beach recreation shows that they produce almost identical results. Recall 

that Model 3 is essentially Model 1 plus the participation hurdle; nonusers do not enter 

the nests below the participation hurdle. In Model 3, the nesting parameter at the top level 

(the hurdle level) is statistically significant at 1 % level and between 0 and 1, so adding 

the participation hurdle to the model works better than no hurdle. The variable for being 

full-time employed is dropped from the hurdle because otherwise the model would not 

converge, which might be caused by its higher correlations with other demographic 

variables for nonusers. In the general population, the hurdle model suggests people who 

are young, white and more educated are more likely to participate in beach recreation. 

The three variables are all significantly different between nonusers and the group of users 

and potential users in Table 13. 

Based on the estimation results, preferences on travel cost and beach 

characteristics are not affected much by the model structure or whether the data is from 

the population or a sub-population. The preferences are revealed when people actually 

take trips. The distinction of the three models is what behaviors are being modeled. 

Model 1 and Model 2 both incorporate the behavior of taking or not taking a day trip in 

one choice occasion, the former in the group of beach-goers, the latter in the general 

population. Model 3 separates the behavior of participating or not participating in one 

season from the behavior of taking or not taking a day trip in one choice occasion through 
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the participation hurdle. Although it is not a conceptual hurdle derived from an objective 

utility function with constraints, it can explain how people behave to some extent, and 

make use of more information compared to Model 2.   
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Table 14: Full Information Maximum Likelihood (FIML) Estimation Results 

  Model 1 Model 2 Model 3 

Model Levels Variables Estimates t Statistics Estimates t Statistics Estimates t Statistics 

Beach Level Travel Cost -0.0280*** -20.0 -0.0312*** -21.1 -0.0281*** -17.3 

Log(Length) 0.126*** 4.85 0.139*** 5.20 0.126*** 4.93 

Temperature 0.0589*** 5.96 0.0601*** 5.95 0.0581*** 5.69 

Closure Days of 2010 -0.0189*** -4.47 -0.0207*** -4.54 -0.0189*** -4.03 

LP Northeast -0.0642 -0.173 -0.197 -0.534 -0.0621 -0.196 

LP Mid-East -1.29*** -3.32 -1.56*** -4.00 -1.30*** -3.57 

LP Southeast -1.38*** -3.23 -1.68*** -4.03 -1.39*** -3.30 

LP Northwest 1.16*** 4.70 1.15*** 3.76 1.17*** 4.25 

LP Mid-West 0.901*** 3.49 0.992*** 3.30 0.903*** 3.65 

LP Southwest 0.321 1.20 0.406 1.22 0.325 1.23 

Lake Level Nesting Parameter 0.644*** 11.7 0.705*** 12.6 0.645*** 12.5 

Trip/No Trip Level Nesting Parameter 0.547*** 9.00 0.596*** 9.89 0.544*** 7.45 

No Trip Male -0.152* -1.65 -0.118 -1.31 -0.151 -1.56 

Age -0.0027 -0.768 0.00391 1.13 -0.0026 -0.757 

White 0.378* 1.91 0.014 0.0682 0.383 1.61 

Education Years -0.0106 -0.483 -0.0918*** -6.30 -0.0098 -0.490 

Full-Time Employed 0.212** 2.31 0.106 1.04 0.215** 2.38 

Retired 0.187 1.12 0.18 1.12 0.186 1.12 

Children under 17 0.133 1.54 0.097 1.09 0.136 1.52 

Constant 5.30*** 9.29 7.23*** 12.5 5.23*** 9.59 

Note: *10% significance level; **5% significance level; *** 1% significance level 
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Table 14 (cont’d) 

  Model 1 Model 2 Model 3 

Model Levels Variables Estimates t Statistics Estimates t Statistics Estimates t Statistics 

Participation Hurdle Nesting Parameter - - - - 0.00511*** 21.4 

Not Participate Male - - - - 0.0579 0.591 

Age - - - - 0.0148*** 4.98 

White - - - - -0.767*** -4.02 

Education Years - - - - -0.176*** -9.16 

Retired - - - - 0.124 0.998 

Children under 17 - - - - 0.0704 0.738 

Constant - - - - 5.59*** 17.3 

Note: *10% significance level; **5% significance level; *** 1% significance level 
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Table 15: Welfare Estimates of Changing a Beach in 2011 Dollars at Individual Level 

 
Season Season/Total Trip Change Season/Site Trip Change 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Closure 

of One 

Beach in 

the 

Region
38

 

Huron North -0.0408 -0.0254 -0.0232 37.5 33.3 38.2 12.2 13.2 12.4 

Huron South -0.113 -0.0685 -0.0713 36.7 31.9 37.2 12.7 13.3 12.8 

St. Clair -0.989 -0.645 -0.694 36.4 32.5 36.6 13.3 14.2 13.3 

Erie -1.81 -1.08 -1.27 36.4 32.4 36.5 14.8 15.5 14.7 

Michigan North -0.0600 -0.0368 -0.0278 38.1 33.5 39.0 11.9 13.3 11.7 

Michigan Central -0.700 -0.432 -0.324 38.5 34.0 38.3 12.7 13.6 12.7 

Michigan South -0.370 -0.228 -0.172 38.3 33.7 38.0 12.8 13.6 12.7 

Marginal 

Increase 

in Length 

of One 

Beach in 

the 

Region 

Huron North 0.0262 0.0162 0.0152 39.8 33.6 42.5 13.0 13.4 14.0 

Huron South 0.0419 0.0254 0.0262 38.0 31.8 36.8 13.3 13.4 12.8 

St. Clair 0.469 0.310 0.326 36.7 32.3 36.4 14.4 15.0 14.2 

Erie 0.449 0.280 0.317 36.5 32.5 36.3 17.1 17.4 16.8 

Michigan North 0.0232 0.0144 0.0110 31.2 34.7 36.8 9.82 13.5 11.4 

Michigan Central 0.186 0.116 0.0877 38.3 33.7 38.4 12.9 13.7 12.9 

Michigan South 0.134 0.084 0.0634 38.0 33.5 38.1 12.8 13.7 12.9 

 

 

 

 

                                                            
38

 As described in the text, we construct 451 scenarios where one of the 451 beaches is closed in one scenario, which will give us the 

value of each beach. A region has multiple beaches, so we use the average value of these beaches to represent “One Beach in the 

Region”. It is the same with marginal increase in beach length. 
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Table 16: Welfare Estimates of Changing a Beach in 2011 Dollars (Million) at State Level 

 
Season

39
 

Model 1 Model 2 Model 3 

Closure of One Beach in 

the Region 

Huron North -0.172 -0.185 -0.169 

Huron South -0.477 -0.499 -0.520 

St. Clair -4.18 -4.70 -5.06 

Erie -7.65 -7.86 -9.26 

Michigan North -0.254 -0.268 -0.203 

Michigan Central -2.96 -3.15 -2.36 

Michigan South -1.56 -1.66 -1.25 

Marginal Increase in 

Length of One Beach in 

the Region 

Huron North 0.111 0.118 0.111 

Huron South 0.177 0.185 0.191 

St. Clair 1.98 2.26 2.38 

Erie 1.90 2.04 2.31 

Michigan North 0.098 0.105 0.0802 

Michigan Central 0.787 0.848 0.640 

Michigan South 0.569 0.613 0.462 

 

 

  

                                                            
39

 As described in Section 2.3, for the seasonal value, in Model 1, the average individual values were multiplied by the population of 

adults living in the Lower Peninsula of Michigan adjusted by the participation rate 58.01%. In Model 2 and Model 3, the population 

values are the average individual values multiplied by the population of adults living in the Lower Peninsula of Michigan. 
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Table 17: Estimated Trips and Welfare Changes of Closing All Beaches on a Great Lake in 2011 Dollars 

Individual Level 

 

Number of Trips Season Season/Total Trip Change Season/Lake Trip Change 

Model 

1 

Model 

2 

Model 

3 

Model 

1 

Model 

2 

Model 

3 

Model 

1 

Model 

2 

Model 

3 

Model 

1 

Model 

2 

Model 

3 

Erie 0.236 0.136 0.167 -5.16 -2.84 -3.59 36.4 32.4 36.4 21.9 21.0 21.5 

St. Clair 0.422 0.260 0.298 -9.43 -5.63 -6.59 36.4 32.4 36.4 22.3 21.6 22.1 

Huron 0.820 0.472 0.496 -20.6 -11.2 -12.0 36.9 32.7 36.8 25.0 23.6 24.2 

Michigan 3.46 2.00 1.62 -118.1 -62.0 -53.8 37.4 33.2 37.3 34.1 31.0 33.2 

State Level (Million) 

 
Number of Trips Season 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Erie 1.00 0.99 1.22 -21.8 -20.7 -26.2 

St. Clair 1.79 1.90 2.17 -39.9 -41.0 -48.0 

Huron 3.47 3.44 3.61 -86.9 -81.4 -87.5 

Michigan 14.6 14.6 11.8 -499.2 -451.6 -391.8 
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 To compare valuation results, three scenarios are constructed: closing one beach 

in different regions, marginally increasing the length of one beach in different regions, 

and closing all beaches on one Great Lake. As described in Section 2.3, there are two 

measures of welfare for each scenario, per season (columns titled “Season” in Table 15, 

16 and 17) and per trip (columns titled “Season/Total Trip Change”, “Season/Site Trip 

Change” and “Season/Lake Trip Change” in Table 15, 16 and 17). The per trip measures 

come from normalizing per season measures by the change in the expected number of 

trips to the affected site(s), or the change in the number of trips to any sites, so that results 

of multiple-site demand models are comparable to those of single-site demand models or 

models with different choice sets.  

Take the per season measure as an example. When a beach is closed or there is a 

marginal increase in beach length, we consider the change as happening separately at 

each of the 451 beaches. In the case of beach j, we compute the welfare change for each 

person in the sample, which can be denoted as   ̂          following the previous 

notation, and take the weighted average across people as the average per person welfare 

estimate of beach j,   ̂        . Then with the average per person welfare estimates 

for all 451 beaches, we calculate the mean values within every region to represent a 

beach in one region. 

   ̂                       
 

 
 ∑   ̂        

 
    

where R is the total number of individual beaches in that region. When all beaches on one 

Great Lake are closed, the computation is the same except that the last step is not applied. 
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Aggregating per person estimates to the population gives welfare estimates at the 

population level, which includes adults living in the Lower Peninsula of Michigan in our 

study.  

Regarding per season measures, when a beach is closed, seasonal welfare losses 

are larger for Lake Erie and Lake St. Clair because they have much fewer beaches 

compared to Lake Huron and Lake Michigan. If one beach is closed, there are not many 

substitutes, and the utility decreases a lot. When the length is increased by 1 mile on one 

beach, seasonal welfare changes are also larger for Lake Erie and Lake St. Clair. Beaches 

on these two lakes are all shorter than 0.5 mile, while beaches on the other two lakes tend 

to be much longer. With the logarithm, a marginal increase in length will lead to more 

utility increase for short beaches than for long beaches. Hence, the welfare gains for 

changes in length at single sites are much smaller for Lake Huron and Lake Michigan. 

 When one entire lake is closed, seasonal welfare loss is the largest for Lake 

Michigan, then Lake Huron. Lake St. Clair and Lake Erie have much smaller values. 

Lake Michigan has the largest number of beaches. The maximum utility one could attain 

would greatly decrease if all beaches on Lake Michigan were closed.  There is much less 

variation in per trip measures across regions and lakes because they are normalized by 

trip changes. Thus, closures at more valuable beaches/lakes will lose more trips. Hence, 

these normalized measures tend to remove the difference in demand for different sites, 

and are comparable to those from single-site demand models that assume only one site is 

available.  
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 To compare across three models, it can be seen that at the individual level, 

seasonal welfare estimates in Model 2 and 3 are about 55% to 60% of those in Model 1, 

which can be explained by the fact that only users and potential users are included in 

Model 1 and the participation rate in the sample is 58.01%. At the State level, when all 

the results are generalized to the population, seasonal welfare changes in Model 1 are a 

little smaller than Model 2 if the change is for one beach, and bigger if the change is for 

one lake. Possible explanations could be that users and potential users have slightly less 

elastic demand than nonusers with small changes, and more elastic demand with big 

changes. Model 1 and 2 predict almost the same number of trips to each lake.  

Model 3 has somewhat different patterns: higher values for beaches on Lake Erie, 

Lake St. Clair and Lake Huron, and lower values for beaches on Lake Michigan. It is the 

same case for estimated trips. Compared to Model 1 and 2, Model 3 has different 

allocations across lakes, fewer trips to Lake Michigan and more trips to the other three 

lakes. The total number of predicted trips is also smaller. English (2008) also found that 

the hurdle model tended to smooth the variation in trip prediction for different areas. For 

population estimates, we would expect models to produce similar results if the population 

mean is preserved by the model. However, Model 3 loses the mean-fitting property that 

Models 1 and 2 possess for the total trips and for trips by region. One reason is the use of 

individual-level participation rates. With the participation hurdle, the predicted 

participation rate on average is 58.06%, almost identical as the sample, but there may be 

a lot of variation across people. When inserting the participation rate at the individual 

level, differences in each person’s welfare changes and estimated trips could be enlarged 

rather than being averaged out. For instance, even though the means of two random 
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variables are the same in two models, the product of the means in one model is not 

necessarily equal to the mean of the two variables’ products in other model. Considering 

Model 1 and Model 3, which are essentially the same model except the participation 

hurdle, in Model 1, web survey respondents receive a 100% participation rate. Mail 

survey respondents are not included so their participation rates are 0. In Model 3, the 

estimated participation rate is positive for each person in users, potential users and 

nonusers. The noise associated with individual estimates of the participation rates may 

not go away in the aggregation process.  
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5 Discussion and Conclusions 

In this chapter, a repeated nested logit model is estimated with data from a two-stage 

survey of the general population, providing policy makers with monetary values of public 

beaches on Lake Erie, Lake St. Clair, Lake Huron and Lake Michigan. We find that 58% 

of Michigan adults living in the Lower Peninsula of Michigan participate in Great Lakes 

beach recreation during the summer season. In the general population, people who are 

young, white and more educated are more likely to participate. Once participating, people 

who are male, non-white and not employed full-time tend to take more day trips. 

The value of an individual public beach is about $32-$39 per trip, depending on 

the region. If length on one beach is increased by one mile, the welfare gain is about $31-

$43 per trip. About 20.9 million day trips in total are taken to public Great Lakes beaches 

(excluding Lake Superior) each summer by Michigan adults from the Lower Peninsula, 

with about 14.6 million for Lake Michigan. The results show that access to beaches for 

day trips on Lake Michigan is worth over $400 million each year to Michigan adults 

living in the Lower Peninsula of Michigan. These values are relevant to decisions on 

beach issues such as quality maintenance and beach facility construction, and to policy 

decisions about the value and environmental improvement of Great Lakes beaches.  

 This chapter also clarifies whether including nonusers and differentiating them 

from potential users will make a difference. In previous studies, if only one survey was 

implemented, the two groups were pooled and nonusers were treated as potential users 

who took no trip during the season; if there was a screener survey, the purpose was to 

recruit a sample for follow-up surveys and the data was rarely used. We follow what was 
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done in English (2008) with the improvement that we also collected individual-level data 

for nonusers. The estimation results of three models show that pooling nonusers with 

potential users will produce different parameter estimates and welfare estimates 

compared to using information only from users and potential users. When the behavior of 

participation/nonparticipation is explicitly modeled, it hardly influences estimated 

parameters for the beaches because nonusers provide no trip information; however, it 

does tell us what factors could play a role in determining whether to participate or not. 

We can predict the participation rate for any individual. However, the unconditional 

results for total trips and welfare measures for the hurdle model are somewhat different 

because presence of the hurdle leads to different spatial allocations of trip-taking 

behaviors when results are aggregated to the population level. The loss of prediction 

power might also be attributed to the lack of theoretical support for the participation 

hurdle. As stated in English (2008), the hurdle could inadequately capture people’s 

economic response to factors other than their own demographics, like site characteristics 

and possible investments for participating in beach recreation (e.g. buying a boat).  

 Future work may focus on deriving a participation hurdle with an objective utility 

function and relevant constraints. In this chapter, the seasonal inclusive values are used to 

represent the utility of participation. English (2008) also incorporated cost of licenses as 

another factor in the hurdle. If data is available on beach access fees, it could be 

combined with people’s leisure activities in the mail survey to derive the equations for 

participating and not participating from more comprehensive utility maximizing 

behaviors. It is worth further investigating the implications of losing the mean-fitting 

property of the typical repeated logit models when a hurdle is incorporated. In addition, 
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we have only a few quality variables in this chapter. Although regional dummies can 

explain site characteristics to some extent, choices among beaches will be more 

accurately modeled with more data at the beach level, such as beach width, facilities, 

whether a beach is located in the state park, etc.    
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Chapter 3 

Modeling Long Overnight Trips by Chaining Recreation Sites 

 

1 Motivation 

In recreation studies, valuation often applies to trips where recreation is the single 

objective and only one site is visited, so day trip data is the most widely used as it 

normally meets the two requirements (Caulkins et al (1986), Lew and Larson (2005), 

Moeltner and Shonkwiler (2005), Scarpa and Thiene (2005), Smith (2005), von Haefen et 

al (2005), Kim et al (2007), Timmins and Murdock (2007), Parsons et al (2009), etc.). 

Some studies, most of which are for fishing or hunting trips, do not explicitly 

differentiate overnight trips from day trips, or give the same treatment to the two types of 

trips, where the single-objective and single-site assumptions are still imposed (Morey et 

al (1993), Englin and Shonkwiler (1995), Haab and Hicks (1997), Provencher and Bishop 

(1997), Shrestha et al (2002), Schuhmann and Schwabe (2004), Morey et al (2006), 

Cutter et al (2007), Hynes et al (2007), Haab et al (2008), von Haefen and Phaneuf 

(2008), etc.).



84 

 

Table 18: Examples of Literature Not Differentiating Overnight Trips from Day Trips  

Papers Activities Models Comments 

Morey et al (1993) Fishing Random Utility Models 

Recode all trips to Maine rivers as 

day trips, and all trips to Canadian 

rivers as four-day trips 

Englin and Shonkwiler (1995) 
Boating, Swimming and 

Fishing 
Count Data Models - 

Haab and Hicks (1997) 
Visiting Beaches, Fishing 

and Boating 
Random Utility Models - 

Provencher and Bishop (1997) Fishing Dynamic Programming - 

Shrestha et al (2002) Fishing Count Data Models - 

Schuhmann and Schwabe 

(2004) 
Fishing Random Utility Models - 

Morey et al (2006) Fishing Latent Class Model - 

Cutter et al (2007) Visiting National Parks Random Utility Models - 

Hynes et al (2007) Kayaking Random Utility Models - 

Haab et al (2008) Fishing Random Utility Models - 

von Haefen and Phaneuf (2008) Hunting Random Utility Models - 
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Table 19: Studies Dealing with Overnight/Multiple-Objective/Multiple-Site Trips 

Papers Activities Models Welfare Measures Comments 

Kealy and Bishop (1986) Fishing 
Demand Theory of 

Single Site 

19.5 per Day in 1978 

Dollars 

Explicitly model the number of 

recreation days 

Mendelsohn et al (1992) 
Visiting National 

Parks 

System of Demand 

Equations 

16.8 per Day in 1982 

Dollars 

Combine multiple sites as one 

composite 

Hoehn et al (1996) Fishing 
Random Utility 

Models 

66.7 per Multiple-Day 

Trip in 1994 Dollars 

Put day and overnight trips in 

two separate nests 

McKean, Walsh and 

Johnson (1996) 
Fishing Count Data Models 

69.2 per Trip in 1986 

Dollars 

Include price and time variables 

for secondary sites 

Tay, McCarthy and 

Fletcher (1996) 
Fishing 

Random Utility 

Models 
N/A 

Use portfolios of destination, 

duration and frequency 

Parsons and Wilson 

(1997) 
Fishing Count Data Models 

58.8-76.9 per Day Trip in 

1989 Dollars 

Define one dummy variable for 

incidental consumption 

Shaw and Ozog (1999) Fishing 
Random Utility 

Models 

268 in 1988 Dollars on 

Catch Rate Improvement 

Test two structures with a level 

of trip length  

Loomis, Yorizane and 

Larson (2000) 
Whale Watching Count Data Models 

75.0 per Day in 1993 

Dollars 

Distinguish incidental trips from 

joint consumption 

Lupi et al (2003) Fishing 
Random Utility 

Models 

125.0 per Multiple-Day 

Trip in 1994 Dollars 

Allow different preference 

parameters for day and overnight 

trips 

Yeh, Haab and Sohngen 

(2006) 
Visiting Beaches 

Random Utility 

Models 

1.45 in 1998 Dollars on 

Reducing One Advisory 

Make an adjustment to travel 

cost for multiple-objective trips 
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Although most recreation trips are day trips, overnight trips make up a nontrivial 

portion of recreation trips, and demand for recreation activities will be more accurately 

modeled if these trips are accounted for. Previous studies have proposed several 

approaches to deal with overnight trips. Kealy and Bishop (1986) derived the demand 

equation from utility theory and used the total number of recreation days as the dependent 

variable. Explanatory variables included demographic characteristics, travel cost, daily 

on-site costs, daily overnight expenditures, etc. Multiple sites were not involved though. 

Hoehn et al (1996) proposed a repeated nested logit model with a trip length level for 

fishing trips where day trips and overnight trips were in two separate nests. Trip duration 

was taken into account as well as locations and target species. In Tay, McCarthy and 

Fletcher (1996), a multinomial logit model was applied to annual fishing trips. The 

alternatives were not only individual sites, but also included trip duration and frequency 

information. A subset of the universal set was used in estimation, and sampling 

correction was applied. Shaw and Ozog (1999) specified two nesting structures in a 

repeated nested multinomial logit model. One put the trip length level above the site level, 

and the other had the opposite order. The first model had independence parameters within 

the unit interval. Lupi et al (2003) implemented a repeated nested logit model with a trip 

length level for single and multiple day trips. They allowed different parameters for day 

and overnight trips, and the estimated results showed that the marginal utility of income 

was lower for overnight trips.  

However, these studies still assume only one site is visited on overnight trips. To 

address the issue of multiple–sites or multiple-objective trips, Mendelsohn et al (1992) 

combined all sites people visited as composites, which were added to the system of 



87 

 

demand equations as additional alternatives. People could substitute between these 

composites and individual sites. McKean, Walsh and Johnson (1996) included price and 

time variables for secondary sites when estimating the demand function of the primary 

site. Since the secondary sites were close to the primary site in their study and shared 

similar characteristics, these variables were automatically dropped from estimation due to 

multicollinearity. Parsons and Wilson (1997) proposed a theory to incorporate incidental 

and joint consumption in count data models using a dummy variable as a proxy. It could 

be interacted with site quality and demographic variables. Both multiple-objective and 

multiple-site trips would be allowed in this approach. They found that incidental 

consumption was a complementary good for recreation trips. Loomis, Yorizane and 

Larson (2000) distinguished incidental trips from joint consumption using two sets of 

dummy variables if both were incurred on a trip. They asked a screening question in the 

survey to identify whether a trip was single-purpose or involved incidental and 

consumption. Yeh, Haab and Sohngen (2006) applied a nested logit model to day and 

overnight trips, and adjusted travel cost based on the proportion of time spent on the 

recreation purpose for multiple-objective trips.  

Nonetheless, these methods either process the data in a way that multiple-site trips 

can be fit into the framework of single-site trips, or model the existence of multiple-site 

trips using dummy variables. As yet, there are no applications where allowing people to 

decide how many sites to visit and where to go have both been incorporated into a site 

choice model. To fill this gap, in this chapter, we extend the traditional model where only 

the main destination is visited on overnight trips, to a three-level nested logit model 

which explicitly incorporates people’s decision on the number of sites and choice of sites 
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to visit on an overnight trip. The data is from overnight trips where the main purpose is 

recreation and people may visit any combination of 49 distinct sites. We want to see 

whether the proposed model does a good job on explaining people’s behaviors and 

produces different welfare estimates compared to the models based on the main 

destination assumption.   
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2 Models 

The traditional way to model overnight trips is to assume people only visited their main 

destination. With this assumption, we will have a simple conditional logit model as in 

Figure 8. 

 

Figure 8: Decision Tree of Main-Destination Model 

Following Train (2003), on the overnight trip, the utility person n obtains from 

visiting site i as the main destination is: 

            

where the indirect utility     may include travel cost, site characteristics, and their 

interactions with demographic variables.     measures unobserved factors. Person n will 

go to site i if and only if: 
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When     follows an i.i.d. Type I extreme value distribution, suppose the number of 

alternatives is K in the choice set, the probility of visiting site i is: 

  ( )  
    

∑      
   

 

All the sites are independent, and the relative probility of visiting site i over site m is not 

affected by other sites. The assumption of independence from irrelevant alternatives (IIA) 

holds.  

 

Figure 9: Decision Tree of Model Allowing Multiple Sites per Trip 

To build multiple sites into the model, we propose the structure in Figure 9. A 

person will simultaneously decide whether to visit one or two sites and where to go. 

Within the nest of visiting two sites, the first level represents the primary site, on which 

one spends the most amount of time; starting from there, one chooses the secondary site 



91 

 

from the rest of alternatives.With K sites, the number of alternatives is also K in the nest 

of visiting one site, and K×(K-1) in the nest of visiting two sites. The total is K×K, which 

greatly enlarges the choice set compared to the traditional model. 

As described in chapters 1 and 2, if person n decides to visit one site, the 

conditional probability of choosing site i is: 

  (                   )  
 
   
 

∑  
   
  

   

 

If person n decides to visit two sites, the probability to choose j as the secondary 

site conditional on k being the primary site is: 

  (                      )  
 
    
  

∑  
    
     

   

 

k-1 means k is excluded from candidates for the secondary sites. 

The conditional probability that a person n chooses k as the primary site is: 

  (                    )  
(∑  

    
     

   )  

∑ (∑  
    
     

   )   
   

 

Then for person n, the inclusive values of visiting one site and two sites are: 
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) 

which is the maximum utility person n can attain if visiting one site and two sites 

respectively. 

To investigate whether demographic variables have any effects on selecting the 

number of sites, we put them into the indirect utility of visiting one site: 

                            

             

Then the maximum utility person n can attain from taking an overnight trip is: 

        ( 
          ) 

The probabilities of visiting one site and two sites are: 

  (                 )  
     

           
 

  (                  )  
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Hence, the unconditional probabilities of choosing only site i or the pair of site k 

and j are: 

  ( )    (                   )    (                 )
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The log-likelihood function will be: 
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where    people visit one site and    people visit two sites; y is the binary indicator for 

the chosen alternative.  

The indirect utilities     and      are composed of the price variable, i.e. 

travel cost, and quality variables.  

                                       

                                                 

                             

  ,     and     could be different,  so that we can test their relationships, for 

instance, whether the sum of     and     is equal to   .Unlike previous studies 

where day trips are estimated together with overnight trips, in this case, the marginal 

utility of income is the same no matter how many sites one visit. 

 Welfare estimates in the conditional logit and nested logit models are per trip 

measures with respect to the choice set since the “don’t go” option is not available. If one 

site is closed, or there is a marginal increase on the length of one site, the estimated 

welfare change for person n is:  

  ̂  
  ̂ |           ̂ |          

  ̂  
 

The weighted average gives the per person value:  
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  ̂  
∑    
 
     ̂ 
∑   
 
   

 

Where N is the sample size for the model, and    is person n’s weight. 

 To facilitate comparison of the model results to those of single-site models or 

models with different choice sets, welfare measures can be normalized by 

increase/decrease in the probability of visiting the changed site. Denote the changed site 

as m, it is straightforward in the conditional logit model. 

  

   ̂

̂
 

∑    
 
   

  ̂ 
    ̂

∑   
 
   

 

In the nested logit model, however, site m appears at multiple nodes. If it is closed, the 

number of alternatives reduces to K-1 in the nest of visiting one site, and (K-1)*(K-2) in 

the nest of visiting two sites. If its length increases, characteristics of more than one 

alternative will be affected. In other words,    ̂ is the sum of person n’s estimated 

probabilities to visit site m and alternatives including site m. 

   ̂    ̂( )  ∑   ̂(   )

   

   

 ∑   ̂(   )

   

   

 

In the second term, m is the primary site, and in the third term, m is the secondary site. 

Following Parsons and Wilson (1997), a pooled truncated Poisson model is also 

estimated. We refer to it as a pooled model because it is an ad hoc single site demand 

formulation that ignores the complexities of multiple substitute sites and models a generic 
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trip demand using data on the site a person visited.  Because people visit different sites 

and take different numbers of trips, the effects of quality can be generically entered and 

identified. With main destinations, we have: 

   ( )                                    

              

It is assumed that each site has the same demand function. This is a pooled model, so 

generic site quality variables can be included. The dependent variable x is the number of 

overnight trips. 

 For the multiple-site version of this model, denote the dummy variable for visiting 

two sites as D, and the equation becomes: 

   ( )                                          

                                 

                 (   )               

The last interaction term uses 1-D instead of D in order to be consistent with the nested 

logit model above, so that it captures how people visiting one site differ from those 

visiting two sites. The access value per trip is  (   )⁄  in the pooled count model. 
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3 Data 

The data comes from a two-stage survey we conducted in 2011 and 2012. A screener 

mail survey went out to Michigan residents to recruit participants in beach recreation. 

The sample was drawn from Michigan’s driver license list, and the surveys asked about 

people’s leisure activities and participation obstacles. To reduce potential self-selection 

bias, the screening question was but one of many questions on the screener survey. 

People who said they had visited a beach on the Great Lakes since June, 2010 were 

invited to the follow-up web survey, which asked about trips taken to public Great Lakes 

beaches in Michigan in the summer of 2011. 

Following the approach in Parsons et al (2009), the web survey categorized trips 

into three types: day trip (lasting a day or less), short overnight trip (less than four nights) 

and long overnight trip (four nights or more). In the web survey section on long overnight 

trips, beside trip frequency information, detailed questions were presented for one 

randomly selected trip. People were asked to report the beaches on which they spent the 

most/second most/third most amount of time, as well as the number of days on each 

beach. With information on how many sites people visited and where they went, we are 

able to apply the proposed model with multiple sites to value long overnight trips. 

To construct the choice set, given there are 588 public Great Lakes beaches in 

Michigan according to Michigan Department of Environmental Quality (DEQ). We will 

have a 588×588 choice set if individual beaches are used, and this is extremely 

computationally burdensome. Based on literature on site aggregation (Lupi and Feather 

(1998), Haener et al (2004), etc.), we aggregate the 588 public beaches into 49 
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aggregated sites, where the key factors to consider are beach popularity, geographic 

distribution and heterogeneity of travel cost (Figure 10 and Figure 11). A beach is more 

likely to stand on its own if many people go there. Beaches with no visits are dropped. 

Since the travel cost parameter is the denominator of all welfare estimates, to minimize 

the distance heterogeneity in all aggregated sites, we keep the average distance between 

two individual beaches under 18 miles within one site. Even with aggregation, a choice 

set of 49 sites is relatively large compared to previous literature. For instance, Shaw and 

Ozog (1999) aggregated 13 rivers into 8 groups, and Kaoru et al (1995) had 29 

aggregates from 80 sites. In the web survey, 447 people took long overnight trips in the 

summer of 2011. Before aggregation, 337 visited one beach, 81 visited two beaches and 

29 visited three beaches. After aggregation, 355 visited one site, 71 visited two sites and 

21 visited three sites. Hence, although we use 49 aggregated sites to represent 588 

individual beaches, there is not much information on trips with multiple sites that is lost 

with aggregation. 

Following the aggregation literature, characteristics of these sites are averages of 

individual beach characteristics, and the number of elemental beaches within an 

aggregate is included in the estimation (Ben-Akiva and Lerman (1985), Parsons and 

Needelman (1992)). Individual beach length
40

 was provided by Michigan Department of 

Environmental Quality. Data on water surface temperature in the survey season was 

obtained from National Oceanic and Atmospheric Administration (NOAA) Great Lakes 

Environmental Research Laboratory (GLERL) using Great Lakes Observing System 

                                                            
40

 It is defined as the length of shoreline reach. 
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(GLOS) Point Query tool
41

. Daily temperatures were retrieved and averaged into 

monthly temperatures, because we know the month of the trips but not the exact days. 

Monthly data was directly used for Lake St. Clair as its daily data was not available. 

Individual beaches were matched to the nearest location with temperature data. All 

individual beaches’ characteristics are averaged to get the quality data for aggregated 

sites. 

 

Figure 10: Public Great Lakes Beaches Visited On Long Overnight Trips 

                                                            
41

 http://glos.us/data-tools/point-query-tool-glcfs  

http://glos.us/data-tools/point-query-tool-glcfs
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Figure 11: Aggregated Beach Areas in the Long Overnight Trip Model 

 

Figure 12: GLOS Points on Great Lakes in Michigan 
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In data analysis, for the 21 people who visited three sites, the third site was 

truncated, and they were pooled into people visiting two sites, because the group is too 

small to identify, and the model may become intractable. The descriptive statistics of 

participants taking long overnight trips are shown in Table 20. It can be seen that people 

visiting two sites are not very different from people visiting one site. 

Table 20: Demographic Characteristics of Participants with Long Overnight Trips
42

 

 Participants Visiting One Site* Visiting Two Sites* 

Age (Mean) 45.5 45.7 44.9 

Income (Mean, $1000) 95.7 95.1 98.3 

Education Years (Mean) 15.2 15.2 15.5 

Male (%) 44.7 45.3 42.4 

White (%) 96.8 96.2 99.1 

Employed Full-Time (%) 54.9 54.9 55.1 

Retire (%) 18.1 18.6 16.3 

Children under 17 (%) 39.6 38.4 44.1 

*Note: People visiting two sites were not significantly different from people visiting one 

site except for the race variable “White”, where the difference was statistically significant 

at 5% level. 

 

To compute each person’s travel cost, we have: 

                                   

                                           

                        (                  ⁄ )

 (  ⁄ ) 

                                                            
42

 These are weighted by corresponding weights. 
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$0.476 per mile is the total driving cost minus maintenance and insurance costs for an 

average size car in 2011, reported by American Automobile Association (AAA)
43

. Time 

cost is the opportunity cost. A person employed full-time works approximately 2,000 

hours per year, and the hourly wage can be derived. As discussed in Chapter 9 of Champ 

et al (2003), for people working with fixed time schedule, normally one third of the 

hourly wage is treated as the time cost. Travel distance and travel time are calculated in 

PC miler, the logistic software, and their measures are mile and hour respectively
44

. For 

alternatives in the nest of visiting two sites, the round trip travel distance and travel time 

is counted from permanent residence to the primary site, the primary site to the secondary 

site, and the secondary site back to permanent residence.  

Demographic variables included in the model are those listed in Table 20 as well 

as three dummies indicating whether one’s income is within 0 to 25% percentile, 25%-50% 

percentile, or 50%-75% percentile. The dummy variables for income are considered here 

to test if income tends to play a role in the decision process for visiting multiple sites on 

long overnight trips. 

We estimate four models for comparison: the traditional model with main 

destination, the proposed multiple-site model with and without demographics, and the 

pooled truncated Poisson model. The maximum likelihood estimation of the first three 

models is programmed in Matlab, and the standard errors are computed using the inverse 

                                                            
43

 This is one way to compute travel cost. Another way would be the operating cost (gas, 

maintenance and tires) plus depreciation caused by driving, which gives $0.2422 per 

mile. Results using this travel cost are available upon request. 
44

 The travel cost in this study is for each adult, not household. It does not count the 

number of people in one vehicle. 
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of Hessian. It takes about 8-10 hours to estimate the multiple-site model with 

demographics. The pooled truncated Poisson model is estimated in Stata.  
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4 Estimation Results 

It can be seen from Table 21 that estimated parameters for the travel cost variable are 

different in the three models. If we take into account the scale effect, for visiting one site 

in the two nested logit models, β/σ is -0.00413 and -0.00404 respectively, which are both 

bigger than the main destination model. The length variable has positive estimates in all 

the models, but it is only statistically significant with visiting one site. The sign for water 

temperature is negative, which may be counterintuitive and is the opposite of what we 

expected. In fact, water temperature is highly correlated with regions. After analyzing the 

data of long overnight trips, we find that more people go to Lake Superior and the north 

part of Lake Michigan and Lake Huron, where the water is cold. Beaches on these areas 

may have distinct unmeasured characteristics, compared to beaches in the south, and 

people who take long overnight trips might care more about such unmeasured beach 

quality than about water temperature. Thus, the regional effects are confounded with the 

temperature variable and influence the signs of estimates
45

. The scale parameters in two 

nested logit models are all statistically significant and within the unit interval, which is 

consistent with the utility maximization behavior and indicates that nesting with multiple 

sites is better than no nesting. . However, we don’t find significant difference between 

people who visit one site and people who visit two sites. 

 

  

                                                            
45

 It is shown in Appendix E that with regional dummies to control the unmeasured 

regional beach characteristics in the main destination model, the estimated parameter of 

water temperature turns positive. However, both multiple-site models will not converge 

with these regional dummies variables as explained in Appendix E. 
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Table 21: Full Information Maximum Likelihood (FIML) Estimation Results 

Variables 
Main-Destination Model 

Multiple-Site Model w/o 

Demographics 

Multiple-Site Model w/ 

Demographics 

Estimates t statistics Estimates t statistics Estimates t statistics 

Travel Cost -0.00327*** -6.47 -0.00172*** -2.96 -0.00226*** -3.51 

One: Length 0.283* 1.90 0.140*** 2.76 0.187*** 3.04 

One: Temperature -0.0602 0.658 -0.0241** -2.15 -0.0305** -2.4 

One: # of Beaches 0.0287** 2.25 0.0111* 1.89 0.0153* 1.94 

Two: Primary Length - - 0.0748 0.479 0.101 0.646 

Two: Primary Temperature - - -0.102*** -4.44 -0.112*** -4.29 

Two: Primary # of Beaches - - 0.0341 1.63 0.031 1.45 

Two: Secondary Length - - 0.0412 1.41 0.0545 1.46 

Two: Secondary Temperature - - -0.0242** -2.41 -0.0326*** -2.67 

Two: Secondary # of Beaches - - 0.00651 1.49 0.00848 1.54 

Two: Primary Level Parameter - - 0.161*** 2.68 0.213*** 3.08 

One/Two Sites Level Parameter - - 0.416*** 3.22 0.560*** 3.69 

One: Male - - - - 0.0321 0.125 

One: Age - - - - 0.00553 0.544 

One: White - - - - -1.2 -1.39 

One: Education Years - - - - -0.0406 -0.85 

One: Full-Time Employed - - - - 0.122 0.403 

One: Retired - - - - 0.137 0.293 

One: Children under 17 - - - - -0.0619 -0.231 

One: 0-25% Income - - - - 0.484 1.34 

One: 25%-50% Income - - - - -0.311 -0.851 

One: 50%-75% Income - - - - 0.122 0.305 

Note: *10% significance level; **5% significance level; *** 1% significance level 
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Table 22: Estimated Welfare Changes per Person in 2011 Dollars 

 

Main-Destination Model 
Multiple-Site Model w/o 

Demographics 

Multiple-Site Model w/ 

Demographics 

Per Trip 
Per Trip/Trip 

Change 
Per Trip 

Per Trip/Trip 

Change 
Per Trip 

Per Trip/Trip 

Change 

Closing One Site -6.31 308.7 -5.17 211.0 -5.38 218.4 

Marginal Length 

Increase on One Site 
2.03 313.0 1.68 217.7 1.74 225.0 
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 As discussed in the previous section, for the length variable, with the null 

hypothesis that the one site parameter is equal to the sum of the primary site parameter 

and the secondary site parameter, we have t statistics to be 1.16 and 1.39 in the two 

multiple-site models, so we cannot reject the null hypothesis at 10% significance level. 

Estimated welfare changes are shown in Table 22, including per person per trip 

measures and normalized per trip measures comparable to those of single-site demand 

models or models with different choice sets. We consider the change as happening at 

each of the 49 sites, and compute the welfare change for each site. The weighted average 

across people is the welfare estimate for each site. The numbers in the table are mean 

values of 49 sites. The two multiple-site models have similar measures, and the inclusion 

of demographics makes the numbers a little bigger. The estimates of the main-destination 

model are about 20% higher for per trip measures, and 40% higher for normalized 

measures. The reciprocal of the scaled travel cost parameter estimate is -305.8 in the 

main-destination model, -242.1 in the multiple-site model without demographics, and 

247.5 in the multiple-site model with demographics. This explains part of the difference 

among three models since the marginal utility of income is the denominator of welfare 

estimates. Another factor causing the discrepancy is that the choice of multiple sites is 

available in two multiple-site models. If one site is closed, the maximum utility one can 

attain does not decrease that much since combinations of other sites may still give similar 

utilities. It is the same with a marginal length increase. Therefore, ignoring the possibility 

of people visiting multiple sites on overnight trips will have larger welfare changes 

relative to the models allowing multiple sites per trip. 
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 Additionally, in the survey, on average, people who took long overnight trips 

spent 4.20 days on one beach. Dividing normalized access values in Table 22 by 4.20 will 

produce per beach day values for one site of $73.5 in the main-destination model, $50.2 

and $52.0 in two multiple-site models. Considering we are valuing long overnight trips, 

these numbers are comparable to other beach recreation studies in Table 19. 

 As another point of comparison, we also estimate a pooled truncated Poisson 

model following Parsons and Wilson (1997). The pooled model is truncated because the 

data excludes people who didn’t take long overnight trips, but there is no need to adjust 

for endogenous sampling as in Shaw (1988) because we survey from the general 

population. The results in Table 23 show that people with children under the age of 17 

take fewer long overnight trips. People who are full-time employed or retired might be 

more likely to visit two sites. The dummy variable indicating a second site is not 

statistically significant. The access values are more than twice those in the Random 

Utility Models. Thus, the pooled count data model which assumes an ad hoc single 

demand equation does not appear to be well-suited to modeling long overnight trips with 

multiple sites.  
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Table 23: Estimation Results of Truncated Poisson Models 

Variables 
Main Destination Multiple Sites 

Estimates t Statistics Estimates t Statistics 

Travel Cost -0.00136** -2.26 -0.0013** -2.276 

Primary Length 0.0511 0.316 -0.00351 -0.0248 

Primary Temperature 0.00773 0.583 0.00977 0.692 

Primary # of Beaches -0.012 -0.417 -0.0223 -0.774 

Secondary Dummy: D - - 1.9 0.399 

D × Secondary Length - - 0.221 0.714 

D × Secondary Temperature - - -0.0248 -0.484 

D × Secondary # of Beaches - - -0.00478 -0.124 

Male 0.224 1.19 -0.268 -0.635 

Age -0.00398 -0.537 -0.00856 -0.474 

White 0.656 1.11 -0.552 -0.535 

Education Years -0.0425 -0.951 -0.0322 -0.337 

Full-Time Employed -0.165 -0.596 1.36* 1.75 

Retired 0.246 0.689 1.75* 1.897 

Children under 17 -0.693*** -3.06 -0.978** -2.24 

0-25% Income -0.16 -0.405 -0.157 -0.274 

25%-50% Income -0.358 -0.933 -0.988 -1.4 

50%-75% Income -0.0303 -0.0724 -0.556 -0.846 

(1-D) × Male - - 0.598 1.27 

(1-D) × Age - - 0.0041 0.21 

(1-D) × White - - 1.4 1.15 

(1-D) × Education Years - - -0.0136 -0.125 

(1-D) × Full-Time Employed - - -1.75** -2.13 

(1-D) × Retired - - -1.68* -1.75 

(1-D) × Children under 17 - - 0.338 0.684 

(1-D) × 0-25% Income - - 0.0536 0.0801 

(1-D) × 25%-50% Income  - - 0.769 0.953 

(1-D) × 50%-75% Income  - - 0.588 0.738 

Constant 0.676 0.392 0.566 0.296 

 

Access Value per Trip in 

2011 Dollar 
737.4 767.9 

Note: *10% significance level; **5% significance level; *** 1% significance level 
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5 Discussion and Conclusions 

In this chapter, we build a model structure for long overnight trips where people can 

simultaneously decide how many sites to visit and where to go. The options of visiting 

one or two sites are significantly different. If two sites are visited, unobserved 

characteristics are shared among secondary sites within one primary site. We find that the 

value per beach day per person is about $50-$52 for one site in 2011 dollars. The 

traditional approach assuming only the main destination is visited on overnight trips tends 

to have larger welfare estimates relative to the models where all possible combinations of 

sites are included. 

 Since we have trip frequency data, we originally sought to apply a repeated nested 

logit model which added a level of taking or not taking a long overnight trip. It took 

about 1-2 days to estimate this four-level repeated nested logit model in Matlab. However, 

after many tries with different sets of explanatory variables and different nesting 

structures, such as separating or integrating the primary and secondary sites, using 

regional dummies and assigning different scale parameters to the nests, either the 

repeated nested logit model does not converge even with starting values from sequential 

estimation, or the estimated parameter on the inclusive value for the trip is negative. 

Recall that in 447 people taking long overnight trips, 92 visited two sites, about 25% of 

the data. But in the nest of visiting two sites, there are 49×48, 2352 alternatives, and only 

4% of them have visitation information. Therefore, it is probable that our relatively small 

sample of people visiting multiple sites on long overnight trips leads to the problem of 

not converging. 
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 One direction of future work would be to find more data on beach characteristics 

and regional amenities, as it may be that regional amenities may be more important than 

individual beach quality with aggregated sites. More factors beside the length and water 

temperature could also have significant influence on people’s choices of where to go, like 

facilities, the convenience of lodging and whether a beach is located in the state park, and 

may avoid some of the regional correlations that appear especially problematic for the 

estimated temperature parameter. Other detailed information for the trip may also be 

included, such as activities, the number of adults and children, etc. Another direction 

might be to add short overnight trips to the model to fully take into account all the 

information of overnight trips. In addition, more complicated models like the mixed logit 

model could be applied, which is flexible on the substitution patterns across people, 

alternatives and even choice occasions. Nonetheless, these all seem to greatly increase the 

estimation burden, and more efficient programming may be required.  
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Appendix A  

 

Results of Sensitivity Analyses for the Monte Carlo Simulations in Chapter 1 
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Sensitivity analyses are conducted to investigate whether changing underlying factors 

will have significant effects on the results of the Monte Carlo simulations in Chapter 1. 

We apply the simulations to three situations below: (1) a new set of true parameters, (2) 

seven sites in the choice site, and (3) the same number of people in each group. Based on 

baseline simulation results, in the sensitivity analyses, the nested logit model has site 1 

and 2 in one nest, and there are two classes in the latent class model. 

 

A.1 Different True Parameters 

A.1.1 True Model-Latent Class Model 

Simulation results are shown in the following tables.  
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Table A-1: Performance of Latent Class Model When It Is the True Model
46

 

 True Mean Var. MSE Min. Median Max. 

   
 ̂  -0.12 -0.43 1.71 1.81 -8.89 -0.12 -0.033 

  
 ̂ 0.15 -0.33 75.54 75.70 -106.1 0.37 56.32 

   
 ̂  -0.07 -0.17 0.30 0.30 -9.11 -0.079 0.43 

  
 ̂ 2.15 5.82 458.8 471.7 -120.5 1.81 217.2 

  ̂ 0.7 0.615 0.062 0.070 0.083 0.615 0.993 

  
 ̂    

 ̂  -1.25 -2.33 31.05 32.20 -18.6 -2.73 16.45 

  
 ̂    

 ̂  -30.71 -57.12 186278 186785 -11330 -24.41 206.5 

   ̂ -0.105 -0.177 0.074 0.080 -2.39 -0.112 -0.083 

  ̂ 0.75 0.84 5.31 5.31 -20.98 0.84 14.41 

  ̂    ̂ -10.09 -10.62 21.24 21.50 -122.4 -10.36 -4.66 

 

                                                            
46

 Results are from 978 iterations. 
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Table A-2: Performance of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model 

  True Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.105 -0.092 2.3e-05 2.0e-04 -0.11 -0.091 -0.078 

  ̂ 0.75 0.89 0.018 0.037 0.40 0.87 1.36 

  ̂    ̂ -10.09 -9.67 2.00 2.17 -14.52 -9.62 -4.03 

Nested 

Logit 

   ̂ -0.105 -0.096 4.0e-05 1.3e-04 -0.123 -0.095 -0.077 

  ̂ 0.75 0.92 0.022 0.051 0.43 0.91 1.42 

  ̂    ̂ -10.09 -9.64 2.02 2.22 -14.63 -9.59 -4.12 

 

 

Table A-3: Estimated Values of Marginal Quality Change of Latent Class Model When It Is the True Model 

 True Mean Var. MSE Min. Median Max. 

Class 1 

-0.41 -0.61 3.72 3.75 -4.69 -0.91 7.44 

-0.40 -0.95 3.38 3.68 -7.84 -0.91 3.66 

-0.44 -0.77 3.39 3.50 -6.07 -0.91 5.35 

Class 2 

-6.62 -4.56 11.35 15.56 -37.65 -4.90 28.62 

-15.00 -42.56 168717 169304 -10670 -10.89 183.2 

-9.10 -10.00 474.2 474.5 -623.1 -7.82 44.85 

Average 

-2.27 -2.36 0.30 0.30 -3.70 -2.41 -0.015 

-4.78 -5.01 18.61 18.64 -110.8 -4.70 0.011 

-3.03 -3.26 0.28 0.33 -8.86 -3.25 -1.46 
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Table A-4: Estimated Site Values of Latent Class Model When It Is the True Model 

 True Mean Var. MSE Min. Median Max. 

Class 1
47

 

9.08 8.87 0.86 0.90 6.21 8.75 14.32 

8.33 8.83 1.62 1.86 5.03 8.78 14.88 

9.41 8.77 0.12 0.53 8.13 8.80 14.67 

Class 2
48

 

5.30 5.41 7.24 7.24 -27.31 6.07 19.86 

17.16 27.46 33034 33094 -86.44 14.61 4621 

8.32 8.85 15.21 15.47 -46.73 9.20 91.99 

Average
49

 

7.94 7.91 0.075 0.076 7.05 7.92 8.87 

10.98 11.07 3.96 3.97 8.35 10.95 56.73 

9.08 8.94 0.039 0.060 8.36 8.95 9.85 

 

 

Table A-5: Welfare Estimates of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model 

 Site 
Site Loss Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 7.94 7.91 -2.27 -2.86 

2 10.98 10.64 -4.78 -3.61 

3 9.08 9.14 -3.03 -3.20 

Nested 

Logit 

1 7.94 8.03 -2.27 -2.87 

2 10.98 10.74 -4.78 -3.60 

3 9.08 8.95 -3.03 -3.16 

                                                            
47

 After we exclude iterations with infinite site values, 884 iterations are used to compute the averages. 
48

 After we exclude iterations with infinite site values, 913 iterations are used to compute the averages. 
49

 After we exclude iterations with infinite site values, 819 iterations are used to compute the averages. 
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A.1.2 True Model-Conditional Logit Model 

Simulation results are shown in the following tables.
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Table A-6: Performance of Conditional Logit, Nested Logit and Latent Class Models When Conditional Logit Model Is the 

True Model 

  True Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.07 -0.07 1.4e-05 1.4e-05 -0.087 -0.070 -0.060 

  ̂ 2.15 2.16 0.014 0.014 1.83 2.16 2.59 

  ̂    ̂ -30.71 -30.79 1.51 1.51 -34.47 -30.74 -26.31 

Nested Logit 

   ̂ -0.07 -0.07 2.2e-05 2.2e-05 -0.089 -0.07 -0.058 

  ̂ 2.15 2.16 0.023 0.023 1.75 2.16 2.69 

  ̂    ̂ -30.71 -30.79 1.52 1.52 -34.46 -30.75 -26.31 

Latent 

Class
50

 

   ̂ -0.07 -0.098 0.014 0.015 -1.53 -0.073 -0.015 

  ̂ 2.15 2.76 6.40 6.77 1.12 2.22 35.24 

  ̂    ̂ -30.71 -31.28 17.28 17.59 -97.39 -30.92 3.20 

 

  

                                                            
50

 Results are from 988 iterations. 
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Table A-7: Welfare Estimates of Conditional Logit, Nested Logit and Latent Models When Conditional Logit Model Is the 

True Model 

 Site 
Site Loss Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 27.00 27.06 -19.41 -19.47 

2 2.57 2.57 -3.67 -3.67 

3 6.96 6.96 -7.63 -7.65 

Nested 

Logit 

1 27.00 27.06 -19.41 -19.47 

2 2.57 2.57 -3.67 -3.67 

3 6.96 6.96 -7.63 -7.65 

Latent 

Class 

1 27.00 27.58
51

 -19.41 -20.15 

2 2.57 2.59 -3.67 -3.59 

3 6.96 6.91 -7.63 -7.55 

 

 

                                                            
51

 After we exclude iterations with infinite site values, 876 iterations are used to compute the averages. 
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A.1.3 True Model-Nested Logit Model 

Simulation results are shown in the following tables. 
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Table A-8: Performance of Conditional Logit, Nested Logit and Latent Class Models When Nested Logit Model Is the True 

Model 

  True Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.07 -0.093 2.6e-05 5.3e-04 -0.11 -0.092 -0.079 

  ̂ 2.15 2.53 0.040 0.18 2.02 2.52 3.33 

  ̂    ̂ -30.71 -27.33 2.71 14.18 -32.63 -27.35 -22.16 

Nested Logit 

   ̂ -0.07 -0.071 2.8e-05 2.9e-05 -0.095 0.070 -0.058 

  ̂ 2.15 2.17 0.026 0.026 1.72 2.16 2.85 

  ̂    ̂ -30.71 -30.76 3.34 3.34 -37.19 -30.77 -25.49 

Latent 

Class
52

 

   ̂ -0.07 -0.11 5.9e-03 3.52 -1.86 -0.10 -0.079 

  ̂ 2.15 3.22 7.8e-03 4.67 -14.16 2.83 26.22 

  ̂    ̂ -30.71 -27.94 3.47 11.14 -33.61 -27.96 -22.37 

 

  

                                                            
52

 Results are from 993 iterations. 
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Table A-9: Welfare Estimates of Conditional Logit, Nested Logit and Latent Models When Nested Logit Model Is the True 

Model 

 Site 
Site Loss Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 8.56 9.38 -9.68 -9.01 

2 16.79 16.70 -15.48 -13.55 

3 4.32 3.74 -5.55 -4.77 

Nested 

Logit 

1 8.56 8.56 -9.68 -9.69 

2 16.79 16.81 -15.48 -15.53 

3 4.32 4.30 -5.55 -5.53 

Latent 

Class 

1 8.56 9.04
53

 -9.68 -9.06 

2 16.79 16.93 -15.48 -14.92 

3 4.32 3.87 -5.55 -3.96 

 

 

  

                                                            
53

 After we exclude iterations with infinite site values, 965 iterations are used to compute the averages. 
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A.2 Seven Sites 

A.2.1 True Model-Latent Class Model 

Simulation results are shown in the following tables.
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Table A-10: Performance of Latent Class Model When It Is the True Model
54

 

 True Mean Var. MSE Min. Median Max. 

   
 ̂  -0.06 -0.12 0.46 0.46 -11.06 -0.062 6.12 

  
 ̂ 0.49 2.22 292.8 295.5 -120.6 0.52 289 

   
 ̂  -0.10 -0.23 0.82 0.84 -9.75 -0.073 0.27 

  
 ̂ 0.21 0.15 14.84 14.82 -58.55 0.33 30.95 

  ̂ 0.7 0.42 0.086 0.16 0.0030 0.5 0.994 

  
 ̂    

 ̂  -8.17 -28.54 1.7e05 1.8e05 -8638 -7.93 3692 

  
 ̂    

 ̂  -2.10 -3.28 15.99 17.37 -13.48 -4.28 12.74 

   ̂ -0.072 -0.097 0.015 0.015 -1.55 -0.073 -0.038 

  ̂ 0.406 0.44 0.74 0.74 -9.91 0.409 11.65 

  ̂    ̂ -6.35 -6.68 56.7 56.7 -197.1 -6.28 47.5 

 

  

                                                            
54

 Results are from 999 iterations. 
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Table A-11: Performance of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model 

  True Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.072 -0.068 6.7e-06 2.3e-05 -0.077 -0.068 -0.061 

  ̂ 0.406 0.408 5.8e-03 5.8e-03 0.125 0.407 0.67 

  ̂    ̂ -6.35 -6.01 1.23 1.34 -9.60 -6.02 -1.72 

Nested 

Logit 

   ̂ -0.072 -0.068 2.3e-05 3.7e-05 -0.088 -0.068 -0.055 

  ̂ 0.406 0.410 6.6e-03 6.6e-03 0.149 0.409 0.68 

  ̂    ̂ -6.35 -6.01 1.23 1.35 -9.61 -6.03 -1.76 
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Table A-12: Estimated Values of Marginal Quality Change of Latent Class Model When It Is the True Model 

 True Mean Var. MSE Min. Median Max. 

Class 1 

-0.93 -4.78 18686 18681 -4256 -0.86 404.9 

-1.02 -0.90 34.3 34.3 -87.19 -0.95 59.48 

-1.45 -12.88 95285 95320 -8115 -1.39 2172 

-0.86 -1.92 2290.1 2289.0 -1415 -0.75 277.3 

-1.17 -1.31 38.03 38.01 -81.52 -1.09 112.9 

-1.53 -4.98 8065 8068 -1644 -1.50 1635 

-1.22 -1.79 102.6 102.8 -142.9 -1.16 218.6 

Class 2 

-0.30 -0.36 0.31 0.31 -1.23 -0.55 2.78 

-0.28 -0.40 0.30 0.32 -1.44 -0.57 2.30 

-0.32 -0.60 0.38 0.46 -2.85 -0.69 0.94 

-0.24 -0.32 0.23 0.24 -1.12 -0.48 2.32 

-0.30 -0.46 0.34 0.36 -1.78 -0.62 1.95 

-0.37 -0.64 0.47 0.54 -3.04 -0.76 1.14 

-0.31 -0.50 0.33 0.36 -2.12 -0.63 1.37 

Average 

-0.74 -0.66 0.41 0.42 -18.28 -0.68 3.76 

-0.80 -0.73 0.037 0.042 -2.43 -0.74 0.45 

-1.11 -1.51 40.63 40.75 -181.5 -1.15 32.17 

-0.67 -0.58 0.10 0.11 -6.46 -0.62 2.40 

-0.90 -0.86 0.047 0.048 -3.87 -0.86 0.076 

-1.18 -1.38 2.25 2.28 -26.12 -1.24 22.53 

-0.95 -0.96 0.085 0.085 -6.34 -0.95 0.73 
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Table A-13: Estimated site values of latent class model when it is the true model 

 True Mean Var. MSE Min. Median Max. 

Class 1
55

 

2.40 2.34 90.52 90.43 -224.1 2.32 58.33 

2.69 2.70 21.44 21.42 -43.02 2.56 68.64 

4.08 5.39 682.4 683.4 -394.9 3.99 241.7 

2.19 2.26 31.5 31.5 -75.54 2.03 59.51 

3.11 3.12 29.5 29.5 -51.65 2.91 83.18 

4.46 5.46 430.2 430.7 -351.6 4.39 227.4 

3.21 3.51 55.56 55.59 -103.3 3.10 101.0 

Class 2
56

 

2.26 2.47 0.41 0.45 -1.66 2.38 10.76 

2.15 2.54 0.35 0.50 -1.79 2.50 10.69 

2.74 3.11 0.79 0.93 -2.35 3.35 10.95 

1.58 2.08 0.41 0.66 -1.41 2.02 10.62 

2.23 2.72 0.40 0.65 -1.90 2.76 11.04 

3.12 3.53 0.75 0.92 -1.96 3.76 11.25 

2.37 2.69 0.49 0.59 -2.02 2.82 10.88 

Average
57

 

2.36 2.38 0.028 0.029 1.14 2.37 3.79 

2.53 2.55 0.021 0.021 1.87 2.54 4.27 

3.68 3.71 0.28 0.28 -2.25 3.67 12.69 

2.00 2.05 0.024 0.027 0.92 2.02 3.50 

2.85 2.84 0.025 0.025 2.10 2.84 4.97 

4.06 4.11 0.21 0.21 -0.42 4.08 12.53 

2.96 2.96 0.041 0.041 1.98 2.95 5.74 

 

  

                                                            
55

 After we exclude iterations with infinite site values, 953 iterations are used to compute the averages. 
56

 After we exclude iterations with infinite site values, 963 iterations are used to compute the averages. 
57

 After we exclude iterations with infinite site values, 917 iterations are used to compute the averages. 
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Table A-14: Welfare Estimates of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model 

 Site 
Site Loss Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 2.36 2.37 -0.74 -0.72 

2 2.53 2.55 -0.80 -0.77 

3 3.68 3.61 -1.11 -1.02 

4 2.00 2.04 -0.67 -0.64 

5 2.85 2.86 -0.90 -0.86 

6 4.06 4.02 -1.18 -1.11 

7 2.96 2.96 -0.95 -0.90 

Nested 

Logit 

1 2.36 2.37 -0.74 -0.72 

2 2.53 2.55 -0.80 -0.77 

3 3.68 3.61 -1.11 -1.02 

4 2.00 2.04 -0.67 -0.64 

5 2.85 2.86 -0.90 -0.86 

6 4.06 4.02 -1.18 -1.11 

7 2.96 2.96 -0.95 -0.90 
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A.2.2 True Model-Conditional Logit Model 

Simulation results are shown in the following tables.  
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Table A-15: Performance of Conditional Logit, Nested Logit and Latent Class Models When Conditional Logit Model Is the 

True Model 

  True Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.06 -0.060 5.4e-06 5.4e-06 -0.069 -0.06 -0.054 

  ̂ 0.49 0.49 5.1e-03 5.1e-03 0.28 0.49 0.71 

  ̂    ̂ -8.17 -8.18 1.44 1.44 -11.62 -8.18 -4.71 

Nested 

Logit 

   ̂ -0.06 -0.060 1.7e-05 1.7e-05 -0.077 -0.060 -0.047 

  ̂ 0.49 0.49 6.5e-03 6.5e-03 0.28 0.49 0.79 

  ̂    ̂ -8.17 -8.18 1.46 1.46 -11.84 -8.18 -4.76 

Latent Class 

   ̂ -0.06 -0.084 0.017 0.017 -1.69 -0.061 -0.024 

  ̂ 0.49 0.60 0.95 0.96 -5.44 0.51 11.85 

  ̂    ̂ -8.17 -8.32 14.86 14.86 -71.36 -8.26 59.98 
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Table A-16: Welfare Estimates of Conditional Logit, Nested Logit and Latent Models When Conditional Logit Model Is the 

True Model 

 Site 
Site Loss Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 3.15 3.16 -1.18 -1.18 

2 3.56 3.55 -1.29 -1.29 

3 3.32 3.33 -1.20 -1.21 

4 1.86 1.87 -0.76 -0.75 

5 2.34 2.34 -0.91 -0.90 

6 4.54 4.55 -1.59 -1.60 

7 3.44 3.43 -1.24 -1.24 

Nested 

Logit 

1 3.15 3.16 -1.18 -1.18 

2 3.56 3.55 -1.29 -1.29 

3 3.32 3.33 -1.20 -1.21 

4 1.86 1.87 -0.76 -0.75 

5 2.34 2.34 -0.91 -0.90 

6 4.54 4.55 -1.59 -1.60 

7 3.44 3.43 -1.24 -1.24 

Latent 

Class 

1 3.15 3.15
58

 -1.18 -1.19 

2 3.56 3.55 -1.29 -1.32 

3 3.32 3.32 -1.20 -1.22 

4 1.86 1.89 -0.76 -0.69 

5 2.34 2.34 -0.91 -0.87 

6 4.54 4.62 -1.59 -1.77 

7 3.44 3.42 -1.24 -1.27 

 

 

                                                            
58 After we exclude iterations with infinite site values, 904 iterations are used to compute the averages. 
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A.2.3 True Model-Nested Logit Model 

Simulation results are shown in the following tables.
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Table A-17: Performance of Conditional Logit, Nested Logit and Latent Class Models When Nested Logit Model Is the True 

Model 

  True Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.06 -0.090 1.1e-05 9.1e-04 -0.10 -0.090 -0.079 

  ̂ 0.49 0.64 4.2e-03 0.026 0.43 0.64 0.84 

  ̂    ̂ -8.17 -7.10 0.47 1.61 -8.97 -7.13 -4.74 

Nested Logit 

   ̂ -0.06 -0.060 1.7e-05 1.7e-05 -0.073 -0.060 -0.057 

  ̂ 0.49 0.49 2.4e-03 2.4e-03 0.33 0.49 0.53 

  ̂    ̂ -8.17 -8.17 0.52 0.52 -10.28 -8.19 -5.40 

Latent 

Class
59

 

   ̂ -0.06 -0.095 1.2e-03 2.5e-03 -0.95 -0.091 -0.079 

  ̂ 0.49 0.72 0.48 0.53 -1.33 0.65 16.07 

  ̂    ̂ -8.17 -7.02 0.55 1.88 -9.50 -7.04 -4.32 

 

  

                                                            
59

 Results are from 999 iterations. 
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Table A-18: Welfare Estimates of Conditional Logit, Nested Logit and Latent Models When Nested Logit Model Is the True 

Model 

 Site 
Site Loss Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 3.67 3.69 -1.60 -1.38 

2 1.84 2.14 -0.88 -0.85 

3 2.61 2.80 -1.17 -1.07 

4 3.59 3.66 -1.55 -1.35 

5 2.34 2.12 -1.12 -0.91 

6 1.66 1.56 -0.82 -0.70 

7 2.23 1.98 -1.02 -0.84 

Nested 

Logit 

1 3.67 3.66 -1.60 -1.60 

2 1.84 1.84 -0.88 -0.88 

3 2.61 2.61 -1.17 -1.17 

4 3.59 3.59 -1.55 -1.56 

5 2.34 2.34 -1.12 -1.12 

6 1.66 1.66 -0.82 -0.82 

7 2.23 2.23 -1.02 -1.01 

Latent 

Class 

1 3.67 3.69
60

 -1.60 -1.47 

2 1.84 2.15 -0.88 -0.77 

3 2.61 2.76 -1.17 -1.07 

4 3.59 3.67 -1.55 -1.45 

5 2.34 2.11 -1.12 -0.85 

6 1.66 1.58 -0.82 -0.62 

7 2.23 1.97 -1.02 -0.79 

 

 

                                                            
60 After we exclude iterations with infinite site values, 986 iterations are used to compute the averages. 



136 

 

A.3 Equal Probability of Membership in Latent Class Model 

Simulation results are shown in the following tables.
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Table A-19: Performance of Latent Class Model When It Is the True Model
61

 

 True Mean Var. MSE Min. Median Max. 

   
 ̂  -0.06 -0.27 0.909 0.953 -8.14 -0.072 3.21 

  
 ̂ 0.49 2.98 789.1 794.5 -186.5 0.58 179.1 

   
 ̂  -0.10 -0.22 0.946 0.961 -8.76 -0.078 2.98 

  
 ̂ 0.21 0.025 8.47 8.50 -46.16 0.22 24.13 

  ̂ 0.50 0.33 0.062 0.091 0.0038 0.32 0.995 

  
 ̂    

 ̂  -8.17 -116.6 9.2e06 9.2e06 -68980 -7.26 22980 

  
 ̂    

 ̂  -2.10 -2.19 23.96 23.95 -22.23 -2.63 25.5 

   ̂ -0.08 -0.14 0.045 0.048 -2.02 -0.082 -0.039 

  ̂ 0.35 0.47 5.52 5.52 -22.26 0.375 17.16 

  ̂    ̂ -5.13 -5.68 1213.6 1212.7 -772.4 -5.00 512.3 

 

  

                                                            
61

 Results are from 992 iterations. 
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Table A-20: Performance of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model 

  True Mean Var. MSE Min. Median Max. 

Conditional 

Logit 

   ̂ -0.08 -0.075 1.3e-05 3.9e-05 -0.086 -0.075 -0.064 

  ̂ 0.35 0.35 0.031 0.031 -0.18 0.35 0.83 

  ̂    ̂ -5.13 -4.62 5.45 5.71 -11.11 -4.61 2.35 

Nested 

Logit 

   ̂ -0.08 -0.076 2.6e-05 4.3e-05 -0.092 -0.076 -0.061 

  ̂ 0.35 0.33 0.035 0.036 -0.30 0.33 0.85 

  ̂    ̂ -5.13 -4.41 6.49 7.01 -13.33 -4.39 3.51 

 

 

Table A-21: Estimated Values of Marginal Quality Change of Latent Class Model When It Is the True Model 

 True Mean Var. MSE Min. Median Max. 

Class 1 

-2.96 -101.1 5.7e06 5.7e06 -65810 -2.52 9373 

-2.83 -5.05 59411 59356 -3165 -2.48 6066 

-2.38 -10.5 2.6e06 2.6e06 -45320 -2.08 22390 

Class 2 

-0.68 -0.80 2.66 2.67 -8.63 -0.89 6.77 

-0.69 -0.77 2.61 2.61 -8.12 -0.88 7.16 

-0.73 -0.62 2.79 2.80 -5.48 -0.86 11.57 

Average 

-1.82 -2.78 777.3 777.5 -737.4 -1.87 309 

-1.76 -1.70 52.4 52.4 -36.08 -1.78 199.7 

-1.56 -1.19 149.8 149.8 -284.8 -1.22 239.6 
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Table A-22: Estimated Site Values of Latent Class Model When It Is the True Model 

 True Mean Var. MSE Min. Median Max. 

Class 1
62

 

11.48 13.83 32094 32062 -1864 10.22 3966 

10.83 7.00 5240.9 5249.6 -1535 9.97 326.7 

8.91 1.18 633723 633058 -20840 8.93 10120 

Class 2
63

 

8.63 9.63 1.06 2.07 6.60 9.71 25.22 

9.06 9.59 0.88 1.16 7.12 9.64 25.11 

9.67 9.67 1.38 1.38 6.27 9.50 26.4 

Average
64

 

10.06 9.88 14.85 14.81 -61.03 10.0 53.7 

9.95 9.68 7.38 7.42 -55.06 9.82 17.57 

9.29 9.28 39.60 39.42 -121.4 9.35 117.9 

 

 

Table A-23: Welfare Estimates of Conditional Logit and Nested Logit Models When Latent Class Model Is the True Model 

 Site 
Site Loss Quality Change 

True Estimate True Estimate 

Conditional 

Logit 

1 10.06 9.94 -1.82 -1.60 

2 9.95 9.81 -1.76 -1.56 

3 9.29 9.32 -1.56 -1.45 

Nested 

Logit 

1 10.06 9.95 -1.82 -1.53 

2 9.95 9.84 -1.76 -1.50 

3 9.29 9.29 -1.56 -1.39 

 

                                                            
62

 After we exclude iterations with infinite site values, 874 iterations are used to compute the averages. 
63

 After we exclude iterations with infinite site values, 953 iterations are used to compute the averages. 
64

 After we exclude iterations with infinite site values, 835 iterations are used to compute the averages. 
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Appendix B  

 

Comparison between Driver License List and Census Data 
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The mail survey sample was drawn from Michigan’s driver license list (from the 

Michigan Office of the Secretary of State). Its demographic statistics are compared to 

2010 census data for age and gender. The cut points in the age are from the census. 

Table B-1: Age and Gender Distribution of Census and Driver License List in Michigan 

for People Age 16 or Older 

Michigan Census Driver 
Census 

Male 

Driver 

Male 

Census 

Female 

Driver 

Female 

Age 16+ 100.00% 100.00% 48.50% 49.78% 51.50% 50.22% 

Age 18+ 96.26% 97.76% 46.57% 48.63% 49.69% 49.13% 

Age 21+ 90.46% 92.78% 43.62% 46.08% 46.84% 46.70% 

Age 62+ 21.54% 22.48% 9.51% 10.20% 12.04% 12.27% 

Age 65+ 17.38% 18.20% 7.50% 8.12% 9.89% 10.08% 

 

Table B-2: Age and Gender Distribution of Census and Driver License List for People 

Age 16 or Older, for the Upper Peninsula and Lower Peninsula  

 
Census Driver 

Census 

Male 

Driver 

Male 

Census 

Female 

Driver 

Female 

Upper Peninsula 

Age 16+ 3.29% 3.09% 1.71% 1.56% 1.59% 1.53% 

Age 18+ 3.20% 3.02% 1.66% 1.52% 1.54% 1.50% 

Age 21+ 3.00% 2.89% 1.55% 1.46% 1.45% 1.43% 

Age 62+ 0.86% 0.89% 0.40% 0.42% 0.46% 0.46% 

Age 65+ 0.71% 0.73% 0.32% 0.34% 0.38% 0.39% 

Lower Peninsula 

Age 16+ 96.71% 96.91% 46.69% 48.22% 49.92% 48.69% 

Age 18+ 93.07% 94.74% 44.92% 47.11% 48.15% 47.63% 

Age 21+ 87.46% 89.89% 42.07% 44.62% 45.39% 45.27% 

Age 62+ 20.68% 21.59% 9.10% 9.78% 11.58% 11.81% 

Age 65+ 16.68% 17.47% 7.17% 7.78% 9.50% 9.69% 

 

 As shown in the tables, the joint distribution of age and gender in the driver 

license list is very close to that of the census data. Therefore, the driver license list 

reasonably represents the general population of adults in the Lower Peninsula.  
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Appendix C  

 

Data Weights 
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The survey weights are constructed in stages, starting with the mail survey sample and 

ending with weights for the web survey respondents.  This section describes each stage of 

the weights. 

 

C.1 Mail Survey Sample Weights 

The mail survey has a weighted random sample, with the purpose of recruiting as many 

participants in beach recreation as possible. Thus, the data need to be weighted back for 

the analysis. Originally, 60% of the sample was drawn from coastal counties and 40% 

from noncoastal counties in the Lower Peninsula. With removal of people who deceased 

or moved, this may not be the case, so the weights are calculated by county and applied 

to the effective sample of 29,613, where the base is the driver license list
65

. 

  

                                                            
65

 Weights are computed as ratios of the percentages in driver license list to the 

percentages in the sample, so that they are normalized and do not distort the original 

sample size. 
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Table C-1: Mail Survey Sample Weights for Counties in the Lower Peninsula 

County Code County Name Sample Weight 

1 Alcona 0.67 

3 Allegan 0.73 

4 Alpena 0.69 

5 Antrim 0.69 

6 Arenac 0.68 

8 Barry 1.12 

9 Bay 0.65 

10 Benzie 0.68 

11 Berrien 0.85 

12 Branch 1.24 

13 Calhoun 1.43 

14 Cass 1.32 

15 Charlevoix 0.67 

16 Cheboygan 0.69 

18 Clare 1.30 

19 Clinton 1.18 

20 Crawford 1.16 

23 Eaton 1.21 

24 Emmet 0.72 

25 Genesee 1.39 

26 Gladwin 1.11 

28 Grand Traverse 0.67 

29 Gratiot 1.10 

30 Hillsdale 1.30 

32 Huron 0.69 

33 Ingham 1.34 

34 Ionia 1.03 

35 Iosco 0.68 

37 Isabella 0.96 

38 Jackson 1.24 

39 Kalamazoo 1.35 

40 Kalkaska 1.40 

41 Kent 1.40 

43 Lake 1.21 

44 Lapeer 1.21 

45 Leelanau 0.71 

46 Lenawee 1.22 

47 Livingston 1.16 

50 Macomb 0.71 

51 Manistee 0.64 

53 Mason 0.76 

54 Mecosta 1.08 
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Table C-1 (cont’d) 

County Code County Name Sample Weight 

56 Midland 1.18 

57 Missaukee 1.06 

58 Monroe 0.73 

59 Montcalm 1.19 

60 Montmorency 1.26 

61 Muskegon 0.72 

62 Newaygo 1.31 

63 Oakland 1.40 

64 Oceana 0.81 

65 Ogemaw 1.22 

67 Osceola 1.41 

68 Oscoda 1.15 

69 Otsego 1.29 

70 Ottawa 0.67 

71 Presque Isle 0.68 

72 Roscommon 1.27 

73 Saginaw 1.36 

74 St. Clair 0.71 

75 St. Joseph 1.49 

76 Sanilac 0.66 

78 Shiawassee 1.16 

79 Tuscola 0.65 

80 Van Buren 0.83 

81 Washtenaw 1.42 

82 Wayne 0.90 

83 Wexford 1.29 
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C.2 Mail Survey Respondent Weights 

A probit response/nonresponse model over the effective sample of 29,613 is run with the 

mail survey sample weights (Table C-1) and with independent variables from the driver’s 

license data (age, gender and counties). Variables that are not statistically significant at 

90% confidence level are not shown. 

Table C-2: Results of a Probit Response/Nonresponse Model for the Mail Survey Using 

Sample Weights 

Variables 

Probit without County 

Dummies 

Probit with County 

Dummies 

Estimates t Statistics Estimates t Statistics 

Age 0.0139*** 31.9 0.0138*** 31.3 

Gender 0.138*** 8.79 0.143*** 9.05 

Constant -0.917*** -38.4 -0.782*** -5.28 

Macomb County (Coastal)   -0.256* 1.73 

Wayne County (Coastal)   -0.412*** -2.80 

Note: *10% significance level; **5% significance level; *** 1% significance level 

 

The results above are suggestive of demographic differences in respondents to the 

mail survey.  To correct for possible response/non-response bias together with the 

sampling scheme, additional weights for the 9,591 eligible mail survey respondents are 

computed according to the joint distribution of age, gender and counties, where the base 

is still the driver license list. There are eight age ranges (16-24, 25-34, 45-54, 55-64, 65-

74, 75-84 and 85+) and four county categories (Macomb, Wayne, other coastal counties 

and noncoastal counties). For the category of age 85+, there are only two county 

categories, coastal and noncoastal counties; otherwise, the number of people in some 

cells will be smaller than 30, which may have negative impacts on the weighting. 
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Table C-3: Joint Age, Gender and County Distribution of Driver License List* 

Gender County 
Age 16-

24 

Age 25-

34 

Age 35-

44 

Age 45-

54 

Age 55-

64 

Age 65-

74 

Age 75-

84 
Age 85+ 

Male Macomb 0.62% 0.71% 0.77% 0.84% 0.65% 0.35% 0.21%  

Male Wayne 1.43% 1.71% 1.81% 1.82% 1.42% 0.71% 0.42%  

Male Other Coastal 1.31% 1.45% 1.45% 1.73% 1.50% 0.91% 0.50%  

Male Coastal        0.73% 

Male Noncoastal 3.98% 4.82% 4.61% 4.99% 4.11% 2.26% 1.21% 0.72% 

Female Macomb 0.59% 0.69% 0.77% 0.85% 0.68% 0.41% 0.29%  

Female Wayne 1.36% 1.54% 1.64% 1.72% 1.46% 0.82% 0.59%  

Female Other Coastal 1.20% 1.31% 1.37% 1.69% 1.51% 0.96% 0.62%  

Female Coastal        1.12% 

Female Others 3.76% 4.40% 4.41% 5.00% 4.28% 2.47% 1.57% 1.15% 

 

Table C-4: Joint Age, Gender and County Distribution of 9,591 Eligible Mail Survey Respondents* 

Gender County 
Age 16-

24 

Age 25-

34 

Age 35-

44 

Age 45-

54 

Age 55-

64 

Age 65-

74 

Age 75-

84 
Age 85+ 

Male Macomb 0.34% 0.69% 0.62% 0.97% 1.06% 0.66% 0.33%  

Male Wayne 0.46% 0.74% 0.82% 1.25% 1.45% 1.06% 0.47%  

Male Other Coastal 0.82% 1.26% 1.55% 2.77% 2.93% 2.29% 1.15%  

Male Coastal        0.50% 

Male Noncoastal 1.42% 2.37% 2.43% 4.08% 4.29% 2.76% 1.23% 0.38% 

Female Macomb 0.47% 0.78% 0.90% 1.70% 1.38% 0.65% 0.50%  

Female Wayne 0.71% 1.14% 1.19% 2.02% 1.91% 1.27% 0.77%  

Female Other Coastal 0.94% 1.65% 2.07% 3.29% 3.54% 2.25% 1.24%  

Female Coastal        0.90% 

Female Others 1.74% 3.24% 3.45% 5.89% 5.60% 3.43% 1.65% 0.57% 

 

*The distributions use the mail survey sample weights (Table C-1).  
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Table C-5: Mail Survey Respondent Weights
66

 

Gender County 
Age 16-

24 

Age 25-

34 

Age 35-

44 

Age 45-

54 

Age 55-

64 

Age 65-

74 

Age 75-

84 
Age 85+ 

Male Macomb 1.79 1.04 1.25 0.86 0.62 0.54 0.62  

Male Wayne 3.11 2.31 2.20 1.46 0.98 0.67 0.90  

Male Other Coastal 1.59 1.15 0.93 0.62 0.51 0.40 0.44  

Male Coastal        1.47 

Male Noncoastal 2.81 2.04 1.90 1.22 0.96 0.82 0.99 1.91 

Female Macomb 1.26 0.88 0.85 0.50 0.50 0.64 0.58  

Female Wayne 1.92 1.36 1.38 0.85 0.77 0.64 0.76  

Female Other Coastal 1.28 0.79 0.66 0.51 0.43 0.42 0.50  

Female Coastal        1.25 

Female Others 2.16 1.36 1.28 0.85 0.76 0.72 0.96 2.01 

 

  

                                                            
66

 They are normalized to the size of eligible mail survey respondents. 
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C.3 Web Survey Respondent Weights 

Similarly, before calculating the weights for web survey data, a probit 

response/nonresponse model is run over the web sample of 5,476.  The dependent 

variable is response/nonresponse to the web survey, and the independent variables are 

gender, age, race, education and employment, which were reported in the mail survey. 

The analysis is performed using the mail survey respondent weights (Table C-5). 

Variables that are not statistically significant at 90% confidence level are not shown. 

Table C-6: Results of a Probit Response/Nonresponse Model for the Web Survey Using 

Mail Survey Respondent Weights 

Variables Estimates t Statistics 

Age 0.00476*** 2.72 

White 0.381*** 2.84 

Asian 0.564** 2.34 

Some Schooling 4.54*** 15.7 

High School or Equivalent 4.73*** 19.9 

Associate’s or Technical Degree 4.90*** 20.5 

College Degree 5.19*** 21.8 

Advanced Degree 5.16*** 21.7 

College or Equivalent 0.323*** 7.07 

Graduate Degree 0.450*** 7.33 

Constant -5.52*** -12.5 

Benzie County (Coastal) 1.03** 2.49 

Hillsdale County (Noncoastal) 0.842* 1.95 

Isabella County (Noncoastal) 0.704* 1.76 

Leelanau County (Coastal) 0.797* 1.90 

Roscommon (Noncoastal) 0.647* 1.85 

Note: *10% significance level; **5% significance level; *** 1% significance level 
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Table C-7: Results of a Probit Response/Nonresponse Model for the Web Survey 

Using Mail Survey Respondent Weights With Fewer Variables 

 

Variable Estimates t Statistics 

Age 16-24 0.401*** 3.89 

Age 25-34 0.338*** 3.57 

Age 35-44 0.438*** 4.70 

Age 45-54 0.561*** 6.38 

Age 55-64 0.751*** 8.47 

Age 65-74 0.587*** 6.17 

White 0.289*** 3.96 

College degree 0.413*** 9.81 

Significant counties 0.446*** 3.98 

Constant -0.712*** -6.65 

Note: *10% significance level; **5% significance level; *** 1% significance level 

If many factors are taken into account to correct the response/nonresponse bias, 

the number of people in each elementary cell will be small and the weight will be big, 

which could inflate variances. Therefore, to reduce the number of factors, we run the 

following regression. All variables that are not statistically significant in previous 

regression are dropped. Age dummy variables replace the continuous age variable for the 

purpose of weighting. There are only 56 Asians in the respondents, so the corresponding 

variable is not included. For the education, the effects of having a college degree and an 

advanced degree are very similar, so a new dummy variable is created indicating whether 

a person has a college degree or not. All county dummies collapse into one where it 

equals one if a person lives in the five statistically significant counties in Table C-6. 

Hence, four factors, age, county, race and education, have significant effects on 

the weights for 2,544 eligible web survey respondents. Since the number of people can be 

quite small in some categories, the approach of raking weights is used, rather than 

comparison of joint distributions. The computation is implemented in SAS raking 
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macro
67

, and the mail survey respondent weights apply to both the web survey sample 

and eligible respondents. Only people with no missing data in race and education enter 

the computation
68

. 

Table C-8: Raking Weights for Web Survey Respondents with No Missing 

Data
69

 (Non-Normalized
70

) 

Age Category Significant County College Degree White Web Weights 

Age 16-24 0 0 0 1.60 

Age 16-24 0 0 1 1.25 

Age 16-24 0 1 0 1.15 

Age 16-24 0 1 1 0.89 

Age 16-24 1 0 1 0.90 

Age 16-24 1 1 1 0.65 

Age 25-34 0 0 0 1.60 

Age 25-34 0 0 1 1.25 

Age 25-34 0 1 0 1.15 

Age 25-34 0 1 1 0.89 

Age 25-34 1 0 0 1.16 

Age 25-34 1 0 1 0.91 

Age 25-34 1 1 1 0.65 

Age 35-44 0 0 0 1.58 

Age 35-44 0 0 1 1.23 

Age 35-44 0 1 0 1.13 

Age 35-44 0 1 1 0.88 

Age 35-44 1 0 1 0.89 

Age 35-44 1 1 0 0.82 

Age 35-44 1 1 1 0.64 

 

                                                            
67

 It is developed by David Izrael, Abt Associates, June 1999. 
68

 Missing data could be treated as a separate category; however, the percentage of 

missing data is too low to make the raking weights converge. 
69

 Outcomes of the macro are individual-specific when input data has weights, in our 

case, the mail survey respondent weights. If the outcomes are divided by the input 

weights, the results are very similar among people in the same age, county, race and 

education category. Differences come from rounding errors. Therefore, we take averages 

of those results in the finest category and treat them as the raking weights for web survey 

respondents. 
70

 The original outcomes are normalized to the total number of people with no missing 

data. When we divide them by the input weights, the normalization no long holds. 
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Table C-8 (cont’d) 

Age Category Significant County College Degree White Web Weights 

Age 45-54 0 0 0 1.44 

Age 45-54 0 0 1 1.12 

Age 45-54 0 1 0 1.03 

Age 45-54 0 1 1 0.80 

Age 45-54 1 0 1 0.81 

Age 45-54 1 1 1 0.58 

Age 55-64 0 0 0 1.33 

Age 55-64 0 0 1 1.03 

Age 55-64 0 1 0 0.95 

Age 55-64 0 1 1 0.74 

Age 55-64 1 0 1 0.75 

Age 55-64 1 1 1 0.54 

Age 65-74 0 0 0 1.45 

Age 65-74 0 0 1 1.13 

Age 65-74 0 1 0 1.04 

Age 65-74 0 1 1 0.81 

Age 65-74 1 0 0 1.05 

Age 65-74 1 0 1 0.82 

Age 65-74 1 1 1 0.59 

Age 75+ 0 0 0 3.26 

Age 75+ 0 0 1 2.53 

Age 75+ 0 1 0 2.33 

Age 75+ 0 1 1 1.81 

Age 75+ 1 0 1 1.84 

Age 75+ 1 1 1 1.32 

 

For people with missing data in race, we match them according to their age, 

county and education in Table C-8, and use weighted web weights. For example, a person 

has Age 16-24 in the age category, 0 in county and 0 in college. Under these criteria, we 

have 12 non-White people and 106 White people in Table C-8, with a weight of 1.60 and 

1.25 respectively. Then the weight of this person is calculated as:  
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The same procedure is applied to people with missing data in education and in both race 

and education.  

Table C-9: Raking Weights for Web Survey Respondents with Missing Data 

Age Category 
Significant 

County 
College Degree White Web Weights 

Age 16-24 0  0 1.51 

Age 16-24 0  1 1.15 

Age 16-24 0 0  1.28 

Age 16-24 0 1  0.91 

Age 25-34 0  1 1.04 

Age 25-34 0 0  1.29 

Age 25-34 0 1  0.93 

Age 35-44 0  1 1.02 

Age 35-44 0 0  1.26 

Age 35-44 0 1  0.90 

Age 45-54 0  0 1.21 

Age 45-54 0  1 0.99 

Age 45-54 0 0  1.14 

Age 45-54 0 1  0.82 

Age 45-54 0   1.00 

Age 55-64 0  1 0.91 

Age 55-64 1  1 0.65 

Age 55-64 0 0  1.05 

Age 55-64 0 1  0.75 

Age 55-64 0   0.92 

Age 65-74 0  1 0.96 

Age 65-74 1  1 0.79 

Age 65-74 0 0  1.14 

Age 65-74 0 1  0.81 

Age 65-74 0   0.97 

Age 75+ 0  1 2.19 

Age 75+ 0 1  1.83 

 

When all 2,544 eligible web respondents have their web survey weights, we 

multiply them with corresponding mail survey weights, and normalize the products to the 

size of 2,544, which gives us the final weights for eligible web survey respondents. 
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Table C-10: Distribution of Normalized Final Weights for Web Respondents 

Final Weight Count Percent 

0.2 to 0.3 5 0.20% 

0.3 to 0.4 158 6.21% 

0.4 to 0.5 256 10.06% 

0.5 to 0.6 425 16.71% 

0.6 to 0.7 179 7.04% 

0.7 to 0.8 302 11.87% 

0.8 to 0.9 109 4.28% 

0.9 to 1 267 10.50% 

1 to 1.5 389 15.29% 

1.5 to 2 259 10.18% 

2 to 3 156 6.13% 

3 to 4 35 1.38% 

4 to 5 3 0.12% 

5 to 6 1 0.04% 

 

 The big range between individual weights may distort the analysis and inflate the 

variation. Therefore, we use three censoring rules to trim the weights. The first is ad hoc, 

keeping the weights between 0.3 and 3; the second range is 0.4 to 2.3, where 163 people 

are censored on both sides; the third range is 0.37 to 2.45, where approximately 5% of 

people get censored. Trimmed weights are then normalized to the size of 2,544. The three 

new sets of weights, as well as the original weights, are applied to eligible web 

respondents to compare the joint distribution on age, county, education and race with the 

web sample with mail survey respondent weights
71

. Although some discrepancies exist 

because of missing data, especially for old people, the differences are very small, so all 

four types of weights can be used in data analysis to correct for possible sampling and 

nonresponse bias. The analyses in chapters 2 and 3 use the non-censored weights. 

                                                            
71

 There are 87 possible combinations of values in age, county, education and race for 

the web sample, and 72 for web respondents, because people in some categories did not 

respond. All missing categories take about 0.6% of the sample, so this is negligible.  
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Appendix D  

 

Great Lakes Beach Recreation Participation 
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D.1 Participation in Various Activities 

The summary of the mail survey data on leisure activities is presented below.  The items 

are presented in the same order that they appeared in the mail survey.  The Great Lakes 

beach question is show in bold in the bottom one-third of the table. 
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Table D-1: Participation in Leisure Activities 

 Participation Rate 

Participation Rate 

(Mail Survey 

Respondent 

Weights) 

Eat Dinner at a Restaurant 97.18% 97.26% 

Go for a Walk or a Hike 87.50% 88.24% 

Attend or Participate in Outdoor Sports 65.59% 68.17% 

Swim at a Pool, Lake or River 64.27% 68.70% 

Go to a Movie in a Theater 66.95% 70.80% 

Attend a Music Concert 48.50% 49.69% 

Attend a Cultural or Arts Festival/Fair 59.91% 59.35% 

Visit County, City, or Township Park 73.72% 74.54% 

Visit State Park or State Campground 52.09% 53.76% 

Visit State Forest or State Game Area 25.04% 25.41% 

Visit National Park or National Forest 20.44% 19.89% 

Camping 30.75% 33.56% 

Hunting 15.84% 16.77% 

Fishing 32.30% 34.31% 

Boating 45.96% 47.93% 

Picnicking at Public Parks 45.79% 46.30% 

Visiting a Beach 64.20% 65.34% 

Driving an All-Terrain Vehicle (ATV) 14.20% 15.81% 

Snowmobiling 6.82% 7.71% 

Skiing or Snowboarding 11.01% 12.73% 

Visiting a Beach on the Great Lakes 59.14% 58.01% 

Fishing on the Great Lakes 14.39% 14.22% 

Boating on the Great Lakes 21.86% 21.08% 

Read Books 77.48% 75.29% 

Indoor/Outdoor Exercise 82.79% 83.39% 

Watch Television 96.91% 96.58% 

Use the Internet 83.56% 85.82% 

Play Video Games 21.24% 26.31% 

Play a Musical Instrument 10.56% 11.92% 

Volunteer 37.22% 35.53% 

 

 The three Great Lakes activities have slightly lower participation rates when the 

weights are applied, which should be the case since coastal counties were oversampled. 
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D.2 Participation in Great Lakes Beach Recreation 

To investigate what factors influence participation in beach recreation, a probit model is 

used with mail survey respondent weights. The dependent variable is a binary variable of 

visiting a Great Lakes beach or not, and the independent variables include demographics 

and county dummies. Variables that are not statistically significant at 90% confidence 

level are not shown below. 

The results illustrate that these kinds of people are more likely to visit Great 

Lakes beaches: young people and couples with children age 6 to 17; these kinds of people 

are less likely to: African American, people unemployed and couples with children age 

under 5. Although most of the education and income categories have negative effects, 

people with higher education and income are more likely to visit Great Lakes beaches. 

Also, as expected, people living in coastal counties are more likely to visit Great Lakes 

beaches than people from noncoastal counties. The only exception is Wayne County, a 

highly urbanized county. 
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Table D-2: Factors Influencing Participation in Great Lakes Beach Visitation 

Variable Estimates t Statistics 

Age -0.00849*** -5.44 

Black/African American -0.597*** -4.56 

Some Schooling -0.430*** -3.28 

High School or Equivalent -0.328*** -5.76 

Income: Less than $25,000 -0.432*** -6.34 

Income: $25,000 to $49,999 -0.320*** -5.47 

Income: $50,000 to $99,999 -0.0859* -1.65 

Unemployment -0.227* -1.66 

Household: Couple with Children Age 5 and Under -0.162* -1.66 

Household: Couple with Children Age 6 to 17 0.138* 1.89 

Constant 1.21*** 3.76 

Arenac County (Coastal) 1.10** 2.42 

Barry County (Noncoastal) -0.5978 -1.79 

Benzie County (Coastal) 0.833** 2.26 

Berrien County (Coastal) 0.674** 2.42 

Cheboygan County (Coastal) 0.832* 1.95 

Emmet County (Coastal) 0.824** 2.45 

Grand Traverse County (Coastal) 0.543* 1.91 

Iosco County (Coastal) 0.617* 1.72 

Jackson County (Noncoastal) -0.485* -1.67 

Lenawee County (Noncoastal) -0.752** -2.38 

Manistee County (Coastal) 1.13*** 3.39 

Muskegon County (Coastal) 0.75*** 2.68 

Oakland County (Noncoastal) -0.503* -1.93 

Oceana County (Coastal) 1.11*** 2.91 

Ottawa County (Coastal) 0.654** 2.4 

Saginaw County (Noncoastal) -0.493* -1.77 

Washtenaw County (Noncoastal) -0.52* -1.93 

Wayne County (Coastal) -0.543** -2.1 

Note: *10% significance level; **5% significance level; *** 1% significance level 
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Appendix E  

 

Model Sensitivity in Chapter 3 
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When the regional dummy variables are added to the traditional model with main 

destination, the estimated parameters on travel cost and the number of beaches in the 

aggregated site do not change much, so these two variables are robust to these dummies. 

The estimated length parameter decreases about 43.8%, and the estimated temperature 

parameter turns positive with a 122.6% increase. Both variables are sensitive to the 

regional dummies, which demonstrate that beach quality is correlated with regional 

geographic characteristics.  

Table E-1: Parameter Estimates of Main Destination Model with and without Regional 

Dummies 

Variables 
No Regional Dummies Regional Dummies 

Estimates t Statistics Estimates t Statistics 

Travel Cost -0.00327*** -6.47 -0.00381*** -6.67 

Length 0.283* 1.90 0.159** 1.96 

Temperature -0.0602 0.658 0.0136 0.679 

# of Beaches 0.0287** 2.25 0.0272** 2.32 

LP Northeast - - -0.853*** -2.83 

LP Mid-East - - -1.67*** -3.66 

LP Southeast - - -2.28*** -4.23 

LP Northwest - - -0.55* -1.84 

LP Mid-West - - -0.566 -1.54 

LP Southwest - - -1.45*** -3.25 

UP Lake Michigan - - -0.941** -2.21 

Note: *10% significance level; **5% significance level; *** 1% significance level 

 

However, when regional dummy variables are added to multiple sites, they will 

appear in three different places: in the nest of visiting one site and in both primary and 

secondary sites in the nest of visiting two sites.  When any model with this formulation 

was attempted, the model estimation would not converge. Thus, we have dropped these 

regional dummies from the model in chapter 3, and their effects are manifested in part 

through the estimates for the length and temperature variables.  
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