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ABSTRACT

ON THE CONVERGENCE OF THE

GAUSS—GALERKIN METHOD FOR THE DENSITY

OF SOME MARKOV PROCESSES

BY

Ali Haj Jafar

This dissertation concerns the convergence of the

Gauss-Galerkin method for some Markov processes. This

method provides approximations to p(t,x), the solution

of the Fokker-Planck equation it =-§%(ap)4v%‘;i;(b2p)

corresponding to the stochastic differential equation

dX(t) = a(X(t).t)dt4-b(X(t).t)dW(t) defined on (r1,r2)

with O‘g r1 < r2 g_°. The approximation is in the sense

of approximation of probability measures

We first show that when the coefficients of the

stochastic differential equation are polynomials. the

resulting Gauss-Galerkin system is equivalent to the Hankel

system of moments which is closed in an appropriate manner.

We then compare the Gauss-Christoffel approximations to

p(t,x) with the Gauss-Galerkin approximations and derive

upper bounds for the inherent errors.



Ali Haj Jafar

The Gauss-Galerkin measures, which are atomic

in nature, form the basis for numerical integration

quadrature formulas. We show that under suitable

conditions on the coefficients of the stochastic differential

equation, these integration formulas converge to the true

value of the integral. The proofs rely on the use of

differential inequalities. Helly's theorems on weak

compactness of measures and the spectral theory of linear

operators.

Numerical examples are presented that illustrate

close agreements between the numerical and theoretical

results.
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CHAPTER 0

INTRODUCTION

0.1 Statement of Problem and Its Motivation

We are concerned in this dissertation with numerical

solutions of the probability law of a class of stochastic

differential equations of the type

(0.1.1) dX(t) = a(X(t) .t)dt+b(X(t).t)dW(t)

where X is the spatial coordinate in one-dimension ,

t is time, W(t) is the standard Brownian motion, and

the functions a(x,t) and b(x,t) are known as the

"drift" and "diffusion" coefficients respectively. The

stated equation models many problems in the physical,

engineering and biological sciences.

Since W(t) .is a random variable, the solution X(t)

of the above equation for t > 0 subject to given

initial condition X(0). whether random or deterministic.

is a random process. Under suitable assumptions on

a(x.t) and b(x,t), the existence and uniqueness of

the above initial value problem for X(t) is known.



Furthermore, under somewhat more stringent conditions,

a probability density function p(t,x) for the process

X(t)' can be shown to exist and satisfies the deterministic

"Fokker—Planck" equation

  

ap(t.x) _ 5(a(X.t1p) _1_ 62(b2(x.t)p)
(00102)

--
+

at 5x 2 a 2
x

(0.1.3) p(0,x) = given

where x may lie in the infinite interval (—w,m), the

semi-infinite interval [0,m) or a finite interval [r1,r2].

It is clear that additional appropriate boundary conditions

on a, b and/or p must be posed.

D. Dawson in [6] suggested a Galerkin type method

for approximating p(t,x) by atomic measures. This

method transforms the problem to one for a system of

nonlinear ordinary differential equations for the "nodes"

and "weights" of the atomic measures. The atomic measures

provide approximations to the Gauss—Christoffel measures

of the exact p(t,x). This method has been referred to

as the Gauss-Galerkin method and the atomic measures the

Gauss—Galerkin measures.

Our aim in this dissertation is to make a detailed

analysis of the Gauss-Galerkin method above. We shall

establish some convergence theorems, in both the finite

interval and semi-infinite interval case, for the



convergence of the Gauss-Galerkin measures to p(t,x),

as n 4 a (n = number of atoms), when the coefficients

a(x,t) and b(x,t) satisfy appropriate continuity and

growth conditions.

The proofs of these theorems require techniques

from both analysis and probability theory. Specifically,

the proof involves the use of differential inequalities,

Helley's theorems on the weak compactness of probability

measures, the problem of moment, criteria for unique

determinism of a measure by its moments, and the eigen-

function expansion of a second order differential

operator.

A number of examples are presented and, whenever

possible, compared with the exact solutions. We have

also included examples which do not satisfy the assumptions

of the convergence theorems but for which the Gauss-

Galerkin method seems to work well.

A Galerkin method based on fixed nodes is also

developed and illustrated by applying it to an example.

Unfortunately we do not have a convergence theorem for

this method at this time.

0.2 Organization of the Dissertation

This dissertation is organized as follows. Chapter I

contains background materials from the probability theory.
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We begin with a review of the notions of random variables,

distribution functions and conditional expectations and

probability. We then proceed to a discussion of stochastic

processes including the Markov processes and Brownian

motions. Diffusion processes and their governing back-

ward and forward equations are then discussed. These are

followed by stochastic integrals and stochastic differential

equations, and, finally, we state several theorems on the

existence and uniqueness of solutions of stochastic

differential equations of the type we wish to consider.

In Chapter II we develop the Gauss-Galerkin method

by first presenting the weak form of the Fokker-Planck

equation. We then review the Gauss—Christoffel approximations

to the probability measures. This consideration leads to

the development of the Gauss-Galerkin equations. An

alternative formulation of the numerical problem in terms

of the moments for the case where the Fokker-Planck equation

involves polynomial coefficients leading to the so-called

Hankel system is also presented. We conclude Chapter II

with a discussion of the inherent errors in the Gauss-

Galerkin approximations.

The main convergence theorems of the Gauss-Galerkin

method are presented in Chapter III for the cases of a

semi-infinite interval and of a finite interval. We

begin Chapter III with a discussion of the convergence

of the Gauss-Christoffel approximations. This is followed



by a detailed formulation of the assumptions involved

in the Fokker-Planck equation and the boundary conditions.

After some differential inequalities are presented, we

state two Helly's theorems dealing with the weak compactness

of probability measures. The proofs of the main convergence

theorems are preceded immediately by a number of preparatory

lemmas.

Several numerical examples are presented in Chapter IV.

The numerical solutions, whenever possible, are compared

with known exact solutions.

Appendix A contains the numerical solution of a

nonlinear stochastic equation which is not of the type

of equations studied in this dissertation. The numerical

results for this problem. which was previously studied

in [S] are encouraging enough and suggest that the Gauss-

Galerkin method may indeed converge for much wider classes

of stochastic equations.

Appendix B contains the Galerkin method based on

fixed nodes as mentioned before and includes numerical

results for the problem treated in Appendix A.



CHAPTER I

PRELIMINARIES

The following preliminaries are taken from the

books on stochastic differential equations by Arnold [1]

and Friedman [11].

1.1 Events and Random Variables: Probability theory

deals with mathematical models of trials whose outcomes

depend on chance. ~We group together the possible outcomes

(the elementary events) in a set D with typical

element w E 0. An observable event A is a subset

of 0: however, not every subset of Q is in general

an observable or interesting event. Let 2 denote the

set of observable events for a single trial. Of course,

2 must include 0, ¢ and for every event A, its

complement A} Furthermore, given two events A and

B in Z, the union A U B and the intersection A n B

also belong to 2: thus, 2 is an algebra of events.

An algebra E of events is called a sigma algebra if

Q

UAez

n=l n



H

when An 6 L for n 2.1. The elements of Z are called

measurable sets and the pair (0,2 is called a

measurable space.

Let 0 denote a family of subsets of Q. There

exists in Q a smallest sigma algebra 2(a) that

contains all sets belonging to a; This 2(a) is called

the sigma algebra (o-algebra) generated by a; Let

(0.2) and (0',Z') denote measurable spaces. A

mapping X :0 * 0' is said to be (2-—Z')-measurab1e

(and is called an 0’-va1ued random variable on (0,2))

if the preimage of measurable sets in 0' are measurable

sets in 0. that is, for A’ E Z'

1
{w:X(w) EA'} = [X EA'] = X- (A') 6 Z

If 0' is the d-dimensional Euclidean space Rd with

the usual distance function, we shall always choose as

the sigma algebra 2’ of events the sigma algebra Bd

of Borel sets in Rd generated by the d-dimensional

intervals.

1.2 Probability and Distribution Functions: Let (0.2)

denote a measurable space. A set function P defined

on 2 is called a probability measure or simply a

probability if

a) OgP(A) g1 forall A62,



b) P(¢) = O.

c) P( L) An) = ZDP(A if A 6 Z for all

n=l n=l n

)
n

n 2 1, and An 0 Am = ¢ (n # m) (sigma-additivity)

d) P(C) = 1.

The triple (0,2,P) is called a probability space.

Now, suppose that (0,2,P) is a probability space,

that (0',£') is a measurable space, and that X is

a random variable on (0,2) with values in 0'. X

induces the probability P on the measurable space
X

of the images by

PX(A’) = F(x‘ch')) = PIm :X(m) e A’} = P[X e A’]

for all A’ E 2'. The function Px is called the

distribution measure, or briefly the distribution of X.

For an Rd-valued random variable, the distribution PX

is uniquely defined on Ed by its distribution function

F(x) = F(xl,...,x ) = P{m :X1(w) g_x1....,Xd(w) g_xdfl =
d

P[X g.x]

It is called the joint distribution function of the d

scalar random variables X X which are the components1000;! d

of X.
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1.3 Conditional Expectation and Conditional Probabilities:

For a real—valued random variable X, defined on (3,2,P)

we define its expectation ax to be

5X = I X(w)dP(w)

O

For Rd-valued random variables, we define expectation

componentwise. For p 2_l, we define the space

Lp(Q,£,P) = {X :X is an Rd-valued random variable ,

dlxlp < m where |.| is the usual

Euclidean norm 1

Let X E Ll(0,Z,P) be an Rd-valued random variable

and let 3 c 2 be a sub o-algebra of 2. The probability

space (0,3,P) is a coarsening of the original one and

X is, in general, no longer (3-—Bd) measurable

(S-measurable). We seek now an S-measurable coarsening

Y of X that assumes, on the average, the same values

as X, that is, an integrable random variable Y such

that Y is S-measurable and

J." yap = f xap for all c e a.
,. C 'C

According to the Radon-Nikodynltheorem, there exists

exactly one such Y, almost surely (a.s.) unique. It

is called the conditional expectation of X given the

o-algebra 3. We write
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The conditional probability P(A (3) of an event A

given the o-algebra 9 C 2 is defined by

P(A (a) = 6(IA (a).

1.4 Stochastic Processes: Let I denote an arbitrary

nonempty index set and let (0,2,?) denote a probability

space. A family {X(t,-);t E I} of Rd-valued random

variables on (0,2,P) is called a stochastic process

with index set I and state space Rd. Sometimes we

write Xt(-) instead of X(t.°). If [X(t,°):t 6 [tO,T]}

is a stochastic process, then for every fixed w E 0.

X (m) is an Rd-valued function defined on [tO,T]

(sample functions). We wish to include the possibilities

t0 = -~ or T = w in which case we write [t0,w),

(-°.T] or (-m.w).

The finite dimensional distribution functions of

the stochastic process {X(t,-);t E [toT]} are given by

P[X(t1) g-Xll = P{w :X1(t1.w) 3 x11. X2(tl.w)

g x12.....Xd(t1,w) g xld} = Ftl(xl)

P[X(t1) g X1, X(t2) g_x2] = Ftl,t2(xl'x2)

P[X(tl) g-Xl""’X(tn) g_xn] = Ft .t (x1....,xn)
1'... n
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where ti belongs to [tO,T] and x1 = (Xil'xi2""'xid)

belong to Rd (the symbol g applies to the components),

and n 2_l.

This system of distribution functions satisfies

the following two conditions:

a) Condition of symmetry: If {i1,...,i ] is

a permutation of the numbers l,...,n, then for

arbitrary instants ti ,...,t.l and for arbitrary n1; 1,

F (X. 'ooo'x.)=F (Xv-000x)-

. o. . l tlloooltn 1 n

b) Condition of compatibility: For m < n and

arbitrary t .t E [tO'T]'
m+1"" n

F (XI-000x! ,...,CD)

t . "tm'tm+1""'tn 1 m

= Ft ,...,t (X1'°"'Xm)'
1 m

Conversely by Kolmogorov's fundamental theorem, for

every family of distribution functions that satisfies

the symmetry and compatibility conditions, there exists

a probability space (0,2,P) and a stochastic process

[X(t,°):t 6 [tO,T]} defined on it that posesses the

given distribution as its finite-dimensional distributions.

For [X(t,-):t e [tO,T]} we shall write briefly x
t

or X(t), usually omitting the variable w. Two
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stochastic process X(t) and X(t) defined on the same

probability space are said to be (stochastically)

equivalent if, for every t e [tO,T], we have X(t) = XTET

with probability 1. Then X(t) is called a version of

XTET' and vice versa. The finite dimensional distributions

of X(t) and X??? coincide. However, since the set

N£ for exceptional values of m for which X(t) # XTET

depends in general on t, the sample functions of

equivalent processes can have quite different analytical

properties.

1.5 Markov Processes: A stochastic process
 

(X(t);t 6 [tO,T]} defined on the probability space (0,2,P)

With index set [tO,T] C [0,») and with state space Rd

is called a Markov Process if the following so-called

Markov Property is satisfied: For tO g_s g_t g.T and

d
all B 6 B (the Borel sets in Rd), the equation

(1.5.1) P(X(t) e B |2([to,s])) = P(X(t) e B lxs)

holds with probability 1.

Here P(X(t) e B (XS) is P(X(t) e B (a) where a

is the o-algebra generated by XS which is the smallest

o-algebra w.r.t. which X3 is measurable, and X([to,s])

is the smallest o-algebra generated by X(t), tO git g.s.

For given Markov Process X(t), equation (1.5.1)

is equivalent to saying that "the past and future are

statistically independent when the present is known".
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1.6 Transition Probability and Density: Let X(t),

tO th g_T, denote a Markov Process. The conditional

probability P(X(t) 6 B IXS) determines a function

P(s,x,t,B) of four arguments s,t E [tO,T], x 6 Rd and

B 6 8d. It has the following properties: (Arnold [1])

(1.6.1) For fixed 5 K t and B 6 5d, we have
A

P(s,XS,t,B) = P(xt e B (XS) with probability 1.

Here P(s,XS,t,B) is the conditional distribution

(Arnold [1], p. 29)

(1.6.2) P(s,x,t,o) is a probability on Ed for

fixed s g.t and x 6 Ed.

(1.6.3) P(s,-,t,B) is Sd-measurable for fixed 3 g_t

and B 6 8d.

(1.6.4) For to gis g'u g_t g.T and B 6 Ed and for

all x 6 Rd with the possible exception of a set N C Rd_

such that P[X8 6 N] = 0, we have the so-called Chapman-

Kolmogorov equation

(1.6.5) P(s,x,t,B) P(u.y.t.B)P(S.X.u.dy) .F
”Rd

It is always possible to choose P(s,x,t,B) in such a

way that for all s 6 [tO,T] and B 6 Ed, we have
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1 for x E B

(1.6.6) P(s,x,s,B) = IB(x) ==

0 for x Z B

Definition 1.6.1: A function P(s,x,t,B) with
 

the properties (1.6.2-6) is called a transition probability.

If X(t) is a Markov Process and P(s,x,t,B) is a

transition probability so that (1.6.1) is also satisfied,

then P(s,x,t,B) is called a transition probability of

the Markov Process X(t). We use the notation

P(s,x,t,B) = P(X(t) E B IXs = x) which is the probability

that the observed process will be in the set B at

time t if at time s, where s g_t, it was in the

state x.

Definition 1.6.2: If p(s,x,t,y) is a non-negative

function that is measurable with respect to (w.r.t.) y

and whose integral is 1 and for all s,t E [tO,T],

where s < t, all x 6 Rd and all B 6 6d, we have

P(s,x,t,B) = f p(s,x,t,y)dy .

B

then we call p(s,x,t,y) a density for P(s,x,t,B)

Remark 1.6.3: According to Definition 1.6.2
 

equation (1.6.5) reduces to

p(s,x,t,y) = f d p(s,x.u.z)p(u.z.t.y)dz.

R
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Definition 1.6.4: A Markov Process X(t).
 

t E [tO,T]. is said to be homogeneous (w.r.t. time) if

its transition probability P(s,x,t,B) is stationary,

that is, if the condition

P(s +u.x.t+u.B) = P(s,x,t,B)

is identically satisfied for tO g_s g.t g T and

t0 g_s-+u g t-ku g_T. In this case the transition

probability is then a function only of x, t-s and B.

Hence we can write it in the form

P(t-s,x,B) = P(s,x,t,B) , o _<_ t-s g T-to.

Therefore, P(t,x,B) is the probability of transition

from x to B in time t, regardless of the actual

position of the interval of length t on the time axis.

Remark 1.6.5: Every Markov Process X(t) can,

by assuming time to be a state component, be transferred

into a homogeneous Markov Process Y(t) = (t,X(t))

with state space [tO,T] de. The transition probability

Q(t,y,B) for 'Y(t) for the special sets B = C xD

is then given by

Q(t,y,C xD) = Q(t,(s,x) ,C xD) = P(s,x,s+t,D)Ic(s+t)

This uniquely determines the probability Q(t,y,-) on

the entire set 81([tO,T]).de.
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As an example of a Markov Process, we cite the

Brownian motion.

1.7 The Wiener Process (Brownian motion): A Brownian

motion is a stochastic process W(t), t 2_0, satisfying

(i) W(O) = 0

(ii) For any 0 g.to < tl < --- < tn the random

variables W(tk)-W(tk_l) (l g_k g_n) are independent.

(iii) If 0 g_s < t, W(t) -W(s) is normally distributed

with E(W(t) -W(s)) = (t-s)u, Var(W(t) -W(s)) = (t-s)02

where u, o are real constants, o # 0. u is called

the drift and 02 is called the variance.

As is well known, Brownian motion can be realized

on the space of continuous functions with the property

that its paths are nowhere differentiable with probability

1. For this process the transition density is given by

1 e-(x-y) 2/2t

2vt

 

p(t.x.y)

Defipition 1.7.1: A d-dimensional process

W(t) = (W1(t),...,Wd(t)) is called a d-dimensional

Brownian motion if each process Wi(t) is a Brownian

motion and if the o-algebras 2(Wi(t),t 2_0) l g_i g_d,

are independent.
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1.8 The Infinitesimal Generator: We can assign to
 

a general Markov Process X(t) a family of operators

defined on a function space. Let X(t),t E [tO,T] be

a homogeneous Markov Process with transition probability

P(t,x,B). Define the operator T on the space B(Rd)

t

of bounded measurable scalar functions defined on Rd

and equipped with the norm Hg” = sup lg(x)i as follows:

XGR

For t 6 [0,T-tO], let Ttg denote the function

defined by

= 6 =Ttg(x> xg<X<t>> (Rd 9(Y)P(t.x,dY).

Since TtIB(x) = P(t,x,B), we can derive the transition

probability from the operator T These operators havet'

the following properties:

For t 6 [0,T-—t0] the operator Tt maps the

space B(Rd) into itself, is linear, positive and

continuous, and has norm HTtH = 1. The operator T0

is the identity, and Ts+t = TsTt = Tth whenever

t,s,t-+s 6 [0,T-—to]. In particular, in the case [to,e)

the Tt constitutes a commutative one-parameter semigroup

of operators, the so-called semigroup of Markov transition

operators.

Definition 1.8.1: The infinitesimal operator

(generator) A of a homogeneous Markov Process X(t)

for tO g.t g,T is defined by
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'rtg (x) -g (x)

t

 Ag(x) = lim 0 g 6 B(Rd)

t$O

where the limit is uniform with respect to x. The

domain of definition DA C B(Rd) consists of all functions

for which the limit exists. The operator A is in

general an unbounded closed linear operator. If the

transition probabilities of X(t) are stochastically

continuous, that is, if for every x 6 Rd and every

6 > 0

lim P(t,x,Ue) = 1, U8 = {y :Iy-—x| < e,

tIO

then P(t,x,B) is uniquely defined by A. (Arnold [l],

p. 39) In the nonhomogeneous case, let X(t) for

t E [tO,T] denote an arbitrary Markov Process with

transition probability P(s,x,t,B). We refer to

Remark 1.6.5 according to which Y(t) = (t,X(t)) is a

homogeneous Markov process with the state space

d d+l
[tO.T]:xR C R We now define the Markov transition

operator T and the infinitesimal operator A of X(t)
t

as being equal to the same quantities as in the case of

the corresponding homogeneous proces Y(t) = (t,X(t))

under the definition given earlier, namely

= " = PTtg(s,x) asixg(s-+t,x(t-+s)) JRdg(s-i-t,y)P(s,x,t+s,dy),

0 g.t g T -s, where g(s,x) is a bounded measurable
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d Ttg(S.x)-g(s.X)

 and Ag(s,x) = 1im

tLO

where the limit means the uniform limit in

d

function in [tO,T] XR t

(s.x) e [tourlth

1.9 Diffusion Process: A Markov Process X(t), for

to‘g t g_T, with values in Rd and almost certainly

continuous sample functions is called a diffusion

process if its transition probability P(s,x,t,B)

satisfies the following three conditions:

For every 5 E [tO,T], x 6 Rd, and e > 0

(a) lim'E%; f P(s,x,t,dy) = 0;

txs Iy-x|>e

(b) There exists an Rd-valued function a(x,s)

such that

. 1 - .
11m :t—:-S_ JP (y-X)P(S,Xotde) - a(xls)l

(c) There exists a d.xd matrix-valued function

b(s,x) such that

1im -L- P (y-x)(y-xIrP(s,x,t,dy) = b(x,s).

Us t-S J ly-XK‘:

The functions a and. b are called the coefficients

of the diffusion process. In particular, a is called

the drift vector and. b is called the diffusion matrix.

b(x,s) is symmetric and non-negative-definite. The
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Brownian motion is a diffusion with drift term being

zero and diffusion term being 02

1.10 Backward and Forward Equations: To each diffusion
 

process with coefficients a and t>= (bij) is assigned

the second order differential operator

2

5x.ax.

1 J

 

a 1 d 5‘.
ai(X' S) axi + '5 151 j§1b1j(x' S)F

‘ m

II
D
.

H
C
U

L 9 can be formally written for every twice partially

differentiable function g(x) and is determined by 2a

and b. Every diffusion process is uniquely determined

by its infinitesimal operator A. We calculate this

operator from

(1.10.1) Ag(s,x) = lim % f a (g(s+t,y) -g(s,x))

tto R

P(s,x,t-ts,dy)

by means of a Taylor expansion of g(s-tt,y) about

(3.x) under the assumption that g is defined and

bounded on [tO,T] de and is, on the set, twice

continuously differentiable w.r.t. xi and once

continuously differentiable w.r.t.s. When we use

conditions (b) and (c) of the definition of diffusion

process (1.9) we obtain for the right-hand members of

(1.10.1) the operator Ji-+ L . Under certain conditions

as

on a and b we have, for all functions in DA
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_ ii
A—BS+L

The following theorems and results are basic in

this area and for our later results. (Gikhman and

Skorokhod [12a]), and Arnold [l], p. 42).

 

Theorem 1.10.1: Let X(t) for tO g.t g_T,

denote a d-dimensional diffusion process with continuous

coefficients a(x,s) and b(x,s) and suppose the limit

relation in definition (1.9) holds uniformly in

s E [tO,T]. Let g(x) denote a continuous and bounded

scalar function and define

u(S.x) = ES xg(X(t)) = r g(y)P(S.x.t.dy).
de

where t is fixed, 5 < t and x 6 Rd.

Bu azu
Suppose u, 3;; and SEiggj. for l g.1, j g.d

are continuous and bounded. Then, u(s,x) is

differentiable w.r.t. s and satisfies Kolmogorov's

backward equation

33-+ L u = 0
as

with the end condition 1im u(s,x) = g(x).

sit

Theorem 1.10.2: Suppose that the assumption of
 

Theorem 1.10.1 regarding X(t) holds. If P(s,x,t,-)

has a density p(s,x,t,y) which is continuous with
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respect to s and if the derivatives .gEL and

2

Siig%_' exist and are continuous with respect to s,

i 3'

then p is a so-called FUNDAMENTAL SOLUTION of the

backward equation

with the end condition 1im p(s,x,t,y) = 6(x-—y).

sit

Theorem 1.10.3: For t E [tOT], let X(t) denote

a d-dimensional diffusion process for which the limit

relation in (1.9) holds uniformly in s and x and

which posesses a transition density p(s,x,t,y). If

the derivatives g—E, a(ai(y,t)p)/ayi and

62(ai(y,t)p)/ayiayj exist and are continuous functions,

then for fixed 5 and x 6 Rd such that s g_t, this

transition density p(s,x,t,y) is a fundamental solution

of Kolmogorov's forward equation (the Fokker-Planck

equation)

aids
(1.10.2) + E: 3;; (ai(y,t)p)

l B

2 i=1 j=1 ayiayj 13

If we define the distribution X(to) in terms of the

initial probability Pt we obtain from p(s,x,t,y) the

O

probability density p(t,y) of X(t) itself:
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(1.10.3) p(t,y) = (Rd p(t0,x.t,y)PtO(dx).

If we integrate (1.10.2)VVJ:J:.Pt (dx), we see that

O

p(t,y) also satisfies the Fokker-Planck equation (1.10.2)

For a Brownian motion with drift term u and diffusion

term 02 the Kolmogorov backward equation is

2
a l 2 a
3%.: 5.5 ——%-+ p gfi- for t > 0. -° < X: Y < m

Bx

and the Fokker—Planck equation is

i2=1,2_262 _
at 2 ax2 “ ax

1.11 Stochastic integrals and stochastic differential
 

Equations: Let W(t), t 2,0, be a one-dimensional
 

Brownian motion on a probability space (0,3,P). Let

?t(t 2.0) be an increasing family of o-algebras such

that the o-algebra 5(W(s), 0 g_s th) is contained in

3 and 3(W(k-+t)t—W(t), k 2,0) is independent of 3
t.

for all t 2,0 (e.g., St = 3(W(s), 0 g_s g_t)). Let

t

0 g_c < B < a. A stochastic process f(t) defined for

a th g B is called a non-anticipative function with

respect to 3t if:

(i) f(t) is a separable process, i.e. there

exists a countable dense set M = {t1,t2....) C:[o,B]

and a set N E 3 of P-measure zero such that for every
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open subinterval (a,b) of (o,B) and every closed

subset A of Ra, the two sets

{w =f(t.w) e A for all t 6 (a,b) n m} e a

and

{w :f(t,w) E A for all t 6 (a,b)} (not necessarily

in F)

differ, if at all, only on a subset of N.

(ii) f(t) is a measurable process, i.e., the

function (t,w) 4 f(t,w) from. [a,B] x0 into R1 is

measurable.

(iii) for each t E [c,B], f(t) is St measurable.

We denote by LS[G,B] (1 g_p g.m) the class of all

non—anticipative stochastic processes f(t) satisfying:

B P
PI! lf(t)l dt < a) = 1

d

(P[ess sup If(t)[ < a} = 1 if P = “)

dgtgfi

P P . .
We denote by Mw[a,B] the subset of Lm[G,B] con51st1ng

of all stochastic processes f with

r5 P
a J [f(t)[ dt < a

(1

(E[ess suplf(t)[ < a if p = m)

cgtgfi

(Friedman [8])
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Since any Brownian motion W(t) is nowhere

differentiable with probability 1, the integral

T

f f(t)dW(t) for the stochastic function f(t) cannot

0

be defined in the usual Lebesgue-Stieltjes sense.

K. Ito has given the definition of the integral above

which we recall here briefly.

Definition 1.11.1: (Friedman [11]) A stochastic

process f(t) defined on [c,B] is called a step

function if there exists a partition 0 = t0 < tl < --~<ftr

= B of [c,B] such that

f(t) = f(ti) if ti ( t < t
A

0 g_i g r -l.
i+l'

Definition 1.11.2: Let f(t) be a step function

in L:[a,B]. The random variable

r-l

k2 f(tk) [W(tk+1) -W(tk)]

=0

is denoted by

B

j f(t)dW(t)

C1

and is called the stochastic integral of f w.r.t.

the Brownian motion W(t); it is also called the Ito

integral.

In a series of lemmas and theorems Ito proves that

for a given process f(t) 6 L:[a,B], there exists a
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sequence of step functions fn(t) in L:[G,B] such

that

B
1im f [f(t) -f (t)l2dt = 0 a.s.
n-ocn 0 n

and the sequence

B

{I f (t)dW<t)}
(I n

is convergent in probability. The limit is denoted by

B

j f(t)dW(t)

G

and is called the stochastic integral of f(t) w.r.t.

Brownian motion W(t).

For an m><d matrix b(t) = (bij(t)) where any

of its elements belong to L:[O,B] and for

W(t) = (W1(t),...,Wd(t)) a d-dimensional Brownian

B

motion, the stochastic integral I b(t)dW(t) is the

d

m-vector defined by

"a a a

. b(t)dW(t) = I Z; I bij(t)de(t))

Ja j=1 a i=l,...,m

Definition 1.11.3: Assume a(x,t) =

_ m
(a1(x,t),...,am(x,t)) and b(x,t) - (bij(x't))i,j=l'

Suppose ai(x,t), bij(x,t) are measurable in

d
(x,t) E R x[0,T]. Let X(t) be an m-dimensional

process for 0 g_t g,T, and suppose that for any
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0_<_t1<t2§_T,

t2 .t2
X(t2) —X(tl) = I a(X(t),t)dt + J b(X(t),t)dW(t)

1‘1 t1

where a(X(t),t) and b(X(t),t) belong to Li[0,T]

and L:[0,T] respectively. Then we say that X(t) has

a stochastic differential

dX(t) = a(X(t) ,t)dt+b(X(t) ,t)dW(t) .

1.12 iExistence and uniqueness: For a(x,t) and b(x,t)
 

|2= z: [b..l2. If

i,j 13

X(t) (0 g_t g_T) is a stochastic process such that

as in definition 1.11.3, we write lb

(1 .12 .1) dX(t) a(X(t) ,t)dt+b(X(t) .t)dW(t) ,

(1.12.2) X(O) u x 9
)

En

then we say that X(t) satisfies the system of stochastic

differential equations (1.12.1) and the initial condition

(1.12.2).

Theorem 1.12.1: Suppose a(x,t) and b(x,t) are

d
measurable in (x,t) E R x[0,T] and there exist

constants K and K* such that

|a(x,t)l g K(l+ lxl) , [b(x,t)l _<_ K(1+ Ix!) ,

and
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[a(x,t) -a(§€,t)[ g K*lx-;l,

ib<X0t) -b(;lt)l g K* ‘X -;i

for x 6 RD and 0 g_t g_T. Let X be any d-dimensional
0

random variable independentcfi 3(W(t),0 g_t g_T). such

that leOlz < w. Then there exists a unique solution

X(t) of (1.12.1), (1.12.2) in M:[0,T].

If the conditions of theorem 1.12.1 hold for

arbitrary T > 0 with constants K and K* depending

only on T and in addition if a(x,t), b(x,t) are

d'x[0.°°). then the solution ofcontinuous in (x,t) E R

(1.12.1), (1.12.2) is a diffusion process with drift

a(x,t) and diffusion matrix a(x,t) = b(x,t)b*(x,t);

therefore, theorems 1.10.2 and 1.10.3 are valid for

the solution.

Remark 1.12.2: Theorems 1.10.2 and 1.10.3 are valid
 

provided the transition density of the transition

probability exists and is continuous. The following

theorem guarantees the existence of a density.

(Theorem 5.4, Friedman [11]).

Theorem 1.12.3: If
 

(i) There is a positive constant c such

that

Z}§i§jbij(x,t) 2.cl§(2 for all (x,t) E Rd><[0,T],

§6Rd.
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(ii) The functions ai'bij are bounded on

d
R x[0,T] and uniformly Lipschitz continuous in (x,t)

d
in compact subsets of R x[0,T].

(iii) The functions bij are Holder continuous in

x (of order a), uniformly with respect to

d
(x,t) e R x [our].

Then the transition probability of the solution of

(1.12.1) has a density.

We close this chapter by stating the definition of

a linear stochastic differential equation, a theorem

concerning existence of moments of a linear stochastic

differential equation and Ito's formula. (Arnold [l]

and Friedman [11]).

Definition 1.12.4: A stochastic differential equation

dX(t) = a(X(t) .t)dt+b(X(t) .t)dW(t)

for the d—dimensional process X(t) on the interval

[tO,T] is said to be linear if the functions a(x,t)

and b(x,t) are linear functions of x 6 Rd on

Rd'x[tO,T], i.e. if a(x,t) = A(t)Xn+o(t), where

A(t) is a (d)<d) matrix-valued a(t) is an

Rd-valued and if b(x,t) = (B (t)xw+b (t),...,B (t)x-+b (t))

1 l m m

where Bk(t) is (d.xd) matrix-valued and bk(t)

is Rd-valued. Thus a linear stochastic differential

equation has the form
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m

dX(t) = (A(t)X(t) +c1(t))dt+ Z) (Bi(t)X(t) +bi(t))dWi(t)

i=1

Where W(t) = (W1(t).....Wm(t)). It is said to be

homogeneous if a(t) = bl(t) = ... = bm(t) = 0.

Theorem 1.12.5: The solution X(t) of the linear
 

stochastic differential equation has for all t E [tO,T], a

p-th order moment if and only if E|X(0)[p < 9

(Arnold [1]. p. 138).

The following theorem is very essential in the

calculus of stochastic differential equations (Friedman [11]

p. 90).

Theorem 1.12.6: (Ito's formula). Let a(x,t)

d
be a function in (x,t) E R. x[0,~) and suppose u(x,t)

a ' .t’ uxi. uxixj re continuousand all its derivatives u

Let X(t) be an d-dimensional process having a stochastic

differential

dX(t) = a(t)dt+b(t)dW(t)

where a = (a1.....ad) and b = (bij) (1 g,i g_d, 1 g_j g.n)

2

belong to Li[0,T] and Lw[O'T] respectively. Then

u(X(t),t) has a stochastic differential
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d

du (X(t) .t) = [ut(X (t) .t) + E u (X(t) .t)a. (t) +

i=1 Xi l

d
1

+ .2. l . 2;— ux.x. (X(t),t)biz(t)bj£(t)]dt

103’1 l J’5
?
M
s

1(X(t)'t)biz(t)dwt(t) .B u

i=1 X

+

N
I
H

'
3
M
s

1

In the more interesting one dimensional case the formula

above becomes

du<xm .t) = [ut(X(t) .t) +ux<xm .t)a(X(t) .t) +

«+l-u (X(t) t)b2(X(t) t)]dt+-
2 xx ' '

+ ux(X(t) ,t)b(X (t) .t) dW(t)



CHAPTER II

NUMERICAL SOLUTIONS TO THE PROBABILITY DENSITY

OF STOCHASTIC DIFFERENTIAL EQUATIONS IN ONE-DIMENSION

2.1 The Mathematical Problem for the Densitygand its

Weak Form: Consider the stochastic differential
 

equation

(2.1.1) dX(t) = a(X(t),t)dt+b(X(t),t)dW(t)

(2.1.2) X(0) = XO

on the interval I = (r1,r2) where 0 g_r1 g,r2 g m

with continuous coefficients. X0 is a random variable

having a density and with finite moments of all orders.

According to Theorem 1.12.1 the solution to (2.1.1)

and (2.1.2) is a Markov process and the density p(x,t)

of the law of the process satisfies the Fokker-Planck

  

equation

(2 1 3) M _ L* _ a(a(x.t)b) 1 a2(b2(x,t)p)
o . — p — - +—

6t 0x 2 2
8x

32
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It is possible for the process to exhibit various

type of behavior at the boundary r1 or r2 (Mandl

[15]). We assume the coefficients are such that the

r

probability is always preserved, i.e. frz p(t,x)dx = 1.

1

In Chapter III we shall discuss more about the boundary

conditions.

Equations (2.1.3) and (2.1.4) form a parabolic

boundary value problem. We note that the formal adjoint

*

L of the operator L is given by the operator

(2.1.5) L = a(x,t) d

We multiply (2.1.3) by some functions v(x) and integrate

over (rl,r2) to yield

*

(2.1.6) (pt.v) = (L p.V)

This is to hold for each function v in some appropriate

space V. We assume V is such that integrations by

*

parts can be performed in (L p,v) and that all the

resulting boundary terms drop out. This leads to

(2.1.7) (pt,v) = (p,Lv), for all v E V

Equation (2.1.7) above is the weak or Galerkin

form of (2.1.3).

The density p(t,x) can be used to compute the

expected value
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-.

r

df(X(t)) = frz f(x)p(t,x)dx ,

1

of a function f(x). Quite often the integration above

is done numerically. In the next section we shall discuss

one such method for the numerical approximation

to a positive measure u.

2.2 The Gauss-Christoffel Approximation of Measures:

An n-point Gauss-Christoffel approximation to a measure

u with density p(x) is given by

~

. = ~ 5~

‘n k 1 ak Xk(I
M
r
:

where the [0§k} denote atoms at the Gauss-Christoffel

points (fik) and the [5k] denote the Gauss-Christoffel

weights. The main results concerning this approximation

are summarized in the following (Stroud [21]).

Theorem 2.2.1:
 

(a) For a given measure u defined on a finite

. - (~ n

interval [rl,r2], the n p01nts \xk)1 and the n

weights {5k} can be uniquely chosen so that

r
n ~ ~

(2.2.1) fr: f(x)du,= kg: ak f(xk)

holds for all polynomials of degree less than or equal

to 2n-1.
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(b) Let [Pm(x)} be the family of orthogonal

polynomials with leading coefficients unity associated

with the measure u; that is, for each m, Pm(x) is a

polynomial of degree m and

r
2 _ .

(2.2.2) frl Pm(x)Pn(x)du — 0 if m # n

Then the Gauss-Christoffel points (xk:k = l,...,n] are

the zeros of the polynomial Pn(x).

(c) The positive Gauss-Christoffel weights are

uniquely determined as the solution of the equations

(r2 2% " “'(2.2.3) f(x)du.= f( )
orl k=1 3k xk

for all polynomials of degree less than or equal to n-1.

(d) If f(x). f(1)(x),...,f(2n)(x) are continuous

on [r r then there exists a function K(s) such
1 21'

that the error

'
1

2

1

(2.2.4) E[f] I

n N

f(x)du- 2 ~ f( )

k=1 ak xk

'
1

r2
K(s)f(2n)(s)ds

r1

I
I

“
-
1

r

 

2

(2n)! [Pn(X)] do.

2

r1

for some Q E (rl.r2), and

2n-1

K(s) =E[(x-—s)+ /(2n-l)'.]
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(x--s)2n"1 for x 2 s

where (x--s)..2_n_1 =

0 for x < s

From (2.2.4) we obtain the estimate

(2.2.5) [E[f]] g eM

where

r2 (2n)
e = 5r K(s)ds and M.= sup lf (x)l .

1 [r1,r2]

The nonnegative function K(s) is called a Peano's kernel

function. The inequality (2.2.5) is called Peano's estimate

for E[f].

In the theorem above we assumed that the interval

[r1,r2] was finite. Stroud and Kwan-Wei Chen [22] give

Peano's error estimates for Gauss-Laguerre formulas

-X). Their idea could also be used to obtain(p(x) = e

similar estimates for other densities for the intervals

[0,”) and (-°.°) (Stroud [21] p. 204). In the

generalization of Theorem 2.4.1,parts (a), (b) and (c)

remain unchanged (Krylov [12]). However, in part (d) for

the [0,”) case in addition to f(x), f(l)(x),...,f(2n)(x)

being continuous, we must assume [f(zn)(x)l g_BxG (where

o is a constant) for x 2_xn. In this case the Peano's

estimate for E[f] becomes

a

(2.2.6) E[f] _(._ eM+B jx K(s)s°‘ds

I1
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where

__ Xn _ (2n)
e — ( K(s)ds and M-— sup If (x)| .

"0 [0.xn]

For example, if du.= e-de we see that for s > xn

we have

(2n-1)‘.K(s) = I e

Therefore,

(2.2.7) K(s) = e’5 for s > xn

This shows that the integral in (2.2.6) is

Q Q

j K(s)sads = f e“3 saas = two-+1,xn)

X X

n n

So in this case we have shown that

(2.2.8) [E[f]] geM+BF(d+l,xn)

To estimate e in (2.2.8) we note that

E[P§(x)] = (O e.x P:(X)dx = (n!)2
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(Krylov [14], p. 35).

On the other hand,

(n!)2 ]= (2n): 3‘“ K(s)ds

O

= E[Pfi] = E[xzn

50x

(2n)1(u(‘ n K(s)ds + f K(s)ds)

0 x

n

and

m 00 t _x

f K(s)ds = f e- dt = e n

x x
n n

Thus in (2.2.8) we have

-x

e = (n!)2/(2n)1-e n

Now let p(tgx) be the solution to the equations

(2.1.3) and (2.1.4). By theorem 2.2.1 for any t the

n-point Gauss Christoffel approximation to p(t,x)dx is

un(t) = k;l;k(t)5xk(t)

and by (2.2.4) (2.1.7) can be written as

n

(2.2.9) 5‘34 23 ak(t)V(Xk)+E[V])
k=1

n ~ ~

“2 ak(t) (Lv) (x.k(t)) +E[Lv]

If fi(x) (i = 1,2,...,2n) is a basis for polynomials of

degree less than or equal to 2n-—1, equation (2.2.9)

for f (x)'s becomes

1



n

(2.2.10) —‘i— 2 5k((t).f(Xk(t))

tk=l

3‘ 2

=k:l ak(t) (Lf)(xk(t)) +E[Lf ]

for 1 = 1,2, ,2n

The system (2.2.10) is a system of ordinary differential

equations for the Gauss-Christoffel weights and nodes.

The system (2.2.10) however, is not closed as p(t,x)

is involved in E[Lfi] and thus cannot be used for

finding fin(t) without knowing p(t,x).

2.3 The Gauss-Galerkin Method: The Gauss-Galerkin

method for approximating p(t.x) (as introduced by

D.A. Dawson [6]) is the following system obtained from

(2.2.10) with the terms E[Lfi] dropped.

11 1'1

(2.3.1) dit glakumimkun = 1.21 akm (Lfi) (xk(t))

for i = 1,2,...,2n

where [fi (x)]2n is a basis for polynomials of degree

less than or equal to 2n-—l.

We take the initial condition

:
3

ME ak"amt “0)

as the Gauss-Christoffel approximation to p(0,x).
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In matrix form the nonlinear system (2.3.1) with

given initial condition p«3n<) can be written as

(2.3.2) AX' = BX

(2.3.3) X(0) = given

where

A11 A12

A = I

A21 A22

Bl O

B = .

B2 0

T _
X - (allazoooopanpxlyooopxn) p

fl(x1) fl(x2),... f1(xn)

f2 (x1) f2 (x2) , . . . f2 (xn)

) fn(x2),... fn(xn)
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I I I

alf1(X1) azfl(X2) "' anf1(xn)

I I I

a1f2(x1) a2f2(x2) ... anf2(xn)

A12 =

I I

alfn(xl) a2fn(xl) ... anfn(xn)

fn+1( 1) fn+1(X2) ° fn+1(xn)

fn+2(xl) fn+2(x2) "' fn+2(xn)

A21 '

f2n(X1) f2n(X2) f2n(xn)

I I

3lfn+1(xl ) a2fn+l(x2) ... anfn+1(xn)

I I I

alfn+2(xl) azfn+2(xz) a‘zif'n+2(X )

A22 =

I I

a1f2n(x1 ) a2f2n(X2) ‘3‘nf2n(X )

Lf1(xl) Lf1(x2) --- Lf1(xn)

Lf2(x1) Lf2(x2) .-~ Lf2(xn)

B =

Lfn(x1) Lfn(x2) --- Lfn(xn)
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and

Lfn+1(x1) Lfn+1‘X2) "' Lfn+1(xn)

Lfn+2(x1) Lf +2(X2) ' Lfn+2(xn)

B2=

)

Lf2n(xl‘ Lf2n(x2) Lf2n(xn)

Throughout our work we shall take fi(x) =

x!"-1 (i = l,...,2n). Note that the system (2.3.2) is

nonlinear.

In the remainder of this section we are concerned

with the question of solvability of the system (2.3.2).

In particular we shall show that under appropriate

assumptions the matrix A in (2.3.2) is nonsingular.

Lemma 2.3.1. If .x ,...,xn are distinct, then

X1 2 

the matrix

A A /\ “l A

Where Al1 = A11' A21 = A22' A12 = A12D . A22 = A22D

and D = d1g(a1,a2,...,an), is non31ngular.

Proof: Let f :R 4 R2n be defined by

2n-1

f(x)T= (l,x,...,x )
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Note that

A I I

A=(f(x1) f(x2) f(xn) 15 (x1) f (xn))

A

Let F(xl,x2,...,xn) = det A. It is easy to see that

321.: det(f(x ) f(x ) f(x ) f”(x ) f’(x ) f’(x ))
5x1 1 2 "' n 1 2 "‘ n '

522
3.5.: det(f'(xl) f(xz) ...£(xn)f”(x1) f'(x2) ...f'(xn))

x1

+ det(f(xl) f(xz) ...f(xn) f”(x1) f'(x1) ...f’(xn))

and

fi— 2 dt(f’( )f(x) f(x) f’”(x) f'(x) f’( ))axi— e X1 2 ... n 1 2 ... X11

+ det(f(xl) f(x2) ...f(xn) f(4)(xl) f'(xl) ...f'(xn))

3

= (x -x )h(x .....x ) because é-E-= 0 if we

2 l l n a 3

x1

put x1 = x2.

Thus F(x1,....xn) = (x2-x1)4¢(x1....,xn). Similarly for

o O
— 4

a1 # 3 we have F(xl,...,xn) - (xi-xj) ¢(x1,...,xn). Thu-

A n 4

det A = C(X) n (x.-x.)
. . 1 3

1>3

A

Now since the degree of det A is the same as the degree

n

of H (x.-x.)4, C(X) must be a constant and the

i>j '

proof is complete.
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Lemma 2.3.2: With the same assumptions as in

A A A_1 A . .

Lemma 2.3.1 the matrix A22‘-A21 A11 A12 is non31ngular.

 

A

Proof: Note that All is the well known

Vandermond matrix which is nonsingular. Now consider

A A

1 0 A11 A12

A

B =

A A-l A A

7A21A11 I A21 A22

A A

A11 A12

/\ A_1A A

O ‘A21A11A12 +A22

Since

A A A A [A a-“

det B — det A — (det A11)(det(A22- 21 11A12) #'0 .

the proof is complete.

Now with the assumption as in Lemma 2.3.1, if we

let y: = (a£,aé,...,aé), yg = (alx',...,a x’) and
nn

aT = (a1,a2,...,an), then the system (2.3.2) becomes

A A

A11 A12 y1 B1a

A A

A21 A22 \ y2 B2a

which is linear in yl, y2 and can be written as
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T A_1 A A A /\_1/‘\ _1 A A-1

y1 ' A11IB1"A12(A22"A21A11A12) (32"A21 11131)1a

(2.3.4)

T _ A A A_1A _1 A A_1

y2 ‘ (A22"A21A11A12) (5’2“‘1‘2113‘11131’a

The above system is a system of nonlinear differential

equations for the Gauss-Galerkin points [xk(t)] coupled

with a linear system of differential equations for the

Gauss-Galerkin weights [ak(t)}.

Now assume that the system (2.3.2), (2.3.3) has

a solution (xk(t)] and [ak(t)] where

X(o)T = (al(0).....an(0).x1(0)....,xn(0))

has been chosen as the Gauss-Christoffel approximation

of p(0.x). By the continuity of xk(t) and ak(t) it is

obvious that there exists an interval [0,T] so that

for each t E [0,T], ak(t) is positive for each k,

and x1(t), .... xn(t) are distinct. Also by

Lemma 2.3.1 the systems (2.3.2) and (2.3.4) are

equivalent on [0,T]. On such an interval the system

(2.3.2) can be written as

(2.3.5) x’ = A-lBX = F(X)

A

because A = A :diag(l,...,1,a1,...,an) which is

invertible. Also
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6x1 0x a i a 1

_ _A-l aBA A-le+A 1 gBX

1 xi

= _A-l 5A XI+A-1 §B_ZC_

bx. x.

1 1

Since xi(t) and ai(t) for i = l,...,n are

continuous functions on [0,T] and A”1 exists;

it follows that A‘l, 5%?— and g? are all bounded.

i i

Therefore, F(X) is Lipschitz w.r.t xi for each i.

It is easy to prove that F is Lipschitz w.r.t. X.

Thus on [0,T] the system (2.3.4) has a unique solution

11

un(t) = 131 ak(t)6xk(t)

which approximates the law of the process of the solution

to the stochastic differential equation (2.1.1), (2.1.2).

The corresponding approximated moments of the process

are

(2 3 6) r2 k. . mk(t) j' x (t)dun(t)

r1

n k
__J a. (t)x- (t) k = 0.1, o. 0

i=1 1 1

In the next section we discuss an alternative way

to compute the above approximated moments, in the case

where the coefficients of the stochastic differential
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equations are polynomials.

2.4 The Hankel System of Moments: In this section we

assume that the coefficients of the stochastic differential

equation (2.1.1) are polynomials in x. From equation

(2.3.6) we have

n k
(2.4.1) T = a; 1:31 ai(t)xi(t)

n I k n k-l I

£1 ai(t)xi(t) +1231 kai(t)xi xi(t)

for k = 0,1,...,2n«-1. By (2.3.6) the sum

n

ii; ai(t)(Lfk)(xi(t)) becomes a polynomial gk(ml.m2....),

involving finitely many moments. From the system (2.3.2)

and (2.3.3) we have

d

(2.4.2) —dE-=gk(ml(t),m2(t),...) k=0.l.2,...,2n-l

(2.4.3) mk(0) = given k = 0,1,...,2n -1

Let us suppose that a(x,t) is a polynomial of degree

q in x and b(x,t) is a polynomial of degree 1 in

x. Recall that Lf(x) is given by

. 2

(Lf) (X) = a(x,t) §£+ lb2(x.t) Li .
0x 2 2

Bx

For f(x) = xk, the polynomial 9k in (2.4.2) involves
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For q‘g 1 and 2 g_l, we have g_2n-l so the
pk

system (2.4.2) is closed. 0n the other hand, if

q 2_2 or E 2_2, p2n_1 = max[2n-+q-2, 21-t2nI—3} 2 2n,

and the system (2.4.2) is not closed.

Theorem 2.4.1: Suppose that the system (2.3.2)

. and (2.3.3) has a solution in [0,T] with nodes that

remain distinct as we have assumed. Then the system

(2.4.2) may be made closed.

Proof: We shall show that it is possible to express

all the moments that appear in (2.4.2) with order higher

than 2n-1 in terms of the lower moments. To do this

we define

Pn(x.t) = (x-x1(t))(x-x2(t)) (x-Xn(t))

Since un(t) is a measure concentrated on

x1(t),...,xn(t), we have

1‘2 k
(2.4.4) f x pn(x,t)dun(t) =0 k=0,l,2,...

r

1

Let oi(t) i l,2,...,n be the sum of all products of

i of the numbers x1(t) , x2 (t) , . . . ,xn(t) , without

permutation cm'repetition. Then (2.4.4) becomes

_i

(2'4'5) mn+kmglmn+k~~l+ '+( 1) Oimn+k-i

n _ ..
+ooo+(—1)Gnmk—O

for k-O,l'21..o
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Let

' 1

mk mk+1 ° ' ° mn+1;

mk+l mk+2 ' ° ° Inn+k+1

Mn .k _

_ mn+k mn+k+ 1 ' ' ° m2:14-14 .1  
Any n consecutive equations of the system (2.4.5) form

a linear system of equations with 01.02,...,on as

unknowns. Therefore, we get

(2.4.6) An = det Mn = 0 k = 0,1,2,...

By the assumption that the nodes are distinct we

see that for L < n and for real numbers yo.y1....,yz,

1"2 k z 2 '
we have fr x (yoi-ylx4--o-+-y‘x ) dun p081tive, i.e.

L

for any L K no Qz'k(Y) . .- mi+j+k Yin > OI

1,3—0

where y = (yl;...,y‘). This is equivalent to saying

that in Mn the determinants of all principal minor
,k

submatrices are positive. It is thus possible to determine

m2
n in terms of mo,ml,...,m2n_1 from An,0 = 0.

Similarly, from An,1 = 0 we get m2n+1 in terms of

ml,m2,...,m2n and in general from An,k = 0 we get

m2n+k in terms of previous moments. Thus the system

(2.4.2) may be made closed.
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Remark 2.4.2. Given a sequence of real numbers
 

{mt};=1 which satisfy (2.4.6) with the additional

assumption that the determinant of all minor submatrices

of Mn (k = 0,1,...) are positive, we can obtain a
,k

unique measure concentrated on n distinct points in

(0,”) whose moments are the given sequence. For a proof

we refer to a paper written by Ernest Fischer [9].

Actually the proof is based on the fact that the quadratic

n-1 n-1

forms 2 and

i,j=0

mi+inXj i'j=o mi+j+lxixj are

positive definite. It is interesting to know that if

the determinants of Mn 0 and Mn 1 are non—negative

for all n, then there exist a measure u with [mk];;1

areas moments. If the determinants of Mn and Mn

IO ,1

positive for all n, then u is a measure whose spectrum

cannot be reduced to finitely many point.

Remark 2.4.3: To close the system (2.4.2) in
 

practice we need a simple computer algorithm to write

higher moments in terms of previous ones. To do this

we use the following theorem (George E. Forsythe and

Cleve B. Moler [10]).

Theorem 2.4.4: For a given square matrix A of

order n, let Ak denote the principal minor submatrix

made from the first k rows and column. Assume that
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det(Ak) # 0 for k = 1,2,...,n-—l. Then there exist

a unique lower triangular matrix L = (zij), with

111 = 122 = --- = inn = l and a unique upper triangular

matrix U = (uij) so that LU = A. Moreover,

det A = 1111 °u22 ---unn. Here A = Mn,k is a symmetric

matrix of order n-tl; therefore, by A = LU = UTLT

and b un' u n 55 of L and U we hav .. = u.. u..y iq e e e L1] :1/ 33

if i # j. Thus

= a for l g,i g ni-l
u1i li

Now multiplying all rows of L with index greater than

or equal to 2 by the second column of U we get

a 2 /

22 ’ 22"“12 u11

I
: I

and

u2i = ai2"u1i 'ulz/fill' 3 é-l S-n*'1

Continuing this procedure we get the following algorithm"

to compute ull.1122.....un-|_1
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For I = 1, n+1 Do

u1i = a1i

For j = 2, ni—l Do

'-1
(2.4.7) 3 2

.. = a.. - .

“33 33 E “kJ/ukk
k 1

For I = j-tl, ni-l Do

j-l

uij = aij 331 ukiukj/ukk

In order to obtain m2n+k in terms of mk.mk+1....,

m2n+k-1 which is a consequence of the equation

An k = 0, we modify the last step which completes the

algorithm (2.4.7) for the case j = ni-l and set

un+1 n+1 = 0 which gives

2

un+1k/ukkm2n+k = an+1 n+1 -

M
5

k=1

We now prove the following theorem.

Theorem 2.4.5: With the same assumptions as in
 

Theorem 2.4.1 the systems (2.3.2) implies the system(2.4.2).

Conversely the system 2.4.2 implies the system (2.3.2)

provided Ank = 0 k = 0,1,2,... and the principal

submatrices of Mnk have positive determinants.

Proof: It is understood that we use equivalent

initial values. We obtain the system (2.4.2) from the

system (2.3.4) and it is obvious that any solution to the

system (2.3.4) is a solution for the system (2.4.2).
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Conversely, by Remark 2.4.2 any solution of the

closed system (2.4.2) induces a unique measure uh(t)

concentrated on n points xi(t)....,xn(t) with

corresponding weights a1(t),...,an(t). Therefore

by (2.3.6) we obtain the system (2.3.4) from (2.4.2)

with “b(t) as a solution. Therefore any solution of

the system (2.4.2) is also a solution to the system

(2.3.4) and the proof is complete.

2.5 Comparison of the Gauss-Christoffel and the

Gauss-Galerkin Measures: The Gauss-Christoffel approximation

which was discussed in Section 2.2 can be considered

as the "best possible" approximation of a measure

because it determines the first 2n-—1 moments the

same as exact moments. Now assuming that the system

(2.3.4) has a solution on the interval [0,T] we wish

to compare the Gauss-Christoffel approximation

[
4
3

Link) = k 1ak(t) 6%“) .

with the Gauss-Galerkin approximation

n

... V

To do this we need the following lemma and corollary

(Hale [13]).
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Lemma 2.5.1: Let w(t,u) be continuous on an
 

open connected set 0 C R2 and such that the initial

value problem for the scalar equation

(2.5.1) u’ = w(t,u)

has a unique solution. If u(t) is a solution of

(2.5.1) on a‘g t g_b and v(t) is a solution of

(2.5.1) on a g_t < b with v(a) g u(a), then

v(t) g u(t) for t 6 [a,b].

Corollary 2.5.2: Suppose that w(t,u) satisfies

the conditions of Lemma 2.5.1 for a gnt < b, u 2'0,

and let u(t) 2_0 be a solution of (2.5.1) on

a g_t < b. If f :[a,b] an 4 RD is continuous and

[f(t,X)l gw(t,[X|), a g t < b, x e Rn

then the solution of

X' = f(t,X), [X(a)| g_u(a)

exists on [a,b) and |X(t)| g u(t) for t 6 [a,b].

Now the system (2.2.10) can be written in matrix form as

~~

(2.5.2) Ax’ = §x+e(t)

*where A and B are of the same form as A and B in

(2.3.2) with the Gauss-Galerkin nodes and weights
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replaced by Gauss-Christoffel ones and

a(t)T = (e1(t).e2(t),....en(t))

where

ei(t) = E[Lfi]

Note that the errors ei(t) depend on the nodes

[xi(t)] and the weights (31(t)). By Lemma 2.3.1, A

is invertible and equation (2.5.2) can be written as

(2.5.3) 52' = fi'l§i+ii‘le(t)

or

(2.5.3)’ x’=F(x)+E(t)

Where E(t) = E(X,5,t) is regarded as a known function.

Again note that by neglecting E(t) from the system

(2.5.3) we obtain the Gauss-Galerkin system. In the same

way as before we can show that F (X) is Lipschitz

with respect to X with some Lipschitz constant Mn'

The two systems

52%) F(x(t))+E(t)

x’(t) P(X(t))

lead to the system

(2.5.4) ()2 -X) ’ = F(x) —F(X) +E(t)
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We now consider the scalar initial value problem

I

u = Mu-+[E(t)[

u(0) = 0, which has the solution

Mt t -MS

u(t) = e n P lE(s)|e n ds

Also we have

((52 -X) ’l g [F(x) -F(X)|+ [E(t)| g Man-Xl+ [E(t) [.

Thus by Corollary 2.5.2, with X(O) = X(0) (as we

always take Gauss-Christoffel nodes and weights as

initial values), we have for t E [0,T]

~ M t t -M 5

(2.5.5) [X(t) -X(t)| gu(t) = e n j [E(s) (e n ds.

0

Thus we have proved

Theorem 2.5.3: Assuming that the system (2.3.2)

n

has a solution u (t) = Z} ak(t)0 for t E [0,T]

1‘ k=l
xk(t)

with distinct nodes and with un(0) the Gauss-

Christoffel approximation of p(0,x) and

~ n ~

un(t) = kg: ak(t)0;k(t) the Gauss-Christoffel

approximation of p(t,x), then we have
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M t t -M 5

(2.5.6) IX(t)-—X(t)[ g e‘“ 50 [E(s)[e “ ds

where

X(t) = (31(t)....,§n(t).£1(t),...,§n(t))

and

X(t) = (a1(t),...,an(t),x1(t),...,xn(t))

Remark 2.5.4. In equation (2.5.6) E(s) = A-le(s)

where e(s) is the Gauss-Christoffel error and

[E(s)| g cn|e(s)l for some constant on. One may wish

to use (2.5.6) to prove convergence of the Gauss-

Galerkin weights and nodes to the Gauss-Christoffel

ones as n 4 a. However the dependence of cn and the

Lipschitz constant Mn on n does not make such

convergence theorem possible.

Remark 2.5.5. If the coefficients of the stochastic

differential equation are polynomials, then the vector

e(t) has its components equal to zero except for finitely

many of some components. This number of non-zero components

depends on the degree of the coefficients. If the

degree of the coefficients is less than or equal to

one, then e(t) = 0 and therefore, X(t) = X(t) for

all t. Thus for a linear stochastic differential

equation the Gauss-Galerkin and Gauss-Christoffel

approximations are the same.
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2.6 Steady-State Solutions: For some stochastic

differential equations the density p(t,x) of the

solution X(t) as t 4 4 becomes independent of t.

In other words, the influence of the initial state

fades away and the system tends to a steady-state governed

by the stationary solution. In this case the density

satisfies (2.1.3) with left hand side replaced by 0.

Now assuming that a stochastic differential equation

has a steady-state solution the corresponding system

to (2.5.2) becomes

(2.6.1) fix+e=0

or

(2.6.1)I F(i)-+e = 0

which is a nonlinear system of equations and yields the

Gauss-Christoffel steady-state approximation. It is to

be noted that the system (2.6.1) is not closed in so

far as X is concerned as the steady-state density is

involved in e and thus cannot be used for finding the

steady-state approximated solution. The corresponding

system of equations given by the Gauss-Galerkin method

has the form

(2.6.2) BX = 0

or

(2.6.2)’ F(X) = o
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which is a closed system of nonlinear equations for X.

Numerical methods such as Newton's method or the bisection

method can be used to obtain the Gauss-Galerkin steady-

state solution. Also an upper bound for the term

IX-—XI as in Theorem 2.5.5 may be derived as follows.

We define the function

(2.6.3) H(X,s) = F(x)-tse = 0

Obviously for s = 0 we have the Gauss-Galerkin steady—

state equations and for s = l the Gauss-Christoffel

equations. From (2.6.3) we have

(DF(X))X’(s) +e = o

and this leads to (Chow and Hale [3], p. 21)

[53 -XI 3 (in? (X) :1 (e)



CHAPTER III

CONVERGENCE OF THE GAUSS-GALERKIN METHOD

For a given interval (r1,r2) where

-¢ g,r1 < r2 / e and given p(x), assume that we have
A

a sequence of integration formulas

Zn(f) a I(f)

where

E (f) = % afin)f(x1in)) and I(f) = J52 f(x)p(x)dx

“ k=l r1

n = 1,2,... . It is of importance to know under what

conditions the sequence 2%(f) converges to the true

value of the integral as n 4 c. In this chapter we study

the convergence of the integration formulas obtained

by the Gauss-Galerkin method in Chapter II.

3.1 Convergence of the Gauss-Christoffel Integration

Formulas: We shall begin by stating some results about

the convergence of the Gauss—Christoffel integration

formulas.

If (rl,r2) is a finite interval, it is known that

for a given positive measure u with finite moments, we

60
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have

”1'2 "'

(3.1.1) 1im Zl(f) = 1im ; f(x)du

n4m n49 "r1 n

r9

= I “ f(x)du = I(f)
url

for any continuous function f(x) defined on [rl,r2]

(Stroud [21] p. 142).

In the infinite interval case we generally do not have

the same result as in the above. We state some theorems

about the convergence of the Gauss-Christoffel

integration formulas in the (0,“) and (-,¢) cases.

Theorem 3.1.1: Let u be a positive measure defined

on [0,“) whose moments of all order are finite. Let

fin be the n-point Gauss-Christoffel approximation to u.

Then there exists a positive measure v defined on [0,e)

such that

(3.1.2) 1im j food;n = f f(x)dv

n49 0 0

for any continuous function f(x) on [0,”) such that

as x 4 °, f(x) is dominated by a polynomial. (Shohat

and Tamarkin [l9].p. 121).

Theorem 3.1.2: Let u be a positive measure defined
 

on (—°,°) whose moments of all orders are finite. Let

fin be the n-point Gauss-Christoffel approximation to u.

Then there exists a positive measure v defined on
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~

(-¢,¢) and a subsequence [u 7 such that

~

(3.1.3) 1im I f(x)dunk = f f(x)dv
k-oa ”..a ..a:

for any continuous function f(x) on (-¢,~) such that

as Ix) 4 a, f(x) is dominated by a polynomial with

non-negative coefficients.

Corollary 3.1.3: If the measure u in Theorem 3.1.1

or 3.1.2 is uniquely determined by its moments, then the

measure v will be the measure u "substantially".

Remark 3.1.4: By "substantially" here we mean
 

(3.1.4) [ f(t)du = j f(t)dv

for any continuous function f(t) which vanishes for

all sufficiently large values of It).

J.V. Uspenski [25] has given sufficient conditions

for a measure u with density p(x) that is determined

uniquely by its moments (in both (0,9) and (-~,°)

cases). For example in the (0,6) case he proves that if

there exist constants C and R such that

(3.1.5) m = [ xndu <c(2n+1)1R

“ 0

2n for all n 2,1 .

then u is uniquely determined by its moments. We refer

to Shohat and Tamarkin ([19], p.22) for examples showing

that these upper bounds are in fact sharp. In the next



63

sections we shall see how these bounds are essential

in the theory of convergence of the Gauss-Galerkin

integration formulas.

3.2 Assumptions and Boundary Conditions: The Gauss-

Galerkin method proposed in Chapter II is for the approximation

of the density function p(t,x) associated with a process

governed by the stochastic differential equation

(3.2.1) dX(t) a(X(t),t)dt+b(X(t),t)dW(t)

(3.2.2) X(O) given

on the interval I = (r1,r2) where 0 g,r1 < r2 g,°.

In this section we shall state precisely the class of

functions of a(x,t) and b(x,t) that are allowed and

discuss the types of boundary conditions that are

considered in this dissertation.

We suppose that a(x,t) and b(x,t) are continuous

functions on I x [0,T] which satisfy assumptions of

the existence and uniqueness theorems of Chapter I.

More precisely, we assume that there are constants K

and K* such that

(3.2.3) [a(x,t)[ gK(l+ 1x1), [b(x,tH g K(1+ [x[)

and

(3.2.4) [a(x,t) -a(_x',t)[ g K*[x-§I ,

[b(x,t) -b(§.t)] gKJx-SE] .
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for x E I and 0‘: t g,T. We assume that X(O)

is a random variable having a density with finite

moments of all order and is independent of

3(W(t), 0 g,t g_T).

It is clear that with these restrictions on the

a(x,t) and b(x,t), there are non-negative constants

and b such that on I x[0,T] we have
131 2

(3.2.3) [a(x,t)l g a1x+b1 and [b(x,t)] g a2x+b2

Also it is well known (Arnold [l], p. 116) that with these

assumptions, for any t E [0,T], X(t) has finite moments

of all order.

Now consider the Gauss-Galerkin approximations

n
~ (n)

u(t)= Z (t) 6 n=1,2,...

k

as a sequence of integration formulas 2% t(f) z It(f)

where

r2
It(f) = [r1 f(x)p(t.x)dx

and

n

Zn'tw.) = 3:231 231:“) (t)f(x1£“) (t))

Before discussing the convergence of the integration

formulas at any t > 0, it is essential. to have -

convergence of 2% O(f) to IO(f) for f(x) belonging

to some appropriate class of functions. For example
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it is seen in Section 3.1 that if p(0,x) is

determined uniquely by its moments, then we have

convergence of zg’o(f) to Io(f) for all continuous

functions f(x) such that as x 4 m, f is dominated

by a polynomial.

Throughout this chapter by "the stochastic

differential equation satisfies the condition A on

(r1.r2) x [0,T] we mean:

Condition A

l. The coefficients a(x,t) and b(x,t) are

continuous on (r1,r2) x [0,T]. They are such that a

unique solution exists and satisfy the inequality

(3.2.3).

2. X(O) is a random variable independent of

3 (W(t), 0 g_t g_T) with density p(0,x) having finite

moments of all order.

3. The Gauss-Christoffel integration formulas

2%(f) for p(0,x) converge to the true value of the

integral I(f) for each function f that is continuous

and such that as x 4 e, f is bounded by a polynomial.

4. The boundary conditions on p(t,x) for each

t is such that

*

(3.2.5) (L p,fi) = (p,Lfi)

for i = l,2,...,2n and fi(x) = xl-l.
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5. The eigenvalue problem defined by

Lu = Au

and the boundary conditions above generates an infinite

set of eigenfunctions [un(x)] such that the set

.9 x
, O . .

(une ] is complgt: 1n L2(r1,r2) for some 60 > 0

o
and such that use 4 0 as n 4 a. Furthermore any

sufficiently smooth function P(x) can be approximated

- x

uniformly by combinations of the set [une O }.

6. The density p(t,x) governed by

= L p x t (rl,r2) ,

and the boundary conditions above exists and is unique.

We shall now make some comments on these conditions.

 

Remark 3.2.1. Equation (3.2.5) for f1(x) = 1

implies that

This means that boundary conditions are such that the

probability in (r1,r2) is preserved.

Remark 3.2.2. The assumptions made in Condition 4
 

may be analyzed by appealing to the spectral theory of

the Operator L involved. For a smooth function @(x),

the uniform convergence of its formal eigenfunction
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expansion depends on the behavior of the expansion of

the Green's function in terms of the eigenfunctions.

See [4] or [17]. Actually for the finite interval

case condition A5 is automatically true. See [4]

Theorem 4.1.

Remark 3.2.3. As Feller [6,b] points out in
 

diffusion theory one usually starts with the assumption

that the transition probability P(x,t,B) = P(0,x,t,B)

has a probability density p(x,t,y) = p(0,x,t,y) which

for fixed y satisfies the Fokker-Planck equation. As

we have seen in Chapter I (equation (1.10.3)) the

density p(0,x) and p(x,t,y) determines p(t,y)

the solution of the FOkker-Planck equation. For

simplicity we assume condition 6 here and refer to

Gikhman and Skorokhod ([9,b]) where the existence of

the density p(x,t,y) under more restrictive conditions

on a and b is discussed in detail.

Remark 3.2.4. The classical boundary conditions

*

that make L and L adjoint to each other are discussed

by Feller [8,a]. Equation (3.2.5) is a special case of

the above for polynomials.

Let us present some examples of stochastic

differential equations defined on (r1.r2) where
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A

0 g_rl < r2 K 0 for which under suitable boundary

conditions equation (3.2.3) is valid. We give examples

defined on (0,1) and (0,”) only since by Ito's

formula (using linear functions) any (r1,r2) can be

treated similarly. The idea for the proof of the following

examples are discussed in the work of S. Ethier [7].

Example 3.2.4. Consider the stochastic differential
 

equation

(3.2.6) dX(t) = a(X(t))dt+b(X(t))dW(t)

(3.2.7) X(O) = given

define on (0,1). Assume that a(x) and b(x) are

continuous on (0,1), b(0) = b(l) = 0, a(0) 2_0 and

a(l) g_0. Define a(x) = b2(x) and

1 if x 2.1

p(x)=<x if nggl

 

since a.op and o op are bounded, the stochastic

differential equation

1

a op(X(t))dt+ (0 op)2(X(t))dW(t)dX(t)

X(0) given
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has a solution (Q,?,X(t),P). Now the equation

(t1
(3.2.8) Xt -Xt = J aop(Xs)ds

1 O to

t1 '2’
+]‘ (Cop) (xs)dW(s)

to

implies that

P(X(s) E (-°,0) for tO g_s £.t1 and

X(tl) -X(t0) < 0.) = O

and '

P(X(s) E (l,°) for to‘g s 3 t1 and

X(tl) -x(to) > 0} = 0

whenever 0 < tO < t1. Summing over all rationals t0

and. t1 we obtain

P[Xs 6 (-°,0) U (1,”) for some 3 > 0] = 0

Therefore the probability is preserved in the interval

(0,1). Thus if p(t,x) is the density of the stochastic

differential equation (3.2.6) and (3.2.7) we have

1

(3.2.9) f p(t.X)dx = 1

0

Now (3.29) implies that (3.25) is valid for fl(x) = 1.

For f(x) = Xk, k 2_1, we have
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° 1 2 2
* R

(L pack) =3 (-%{2+%L%E)Xkdx

0 5x

k . 1 292 1 1 k-12 1
= x (-ap4-bb p + E-b aX)[ i-E-kx b l

O O

+ (p,ka) = (p,ka) - 111]!) ap

x-O

Therefore if a(l) # 0 the only boundary condition

that we need here is lim p(t,x) = 0.

x41

Example 3.2.5. Consider the stochastic differential
 

equation

(3.2.10) dX(t) = a(X(t))dt+b(X(t))dW(t)

(3.2.11) X(0) = given

defined on (0,0). Assume that b(0) = 0 and a(O) 2.0.

Also assume that a(x) and b(x) satisfy the existence and

uniqueness conditions. Define Cibd and p(x) the same

as in Example 3.2.4. Therefore the stochastic differential

equation

1

dX(t) = a °p(X(t))dt+ (c op)2(X(t))dW(t)

X(O) given

has a solution (0,3,X(t),P). The same equation as

(3.2.8) implies that



r ’ _ 1:P._X(S) E (4.0) t0 3 s 3 t1 and X(tl) X(to) < o, 0

and therefore with the same argument we have

P(X(s) 6 (—¢,0) for some 8 > 0} = 0

and therefore equation (3.2.9) is true (only a is

replaced by 1). Thus (3.2.5) is valid for fl(x) ='l.

For f(x) = xk, k 2_1 we have

a

a - 1

(L p'xk) = (PvLXk) 'I-xk(-ap+bb'
p+l b2 22‘ _kak 1.02pl

2 6x (3 2 0

= (p.ka) +lim Xk(-ap+bb
'p+% b2 3.5.)

x49

xdo

Therefore here if we impose the boundary condition

(3.2.12) 1im xkp = 0 and 1im xk 3.2 = o

x40 x40 X

the equation(3.2q5) is valid“ In Section 3.6 we see that

if a(x) =bx+c, b(x) =a2.fx. then the boundary conditions

(3.2.12) are automatically valid.

3.3 Some Results from Differential Inequalities: To

continue our preparations for the convergence theorems

of the Gauss-Galerkin formulas we need some lemmas from

differential inequalities (Szarski [24]).
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~

Let Y = (yl.....yn)T and y = (§1....,§n) be

two points of the n-dimensional space. We write

Y3? if yigyi (i=l,2,....n)

and

N /
\

K
t

if yi < yi (1 = l,2,...,n)

For a fixed index j we write

Y g? § if yi g,§i (i = l,...,n) and yj = 9

Let a system of functions fi(t.y) = fi(t.y1.....y )

(i = l,...,n) be defined in a region D. We have

Condition V+ (V-): System fi(t.y) i = l,2,...,n

is said to satisfy condition V+ (V-) with respect

to y in D if for every fixed index j the function

f. (t,Y) is increasing (decreasing) w.r.t. each

variable yl.....yj_1. yj+1.....yn separately.

Condition W+ (W-): System fi(t,y) (i = l,2,...,n)

is said to satisfy condition W+ (W-) with respect to Y

in D if for every fixed index j, the following

implication holds true

Y 33 §,(t.Y) E D, (ti?) 6 D = fj(t,Y) g fj(t,§)

(Y gj Q. (t.Y) e D. (tn?) 6 D = fj(t.Y) 2 fj(t.i‘)).
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Definition 3.3.1 (Dini's derivatives) For

a real-valued function w(t). defined in some neighborhood

of the point t we denote D+w(to). D+o(to). D-$(to)0!

and D_o(to) by

w(t0+h)-¢(to)

 

 

 

 

+

D w(t ) = lim sup
0 h40+ h

w(t0+h)'-¢(to)

D w(to) = lim inf h

+ h-vo+

_ cp(t0+h) -¢$(to)

D w(to) = 1im sup h

hfio'

w(t0+h)‘-w(to)

D w(to) = lim inf h

' h40‘

(the values +0 and -¢ being not excluded). Obviously

if m is differentiable at tO all four derivatives are

equal.

Lemma 3.3.2. Let the right-hand side of the system
 

dy.
1 = - =

(3.3.1) dt Oi(t.yl,....yn) l l,2.....n

be defined in some open region D and satisfy in D

condition W+ with respect to Y. Let (tO.YO) E D.

Assume that w(t) = (¢1(t).....on(t))T is continuous

in [to.a) and that the curve Y = u(t) lies in D.

Let Y(t) = (y1(t).....yn(t))T be an arbitrary solution

of the system (3.3.1) passing through (tO.YO) and

defined in some interval [tO,B). Under these assumptions. if
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(3.3.2) w(to) < Y0

and

D_oi(t) g_oi(t,ol(t).....on(t)) 1 = l,...,n

for t E (to,a), then we have the inequality

w(t) < Y(t) for t e [tO.G) n {tO.B)

Corollary 3.3.3. If the system (3.3.1) in

Lemma 3.3.2 has a unique solution. then Lemma 3.3.2 holds

true when the strict inequalities (<) are replaced

by (g).

For a proof of the lemma and corollary we refer

to Szarski [24].

Corollary 3.3.4. Let the right hand sides of
 

the systems

dy.

l _ . =
(3.3.3) dt — Oi(t.yl.....yn) 1 l,2,...,n

and

dyi

(3.3.4) -d—t—= fi(t,y1.....yn) 1= l,...,n

be defined in some region D and let the right-hand

side of the system (3.3.3) satisfy condition W+ with

respect to Y. Let (3.3.3) have a unique solution and

assume that Y(t) = (y1(t),....yn(t))T and w(t) =

(cpl(t).....cpn(t))T are solutions to (3.3.3) and (3.3.4)



75

respectively on [tO,G). With these conditions and if

fi(t,- .....con) g U.(t.cp1.....cpn) (t.Y) 6 D .

then w(t) g Y(t) for t E [t0.a).

Proof. Notice that w(t) and Y(t) satisfies

all conditions of Corollary 3.3.4.

3.4 Helly's Theorems: The following two theorems are

needed in the proofcxfthe preparatory lemmas in Section 3.5.

First we state

Definition 3.4.1. A sequence of measures (uh) is

said to converge to a measure u substantially if

lim un(I) = u(I)

n-OG

for all (finite) intervals of continuity of u.

Theorem 3.4.2. (The first theorem of Helly).

Given a sequence {un} of positive measures and uniformly

bounded. then there exists a subsequence (pk } and a

measure u to which this subsequence converggs substantially.

Furthermore, if the sequence {pm} itself does not

converge substantially to u. then there exists another

subsequence {“k'] converging substantially to another

n

measure u' which is not substantially equal to u.
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Theorem 3.4.3. (The second theorem of Belly).

Given a sequence {uh} of positive measures defined on

(0,“) and uniformly bounded, which converges substantially

to a measure u. Then

Lim I f(x)du = F f(x)du

n49 O n ”O

for any function f(x) continuous in (0,9) and such

D

that, as intervals I T (0,6).f f(x)dun 4 I f(x)d',..n
N

IN 0

uniformly in n.

3.5 Preparatory Lemmas: We shall develop some lemmas

that are needed in the proofs of the convergence theorems

in the next section. In these lemmas we shall consider

measures un(t) defined on the semi-infinite interval

(O,a). It is clear that these lemmas also hold for

measures defined on any finite interval (r .rz) contained
1

in (0.”).

Lemma 3.5.1. Assume that the stochastic differential

equation

(3.5.1) dX(t) = a(X(t).t)dt+b(X(t).t)dW(t)

(3.5.2) X(O) = given

satisfies condition A on (0.“) x[O.T]. For

t E [0,T] let
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(t)=%a(n)’~ -12“n t n - . ....

(t) (n)
k=1 k Xk(t)

denotes the n-point Gauss-Galerkin solution to the

corresponding system (3.5.1) with non-negative weights

and distinct nodes. Let L be any fixed integer.

Let min)(t) = F X

”o

zdun(t): then the set

(mén’uz): n>-§-(1+:). t6 [0,T]}

is bounded and equi-continuous.

Proof. We take fi(x) = x1, i = O,l,....2n—l.

The system (2.3.1) can be written as

dm(n7(t)/dt=j (Lfk) (map k
k 0 1‘

0:1,...,2n-1

Using condition A we have

(3 5 3) dm(n)(t)/dt I“ (a x+b ) 6—55 d
° ' k 3 o 1 1 2»: “n

2

1 ° 2 a fk
+-— (ax+b) -———du

2 IO 2 2 ax2 11

_ (n) (n) (n)

" gk(m)<-2' mk-l' "‘k )

We let mo.m1....,m2n_1 be the solutions to the system

dm'k
(3.5.4) 7fi;-= gk(mk_2. mk_1. mk) k = O,l.....2n -l
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with the same initial values as mk (O) k O.l.....2n -1.

Then by Corollary 3.3.4 we have

(n) l -
(3.5.5) ml (t) g_mt(t) n > E(L-+l). t t [0,T]

On the other hand the system (3.5.4) is the Hankel system

for the stochastic differential equation

(3.5.6) dX(t) (a x + b1)dt + (azx + b2)dW(t)

1

(3.5.7) X(O) = given

If ”t = £(X(t)) is the law of the solution to the

equations (3.5.6) and (3.5.7) we know by Remark 2.5.5

that the linearity of (3.5.6) implies

° k
mk(t) = J" x dut k= O.l,....2n-l,

o

1:

that is. mk(t) is the exact k-th moment of the process.

For each 0 g_k g 2n-l mk(t) is a continuous function

on [0,T] and therefore bounded. Thus there exists

a K2 such that for all n >-%(L+—l) and for all

0 g,t g.T

(3 5 8) mm) (t) _<_m (t) gK
’ ' L z I

(n)
The non-negativeness of mi (t) implies that

{mén)(t), n > %(L4—l). t E [0,T]} is bounded. To prove
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the equicontinuity. we note that for given n > %(l4—t),

by the mean-value theorem. we have

lmén) (t2) my” (1:1)) = SEQ-(fl) “=2 ”‘1‘

for t1 < § < t2

but

3:12.251. = U: a(x,g) 5—8214» %b2(x.§) :gidunl

g_f: [a(x,g)| %;é dx + %-f; [b2(x.§)|%;;% dun

g f; (alx-i-bl) gaff- + %j; (azxfloz)2 22:3- dun

_ (n) (n) e (n)

Since g‘ is a polynomial with constant coefficients and

m£2;(t). m£2i(t) and min)(t) are all uniformly bounded

on t. there exists an ML such that

(n)

‘1’“: (g) (n) (n
(T) _<. Ig‘mbzm. m‘ {(9. my” (9) gm!

Thus for fixed 3 and all n > %(z+-1) there exists

an ML such that

(n)
(mJZ (t1) -m£n) (t2)l g MW:2 -t1 l

which implies the equicontinuity of {m§n)(t), n > %(z+-1),

O g.t gDT) and the proof is complete.
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Lemma 3.5.2. Assume that the condition A holds.

Then there exists a subsequence {ukn(t)) of the Gauss-

Galerkin measures (un(t)) and a sequence of functions

{m:(t)] such that for any positive integer L. we have

° (k )
. n *

le Int (t) = m‘(t)

k an

n

(kn) fi" 1

uniformly on t e [0,T], where m (t) = = X duk (t).

L do n

Proof. By Lemma 3.5.1 the set {m{n)(t). n > 1.

t E [0,T]) is bounded and equicontinuous; therefore. by

the Ascoli theorem there exists a subsequence {k1 n]

(k .n) '

contained in (n) such that {m1 1 (t)) converges

*

uniformly to a limit function m1(t). We can assume

( (k1 n)

kl'n > 3/2. The set (m2 (t). kl'n > 3/2. t e [0,T]}

is again bounded and equicontinuous: therefore. there

exists a subsequence {k2 n) contained in (k ) such

(k

that {m2 2,n (t)) converges uniformly to a function

l,n

*

m2(t). Continuing this process we get a subsequence

(k1 n} such that (for any positive integer z)

(k )
*

{m ‘£.n } converges uniformly to a function m£(t).

Now consider the subsequence {kn n} which we rename

it (kn) that is contained in (n). It is obvious that

(k )
*

{m1 n (t)) converges uniformly to m‘(t) and the proof

is complete.
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Remark 3.5.3. In Lemma 3.5.2 if we start with any

subsequence (kn) C (n). in the same way we can show

the existence of a further subsequence {5k } C (kn)

and a sequence of functions (m:(t)] such :hat

(k )
*

Lim m n(t)=m1m

uniformly in t E [0,T].

Lemma 3.5.4. For any t E [0,T], the elements of

i

the sequence (m‘(t)) are indeed moments of a measure,

*

i.e. there exists a measure P (t) such that for any L

or}.
O

L * *

dP (t) = mz(t)

Proof. Assume {“k'} is a subsequence of (uh) such

n

that for any positive integer n. we have

(kr'l) *

Lim nu (t) = m‘(t)

k an

n

By the first theorem of Helly there exists a subsequence ‘

. 'k

of (kg) which we rename (kn) and a measure P (t)

*

such that f (t)) converges to P (t) substantially.

ukn

Now we claim that for any 1 and any 6 > 0, there

b (k )

exists an interval (O.b) such that f X‘duk > m‘ n (t) -e

O n

for all n, i.e.

L
X d < e for all n

Ib pkn
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To prove the above claim. let us assume the contrary.

Therefore, there exists an e > O and an n such that

* .

for any b there exists an kn 6 (kn) such that

° 1(n

g Xd *>_€

ub pkn

Now consider

(k’) .. Q

n t+l L
m (t) =V X :1, *(t) 2 xxd *(t)

1+1 d0 Ukn Ib ukn

2_b d *(t) 2_€ 'b

j‘b “kn

*

Thus we have shown that for any M. there exists a kn

*

(k )
n

such that mz+1 (t) 2.M or

(kn) *

lim.bd = a = M (t)
kn“ 1+1 2+1

which is a contradiction. Thus by second theorem of Helly

we have

. ° z ° t * *
Lim x d (t) = x dP (t) = m (t)

kn“ IO H.kl'l j‘0 ‘

and the proof is complete.

Note in Lemma 3.5.4 we have shown only the existence

of a measure P*(t) which need not be unique. The

following Lemma shows that if the measures P*(t) are

uniquely determined by the moments m:(t). then the Gauss-

Galerkin integration formulas converge to the true values

of integrals.
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Lemma 3.5.5. Under condition A if for each t
 

* 'k

the measure P (t) is uniquely determined by (mz(t)),

then we have

* 'k t r”

mz(t)-m£(0) = IO “0 bxL-la(x.s)dP*(s)ds

t

+ % f j 2(1-1)x“2b2(x.8)dP*(S)ds

Proof. Let (kn) be a subsequence of positive

integers such that for any 1., Lim mg n = mz(t)

uniformly in t. By the assumption that for any t,

{m:(t)} determines the measure P*(t) uniquely. the

subsequence (pk (t)) converges to P*(t) substantially:

otherwise. by thg first theorem of Helly for a fixed t

there exists a subsequence (us } which converges to a

’ k
n

* * *

measure Pl(t) and P1(t) is not P (t) substantially.

In the same way as we did in Lemma 3.5.4 we can show that

(s )

l
(t) = m’;(t) = J” x‘dP:(t) = j‘ x‘dP*(t) .

O O

limrn

and this is not possible. Also in the same way as we

proved in Lemma 3.5.4. we can show that for any t and

and any 3 >’O there exists b > 0 such that

O

f f(x)duk (t) is less than 6 for all k . where

b n n

f(x) is a polynomial with non-negative coefficients:
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a

Lim JP Xf (X) dpk = a

k 4° 0 n

n

which is a contradiction. Now let a(x) be any continuous

function which is dominated by a polynomial f(x) with

non-negative coefficients. For any 6 > 0, there exists

b > 0 such that

I)" w(x)d‘ (t) _<_ )cp(x)ld,* (t)

b F‘kn i J.‘b LICn

_<_ ” f(x)d' (t) < e

Jb Mkn

for all k . Thus by the second theorem of Helly, we

 

n

have

(3 59) L' j. ()d (t) (a ()dP*(t). . 1m w x = m X

ka- 0 Mkm o
n

Recall that

(k)

dmz n (t) ° L

dt = IO 1x a(x,t)dukn(t)

”1 1-22
+ -£(z-1)x b (x,t)d“ (t)
I02 “kn

1-1
1. F (a X+b )x d' (t)

S ”o 1 1 “kn

1 ° 2 2-2
+ -2- LH-l) f0 (a2x+b2) X dukn(t)

(kn) (kn) (kn)
= g‘(mz_2 (t). m2_1 (t). m2 (t))
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We know that gt is uniformly bounded. By the continuity

 

(kn)

dm‘ (t)

of dt we have

(k ) (k ) t a
L-l

mg n (t) -mL n (O) = $0 (50 Lx a(x,s)dukn(s)

a L 2-2 2 (s)
+fo 2 l.(2.-l)x b (x,s)dp.kn )dS

t (kn) (k )

S.) g‘(m1_2 (S).....m‘ n (s))ds

0

Thus by the Dominated Convergence Theorem and (3.5.9) we

have

t a a

'la(x.s)dp*(s) +j 15- u: -l)x"'-2b2

o
(x.s)dp*(s))ds .

3.6 Main Convergence Theorems: As we have mentioned

before all the Lemmas in section 3.5 are true for finite

interval. Thus we can prove the following theorem.

Theorem 3.6.1. Under condition A if (r1.r2) C (0.0)

is a finite interval, then the Gauss-Galerkin integral

formulas 2% t(f) converge to It(f) where f(x) is

any continuous function defined on [r1.r2].

Proof. To prove the theorem. first we show that for

any positive integer L and O g_t gDT, the sequence
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7 {mén)(t)} converges to the exact moment 6(Xz(t)). If

we consider the sequence (min)(t)) as a sequence in the

complete metric space C([O,T]). it suffices to prove

that any subsequence of (min)(t)) has a further

subsequence which converges to the exact moment uniformly.

Let (k;) be a subsequence of positive integers. By

Lemma 3.5.2 there exists a subsequence {kn} C (k;}

'k

and a sequence {mz(t)) such that for any L.

(k ) ,

Lim nu’n (t) = mz(t) uniformly in t. By Lemma 3.5.4.

k-n

n

'I' *

m‘(t).£ = 0,1,2,... are the moments of a measure P (t).

Now since [r1.r2] is finite. the coefficients a and

b in (3.5.1) are bounded and therefore. the equation

(3.5.6) reduces to

(3.6.1) dX(t) aldt-tbldW(t), a1 and b1 constants

(3.6.2) X(O) given

Since the density of the solution to the above stochastic

differential equation is normally distributed (Arnold [1],

p. 133). the moments of the solution satisfy

. L
mL(t) g C(2z+1) .R

for some constants C and R independent of L that

may depend on t. Thus for any I and n we have
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m1
£.mz(t) g_C(2£-+1)1R

* *

and (m‘(t)} determines the measure P (t) uniquely.

Thus by Lemma 3.5.5 for any 1 we have

i *

(3.6.3) mL(t)-m‘(0)

.t .3” 1-1 *=.) ; AX a(x,s)dP (5)515

o "o

1 pt ” 1-2 2 * ds
+ E-JO IO l(£-—l)x b (x)dP (t))

t * L

j. (P (S) .Lx )ds

0

On the other hand P(t) = p(t,x)dx. the exact measure,

satisfies the same equation as above. Thus we have

t

(P(t).f)-(P(O).f) = f (P(s).Lf)ds

O

for all polynomials f.

Now let a(x) be any C2-function on [rl.r2].

By the Weierstrass approximation theorem and the finiteness

of the interval [r1.r2], for any e > 0 there exists

a polynomial Pm(x) such that

Hcp(x) -Pm(x)|) + Hcp'(x) —Pn’1(x)H+)):p”(x) -PI;(X)H < e

for all x 6 [r1.r2]. Now we wish to prove that

t

(3.5.4) (P*(t).cp) - <P*(0) .cp) = j‘ (P*(s).ch)ds
O
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To do this. note that by (3.6.3)

1:

|(p*(t) .cp) - (p*(o) .o) -j (P*(s) ,ch)ds|

O

* *

I(P (t),cp-Pm+Pm) -(P (O),cp+Pm-Pm)

t *

-fo (P (s) ,L(cp -Pm) +LPm)ds|

* * ,.t *- d |

_<. I(P (the-Pm) -(P (mm-Pm) -JO (P (S).L(cp-Pm) s

g I(P*(t).cp-Pm) |+ )(P*(O).cp-Pm)l

P

+JO I(P*(s).L(cp-Pm))d51 < Ce

where C is a constant depending on the bounds of the

coefficient a and b. Thus equation (3.6.4) holds for

any C2-function w(x) defined on [r1.r2].

Now let ux(x) be an eigenfunction for the eigenvalue

problem

(3.6.5) lu = Lu

Equation (3.6.4) for u1 becomes

(f(t) ”11) - (9*(0) '“1’

t 'k t *

= f (P (s) ,Luk)ds = 7g f (P (s) ,ux)ds

O O

* _ 1t . .
Thus (P (t).uk) — cxe . Obv1ously the equat1on (3.6.4)

*

is true for P(t) and in the same way as we showed for p we
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can prove (P(t),uk) = Ciext. Since P*(O) = P(O), we

have proved

*

(3.6.6) (P (t) .ux) = (P(t).u>‘)

Thus by condition A5. (3.6.6) holds for any w(x)

sufficiently smooth: therefore we have

* * L

P (t) = P(t) and mz(t) = 6(x (t)) .

for any positive integer 1. Now this and equation (3.5.9)

complete the proof of the theorem.

In the remainder of this section we shall discuss the

convergence of the Gauss-Galerkin method in the (O,w)

case. First let us consider the special stochastic

differential equation

(3.6.7) dX(t) X(t)dt+X(t)dW(t)

given(3.6.8) X(O)

The Fokker-Planck equation for the above equation is

92 = _B(xp) +1 1:20:29)

at 5x 2 a 2
x

p(0,x) = given

The Hankel system for the moments of p(t,x) is

dmn(t)

_l. 2 _
dt -2 (n+n )mn(t) n—C,l....
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with the solution

%m+n%t

m (t) =m (O)e n=O,l,...

n n

As these moments do not satisfy the sufficient conditions

(3.1.5); p(t,x)dx may not be uniquely determined by

these moments. Also it is obvious that the Gauss-

Galerkin solutions of (3.6.7) and (3.6.8) are the same

as the Gauss-Christoffel ones. Thus the sequence of

functions (m:(t)) is the sequence of the exact moments.

Thus. in general even if a linear stochastic differential

equation satisfies condition A, Lemma 3.5.5 may not be

true and therefore we do not have a convergence theorem

similar to the Theorem 3.6.1. However, we have '

convergence for a more restrictive class of stochastic

differential equations defined on (O.m). First consider

the stochastic differential equations

(3.6.9) dX(t) (bX(t) +a)dt+./2aX(t) dW(t)

given where p(0,x) = Be-BX, B > 0(3.6.9)’ mm

for a 2_O defined on (O,w)><[O,T]. The Fokker-Planck

equation of (3.6.9) is

fig = ._B(bx+a)p+ azaxp

at 5x ax2 '

2

—bp+ (a-bx) -:-E+ ax é—E .
x ax2
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By the separation of variables, we seek solutions to

above partial differential equation in the form e-x”v(x).

Obviously v(x) satisfies the differential equation.

xv”(x) + (1 -53 x)v'(x) -2 v(x) +2L v(x) = O
a a a

If b > O substituting u(g) = V(X) Where X = % 8

we have

(3.6.13) gum) + (1 -s)u’(§) + (%-1)u(§) = o

It is well known (see [l6],p.243) that a necessary and

sufficient condition for the differential equation

xy”+ (1 -x)y’+(ly = O

to have a polynomial solution is that. p = n. Furthermore,

Ln(x), the Laguerre polynomial of degree n is the

1

only solution. Now if we assume jgn-l = n, i.e.

1n = b(n-Pl) we may write

8 -K t

(3.6.11) p(t,x) = Z) a e n Ln(§'x)

as a solution for the Fokker-Planck equation. With

p(0,x) = Be-Bx and since ([18]. p. 135 and 205))

(3.6.12) (0 e‘g Ln(g)Lm(§)dg = o m # n .

(3.6.13) P e‘§[Ln(§)lzdg = 1

”o



(3.6.14) exp(-xz/l -z) = lenLn(z), [2| < 1, and
.31.

l-z

Q

(3.6.15) j 6'25 Ln(§)d§ = z‘r“1(z-.1)n .
O

we obtain from (3.6.11)

-
3

36"Bxe‘m/al L (2 x)6(-‘2 x)
JO m a a

° Cbx/a b b b
- _ _ —_ n:b e Ln(a x)Lm(a x)d(a X)

en »

Abx/a b 2 b
- am Jo e [Lm(a X)] d(a X) am

Thus by (3.6.13) we have

_ ‘ag -n-l aé’n = .EE -1 a8 n

an-B(1+b) (b) B(l+b) (17%;)

 

and

-bt °° -bt

_ Es__ kn 19.
(3.6.16) p(t.x) — “£41 £0 (b+aB) Ln(a x)

b

-bt

= Bbe Abt exp(-bBe_btx/

b+aB-aBe -bt

(b+aB-aBe ))

In the case when b < 0 equation (3.6.10) becomes

II 3 I x .—

(Eu +(1+=)u +(l+m)u-O

In this case for 1+Tg—I= l+n the solution of the

_3

above equation is of the form u(g) = e b Ln(§). Thus

equation (3.6.11) becomes
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b
an - X

p(t,x) = z a e-nlblt e a L (lb-1- x)
n=O n n a

With p(0,x) = Be-BX using equations (3.6.12) -(3.6.15)

we get a = B(f%%)-n—l (
Ba n

n (En--1) . Thus formally

6 Ba - n ._121
t Z) lb) l:| 1 -|b|nt a X ,Ib]

p( .X) a a e e Ln‘ a x)

n=O

lb‘

-Jfid.x e l | n

igi'e a Z) (5&6; b e-Iblt) Ln(l§i'X)
n=O

Note that the series above converges for B > [bl/2a to

  

the limit

_ Bbe-bt -bBe-btx

P(t'X) ' -bt ex? -bt
b+aB-aBe b+aB-aBe

which is the same as equation (3.6.16). However the

limit is defined for all 8 without any restriction.

Thus for any b. p(t,x) is exponential. In particular

there exists Y such that

0

(3.6.17) f eYXp(t,x)dxv+I xeYXp(t.x)dx

o o

+ f x2eYXp(t,x)dx g.M < °

0

which is needed later. It is interesting to see that

the stochastic differential equation (3.6.9). (3.6.10)

satisfies Condition A. It is easy to verify Conditions



94

Al-A3. By integration by parts we can verify that A4

is valid. Also in this special case p(t.O) need not

be zero. The eigenvalue prdblem of condition A5 for

equation (3.6.9) becomes

an azu
(bx+a) -—+ ax—= ).u

5x 2

Bx

As we saw above, depending on whether b is negative

or positive, the eigenfunctions are Ln(x) or e-an(x)

where Ln(x) is the Laguerre polynomial of degree n

and they satisfy the requirements of the Condition A5.

Finally we have derived the density explicitly

(Equation (3.6.16)). We refer to (Feller [8,a]. p. 516)

for the uniqueness of the solution and the validity of

Condition A6 holds.

Now consider any stochastic differential equation

of the form

(3.6.18) dX(t) a(X(t)) +b(X(t))dW(t)

(3.6.19) X(O) given

which satisfies Condition A on (0,») x[0,T]. In

addition we assume

(3.6.20) b(x) g_¢20x (o a positive constant)

and X(O) has a moment generating function, i.e.

n
6 mn(0)

M= ,

n.

< w for some 6 > 0

h
e

0
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There exists a 81 > 0 such that gL-> (1+M)‘3-l or

1

«a -8 X n _

J lene 1 dx = n1(£L) 2,M9 nniil m (0)

o ‘31 n

In the same way as in Lemma 3.5.1 we can show that for

any n, the n-th moment of the solution to the equation

(3.6.18) is less than or equal to the n-th moment of the

solution of an stochastic differential equation of type

dX(t) = (bX-to)dt-h/23§ dW(t) with the initial density

-Bx
Be whose n-th moment is greater than or equal to

mn(0) and therefore the functions {m;(t)} determine

a measure uniquely. Thus all the Lemmas of Section 5 are

valid. Let 81 be

-bt
_ . Bbe

9 - m1n Cbt

1' ogth b + 08 - oBe

 

We are now ready to prove the following theorem.

Theorem 3.6.2. Assume that the stochastic differ-

ential equation (3.6.18) and the initial value (3.6.19)

satisfy Condition A together with (3.6.20). If 90,

the constant in A5. is less than or equal to 61, then

the Gauss-Galerkin integral formulas converge to the

true value of integral, i.e.

1.11:1 Zn,t(f) = It(f)

where f(x) is any continuous function dominated by a

polynomial.



96

ggggf: The proof is similar to that of the

Theorem 3.6.1. Let (kg) be a subsequence of positive

integers. By Lemma 3.5.2 there exists a subsequence

(kn) C {k;} and a sequence [m;(t)) such that for any

4, Lim méknht) = m;(t) uniformly in t. Similar to

k d”

n

what we did in Theorem 3.6.1 we can show that

‘1a(x)dp*(s)dsH

L
"
;

L
1

Nm;(t)-m;(0)

l t a 36—2 2 *

+ J‘ J Lu -1)x b (x)dP (S)ds

2 o o

t

JP (P* (S) .Lx‘) ds

0

0n the other hand P(t) = p(t,x)dx, the exact measure.

satisfies the same equation as above. Thus we have

t

(9*(t).f)«-(P*(0).f) .f (2*(s).Lf)6s

O

and

t

(P(t).f)-—(P(0).£) f (P(s).Lf)ds

O

for all polynomials f. Now let @(x) be a Cz—function

-ex

defined on [0,“) such that Lim $‘(x)e O = 0. By the

x46

generalized.Weierstrass approximation theorem (see Buck

[ 2L p. 74), for any a > 0 there exists a polynomial

Pm(x) such that

6 x

lWX) -Pm(X) I + (V(X) -Pn"(x) ) + It?” (1:) -P;1(x) l < €e
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for all x E [0,”). Now we wish to show that
.A

t

(3.6.21) (P*(t) .cs) - (FWD) .6?) =f (P*(s) .mds

0

To do this note that

t

I(P*(t) .P) - (P*(0) .12) -J‘ (9*(6) ,mmsl

O

* 0

]('P (t) ,v-Pm+ Pm) -(P*(0) ,cp-Pm+ Pm)

t *

- (O (P (s) .L(=p-Pm) +LPm)dsl

g I(P*(t) .62 ‘Pm‘ - (P*(0) .19 -Pm)

t 'k

- '0 (P (s) .L(=0-Pm))|

* 'k

g )(P (t).cp—Pm)l+lP (0) .12-Pm)!

t i

+ (‘0 )(P (s).L(ca-Pm)))ds

(CC

where C is a constant depending on the bounds of

no 9OX a 80x

J e dP*(t), f xe dP*(t)

O O

a 9X

and I x2e O dP*(t)

O

which is independent of t because of (3.6.17). Thus

equation (3.6.4) holds for any C2-function v(x) such

-8 x

that ¢'(x)e O * O as x * °. We now let un be an

eigenfunction for the eigenvalue problem
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(3.6.22) lu = Lu

Since u is a Ca-function and by Condition A5

Lim use = 0, equation (3.6.21) for un becomes

t

* _ * = P *
(P (t) ,un) (P (O),un) JO (P (s),Lun)ds

t i

= 1 (0 (P (s),un)ds

Thus in the same as in Theorem (3.6.1) we have

(3.6.23) (P*(t),un) = (P(t),un)

Now let ((x) be any Ca function with compact

support contained in (0.”). By Condition A5 for any

N -9 x

e > 0 there exists a finite sum of the form Z} cnune 0

n=1

such that

N -90x

1w - Z) cnu e I < 6

n=1 n

90x

Then for @(x) = )(x)e we have

N 90x

($1- 23 c u I < 6e
n n

n=1

Thus

* N * N *

(“P.P (t) -P(t)) = (ep- 23 cnun'P -P) + Z (enun.P -P)

n=l n=1

N

... _ *—._(o Eacnun,P P)
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implies that

D 9X

)(cp.P*(t)-P(t))|< e(j‘ eodp*(t)+j‘ e dP(t))

O 0

(CE:

Thus (3.6.23) holds for any v(x) with compact support:

therefore,

P*(t) = P(t). and m;(t) = 6(x‘(t)) .

for any positive integer 3. Now this and equation (3.5.9)

completes the proof of the theorem.



CHAPTER IV

NUMERICAL EXAMPLES

We present in this chapter several numerical

examples that serve to illustrate the Gauss-Galerkin

method developed in the preceding chapters. We note that

the Kolmogorov equation corresponding to nonlinear

stochastic equations has been solved explicitly only

in a few simple cases. We have thus included examples

for some simple stochastic equations where the exact

solution are known so that the numerical results may be

compared with the exact ones. We have also included

examples for problems which do not satisfy the hypotheses

in the convergence theorem but whose Gauss-Galerkin approxi-

mation seem to be accurate nonetheless.

The Gauss-Galerkin solutions are obtained by using the

welléknown programs (e.g the International Mathematical

Statistical Library) to compute the initial Gauss-

Christoffel weights and nodes and then using standard

ordinary differential equation solvers (Dgear).

4.1 Example 1: Consider the stochastic differential
 

equation

lOO
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(4.1.1) dX(t) = (1 —X(t))dt+V/_2X(t) dW(t)

(4.1.2) p(0,x) .= 2 exp (~2x)

studied in Chapter 3, by equation (3.6.16) p(t.x). the

exact density, is given by

t t

(4.1.3) p(t.x) = —3€3— exp jig—’1.

2e 1-1 2e 3—1

and the exact n-th moment is given by

(4.1.4) M (t) = n'.(1-]2'-('.="c)n
n

From (4.1.3), the exact S-point nodes and weights are

computed and shown in Tables 4.1.5 and 4.1.6. The

numerical solutions for the Gauss-Galerkin S-point nodes

and weights are given in Tables 4.1.7 and 4.1.8. Using

5-point Gauss-Galerkin nodes and weights the first five

moments are computed. Tables 4.1.9 and 4.1.10 show the

exact and above computed moments.
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Table 4.1.5

The exact 5-point nodes for Example 1

.13178

.18363

.21508

.23416

.24573

.25274

.25699

.26267

.26344

.26354 F
4

(
A

P
”

I
4

r
4

1
4

P
‘

(
A

.70670

.98477

.1534

.2557

.3178

.3554

.3782

.4086

.4127

.4133

.7982

.5058

.9349

.1952

.3531

.4489

.5069

.5843

.5948

.5962

.5429

.9369

.7824

.2953

.6063

.7950

.9094

.0619

.0825

.0853

6.

10

11

11

12

12

12

12

12

3204

.8073

.316

.231

.785

.122

.326

.598

.635

.640



'
o
'
o
'
o
'
o

.52176

.52176

.52176

.52176

.52176

.52176

.52176

.52176

.52176

.52176
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Table 4.1.6

8‘2

.39867

.39867

.39867

.39867

.39867

.39867

.39867

.39867

.39867

.39867

a3

.75942E-1

.75942E-1

.75942E-1

.75942E-1

.759422-1

.759423-1

.75942E-1

.75942E—1

.75942E-1

.75942E-1

The exact 5-point weights for Example 1

a4

.361183—2

.36118E-2

.36118E-2

.36118E—2

.36118E-2

.36118E-2

.36118E-2

.36118E-2

.361183-2

.36118E-2

as

.23370E-4

.23370E-4

.23370E-4

.23370E-4

.23370E-4

.2337OE-4

.23370E-4

.2337OE-4

.23370E-4

.23370E-4



The Gauss-Galerkin S-point nodes for

'
o
'
o
'
o
'
o
l
n
o

.13178,

.18366

.21507

.23410

.24560

.25259

.25686

.26258

.26338

.26353

(
A

H
k
'

P
‘

r
e

1
4

H
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.70670

.98490

.1533

.2554

.3171

.3546

.3774

.4081

.4124

.4132

Table 4.1.7

:
4

1.7982

2.5062

2.9347

3.1944

3.3514

3.4467

‘ 3.5049

3.5830

3.5939

3.5959

Example 1

.5429

.9380

.7821

.2937

.6030

.7908

.9056

.0593

.0808

.0848

10

11

11

12

12

12

12

12

.3204

.8105

.315

.228

.780

.115

.319

.594

.632

.639
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Table 4 .1 .8

The Gauss—Galerkin S-point weights for Example 1

N 0

U
I

O
C
)

(
D

0
U
1

.52176

.52180

.52176

.52176

.52176

.52176

.52176

.52176

.52176

.52176

.39867

.39865

.39866

.39867

.39867

.39867

.39867

.39867

.39867

.39867

a3

.75942E-1

.75917E-1

.75939E-1

.75942E-1

.75942E-1

.75942E-1

.75943E-1

.75943E-1

.75943E-1

.75942E-1

a4

.36118E-2

.36082E—2

.36112E-2

.36117E-2

.36117E-2

.36117E-2

.36118E-2

.361183-2

.36118E-2

.36118E-2

as

.23370E-4

.23312E-4

.2336OE-4

.23368E-4

.23368E-4

.23370E-4

.23370E-4

.233703-4

.23370E-4

.23370E-4
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Table 4.1.9

The exact moments for Example 1

0 1 2 3 4

.0000 .50000 .50000 .75000 1.5000

.0000 .81606 1.3319 3.2608 10.644

.0000 .93233 1.7385 4.8625 18.134

.0000 .97511 1.9017 5.5630 21.698

.0000 .99084 1.9635 5.8367 23.133

.0000 .99663 1.9865 5.9396 23.678

.0000 .99876 1.9950 5.9777 23.881

.0000 .99954 1.9982 5.9918 23.956

.0000 .99983 1.9993 5.9970 23.984

.0000 .99994 1.9998 5.9989 23.994
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Table 4.1.10

The Gauss-Galerkin moments for Example 1

t m0 m1 m2 m3 m4

0 1.0000 .50000 .50000 .75000 1.5000

1.0 1.0000 .81599 1.3317 .2599 10.640

2.0 1.0000 .93186 1.7367 .8551 18.097

3.0 1.0000 .97456 1.8995 .5537 21.650

4.0 1.0000 .99029 1.9613 .8269 23.081

5.0 1.0000 .99626 1.9851 .9333 23.643

6.0 1.0000 .99848 1.9939 .9727 23.854

7.0 1.0000 .99930 1.9972 .9874 23.933

8.0 1.0000 .99967 1.9987 .9940 23.968

9.0 1.0000 .99986 1.9994 .9974 23.986

The agreement above appear to be excellent. We also

note the rapid convergence of the above solutions to their

steady-state values.

4.2 Example 2: Consider the stochastic differential

equation

(4.2.1) dX(t) = X(t) (1 -X(t)dW(t)

(4.2.2) X(O) = given
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defined on (0.1) x [0,T] where the initial process

X(O) is a random variable whose density is

oXexp(—l/(l—X)2) if O<x<1

(4.2.3) p(0.x) = where C is normalizing constant

0 if ng or x21

We note that an explicit solution of above problem does

not seem to be available (however the solution exists).

We present the Gauss-Galerkin S-point nodes and weights

in Tables 4.2.4 and 4.2.5 below. We also present the

values of the first five moments in Table 4.2.6.

Table 4.2.4

The Gauss-Galerkin 5-point nodes for Example 2

t x1 x2 x3 x4 x5

0 .46931E-l .15656 .29809 .44651 .58476

1.0 .49810E—l .20298 .42683 .67040 .87236

2.0 .38880E-l .20435 .45225 .71633 .91882

3.0 .31840E-l .20430 .46443 .73763 .93942

4.0 .26985E-l .20398 .47172 .75017 .95158

5.0 .23428E-1 .20350 .47652 .75846 .95952
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Table 4.2.5

The Gauss—Galerkin S-point weights for Example 2

t al a2 a3 a4 a5

0 .90525E—1 .33506 .39231 .16635 .15759E-1

1.0 .33524 .34166 .20516 .95342E-1 .22596E-1

2.0 .43649 .25838 .15546 .10050 .49179E-1

3.0 .50310 .20095 .12300 .9616E-1 .76791E-l

4.0 .55148 .15953 .9906lE-l .87519E—1 .10241

5.0 .58793 .12871 .80720E-1 .77590E-l .12505

Table 4.2.6

The Gauss-Galerkin S-point moments for Example 2

t m m m m m

0 1 2 3 4

1.0 1.0000 .25725 .11233 .62580E-1 .39736E-l

2.0 1.0000 .25726 .13633 .91698E—1 .68467E-l

3.0 1.0000 .25727 .15552 .11631 .94347E-1

4.0 1.0000 .25726 .17107 .13695 .11687

5.0 1.0000 .25727 .18375 .15415 .13606
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Our convergence theorem in Chapter 3 (Theorem 3.6.1)

guarantees the convergence of the numerical results here

to the exact ones as n become large. Our experience

suggests that with n = 5 here we expect the first ten

moments to be good approximation to the first ten exact

moments.

4.3 Example 3. Consider the stochastic differential

equation

(4.3.1) dX(t) = §X(t)dt+\{.§X(t)dW(t)

(4.3.2) X(O) = given

defined on (0,”) X [0,T] where the initial process X0

is a random variable whose corresponding density is

 

r

cx exp(-1/(x - 1) 2) if ng < 1

(4.3.3) p(0,x) ==( where C is normalizing factor

L 0 if x:2_1

Equation (4.3.1) is a homogeneous linear stochastic

differential equation. The boundaries areeinaccessible

(see Feller [6,a]) and the n-th moment of its solution is

given by (see Arnold [1].p. 139)

(4.3.4) mn(t) = mn(0) exp (.Ol(n2+49n) t)
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The exact S-point nodes and weights are given in

Tables 4.3.5 and 4.3.6. Also the Gauss-Galerkin S-point

nodes and weights are given in Tables 4.3.7 and 4.3.8.

Using 5-point and 6-point Gauss-Galerkin weights and

nodes the first 10 moments are computed. Tables 4.3.9-

4.3.11 show the exact moments and the Gauss-Galerkin

moments.

Table 4.3.5

The exact 5-point nodes for Example 3

t x1 x2 x3 x4 x5

0 .46931E-l .15656 .29809 .44651 .58476

1 .91699E-l .30071 .57356 .88306 1.2263

2 .17088 .55329 1.0635 1.7039 2.6209

3 .31106 .99813 1.9483 3.2573 5.3333

4 .55735 1.7795 3.5488 6.1883 10.7165

5 .98691 3.1485 6.4420 11.703 21.343
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Table 4.3.6

The exact S-point weights for Example 3

al

.90525E-1

.12685

.16357

.20200

.24190

.28273

x1

.46931E—D

.91622E-1

.17070

.31090

.55809

.98905

Table 4.3.7

X2

.15656

.30122

.55464

.00131

1.7879

(
A
)

.1648

X3

.29809

.57380

1.0648

1.9527

3.5645

6.4760

.44651

.88338

1.7064

3.2669

6.2252

11.787

a2 a3 a4 as

.33506 .39231 .16635 .15759E-l

.42126 .36904 .80708E-1 .21504E-2

.48110 .31398 .40818E-1 .52822E-3

.52022 .25577 .21849E-l .l6605E—3

.54137 .20441 .122492-1 .599923-4

.54801 .16212 .71172E-2 .23716E-4

The Gauss-Galerkin 5-point nodes for Example 3

10.

21

.58476

.2628

.6245

.3508

791

.525
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Table 4.3.8

The Gauss-Galerkin S-point weights for Example 3

a1 3.2 a3 a4 as

.90525E—l .33506 .39231 .16635 .15759E-1

.12657 .41745 .36874 .80571E-l .21670E-2

.16292 .47811 .31332 .40617E-1 .53997E—3

.20102 .51785 .25479 .21671E-1 .17067E-2

.24099 .53953 .20287 .12046E-1 .61669E-4

.28177 .54625 .16052 .69323E-1 .22346E-4
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Although the coefficients of this example do not

satisfy the conditions of our convergence theorem, the

agreement above is very good. We note also that the moments

computed from the Gauss-Galerkin 6-point nodes and weights

are closer to the exact moments than the moments computed

from the Gauss-Galerkin 5-point nodes and weights.

4.4 Example 4. Consider the stochastic differential

equation

(4.4.1) dX(t) (1 -x(t))dt+3/2x(t) dW(t)

(A)

(4.4.2) X(O) given

defined on (0,0) x [0,T]. We note that an explicit

solution of above problem does not seem available and

its coefficients do not satisfy conditions of our

convergence theorem. However we expect that the

solution above to be close to the solution of the

stochastic differential equation

(4.4.3) dX(t) (l -X(t))dt+b(X(t))dW(t) (B)

\/2; if x < l

where b(x) = 4 with the same

3'2; if x21

 
K

initial value as (4.4.2). Equation (4.4.3) satisfies our
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convergence theorem: therefore the convergence of the

numberical results are guaranteed. The Gauss-Galerkin

S-point nodes and weights for the equations (4.4.1)

and (4.4.3) with the initial value p(0,x) = 2<aq3(-2x)

are computed and used to compute the first eight moments

of each pr0blem. These moments are shown in Tables

4.4.4 and 4.4.5.
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APPENDIX A

A GEOSTOCHASTIC MODEL

In This Appendix we consider a geostochastic model

which is not covered by the kind of stochastic differen-

tial equations discussed in previous chapters

(A.1) dX(t) (X(t) -x2(t))dt+p(6(X(t)) -X(t))dt

2
+(YX(t))1/ dW(t)

(21.2) X(O) given

where Y > 0 and O g_p g_l defined on (0,”). The

main difference is that in (A.l), the drift term depends

on the law of the process if p # 0. The convergence

theorems developed in this dissertation do not apply to

this model. However the Gauss-Galerkin method can still"

be applied to such problems, as we shall illustrate below.

The Fokker-Planck equation corresponding to the

equation (A.1) is

%%= -63: [(p or yp(t,y)dy+ (l-p)x-x2)p(t.x)]

1 32 *
+33 y -§-(xp(t.x)) = L P(t1X)

0x
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The steady-state density of equation (A.1) is

given by (see Dawson [5])

2e

(7'1)

(A.3) Pe(x) = Cx exp(-(x-—l-+p)2/Y), x 2_0

Where C is a constant which makes C‘f Pe(x)dx = 1 and

0

e is a positive constant which satisfies the equation

0

(A.4) e = m(e) = p I xliahd dx

0

For fixed p. Y and any positive number e, m(e) is an

integral which can be computed using the Gauss-Laguerre

integration formula. Then we plot the graph of y = m(e)

and y = e where the intersection provides an initial

value for finding e*, the root of the equation

e = m(e). Having Pe*(x), we can compute the exact

moments and therefore the corresponding Gauss- Christoffel

nodes and weights for comparison with the Gauss-Galerkin

nodes and weights.

The Hankel system of moments corresponding to

equation (A.1) is given by

dm1(t)

(A.5) -_dE_— = pm1(t)4-aml(t)- m2(t)

dmn(t)

(A.6) T (npm1 (t) + §n(n - 1) Y)mn-1(t)

+anmn(t) - nmn+l(t) , n 2 2

m(O)=6(X8), a=1-p
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As we can see, the system (A.5) is not closed.

Using the algorithm given in (2.9.1) we may close the

system, solve it numerically and compare the steady-

state results with exact steady-state moments. We

studied the case of p = .5 and Y = 1. i.e. for the

stochastic differential equation

(A.7) dX(t) = (.5X(t) + .56(x(t)) -X2(t))dt

+ (X(t) fiat/e(t)

The first six exact steady-state moments are

m0 = 1.0000

1111 = .60284

m2 = .60434

(A.8)

m = .77234

3

m4 = 1.1602

m5 = 1.9805

The S-point Gauss-Galerkin steady-state nodes and

weights of the equation (A.7) are computed. Also using

the Gauss-Galerkin nodes and weights, the first six

steady-state moments are computed. The results are shown

below.
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m0 = 1.0000

m1 = .56044

m2 = .56044

(A.9)

m = .71749

3

111.4 = 1.0762

m5 = 1.8154

The system (4.4.5) corresponding to equation (A.7) for

n = 10 is solved and the first six moments are shown

below.

m0 = 1.0000

1111 = .56044

m2 = .56044

(A .10)

m = .71748

m4 = 1.0762

m5 = 1.8153

By the equivalence of the system (2.2.4) and (2.5.12)

we expect that the results ix: (A.9) and (A.lO) to be

very close and indeed they are. The numerical results

for first three moments are accurate within 5%. We have

done computations for this example with Laguerre polynomials

as a basis for polynomials of degree less than or equal to

2n-l

x2n-—1 instead of l,x,--~, , the numerical results are

identical.



APPENDIX B

GALERKIN METHOD WITH FIXED NODES

In Section 2.2 we discussed the n-point Gauss-

Christoffel approximation

for a measure u defined on (r1,r2) where

-° g,r1 < r2 g_°.. Since the nodes [xk} are the

zeros of orthogonal polynomials, the weights (5k) can

be chosen so that

r2
n.

f(x)du = Z " f(" ) +E[f1

J‘rl k=l ak xk

is exact for all polynomials of degree less than or equal

2n-l. This was the basis for the Gauss-Galerkin method

that we developed in Chapter III. We shall consider in

this Appendix another Galerkin method based on nodes that

are fixed in time. Let x1.x2,...,xn be any n distinct

points. We can find constants $1,...,an uniquely so that

r2 n A

f f(X)dLl= Z akf(xk)+E[f]

r1 k=l
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is exact for all polynomials of degree less than or equal

n

to n-l. (Stroud [21],p.107). The sum 2‘. f( )

k=l ak X7‘

is called a quadrature sum. Also, as before, if

f(x).f(l)(x),...,f(n)(x) are continuous on [r1,r2].

then there exists a function K(s) so that

ar2 n ‘ nr2

E[f]=J f(x)du- Z akf(xk)=J

r1 k=l

K(S)f(n) (s)ds

r1

Let p(t,x) be the solution to the equation (2.1.3) and

(2.1.4). For given nodes x1....,xn. that do not change

n
A

with t, the n-point quadrature sum. 2: ak(t)6 is an

*k:1 k(x.

approximation to p(t,x)dx in the sense that equation

(2.1.7) can be written as

d n .
(8.1) —( Z a. (t)v( )+E(V))

dt ]_1 k Xk

n

= Z 31((t) (Lv) (xk) +E[Lv]

k=l

If (fi(x)). i = l,...,n is a basis for polynomials of

degree less than or equal to n-l, equation (8.1) for

fi(x)'s becomes

6

E
4
5

2 31((t)fi(xk) = £k(t)(1.fi) ("1.)
d

(8.2)

5? k=1 k 1

+ E[Lfi]. i = l,...,n
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The system (B.2) is a system of ordinary differential

equations for the weights ak(t). It is not a closed

system as p(t,x) is involved in E[Lfi] and thus can

not be used for the solution of the weights (ak(t)}

without explicit knowledge of p(t,x).

The Galerkin method with fixed nodes for approxi—

mation p(t,x) is obtained from (B.2) with the terms

E[Lfi] dropped

d n A - _ n

(B.3) 3,:- 1.2-31 ak(t)fi(xk) - XE]. ak(t) (Lfi(xk)) ,

for i = l,2,...,n where {fi(X)31 is a basis for

polynomials of degree less than or equal to n-1, which

we shall take to be 1,x....xn-1. The system (8.3) with

given initial p(0.x) may be cast in matrix form as

(8.4) AX = BX

(B.5) X(O) = given

where

XT = (31(t)100003n(t)) r

f1(x1) fl(x2) f1(xn)

f2(x1) f2(x2) --~ f2(xn)

fn(xn) fn(x2) --- fn(xn)
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and

Lf1(xl) Lfl(x2) ... Lf1(xn)

Lf2(xl) Lf2(X2) ... Lf2(xn)

B:

' Lfn(x1) Lfn(x2) ... Lfn(xn)

The matrix A in (8.4) is the well known Vandermonde matrix

which is non-singular.

In the case when the coefficients of the stochastic

differential equation are polynomials, we can find as in

Gauss-Galerkin method the corresponding Hankel system of

ordinary differential equations.

(3.6) T=gk(m1.m2.~-) k: O.l,°°-,n-l

(8.7) mk(O) given k ll

0 H :
3 I

.
.
.
.

In this case also if the degree of at least one of the

coefficients is greater than one, moments of order higher

than n«-l appears in some of the equations of the

system.

Theorem 8.1. The system (8.6) can be made closed.

Proof. As before we shall show that it is possible

to express all the moments that appear in (8.6) with order

higher than n-l in terms of the lower order moments.
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Recall that

1'1

m(t)= 23 (+6)“ n=o,1.---

16:1?"k xk

m0 /1 1 1 a1

In1 X1 x2 Xn 8‘2

(8 .8) =

n-1 n-1 n-1

mn-l X1 x2 Xn an

m xn xn xn a
n l 2 n l

n+1 n+1 n+1

n+1 1 x2 ... Xn a2

(8.9) : = :

2n-1 2n-1 2n-1

mZn-l/ X1 3‘2 Xn an

In general if

T _

Mk _ (mkn'mkn+l"°°'mkn+n-l)

and



gkn gkn ... an

1 2 n

an+1 *kn+1 ... Xkn+1

l 2 n

A =
k I

kn+n-l kn+n-l kn (n-l)

X1 X2 "° Xn

then we have

M'k=AkX k=0,1,2,...

From (A.l.8) we have

Therefore,

Mk = AkAglMo k = 1,2,...

and the proof is complete.

As we see from equation (8.4) and (8.8) A0 = A

is independent of time in the present case and therefore

we invert A only once while in the Gauss—Galerkin

0

method. We must perform matrix inversion at each time

step. The above method is easy to implement and often

yields satisfactory results. Unfortunately we do not

have convergence theorem as n 4 a as those we established
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in Chapter III for the Gauss-Galerkin method there.

This should not come as a surprise as it is well known

that quadrature formulas with fixed nodes named as the

Newton-Cotes formulas do not have convergence in general

though at each n we do have error bounds.

As a numerical example we solve the system (8.6)

for the geostochastic model (A.7) with n = 10 and an

initial atomic measure chosen randomly with xi = i.

a. = .l i = l,---,10. The first six steady-state moments

1

are shown below.

m0 = 1.0000

m1 = .56242

1112 = .56242

m3 = .72058

m4 = 1.08086

m5 = 1.82393

The results are close to those obtained by the

Gauss-Galerkin method.
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