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ABSTRACT
ON THE CONVERGENCE OF THE

GAUSS-GALERKIN METHOD FOR THE DENSITY
OF SOME MARKOV PROCESSES

By
Ali Haj Jafar

This dissertation concerns the convergence of the
Gauss-Galerkin method for some Markov processes. This
method provides approximations to p(t,x), the solution
of the Fokker-Planck equation gt = -gifap)-+%-;i;(b2p)
corresponding to the stochastic differential equation
ax(t) = a(X(t),t)dt+Db(X(t),t)dw(t) defined on (r,,r,)

with O ( ry <r, <= The approximation is in the sense

of approximation of probability measures

We first show that when the coefficients of the
stochastic differential equation are polynomials, the
resulting Gauss-Galerkin system is equivalent to the Hankel
system of moments which is closed in an appropriate manner.
We then compare the Gauss-Christoffel approximations to
p(t,x) with the Gauss-Galerkin approximations and derive

upper kounds for the inherent errors.



Ali Haj Jafar

The Gauss-Galerkin measures, which are atomic
in nature, form the basis for numerical integration
quadrature formulas. We show that under suitable
conditions on the coefficients of the stochastic differential
equation, these integration formulas converge to the true
value of the integral. The proofs rely on the use of
differential inequalities, Helly's theorems on weak
compactness of measures and the spectral theory of linear

operators.

Numerical examples are presented that illustrate
close agreements between the numerical and theoretical

results.
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CHAPTER O

INTRODUCTION

0.1 Statement of Problem and Its Motivation

We are concerned in this dissertation with numerical
soluticns of the probability law of a class of stochastic

differential equations of the type
(0.1.1) dX(t) = a(X(t),t)dt+Db(X(t),t)aw(t)

where X 1is the spatial coordinate in one-dimension ,
t 1is time, W(t) 1is the standard Brownian motion, and
the functions a(x,t) and b(x,t) are known as the
"drift" and "diffusion" coefficients respectively. The
stated equation models many problems in the physical,

engineering and biological sciences.

Since W(t) .is a random variable, the solution X(t)
of the above equation for t > O subject to given
initial condition X(0), whether random or deterministic,
is a random process. Under suitable assumptions on
a(x,t) and b(x,t), the existence and uniqueness of

the above initial value problem for X(t) 1is known.



Furthermore, under somewhat more stringent conditions,
a probability density function p(t,x) for the process
X(t) can be shown to exist and satisfies the deterministic

"Fokker-Planck" equation

3p(t,x) _ 3d(a(x,t)p) 1 az(bz(xgt)p)
(0.1.2) = - +
ot dx 2 3 2
X
(0.1.3) p(0,x) = given
where x may lie in the infinite interval (-=,®), the

semi-infinite interval [0,®) or a finite interval [rl,rZ].
It is clear that additional appropriate boundary conditions

on a, b and/or p must be posed.

D. Dawson in [6] suggested a Galerkin type method
for approximating p(t,x) by atomic measures. This
method transforms the problem to one for a system of
nonlinear ordinary differential equations for the "nodes"
and "weights" of the atomic measures. The atomic measures
provide approximations to the Gauss-Christoffel measures
of the exact p(t,x). This method has keen referred to
as the Gauss-Galerkin method and the atomic measures the

Gauss-Galerkin measures.

Our aim in this dissertation is to make a detailed
analysis of the Gauss-Galerkin method above. We’shall
establish some convergence theorems, in both the finite

interval and semi-infinite interval case, for the



convergence of the Gauss-Galerkin measures to p(t,x),
as n =+ = (n = number of atoms), when the coefficients
a(x,t) and b(x,t) satisfy appropriate continuity and

growth conditions.

The proofs of these theorems require techniques
from both analysis and prckability theory. Specifically,
the proof involves the use of differential inequalities,
Helley's theorems on the weak ccmpactness of probability
measures, the problem cf moment, criteria for unique
determinism of a measure by its moments, and the eigen-
function expansion of a second order differential

operator.

A number of examples are presented and, whenever
possible, compared with the exact solutions. We have
also included examples which do not satisfy the assumptions
of the convergence theorems but for which the Gauss-

Galerkin method seems to work well.

A Galerkin method based on fixed nodes is also
developed and illustrated by applying it to an example.
Unfortunately we do not have a convergence theorem for
this method at this time.

.

0.2 Organization of the Dissertation

This dissertation is organized as follows. Chapter I

contains background materials from the probability theory.
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We begin with a review of the notions of random variables,
distriktution functions and conditional expectations and
probability. We then proceed to a discussion of stochastic
processes including the Markov processes and Brownian
motions. Diffusion processes and their governing back-
ward and forward equations are then discussed. These are
followed by stochastic integrals and stochastic differential
equations, and, finally, we state several theorems on the
existence and uniqueness of solutions of stochastic

differential equations of the type we wish to consider.

In Chapter II we develop the Gauss-Galerkin method
by first presenting the weak form of the Fokker-Planck
equation. We then review the Gauss-Christoffel approximations
to the probability measures. This consideration leads to
the development of the Gauss-Galerkin equations. An
alternative formulation of the numerical problem in terms
of the moments for the case where the Fokker-Planck equation
involves polynomial coefficients leading to the so-called
Hankel system is also presented. We conclude Chapter II
with a discussion of the inherent errors in the Gauss-

Galerkin approximations.

The main convergence theorems of the Gauss-Galerkin
method are presented in Chapter III for the cases of a
semi-infinite interval and of a finite interval. We
begin Chapter III with a discussion of the convergence

of the Gauss-Christoffel approximations. This is followed



by a detailed formulation of the assumptions involved

in the Fokker-Planck equation and the boundary conditions.
After some differential inequalities are presented, we

state two Helly's theorems dealing with the weak compactness
of probability measures. The proofs of the main convergence
theorems are preceded immediately by a number of preparatory

lemmas.

Several numerical examples are presented in Chapter 1IV.
The numerical solutions, whenever possible, are compared

with known exact solutions.

Appendix A contains the numerical solution of a
nonlinear stochastic equation which is not of the type
of equations studied in this dissertation. The numerical
results for this problem, which was previously studied
in [5] are encouraging enocugh and suggest that the Gauss-
Galerkin method may indeed converge for much wider classes

of stochastic equations.

Appendix B contains the Galerkin method based on
fixed nodes as mentioned before and includes numerical

results for the problem treated in Appendix A.



CHAPTER 1

PRELIMINARIES
The following preliminaries are taken from the
books on stochastic differential equations by Arnold (1]

and Friedman [11].

1.1 Events and Random Variables: Probability theory

deals with mathematical models of trials whose outcomes
depend on chance. We group together the possible outcomes
(the elementary events) in a set (Q with typical
element w € (. An observable event A 1is a subset

of Q: however, not every subset of ( 1is in general
an observable or interesting event. Let I denote the
set of observable events for a single trial. Of course,
Y must include Q, @ and for every event A, its
complement A. Furthermore, given two events A and

B in I, the union A U B and the intersection A N B
also belong to Z; thus, I 1is an algebra of events.
An algebra I of events is called a sigma algebra if

- -]
U A_ ¢ T
n=1 o



-

when An € Z for n > 1. The elements of I are called
measurable sets and the pair (Q,I) is called a

measurable space.

Let & denote a family of subsets of Q. There
exists in & a smallest sigma algebra Z(&) that
contains all sets belonging to &. This ZI(&4) 1is called
the sigma algebra (o-algebra) generated by d. Let
(Q,2) and (Q’,L’) denote measurable spaces. A
mapping X :Q 2 Q’ is said to be (I -ZI'’)-measurable
(and is called an (’-valued random variable on (Q,I))
if the preimage of measurable sets in Q' are measurable

sets in Q, that is, for A’ € ¢’
(w:X(w) €A’} =[x enr’l =xTt@a’) ez

If q' is the d-dimensional Euclidean space RY with
the usual distance function, we shall always choose as
the sigma algebra T’ of events the sigma algebra Bd
of Borel sets in Rd generated by the d-dimensional

intervals.

1.2 Probability and Distribution Functions: Let (Q,%)

denote a measurable space. A set function P defined
on I 1is called a probability measure or simply a

probability if

a) O P(A) 1 for all A €,



b) P(g) = O,

c) P(U A) = 2 P(A

if A € = for all
n=1 n=1 n

)
n
n>1l, and A n A = ¢ (n ¥ m) (sigma-additivity)
d) P(Q) = 1.
The triple (G,I,P) 1is called a probability space.

Now, suppose that (Q,I,P) is a probability space,
that (Q’,T’) 1is a measurable space, and that X is
a random variable on (Q,I) with values in Q'. X

induces the probability P on the measurable space

X
of the images by

P, (A" = P(xH(A’) = Plu:X(2) €A’} = PIX € A']

for all A’ € £’. The function Py is called the

distribution measure, or briefly the distribution of X.

For an Rd-valued random variable, the distribution PX

is uniquely defined on Bd by its distribution function

F(x) = F(xX],...0%5) = Pluw 1 Xy (0) < %900 X g (w) < x4l =

P[X < x]

It is called the joint distributicn function of the d

scalar random variables xl""'xd which are the components

of X.
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1.3 Conditional Expectation and Conditional Probabilities:

For a real-valued random variable X, defined on (G,Z,P)

we define its expectation &X to be

dx = [ X(w)dP(w) .
G

For Rd-valued random variables, we define expectation

componentwise. For p > 1, we define the space

LP(Q,E,P) = (X:X 1is an Rd-valued random variable ,
8|x|P < = where |.| is the usual

Euclidean norm !

Let X € Ll(Q,E,P) be an Rd-valued random variable

and let ¥ € I be a sub o-algebra of I. The probability
space (G,¥,P) is a ¢€oarsening of the original one and
X 1is, in general, no longer (3<-Bd) measurable
(F-measurable) . We seek now an F-measurable coarsening

Y of X that assumes, on the average, the same values

as X, that is, an integrable random variable Y such

that Y is F-measurable and

J vap = [ Xdp for all C € ¥,
c C

According to the Radon-Nikodym theorem, there exists
exactly one such Y, almost surely (a.s.) unique. It
is called the conditional expectation of X given the

c-algebra ¥. We write
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Y=48X|%.

The conditional probability P(A [3) of an event A

given the c-algebra ¥ <€ ¥ 1is defined by

PQA|%) = &(I, | %) .

1.4 Stochastic Processes: Let I denote an arbitrary

nonempty index set and let (Q,Z,P) denote a probability
space. A family ({X(t,.);t € I} of R9-valued random
variables on (G,Z,P) 1is called a stochastic process
with index set I and state space Rd. Sometimes we
write Xt(-) instead of X(t,*). If (X(t,°):t € [tO,T]}
is a stochastic process, then for every fixed w € Q,
X.(w) is an Rd-valued function defined on [tO,T]
(sample functions). We wish to include the possibilities
t0 = -o or T = o in which case we write [to,w),
(==,T] or (-=,=).

The finite dimensional distribution functions of

the stochastic process {X(t,:);t € [toT]} are given by

PIX(t)) < %] = Plw:X (ty,0) < %49, Xy (g ,0)

< x12,....Xd(t1.w) < xld} = Ptl(xl)

p[x(tl) < %y X(tz) < x2] = Ftl,tz(xl'xz)

.

P[X(tl) < xl,...,X(tn) g.xn] = Ftl,...,tn(xl""'xn)
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where ti belongs to [to,T] and x, = (xil'xiz""'xid)
belong to Rd (the symbol < applies to the components),

and n > 1.

This system of distribution functions satisfies

the following two conditions:

a) Condition of symmetry: 1If {il....,in} is
a permutation of the numbers 1,...,n, then for

>1,

L

arbitrary instants ti ,...,ti and for arbitrary n
1 n

F (. ,.00,%x. )
by ety 11' "5

= F (x "oo)x )o
tise..0t 1 n
i, n n 1l n

b) Condition of compatibility: For m < n and
arbltrary tml' * o o 'tn 6 [tOIT] ”

F (X ,...,X 'Q'...,Q)
tlio-.'tm;tmlpooo;tn 1 m

= Ftl,...,tm(xl""'xm)‘

Conversely by Kolmogorov's fundamental theorem, for
every family of distribution functions that satisfies
the symmetry and compatibility conditions, there exists
a probability space (Q,Z,P) and a stochastic process
(X(t,*):t € [tO,T]} defined on it that posesses the
given distribution as its finite-dimensional distributions.
For (X(t,*);:t ¢ [to,T]} we shall write briefly X

t
or X(t), wusually omitting the variable w. Two
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stochastic process X (t) and X(t) defined on the same
probability space are said to ke (stochastically)
equivalent if, for every t € [t ,T], we have X(t) = X(t)
with probability 1. Then X(t) 1is called a version of
X(t) and vice versa. The finite dimensional distributions
of X(t) and X(t) coincide. However, since the set

Né for exceptional values of w for which X(t) # X(t)
depends in general on t, the sample functions of

equivalent processes can have quite different analytical

properties.

1.5 Markov Processes: A stochastic process

[X(t):t € [to,T]} defined on the probability space (Q,Z,P)
with index set [tO,T] c [0,«®) and with state space r9
is called a Markov Process if the following so-called

Markov Property is satisfied: For to s LT and

all B € 39 (the Borel sets in Rd), the equation

(1.5.1)  P(X(t) € B|Z(lty,s])) = P(X(t) € B |X)
holds with probability 1.

Here P(X(t) € B \XS) is P(X(t) € B|%) where 7
is the o0-algebra generated by XS which is the smallest
c-algebra w.r.t. which xs is measurable, and Z([to,s])

is the smallest o-algebra generated by X(t), tp Lt < s,

For given Markov Process X(t), equation (1.5.1)
is equivalent to saying that "the past and future are

statistically independent when the present is known".
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1.6 Transition Probability and Density: Let X(t),

ty £ t £ T, denote a Markov Process. The conditional
probakility P(X(t) € B |Xs) determines a function

P(s,x,t,B) of four arguments s,t € [to,T], X € Rd and

B € Bd. It has the following properties: (Arnold [1])

(1.6.1) For fixed s ¢ t and B ¢ Bd, we have

P(s,X ,t,B) = P(X, €B \xs) with probability 1.

Here P(s,xs,t,B) is the conditional distribution

(Arnold [1], p. 29)

(1.6.2) P(s,x,t,+) 1is a probability on 54 for

fixed s < t and x € B9,

(1.6.3) P(s,-,t,B) is 59 _measurable for fixed s <t
and B ¢ Bd.

(1.6.4) For ty{sugtgrT and B € Gd and for
d d

all x €R with the possible exception of a set N C R~
such that P[Xs € N] = 0, we have the so-called Chapman-
Kolmogorov equation

(1.6.5) P(s,x,t,B) = [ 4 P(u,y,t,B)P(s,x,u,dy).
R

It is always possible to choose P(s,x,t,B) in such a

way that for all s € [t,,T] and B € Gd, we have
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l1 for x € B
(1.6.6) P(s,x,s,B) = IB(X) =
O for x £B

Definition 1.6.1: A function P(s,x,t,B) with

the properties (1.6.2-6) is called a transition probability.
If X(t) 1is a Markov Process and P(s,x,t,B) is a
transition probability so that (1.6.1) is also satisfied,
then P(s,x,t,B) 1is called a transition probability of

the Markov Process X(t). We use the notation

P(s,x,t,B) = P(X(t) € B |X_ = x) which is the probability
that the observed process will be in the set B at

time t if at time s, where s ( t, it was in the

state x.

Definition 1.6.2: If p(s,x,t,y) 1is a non-negative

function that is measurable with respect to (w.r.t.) y

and whose integral is 1 and for all s,t € [to,T],

d

where s < t, all x € R and all B € Bd, we have

P(s,x,t,B) = [ p(s,x,t,y)dy ,

B

then we call pl(s,x,t,y) a density for P(s,x,t,B)

Remark 1.6.3: According to Definition 1.6.2

equation (1.6.5) reduces to

p(s.x,t,y) = [  p(s,x,u,2)p(u,z,t,y)dz.
R
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Definition 1.6.4: A Markov Process X (t),

t € [to,T], is said to be homogeneous (w.r.t. time) if
its transition probability P(s,x,t,B) 1is stationary,

that is, if the condition
P(s+u,x,t+u,B) = P(s,x,t,B)

is identically satisfied for t, (s {t (T and
to K stut+u {T. In this case the transition
probability is then a function only of x, t-s and B.

Hence we can write it in the form

P(t-S,X,B) = P(S'XOtIB)' O_(..t-ng-to.

Therefore, P(t,x,B) is the probability of transition

from x to B in time t, regardless cf the actual

position of the interval of length t on the time axis.

Remark 1.6.5: Every Markov Process X(t) can,

by assuming time to be a state component, be transferred
into a homogeneous Markov Process Y(t) = (t,X(t))

with state space [to,T] de. The transition probability
Q(t,y,B) for Y (t) for the special sets B = C xD

is then given by
Q(t,y,C xD) = Q(t,(s,x),C xD) = P(s,x,s-+t,D)Ic(s-+t)

This uniquely determines the probability Q(t,v,°*) on

the entire set Bl([to,T]) x@d.
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As an example of a Markov Process, we cite the

Brownian motion.

1.7 The Wiener Process .(Brownian motion): A Brownian

motion is a stochastic process W(t), t > O, satisfying
(i) W(0O) =0

(ii) For any O < to < tl < o0 L tn the random

variables W(tk) -W(tk_l) (1 < k £ n) are independent.
(iii) If 0 ¢ s < t, W(t) -W(s) 1is normally distributed

with E(W(t) -W(s)) = (t -s)y, Var(W(t) -W(s)) = (t-s)c’

where W, 0 are real constants, o ¥ O. u is called

the drift and 02 is called the variance.

As is well known, Brownian motion can be realized
on the space of continuous functions with the property
that its paths ére nowhere differentiable with probability
1. For this process the transition density is given by

1 _-(x-y) 2/2t
27t

p(t,x,y)

Definition 1.7.1: A d-dimensional process

W(t) = nwl(t),...,wd(t)) is called a d-dimensional
Brownian motion if each process Wi(t) is a Brownian
motion and if the o-algebras Z(Wi(t),t >0) 1<igd,

are independent.
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1.8 The Infinitesimal Generator: We can assign to

a general Markov Process X(t) a family of operators
defined on a function space. Let X(t),t ¢ [tO,T] be
a homogenecus Markov Process with transition probability

P(t,x,B). Define the operator T on the space B(Rd)

t

of bounded measurable scalar functions defined on Rd

and equipped with the norm llg| = sup lg(x)| as follows:
X€R

For t ¢ [O,T'-to], let Ttg denote the function

defined by
T, g(x) =6 _g(X(t)) = de g(y)P(t.x,dy) .
Since TtIB(x) = P(t,x,B), we can derive the transition

probability from the operator T These operators have

t'
the following properties:

For t € [O,T-—tO] the operator Tt maps the

space B(Rd) into itself, is linear, positive and
continuous, and has norm HTtH = 1. The operator T,

is the identity, and Ts+t = TsTt = Tth whenever
t,s,t+s € [O.T-—to]. In particular, in the case [to,w)
the Tt constitutes a commutative one-parameter semigroup
of operators, the so-called semigroup of Markov transition

operators.

Definition 1.8.1: The infinitesimal operator

(generator) A of a homogeneous Markov Process X(t)

for ty < t T is defined by
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Ttg (%) =g (x)

d
T , g € B(R")

Ag(x) = lim
ti0

where the limit is uniform with respect to x. The

domain of definition D, © B(Rd) consists of all functions
for which the limit exists. The operator A is in

general an unbounded closed linear operator. If the
transition probabilities of X(t) are stochastically

continuous, that is, if for every x € Rd and every

e >0

lim P(t,x,U) =1, U_ = (y:|y-x| < e,
tio

then P(t,x,B) is uniquely defined by A. (Arnold [1],
p. 39 In the nonhomogeneous case, let X(t) for
t ¢ [tO,T] denote an arbitrary Markov Process with
transition probability P(s,x,t,B). We refer to
Remark 1.6.5 according to which Y(t) = (t,X(t)) is a
homogeneous Markov process with the state space

d d+1

[tO,T] xR” € R . We now define the Markov transition

operator T and the infinitesimal operator A of X(t)

t
as being equal to the same quantities as in the case of
the corresponding homogeneous proces Y(t) = (t,X(t))

under the definition given earlier, namely
= é = [
Ttg(s,x) os'xg(s-+t,x(t-+s)) JRdg(s-i-t,y)P(s,x,t+s,dy),

Ot T-s, where g(s,x) is a bounded measurable
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a Ttg(s,x)-g(S.x)
function in ([t.,T] xR and Ag(s,x) = lim
o , t
ti0
where the limit means the uniform limit in

(s,x) € [tO.T]t «rY,

1.9 Diffusion Process: A Markov Process X(t), for

ts £ t £ T, with values in rY and almost certainly
continuous sample functions is called a diffusion
process if its transition probability P(s,x,t,B)

satisfies the following three conditions:

For every s € [tO,T], X € Rd, and ¢ > O
(a) lim = P(s,x,t,dy) = O;

(b) There exists an Rd-valued function af(x,s)
such that

lim == [ (y -x)P(s,x,t,dy) = a(x,3);
tis -7

(c) There exists a d xd matrix-valued function

b(s,x) such that

lim - (y =-x) (y -x)TP(s,x,t,dy) = b(x,s).

tis 5% 7 y—x|ge

The functions a and b are called the coefficients
of the diffusion process. In particular, a is called
the drift vector and b is called the diffusion matrix.

b(x,s) 1is symmetric and non-negative-definite. The
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Brownian motion is a diffusion with drift term being

zero and diffusion term being 02

1.10 Backward and Forward Eguations: To each diffusion

process with coefficients a and b= (bij) is assigned

the second order differential operator

a‘(xl S) = + 7 bv .(X,S) So So
i axi 2 i=1 3=1 ij axiaxj

£
1]

I Mae

Lt

L g can be formally written for every twice partially
differentiable function g(x) and is determined by a
and b. Every diffusion process is uniquely determined
by its infinitesimal operator A. We calculate this

operator from

(1.10.1) Ag(s,x) = lim$ [  (5(s+t.y) -g(s,x))
ti0 R

P(s,x,t +s,dy)

by means of a Taylor expansion of g(s+t,y) about

(s,x) under the assumption that g is defined and

bounded on [to.T] de and is, on the set, twice

continuously differentiable w.r.t. X; and cnce

continuously differentiable w.r.t.s. When we use

conditions (b) and (c) of the definition of diffusion

process (1.9) we obtain for the right-hand members of
3

(1.10.1) the operator 3s + L . Under certain conditions

on 2 and b we have, for all functions in DA
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= 9
A = 3s + L
The following theorems and results are basic in

this area and for our later results. (Gikxhman and

Skorokhod [12a]), and Arnold (1], p. 42).

Theorem 1.10.1: Let X(t) for tyt T,

denote a d-dimensional diffusion process with tontinuous
coefficients a(x,s) and b(x,s) and suppose the limit
relation in definition (1.9) holds uniformly in

s € [to,il. Let g(x) denote a continuous and bounded

scalar function and define

u(s,x) = E_ _gx(t)) = { , g(y)P(s,x,t,dy),

s,X JRd
where t 1is fixed, s < t and x € Rd.
3u azu
Suppose u, S;; and 3;;3;; for 1 i, 34

are continuous and bounded. Then, u(s,x) is
differentiable w.r.t. s and satisfies Kolmogorov's

backward equation

with the end condition 1lim u(s,x) = g(x).
stt

Theorem 1.10.2: Suppose that the assumption of

Theorem 1.10.1 regarding X(t) holds. If P(s,x.,t,:)

has a density p(s,x,t,y) which is continuous with
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respect to s and if the derivatives 'aix& and

) i
—E—axa 3% exist and are continuous with respect to s,
i3

then p 1is a so-called FUNDAMENTAL SOLUTION of the

backward equation

with the end condition 1lim p(s,x,t,y) = 86(x-vy).
stt

Theorem 1.10.3: For t € [tOT], let X(t) denote

a d-dimensional diffusion process for which the limit
relation in (1.9) holds uniformly in s and x and
which posesses a transition density p(s,x,t,y). If
the derivatives %%, a(ai(y,t)p) /ayi énd
az(ai(y.t)p) /ayiayj exist and are continuous functions,
then for fixed s and x € Rd such that s ¢ t, this
transition density p(s,x,t,y) 1is a fundamental solution
of Kolmogorov's forward equation (the Fokker-Planck
equation)
(1.10.2) 3, % = (a, (y,t)p)
=1 %; 1
2

(b..(y,t)p) = 0.
i=1 j=1 °¥;%Yy = 1]

N~

If we define the distribution X(to) in terms of the

initial prcbability P, we obtain from p(s,x,t,y) the
(0]

probability density p(t,y) of X(t) itself:
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(1.10.3) plt,y) = erd p(to.x.t.y)Pto(dx) .
If we integrate (1.10.2) w.r.t. Pt (dx), we see that
o]

p(t,y) also satisfies the Fokker-Planck equation (1.10.2)
For a Brownian motion with drift term u and diffusion
term 02 the Kolmogorov backward equation is
1 2 32 3
R = 2 5 ——% + 22 for t>0, ~@w<x, y<e

a
ot 2 Ax X

and the Fokker-Planck eguation is

3p_1,223% _ 2
at ~ 2 522 M3x -

1.11 Stochastic integrals and stochastic differential

Equations: Let W(t), t > O, be a one-dimensional
Brownian motion on a probability space (Q,%,P). Let
?t(t > O0) Dbe an increasing family of o-algebras such
that the o-algebra FW(s), O { s  t) is contained in

% and FW(A+t) =W(t), A > O0) is independent of &

t'
for all t > 0 (e.qg., Feo = FW(s), 0L s L t)). Let

t

O a<g B < =, A stochastic process £f(t) defined for
a £ t B 1is called a non-anticipative function with

respect to Ft if:

(i) £(t) 1is a separable process, i.e. there
exists a countable dense set M = {tl,tz,...} c [a,B]

and a set N € F of P-measure zero such that for every



24

open subinterval (a,b) of (a,8) and every closed

subset A of Rd, the two sets

™

(w:f(t,w) €A for all t € (a,k) N M) € F
and

fw:f(t,w) €A for all t < (a,b)! (not necessarily

in %)

differ, if at all, only on a subset of N.

(ii) £(t) is a measurable process, i.e., the
function (t,w) = £(t,w) from [a,B] xQ into R1 is

measurable.

(iii) for each t € [a,B], £(t) is ?t measurable.

We denote by Lg[a,ﬁ] (1 < p =) the class of all

non-anticipative stochastic processes f(t) satisfying:
8 P

Pl JEM®)|F at ¢ =} =1

d
a

(Pless sup |f(t)| < =} =1 if p= «)
altsB
We denote by MS[G'B] the subset of LS[G,B] consisting

of all stochastic processes £ with

. P
¢ [ £ | at < =
a

(Eless sup|f(t)| < = if p= =
alts

(Friedman ([81])
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Since any Brownian motion W (t) 1is nowhere

differentiable with probability 1, the integral

T
I f(tYdw(t) for the stochastic function f(t) cannot
(0]

be defined in the usual Lebesgue-Stieltjes sense.
K. Ito has given the definition of the integral above

which we recall here briefly.

Definition 1.11.1: (Friedman [11]) A stochastic

process f(t) defined on [a,B8] is called a step
function if there exists a partition a = to < t1 <eeelty

= B8 of [a,B] such that

f(t) =f(ti) if £, (bt

Definition 1.11.2: Let £(t) be a step function

in LZ[G,B]. The random variable

Y=

1
I ) [lt) —W(g)]
=0

is denoted by

B
Jof)an(t)
a

and is called the stochastic integral of f w.r.t.
the Brownian motion W(t); it is also called the 1Ito

integral.

In a series of lemmas and theorems Ito proves that

for a given process f£f(t) € Li[a,ﬁ], there exists a
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sequence of step functions fn(t) in Li[a,ﬁ] such

that

B
lim [ |£(t) - £ (t)lzdt =0 a.s.
n+ ‘a n

and the sequence

B
{ja £ (£)AW (L)}

is convergent in probability. The limit is denoted by

B
[ fyaw(e)
a

and is called the stochastic integral of £(t) w.r.t.

Brownian motion W(t).

For an mxd matrix b(t) = (bij(t)) where any

of its elements belong to Li[a,B] and for

wW(t) = (Wl(t),...,Wd(t)) a d-dimensional Brownian
B8

motion, the stochastic integral [ b(t)dW(t) 1is the
a

m-vector defined by

B

d B
[ b(e)aw(e) = { & b, . (t)dw, (t))
I j=1 fd +J ]

Definition 1.11.3: Assume a(x,t) =

(ay (x,t),...,a_(x,t)) and b(x,t) = (bij(x,t))?'j=1.

Suppose ai(x,t), bij(x,t) are measurable in

d

(x,t) € R" x[0,T]. Let X(t) be an m-dimensional

process for O £ t { T, and suppose that for any
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0ty <ty LT,
t n

[2a@),pat + |
t

X(tz)-X(tl) b(X(t),t)aw (t)

2
%
where a(X(t),t) and Db(X(t),t) belong to L;[O,T]

and Li[O,T] respectively. Then we say that X(t) has

a stochastic differential

axX(t) = a(X(t),t)dt+b(X(t),t)dw (t).

1.12 Existence and uniqueness: For a(x,t) and b(x,t)

as in definition 1.11.3, we write |b|2 = T \bijlz.
i,3

X(t) (0O Lt LT) 1is a stochastic process such that

If

(1.12.1) &X(t)

a(X(t),t)dt+b(X(t),t)yaw(t) ,

(1.12.2) X (0)

n
>
V]
)

then we say that X(t) satisfies the system of stochastic
differential equations (1.12.1) and the initial condition
(1.12.2) .

Theorem 1.12.1: Suppose a(x,t) and b(x,t) are
d

measurable in Cx,t) € R x [0,T] and there exist

constants K and K, such that

latx,t) | < k(@ + |x]), |bx,t)] < K1+ |x]),

and
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la(x,t) ~a(x,t) | < K, |x-x]|,

lb(x,t) =b(x.t) | < K, |x -X]|

for x € R® and © £t T. Let X, be any d-dimensional
random variable independentof F(W(t),0 ¢ t g,T)' such
that alxolz < =. Then there exists a unique solution

X(t) of (1.12.1), (1.12.2) in Mi[O,T].

If the conditions of theorem 1.12.1 hold for
arbitrary T > O with constants K and K, depending
only on T and in addition if a(x,t), b(x,t) are
continuous in (x,t) € Rd x [0,=), then the solution of
(1.12.1), (1.12.2) is a diffusion process with drift
a(x,t) and diffusion matrix o(x,t) = b(x,t)b*(x,t);
therefore, theorems 1.10.2 and 1.10.3 are valid for

the solution.

Remark 1.12.2: Theorems 1.10.2 and 1.10.3 are valid

provided the transition density of the transition
probability exists and is continuocus. The following
theorem guarantees the existence of a density.

(Theorem 5.4, Friedman [11]).

Theorem 1.12.3: If

(i) There is a pcsitive constant ¢ such

that

d

Z)@igjbij(x,t) > c|§|2 for all (x,t) € R x [0,T],

§eRd,
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(ii) The functions ai'bij are bounded on
Rd x [0,T] and uniformly Lipschitz continuous in (x,t)

d

in compact subsets of R~ x [O,T].

(iii) The functions bij are Holder continuous in
x (of order a), uniformly with respect to

(x.t) € rRY x [0,T].

Then the transition probability of the solution of

(1.12.1) has a density.

We close this chapter by stating the definition of
a linear stochastic differential equation, a theorem
concerning existence of moments of a linear stochastic
differential equation and Ito's formula. (Arnold (1]

and Friedman [111]).

Definition 1.12.4: A stochastic differential equation

dX(t) = a(X(t),t)dt+b(X(t),t)dw(t)

for the d-dimensional process X(t) on the interval
[tO,T] is said to be linear if the functions a(x,t)

and b(x,t) are linear functions of x € Rd on

Rd x[tO.T], i.e., if a(x,t) = A(t)x+a(t), where

A(t) is a (d xd) matrix-valued a(t) is an

R _valued and if bl(x,t) = (By (£)x +Dby (£),...,B_(t)x +b_(t))
m m

where Bk(t) is (d xd) matrix-valued and bk(t)

is Rd-valued. Thus a linear stochastic differential

equation has the form
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m
dX(t) = (A(L)X(t) +a(t))dt+ 2 (Bi(t)X(t) +bi(t))dWi(t)
i=1

where W(t) = (Wl(t)....,Wm(t)). It is said to be

homogeneous if a(t) = bl(t) + = b _(t) = 0.

Theorem 1.12.5: The solution X(t) of the linear

stochastic differential equation has for all t ¢ [tO,T], a
p-th order moment if and only if E|X(0)|P ¢ =

(Arnold [1], p. 138).

The following theorem is very essential in the
calculus of stochastic differential equations (Friedman [11]

p. 90).

Theorem 1.12.6: (Ito's formula). Let u(x,t)
d

be a function in (x,t) € R™ x [0,») and suppose u(x,t)

£’ uxi. uxixj are continuous.

and all its derivatives u

Let X(t) be an d-dimensional process having a stochastic

differential
X (t) = a(t)dt+b(t)daw(t)

where a = (a;,...,3y) and b= (bij) (1L <igd, 1 <3 <n)

2
belong to Li[O,T] and Lw[O,T] respectively. Then

u(X(t),t) has a stochastic differential
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d
du (X (t),t) = [u (X(t),t) + Z u, (X(£),t)a, (£) +
i=1 *i
1 a
+ 5 C DUy X))y, (B)by, () ]dt
=1 7i7j

+
N

d
Zﬁ u, (X(t),t)b, , (t)aW, (t).

In the more interesting one dimensional case the formula

above becomes

du(X(t),t) = [u (X(t).,t) +u (X(t),t)a(X(t),t) +

1 2
+5 uxx(x(t) JE)DT (X () ,t) 1dat +

+u (X(t) ,£)b(X(t) ,t)dW (t)



CHAPTER II

NUMERICAL SOLUTIONS TO THE PROBABILITY DENSITY
OF STOCHASTIC DIFFERENTIAL EQUATIONS IN ONE-DIMENSION

2.1 The Mathematical Problem for the Density and its

Weak Form: Consider the stochastic differential

equation

(2.1.1) ax(t)

a(X(t),t)dt+b(X(t),t)aw(t)

(2.1.2) X(0) = XO

on the interval 1I = (rl,rz) where O (¢ rp Lr, <=

with continuous coefficients. Xo is a random variable

having a density and with finite moments of all orders.
According to Theorem 1.12.1 the solution to (2.1.1)

and (2.1.2) is a Markov process and the density p(x,t)

of the law of the process satisfies the Fokker-Planck

equation
2,,2
(2.1.3) 3ptxd _ ) . _3(alx,t)p) 1 3°(b"(x.t)p)
ot ox 2 3 2
X
(2.1.4) p(0,x) = given

32



33

It is pcssible for the process to exhibit various
type of behavior at the boundary r, or r, (Mandl
[15]). We assume the coefficients are such that the

r
probability is always preserved, i.e. frz p(t,x¥dx = 1.
1

In Chapter III we shall discuss more about the boundary

conditions.

Equations (2.1.3) and (2.1.4) form a patrabolic
boundary value prcblem. We note that the formal adjoint
*
L of the operator L is given by the operator
32

\ - o2 1.2 -
(2.1.5) L = a(x,t) 3% + 5 b”(x,t) axz .

We multiply (2.1.3) by some functions v(x) and integrate

over (rl.rz) to yield
*
(2.1.6) (pt.v) = (L p,v)

This is to hold for each function v in some appropriate
space V. We assume V 1is such that integrations by

*
parts can be performed in (L p,v) and that all the

resulting boundary terms drop ocut. This leads to
(2.1.7) (pt.v) = (p,Lv), for all v €V

Equation (2.1.7) above is the weak or Galerkin

form of (2.1.3).

The density p(t,x® can be used to compute the

expected value
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r -

sEX(t)) = M2 £(x)plt,x)dx ,
drl
of a function £f(x). Quite often the integration above

is done numerically. In the next section we shall discuss
one such method for the numerical approximation

to a positive measure .

2.2 The Gauss-Christoffel Approximation of Measures:

An n-point Gauss-Christoffel approximation to a measure

M with density p(x) 1is given by

where the {68~ ) denote atoms at the Gauss~Christoffel

points fgk} and the [gk} denote the Gauss-Christoffel
weights. The main results concerning this approximation

are summarized in the following (Stroud [211).

Theorem 2.2.1l:

(a) For a given measure | defined on a finite
. . {"‘ n
interval [rl,rzl, the n points ‘xk}l and the n

weights {gk} can be uniquely chosen so that

r

n

n ~ ~
(2.2.1) Jr f(x)du = kzé ay f(xk)

| adl V]

holds for all polynomials of degree less than or equal

to 2n -1.
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(k) Let (Pm(x)} be the family of orthogonal
polynomials with leading coefficients unity associated
with the measure u; that is, for each m, Pm(x) is a

polynomial of degree m and

r

(2.2.2) [ (x)P_(x)du=0 if m¥n

r

2 Pm
1

Then the Gauss-Christoffel points (Qk:k =1l,...,n} are

the zeros of the polynomial Pn(x).

(c) The positive Gauss-Christoffel weights are

uniquely determined as the solution of the equations

r

n . ~
(2.2.3) (2 f(x)du = = £(x,)
"1 el KK

~

for all polynomials of degree less than or equal to n-1.

(@) 1f f£(x), f(l)(x),...,f(zn)(x) are continuous

on [r then there exists a function K(s) such

1 Tals
that the error
r

2 ST e
f£(x)du- Z f(x)
Je] Ly 3k Fo

(2.2.4) E[f]

e
= 1.2 k()£ (s)as
1

1
(2n) :

r
£ 0 [ 2 (7,001
for some (¢ € (rl,rz), and

K(s) = E[(x-8)2""1/(2n -1) 1]
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2n-1

(x -s) for x

v
7]

2n-1 -

where (x'-s)+

0 fcr x < s

From (2.2.4) we obtain the estimate

(2.2.5) |E(£]]| < eM
where
T2 (2n)
e=f_“K(s)ds and M= sup €57 (x) |
1 [ry.r,]

The nonnegative function K(s) is called a Peano's kernel

function. The inequality (2.2.5) is called Peano's estimate

for EI[f].

In the theorem above we assumed that the interval
[rl,rzl was finite. Stroud and Kwan-Wei Chen [22] give
Peano's error estimates for Gauss-Laguerre formulas

Xy . Their idea could also be used to obtain

(p(x) = e
similar estimates for other densities for the intervals
(0,#*) and (-=,«) (Stroud (21] p. 204). 1In the
generalization of Theorem 2.4.1,parts (a), (b) and (c)
remain unchanged (Krylov [12]). However, in part (d) for
the [0,®) case in addition to f(x), f(l)(x),...,f(zn)(x)
being continuous, we must assume |f(2n)(x)] < qu (where

a 1is a constant) for x > x . In this case the Peano's

estimate for E[f] Dbecomes

(2.2.6) E(f] ¢ eM+B [ K(s)s'ds
n
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where
*n (2n)
e=["K(s)as and M= sup |£°(x)] .
o] [0,x_1
n
For example, if du = e ‘dx we see that for s > X
we have
-]
(2n -1)ik(s) = [ e¥(x-5)2""1 ax
(0]
0
- I e-x( _S)Zn—l dx
s
® 2n-1 -s
= 7% f e™ u"t qu = (2n-1)'e
0
Therefore,
(2.2.7) K(s) = e ® for s> x

n

This shows that the integral in (2.2.6) is

® ©

f K(s)s%ds = f e”S g% s = T(a+1,x)
x x

n n

So in this case we have shown that
(2.2.8) lET£]1] < eM+ BT (a+1,x)

To estimate e in (2.2.8) we note that

E(P2(x)] = Joe P2 (x)dx = (n1)°
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(Krylov [14], p. 35).
On the other hand,
(n? = ere2] = Bx™1 = (2n)¢ [ K(s)ds

(0]
hxn ®
= (2n) (] " K(s)ds + [ K(s)ds)
(0] X
n
and
f K(s)ds = f e " dt = e
p'e X
n n
Thus in (2.2.8) we have
-X

e = (n)2/(2n)" -

Now let p(t,x) be the solution to the equations
(2.1.3) and (2.1.4). By theorem 2.2.1 for any t the

n-point Gauss Christoffel approximation to pf x)dx is

u (€)= Z‘ ak(t)éxk(t)

and by (2.2.4) (2.1.7) can be written as

n
(2.2.9) -ad— L & (0)vG) +EWD)

5.k (t) (Lv) (%, (£)) +E[Lv]

u M3

(i =1,2,...,2n) 1is a basis for polynomials of

If fi(x)

degree less than or equal to 2n -1, egquation (2.2.9)

for £ (x)'s becomes
i
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n
(2.2.100 4= T 3 (0f, (% ()
k=1
2\ ~ ~
D R (0w Gy (6) +ELLE )
for 1 =1,2, ,2n

The system (2.2.10) is a system of ordinary differential
equations for the Gauss-Christoffel weights and nodes.
The system (2.2.10) however, is not closed as p(t,x)

is involved in E[Lfi] and thus cannot be used for

finding ﬁh(t) without knowing p(t,x).

2.3 The Gauss-Galerkin Method: The Gauss-Galerkin

method for approximating p(t,x) (as introduced by
D.A. Dawson [6]) is the following system obtained from

(2.2.10) with the terms E[Lfi] dropped.

a n _ n
(2.3.1) ¢ k:Ela.k(t)fi(xk(t)) = k§l ay (£) (Lf,) (x ()
for i=1,2,...,2n

where ff (x)32n is a basis for polynomials of degree

less than or equal to 2n-1.

We take the initial condition
n ~ ~

as the Gauss-Christoffel approximation to pl(0,x).
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In matrix form the nonlinear system (2.3.1) with

given initial condition pf(,x) can be written as

(2.3.2) axX'’ = BX
(2.3.3) X (0) = given
where
A1 By
A = ’
Ay Ba
B1 (0]
B = »
B2 (0]
T _
X -— (allazl-o.'anpxlloo-lxn) ’

fl(xl) fl(xz).... fl(xn)
fz(xl) fz(xz),... fz(xn)
11

fn(xl) fn(xz),... fn(xn)
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' !
alfl(xl) fl(xz)
[
ay 2(x ) fz(xz)
B2 =
[ ?
alfn(xl) azfn(xl)
£l %) Eppy (%))
fr2(X) Ehyp(xy) -
A21 = L]
£, (x) £, (x,)
[
2y n+1 (%)) agf (%)
¢ ’
a fep (X)) A f o (%))
By =
’ !
a £y (%)) A,y (%))
L, (x)) LE) (x)
sz(xl) sz(xz)
B, =
Lfn (xl) Lfn (x2)

[
. anfl(xn

I
. anfz(x

. Lfn(xn)

)

n
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and
Lfn+1(x1) Lfn+l(x2) oo Lfn+l(xn)
LE po(x)) LE o(xp) «e LE o (x)
B2= .
LE, (%)) Ly (x5)  oe LEy (x)
Throughout our work we shall take fi(x) =
x*71 (1 =1,...,2n). Note that the system (2.3.2) is
nonlinear.

In the remainder of this section we are concerned
with the question of solvability of the system (2.3.2).
In particular we shall show that under appropriate

assumptions the matrix A in (2.3.2) is nonsingular.

Lemma 2.3.1. If xl,xz....,xn are distinct, then

the matrix

A A A -1 A
where A,y = Byq. Byy = Rony Byo = A,5D 7, Ayy = A,0D

and D = dlg(al,az,...,an), is nonsingular.

Proof: Let f :R = R2n be defined by

2n-1

£(x)T = (1,%,...,x% )
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Note that
A= (£(xy) £(x,) fix ) f£'(xy) £(x.))
1 2 : n 1’ - n
A
Let F(xl.xz,...,xn) = det A, It is easy to see that

LE = det (£(x)) £(xy) ... £(x) £705)) £(x,) ... £7(x)),

%—%= det(£'(x)) £(x,) ... £(x )E"(x)) £/ (xy) ... £'(x))
X1
+ det(f(xl) £ (x,) ...f(xn) fm(xl) f'(xl) ...f'(xn))
and
&- 2 det (£f'(x,) £(x,) f(x) £"(xy) £'(x,) £'(x_))
ax]3.— e Xl 2 . s = n 1 X2 PR Xn

+ det(£(x)) £(xy) ... £(x) g4 (%)) £'(x)) ... £'(x )

33

AX

]

= 0 1if we

= (x2-x1)h(xl.....xn) because

HWw

put Xy = X,

Thus F(xl,...,xn) = (xz'-x1)4¢(x1....,xn). Similarly for

. . _ 4
i ¥ 3 we have F(xl,...,xn) = (xi-xj) W(xl,...,xn). Thus

A n a
det A =C(X T (x.-x.)

i>y v

A
Now since the degree of det A 1is the same as the degree

n
of I (x. -x.)4, C(X) must be a constant and the

i>3
proof is complete.
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Lemma 2.3.2: With the same assumptions as in

. A A Al A . .
Lemma 2.3.1 the matrix A22 -A21 All A12 is nonsingular.

A
Proof: Note that A11 is the well known

Vandermond matrix which is nonsingular. Now consider

A A
I © A1 P
A
B =
A Ay A A
21811 I Byy  Bgp
A A
A B2
A '\_l/\ A
o Bo1B11P12 tRg)
Since
A A A A A AZIA
det B = det A = (det All)(det(Azz"AzlAllAlz) 40,

the proof is complete.

Now with the assumption as in Lemma 2.3.1, if we

T _ 1 _ e ’ T _ I} t
let Yy = (al,az....,an), Yo (alxl,...,anxn) and
al = (al,az,...,an), then the system (2.3.2) becomes
A A
A1 Pr2 41 B,a
A A
By B/ \ Y B2

which is linear in Yyr ¥, and can be written as
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T /\.__1 A A A /A\_l/\ -1 A A-l

Yy = By7(By =B 5 (Ay, A 1Ry A,) T(By =R, A B ) A
(2.3.4)

T A A AIA 1 A Ay

Yo = (Ryy =Ry A11R,) T(By =AyAy Byl

The above system is a system of nonlinear differential
equations for the Gauss-Galerkin points {xk(t)} coupled
with a linear system of differential equations for the

Gauss-Galerkin weights (ak(t)].

Now assume that the system (2.3.2), (2.3.3) has

a solution ka(t)] and {ak(t)] where
x0T = (a;(0),...,a_(0) %, (0),...,x_(0))

has been chosen as the Gauss-Christoffel approximation

of p(0,x). By the continuity of xk(t) and ak(t) it is
obvious that there exists an interval [O0,T] so that

for each t € (0,T], ak(t) is positive for each k,

and xl(t), cee s xn(t) are distinct. Also by

Lemma 2.3.1 the systems (2.3.2) and (2.3.4) are
equivalent on ([O,T]. On such an interval the system

(2.3.2) can be written as

(2.3.5) x' =A‘13x=5'(x)

A
because A = A -diag(l,...,l,al,....an) which is

invertible. Also
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-1 -1
BF(X) _ 3(ATTBX) _ 3AT~ .. .-l 3BX

axi axi Bxi axi

B exy 3x;
= at ga:—'wa"l %;3?’.2
i i
Since xi(t) and ai(t) for 1i=1,...,n are
continuous functions on [0,T] and A-l exists;
it follows that A-l, éﬁ% and %%% are all bounded.
i i

Therefore, F(X) 1is Lipschitz w.r.t X for each 1i.
It is easy to prove that F 1is Lipschitz w.r.t. X.

Thus on [0,T] the system (2.3.4) has a unique solution

n
w, (8) = k§1 a, (t) axk(t)

which approximates the law of the process of the solution

to the stochastic differential equation (2.1.1), (2.1.2).

The corresponding approximated moments of the process

are

j.rz X

(2.3.6) mk(t) (t)dph(t)

|

n X
> a, (B)x. (t) k=0,1,... .
i=1 + 7

In the next section we discuss an alternative way
to compute the above approximated moments, in the case

where the coefficients of the stochastic differential
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eguations are polynomials.

2.4 The Hankel System of Moments: In this section we

assume that the coefficients of the stochastic differential
equation (2.1.1) are polynomials in x. From equation
(2.3.6) we have

dmk(t) g b X
(2.4.1) —at " at iz::/l ai(t)xi(t)

a ' k a k-1_.
iza ai(t)xi(t)-FiEa kai(t)xi xi(t)

for k=0,1,...,2n-1. By (2.3.6) the sum

n
iza a; (t) (Lfy) (x, (t)) becomes a polynomial g (m,.m,,...),

involving finitely many moments. From the system (2.3.2)
and (2.3.3) we have

dmy
(2.4.2) It - gk(ml(t).mz(t),...) k=0,1,2,...,2n -1

(2.4.3) mk(O) = given k =0,1,...,2n-1

Let us suppose that a(x,t) is a polynomial of degree
g in x and b(x,t) is a polynomial of degree {4 in

X. Recall that Lf(x) 1is given by

2
Af 1,2 3°F
3% + = b (x,t) — .

(LE) (x) = a(x,t) 3 —

For f(x) = xk, the polynomial I in (2.4.2) involves

me_oe mk_l,...,mpk where p, = max{k+q -1, 24+%k -2,
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For g1 and 4 (1, we have P < 2n -1 so the
system (2.4.2) is closed. On the other hand, if
Q22 or £>2, p, ;= max{2n+g -2, 24+2n -3 > 2n,

and the system (2.4.2) is not closed.

Theorem 2.4.1: Suppose that the system (2.3.2)

. and (2.3.3) has a solution in [0,T] with nodes that
remain distinct as we have assumed. Then the system

(2.4.2) may be made closed.

Proof: We shall show that it is possible to express
all the moments that appear in (2.4.2) with order higher
than 2n -1 in terms of the lower moments. To do this

we define
Pn(x.t) = (x-xl(t))(x'-xz(t)) ...(x-xn(t))

Since un(t) is a measure concentrated on

xl(t)....,xn(t), we have

T2 x
(2.4.4) [ “x p (x,t)du (t) =0 Xk =0,1,2,...

1

Let ci(t) i 1,2,...,n be the sum of all products of
i of the numbers xl(t), xz(t),...,xn(t), without
permutation Or repetition. Then (2.4.4) becomes

cees (-t
(2.4.5) m . =0m . 4+ +(-1)7om . s

n - -
+ oo 4 (—1) gnmk-O for k=0,1,2,...
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Let
~ e o o ﬁ
mk m'k+1 mn+k
Mer1 Mgs2 T Mnaksel
Mk =
L ™n+k Mndk+l 0 M2n+k

Any n consecutive equations of the system (2.4.5) form

a linear system of equations with 0y+95s...,0, as

unknowns. Therefore, we get
(2.4.6) An = det Mn =0 k=0,1,2,...

By the assumption that the nodes are distinct we

see that for £ < n and for real numbers Yor¥ye-- o¥y
T2 x 1,2 .
we have Irl X (y04-y1x4--.-4-y‘x ) dun positive, i.e.
]
for any 4 < n, Q"k(y) = L My VY > 0,
i,J=0
where vy = (yl;...,y‘). This is equivalent to saying

that in Mn X the determinants of all principal minor
14
submatrices are positive. It is thus possible to determine

m,  in terms of my.m,...,m, , from 8,,0= 0.

0]

Similarly, from An 1 = O weget m in terms of

2n+1l
My /Moo oo My and in general from An,k = 0 we get
Motk in terms of previous moments. Thus the system

(2.4.2) may be made closed.
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Remark 2.4.2. Given a segquence of real numbers

:’mk};:l which satisfy (2.4.6) with the additional
aésumption that the determinant of all minor submatrices

of M (k =0,1,...) are positive, we can obtain a

'k
unique measure concentrated on n distinct points in
(0,*) whose moments are the given sequence. For a proof
we refer to a paper written by Ernest Fischer [9].

Actually the proof is based on the fact that the quadratic

ni} n-1
forms m.,6 .X.X. and m,,.,.X.X. are
i,j=0 i+371i73 i,j=0 i+3+171i73

positive definite. It is interesting to know that if
the determinants of Mn 0 and Mn 1 are non-negative
for all n, then there exist a measure | with {mk};=1

as moments. If the determinants of Mn and M are

.0 n,l
positive for all n, then {4 1is a measure whose spectrum

cannot be reduced to finitely many point.

Remark 2.4.3: To close the system (2.4.2) in

practice we need a simple computer algorithm to write
higher moments in terms of previous ones. To do this
we use the following theorem (George E. Forsythe and

Cleve B. Moler [10]).

Theorem 2.4.4: For a given square matrix A of

order n, let Ak denote the principal minor submatrix

made from the first %k rows and column. Assume that
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det(Ak) 0 for k=1,2,...,n-1. Then there exist
a unique lower triangular matrix L = (Lij), with

111 = 859 = «+. = 4o =1 and a unique upper triangular

matrix U (ui.) so that LU = A. Moreover,
det A = Uyy "Ugy *" Ui Here A = Mn.k is a symmetric

matrix of order n+1l; therefore, by A = LU = UTLT

and by uniqueness of L and U we have (¢,

. u../u..
1] Jl/ JJ

if i # 3j. Thus

= a for l1i<n+l .

Y1i 1i

Now multiplying all rows of L with index greater than

or equal to 2 by the second column of U we get

Uon = 3, -2 /
22 T %22 "Y12/Yy;

and

Upi = @55 -Upy tWyp/Myys 3K i Cn+d

Continuing this procedure we get the following algorithm

to compute ull’u22""'una+1
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Fcr I =1, n+1l Do
Y11 T %14
For j =2, n+1 Do
j-1
(2.4.7) _ J 2
Y33 % 2557 5 ks Uk
For I =3j+1, n+l1l Do
j=1
Yij T %4y 'k§1 Uy 5 Uy 5/ e
In order to obtain My 4 1D terms of My /My e
Mtk -1 which is a consequence of the equation

An x = O, we modify the last step which completes the
algorithm (2.4.7) for the case j = n+1 and set
Uil nl T O which gives
L
™antk T %n+l ntl kzé Un+ 1%/ Kk

We now prove the following theorem.

Theorem 2.4.5: With the same assumptions as in

Theorem 2.4.1 the systems (2.3.2) implies the system (2.4.2).
Conversely the system 2.4.2 implies the system (2.3.2)
provided Ank =0%k=20,1,2,... and the principal

submatrices of Mnk have positive determinants.

Proof: It is understood that we use equivalent
initial values. We obtain the system (2.4.2) from the
system (2.3.4) and it is obvious that any solution to the

system (2.3.4) is a solution for the system (2.4.2).
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Conversely, by Remark 2.4.2 any solution of the
closed system (2.4.2) induces a unique measure pn(t)
concentrated on n points xl(t),...,xn(t) with
corresponding weights al(t),...,an(t). Therefore

by (2.3.6) we obtain the system (2.3.4) from (2.4.2)
with un(t) as a solution. Therefore any solution of
the system (2.4.2) is also a solution to the system

(2.3.4) and the proof is complete.

2.5 Comparison of the Gauss-Christoffel and the

Gauss-Galerkin Measures: The Gauss-Christoffel approximation

which was discussed in Section 2.2 can be considered
as the "best possible" approximation of a measure
because it determines the first 2n -1 moments the
same as exact moments. Now assuming that the system
(2.3.4) has a solution on the interval [0,T] we wish

to compare the Gauss-Christoffel approximation

n ~
Mo (8) = k‘i?la.k(t)é;k(t) ,

with the Gauss-Galerkin approximation

n

u (b)) = = (t) 8
R (B = T %

xk(t)

To do this we need the following lemma and corollary

(Hale [131]).
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Lemma 2.5.1: Let w(t,u) be continuous on an

open connected set (O C R?2 and such that the initial

value problem for the scalar equation
(2.5.1) u’ = w(t,u)

has a unique solution. If wu(t) is a solution of
(2.5.1) on a < t<¢<b and v(t) 1is a solution of
(2.5.1) on a <t <«<b with v(a) ¢ u(a), then

——

v(t) ¢ u(t) for t € [a,b].

Corollary 2.5.2: Suppose that w(t,u) satisfies

the conditions of Lemma 2.5.1 for a { t < b, u> 0,
and let u(t) > O be a solution of (2.5.1) on

at<b. If f£f:[a,b] xR™ 2+ R is continuous and
|£(£,X) | < w(t,|X]), a<t <b, X € R
then the solution of
X'=£(£,X), |X@)] g u(a)

exists on [a,b) and |X(t)]| ¢ u(t) for t € [a,b].

Now the system (2.2.10) can be written in matrix form as

~

(2.5.2) AX' = BX +e(t)

where A and B are of the same formas A and B in

(2.3.2) with the Gauss-Galerkin nodes and weights
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replaced by Gauss-Christoffel ones and

e(t)T = el(t),ez(t),...,en(t))
where

ei(t) = E[Lfi]

Note that the errors ei(t) depend on the nodes
(;'Ei(t)} and the weights {Si(t)}. By Lemma 2.3.1, A

is invertible and equation (2.5.2) can be written as

(2.5.3) X' = A7IBR + A7 te (1)

or

(2.5.3)' X' = F(X) +E(t)

where E(t) = E(X,a,t) is regarded as a known function.

Again note that by neglecting E(t) from the system
(2.5.3) we obtain the Gauss-Galerkin system. 1In the same
way as before we can show that F (X) is Lipschitz

with respect to X with some Lipschitz constant Mn'

The two systems

X' (t)

F(X(t)) +E(t)

x'(t) F(X(t))

lead to the system

(2.5.4) (X -X)'=F(X) -F(X) +E(t) .
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We now consider the scalar initial value problem

J

u’ = Mu+ |E(t) |

u(0) = 0, which has the solution

Mt ¢t -M s

u(t) =e™ [ |E(s)|e " ds
(0]

Also we have
[X-%)"| < [F&X) -FO |+ [E(8) | < M_[R-X|+ [E(®) .

Thus by Corollary 2.5.2, with i(o) = X (0) (as we
always take Gauss-Christoffel nodes and weights as

initial values), we have for t € [0,T]

- Mt t -M_s
(2.5.5) |X(t) =x(t)| cu(t) =e™ [ |E(s)|e " as.
(0]

Thus we have proved

Theorem 2.5.3: Assuming that the system (2.3.2)

n
has a solution u_(t) = 2 ak(t)é for t € [0,T]
n k=1

xk(t)
with distinct nodes and with pn(o) the Gauss-

Christoffel approximation of p(0,x) and

~ n ~
o (B) = kzi ak(t)éik(t) the Gauss-Christoffel

approximation of p(t,X), then we have
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Mt t -M s

(2.5.6) |R(t) -x(t)| < e " j‘o E(s)le P ds
where

X(£) = (ay(t),....a_(£) %) (£),...,x_(£))
and

X(t) = (a;(t),...,a (t) ,xl(t),...,xn(t))

Remark 2.5.4. In equation (2.5.6) E(s) = ﬁ-le(s)

where e(s) is the Gauss-Christoffel error and

lE(s) | ¢ cnle(s)| for some constant c_ . One may wish
to use (2.5.6) to prove convergence of the Gauss-
Galerkin weights and nodes to the Gauss-Christoffel
ones as n = ®», However the dependence of <h and the
Lipschitz constant Mn on n does not make such

convergence theorem possible.

Remark 2.5.5. If the coefficients of the stochastic

differential equation are polynomials, then the vector

e(t) has its components equal to zero except for finitely
many of some components. This number of non-zero components
depends on the degree of the coefficients. If the

degree of the coefficients is less than or equal to

one, then e(t) = O and therefore, X(t) = X(t) for

all t. Thus for a linear stochastic differential

equation the Gauss-Galerkin and Gauss-Christoffel

approximations are the same.
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2.6 Stéadv-State Solutions: For some stochastic

differential equations the density p(t,x) of the
solution X(t) as t =+ =» becomes independent of t.

In other words, the influence cf the initial state

fades away and the system tends to a steady-state governed
by the stationary solution. In this case the density
satisfies (2.1.3) with left hand side replaced by O.

Now assuming that a stochastic differential equation

has a steady-state solution the corresponding system

to (2.5.2) becomes

(2.6.1) BX+e =0
or
(2.6.1) "' F(X)+e =0

which is a nonlinear system of equations and yields the
Gauss-Christoffel steady-state approximation. It is to
be noted that the system (2.6.1l) is not closed in so
far as X is concerned as the steady-state density is
involved in e and thus cannot be used for finding the
steady-state approximated solution. The corresponding
system of equations given by the Gauss-Calerkin method

has the form

(2.6.2) BX = O
or

(2.6.2)' F(X) =0
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which is a closed system of nonlinear equations for X.
Numerical methods such as Newtcn's method or the bisection
method can be used to obtain the Gauss-Galerkin steady-
state solution. Also an upper bound for the term

Ii -X| as in Theorem 2.5.5 may be derived as follows.

We define the function
(2.6.3) BH(X,s) = F(X) +se =0

Obviously for s = O we have the Gauss-Galerkin steady-
state equations and for s = 1 the Gauss-Christoffel

equations. From (2.6.3) we have
(DF (X))X'(s) +e = 0
and this leads to (Chow and Hale (3], p. 21)

X -x| ¢ IDF(x)|{e!



CHAPTER III

CONVERGENCE OF THE GAUSS-GALERKIN METHOD

For a given interval (rl,rz) where
—er {r,g® and given p(x), assume that we have

a sequence of integration formulas

Zn(f) ~ I(f)

2 = 2 a™ee™) and 106 = 1.2 £(x0plx)dx
W = T oa e e £00P

n=1,2,... . It is of importance to know under what
conditions the sequence Z%(f) converges to the true
value of the integral as n =# o, In this chapter we study
the convergence of the integration formulas obtained

by the Gauss-Galerkin method in Chapter II.

3.1 Convergence of the Gauss-Christoffel Integration

Formulas: We shall begin by stating scme results about
the convergence of the Gauss-Christoffel integration

formulas.

if (rl,rz) is a finite interval, it is known that

for a given pcsitive measure § with finite moments, we

60
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have
nrz ~
(3.1.1) lim 2, (£) = lim | f(x)du
nas o n+e “T1 n
r,
= [ f(x)du = I(f)
url

for any continuous function £f(x) defined on [rl,rzl

(Stroud [21] p. 142).

In the infinite interval case we generally do not have
the same result as in the above. We state some theorems
about the convergence of the Gauss-Christoffel

integration formulas in the (0,®) and (-»,®) cases.

Theorem 3.1.1l: Let u be a positive measure defined

on [0,®) whose moments of all order are finite. Let
;n be the n-point Gauss-Christoffel approximation to u.
Then there exists a positive measure Vv defined on [O,®)

such that

(3.1.2) lim [ f(0dn = [ f(0av
n+ O o

for any continuous function £f(x) on [0O,®) such that
as x *+», f(x) is dominated by a polynomial. (Shohat

and Tamarkin [19], p. 121).

Theorem 3.1.2: Let  be a positive measure defined

on (-=,®) whose moments of all orders are finite. Let

ﬁn be the n-point Gauss-Christoffel approximation to u.

Then there exists a positive measure Vv defined on



62

~

(== ,») and a subsequence {u_ ' such that

(3.1.3) lim [ £(x)dn [ £(x)av

k= “om -

for any continuous function £(x) on (-%,®) such that
as |x| » e, £(x) is dominated by a polynomial with

non-negative coefficients.

Corollary 3.1.3: If the measure u in Theorem 3.1.1

or 3.1.2 is uniquely determined by its moments, then the

measure Vv will be the measure p "substantially".

Remark 3.1.4: By "substantially" here we mean

(3.1.4) [ £(e)au = [ £(v)adv

for any continuous function £(t) which vanishes for

all sufficiently large values of |t].

J.V. Uspenski [25] has given sufficient conditions
for a measure U with density p(x) that is determined
uniquely by its moments (in both (0,®) and (-=,®)
cases). For example in the (0,®) case he proves that if

there exist constants C and R such that
> 2

(3.1.5)  m = [ x"du<c(2n+1):R"" for all n>1,
(0]

then 1 is uniquely determined by its moments. We refer
to Shohat and Tamarkin ([19], p.22) for examples showing

that these upper bounds are in fact sharp. In the next
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sections we shall see how these bounds are essential
in the theory of convergence of the Gauss-Galerkin

integration formulas.

3.2 Assumptions and Boundary Conditions: The Gauss-

Galerkin method proposed in Chapter II is for the approximation
of the density function p( ,x) associated with a process

governed by the stochastic differential equation

(3.2.1) dX(t) = a(X(t),t)dt+Db(X(t),t)anW(t)
(3.2.2) X(0) = given
on the interval I = (r,,r,) where O (r, <r, =

In this section we shall state precisely the class of
functions of a(x,t) and b(x,t) that are allowed and
discuss the types of boundary ccnditions that are

considered in this dissertation.

We suppose that a(x,t) and b(x,t) are continuous
functions on I x [0,T] which satisfy assumptions of
the existence and uniqueness theorems of Chapter I.

More precisely, we assume that there are constants K

and K, such that

(3.2.3) Ja(x,t)] < x(1+ |x]), lo(x,t)! < k(1 + |x])
and

(3.2.4) la(x,t) —a(x,t)| < R, Ix-x| ,

lb(x,t) -b(x,t) | < K, Ix-%x] ,
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for x €I and O ¢ t { T. We assume that X(O)
is a random variakle having a density with finite
moments of all order and is independent cf

FW(t), O < t < T).

It is clear that with these restrictions on the
a(x,t) and b(x,t), there are non-negative constants

b and b such that on I x [0,T] we have

1 2

(3.2.3) Ja(x,t) | < a,x+b, and |b(x,t) | < ajx+b,

Also it is well known (Arnold [l1], p. 116) that with these
assumptions, for any t € [0,T], X(t) has finite moments

of all order.

Now consider the Gauss-Galerkin approximations

n
— (n) -

)

k
. . < ~
as a sequence of integration formulas “h,t(f) It(f)
where
T2
I () = yrl £(x)p(t,x)dax
and

n
Tl = 2™ (6)£ (™ (1))

Before discussing the convergence of the integration
formulas at any t > O, it is essential to have -
convergence of Z% olf) to I (f) for f£(x) belonging

to some appropriate class of functions. For example



65

it is seen in Section 3.1 that if p(0,x) is
determined uniquely by its moments, then we have
convergence of z%,o(f) to Io(f) for all continuous
functions f(x) such that as x #* ®, f is dominated

by a polynomial.

Throughout this chapter by "the stochastic
differential equation satisfies the condition A on

(rl,rz) x [0,T]" we mean:

Condition A

1. The coefficients a(x,t) and b(x,t) are
continuous on (rl,rz) x [0,T]. They are such that a
unique solution exists and satisfy the inequality

(3.2.3).

2. X(0) 1is a random variable independent of
F W(t), 0L t L T) with density p(0,x) having finite

moments of all order.

3. The Gauss-Christoffel integration formulas
Z%(f) for p(0,x) converge to the true value of the
integral I(f) for each function £ that is continuous

and such that as x * @, f is bounded by a polynomial.

4. The boundary conditions on p(t,x) for each

t 1s such that

*
(3.2.5) (L p,fi) = (p,Lfi)

for i=1,2,...,2n and £, (x) = e s



66

5. The eigenvalue problem defined by

Lu = \u

and the boundary conditions akove generates an infinite

set of eigenfunctions [un(x)} such that the set
-8 _x
(o] . .
fune 1 is compigt: in Lz(rl,rz) for some eo > 0
o

and such that u;e - 0 as n * ®, Furthermore any

sufficiently smooth function @ (x) can be approximated

-8 x
uniformly by combinations of the set fune o 1.

6. The density p(t,x) governed by

3p _ . * i
5t = L p X € (rl,rz) '

and the boundary conditions above exists and is unique.

We shall now make some comments on these conditions.

Remark 3.2.1. Equation (3.2.5) for fl(x) =1

implies that
d -
c't(pll) - O-

This means that boundary conditions are such that the

probability in (rl,rz) is preserved.

Remark 3.2.2. The assumptions made in Condition 4

may be analyzed by appealing to the spectral theory cf
the operator L involved. For a smooth function @(x),

the uniform convergence of its formal eigenfunction
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expansion depends on the behavior of the expansion of
the Green's function in terms of the eigenfunctions.
See [4] or [17)}. Actually for the finite interval
case condition A5 is automatically true. See (4]

Theorem 4.1.

Remark 3.2.3. As Feller [6,b] points out in

diffusion theory one usually starts with the assumption
that the transition probability P(x,t,B) = P(O,x,t,B)
has a probability density p(x.,t,y) = p(0,x,t,y) which
for fixed y satisfies the Fokker-Planck equation. As
we have seen in Chapter I (equation (1.10.3)) the
density p(0,x) and p(x,t,y) determines pl(t,y)

the solution of the Fokker-Planck equation. For
simplicity we assume condition 6 here and refer to
Gikhman and Skorokhod ([9,b]) where the existence of
the density p(x,t,y) under more restrictive conditions

on a and b 1is discussed in detail.

Remark 3.2.4. The classical boundary conditions

*
that make L and L adjoint to each other are discussed
by Feller [8,a]. Equation (3.2.5) is a special case of

the above for polynomials.

Let us present some examples of stochastic

differential equations defined on (rl.rz) where
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-—

0 <L ry < r2 £ ® for which under suitable boundary
conditions equation (3.2.3) is valid. We give examples
defined on (0,1) and (0,®) only since by Ito's

formula (using linear functions) any (rl,rz) can be
treated similarly. The idea for the proof of the following

examples are discussed in the work of S. Ethier [7].

Example 3.2.4. Consider the stochastic differential

equation
(3.2.6) dX(t) = a(X(t))dt+b(X(t))aw(t)
(3.2.7) X(0) = given

define on (0,1). Assume that a(x) and b(x) are
continuous on (0,1), b(0) = b(1) = O, a(0) > O and

a(l) < 0. Define o(x) = bz(x) and

l if x> 1
plx) = (x 1if OC¢x1l

0O 1if x(KO

since aep and c op are bounded, the stochastic
differential equation

1

AX(t) = aop(X(£))dt+ (5 0p) 2 (X(t))dW(t)

X (0) given
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has a solution (Q,%,X(t),P). Now the eguation
3!
(3.2.8) X, =X, =] " aep(X,)ds
1 (@] to
Y 3
+[ 7 (o ep) T (X)) AW (s)
)

implies that

P{X(s) € (-»,0) for tg < s <ty and
X(tl)'-x(to) <0} =0
and
PiX(s) € (1,») for ty < st and
X(tl) -X(tg) > 01 =0

whenever O < to < tl' Summing over all rationals to

and t, we obtain

P[xs € (~»,0) U (1,») for some s > O} =0 .

Therefore the probability is preserved in the interval
(0,1). Thus if p(t,x) is the density of the stochastic

differential equation (3.2.6) and (3.2.7) we have

1
(3.2.9) f o opt.x)dx = 1
0]

Now (3.29) implies that (3.25) is valid for fl(x) = 1.

For f(x) = xk, k > 1, we have
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' 1 2.2
* [
Lp.) = [ (-2 4 3 2B By Ky
0o %
X \ 1.2 8p Y 1. k-1.2 *
= x (-ap+bb'p + 5 b° )| -7 kx “bp|
0 0

+ (p,ka) = (p,ka) - 1iI]I:l ap
X

Therefore if a(l) # O the only boundary condition

that we need here is 1lim p(t,x) = O.
x-1

Example 3.2.5. Consider the stochastic differential

equation
(3.2.10) A&X(t) = a(X(t))dt+b(X(t))aw(t)
(3.2.11) X(0) = given

defined on (O,»). Assume that b(0) = O and a{(0) > O.
Also assume that a(x) and b(x) satisfy the existence and
uniqueness conditions. Define o(x) and p(x) the same

as in Example 3.2.4. Therefore the stochastic differential
equation

1

dX(t) = aop(X(£))dt+ (0 op) 2 (X(t))dW (t)

X (0)

given

has a solution (G,%,X(t),P). The same equation as

(3.2.8) implies that



f ’ - } =
PX(s) € (=,0) ty s {t; and x(tl) X(ty) < O! o]

and therefore with the same argument we have
P(X(s) € (-»,0) for some s > O! =0

and therefore equation (3.2.9) is true (only = is

replaced by 1l). Thus (3.2.5) is valid for fl(x) =1,

For f(x) = xk, k > 1 we have

* - i L
L p.x®) = (p,1xX) +x(-ap+bb/p+i b2 | Ly k=12,
2 3x g7 2 o
= (p,Lx") +lim xk(-ap+bb'p+% B2 %ﬁ_)
X =0
X =

Therefore here if we impose the boundary condition

(3.2.12) limx“p =0 and limx® 22 =0
X =h® X =®

the equation (3.2.5) is valid. In Section 3.6 we see that
if a(x)=bx+c, b(x) =a2,/§. then the boundary conditions

(3.2.12) are automatically valid.

3.3 Some Results from Differential Inequalities: To

continue our preparations for the convergence theorems
of the Gauss-Galerkin formulas we need some lemmas from

differential inequalities (Szarski [24]).
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Let Y = (Ylp...'yn)T and ;’ = (;1""'§n) be

two points of the n-dimensional space. We write

Y LY if oy, <y (1 =1,2,...,n)
and

Y<¥ if y, <y, (i=1,2,...,n
For a fixed index Jj we write
j g . ~ . _ =~
YO Y if oy, Ly (i=1,...,n) and Yy = Y5

Let a system of functions fi(t,y) = fi(t,yl,...,y )

(i=1,...,n) Dbe defined in a region D. We have

Condition V+ (V-): System fi(t,y) i=1,2,...,n

is said to satisfy condition V+ (V-) with respect
to y in D if for every fixed index j the function
fj (t,Y) 1is increasing (decreasing) w.r.t. each

variable yl""'yj—l' yj+l,...,yn separately.

Condition W+ (W-): System fi(t,y) (i=1,2,...,n

is said to satisfy condition W+ (W-) with respect to Y
in D if for every fixed index j, the following

implication holds true
Yy < ¥,(¢,¥) €D, (¢,%) €D = £5(6.Y) ¢ fj(t,'})

(¥ I %, (t,Y) €D, (£,9) €D = £, > £(e,D) .
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Definition 3.3.1 (Dini's derivatives) For

a real-valued function @(t), defined in some neighborhood

of the point ty, we denote D+w(to), D

and D_w(to) by

co(to+h) - w(to)

+
D ¢(t,) = lim sup
0 h-o* h
@ (ty+h) - (ty)
Q+w(to) = lim inf H
h=o*
_ @ (ty+h) -e(ty)
D ¢(to) = lim sup H
h=0-
w(to+h) -w(to)
D w(to) = lim inf ™
- h=0~
(the values +® and -» being not excluded). Obviously

if @ 1is differentiable at t0 all four derivatives are

equal.

Lemma 3.3.2. Let the right-hand side of the system

dy.
—1 = ] =
(3.3.1) dt Oi(t,yllo-o'yn) 1 1,2.....1’1

be defined in some open region D and satisfy in D
condition W+ with respect to Y. Let (tO,YO) € D.
Assume that o(t) = (wl(t),...,wn(t))T is continuous
in [to,a) and that the curve Y = @(t) 1lies in D.
Let Y(t) = (yl(t),...,yn(t))T be an arbitrary solution

of the system (3.3.1) passing through (tO,YO) and

defined in some interval [tO.B). Under these assumpticns, if
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(3.3.2) w(to) < Y4

and

D_wi(t) < oi(t,wl(t),...,mn(t)) i=1,...,n
for t € (to,a), then we have the inequality

w(t) < Y(t) for t € [to,a) n [tO,B)

Corollary 3.3.3. If the system (3.3.1) in

Lemma 3.3.2 has a unique solution, then Lemma 3.3.2 holds

true when the strict inequalities (<) are replaced
by ().
For a proof of the lemma and corollary we refer

to Szarski [24].

Corollary 3.3.4. Let the right hand sides of

the systems

dyi
(3.3.3) T = Gi(t,yl,...,yn) i=1,2,...,n
and

dy s _
(3-3.4) Tt—‘- fi(tlyll-..,yn 1 = l....,n

be defined in some region D and let the right-hand
side of the system (3.3.3) satisfy condition W+ with
respect to Y. Let (3.3.3) have a unique solution and
assume that Y(t) = (yl(t),...,yn(t))T and o(t) =

(¢1(t),...,wn(t))T are solutions to (3.3.3) and (3.3.4)
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respectively on [to,a). With these conditions and if
w(to) g_Y(to)
fi(t,m ,...,con) < Oi(t,:pl....,q:n) (t,Y) €D,

then o(t) ¢ Y(t) for t ¢ [to.c).

Proof. Notice that o(t) and Y(t) satisfies

all conditions of Corollary 3.3.4.

3.4 Helly's Theorems: The following two theorems are

needed in the proof of the preparatory lemmas in Section 3.5,

First we state

Definition 3.4.1. A sequence of measures fun} is

said to converge to a measure u substantially if

lim u_ (1) = w(I)
n=,e

for all (finite) intervals of continuity of u.

Theorem 3.4.2. (The first theorem of Helly).

Given a sequence {un} of positive measures and uniformly
bounded, then there exists a subsequence fpk } and a
measure § to which this subsequence converggs substantially.
Furthermore, if the sequence {un} itself does not

converge substantially to 4, then there exists another

subsequence {uk:] converging substantially to another
n

measure ' which is not substantially equal to u.
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Theorem 3.4.3. (The second theorem of Helly).

Given a sequence {pﬂ} of positive measures defined on
(0,#) and uniformly bounded, which converges substantially

to a measure . Then

Lim f f(x)du = [ f£(x)du
n+ "0 n *o

for any function £f(x) continuous in (O,®) and such
@
that, as intervals It (0,®),[ f£(x)du = [ £(x)an

N
IN o)

uniformly in n.

3.5 Preparatory Lemmas: We shall develop some lemmas

that are needed in the proofs of the convergence theorems
in the next section. In these lemmas we shall consider
measures pn(t) defined on the semi-infinite interval
(0,#). It is clear that these lemmas also hold for

measures defined on any finite interval (r centained

l.r2)

in (0,=),

Lemma 3.5.1. Assume that the stochastic differential

equation
(3.5.1) A& (t) = a(X(t),t)dt+b(X(t),t)dw(t)
(3.5.2) X(0) = given

satisfies condition A on (0,®) x [0,T]. For

t € [0,T] 1let
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n
(n)
u(t) = 2 a 8 n=1,2,...
n =1 k(t) x(?i)

k

denotes the n-point Gauss-Galerkin solution to the
corresponding system (3.5.1) with non-negative weights

and distinct nodes. Let ¢ be any fixed integer.

Let min)(t) = x
‘0

zdun(t): then the set

m™(): n>% @+, t e (0,T])

is bounded and equi-continuous.

Proof. We take fi(x) = xi, i=0,1,...,2n-1.

The system (2.3.1) can be written as

(n)
dm ' (t) /dt = (Lf,) (x)du k
k J\o k n

ool,...,zn-l

Using condition A we have

(3.5.3) am ™Yt) /at ja (ax+b) =X g
2 X Sl 17X TPY B %n
2
1 2 3%
v 3l Egxeryt

- (n) (n) (n)
= g (M or M e B )

We let MyoMy oo My g be the solutions to the system

dmy

(3.5.4) ot - gk(mk_z, M 1 mk) k=0,1,...,2n -1
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with the same initial values as mén)(o) k 0,1,...,2n-1.

Then by Corollary 3.3.4 we have
(n) 1
(3.5.5) m, " (t) { m,(t) n>3(4+1), t € [0,T]

On the other hand the system (3.5.4) is the Hankel system

for the stochastic differential equation

(3.5.6) ax (t)

(alx-+bl)dt-r(azx-+b2)dW(t)

(3.5.7) X (0) given

If My = Z(X(t)) 4is the law of the solution to the
equations (3.5.6) and (3.5.7) we know by Remark 2.5.5
that the linearity of (3.5.6) implies

® ok

m (t) = [ X'du  k=0,1,...,2n-1,
o)

that is, mk(t) is the exact k-th moment of the process.
For each 0k < 2n-1 mk(t) is a continuous function
on [O0,T] and therefore bounded. Thus there exists

a Kz such that for all n > %(14-1) and for all

0L tgT
(3.5.8) min) (t) gmz(t) < K,

The non-negativeness of mén)(t) implies that

{mén)(t), n > %(Li—l), t € [0,T]} 1is bounded. To prove
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the equicontinuity, we note that for given n > %(14-1),

by the mean-value theorem, we have

(n)

Im{™ (t)) -m{™ (£ | = lgfiagiill lt, -t |
for tl < g < t2
but
‘.d“‘_{i_% - |Jr; a(x,£) a—:x-&+ %bz(x,g) a—:}é&dunl
< f: lafx,8) | z;% dx + % I; lbz(x,g)l %;;% dun
< J; (a;x +Dby) aaf—x‘-l- %\[’; (a2x+b2)2 E:xizl'cn.;n

= g,m{® (@, n® (9, ™ @)

Since 9y is a polynomial with constant coefficients and
(n)(t), m(n)(t) and min)(t) are all uniformly bounded

on t, there exists an M‘ such that

gm (™) (2)
L ¢ g, ™8, ml™ ), ml (9| g uy

Thus for fixed 4 and all n > %(24-1) there exists

an Mz such that

\mir’) (t;) -min) (t) | < M, lt, -tll

which implies the equicontinuity of {min)(t), n> %(34-1),

0 t < T} and the proof is complete.
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Lemma 3.5.2. Assume that the condition A holds.

Then there exists a subsequence fuk (t)] of the Gauss-
n
Galerkin measures [un(t)} and a sequence of functions

*
fm,(t)] such that for any positive integer {4, we have
2

. (kn) -
Lim m, (t) = mz(t)
k
n
(k) 4
uniformly on t ¢ [O0,T], where m, D ey = 5 X duk ().
o) n

Proof. By Lemma 3.5.1 the set [m{n)(t), n>1l,

t € [0,T]] is bounded and equicontinuous:; therefore, by

the Ascoli theorem there exists a subsequence {kl n}
(kl ln) ’
contained in {n] such that [m1 (t)} converges

*
uniformly to a limit function ml(t). We can assume

(x, )

k; , > 3/2. The set (m, Lon' ey, k., _ > 3/2, t € [0,T])

l,n
is again bounded and equicontinuous:; therefore, there

exists a subsequence [k } contained in (k% }  such
2,n l,n

(k
that {mz 2,n (t)} converges uniformly to a function

*
mz(t). Continuing this process we get a subsequence

{kl n} such that (for any positive integer %)

*
} converges uniformly to a function mz(t).

Now consider the subsequence (kn n} which we rename
»

it {kn} that is contained in (n)}. It is obvious that
(x )

I

%*
tm, N (£)] converges uniformly to mz(t) and the proof

is complete.
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Remark 3.5.3. In Lemma 3.5.2 if we start with any

subsequence fkn} c (n), in the same way we can show

the existence of a further subsequence } € {kn}

fskn
*
and a sequence of functions fmz(t)] such that

L- t t

kn

uniformly in t € [O,T].

Lemma 3.5.4. For any t € [0,T], the elements of

*
the sequence {m‘(t)} are indeed moments of a measure,

*
i.e. there exists a measure P (t) such that for any ¢

[ x
o

& * *
dp (t) = mz(t) .

Proof. Assume {uk;} is a subsequence of (un} such

n
that for any positive integer &, we have

(k) "
Lim m, (t) = mz(t)
k=
n
By the first theorem of Helly there exists a subsequence
. *
of fk;} which we rename (k,] and a measure P (t)

*
such that {uk (t)} converges to P (t) substantially.
n

Now we claim that for any 4 and any ¢ > O, there

b (k)
exists an interval (0,b) such that [ x"duk > m, Ny -¢
o] n

for all n, 1i.e.

&
x7d < ¢ for all n .
Ib Hkn
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To prove the above claim, let us assume the contrary.

Therefore, there exists an ¢ O and an {4 such that

>
* .
for any b there exists an k_ € ikn} such that

* xtau + > <
Jb lM\kn
Now consider
k) ® -
n t+1 4
m (£8) = [ x"7raw *(v) > xx“du * ()
4+1 dO L‘Lkn J‘b ukn

b du, * (t) e*'b
zj'bukn >

%*
Thus we have shown that for any M, there exists a kn

*
(k)
n
such that My (t) >M or
(kn) *
lim M = =M (t)
kn" 4+1 +1

which is a contradiction. Thus by second theorem of Helly
we have
(-] -] * *
Lim [ xtaw () = [ xbae’ () = o) (0
k_ <= O n (o]
n
and the proof is complete.

Note in Lemma 3.5.4 we have shown only the existence
of a measure P*(t) which need not be unique. The
following Lemma shows that if the measures P*(t) are
uniquely determined by the moments m:(t). then the Gauss-
Galerkin integration formulas converge to the true values

of integrals.
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Lemma 3.5.5. Under condition A if for each t

*
the measure P (t) is uniquely determined by fm:(t)?,

then we have

t @
my (£) -my(0) = [ [ 4

O O

xz-la(x,s)dP*(s)ds

t -
+ L0 j’ L(4 -1)x"2b2(x,s)dp*(s)ds .
295 Y0

Proof. Let [kn} be a subsequence of positive
(k_) *
integers such that for any 4, Lim m, N = m, (t)
k-
n
uniformly in t. By the assumption that for any t,
* *
[mz(t)] determines the measure P (t) uniquely, the
*
subsequence (pk (t)) converges to P (t) substantially:
n
otherwise, by the first theorem of Helly for a fixed ¢t
there exists a subsequence {us 1 which converges to a
Xn
* * *
measure Pl(t) and Pl(t) is not P (t) substantially.

In the same way as we did in Lemma 3.5.4 we can show that
* ® * ® *
(t) = m; (&) = [ xtapl(v) = [ <ar"(v)
4 & 0 1 o

and this is not possible. Also in the same way as we
proved in Lemma 3.5.4, we can show that for any t and

and any € > O there exists Db > O such that

[--]

f f(x)duk (t) is less than ¢ for all %k _, where
b n n

f(x) 1is a polynomial with non-negative coefficients;
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xf(x)d = ®
k = O ukn

which is a contradiction. Now let (x) be any continuous
function which is dominated by a polynomial £(x) with
non-negative coefficients. For any € > O, there exists

b > O such that

1T @) aw (v lo(x) [dw  (t)
iy M 1< M

<[ f@aw () < e
Jb Hkn

for all %k . Thus by the second theorem of Helly, we
n

have

® *
(3.5.9) Lim v(x)d (t) = @(x)dP (t)
kn*° j‘0 ukn IO

Recall that

(k)
—_— Ix"a(x,t i t
at o %,

1
+ = 4(4-1)x
XO 2

-2, 2
b7 (x,t)du, (t)
Hkn

4-1
L[ (a,x+Db)x""raw (t)
Al ™ 1 M

2_4-2

+ % L(L-1) fo (ayx +b,) “x""“au (¢
n
(kn) (k n) (kn)
= g‘t(m"_2 (), m, (), m, ()
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We know that 9, is uniformly bounded. By the continuity

(kn)

dmz (t)
of 3t we have
(x_) (k) t ®
4-1
m, n (t)l-mz n o) = IO (IO Ix a(x,s)dukn(s)
+F Lau -1)x"'2b2(x,s)dp1£5))ds
(0] n
' t (k) (x_)

g‘ro gz(ml_g (S),...,m‘ n (S))ds

Thus by the Dominated Convergence Theorem and (3.5.9) we

have

* *
mz(t)'-m‘(O)

t @ ©
= (0 et la,e)arts) +f L aa-1xt 202 (x5 af(s))as .
o (0] (0]

3.6 Main Convergence Theorems: As we have mentioned

before all the Lemmas in section 3.5 are true for finite

interval. Thus we can prove the following theorem.

Theorem 3.6.1. Under condition A if (rl.rz) c (0,=)
is a finite interval, then the Gauss-Galerkin integral
formulas Z%,t(f) converge to I (f) where f(x) is
any continuous function defined on [rl,r2].

Proof. To prove the theorem, first we show that for

any positive integer 4 and O £ t T, the sequence
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fmén)(t)} converges to the exact moment 6(Xt(t)). If
we consider the sequence rmin)(t)} as a sequence in the
complete metric space C([O0,T]), it suffices to prove
that any subsequence of {min)(t)} has a further
subsequence which converges to the exact moment uniformly.
Let [k;} be a subsequence of positive integers. By

*
Lemma 3.5.2 there exists a subsequence {kn] c {kn}

and a sequence {m;(t)} such that for any 4,
(k)

*
Lim m, ® (¢t) = m,(t) wuniformly in t. By Lemma 3.5.4,
4 )
k=
n
* *
mz(t).t = 0,1,2,... are the moments of a measure P (t).

Now since [rl.r2] is finite, the coefficients a and
b in (3.5.1) are bounded and therefore, the equation

(3.5.6) reduces to

(3.6.1) dax (t) a dt-kbldW(t), a

1 and b1 constants

1

(3.6.2) X (0)

given .

Since the density of the solution to the above stochastic
differential equation is normally distributed (Arnold [1],

p. 133), the moments of the solution satisfy
m, (£) < C(24+1) R4

for some constants C and R independent of { that

may depend on t. Thus for any &£ and n we have
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)

.

min) (£) < m,(t) < C(24+1) 'R

* *
and fmz(t)} determines the measure P (t) uniquely.

Thus by Lemma 3.5.5 for any £ we have

(3.6.3) m’;(t) -m;(O)

_ A n 2-1 *
=] | X a(x,s)dP (s)ds
O O
t o
+ 200 s -t % ae” (6) 9
O O

t
f (2" (s) ,Lx?) as
o

On the other hand P(t) = p(t,x)dx, the exact measure,

satisfies the same equation as above. Thus we have
t
(P(t),£) - (P(0),£) = [ (P(s),Lf)ds
o

for all polynomials £f.

Now let (x) be any Cz-function on [rl.rzl.
By the Weierstrass approximation theorem and the finiteness
of the interval [rl,rzl, for any € > O there exists

a polynomial Pm(x) such that
lep (x) -Pm(x)H4-H¢'(x)-Pé(x)“-+ﬁ¢”(x)-P;(x)n < €

for all x € [rl,rz]. Now we wish to prcve that

t
(3.6.4) (2" (t),@) - (P (0),9) = " (p"(s),Lg)ds
o]
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To do this, note that by (3.6.3)

t
| 2" (6)0) - (2 (0).,0) -] (B"(s),Le)as]|
o

* *
| (P (t),cp-Pm+Pm) - (P (0O) ,cp+Pm-Pm)

t

*
_“f‘o (P (s).,L(p-Py) +me)dsl

* * ,t * 3 I
< | (£),9-P ) = (P (0),9-P) -JO (P (s) ,L(e-P )ds

< 1@ .e-2) |+ | (0),0-2) |

o *

+[ (@ (s),L(g=-P Nds| < Ce
where C 1is a constant depending on the bounds of the
coefficient a and b. Thus equation (3.6.4) holds for

any Cz—function w({x) defined on [rl.r2].

Now let ux(x) be an eigenfunction for the eigenvalue

problem
(3.6.5) Au = Lu

Equation (3.6.4) for u, kecomes

* *
t * t %*
= [ (P (s),Lu)ds = A [ (P (s),u,)ds
0O 0}
* _ At . .
Thus (P (t),uk) = c,e . Obviously the equation (3.6.4)

*
is true for P(t) and in the same way as we showed for p we
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can prove (P(t),ux) = Ciext. Since P*(O) = P(0), we
have proved

*
(3.6.86) (P (t),u,) = (P(t),u,)

Thus by condition A5, (3.6.6) holds for any o(x)

sufficiently smooth: therefore we have
* * £
P (t) = P(t) and mz(t) = (X7 (t)) ,

for any positive integer 4. Now this and equation (3.5.9)

complete the proof of the theorem.

In the remainder of this section we shall discuss the

convergence of the Gauss-Galerkin method in the (0,=)
case. First let us consider the special stochastic

differential equation

(3.6.7) ax(t) X(t)dt +X(t)aw(t)

(3.6.8) X(0) = given

The Fokker-Planck equation for the above equation is

ap _ _2(xp) , 1 3%(x°p)

ot 3x 2 ax2

p(O:X) given

The Hankel system for the moments of p(t,x) 1is

dmn(t)

=1L 2 =
3t — = 37 (m+n7m (t) n=0C.1,...
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with the solution

%h&+n2)t
mn(t) = mn(O)e n=0,1,...

As these moments do not satisfy the sufficient conditicns
(3.1.5); p(t,x)dx may not ke uniquely determined by
these moments. Also it is obvious that the Gauss-
Galerkin solutions of (3.6.7) and (3.6.8) are the same

as the Gauss-Christoffel ones. Thus the sequence of
functions {m:(t)] is the sequence of the exact moments.
Thus, in general even if a linear stochastic differential
equation satisfies condition A, Lemma 3.5.5 may not be
true and therefore we do not have a convergence theorem
similar to the Theorem 3.6.1. HKowever, we have |
convergence for a more restrictive class of stochastic
differential equations defined on (0,x). First consider

the stochastic differential equations

(3.6.9) dX (t) (bX (t) +a)dt +.J2axX(t) aw(t)

given where p(0,x) = Be™P*, s> o0

(3.6.9)" X(0)

for a > O defined on (0,«) x [0,T]. The Fokker-Planck

equation of (3.6.9) is

2p _ _ a(bx+a)p+ azaxp
3t 9x

ax2

-bp + (a -bx) %—E-O- ax °p .
X ax

N



o1

By the separation of variakles, we seek solutions to
above partial differential equation in the form e " “v(x).

Obviously v(x) satisfies the differential equation.

xv’ (%) + (L -2 x)v'(x) -2 v(x) +2 v(x) = O
a a a
If b > O substituting u(§) = v(x) where x = % £
we have

(3.6.13) Eu’ (%) + (1L - &)u’(g) +(%—l)u(@ =0

It is well known (see [16], p. 243) that a necessary and

sufficient condition for the differential equation
”" 1
xy + (l-x)y " +uy =0

tc have a polynomial solution is that. u = n. Furthermore,

Ln(x), the Laguerre polyncmial of degree n 1is the
A
only sclution. Now if we assume jgn—l =n, 1i.e.

xn = b(n+1l) we may write
E) -A_t
= n b
(3.6.11) p(t,x) = nzg a_ e Ln(a x)

as a solution for the Fokker-Planck equation. With

Bx

p(0,x) = Be” and since ([18], p. 135 and 205))

(612 [ e™> L (5L (5dE=0 m#n,

(3.6.13) ! e‘gth(§>]2d§ =1
0



(3.6.14) lsz exp(-xz/1 -2) = T ann(z) . |lz| <1, and
(3.6.15) [ e (mag= 2Pz,

0

we obtain from (3.6.11)

o -Bx _-bx/a b b
I Be e L (T xd(7 %)

s -bx/a oy b b
- 5 o] 2 2
= n:o e Ln(a x)Lm(a x)d(a x)
®  -bx/a b 2 b
- P —_— —_— -
=a | e (L (a x) ] d(a x) a

o

Thus by (3.6.13) we have

_ aBy-n-1 adn _ ag, -1 apg n
a, = B+ T IE" - 43T (2L

and
-bt = -bt

_ Be age n b

(3.6.16) p(t,x) = L 28 nEO 5+as) Lp@
b
-bt
= Bbe - exp(-bBe_btx/
b+ ap - age bt
(b+aBg -age 7))

In the case when b < O equation (3.6.10) becomes
" ay .. ! A _
Zu + (1 + Z)u +(l+m)u—0

In this case for 1 +T%I= 1+ n the solution of the
£
above equation is of the form u(g) = e~ ° L (8). Thus

equation (3.6.11) becomes
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_1kl x
e-—nlblt e @ Ln(-lg'l- x)

[--]
p(t,x) = Z a_
n=0

-Bx

With p(0,x) = Be using equations (3.6.12) - (3.6.15)

we get a_ = B( Bba)-n-l ( . Thus formally

n

Ba n |b|
© -1 - X
5> lgl I1o|a o-lplnt 72 Ln(|1§| )
=0 ol
b

..-l-b—l- X = n
= Me a > (B_aﬁ;albl e-|b|t) Ln(-I%L x)

a n=0

p(t,x)

Note that the series above converges for B > |b|/2a to

the limit

Bbe’bt exp -bBe-btx
b+ap - aBe-bf’ b+ ag - aBe"bt

p(t,x) =

which is the same as equation (3.6.16). However the
limit is defined for all B8 without any restriction.
Thus for any b, p(t,x) 1is exponential. 1In particular

there exists vy such that

-]
(3.6.17) [ erp(t,x)dx+“." xe¥p (t,x) dx
(0] 0]

+ f xzeyxp(t,x)dx <M=
o)

which is needed later. It is interesting to see that
+he stochastic differential equation (3.6.2), (3.6.10)

satisfies Condition A. It is easy to verify Conditions
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Al-A3. By integration by parts we can verify that A4
is valid. Also in this special case p(t,0) need not
be zero. The eigenvalue problem of condition A5 for

equation (3.6.9) becomes

du azu
(bx + a) Ix T ax 3= Au
ax
As we saw above, depending on whether b is negative
or positive, the eigenfunctions are Ln(x) or e-an(x)
where Ln(x) is the Laguerre polynomial of degree n
and they satisfy the requirements of the Condition AS.
Finally we have derived the density explicitly
(Equation (3.6.16)). We refer to (Feller [8,a], p. 516)

for the uniqueness of the solution and the validity of

Condition A6 holds.

Now consider any stochastic differential equation

of the form

(3.6.18) ax(t) a(X(t)) +b(X(t))aw(t)

(3.6.19) X (0) given
which satisfies Condition A on (0,«) x [0,T]. 1In

addition we assume
(3.6.20) b(x) < +/20x (00 a positive constant)

and X(0) has a moment gernerating function, i.e.
n

8 mn(O)
n.

N
M= X < « for some 8§ > O
n=0
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There exists a B1 > O such that g; > (l-+M)9-1 or
1
2 -B,X n _
| lene Wax = nt(&) » M8t > m_(0)
0 B n

In the same way as in Lemma 3.5.1 we can show that for
any n, the n-th moment of the solution to the equation
(3.6.18) is less than or equal to the n-th moment of the
solution of an stochastic differential equation of type
a&X(t) = (bX+0)dt+,/20X dW(t) with the initial density

Be-Bx

whose n-th moment is greater than or equal to
mh(o) and therefore the functions {m;(t)} determine
a measure uniquely. Thus all the Lemmas of Section 5 are

valid. Let 91 be

-bt
9. = min Bbe

1 O<LtLT b+ 0B -oBe™?

t

We are now ready to prove the following theorem.

Theorem 3.6.2. Assume that the stochastic differ-

ential equation (3.6.18) and the initial value (3.6.19)
satisfy Condition A together with (3.6.20). 1If 90,
the constant in A5, is less than or equal to 61, then
the Gauss-Galerkin integral formulas converge to the
true value of integral, i.e.

ﬁ-i;n 'En'tm = I, (f)

where £(x) 1is any continuous function dominated by a

polynomial.
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Proof: The proof is similar to that of the

Theorem 3.6.1. Let {k;} be a subsequence of positive

integers. By Lemma 3.5.2 there exists a subsequence
[kn} c {k;} and a sequence {mz(t)] such that for any

£, vim m¥n'(£) = m}(£) uniformly in t. Similar to

kn4”

what we did in Theorem 3.6.1 we can show that

* * t - L =1 *
m, (£) -my(0) = [ [ x TTa(x)a@P" (s)ds
o°o0

t (-]
+ 1 I J‘ L (L -1)x‘°"2b2(x)dP*(S)ds
295 %

t
J (P*(s).thlds
0]

On the other hand P(t) = p(t,x)dx, the exact measure,

satisfies the same equation as above. Thus we have

t
(P*(t) ,£) - (P*(0),£) =.] (P*(s),Lf)ds
o)

and

t
(P(t),£) - (P(O),f) = [ (P(s),Lf)ds
o)

for all polynomials £. Now let @(x) bg a Cz-function
-8 _x

defined on ([0,®) such that Lim 9 (x)e 0" - O. By the

X0
generalized Weierstrass approximation theorem (see Buck
[ 2], p. 74), for any ¢ > O there exists a polynomial

Pm(x) such that

8%
o) =B_(0) | + [0 (x) =/ () | + |9" (x) =P%(x) | <ee O
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for all x € [0,®). Now we wish to show that

t
(3.6.21) (P*(t),9) - (P*(0),§) = [ (P*(s),¥)ds
o)

To do this note that

t
[ (P* () ,9) - (P*(0),® -[ (P*(s),L¥)ds]|
0]

*
| (P* (t) 9 =P+ Pm) - (P*(0) P =P+ pm)
t *
- IO (P*(s) ,L(® -P ) +LP )ds]|
* *
< [e* () ,2-p | - (P (0),®-P)
nt *
- JO (P™(s),L(®-P)) |
* *
< 1(P*(t), @ -2 ) |+ |P*(0) ,co-Pm)I
t *
+ Io | (B*(s) ,L(® -P_)) |ds

< Ce

where C 1is a constant depending on the bounds of

® Box ® eox
[ e~ ap*(ty, [ =xe ” aP*(v)
o) (o]

® Box

and f x“e ar* (t)
C

which is independent of t ©because of (3.6.17). Thus

equation (3.6.4) holds for any Cz-function ®(x) such
-0 x
that ©"(x)e O =+0 as x +=. We now let u_  be an

eigenfunction for the eigenvalue problem
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(3.6.22) Au = Lu

Since u is a C,-function and by Condition AS
-8 _x
Lim u’e = 0, equation (3.6.21) for u_ becomes
x+= I n
(P*(t) ,u ) - (P*(0) ,u_) = X (P*(s) ,Lu_)ds
'“n ‘“n JO '““n

t
- *
= X\ jo (P*(s) ,u_)ds
Thus in the same as in Theorem (3.6.1) we have

(3.6.23) (P* (t) ) = (P(t),u)

Now let {(x) Dbe any C, function with compact

support contained in (O,®). By Condition A5 for any
N -8 _x
€ > 0O there exists a finite sum of the form z cnune o
n=1
such that
N —Box
l4 - Z cue | < ¢
n=1 010
90x
Then for @(x) = {(x)e we have
N Box
o - 2 c.u l < €e
n=1 nn
Thus
* N * N *
(®,P*(t) =P(t)) = (9 - T cu PY -P) + z (cu_,P* -P)
n=1 n=1

N
—-— * -
= (0 - 1'lzilcnumn, P* - p)
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implies that

K eox . @ 50x
@, P*(t) =P(t) | < e(] e ~ aP*(t) +] e “ ar(t)

v

(0] o)

K Ce

Thus (3.6.23) holds for any %(x) with compact support:

therefore,
P*(t) = P(t), and m(t) = &(x* () ,

for any positive integer 4. Now this and equation (3.5.9)

completes the proof of the theorem.



CHAPTER IV

NUMERICAL EXAMPLES

We present in this chapter several numerical
examples that serve to illustrate the Gauss-Galerkin
method developed in the preceding chapters. We note that
the Kolmogorov equation corresponding to nonlinear
stochastic equations has been solved explicitly only
in a few simple cases. We have thus included examples
for some simple stochastic equations where the exact
solution are known so that the numerical results may be
compared with the exact ones. We have also included
examples for problems which do not satisfy the hypotheses
in the convergence theorem but whose Gauss-Galerkin approxi-

mation seem to be accurate nonetheless.

The Gauss-Galerkin solutions are obtained by using the
well-known programs (e.g the International Mathematical
Statistical Library) to compute the iﬁitial Gauss-
Christoffel weights and nodes and then using standard

ordinary differential equation solvers (Dgear).

4.1 Example l: Consider the stochastic differential

equation

100
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(4.1.1) aX(t) = (1 -X(£)Vdt +,/2X(t) dw(t)

(4.1.2) p(0,x) = 2 exp (-2x)

studied in Chapter 3, by equation (3.6.16) pl(t,x), the

exact density, is given by

t t
(4.1.3) p(t.,x) = -igi—— exp Jﬁ%iii
2e” -1 2e " -1

and the exact n-th moment is given by

(4.1.4) M (6) =ni(l-3e " .

From (4.1.3), the exact 5-point nodes and weights are
computed and shown in Tables 4.1.5 and 4.1.6. The
numerical solutions for the Gauss-Galerkin 5-point nodes
and weights are given in Tables 4.1.7 and 4.1.8. Using
5-point Gauss-Galerkin nodes and weights the first five
moments are computed. Tables 4.1.9 and 4.1.10 show the

exact and above computed moments.
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Table 4.1.5

The exact 5-pcint nodes for Example 1

.13178
.18363
.21508
.23416
.24573
.25274
.25699
.26267
.26344
.26354

H H H e =

.70670
.98477
.1534
.2557
.3178
.3554
.3782
.4086
4127
.4133

1.7982
2.5058
2.9349
3.1952
3.3531
3.4489
3.5069
3.5843
3.5948

3.5962

N OO0 00 6 O 1 Bd

NN

.5429
.9369
.7824
.2953
.6063
.7950
.9094
.0619
.0825

.0853

6.3204

8.8073
10.316
11.231
11.785
12.122
12.326
12.598
12.635
12.640



N N+

o o o o

The exact 5-point weights for Example 1

.52176
.52176
.52176
.52176
.52176
.52176
.52176
.52176
.52176
.52176
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Table 4.1.6

.39867
.39867
.39867
.39867
.39867
.39867
.39867
.39867
.39867
.39867

a3

.75942E-1
.75942E-1
.75942E-1
.75942E-1
.75942E-1
.75942E-1
.75942E-1
.75942E-1
.75942E-1

.75942E-1

]

.36118E-2
.36118E-2
.36118E-2
.36118E-2
.36118E-2
.36118E-2
.36118E-2
.36118E-2
.36118E-2
.36118E-2

ag

.23370E-4
.23370E-4
.23370E-4
.23370E-4
.23370E-4
.23370E-4
.23370E-4
.2337CE-4
.23370E-4

.23370E-4



The Gauss-Galerkin 5-point nocdes for

1.0
1.5
2.0
2.5
3.0
5.0
7.0

9.0

.13178,
.18366
.21507
.23410
.24560
.25259
.25686
.26258
.26338

.26353

e R
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.70670
.98490
.1533
.2554
3171
.3546
.3774
.4081
4124

.4132

Table 4.1.7

1.7982
2.5062
2.9347
3.1944
3.3514

3.4467

© 3.5049

3.5830
3.5939

3.5959

Example 1

)

3.5429
4 .9380
5.7821
6.2937
6.6030
6.7908
6.9056
7.0593
7 .0808

7.0848

6.

8

10.

11

12
12
12
12
12

3204

.8105

315

.228
.780
.115
.319
.594
.632

.639
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Table 4.1.8

The Gauss-Galerkin 5-point weights for Example 1

t a

1

O .52176

.5 .52180
1.0 .5217e6
1.5 .52176
2.0 .52176
2.5 .52176
3.0 .52176
5.0 .52176
7.0 .52176
9.0 .52176

.39867
.39865
.39866
.39867
.39867
.39867
.39867
.39867
.32867
.39867

a3

.75942E-1
.75917E-1
.75939%E-~1
.75942E-1
.75942E-1
.75942E-~-1
.75943E-1
.75943E-1
.75943E-1
.75942E-1

3

.36118E-2
.36082E-2
.36112E-2
.36117E-2
.36117E-2
.36117E-2
.36118E-2
.36118E-2
.36118E-~2
.36118E-2

ag

.23370E-4
.23312E-4
.23360E-4
.23368E-4
.23368E-4
.23370E-4
.23370E-4
.23370E-4
.23370E-4

.23370E-4
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Table 4.1.9

The exact moments for Example 1

N o o b
O O O o o o o o o o

o o

-

I I R N I =

0] 1 2 3 4
.0000 . 50000 . 50000 .75000 1.5000
.0000 .81606 1.3319 3.2608 10.644
.0000 .93233 1.7385 4.8625 18.134
.0000 .97511 1.9017 5.5630 21.698
.0000 .99084 1.9635 5.8367 23.133
.0000 .99663 1.9865 5.9396 23.678
.0000 .99876 1.9950 5.9777 23.881
.0000 .99954 1.9982 5.9918 23.956
.0000 .99983 1.9993 5.9970 23.984
.0000 .99994 1.9998 5.9989 23.9%4

m
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Table 4.1.10

The Gauss-Galerkin moments for Example 1

t Ty m1 m, m3 m4

o 1.0000 . 50000 . 50000 . 75000 1.5000
1.0 1.0000 .81599 1.3317 3.2599 10.640
2.0 1.0000 .93186 1.7367 4.8551 18.097
3.0 1.0000 .97456 1.8995 5.5537 21.650
4.0 1.0000 .99029 1.9613 5.8269 23.081
5.0 1.0000 .99626 1.9851 5.9333 23.643
6.0 1.0000 .99848 1.9939 5.9727 23.854
7.0 1.0000 .99930 1.9972 5.9874 23.933
8.0 1.0000 .99967 1.9987 5.9940 23.968
9.0 1.0000 .99986 1.9994 5.9974 23.986

The agreement above appear to be excellent. We also
note the rapid convergence of the above solutions to their

steady-state values.

4.2 Example 2: Consider the stochastic differential

equation

(4.2.1) dX (t) X(t) (L -X(t)aw(t)

(4.2.2) X(0) = given
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defined on (0,1) x [0,T] where the initial process

X(0) 1is a randcm variable whose density is

uxexp(—l/(l—x)z) if Oo<x<1l
(4.2.3) p(0,x) = where C is normalizing constant

o if x<0 or x>1

We note that an explicit solution of above problem does
not seem to be available (however the solution exists).
We present the Gauss-Galerkin 5-point nodes and weights
in Tables 4.2.4 and 4.2.5 below. We also present the

values of the first five moments in Table 4.2.6.

Table 4.2 .4

The Gauss-Galerkin 5-point nodes for Example 2

t X X b 4

1 2 3 4 X5

O  .46931E-1  .15656 .29809  .44651  .58476
1.0 .49810E-1  .20298  .42683 .67040 .87236
2.0 .38880E-1  .20435 .45225 .71633  .91882
3.0 .31840E-1  .20430 .46443  .73763  .93942
4.0 .26985E-1  .20398  .47172  .75017  .95158

5.0 .23428E-1 .20350 47652 .75846 .95952
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Table 4.2.5

The Gauss-Galerkin 5-point weights for Example 2

t a a a a a

1 2 3 4 5

O .90525E-1 .33506 .39231 .16635 .15759E-1
1.0 .33524 .34166 .20516 .95342E-1 .22596E-1
2.0 .43649 .25838 .15546 .10050 .49179E-1
3.0 .503i0 .20095 .12300 .9616E-1 .76791E-1
4.0 .55148 .15953 .99061E-1 .87519E-1 .10241
5.0 .58793 .12871 .80720E-1 .77590CE-1 .12505

Table 4.2.6

The Gauss-Galerkin S5-point moments for Example 2

t mo my m, m3 my
1.0 1.0000 .25725 ,11233 .62580E-1 .39736E-1
2.0 1.0000 .25726 .13633 .91698E-1 .68467E-1
3.0 1.0000 .25727 .15552 .1l1631 .94347E-1
4.0 1.0000 .25726 .17107 .13695 .11687

5.0 1.0000 .25727 .18375 .15415 .13606
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Our convergence theorem in Chapter»3 (Theorem 3.6.1)
guarantees the convergence of the numerical results here
to the exact ones as n become large. Our experience
suggests that with n = 5 here we expect the first ten
moments to be good approximation to the first ten exact

moments .

4.3 Example 3. Consider the stochastic differential

equation

(4.3.1)  ax(t) = 3 X(t)dt +\{_c2> X (£) QW (t)
(4.3.2) X(0) = given

defined on (0,®) x [O,T] where the initial process XO

is a random variable whose corresponding density is

cx exp(-1/(x -1) 2) if O0¢x<1l
(4.3.3) p(0,x) = where C 1is normalizing factor

C if x> 1

Equation (4.3.1) is a homogeneous linear stochastic
differential equation. The boundaries are inaccessible
(see Feller [6,a]) and the n-th moment of its solution is

given by (see Arnold (1], p. 139)

(4.3.4) mn(t) = mn(O) exp (.O].(n2 +49n) t)
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The exact 5-point nodes and weights are given in

Tables 4.3.5 and 4.3.6. Also the Gauss-Galerkin 5-point

nodes and weights are given in Tables 4.3.7 and 4.3.8.

Using 5-point and 6-point Gauss-Galerkin weights and

nodes the first 10 moments are computed. Tables 4.3.9-

4.,3.11 show the exact moments and the Gauss-Galerkin

moments .
Table 4.3.5
The exact 5-point nodes for Example 3

t Xy X, Xy Xy X

O .46931E-1 .15656 .29809 .44651 .58476
1 .91699E-1 .30071 .57356 .88306 1.2263

2 .17088 .55329 1.0635 1.7039 2.6209

3 .31106 .99813 1.9483 3.2573 5.3333

4 .55735 1.7795 3.5488 6.1883 10.7165

5 .98691 3.1485 6.4420 11.703 21.343
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Table 4.3.6

The exact 5-point weights for Example 3

2

.90525E-~1
.12685
.16357
.20200
.24190

.28273

.33506
.42126
.48110
.52022
.54137

.54801

33 a4

.39231 .16635
.36904 .80708
.31398 .40818
.25577 .21849
.20441 .12249

.16212 .71172

Table 4.3.7

ag

.15759E-1
E-1 .21504E-2
E-1 .52822E-3
E-1 .16605E-3
E-1 .59992E-4

E-2 ,23716E-4

The Gauss-Galerkin 5-point nodes for Example 3

*1

.46931E-TI"
.91622E-1
.17070
.31090
.55809

.98905

)

.15656

.30122

.55464
1.0013
1.7879
3.1648

.29809
.57380

1.0648

-

.9527
3.5645
6.4760

4 5
.44651 .58476
.88338 1.2628

1.7064 2.6245

3.2669 5.3508

6.2252 10.791
11.787 21.525
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Tabkle 4.2.8

The Gauss-Galerkin S5-point weights for Example 3

al a2 a3 34 as
.90525E -1 .33506 .39231 .16635 .15759E-~1
.12657 .41745 .36874 .80571E-1 .21670E-2
.16292 .47811 .31332 .40617E-1 .53997E-3
.20102 .51785 .25479 .21671E-1 .17067E-2
.24099 .53953 .20287 .12046E-1 .61669E-4

.28177 .54625 .16052 .69323E-1 .22346E-4
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Although the coefficients of this example do not
satisfy the conditions of our convergence theorem, the
agreement above is very good. We note also that the moments
computed from the Gauss-Galerkin 6-point nodes and weights
are closer to the exact moments than the moments computed

from the Gauss-Galerkin 5-point nodes and weights.

4.4 Example 4. Consider the stochastic differential

equation

(4.4.1) ax (t) (1 -X(t))dt + 3/2x(t) dw (t)

(A)

(4.4.2) X (0) given

defined on (0,®) x [O0,T]. We note that an explicit
solution of above problem does not seem available and
its coefficients do not satisfy conditions of our
convergence theorem. However we expect that the
solution above to be close to the solution of the

stochastic differential equation

(4.4.3) aX (t) (1 -X(t)dt+b(X(t))aw(t) (B)

J2x if x <1

where b(x) = < with the same
d2x if x> 1

.
initial value as (4.4.2). Equation (4.4.3) satisfies our
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convergence theorem; therefore the convergence of the
numberical results are guaranteed. The Gauss-Galerkin
5-point nodes and weights for the equations (4.4.1)

and (4.4.3) with the initial value p(0,x) = 2 exp (-2x)
are computed and used to compute the first eight moments
of each problem. These moments are shcwn in Tables

4.4.4 and 4.4.5.
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APPENDIX A

A GEOSTOCHASTIC MODEL

In This Appendix we consider a geostochastic model
which is not covered by the kind of stochastic differen-

tial equations discussed in previous chapters

(A.1) aX(t) = (X(t) -X2(t))dat +p(8(X(t)) -X(t))dt

+ (% (£)) Y2 @i (e

(a.2) X (0) given

where Yy >0 and 0 p 1 defined on (0,®»). The
main difference is that in (A.l), the drift term depends
on the law of the process if p # O. The convergence
theorems developed in this dissertation do not apply to
this model. However the Gauss-Galerkin method can still

be applied to such problems, as we shall illustrate below.

The Fokker-Planck eguation corresponding to the

equation (A.l) is

d3p _ > 2
P = -3x [ [ yplt.y)ay+ (1 -p)x -xT)p(t,x) ]
2
1 3 *
+ 5y —5 (xe(t,x)) =L p(t,x)
2 2
X

121
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The steady-state density of equation (A.1) is

given by (see Dawson [5])

2e
(—Y--l)

(A.3) Pe(x) = Cx exp(-(x -l-bp)z/Y). x>0

where C 1is a constant which makes CJ‘ Pe(x)dx =1 and
(o]

e 1is a positive constant which satisfies the equation
«®

(A.4) e = m(e) = p f :<Pe(XJ dx
o

For fixed p, Y and any positive number e, m(e) 1is an
integral which can be computed using the Gauss-Laguerre
integration formula. Then we plot the graph of y = m(e)
and y = e where the intersection provides an initial
value for finding e*, the root of the equation

e = m(e). Having Pe*(x), we can compute the exact
moments and therefore the corresponding Gauss- Christoffel

nodes and weights for comparison with the Gauss-Galerkin

nodes and weights.

The Hankel system of moments corresponding to

equation (A.l) is given by

dml(t)
(A.5) —3F = pmy (t) +am, (t) - mz(t)

dmn(t)

(A.6) —B— = (npm (£) +3n(n - V)m__, (¢)

-+anmn(t) - ,(t), n3?2

m_(O) d(Xg), a=1-p



123

As we can see, the system (A.5) is not closed.
Using the algorithm given in (2.9.1) we may clcse the
system, solve it numerically and compare the steady-
state results with exact steady-state moments. We

studied the case of p=.5 and v =1, i.e. for the

stochastic differential equation

(a.7) aX(t) = (.5%(t) + .58 (X(£)) -X2(t))dt

rxe)) By .

The first six exact steady-state moments are

my = 1.0000
m, = .60284
m, = .60434
(A.8)
m, = .77234
3
m, = 1.1602
mg = 1.9805

The S5-point Gauss-Galerkin steady-state nodes and
weights of the equation (A.7) are computed. Also using
the Gauss-Galerkin nodes and weights, the first six
steady-~state moments are computed. The results are shown

below.
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mo = 1.0000
m = .56044
m, = .56044
(A.9)
m, = .71749
3
m, = 1.0762
mg = 1.8154

The system (4.4.5) corresponding to equation (A.7) for

n = 10 is solved and the first six moments are shown

below.
mO = 1.0000
m1 = .56044
m, = .56044
(A.10)
m, = ,71748
- 3
m4 = 1.0762
m5 = 1.8153

By the equivalence of the system (2.2.4) and (2.5.12)
we expect that the results in (A.9) and (A.10) to be
very close and indeed they are. The numerical results
for first three moments are accurate within 5%. We have
done computations for this example with Laguerre polynomials
as a basis for polynomials of degree less than or equal to

2n-1
X

2n -1 instead of 1,x%x,-:--, , the numerical results are

identical.



APPENDIX B

GALERKIN METHOD WITH FIXED NODES

In Section 2.2 we discussed the n-point Gauss-

Christoffel approximation

for a measure M defined on (rl,rz) where

-2y <ry, <. Since the nodes [ik} are the
zeros oi orthogonal polyncmials, the weights {ik} can
be chosen so that

)

n-
f(x)au = X 3 f(X.) +E[f]
J‘rl k=1 ak xk

is exact for all polynomials of degree less than or equal
2n -1. This was the basis for the Gauss-Galerkin method
that we developed in Chapter III. We shall consider in

this Appendix another Galerkin method based on nodes that

are fixed in time. Let e SREVRERYS be any n distinct
points. We can find constants 31""'£n uniquely so that
T2 n
] fxau= Z a f(x) +E[f]
ry k=1

125
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is exact for all polynomials of degree less than or equal

n
«
to n-1. (Stroud [21],p. 107). The sum ’;, akf(xk)

is called a guadrature sum. Also, as kefore, if
f(x),f(l)(x),...,f(n)(x) are continuous on [rl.rzl,
then Ehere exists a function K(s) so that
2 n , o) (n)
E[f1=] f(xa- Z af(x)=[ K(s)f
r k=1 ry

(s)ds

Let p(t,x) Dbe the solution to the equation (2.1.3) and
(2.1.4) . For given nodes SRR YE S that do not change
n
A .
with t, the n-point quadrature sum 2 ak(t)6xk is an
« k=1

approximation to p(t,x)dx in the sense that equation

(2.1.7) can be written as

a,d
(B.1) (Z (t)vix ) +E(v))
gl Z G (Bvin
n A
= 2 ay (t) (L) (xk) + E[Lv]
k=1
If {fi(x)}, i=1,...,n is a basis for polynomials of

degree less than or equal to n -1, equation (B.l) for

fi(x)'s becomes

13

d

(B.2) IE = ak(t)f (xk) =

a3
l—l
k=1 k=1

a, t)(Lfi)(xk)

+E[Lfi]' i'—- 1,...,1’1
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The system (B.2) is a system of ordinary differential
equations for the weights ak(t). It is not a clcsed
system as p(t,x) 1is involved in E[Lfi] and thus can
not be used for the solution of the weights fék(t)}

without explicit knowledge of p(t,x).

The Galerkin method with fixed nodes for approxi-
mation p(t,x) is cbtained from (B.2) with the terms

E[Lfi] dropped

n B n
(8.3) £ Z a (D (x) = I 3 (0 @ 65))

for i=1,2,...,n where {fi(x)}g is a basis for
polynomials of degree less than or equal to n -1, which
we shall take to be 1,x,...x" L. The system (B.3) with

given initial p(0,x) may be cast in matrix form as

(B.4) AX® = BX
(B.5) X(0) = given
where
xT = (@, (8),....a_(v) ,
fl(xl) fl(xz) “oe fl(xn)
fz(xl) fz(xz) e fz(xn)
A =

fn(xn) fn(xz) cee fn(xn)
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and

Lfl(xl) Lfl(xz) <o Lfl(xn)
sz(xl) sz(xz) oo sz(xn)
B = .

Lfn(xl) Lfn(x

2) e e Lfn (xn)

The matrix A in (B.4) is the well known Vandermonde matrix

which is non-singular.

In the case when the coefficients of the stochastic
differential equation are polynomials, we can find as in
Gauss-Galerkin method the corresponding Hankel system of

ordinary differential equations.

(B.6) —at_=gk(mllm21'°') k- Olll...ln-l

given k

n
o
-]
o

|
()

(B.7) mk(o)

In this case also if the degree of at least one of the
coefficients is greater than one, moments of order higher
than n -1 appears in some of the equations of the

system.

Theorem B.l. The system (B.6) can be made closed.

Proof. As before we shall show that it is possible
to express all the moments that appear in (B.6) with order

higher than n -1 in terms of the lower order moments.
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Recall that

n
m (t) = Z (t) x n
el kX

My 1
My X1
(B.8) =
n-1
mh-1 x1
e
mn 1
n+l
Mo+l X1
(B.9) =
o x2n-1
2n-1 1
In general if
T _
Mk - (mkn'mkn+1'

and

= 0,1,
1l -1
) xn
xn-l xn-l
2 n
n n
x2 xn
n+l xn+1
2 n
x2n-1 x2n-1
2 n
°°"mkn+n-1)



kn kn kn
xl x2 e o @ xn
xkn+1 xkn+l .. xkn+1

1 2 n

A = . ,
k

kn+n-1 kn+n-1 kn (n-=1)
*1 %2 Xn

then we have

Mk = AkX k =0,1,2,...
From (A.1.8) we have
-1
X—AOMO

Therefore,

M, = AkAalMO k=1,2,...

and the proof is complete.

As we see from equation (B.4) and (B.8) Ao = A
is independent of time in the present case and therefore
we invert AO only once while in the Gauss-Galerkin
method. We must perform matrix inversion at each time
step. The above method is easy to implement and often
yields satisfactory results. Unfortunately we do not

have convergence theorem as n * ® as those we established
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in Chapter III for the Gauss-Galerkin method there.

This should nct come as a surprise as it is well known
that quadrature formulas with fixed nodes named as the
Newton-Cotes formulas do not have convergence in general

though at each n we do have error bounds.

As a numerical example we solve the system (B.6)
§9r the geostochastic model (A.7) with n = 10 and an
initial atomic measure chosen randomly with X, = é,
ai = ,1 i=1,--.,10. The first six steady-state moments

are shown below.

my = 1.0000
m = .56242
m, = .56242
m, = .72058
m, = 1.08086
mg = 1.82393

The results are close to those obtained by the

Gauss-Galerkin method.
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