ABSTRACT

TOPOLOGICAL SYNTHESIS OF N-PORT RESISTIVE NETWORKS
FROM SHORT CIRCUIT CONDUCTANCE MATRICES
THAT ARE REALIZABLE WITH TWO-TREE PORT-STRUCTURES
by

C. G. Jambotkar

Procedures are available in the literature for synthesizing
resistive networks from short circuit conductance matrices which
are realizable with connected (one-tree) port-structures. Little
is known, however, regarding synthesis of resistive networks from
short circuit conductance matrices which are realizahble only with
separated (k-tree) port-structures.

In this thesis, a procedure is established for the synthesis
of resistive networks from short circuit conductance matrices which
are realizable with two~-tree port-structures. The formulation
presented in the thesis enables the problem tq be reduced, in fact,
to the well-known synthesis of resistive networks having linear
port-structures, For a complete resistive network with (pt+2) nedes,
the number of the constituent two-terminal resistors is (n+l)(n+2)/2.
In the devised procedure, the conductance values of (nt+l) of these
constituent resistors - which are incident at a particular node - have
been considered as parameters. It is established that the indicated
parameters are subject to certain bounds, which, in fact, facilitate

the desired realization of matrices. The problem then is to obtain
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a suitalic .(f - ¢ o 0f Lhese parameters within the established
bounds. ‘it i oo selih the help of a digital computer. Once the
values of th [ ..ociers are decided, the complete realization of

the short civeu t Conductance matrix follows immediately. In
general, the not i values of the parameters is not unique, so that
many equivalert vojizations are obtainable by means of the devised
procedurec,

Cuertain sivort circuit conductance matrices which belong to

a certain =, «iit lsss are also considered in the thesis. They are
realizable witi o . joecial version of the above procedure, which has
one impori. ¢ 1o .vure of providing two distinct ""minimal'' realizations.

Furthermore, .o necessity of machine computations is avoided in
this case,

It is ;o d in this thesis that every paramount matrix of

order three Tolo oy to the above special class, Thus, a new, straight-
forward pr: e 1s established for the realization of any third-order
paramouzt o' 0o wrhich is considered as either a short circuit
conductance rnetii- or an open circuit resistance matrix.

[7i-0 71, < woideas are included in this thesis on a possible
epproea.h e 0 o le of realization of short circuit conductance
matrices vt oo realizable with k-tree port-structures
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Chapter |

INTRODUCTION

l1.1. Motivation

Synthesis of a transformerless n-port resistive network
from its short circuit (s.c¢.) conductance matrix is an important
topic in network theory. In his classical book, Cauer [CcA 1]
presented a complete solution to the relatively less important
problem of the synthesis of a network which includes ideal
transformers. However, the main problem of transformerless
synthesis remained almost totally unsolved until recently.

The progress mdde in recent years in this area reveals
that consideration of a network from the topological point of
view offers much insight into the problem. This thesis, also,
is based upon topological considerations while dealing with one
important part of the whole problem, viz., the synthesis of
transformerless n-port resistive networks from s.c. conduclance
matrices that are realizable with two-tree port-structures though
not realizable with connected (one-tree) port-structures.

The general problem of transformerless synthesis is a
basic theoretical problem. It can be looked upon as the inverse
of the problem of analysis of resistive networks that was solved
long ago by Kirchhoff and Maxwell. Knowledge in the area of
synthesis of resistive networks has important applications in fields
such as contact, communication and probabilistic networks or

sequential machines inasmuch as the weights assigned to edges



of the pertinent grapns in these ficlds are normatiy non-negative
real numbers. It is known | PA 1] thar the solution to the problem
of synthesis of resistive networks does nof lend itsclt to direct
extension to the synthesis of the broader c¢lass of networks, viz.,
the RL.C networks, as characrerized in the s-domain. However,
it is believed [ DE 1], | LE 1], [ RA 1] that if the RLC networks
are characterized by their state equations, then an application of
the topological synthesis of resistive networks may very well
provide such an extension. Moreover, cven if the techniques of
synthesis of resistive networks cannot be e¢xtended directly to the
synthesis of RLC networks characterized in the s-domain, those
techniques do have value in regard to the latler problem. For
example, an RLC network displays the properties of a resistive
network for positive, real values of the complex frequency, s,

so that one of the obviocus necessary conditions for the synthesis
of an RL.C network is the R-realizability of its s.c. admittance
marrix for all positive, real values of s.

The general problern may be defined precisely as the
"problem cf synthesis of a resistive network, if existent, from
an nth-order, real, symmetric matrix considered as a s.¢.
conductance matrix.' The solution to this problem must consist
of two parts: (1) a formulation of the necessary and sufficient
conditions for a matrix to be the s.c¢. conductance matrix
corresponding to one or more resistive networks, and (21 a
statement ot a procedure for synthesizing at least one of those

networks without using any transformers. The iatter includes:



(i) stating the network configuration(s), (1i) specifying the locations
and orientations of ports, and (iii) stating thebvalues of network
elements in terms of entries of the s.c. conductance matrix.

It is fitting at this stage to review briefly the recent
progress in the area of synthesis of resistive networks. It has
been established [ CE 1], [ CE 2] that a matrix must be paramount
in order that it may be a s.c. conductance matrix, but that
paramountcy is not always sufficient for a matrix to have the
said electrical significance when the matrix order exceeds three,
A procedure is known [ SL 1] for realization of a very special class
of matrices, viz., the dominant matrices. Satisfactory necessary
and sufficient conditions are known on matrices if they are to
correspond to networks having two special types of port-structures,
viz., those that form linear (path) trees and starlike (Lagrangian)
trees. In the case of a linear tree, the necessary and sufficient
condition is that a matrix be uniformly tapered [ BI 1], [ GU 1] ;
in the case of a starlike tree, the necessary and sufficient
condition is that a matrix be dominant with non-positive off-diagonal
entries [ BO 1]. The articles dealing with these two special port -
structures also state the corresponding realization procedures,
which are straight-forward. It is possible that a matrix is the
s.c. conductance matrix of a resistive network having a port-
structure that does form a connected graph - the graph must be a
tree in such a case - but then the graph is neither a linear tree
nor a starlike tree. Necessary and sufficient conditions for a

matrix to belong to this broader class have been stated by several



research workers [GU 1], [BI 2], [CE 3], [HA 1], [ BO 2],
though, as commented by one of the contributors himself [PA 1],
none of these sets of necessary and sufficient conditions is fully
satisfactory. Their deficiency lies in the fact that each one of
them requires execution of the complete process of building up
the network; as such, they are all operational in character. The
possibility of establishing proper conditions which can be tested
without resorting to a building-up process appears, at present,
rather remote to many research workers, and the few articles
that have been published in the area of R-network synthesis during
the past four years have been directed exclusively toward the
solution of the next and the much more challenging problem of
matrices that may be s.c. conductance matrices realizable with
separated port-structures alone. At the time the research
reported in this thesis was started, the problem remained far
from being solved.

Some elementary ideas were offered by Guillemin [ GU 1]
for the first time in 1960 regarding matrices that might be
realizable with separated port-structures. A year later, he
elaborated on these ideas [ GU 2] without any claim of having
introduced a practical procedure. A good illustration of this
formidable ""augmentation'' procedure incorporating trial-and-
error was supplied by Brown and Tokad in one of their articles
[ BR 1], which also presented some further fundamental concepts
in the area. The same idea of augmentation has recently been

pursued by Swaminathan [ SW 1], who finally formulates some



necessary conditions - named the '"'supremacy'' conditions - that
are applicable in the case of piecewise linear, separated port-
sturctures. Five more articles [ BI 3], [ BI 4], [CE 4], [CE 5], [ CI 2]
and four short notes [ BI 5], [ BI 6], [ NA 1j , [ NA 2] are available
in the literature, which considerably aid our understanding of
various important aspects of resistive networks having more than
(n+l) nodes. None of these articles and notes directly cover,
however, the problem of establishing some practical techniques
for synthesizing resistive networks from s.c, conductance
matrices that are realizable with separated port-structures

alone. The more recent one of the two articles by Lupo and
Halkias [ HA 2], [ LU 1] is of value in the sense just mentioned.

It is directed toward presenting a new method that may apply to

a class of matrices which are realizable with known two-tree
port-structures, the class being defined by the applicability of

the method itself.

The above survey of all the existent literature reveals that
the problem of synthesis of n-port resistive networks is, in fact,
only partially solved. At the same time, as indicated earlier, the
solution to the problem is of much significance, especially in the
context of transformerless synthesis of RLC networks characterized
by their state equations. It was through the realization of the overall
significance of the problem that the author was motivated to carry

out further research in the area of R -network synthesis.



1.2. Some Basic Concepts and Definitions

1. Throughout the thesis, a resistive network will be
represented by a linear graph such that the vertices correspond
to the nodes of the network, the edges correspond to the resistors,
and the edge-weights, to the conductance values.

2. A '"port'" is defined as a pair of nodes of a network
accessible for excitations and measurements. A port will be
indicated by an oriented edge in heavy line, the orientation
indicating the polarity of the excitation source. The linear graph
constituted by these edges contains no circuits and is termed as
the ""port-structure' (or the '"terminal graph'') of the pertinent
network.

3. Let Q denote the s.c. conductance matrix for an
n-port resistive network. Further, let Q' denote the s.c.
conductance matrix for the same network after its original port-
numbers 1,2, ..., i,..., j,..., n are replaced, respectively,
by k, 1, vee, M, vvu, C, vu., £ (k,1, m, c, f < n). Then matrices

Q and Q' are related by:

g -ploloome Dy p kL, m e )
1 1
(1.2.1)

(ko1 eee,m,een,cynen, ) denotes an nth-order matrix

where El
derived from the unit matrix by rearranging its columns such that
the entries in positions (k, 1), (1,2), ..., (m,i), «.., (¢, ]j)yee., and

(f,n) are unit entries and the entries in remaining positions are

zero entries.



4. Let Q denote the s.c. conductance matrix for an n-port
resistive network. Further, let Q' denote the s.c. conductance
matrix for the same network after the orientations of some of its
ports i,j,..., k (i,j,k < n) are reversed. Then matrices Q and
Q' are related by:

» k) k)

Q,:Us(i,j,... QUs(i,j,..., (1.2.2)

where Us(l’ Jreeenk) denotes the matrix which results from
reversing the signs of the entries in positions (i,1), (j,j), ..., and

(k, k) of the nth-order unit matrix. The pre- and post-multiplication

(i, js ooy k)

of matrix Q by Us

is referred to as the '"cross-sign
change operation' on matrix Q.
5. Let Y= yi.] n be a real, symmetric matrix and let

J
a matrix, T = [ tij] n’ be defined by:

1 fori=j

1

t.. = -1 fori=j+1

L 0 otherwise

Then matrix Y is said to be in the uniformly tapered form if each

= 0, each entry, (t)y.(.t) ,

> 1 = =
Yij 2> 0 and further, with yo,j yi, n+l i

in the upper triangular portionf of matrix TYT, viz.,

.

() () . o
Yi; T Vi T Vi 541 T Yiel,y T Yia, e 20 for J2d

(i,j=1,2,...,n) . (1.2.3)

rThroughout the thesis, the '""upper triangular portion' of a matrix
will be considered to include all diagonal entries.



A uniformly tapered matrix, Y = [y ]n’ can always be

i
realized as a s.c. conductance matrix in the manner shown in

Figure 2.2.1, where the conductance value of a resistor across
the positive terminal of a port, i, and the negative terminal of

aport, j (i,j=1,2,...,n), is given by (t)yg) in (1.2.3) [ GU 1].

6. Let
(n) (k)

ot 0|
Q*:

be the s.c. conductance matrix of an (ntk)-port resistive network.
If k of its ports are no longer of interest for any reason, then
the s.c. conductance matrix, Q, corresponding to the first n ports
is given for the same network by:

b3 :'<_1 T
-QIIZQZZ QZ (1.2.4)

Q = Qx

11 i

provided Q%, is non-singular [BR 1], [KR 1].

7. Let Q(l) and Q(Z) be the s.c. conductance matrices
corresponding to two different connected (tree) pert-structures of
an n-port resistive network. Then matrices Q(l) and Q(Z) are

related by:
ot = cTal® ¢

where C is a unimodular matrix [ BR 1].

(1)

Consider, now, the s.c. conductance matrices, Q and
Q(Z) , corresponding to two different separated (k-tree) port-

structures of an n-port network such that both port-structures



have the same number of parts and, further, the i-th parts
(i=1,2,...,k) of both port-structures contain the same set of
nodes. Then a congruent relationship holds between matrices

Q(l) and Q(Z) even in this case as established in the following.

Figure 1.2.1 Figure 1.2.2

For the sake of definiteness, suppose that the two port-
structures have three separated parts each as shown in Figu‘re
1.2.1. Let Qil) (Q§2)) denote the s.c. conductance matrix
for the network when measurements are made at ports belonging
to part I alone of the first (second) k-tree port-structure. Since
Q&l) and Qiz) correspond to two different connected port-

structures of the same network, they must be related by:

(1) _ T 4(2)
QI = CI QI C,

where CI is a unimodular matrix.

(1) @) gl1)

After defining QII s Q(Z) C,, and C

IIr > =11 * ~11 II1
in an analogous manner, the following relations can be written:
(1) _ T x(2)
u 7 Cu®n o

(1) _ ~F A(2)
Qmr = Cm1 Qi Cmr
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Suppose, now, ports (ntl) and (nt2) are added, as shown
in Figure 1.2.2, to each of the original two k-tree port-structures
so that two connected (one-tree) port- structures are generated.
Note that in both cases ports (ntl), as also (n+2), are connected
between identical pairs of nodes. Let Q(l)* and Q(Z)* denote
the s.c. conductance matrices corresponding to these new connected

port-structures. Then matrices Q(l)* and Q(2)¥ must be related

by:
cT ol [@l¥)* qfa)* cC o
11 12
(1)* _
Q = T
@ ()%
O Uyl |9, Q. c U,
where
_ — -
B (2) (2)*
c, 0 0 Q] Q5
C=]0 ¢y o0 and Ql¥)* .
AT AT
NC RN EIE
0 0 Cp 12 22
L- _ — ot
Therefore,
B sk >‘<-T
T (2)% T (2)*
caof ¢ C Q5
(2) (2)
Q, ¢C Q;,

Now if ports (n+l) and (n+2) are considered to be no longer of

. ) ) 2
interest, then s.c. conductance matrices Q(l) and Q( )

corresponding to the two original k-tree port-structures will



11

be respectively given by:

-1 T
(1) _ ~T ~(2)% T (2)% _(2)% (2)*
QI=C 0 € -C 0, 2 Q2 ©
-1
_ AT [ A (2)% (2)% (2)* (2)*
=C (Qll - Q2 Q% Q2 €
and
-1

(2) _ nle)* (2)% L(2)% 7 L(2)*
Q = Q- Qe 9 Qi

Comparison of the above two expressions establishes the

. . . 2
congruent relationship between matrices Q(l) and Q( ).
8. A realization of an nth-order s.c. conductance

matrix is termed a ""minimal realization'" if it contains, at

most, n(n+l)/2 resistors.



Chapter 2

MATRICES OF THE N-TH ORDER

2.1. Introduction

The present chapter deals, mainly, with the synthesis of
resistive networks from nth-order s.c. conductance matrices
that are realizable with specified two-tree port-structures. In
the beginning, some pertinent analytical aspects of resistive
networks are investigated. The systematic procedure for
realizing the indicated class of s.c. conductance matrices is
then established on the basis of those analytical aspects. Some
machine computations form an integral part of the realization
procedure. Theoretical considerations which facilitate these
computations are presented in one of the sections, followed by
essential details of the method of computations itself. An
interesting version of the above procedure is discussed next.

It has the significant feature of yielding minimal realizations
in the case of a special class of s.c. conductance matrices.
Furthermore, it can be applied easily to solve the pertinent
synthesis problem analytically without the necessity of any
machine computations. Matrices of the fourth order are
considered subsequently in order to illustrate all the foregoing
theory, which covers, in fact, the complete solution to the
problem of realization of matrices with specified two-tree
port-structures. In addition to the above solution, some ideas
are included in this chapter on a possible approach to the problem
of realization of matrices when the port-structure consists of

k trees (3 < k < n).

12
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2.2. Some Analytical Considerations

In order to investigate certain analytical aspects of resistive

networks, consider a uniformly tapered matrix, Y =[vy..] The

ij’n’
graphs of its (n+l)-node realization as a s.c. conductance matrix is
shown in Figure 2,2.1. The edges indicated by heavy lines in this
figure represent the n ports, and these edges constitute a linear
tree. With reference to this tree, let 3 (i=1,2,...,n) denote
the sum of conductance values of the edges which belong to the
cut-set defined by branch i, and let €5 (1,j=1,2,...,n;1fj)
denote the sum of conductance values of the edges which are common

to the cut-sets defined by branches i and j. Then, as is well-known,

Yij = c:ij (i,j=1,2,...,n) (2.2.1)

Consider another resistive network derived from the one in
Figure 2.2.1 by adding, as shown in Figure 2.2.2, (ntl) resistors
which have their respective non-negative conductance values
= 8 (k=1,2,...,n+l).

Let Q= [aij] , denote the s.c. conductance matrix for this
derived network corresponding to the port-structure indicated in
Figure 2.2.2 itself. The following discussion will be directed,
then, toward establishing a relation between matrices Y and Q.

For the derived network, consider a port-structure which
is obtained by augmentation of the original port-structure with a
port, h*, as shown in Figure 2.2.3. Let Q% = [q;kj] n+l denote
the uniformly tapered s.c. conductance matrix corresponding to this

augmented port-structure. Then, the entries of matrix Q% can

be written in terms of the entries of matrix Q as follows:
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where

0_<_p1<p2___...<ph_1 p>ph_>_ph+l_.. _>_pn20 (2.2.3)
i.e., q;'<J =aij+pipj (i,j=1,2, ,h-1)

qf‘j = Ei’j_l +pipj ! (i=1,2,...,h-1;j = htl, h+2,..., n+l)

45 =9y, 5 F PPy (b= hil b2, nt)

A =P P (j=1,2,...,h-1)

qﬁj =P P (j = htl, h+2, ..., n+l)

af = P

Consider a network which is obtained by shorting port h* in
Figure 2.2.3. The s.c. conductance matrix, 5 = [aij] N’ for
this new network can be obtained by deleting the h-th row and the
h-th column of matrix Q%*.

Thus, from (2.2.2a),

0 -0+ppPT

where (2.2.4)

T
P" =[P Py vr Py Py Phyy »oe Py

This network is shown in Figure 2.2.4. The edges corresponding
to the n ports are shown, as before, in heavy lines, and they
constitute a linear tree. Let E‘ii (1=1,2,...,n) denote the sum
of conductance values of the edges which belong to the cut-set
defined by branch i, and let 'é'ij (i,j=1,2,...,n;i# j) denote
the sum of conductance values of the edges which are common to

the cut-sets defined by branches i and j. Then,
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qij = cij (i,j=1,2,...,n) (2.2.5)

By comparing Figures 2.2.1 and 2,2.4 at this stage, one
can write the relation:
.=c.. t+a.. (i,j=1,2,...,n)
where

i+l
1_] k=22 gn-h+k

)
"

(i=1,2,...,h-1;j=1i,i+l,...,h-1)

a.. = 0 (i=1,2,...,h-1;j

h, h+l,..., n)
1]

n
= Z

aij i €1 —htl h, h+l, ...,n; i=h, h+l, ..., j)

—
.
1l

After substituting Yij for Cij and 'q'ij for ‘Eij in view of (2.2.1)

and (2.2.5), one can write the above relation in a matrix form as

follows:
0 =Y+aA (2.2.6)

where
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Thus, from (2.2.4) and (2.2.6), we obtain the following
result:

Y = Q-A+PPT (2.2.8)

In order to establish expressions for the entries of matrix
P PT in terms of gy (k=1,2,...,n+l) and aij , consider a

matrix) T=[t..]

i n+1, defined by:

1 for i=j

-1 for i=j3+1
0 otherwise
Pre- and post-multiplying the uniformly tapered matrix Q%
in (2.2.2) by T, we obtain matrix TQ*T, whose entries yield
(cf. section 1.2.5) the following expressions for the conductance

values gy (k=1,2,...,n+l) in Figure 2.2.3:

From entry (1, h),

€h-hsz = -G TP (P-Py) (2.2.9)

From entry (c, h),

8h_htctl = ~9ep t 9e-1,h + (pc-pc_l) (p-py)

(c =2,3,...,h-1) (2.2.10)

From entry (h, h),
Eh+l ~ qh-l,h + (p‘ph__l) (p"ph) (2.2.11)

From entry (h+l, k),

gk-h = qh, k-1 " qhk + (Pk'pk_l) (P‘Ph)

(k = h+l, h+2,...,n) (2.2.12)
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From entry (h+l, ntl),
g,-h+l = 9hpn - Pp (P-PY) (2.2.13)

(Note: (2.2.10) is to be delected if h = 2).
Let the relation in (2.2.13) be rewritten as:

P, (p-ph) = 9%n " En-h+l (2.2.14)

As inspection of Figure 2.2.2 will indicate that (ahn - gn_hﬂ)# 0
except in a highly degenerate case, so that, in general, pnaé 0
and (p=p)# O.

Assuming, then, pn% O,ir (2.2.14) can be rewritten as:

Ehn T 8h-h+l
- = 2.2.15
P =Py P ( )

We proceed to prove the following relation using mathematical

induction:

p

- n n
P = (A = Z18iha1) = (2.2.16)
9hn " 8n-h+l
(k:h+l,h+2,...,n)
For that, we shall require the trivial identity:
- prl
p,=(ay, -8 i) = (2.2.17)

9n " Bn-h+l

Assuming (2.2.16), and substituting (2.2.15) - (2.2.16) into (2.2.12),

t Even in the highly degenerate case, where ahn ~ B htl T 0,

the same final results which we propose to establish can, in
fact, be arrived at by starting with another suitable equation
out of (2.2.9) - (2.2.12), rather than (2.2.13), and by
modifying the whole treatment appropriately.
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we have, for k = h+l,h+2,...,n,

n P

_ = - - n
fk-h = 9h, k-1 “9nk +([ Wi ™ ;5 Bionat] = i i pk-l)
9hn T En-h+l

~_%hn " EBnont (2.2.18)
pn
=g -q + - - g _ qhn - gn-h+l
= 9, k-1 " 9k T 9hk T 5 Bi-h#l T Pkal P
or
—_ n pn -
Pr.1 © (qh,k-l - Ek-l gi_h+1) - (2.2.19)
9hn T 8n-h+l

(k = h+l, h+2, ..., n)

In view of (2.2.17) and (2.2.19), the hypothesis of (2.2.16) is, in
fact, proved.
As a result of the relation just proved, (2.2.19) holds for
k = h+l,h+2,...,n. In particular, for k = h+l, (2.2.19) yields:
n p

q n
(Qpp = 5 &ne) = - (2.2.20)
9hn " Bn-h+l

Py

We are justified, therefore, in extending the lowest possible value

of k from (h+l) to h in (2.2.16) so as to cover (2.2.20). Thus,

— n P,
P = (A = Z, 8 hi1) = - (2.2.21)
9hn ~ En-h+l

(k = h, h+l, ..., n)

We prove, next, the following relation using mathematical

induction once again:

- k P,
pk - (qkh * 1:21 gn—h+i+l) —_ ] (2.2.22)
9hn T En-h+l

(k: 1’2’°°°’h"2’)
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Substituting (2.2.15) into (2.2.9), we obtain:

_ - . 9hn ~ En-h+l
n-h+2 = "9n TP P_
or
- P,
P, = (a8, ph2) = (2.2.23)
9n T En-h+l
From (2.2.10), we have, for c=k+1, (c=2,3, , h-1),

nohtki2 =~ 9ks1, b T Gen T (Pryp - P (P - py) (2.2.24)

Further, assuming (2.2.22) and substituting (2.2.15) and (2.2.22)

into (2.2.24), we obtain:

_ _ _ k
8n-hikiz = " Yt b T %kn P Pt Lt F 8]

. Pn ) 9%hn ~ En-htl
PO P
9hn " 8n-h+l n
- - ahn T B _h+l - k
B S P N P, " 9kh "33 Bn-hitl
or
_ k+1 pn
Petl = s, n T Z Bncheinl) = (2.2.25)
9hn " Bn-oh+l

(k=1,2,...,h-2)

In view of (2.2.23) and (2.2.25), the hypothesis of (2.2.22) is, in
fact, proved.
As a result of the relation just proved, (2.2.25) holds for

k=1,2,...,h-2. In particular, for k = h-2, (2.2.25) yields;
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a ) "n 2.26
Phot = (dho,n t Z Bnohtin) 3 . (2.2.26)
hn ~ ®n-h+l

We are justified, therefore, in extending the highest possible value
of k from (h-2) to (h-1) in (2.2.22) so as to cover (2. 2.26).

Thus,

k P
n—h+i+l) —
9hn T Bn-h+l

n

(2.2.27)

(k=1,2,...,h-1)

Substituting, next, (2.2.20) into (2.2.15), we obtain:

n p q._ -g
(= n hn n-h+l
P=(apy = Z 8 py) = + 5 (2.2.28)
Ay - gn—h+1 n
n (q g )2 P
_ [ hn ~ ®n-h+l n
= (qhh - Ehgi‘hﬂ + > ) =, (2.2.29)
n hn n-h+l

In view of (2.2.15), (2.2.26), and (2.2.29), (2.2.11) can be written

as:
/ - 2
-z iz - = s (Uhn = En_he1
En+l ~ 9ho1,h T\ 9nn T (24 8i-hl o2
' n
— h-1 Py . 9hn " Bn-h+l
“9ho1,h T2 Bnchtitl ) P
) 9hn T En-h+tl n
or
- 2
(Upn = Bnonnr) mf1
2 = ;Z; B 7 9nn
pn
Yhn ” Bnhtl ntl - 1/2
3 > =+ (2 g -ay) (2.2.30)
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Note, in passing, that (ahn - gn-h+l) > 0 and P, > 0 implies:

n+l —

=

Z g =y 0 (2.2.31)

Substituting the positive root in (2.2.30) into (2.2.29), (2.2.27),

and (2.2.21), we have, respectively:

h n+l - -1/2
P = (.28 htit1) (Z g - ) (2.2.32)
= (q 5 Ml ig Y2 2.2.33
P = (Op * 2 8nnein) () 8 - 9py) (2.2.33)
(k = 1: 2’ O)h'l)
- g ngl - _1/2

(k = h,htl,...,n)

The negative root in (2.2.30) is neglected since p and Py
(k=1,2,...,n) must be non-negative (cf. (2.2.3)).
By introducing the above expressions for Py (k=1,2,...,n)
into (2.2. 8), the following significant relation between matrices
Y and Q is finally established:
n+l

— - -1 =
Y=Q-A+(Egk-qhh) Q
k=1

— t
:hQil. (2.2.35)

where matrix A is as defined in (2.2.7), and

TThe notations M h and Mh denote, respectively, the

h-th column and h-th row of a matrix, M.
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p— —

Up T 8nohe2

Ght 8h-ht2 T Bnh+3

91,0V Bnohe2 T Bnonez Tor Y By
[a ]Tzax clm—_—_—_—_—_—_—_—_ e _—— - = - - (2.2.36)

9h " gn-h+1 |

Note that the above relation (2.2.35) between matrices Y and Q

can be reproduced directly by referring to Figure 2.2. 2.

An Important Special Case

When the conductance values 8y (k=1,2,...,n) of the
corresponding resistors are constrained to zero, the network in
Figure 2.2.2 reduces to the one in Figure 2.2.5. For convenience

of notation, we shall let g, = Now, an examination of the

€n+l ”

foregoing analytical considerations will reveal that the desired
relation between matrices Y and Q for this special case can,
in fact, be obtained from (2.2.35) by setting 8 = 0 (k=1,2,...,n)

therein. That is, for this special case, we have:

Y = Q+(1/%) 6..h6h. (2.2.37)

where x = g, - ahh is positive (cf. (2.2.31)), and [6}1 ]T = 6}1

denotes the h-th column of matrix Q.
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2.3, A Theorem in Algebra

In this section, we shall establish a theorem in algebra,
which will find its application in the subsequent discussion.
Theorem: For a given real, symmetric matrix,

.] , and a set of real numbers, a, (k=0,1,2,...,n),

Y=[yi_]n k

there exists a unique real, symmetric matrix, Q = [ qij] n'

which satisfies the relation:
— -1 1
Y = Q + (aO = qhh) Q:th. (2. 3.1)
where qhhaé a, and

T
[Q', )" =Q} =la+ta gy +a, ... g +al,h<n

Proof: Let there exist another real, symmetric matrix,

An’ satisfying the relation:

Y = Q+(ay-q,)" Q. aQ (2.3.2)

where —q.hh;é a, and

o) =[q a <
Q. [qlh+a1 QG ta, .- qnh+a],h n

n -—

@, )"

Equating, then, the entries in positions (h, h) of the

right-hand sides of (2.3.1) and (2. 3. 2))we have:

-1 2 — S 2
9pn * (@I (apptap)” = ag tagmap,) gy tay)
2, 2 2 - 2 =2 — .2
T i U W S i S 1 Wi N Yhlaan N
a_ -gq =
o hh ay =9

— 2 - 2
. (ag-apy)la t2alaqpy tay) = (a -qp )l +2a.] g +ap)
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or

2 _ 2 —
ajlagt2a gy taay - (a g +2a)q ay -2 dyy

2

_ — 2 -
= ajlagtea)qy, taa - (agt+2ay)qpy qpy -2 9y

- 2 - ~
Soooaglagt2a oy - apy) taplay -ap) = 0

) 2 -
i.e., [ao(aO +2 ah) + ah] (qhh - qhh)

0 (2.3.3)
Since, in general, ao(ao + 2 ah) + alzl;é 0, the equation (2.2.3)

implies that:
(2.3.4)

<
Equating, now, the entries in position (i, h), i; ﬁ, of the

right-hand sides of equations (2.3.1) and (2.3.2), we have:
+(a =g ) " (a, +a)ay, +a ) = G, + (a_-a,,) (G, +a)(q,, ta)
9n o “hh ih 7i"*?'hh "h ih o ‘hh ih “i’*?*hh "h

Noting that A, = and multiplying both sides of the above

%hh

equation by (aLO - qhh) , we further obtain:

20%h T 9%h%n T hn%in 2R %n T 2% T 3 %h
= 0%, " hYGn T e %in Y 2R % T2 un T 2 2y

(a_ +ap) (g - Eih) =0 (2.3.5)

Since, in general, a_ + ah# 0, the equation (2.3.5) implies that:

_ . < n
Gy = Uy, i 7 (2.3.6)
Thus, from (2.3.4) and (2.3.6), we can write the identity:
1 1 = O O
Q.th. = Q.th. (2.3.7)
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The matrix identity
Q = Q

follows when the right-hand sides of (2.3.1) and (2.3.2) are compared,
keeping in view the equalities established in (2. 3. 4) and (2. 3. 7).

Having proved thus the uniqueness of matrix Q which satisfies
the relation stated in (2.3.1), we are now ready to establish the
procedure for synthesizing resistive networks from certain
s.c. conductance matrices.

2.4. Conductance-Parameter Procedure for Realization of
n-th Order Matrices with Two-Tree Port-Structures

Let Q(l) =[ qEJl )] n denote a paramount matrix to be realized
as the s.c. conductance matrix with a specified two-tree port-
structure. If both the trees are not linear, then, as explained in
section 1.2.7, an appropriate congruent transformation can be

o)

applied to matrix . This appropriate congruent transformation
can yield a matrix, Q = CTQ(I)C/ which would correspond to the
bilinear port-structure shown in Figure 2.4.1. Having obtained
matrix Q, we can proceed to realize the same; for the realizations

(1)

of matrices Q and Q are identical except for their port-

structures.

The port-numbering is in the natural order.

Figure 2.4.1
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Consider the matrix equation

Y = Q-A+(n§1g —a) tar (2.4.1)
21 Bk~ %hh .h~h.

where matrix A is as defined in (2.2.7), and

pt Bhht2 ]

Un *8hont2 t Buhe3

=Q', = | e e e e e e e — e ——— - (2.4.2)

anh T 8noh+l

Suppose a set of non-negative parameters 8y (k =1,2,...,n+l1)
is found, which, when substituted in (2.4.1), gives a uniformly
tapered form to matrix Y. This uniformly tapered matrix Y can
be realized readily as shown in Figure 2.2.1. Suppose, from this
realization of matrix Y, another network is derived, as shown in
Figure 2.2.2, by adding (n+l) resistors which have their respective
conductance values equal to the parameters 8y (k=1,2,...,n+l).
Then, if Q denotes the s.c. conductance matrix for the derived

network, these matrices Y and Q must be related by (2. 2.35).
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Further, by virtue of the theorem proved in section 2.3, equations
(2.2.35) and (2. 4.1) together must imply the identity of matrices
Q and Q. This leads to the significant conclusion that the above
derived network must, in fact, have been a realization of matrix
Q itself.

The above considerations at once indicate the different steps
of the '""conductance-parameter' procedure being devised for
synthesizing resistive networks from s.c. conductance matrices
which are realizable with specified two-tree port-structures. The
procedure is almost evident already; it is presented below explicity
for sake of completeness.

Let Q(l) =[ qﬁ )] n denote a paramount matrix to be realized
as the s.c. conductance matrix with a specified two-tree port-
structure. If both the trees are not linear, apply an appropriate
congruent transformation to matrix Q(l) and obtain a matrix,

Q= CTQ(I)C) which corresponds to the bilinear port-structure
shown in Figure 2.4.1.

Find a set of non-negative parameters 8 (k =1,2,...,n+l)
which, when substituted in (2.4.1), gives a uniformly tapered form
to matrix Y defined therein.f

Realize the uniformly tapered matrix Y with (n+l) nodes
as shown in Figure 2.2.1.

Consider (n+l) resistors which have their respective

conductance values equal to the parameters 8y (k=1,2,...,n+l),

t A method for finding such a set of parameters by machine is
indicated later on.
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and add these resistors to the above realization of matrix Y in the
manner shown in Figure 2.2.2. The new network thus obtained is,
in fact, the desired realization of matrix Q(l), the accompanying
port-structure to be considered being, of course, the original
two-tree port-structure.

It can be noticed that the network shown in Figure 2.2.2
forms a full polygon of (n+2) nodes. The network is thus of the
most general form for that many nodes. Further, whenever a
set (or sets) of non-negative parameters 8y (k =1,2,...,n+l)
exists so as to provide a uniformly tapered form to matrix Y in
(2.4.1), it can be computed by machine as indicated later. In
view of these facts, if a certain matrix, Q(ll is, indeed, realizable
with a specified two-tree port-structure, it can always be realized
by the procedure stated above. In other words, given the two-tree
port-structure, computation of a set of non-negative conductance-
parameters g1 (k=1,2,...,ntl) soas to provide a uniformly
tapered form to matrix Y in (2.4.1) is the necessary and sufficient
condition for realizability of any given nth-order matrix, Q(l) .

Before proceding to the considerations of the conductance
parameters, let us reiterate here one well-known result, viz.,
for an nth-order matrix, Q, which is realizable with a bilinear

port-structure shown in Figure 2.4.1, the submatricest Q(l’ 2y -+, h-1)

Q(h,h+1,...,n)

and must both be uniformly tapered. Now, given

t In this thesis, the principal submatrix formed by rows and columns
i,j,e..»k (i,j,k < n) of an nth-order symmetric matrix, Q, will
be denoted by the symbol Q{15 Js -+, k)
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a matrix, Q(l) , this property of the related matrix Q can be
checked easily; as such, we note that it is desirable to do so first
of all by way of checking a fundamental necessary condition when-
ever a matrix, Q(l) , is posed for realization with a specified

two-tree port-structure.

2.5. The Conductance Parameters

In this section we shall establish upper and lower bounds on
the conductance values which have been regarded as parameters in
the previous section. These bounds are valuable in the machine
computations of the parametric conductance values themselves.

Let a matrix, T =[t..] , be defined by:

ij’ n
1 for i=j
t.. = -1 for i=j+1

1)
0 otherwise
By definition, matrix Y in (2.4.1) would be in uniformly tapered
form if, and only if, the n(n+l)/2 entries in the upper triangular
portion of matrix TYT are non-negative. Let these entries be

denoted by (t) Yi(_]t) . From (2.4.1),

n+l

-1
TYT = TQT -TAT+(k§1 g1 -qhh) TQ T (2.5.1)

-1 %h.
Let (t)qg) and (t)ai(jt) denote, respectively, the entries in
positions (i, j) of the upper triangular portions of matrices TQT
and TAT, and let (t) qih and q}')(jt) denote, respectively, the
entries in positions (i, 1) and (1,j) of column and row matrices

TQ', and Qil T. Then, through matrix-multiplications,
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() (¢ ,
il ETTIR VT PO Bl R R FO B P 2.5.2)
(j 2_ i; i’j = 1,2,...,1'1)
where
qi, n!l a q(),] = O (l’j = 0’1) 2,-0.,n+1)
Also,
(0, . o
alJ 'Lri-h’i':[‘*'l (1 - 1’ 2, oo oy h-l, ) = h_l)
(1 (0 o
%1 *J-}rkl (i =h;j=hhtl,...,n)
(t)a('l:) 0 otherwise

(for j>1i; i,j=1,2,...,n)

or, in matrix form,

(h-1)
~ | | ]
N |gn-h+2 I
~ 0 | , @
N g
N I [
AN | ° |
N | * |
TAT - N g ! (2.5.3)
\ I n-l '
N AN
N En \\ ________
AN
(}l) N g g LY g
h 1 2 n-h+l1
\ —————————
N
N
<« O
AN
AN
AN
N
AN
_ N

1'The syrmubol X is used to imply that the entries in the lower
triangular porfion of the matrix are of no interest in the
discussicn and hence have been omitted.
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Further,

Yan, Al e (=120
and

q},}(jt) i ”i)j - qil,j'*’l (j=1,2,...,n)
where, by definition, Yo, h = 9h, ntl T 0,

With reference to (2.4.2),

(t) , . \
SETP VTR PO T N - N | (i=1,2,...,h-1)
(qO h = 0 by definition)
(t) , _ n > (2.5.4)
9hn T Yun T qh-l,h - kE:l g
(t) . .
q{h s g -qi-l,h+gi-h (i = h+tl,h+2,...,n)
J
and
N
(t) .
! = - - = -
Uhj 9 7 9h, j+1 T Bn-htj+2 (G=1,2,...,h-2)
(0 . (2.5.5)
Y h-1 9, k-l T 90k T Bk pote
(1) .
' . . - - -
95 7 Gpi T 9,541 T Bjohtl (j = b, htl, ..., n)
(qh ntl C 0 by definition) J
Comparing (2.5.4) and (2.5.5), we may observe that:
(lr(ﬂ . (t)qc (G=1,2,...,n-1) (2.5.6)

] - jtl, h

Obviously, cntries in the upper triangular portion of matrix

TQ'hQ'h T can be obtained from (2.5.4) and (2.5.5) by considering
(t) (t)

the products q!l}‘ qiﬂ. for j>1i; i,j=1,2,...,n.
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Now, from (2.5.1), matrix Y would be uniformly tapered
if, and only if,

() (1) (t) (1) , =i A1 () ()
9 - eyt (kzzl 8 = Ipp) 9p 9p; = 0 (2.5.7)

(j2i; 1,j=1,2,...,n)

For sake of illustration, let us consider the particular case i=j =1

and h> 2. Then,

(B (6 _ (0 (0 i g @l >0 (2.5.8)

11 " ‘11 Ex = 9y 9 n 9h1

where, through (J.5.2) - (2.5.5),

(t) (t) _

91 7 911 " 92
(t) (t) _

11" " (2.5.9)
(t) ,

Ny © 9 n Y 8hone2

I

9h1 T 9h2 T Bn-h+3

Substituting (2. 5.9) into (2. 5. 8), we have:

n*}l -1
"¢ =gt -qp, - > 2.5.
dyp m g FOE e dp) T Ayt o) (G - dhp < 8py3) 200 (2.5.10)
is ineguality is i . . (t) (t)
This inequality is given by consideration of entry Y11 ° We

observe that each of the n(nt+l)/2 entries in the upper

(t) (t)
Yij
triangular portion of matrix TYT offers a similar inequality.
Thus, from what has been stated in section 2.4, if a matrix, Q,
is realizable with a specified bilinear port-structure, the problem

of realization reduces, now, to solving these n(n+l)/2 nonlinear

simultancous inequalities involving the (n+l) non-negative parameters
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g1 (k=1,2,...,n+l). A computer method is indicated in section 2.6
for solving these inequalities. Note, incidentally, that more than
one set of non-negative parameters 8y will exist, in general, which
will satisfy the indicated simultaneous inequalities.

We proceed, next, to establish upper and lower bounds on
the parameters gy

Recall relation (2. 2.3), viz.,

< >
Ofpl_pzj...fph_lf_p?_ ph—>—ph+lz°"z ...zpn_ 0.

We shall have occasion to refer to this relation a few times in what
follows.

From (2.2.9),
Boohez = T Un TP (PP

Since P > 0 and (p - ph) > 0, therefore,

€r-ht2 2 " 91n (2.5.11)
From (2.2.10),
8n htc+l = " 9en Y 9oy, p t(Pe mPy) (P - Py
(c =2,3,...,h-1)
Since (pc - pc__l) >0 and (p - ph) > 0, therefore,
En-htctl 2 ~9n t 91 h (2.5.12)

From (2.2.11),

gn+1 = qh-l,h + (P = ph-l) (P - ph)
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Since (p - ph-l) >0 and (p - ph) > 0, therefore,

8ntl 2 %h-1,h (2.5.13)

From (2.2.12),
gk—h = qh, k -1 = qhk + (pk = pk—l) (p'ph)
(k = h+l, h+2,...,n)

Since (pk_1 - pk) > 0 and (p - ph) > 0, therefore,
8-h S 9 k-1 " Yhk (k = h#l,h+2,...,n) (2.5.14)
From (2.2.13),
En-h+l = 9hn Py (P - Py

Since pnz 0 and (p - ph) > 0, therefore,

8 -h+l < 9hn (2.5.15)
Also, from (2.2.31),
n+l -
>
kél 8y CHR (2.5.16)

Recall having seen in section 2. 4 that in the context of
realization of a matrix, Q, by the conductance-parameter
procedure, matrices Q and Q are, in fact, identical. Hence
we may rewrite the above bounds in terms of entries qij of matrix
Q, rather than in terms of entries Eij of matrix Q. Thus, from

(2.5.11) - (2.5.16), we have, respectively:
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Bh-ht2 2 "~ 9n (2.5.17)

> -

Bnhtctl =~ 9%ht 9y, n  (€=2&3...,h1)  (2.5.18)

Ensl 2 9h-l,h (2.5.19)

8k-h = 9n, k-1 " %nk (k = h+l, h+2,..,n) (2.5.20)
a-h+l S 9hn (2.5.21)
n+l

=18~ 9 (2.5.22)

Note: (2.5.18) is to be deleted if h = 2.,

We shall proceed to establish further significant bounds on
the conductance parameters 81 (cf. (2.5.27) = (2.5.30) below).
For that, we note that consideration of (2. 5. 4) along with the above
inequalities (2.5.17) - (2.5.22) leads to the following information

concerning column matrix TQ!' hC

[From (3.5.17) - (3.5.18)] ©g >0 (1=1,2,...,h-1)

[From (3. 5. 20)] (t) qly <0 (i=htl, h+2,...,n) (2.5.23)
t) , >
()qhh Z o

Again, considering (2.5.5) along with (2.5.17) - (2.5.22),

we get the following information concerning row matrix Q' hT:

[From (3.5.18)] ql'l(jt) <0 (j=1,2,...,h-2)
[From (3.5.20) and (3. 5.21)] q'(t) >0 (j =h,ht+l,...,n) (2.5.24)
hj —
(t) <
9%, h-1 > O
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Recall, in passing, the result in (2.5.6), viz.,

() o _
({EIJ - - q.;-f‘l’h (J - l) 2,...,1’1 1)

Now, by virtue of (2.5.23) - (2.5.24), the sign-pattern

matrix for TQ! hQ}’l T 1is established as;

R
@
@
I (h-1)
~ | | +
® f(i G eee -1 0 OG ... @jl (2.5.25)
m | ® L o
©
il.e., B (h-1)
AN | @I ]
\ | |
O 1 @ @
N\ | |
< ! .
|l o
NEEEEPE
N L (2.5.
&) N e e - —
(b) \®@@ ... ...3d
\-— _____
AN
X N @
N
N\
- N

.t.

The symbols (3) and (&) denote, respectively, a non-negative
and a non-positive entry. The symbol @ implies that the
pertinent entry may be positive, negative, or zero.



43

In the above sign-pattern matrix of TQ' hQi1 T, the entries
in positions (i, h-1) (i=1,2,...,h-1) are non-positive and the

entries in positions (h,j) (j = h,h+l,...,n) are non-negative when
n :
- - > . N
9hh qh-l, h }:2;1 g 2 0. On the other hand, the entries in

positions (i, h-l1) (i=1,2,...,h-1) are non-negative and the

entries in positions (h,j) (j = h, h+l,...,n) are non-positive
n

- - < ign -
when CINN qh'll’ h k>51 g, = 0. Note also that the sign-pattern
+ -
matrix for (&7 g, -q..) 1 TQ', Q. T is the same as that for
k=1 -k hh .h"h. ntl
! 1 3 3
TQ.th' T since, according to (2.5.22), 1?:1 8 > ST

Consider the entries in positions (i, h-1) (i=12,,..,h-1)
and (h,j) (j = h,h+l,...,n) of matrix TYT given by (2.5.1).
We recall that the non-negative conductance parameters 8k
(k=1,2,...,n+l) are to be chosen such that the indicated entries -
along with the rest of the entries in the upper triangular portion of
matrix TYT - are non-negative. Then, with reference to (2.5.2),
(2.5.3), (2.5.7), and (2.5.26), we can infer the following:

(1) Whenever, in the given matrix, Q,

(t) _ (t) _

( - .
%, h-1 = Y4, h-l "%, n " %1, h-1 t

94.1,n
is non-positive for even one i amongst i=1,2,...,h-1,
conductance parameters gy (k=1,2,...,n) must be
subject to the lower bound:

n
Z g

- - <
9h " %h-l,h T 2 Bk = O

i.e.,

> (2.5.27)
k: L] .

> - .
1 & Z 9hh T 9h-1,h
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further, conductance parameters 8y (k=1,2,...,n-h+l)

must be subject to the upper bounds:

B - > L] L]
9,5 " 9, 541 " 9heotl, T 9nel, j+1 2 Bjon+l (2.5.28)

(j=h,htl,...,n)

Bounds in (2.5.28) are, of course, additional to those stated in
(2.5.20) - (2.5.,21) for the same parameters. These bounds are
easily derived by noting that (2.5.27) implies, as stated earlier,
that the entries in positions (h,j) (j = h, h+l,...,n) of matrix
(n%-i 8y - qhh)-l TQ:hQiq. T are non-positive. Bounds in (2.5.28)
follow when (2.5.7) is considered along with (2.5.2) and (2. 5. 3)
for i=h; j=h,htl,...,n.

(2) Whenever, in the given matrix, Q,

(t) (t) _
9hj T 9, " 9,541 " 9n-l,j T 9n-l, g4l

is non-positive for even one j amongst j = h,h+l,...,,n,
conductance parameters 8 (k=1,2,...,n) must be

subject to the upper bound:

n

- - >
9k " 9h-1,h T2 Bk 2O

i. e.,

n
z

2 Bk S 9t o, (2.5.29)

further, parameters gy (k = n-h+2,n-h+3,...,n) must be

subject to the upper bounds:

- - >
%G, h-1 “ 9%, h " %-1,h-1 T 41, h 2 Bnohtitl  (2.5.30)

(i=1,2,...,h-1)
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The inequality in (2. 5.29) obviously suggests the bounds:

>

UYh "o, h > 8 (k=120 (2.5.31)

Thus, for 8y (k = n-h+2, n-h+3, ..., n-1), we have the bounds

in (2.5.30) as additional to those in (2.5.31). For the derivation

of (2.5.30), we only need to note one of the implications of (2. 5.29)
stated earlier, viz., the entries in positions (i, h-1) (i=1,2,...,h=l)

n+l _
of matrix (_El g - qhh) 1TQ' ' T are non-positive. Bounds in
1=

.h "h.
(2.5.30) follow when (2.5.7) is considered along with (2.5.2) and
(2.5.3) for i=1,2,...,h-1; j=h-l.
In addition to the bounds established thus far, some further
conditional upper bounds stated in (2.5.37) below can be established

for conductance parameters 8y (k = n-h+2, n-h+3, ..., n). But

let us first enunciate one significant necessary condition, which

follows directly from the above discussion, for the realizability of
a given matrix, Q, accompanied by a specified bilinear port-
structure:

If, for a given matrix, Q,

. - <
%G h1 "% h " %1, he1 T%a,n 0

for even one i amongst i=1,2,...,h-1, then the matrix

Q is realizable with the bilinear port-structure only if

9, ~ In, 41 " o1, T hel, 41 2 0

for each j amongst j = h,h+l,...,n. On the other hand,

if

- <
9,5 " I, j+1 " n-1,j T 9hel, 54l
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for even one j amongst j = h,htl,...,n, then the matrix

Q is realizable with the bilinear port-structure only if

- - >
9%, h-1 ~ %, h " 9i-1,h-1 T %i-1,n2 0

for each 1 amongst i=1,2,...,h-l.

To establish the bounds stated in (2.5.37) below, let us
consider entries (t)yi(,t%l-l (i=1,2,...,h=1) as given by (2.5.7).
Recall that it is our aim to select conductance-parameters g1

(k=1,2,...,n+l) such that these entries in the upper triangular

portion of matrix TYT are non-negative. Thus, we must have:

(1) (t) 0,0, SL(t) e o) 5

4, h-1 i, h-1 T OZ) & Ay 9h 9h, h-1 =
Therefore, from (2.5.2) - (2.5.5),

UG, h-1 ~%h " %o, h-1 T 9421, h T Bnohtitl
n

+(qih "%, Bnontie) 9 no1 T 9 PRl B .
ngl -
=1 Bk~ %nn
where, we recall, Aon = 9% hol = 0 by definition. Or,
n}-:i-l
) . (Ap = 9.1, 0 ¥ Bnohri+))(Z) Bk~ Gnn)
9, h-1 T %1, bl —
= Bk~ %nn
n
X “in = %1, 0 F EBnehtir) O 1o = 9 T 8 .
n\_tl -
k‘_:ll ®k 7 ®nh
or
_ L in 7%, n Y g, he) T B
9, h-1 ~ 921, h-l n+l 2

z - q
k=1 Pk " hh
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Hence,
N (95, h = %1, h " Bachtit)(Bay = 9 ot (2.5.32)
9%, h-1 ~ 91, h-12 ol . 5.
2 Bk~ Ynn

(t)_(t)

Consider entry Vh; (j = h,h+l,...,n) as given by (2.5.7).

Since it is desired to have each entry (t)ygj) (j = h,h+l,...,n) non-

negative, we can write through (2.5.2) -~ (2.5.5):

i 7 9,541 T 9h-1, 5 T 9nel, 41 T Bjohel

n
(dph = -1, v 711 B (9hj = 9, 441 " 8j-ht1) > 0
n+l -
=1 8k~ 9nn

+

where, we recall, Yol ntl = 9h el = 0 by definition. Therefore,

n+l
GZ1 8k = 9n)9h; = 9, 341 = Bj-ht1)
-q .t q . +
h-1,]j h-1, j+l1 n+l
Z g -9
=1 Bk T 9nn
n
. (Apn = 9o, n " k21 B (g - U, j+1 ~ 8j-h+1) > o
n+l -
Z g -9
o1 Bk 7 9hn
or
et e Bnil " o1, W 9 " W0 " Binn)
h-1,j  9h-1, j+l ntl Z

Z g, -9
k=1 °k ~ “hh
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Hence,

(€n41 = 9po1, 09k = 9, 341 " 8john!
ntl

=~ £ -9

2 Ghe1,j T 9nel, gl
(j = h,h+l,...,n) (2.5.33)

. o . _ >
Suppose, in the given matrix, Q, .1, j 9h-1, i+l 0 for at
least one j amongst j = h,h+l,...,n. Let ? enote sucha j;

i.e. > 0. Then, with reference to (2.5.19) -

A T N TS |
(2.5.22), we see that the term (qh:].‘ - qh,tj\+l - gﬁ.\_hﬂ) - as well as
each of the other two terms on the left-hand side of (2.5.33) - is
strictly positive. Further, from (2.5.17) - (2.5.18), the term

(qih - qi-l,h + gn-h+i+l) >0 for i=1,2,..., h-1. Multiplying,

then, both sides of (2.5.33) by the non-negative quotient

(U 950, 0 " Bnohein)/ (95 7 9y, Fh " Bupe) s e Paves
(G =90, T Bnontis1)8ne1 " 9ho, b
nE-H
k=1 fk ~ %nn
(9in =91, h T 8nohtie1 (90,5 7 9hor, 50!
> 2 2 ) LW ,  (2.5.34)

(45 = 9, %41 = 8 -hn)

We note that the right-hand side of (2.5.32) is the same as the

left-hand side of (2.5.34), so that

(9p = 9%.,n * gn-h+i+1)(qh-l,? - qh-l,?ﬂ)

q. - q. >
i, h-1 i-1,h-1l —
(AR} - 9,541 - 8ne)
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Therefore,

(9, ho1 = %o, ho1(9) 7 9,541~ &ohn)
(qh‘ltlj\ T qh'l:/.]\+l;

2(qy =9 ) n * 8y htitl)

(2.5.35)

Recall having seen toward the end of section 2. 4 that in matrix Q,

submatrices Q(l’ 2yeeyhel) and Q(h’ htl,...,n) must be uniformly

tapered. This implies, among other things, that qi, h-l = qi-l, h-1 >0
i = -1: = - > <<
(i l,Z,...,hl,qO’h_1 0) and th qh,a.\_‘_l_o, h<j<n,

(qh n+l Z 0). Next, by our choice, conductance parameters

87.h+l > 0; further, through (2.5.20) - (2.5.21), th{\ - 9y, 541
" 8 h+l 2 0; and finally, as hypothesized earlier,

qh-l,? - qh-l,?-i-l > 0. Hence, we can write:

(9 ho1 = 9.1, ho1(905 9, 440)
(ap_),% = 9po1, 50

(9 4oy = %1, 0193~ 9,34~ #ohe)
(91,4 = 9h-1,541)

2
(2.5.36)

The left-hand side of (2.5.35) being equal to the right-hand side of

(2.5.36), we have:

(9 ho1 = 9.1, h-1 (93 = 9, 541)

(ap_1,% - o1, 30!

209, =91 h By heitl!

or,
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9,01 = %1, ho1"090] - W, 30 @ +aq > g
(qh-l,? - qh-l,f]'\+l) ih i-1,h = ®n-h+itl

i=1,2,...,h-1;

h < ?f n, such that

- >
(Qpy - apy ) > 0 (2.5.37)

Note: If there does not exist even one value of index 3\ between h

and n such that 9,1 /j\- .1 ,j\+1 > 0, then, of course, the

bounds in (2. 5.37) will not hold.

The Machine Computations of the Conductance Parameters

2, 6.
It is seen in the previous section that in the realization of

nth-order matrices with two-tree port-structures, a set of

n(n+l)/2 nonlinear simultaneous inequalities involving the (n+l)

conductance parameters gy (k=1,2,...,n+l) must be solved.
In the absence of an analytical method to solve such a set of

inequalities in general, a numerical method must be used to

obtain one or more solutions. The idea which forms the basis

of the numerical method can be explained as follows:
The n(n+l)/2 simultaneous inequalities are of the form:
(t) (t
YI(J) 2 0

where (t)yigt) is an algebraic expression involving (n+l)

parameters gk (k=1,2,...,n+l) (cf. (2.5.10)). We select a
random set of the (ntl) parameters within the bounds established
earlier and evaluate each expression (t)y(ig) . If each (t )Yigt) >0

for the selected set of parameters, the set is, indeed, a solution
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satisfying the simultaneous inequalities. In general, however,

(t )y1(_]t) such that (t)y(.t) < 0 for the

ij

there will be some
Let these particular

randomly selected set of parameters.

(t)'}\r’igt) Then a systematic search

expressions be denoted by
for a suitable set of parameters gy is started with the aim of

minimizing the expression X | (t.);rli(jt) | . A suitable set of the
parameters will have beén located when Z | (t )/;',i(jt)l attains,

in fact, zero value. The logic diagram of a typical program

capable of the aforesaid systematic search within the bounds is

given in Appendix 3.

Realization of a Special Class of nth-Order Matrices

2.7.
So far, we considered different aspects of the conductance-

parameter procedure capable of realizing s.c. conductance
matrices with two-tree port-structures. We shall discuss, now,

a special class of nth-order matrices which can be realized

through a special version of the conductance-parameter procedure

One important feature of the special versiont is that it
avoids the necessity of computations by machine. It is also

significant that the procedure readily offers infinitely many

equivalent realizations of matrices belonging to the special class,

two of these realizations being assured to be minimal.

T For convenience, we shall often refer to the special version
of the conductance-parameter procedure by the term ''the

special procedure.'
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q
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App Zoeee N4 0 T q?".-q}'n’l,hz“' - -
(2.7.2)
Tris relation will be exploitcd later on,
Let a matrix, T.:[tJln, be defined by
Ll dor i
ti].r -1!-1 or 1=+ 1 (2.7.3)
’ 0 otherwise

Pre- and post-multiplying the matrix equation (2

lLlaves:

TYT TQT+(LKJTQ.#%LT

1
Tt

(t) (1)
945

are given biy:

the entries, , N

QT

(t)
a

(t)

1.

Gzii i,j=

where, by definition,

,nil 9 (,j=0,1,2,..,

3
!

Further, t-c qihqh(jt) ’

t
(l'/'~.) ( )

[EDELE0 IR N S,

t 950, 541

.7.1) by T, we

(2.7.4)

i upper triangular portion of matrix

(2.7.5)

1,2,...,n)

,nt+l)

in the upper

1_1“_(1]-;11_’3,[‘ ‘r)mrﬁul- of the marriy (l/x) TQ th T can be obhtained

frosm:

1rh: U
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9nh T qn-l,h(: 2)

_ .

As discussed earlier, a matrix, Q(l), belongs to the
special class being considered if, and only if, a positive value
can be assigned to parameter x such that matrix Y in (2.7.1)
is uniformly tapered, i.e., each entry in the upper triangular

portion of matrix TYT, viz.,

(t)vi(jt) B} (t)qi(jt) + (/%) (t)qihqé;) (2.7.7)

(G>4, 4j=1,2,.0.,n)

becomes non-negative.

Now, in view of (2.7.2), the sign-pattern matrix for

(1/x) TO th‘ T in {(2.7.6) can be written for x> 0 as follows:



m | @
©

i.e.,

(h)

(h+1)

[ O ...

55

(h-1),
Q0 ® ... O

(2.7.8)

(2.7.9)

With reference to (2.7.7), the sign-pattern matrix in (2. 7.9) implies,

in the first place, one necessary condition that the entries in the

upper triangular portions of both submatrices (TQT
h+l, h+2,...,n)

and (TQT)(

must be non-negative.

)(1:21000:}1“1)

However, this
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condition is actually implied by the necessary condition already

established, viz., the submatrices Q(l’ 2,...sh) and

Q(h’ htl,...,n) of matrix Q must be uniformly tapered. Now,

in view of (2.7.9), consideration of each entry (t) yi(jt) , as given
by (2.7.7), in the upper triangular portions of submatrices
(TyT)2r & e bl g (py (P BF2 e m)ablishes an
individual lower bound on the positive parameter x, while
consideration of each of the remaining entries (t) yi(;) in the
upper triangular portion of matrix TYT establishes an individual
upper bound on the parameter x. As an example, consider the
entries (t)yl(f) and (t) yl(ﬁ) . From (2.7.5) - (2.7.7), and
(2.7.9),

(t) ,(t)

yiv = (apy -a;,) +(1/x)a;, (g, =a,,) >0
i.e.,
(ap; = 9;p) 2 (/%) gy (4, - apy)

or

9y, (4o = 9 p) (2.7.10)

(a) - ap,)
Again,
(t),yl(lt'zl) = Q= ap py) YO/ applapy - gy ) 200
(2.7.11)

The entry (t)yl(}f) would, in fact, be automatically non-negative

without imposing any bound whatsoever on the positive parameter

x if the given matrix, Q(l), is such that



57

B . >0

(41, = 93, he1!

This follows from noting the non-negative character of the term

/x g, al) = (/%) q), (a, - Gy )+ (cfo 2.7.9)). Itis
clear that similar statements can be made with regard to
individual bounds imposed on x through consideration of entries
(t)yi(;) (i=1,2,...,h; j=hh+l,...,n). To continue the
illustration, suppose the given matrix, Q(l) , is such that:

(t) 4 (1)

Uh = 9h "9, htl 0.

Accordingly, from (2.7.11), we have:

(1/%) apy (ap = 9p41. 1) 2 9 pe1 -~ 99n
or

q,4 (a,, - q )
1h bk~ %htl, B (2.7.12)
9, h+1 " Yn

For a given matrix, Q(l), let X and X, denote,
respectively, the least upper bound and the greatest lower bound

on parameter x. Then, in view of the statement immediately

following (2. 7.6), the inequality
(2.7.13)

is a necessary and sufficient condition for matrix Q(l) to belong

to the special class considered in this section, If the inequality
in (2.7.13) is satisfied, parameter x can evidently be assigned
any value within the bounds x| and X5 and each value of x

will offer a different equivalent realization of matrix Q(l) . All




58

these infinitely many equivalent realizations would contain, at most,

%— n(n+l) + 1 resistors. In fact, if x is assigned a value either

equal to x

exactly —é— n(n+l) resistors would be obtained.

| Or x5, a distinct minimal realization containing
&~

2,8. Matrices of the Fourth Order

The various considerations stated previously are the most
general in the sense that they hold for any particular order, n, of
a s.c. conductance matrix which is realizable with a specified
two-tree port-structure. Now we shall apply some of these
considerations to matrices of the fourth order mainly with the
intention of illustrating them.

It was indicated earlier that the problem of matrix
realization with a two-tree port-structure is easily reducible to
the one of realization with a bilinear port-structure. Hence we

shall be considering only the bilinear port-structures in what

follows. As shown in Figure 2.8.1, only two distinct bilinear

Figure 2.8.1

port-structures are possible in the case of four-port networks.
We shall consider either of these port-structures separately so
that the problem of realization of fourth-order matrices with

two-tree port-structures will have been dealt with completely.
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1)

Case I. Suppose, for a given fourth-order matrix, Q( ,

the port-structure is specified as indicated in Figure 2. 8. 2.

\ N
0]
Yy —
@]

3
(O e ) Ot O

Figure 2.8.2

To obtain a matrix, Q, corresponding to the port-structure shown

in Figure 2.8.3, first we pre- and post-multiply matrix Q(l)

R (23,4 1)

by a suitable E, matrix, viz., in the present

1

example, and then pre- and post-multiply the resultant matrix

by a suitable US matrix, viz., US(Z) in the present example,

(2,3,4,1) o(1) p (2,3,4,1) 5 (2)
e, 14,

so that Q = US(Z) E We note

1

that the realizations of matrices Q(l) and Q are identical

except for the port-numbering and port-orientations.

2

0]
(

Figure 2.8.3

Let Y =[ Yij] 4 denote a fourth-order uniformly tapered
matrix. Its realization as a s.c.conductance matrix with five
notes is shown in Figure 2. 8. 4, where the edges indicated by

heavy lines represent the ports. Let another network be derived,

as shown in Figure 2.8.5, from the one in Figure 2. 8.4 by adding
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five resistors which have their respective non-negative conductance-

values equal to 8y (k=1 -5).

D

Figure 2.8. 4

Figure 2.8.5
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If matrix Q = [aij] 4 denotes the s.c. conductance matrix
for the derived network, then by noting that n = 4 and h = 2 and by
applying the final result of the generalized discussion in section 2.2,
we can write the following relation between matrices Y and Q.

That is, from (2.2.7), (2.2.35), and (2. 2. 36),

5
-0 -ls &
Y—Q—A+(k2:31 gk-qzz) Q.ZQZ. (2.8.1)
where
f_' —
[}
g4 0 0 0
\\
g t8 %83 g3 B3
A - (2.8.2)
8,783 B3
g3
and
r— —
2t 8y
qu‘gl'gz'g3 - [ — —_
SO = 921 922 - 8 d32 42
L2722, T I

Q. - tgy 4178, "8 -8, -8 -8
43, - g, - &3 4| 2 3 2 3 3

42 ~ 83 (2.8.3)

We shall proceed, now, to apply the important results of the
discussion in section 2.5 to the conductance-parameters g1 through

gg - Thus, from (2.5.2),
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_ -
(qll-qlz) (q12~ql3) (q13'q14) (q14)
~
~ (45595379 ,%9y3)  (9p3-9,4-9)3%9) ) (9479 4)
TQT = T~
~ < _ (9337934795319, ) (d34-95,)
-~ S~
* T~ (d447934)
(2.8.4)
From (2.5.3),
> I o 0 0]
g4 L
N Nem — — - - - —
N gl gz g3
TAT = ~ - —— === (2.8.5)
N o0 0
AN
N
X S o
. N p—
From (2.5.4) - (2.5.5),
92 t 8y
9 ~9y, - B -8, - g3 - gy (=0
TQ:ZQZ.T = ~ [-u -V =W q42-g3]
Q32 = qZZ + gl (:v)
) (2.8.6)
CI42 - Q32 + g (= w)
- -

Applying, next, the results in (2.5.17) - (2.5.22) to the present

case, the following bounds are established on 8y (k=1 -5):

€4 Z 9
s Z G2
gy = 93, - 93

(2.8.7)
(2.8.8)

(2.8.9)
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, - 2.8.10

82 2 933 " 94 (2.8.10)
y < .8.11
&3 = 924 (2.8.11)

5

= ) > 2.8.12

k=1 Bk 922 ( )

From (2.5.26), the sign-pattern matrix for TQ' ZQ.'Z T is

obtained as

~e@le @ o
"B E 6

N o (2.8.13)
e \(? ©
\\@A

In the above sign-pattern matrix, the entry in position (1, 1)
is non-positive and the entries in positions (2, 2), (2, 3), and (2, 4)
are non-negative when 9, - 9q), > g, tg, tegyta,- On the other
hand, the entry in position (1, 1) is non-negative and the entries in
positions (2, 2), (2, 3), and (2, 4) are non-positive when Ay, - qu
=< g, + g, + g3 + gy~ Further, by virtue of (2.8.12), the sign-pattern
matrix for (k%l C q?_3)"l TQ: ZQ’Z. T 1is the same as that for
matrix TQ',QL T

22, T
From (2.5.29) - (2.5.30) and the associated generalized state-

ment, if, in matrix Q, Ay, =93 -9, T 93 <0 and/or 923 " 924 - 93

+ 4 <0 and/or A4 =954 < 0, then conductance-parameters g1

through g, are subject to the upper bounds:

y < - :
gy teyteyte, S 4, -9, (2.8.14)
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<

g, < 9, -9 (2.8.15)

A conditional upper bound on 84 is further obtained through

(2.5.37) as follows:

(qll)(qz?" q2,3\+1) S
N -
(@5 = 9, 54)

9, 2 84 (2.8.16)

N
where j is any index between 2 and 4 such that, in matrix Q,

- >
959,541 > 0
As an example, suppose, in matrix Q, 93 ~ 954 > 0; then

the upper bound on g4 is given by:

-9, 2 8
913 =~ 94 12 4

Further, if, say, 2 - 93 > 0, then an additional upper bound
is:

(q;,) (a3, - 4955)
912 ~ %3

9, 2 84

Case II. Suppose, for a given fourth-order matrix, Q(l) ’

the port-structure is specified as indicated in Figure 2. 8.6,

\ &S

Q
A -
O
=)
Q
\H(tv
(o]

o

Figure 2.8.6
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To obtain a matrix, Q, corresponding to the port-structure

shown in Figure 2.8.7, we first pre- and post-multiply matrix

£(3.1,4,2)

Q(l) by a suitable E., matrix, viz., in the present

1

example, and then pre- and post-multiply the resultant matrix by

a suitable Us matrix, viz., US(Z) in the present example, so

hat Q=u D314 o0 g6,1,42 4 @)

1 2 3
L ey e Zae OB

Figure 2.8.7

Y
0

Let Y = Yij] 4 denote a fourth-order uniformly tapered
matrix. Its realization as a s.c. conductance matrix with five
nodes is shown in Figure 2. 8.4. Let another network be derived,
as shown in Figure 2. 8.8, from the one in i“i’gure 2.'8. 4 by adding
five resistors which have their respective non-negative conductance
values equal to 8 (k=1 -5)., If matrix Q = [EIJ] 4 denotes the
s.c. conductance matrix for the derived network, then by noting
that n=4 and h =3 and by applying the final result of the
generalized discussion in section 2.2, we can write the following

relation between matrices Y and Q.

That is, from (2.2.7), (2.2.35), and (2.2.36),

5
.5 15 5
Y=0-a+(Z g -a5) @, (2.8.17)

where



and
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ﬂ 9,
9

Figure 2.8.8

C

I
g3 ,
| (o)

g3+g4|

g T&

_ _ I

93 923 !

|

I

+g3 ~i~g3+g4l

4
E
3
- = 2.8.18
g, ( )
g;
d33 43
= gl gz = gz
(2.8.19)

We shall proceed, now, to apply the important results of

the discussion in section 2.5 to the conductance parameters gy

through 8s - Thus from (2.5.3),



TAT =

From (2.5.4) - (2.5.5),

[a) 5 +

qz3 -

1 1 —_
TQ' ;05 T =
d33

d43

g3

9,3 tegy (Z0)

'q23'g1 'gz-g3'g4(zv)

'q33+g1 (EW)

(2.8.20)

['u =V =W Qqu3 - gz]

(2.8.21)

Applying, next, the results in (2.5.17) - (2.5.22), the

following bounds are established on g1 (k=1 -05):

g3.>_

>

g5 2

4 0]
—
IA

aQ
[3%]
I A

=1 Sk

K

- 93 t 93

(2.8.22)
(2.8.23)
(2.8.24)
(2. 8. 25)
(2. 8. 26)

(2.8.27)

From (2.5.26), the sign-pattern matrix for TQ' 3Q'3 T is

obtained as:



- m
i & ©
le, 0 o
\\\\.___._._ (2.8.28)
@ &
N —_ -
NG

In the above sign-pattern matrix, the entries in positions
(1, 2) and (2, 2) are non-positive and the entries in positions (3, 3)
and (3, 4) are non-negative when d33 - 953 > g tg, tegstey:
On the other hand, the entries in positions (1, 2) and (2, 2) are non-
negative and the entries in positions (3, 3) and (3, 4) are non-
positive when q;; - 9,3 S g teg, teyte,: Further, by
virtue of (2.8.27), the sign-pattern matrix for (kzil g - q33)
TQ: 3Q:'3. T 1is the same as that for matrix TQ: 3Q:'3. T.
From (2.5.27) - (2.5.28) and the associated generalized
statement, if, in matrix Q, q;, ~q;5 <0 and/or
4, =933 -9, + q;3 < 0, then conductance-parameters g1
through g4 2TE subject to the bounds:
g t 8T8t ey 2 9337 93 (2.8.29)
8 = 933 ~ 934 - 923 T 94 (2.8.30)
and

g, S 934 - 954 (2.8.31)

Again, from (2.5.29) - (2.5.30) and the associated statement,
if, in matrix Q, d33 = 934 = 953 + Ay <0 and/ or A34 = q24_<_ 0,

then parameters g; through g4 are subject to the bounds:
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g, T8, ey tey S d33 -9, (2.8.32)

< -
g3 92 "~ 93 (2.8.33)

< - -
84 S 93 " 93 - 92t Q3 (2.8.34)

It is evident that a matrix Q is, in fact, not realizable with
the bilinear port-structure shown in Figure 2. 8.7 if (i) 9, - 93 <0
simultaneously with d33 =934 = 953 - 954 < 0 and/or d34 =954 <o,
and/or if (ii) Qy, =43 =9, + 9 3 < 0 simultaneously with
933 - 934 " 93 " 94 < 0 and/or a3, -qp, < 0.

Next, application of (2.5.37) offers the following bounds on

parameters g, and 84+ Thus, with i=1,

—. -qy; > g (2.8.35)
(05 - 93,44 13 3
With i= 2,
(a,, = 9;5) (a2 =q, 2. 0)
227 712’ '3 3,7+1
1 ] - 9,3 T 953 2 8y (2.8.36)

(923 - 93,541

N
where j is either equal to 3 or 4 such that, in matrix Q,

AR >
925 - 92,5 7 0
As an example, suppose, in matrix Q, dy3 = 9oy > 0;

then the upper bounds on g3 and gy are given by:

(qlz) (q33 = q34)

- > 2.8.37
(45 = apy REREEE ( )

and

(qZZ = qlz) (q33 = q34)

> g, - (2.8.38)

+
(q23 - q24) 23 T 953
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However, if matrix Q is such that A3 - q24§ 0 as well as

Q4 < 0, then the bounds in (2. 8.35) - (2. 8.36) do not hold.

Example 1. Consider the s.c. conductance matrix

FIZ 1 -6
1 10 1
o)
-6 1 11
0 4 2

0

4

(2.8.39)

the port-structure being specified as shown in Figure 2.8.9.

AN -

(0]

4
O O

Figure 2.8.9

We apply the conductance-parameter procedure for

synthesizing a six-terminal resistive network from this s.c.

conductance matrix. The matrix, Q, which corresponds to the

bilinear port-structure shown in Figure 2.8.10 is given by:

0 - u@EG1,42) 1)L G,1,42) (2
s 1 1 s

1 2
Ot O e o

Figure 2.8.10



Thus,

F11 6

6 12

] 2 0
1 -1
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We observe that both the submatrices

-1

4

10

o(1:2)

and Q(3 » 4)

(2. 8.40)

are

uniformly tapered so that one fundamental necessary condition

for realizability of the original matrix, Q(l) , is indeed satisfied.

We also observe that this example is a direct illustration of

Case II discussed above, so that the realization of matrix Q

must assume the form shown in Figure 2. 8. 8.

With reference to (2.8.17), we can write:

5
TYT = TQT - TAT 4 ( Z
t (Z 8

- 933

-1
)7 Tarye; T

Applying (2. 8.4), (2.8.20), and (2. 8.21) to the present example,

we have:

TYT =

- —
1 1 0
N
0 =2
4 5
N
N6
N L
B
2+g3
-2+g4 (= u)

-5+g1 (= w)

9‘g1'g2‘g3"g4(-:-v)

[ -u

-V

4'82]
(2.8.41)
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The problem of realization of matrix Q(l) now depends upon
finding a suitable set of parameters g (k =1 = 5) such that
each entry in the upper triangular portion of the above matrix,

TYT, is non-negative. The following bounds are obtained on

g, through (2.8.22) - (2.8.38):
[From (2.8.24)]: gy > 2
[From (2.8.26)]: g, =5
[ From (2.8.27)]: g, < 4
[ From (2.8.37)]: gy < 28
[ From (2.8.38)] : gy < 32

A machine search within these bounds, using the principles
indicated in section 2.6, yields one suitable set of parameters

g, 2s follows:

g, =1.005252, g, =0.000000, g, =0.209919,

g, = 8.070859, and g, = 11.802151.

Another suitable set with integral values can be easily obtained

from the above set as:
g =1, g,=0, g3=0, g,=8, and g5=12.

Substituting these values in (2. 8.41), we get:



F— - — - —
5 4 1 1 0O 0 0 0 2
N \
\
‘8 0 -2 \8 0 O , |6
TYT = N - N t 1z [-6 0 4 4]
AN
4 5 Jd o 0
\\ \
| X wel LX ~ O -4 _
2 2
¢ 4 13 1%
N\
\
_ N0 2 0
- AN
\
N3 5
AN
A 2
X N 42
- N\ p—

The realization of matrix Q(l) is readily obtained as shown in

Figure 2.8.11 (cf. Figures 2.8.8 and 2.8.9).

C 12 D

Figure 2.8.11



74

We shall consider, now, another matrix and apply to it the
special version of the conductance-parameter procedure discussed
in section 2. 7. It will be seen that the matrix does, in fact, belong
to the special class of matrices realizable with the special
procedure, with the result that its two distinct minimal realizations

can be obtained very easily.

Example 2: Consider the s.c. conductance matrix [ sL 1]

7 1 2 3.-T

1 12 4 s
o) . (2. 8. 42)

with the port-structure shown in Figure 2.8.12.

1
O o)

A 4

3

Figure 2.8.12

Pre- and post-multiplying Q(l) by El(z’ 34 1)} we obtain matrix

(2,3,4,1)

SRR PN

corresponding to the bilinear

port-structure shown in Figure 2.8.13. Thus,

Vo
Q
7N
(@]

7N

O O

7~
o

Figure 2.8.13



O - (2. 8.43)

We note that here n=4 and h=2. We also note that the sub-
matrices Q(l’ 2) and Q(Z’ 3, 4) are both in the uniformly tapered
form so that the fundamental necessary condition for realizability
of Q(l) with the special procedure is satisfied.

Applying the relation in (2.7.4) to the present example,

we have:

TYT = TQT + (1/x) TQ ,Q, T

~ - - -
S8 -l 4 1 4
N 10 0 1 Ll
AR S S -9
X N
N4 -4
N
- N E—

It is our aim to assign, if possible, a positive value to the

parameter x so that each entry, (t)y(it.:) , in the upper triangular
position of matrix TYT becomes non-negative. Signwise, the

above equation may be written as:



S
ISR
AN
Not o+ o+
TYT = N
N+t
AN
X N
\\+
N
L N

P+ o+ 4+ 7
!
NPy o+ 4
AN
~— - - -
N -
AN
N
\-
\\
N

Evidently, the upper bound on x is imposed only through

(t) (1)

consideration of entry Y12

on x 1is imposed through consideration of entries (t)y(ltl) ,
(t) (3t‘)1’ and (t)y(a‘tl . Thus,
[(t)y(ltz)l -1+4X930 or x < 36
[y 8- 24l >0, or x> 3
[(t)(3t3).]: 11-9;{4 >0 or XZ%
RRMUBIE 1-222 >0, or x> 18
[0, 5325 0 e w2

Therefore, we have the least upper bound on

and the greatest lower bound on

while an individual lower bound

x(Exl)

x (= XZ)

1]

(t)_(t)
Y33

36

18.

The compatibility of these two bounds directly implies that matrix

Q(l) can, in fact, be realized by the ""special procedure.

Infinitely

many equivalent realization of matrix Q( ) can be obtained by

assigning different values to x within the bounds 18 and 36.

We

shall consider here three realizations corresponding to the values

18, 36, and 24; the first two realizations will be the minimal ones

containing exactly ten resistors.



For x =18, we have:

TYT =

For x = 36, we have:

TYT =

For x =24, we have:

TYT =

P
29
\\ l
\ —
\1\52
X
,
- 0
<9
\\ 3
\\4
N
N
X
1 1
bz 3
A 1
N
d4g
AN

/

7

8
49 1
4
2= 2
9
9 0
N
N
N~ 3
\\
4
4= 1
9
2
1-§ 1
\l0
AN
\\
N 3
N
N
2
4§ 1
5
lg 1
1
\92
AN
AN
N 3
AN

NI N IENCI TN

/7 oln

L

Pt w|»—-
[o—)

A I SIRN p—-l
o

L

(2. 8. 44)

(2. 8. 45)

(2. 8. 46)

The realizations shown in Figures 2.8.14 - 2.8.16 follow

when we recall from sections 2.2 and 2.7 that the conductange value,

8o? of the pertinent resistor is given by (q22 +x), i.e., (15 + x).
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C 33 D

Figure 2.8.16
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2.9. Realization of Matrices with k-Tree Port-Structures

The problem of synthesis of resistive networks from s.c.
conductance matrices which are realizable with two-tree port-
structures was dealt with thoroughly in the preceding sections.
However, certain matrices may be realizable, exclusively or
otherwise, with port-structures forming k-trees (n > k > 3).
Some ideas on a possible approach to the problem of realization
of these matrices are presented in the following.

We shall establish first one useful result in matrix

algebra.
Theorem 1: Let real, non-singular matrices Y = [ Yij] n
and Q =[ qij] n be related by:
-1 -1
Y = (Q - R) (2.9.1)

where all entries of matrix R = [ rij] o are zero excepting certain
] i < < <
diagonal entries Tipr Tgpr =0 T (b f oo <1 n). Then

the relation in (2.9.1) has the alternate form:

B T, e T
- " 9 " Gpp e = A | Db,
bb
Q. ol o
- 9 T Qg « - qn f.
Y=Q+[Q, Q,...Q, s X
e
-9 B TR q1_11 1.
— U I - —

(2.9.2)
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provided the inverse matrix on the right-hand side of the
equation (2. 9. 2) exists.T

Proof: Liet d denote the number of non-zero entries of
the diagonal matrix R.

Let the nxd matrix P = pij] be such that
Ppp P = ¢+ = P1g°= 1, the rest of the entries being zero.

Let the n x n diagonal matrix R be such

(s) _ .(s)
- [ rl_] ]
(s) _ -1 (s) _ -1 (s) _ -1
that b - Thb* Tfr T Tgp o e Ty T Ty oo the rest of the
entries being zero. (Matrix R(s) represents thus the semi-

inverse of matrix R.)

Let R = [;ij] denote the d x d non-singular diagonal

matrix P'I R P. Evidently, ?“ =Ty ';ZZ S Tim oeees ?dd =T
Further, we have R. = PIR{®) P and PR PT = R.

Consider matrix PTQ Y-l .
pTov! - pTour™t - )
- pT - pTgr
- kRt apT cpTopRPT
- &' -pTapr Pt

- TR p _pTop RPT

- ®T(rS PR P
Therefore,

plo - (PT[RI® . PR PT v (2.9.3)

¥ The alternate form in (2. 9.2) is valuable in that it facilitates
computations.
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Now,
— -
1
-q -q -q
Tp bb bf bl
1 -
" 9%p T g == an
PI[R(S) _g] P - : .o . (2.9. 4)
1
" 9b -9 N i
L -

Let this be non-singular (hypothesis). Note, further, that

! -R)-l implies R = (Q-l - Y-l), so that

Y= (Q
QRY = (Y - Q) (2.9.5)

Pre-multiplying both sides of the relation in (2.9.3) by the non-

singular matrix (PT[ R(S) - Q] P)“1 and interchanging thé sides, we
have:
Rply = (PT[R) q ¢! PTQ
Therefore,
aPpEPTy = o [rR) . q ! pTq
i.e.,

Qry = ap(PT[rR®) g p)! pTq

From (2.9.5), then,

vy-0 = op@r[r®) _q] p)7l pTq

or

vy - g+ap @ [rRE) g p! PTq. (2.9.6)



I}

)

L
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Note that
QP :I:Q'b Q.f Q.l (2.9.7)
and
-
Qb.
Qf.
pTo - | . (2.9. 8)
Q1.
L

In view of (2.9.4), (2.9.7), and (2.9.8), the relation in (2.9.6) is,
in fact, the same as that in (2.9.2). This proves the theorem.
An obvious corollary of the above theorem is that if every

diagonal entry of matrix R is non-zero, then the relation

Y = (Q-l - R)"l has the alternate form:

vy - o+ar Y-l a (2.9.9)

Consider, now, an n-port network, A, such that its s.c.
conductance matrix, Y = Yij] 0’ corresponding to some particular
port-structure is non-singular. Let ES (s=1,2,...,n) denote
the n voltage-generators exciting the network.

Consider another n-port network, N, obtained from the
above network by adding non-negative resistors, g in series
with generators Es (s=1,2,...,n). Let Q= [aij] n denote
the s.c. conductance matrix for the derived network N, and let

a diagonal matrix, R, be formed with resistor values r g as its
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diagonal entries in the same sequence. If matrix Q is non-singular,
matrices 6-1 and Y-1 are obviously the open-circuit resistance
matrices for networks N and A respectively. Now, in view of

the above discussion, it is clear that

Q =Y +R, (2.9.10)

so that
vy = @!-r7t. (2.9.11)
We observe that s.c. input conductance ass (s=1,2,...,n)

is given by s.c. input conductance Ves itself if rog = 0. Again,

q is given by the series combination of conductances Ves and

SS

oo whenever Too > 0. As a consequence, the following
relation holds:

-1 -
> = .
roo U (s=1,2,...,n; rssaé 0) . (2.9.12)

Suppose, now, that network A has exactly (n+l) nodes, so
that the n voltage-generators Es (s=1,2,...,n) constitute a
tree. On the other hand, if network N is obtained from network
A by adding a positive resistor, T o’ in series with at least
one generator, Em (1 < m < n), which is represented by an
internal branch, m, then the n voltage-generators exciting
network N must necessarily constitute a forest. This concept

is illustrated in Figure 2.9.1, where figures (a) and (b) depict
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networks A and N respectively.

After establishing a simple result in matrix algebra at this
point, we shall be in a position to consider the problem proper of
realization of s.c. conductance matrices with k-tree port-structures.

Theorem 2: Let an nth-order real, non-singular matrix

Y be related to nth-order, real, non-singular matrices Q and

Q by:
Y = (Q’l -R)'l (2.9.13)
and
y - @t -rt. (2.9.14)
Then Q = Q. (2.9.15)

Proof: Equating the right-hand sides of equations (2.9.13)
and (2.9.14), the identity in (2.9.15) follows immediately.

Let Q = qij] n denote a paramount matrix to be realized
as a s.c, conductance matrix. If matrix Q is not realizable with
either a connected or a two-tree port-structure, then realization
must be tried with a k-tree port-structure (n> k > 3). Excepting
in the very special case where matrix Q is dominant, no technique
is available in the literature for realizing matrix Q as specified
above. In this situation, the trial-and-error technique established
below has some value. Besides the fact that by means of this
technique we may be able to realize certain matrices with k-tree
port-structure, it could perhaps lead to a precise method of
realization of all s.c. conductance matrices which are realizable

with k-tree port-structures.



Suppose, then,

(b< f< ... <1< n)
— O r
Y=Q+ Q.bQ.f cee

86

that a matrix, R = rij] n’ is found with
all entries zero excepting certain diagonal entries Ty Tepr o ooco Tp
such that a matrix, Y, as given by:
- -1 ~ —_
- q - q -q Q
T b bb bf bl b.
1 Q
" 9 P A | f.
ff
_ L Q
" 91 9¢ e T "9 1.
11
(2.9.16)

is realizable, through the known techniques, as a s.c. conductance

matrix with one or two-tree port-structures.

r r ese,y T

bb’ " ff’ 11

Evidently, entries

of matrix R must be such that the inverse matrix

on the right-hand side of (2.9.16) exists; further, as will become

clear below, they are

(s=b, f, «.., 1).

subject to the condition r;i > q

Ss

>

0

If matrices Q and Y are non-singular, then,

through Theorem 1, the relation in (2.9.16) is, in fact, an alternate

form of the relation:

-1

( -1

- R)

Y

(2.9.17)

Let an n-port network, A, be the realization of s.c.

conductance matrix Y

voltage-generators.

with E (s
s

1,2,...,n) denoting the n

Let another n-port network, N, be obtained

from network A by adding non-negative resistors having the above

values r
ss

, in series with the corresponding generators Es .
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If Q=[7q..] denotes the s.c. conductance matrix for network N,
then, as seen earlier, matrices Y and 5 must be related by
(2.9.11). Further, as stated in Theorem 2 above, the equations
(2.9.11) and (2.9.17) together imply the identity of matrices Q
and Q. Hence, network N must, in fact, be a realization of
matrix Q. It should be noted that the relation in (2.9.12) and the
relevant discussion offer a useful guideline for the selection of the

diagonal matrix R . Stated explicitly, oo (s=b, f, ..., 1) must

be chosen such that r-l > q .
ss ss



Chapter 3

MATRICES OF THE THIRD ORDER

3.1. Introduction

Tellegen has proved [ TE 1] that a matrix of order < 3
is realizable either as a s.c. conductance matrix ar as an o.c.
resistance matrix if, and only if, the matrix is paramount. He
has also given canonical structures of realization in each case.
Recently, Cederbaum has shown [ CE 4] that every paramount
matrix of order three can also be realized with a network
which is topologically optimal in accordance with the criteria
specified in his paper. The problem of synthesis of resistive
networks from matrices of the second and the third order can
thus be regarded as, in essence, solved. However, the
problem is reinvestigated in this chapter with an entirely
fresh approach, which besides being interesting in itself, has
the feature of offering two distinct minimal realizations
amongst infinitely many continuously equivalent realizations
for any third-order paramount matrix considered as either
a s.c. conductance matrix or an o.c. resistance matrix.
Further, extremely simple computations are involved in the
application of the new procedure as is illustrated by means
of an example toward the end of the chapter.

We shall begin by establishing certain useful properties

of third-order paramount matrices in the following.

88
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3.2. Some Properties of Third-Order Paramount Matrices

Lemma: Let Q(l) = [ qg)] 3 bea real, symmetric matrix

1]
(1) (1)

such that the entries q) 3 31

and q are negative, the rest of the
entries being non-negative. Then by applying a cross-sign change
operation to, and/or by interchanging some rows and the corresponding
columns of matrix Q(l) , itis always possible to obtain a matrix,
Q= qij] 3 such that the relations stated in (3.2.1) and (3. 2.2)

below hold simultaneously:

q11q23+q12'q13l > (3.2.1)

a1, 93 * 952 | 9p5]

933 95 * dp3 |95 (3.2.2)

Proof: Consider the following four possible cases separately:

Case 1:
q(ll) q(213) (1) lq(l)l 2\ " (1) (1) (3.2.3)
912 923 Iq(l)l
(313) q(112) (1)| (1)| > (3.2.4)
Case 2:
(lll)q(213) , (1)| > A w (1) (3.2.5)
P 912 923 * zz Moy
(313) (1), (l)| (1), < J (3.2.6)
Case 3:
(1) (1 1 ]
q11) qz3) ( )l ] ) q(112) (213) (1) | q(1)|(302.7)
q(313) q(112) +q(213)| (1)| > J (3.2.8)




Case 4

Case 1:
trivially

or of int

Case 2:

L.,
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Case 4:
N
QD) 4 D)y ) (3.2.9)
(1) (1) (1)| q(1)]
912 923
a(Y o) + a0 1ol)] < (3.2.10)

Case 1: Letting Q = Q(l) , the relations in (3.2.1) - (3.2.2) follow
trivially without the necessity of any cross-sign change operation

or of interchanging any rows and columns of matrix Q( ).

Case 2: With the notations defined in section 1.2, let

0 - v £(,3,2) Q1) £(1,3,2) 41)
s 1 1 s
i.e.,
— - 1
(1) | (l)l _ ()
a91 %2 93 91 93 92
1 1
Eby) 9,3 = q(33) q(23) (3.2.11)
(1)
| 433 922
L - _ —
Noting that | q13| = q(1 2) and applying (3.2.11) to (3.2.5) - (3.2.6),
we get:
ﬁ
93 * lagsl ap, (3.2.12)
o lapslags tagzap,
4, layj3l +a,5 9, < (3.2.13)

The relation in (3.2.13) is the same as that in (3. 2.2), while
the one in (3.2.1) follows from comparison of the left-hand sides of

(3.2.12) and (3.2.13). Clearly, both the inequalities in (3.2.1) and



Case 3:

Le.,

T
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necualiy
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Case 4:
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(3.2.2) hold as strict inequalities in the present case.

Case 3: Let Q= Ul p(&13) olh) g2 1,3) 413)

i.e.,
r — pe— S——
(1) (1) (1)
91 Y92 Y3 92 912  ~ 923
_ (1) (1)
4y 9y = a, lasl (3.2.14)
(1)
d33 d33
- p— _— —

Noting that | ql3| = qf213) and applying (3.2.14) to (3.2.7) - (3.2.8),
we get:
4, lajgl ta, a5 < (3.2.15)
ajp Loyl +apy ap3
a33 9y * lay3l a5 > (3.2.16)

The relation in (3.2.15) is the same as that in (3. 2.1),
while the one in (3. 2. 2) follows from the comparison of the left-
hand sides of (3.2.15) and (3.2.16). As inCase 2, both the
inequalities in (3.2.1) and (3. 2.2) hold as strict inequalities in

the present case.

Case 4: Let

0@ _ ) £(1,3,2) (1) £(1,3,2) (1)
s 1 1 s



i.e.,
(2) (2)
91 92
(2)
922

Noting that | q(123)] =4,

we get:

(2) _(2)

9 q23 +]q

a'2) | (Z)I

Two possible cases will be considered separately:

(1)

(ZI

(2)

923 4

Case 4(a):
(2) (2) (Z)
9, 93 *t +1q |
Case 4(b):

(2) (2) |q§23)|

q11 923

Case 4(a): Letting Q(Z)
is the same as that in (3.2.1),

as that in (3.2.2) holding as a strict inequality.

92

(1)
911

2 <

L

lq(l)l

(1)
d33

1491 q

-
(1)
)

(1)
923

(1)
922

(2)
933 9;2

(l) | (2)| (22)
9
a3 1] +qt%) old

Case 4(b): Let Q = U(:) El(z’ 1,3) o(2) El(z’ 1,3) U(:)

Therefore,

(3.2.17)

and applying (3.2.17) to (3.2.9) - (3.2.10),

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)

= Q, we observe that the relation (3.2.20)

while the one in (3.2.19) is the same



93

§ 7 (2 (2) (2)7]
91 92 93 922 912 923
_ (2) (2)

4, 933 = a7 a3l (3.2.22)
(2)
d33 933

Noting that | q13| = q(223) and applying (3.2.22) to (3.2.19) and

(3.2.21), we get:

A, laysl a9, < a gt lasla, (3.2.24)

The inequality in (3.2.24) is the same as the strict inequality
in (3.2.1). Again, the strict inequality in (3.2.2) follows from
observing the identity of the left- and the right-hand sides of (3.2.23)
and (3.2.24) respectively and then comparing the right- and the
left-hand sides of the same two inequalities.

The lemma is proved thus in all the four possible cases.

Before proceeding to the main theorem, we consider one

special case where the original matrix, Q(l) , is such that

- / -
9y = 9, and/or Q33 =q,,

in the matrix Q which is obtained as indicated in the lemma. In
this special case, an inspection of (3.2.1) - (3.2.2) will reveal

that a1 <22 implies:

932 = 952 ( =q11) (since ]ql3| # 0) (3.2.25)
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while Q33 = 453 implies:

4y, = 4,5 (= q33) (since lql3| # 0) (3.2.26)

We shall have occasion to refer to this special case later on.

Theorem: Let Q(l) =[ qul )] 3 be a paramount matrix such
that all its entries qg})

213) and q(;l) . Then by applying a suitable cross-sign

are non-negative excepting, possibly, the
entries q
change operation to, and/or by interchanging some rows and the
corresponding columns of matrix Q(l) , it is always possible to

obtain a matrix, Q, such that a matrix, Y, defined by:
Y = Q+(1/x) Q ZQZ (3.2.27)

assumes a uniformly tapered form for some positive value of the

parameter x.

Proof: Let
o —
1 0 0
T =|-1 1 0 (3.2.28)
0 -1 1

Then, from (3.2.27),
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TYT = TQT + (1/x)TQ ,Q, T

+q12(q12'qzz) +q12(q22‘q32) . 292
91 "92 x 92 °93 x 93 x
< e (9,9 0(a;,-95,) +‘qzz‘q12)q3z
92279292793 X 92379;3 %

(a25,-955)q
327922793,
X B 933793, * X

(3.2.29)

Consider the following two possible cases separately:
Case 1: All the entriesin matrix Q(l) are non-negative.

(113) and q(l) are negative, the rest

Case 2: The entries q 3]

of the entries being non-negative in matrix Q(l) .

. - (1) ~ i
Case 1: Let O = E, Q E1 such that q)5 = min (qij)

1,_]

Then

> < <
911 2912 2933 = 933 = 933
and
9, 5 9y, 2953 (3.2.30)

so that:
- > - - >
91 " 4220, 9, -9320, 93 = 9)32 0

(3.2.31)

- - - >
933 " 9232 0 9 =920, and gy, - 9520
Consider two further possible cases separately:

Case 1(a): 9, =932 - 95, + 93 >0 (3.2.32)
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Case 1(b): -qp, t 95 <0 (3.2.33)

422 " 93,

Case 1(a): In this case, we observe incidentally that matrix Q itself
is in the uniformly tapered form.

In view of (3.2.31)-(3.2.32), the entries in positions (1, 2),
(1, 3), (2,2), and (2, 3) of the matrix TYT in (3.2.29) are non-
negative for every positive value of x. Thus, matrix Y is uniformly

tapered if:

from the entry a4 -q12 +(l/x) qlz(qlz-qzz)z 0
in position (1, 1)
in (3.2.29)

qy5 (A5, = 9y 5)
or x > 12 2z 7lz (3.2.34)

91 "~ 912

Q33 = 93, + (1/%) (45, = q,,) g3, 2 0
from the entry 33 32 32 22" 732
in position (3, 3)

: (95, - 933) @
in (3.2.29) or x> —22 32 732 (3.2.35)

433 - 43

It is evident that a positive parameter x can always be chosen

such that the conditions in both (3.2.34) and (3. 2.35) are satisfied.

(x = as ), -q12—~0 and/or 933 -q32-*0.)

Case 1(b): In view of (3.2.31), the entires in positions (1, 2), (1, 3),
and (2, 3) of the matrix TYT 1in (3.2.29) are always non-negative
for every positive value of x. Thus, matrix Y is in the uniformly
tapered form if a positive value can be assigned to x such that

the entries in positions (1,1), (3, 3), and (2,2) in (3.2.29) are
non-negative. Consideration of the entries in positions (1,1) and

(3, 3) implies the same constraints on x as stated in (3.2.34) and
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and (3.2.35), while from the entry in position (2, 2), we have:

4pp =932 =9y, * a3+ (1/x)a,, - gy ,)(a,, - g3,) 20
or

(a5, - qp,)(q,, - a35)

" 927932792 - 93

(3.2.36)

In order to establish the compatibility of this upper bound on x
with the lower bounds in (3. 2.34) - (3.2.35), we observe that the
paramountcy of the original matrix, Q(l) , implies the paramountcy

of matrix Q so that:

2
- > -
91 92 -9 2 2 9] 923 "9, 93 (3.2.37)

and

2
- > -
922 933 T 923 Z 933 92 " 932 93 (3.2.38)

. . 2
Adding the quantity (- 955 9y, t A3, 95 = 932 95 + qu) to both

sides of (3.2.37), we get:

2
9192 " 9292 T 93292 " 93291 2 - 929 2 Y9392 T 92 - 9293

(ap, = azp)ay) = q)p) 2 (-9, + a5, ta;, -q)3)q, (3.2.39)

Note that, in view of (3.2.37), the hypothesis 9, 0

- - - <
923 ~ 92 " 93
implies a # 9, forif ), =9, then from (3.2.37),

apy (955 = 9y,) 2 qp) (a3 = 9p3)-

Because of paramountcy, a, must be positive and hence

42 =93 93 T 932 0.
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From (3.2.39), then,

922 " 932 S q 2
"9t t 993 T 9 T 92

Multiplying both sides of this inequality by the non-negative quantity

(q22 - q Z), we have:

(42 = 91200922 =932 | 912092 - %5)
= 92% 93,791,935 9 " 92

(3.2.40)

. . 2
Adding the quantity (- 9,933 - 9,93 + 4,95, + q32) to both

sides of (3.2.38), we get:

2
- - > o -
92933 -~ 912933 " 92292 Y 912932 2 - 922932 T 93 T 9,93, - 93293

i. e.,

(a5 = ayp)a33 = 93,) 2 (- 9y, *43, ¥ 95, - 953) 93,
(3.2.41)
Note that, in view of (3.2.38), the hypothesis 4y, =933 " 9;, + a3 <0

implies q;3# g3, for if q;3 = g3,, then from (3.2.38),

433 (95, - 9p3) 2 a33(q;, - a;3)-

I ecause of paramountcy, must be positive and hence

433

D5, 93 -9, t93 2 0-

From (3.2.41), then,

922 " 92 S 32
" 92 %92 792 93 T 933 " 93;

I\ ultiplying both sides of this inequality by the non-negative quantity
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(95, -9y ,)a,, - a3,) o (92 - 93,) 93,

(3. 2. 42)
"9t 937 9,793 33 = 932

The relations in (3.2.40) and (3. 2.42) establish the compatibility
of the upper bound on x in (3.2.36) with the lower bounds on x
in (3.2.34) - (3.2.35). This proves the theorem in the present

case, 1(b).

Case 2: Let Q denote the matrix obtained from Q(l) such
that the inequalities in (3.2.1) and (3. 2.2) hold simultaneously
(cf. Lemma). We observe that, as in matrix Q(l), the entries in
positions (1, 3) and (3,1) of matrix Q are negative, the rest of the
entries being non-negative. This can be readily ascertained by
inspecting the relations in (3.2.11), (3.2.14), (3.2.17), and (3. 2. 22).

Therefore, we have:

> > <
912 922 932 932 933
and (3.2.43)
922 9,2 933
s o that:
- > - -
91 9220, 9h-9320, 4933-9320
(3. 2. 44)
933 =932 0, 9, -9 ,20, Qy;,-9,320

In view of (3.2.44), the entries in positions (1, 2) and (2, 3)
O f the matrix TYT in (3. 2.29) are always non-negative for every

Positive value of x. Thus, matrix Y is in the uniformly tapered
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form if a positive value can be assigned to x such that the entries
in positions (1, 1), (2,2), (3,3), and (1,3) of TYT are non-negative.
In fact, the entry in position (2, 2) is non-negative for every positive
value of x whenever 93, - 93, -9, t 953 > 0. Onlyif
q, =93, -~ 9;, + q3 < 0, the entry in position (2, 2) yields the
bound stated in (3.2.36). The entries in positions (1, 1) and (3, 3)
respectively imply the bounds stated in (3.2.34) and (3.2.35)
provided a1 # 9> and q3374 Q3 - If Q1 =92 then through
(3.2.25), 9, 79, (= qll); for, by hypothesis, 3 is negative;
ive., | q13| # 0. Now, an inspection of (3.2.34) will reveal
that the same relation does hold as an equality for all positive
values of x. Again, if q33 = q,5, then through (3.2.26),
9, = 93 (= q33) . An inspection of (3. 2.35) will reveal that the
same relation does hold as an equality for all positive values of
X

Consideration of the entry in position (1, 3) of TYT in (3. 2.29)

yields the following constraint:

912 932
- Iql3, + - x 2 0
or
4, q
Az 3z (3. 2. 45)
| a5l

Matrix Y can be made uniformly tapered if, and only if,
& positive value can be assigned to x such that the upper bounds
On x as given by (3.2.36) and (3.2.45) are compatible with the

1l ower bounds given by (3.2.34) and (3.2.35). Inasmuch as the
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proof for case 1(b) is independent of the sign of 93 it applies
directly to the present case, proving thus the compatibility of the
bound in (3.2.36) with those in (3.2.34) and (3. 2. 35).

Consider, now, the bound in (3. 2. 45) in relation with the
bounds in (3. 2.34) and (3. 2.35). If either qq =9y OF 933 = 9,3
then, in view of the earlier discussion, the compatibility of the
upper bound in (3. 2. 45) with the lower bounds in (3.2.34) and
(3.2.35), respectively, is established trivially. In the following
discussion, we shall assume, therefore, qll# 92 and q339€ q23 .

Rearranging (3.2.1) - (3.2.2), we have:

) 932 - 92 9322 9ol a3l - ap, [, (3. 2. 46)

- > -
433 92 ~ 92 932 2 9,0 95l - a5, [apsl (3.2.47)
From (3. 2. 46),

or

Multiplying both sides of this inequality by the non-negative factor

qu’ we get

92 93, 92 (A, = 9p,)
91 "~ 92

(3.2.48)
|51

F " rom (3.2.47),

(433 = 93,) 93, 2 (9,; - a3;) |q13|




102

or
92 S 922 - 93,
lay51 7 933 "~ 932

Multiplying both sides of this inequality by the non-negative factor

43, We get:

9,5, 9 (a5, = 4z,) q
12 932 > 22 _32 32 (3. 2. 49)
|q13l 933 = 933

The relations in (3. 2. 48) and (3. 2. 49) establish the compatibility
of the upper bound on x in (3. 2. 45) with the lower bounds on x
in (3.2.34) - (3.2.35). This proves the theorem in the present

case, 2.

3.3. Realization of Third-Order Paramount Matrices

We shall establish first a new proof for the fact that the
property of paramountcy is, indeed, sufficient for realizing a
third-order matrix as either a s.c. conductance matrix or an
Oo.c. resistance matrix.,

Without loss of generality, let the zero entries in a matrix,
if any, be regarded as positive. Then, we observe that any third-
order symmetric matrix must have one of tHe eight sign-patterns

s hown below:
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- — — - r— - — -
+ o+ 4 + o+ - + o+ o+ + -+
+ o+ + o+ + - + o+
— e — p— - pu—s
(1) (2) (3) (4)
(3.3.1)
+ - - - - % + o+ - + - -
+ o+ + - + - + -
+ + + +
J L L J L _

(5) (6) (7) (8)

Let the sign-patterns numbered (1), (5), (6), and (7) be considered
to belong to a group, I, and the rest of the sign-patterns in (3.3.1),
to another group, II. Now, if a matrix, Q(Z) , has a sign-pattern
which belongs to Group I (Group 1I), then it is always possible to
reduce the problem of realization of that matrix Q(Z) to the
problem of realization of a matrix, Q(l), whose sign-pattern is
of type (1) (type (2)) and whose every entry has the absolute value
equal to that of the corresponding entry in matrix Q(Z) . This
follows from the fact that any sign-pattern belonging to Group I
(Group II) can be converted to that of type (1) (type (2)) by a proper
cross-sign change operation; and we have already seen that a
cross-sign change operation has the electrical equivalence of
JPort-reorientations.
It is sufficient, therefore, to consider third-order matrices
~ hich have the sign-patterns of types (1) and (2) only. Let Q(l)
dernotea third-order paramount matrix of either type (1) or (2). In

the previous section it was seen that by applying a suitable cross-
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sign change operation to, and/or by interchanging some rows and
the corresponding columns of matrix Q(l), it is always possible

to obtain a matrix, Q, such that a matrix, Y, defined by

Y = Q+(1/x)Q.2Q2. (3.3.2)

assumes a uniformly tapered form for some positive value of the
parameter x.

Let, now, the uniformly tapered matrix Y be realized
as a s.c. conductance matrix with four nodes (Figure 3.3.1). Let
a new network be derived from this realization of matrix Y by
adding, in the manner shown in Figure 3.3.2, a resistor which

has its conductance-value = g, °

A E A E

C

Figure 3.3.1 Figure 3.3.2

If Q denotes the s.c. conductance matrix for the derived

network, matrices Y and Q must be related by:

Y=Q+ (1/x)6.262. , (x=g, -q,,> 0 (3.3.3)

( cf. the discussion on pp.27 -.'"). Further, through the theorem

P Troved in section 2.3, the relations in (3.3.2) and (3. 3. 3) together
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must imply the identity of matrices Q and Q. Hence the network
in Figure 3.3.2 must have been a realization of matrix Q itself
considered as the s.c. conductance matrix, realization of the
original matrix Q(Z) following immediately. This establishes

the fact that the property of paramountcy is, indeed, sufficient

for realizing a third-order matrix considered as the s.c.
conductance matrix.

Note that the networks in Figures 3.3.1 and 3.3.2 are planar;
as such, their duals are existent [WH1]. These dual networks are
shown in Figures 3.3.3 and 3.3. 4 respectively., Now, it is established
above that every third-order paramount matrix can be realized as
a s.c. conductance matrix in the manner shown in Figure 3.3. 2,
with appropriate re-numbering and/ or re-orienting of some ports.

It is obvious, then, that every third-order paramount matrix can
also be realized as an o.c. resistance matrix in the manner shown
in Figure 3.3.4, with appropriate re-numbering and/or re-orienting

of some ports.

U v U v

Figure 3.3.3 Figure 3.3.4
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The earlier discussions, including those in the previous

section, indicate the new procedure for realizing any third-order

paramount matrix. The procedure is stated below explicitly in

four steps:

1. Let Q(Z) denote a third-order paramount matrix to
be realized as either a s.c. conductance matrix or an o. c.

resistance matrix.

Apply, if necessary, a suitable cross-sign change operation

to matrix Q(Z) so as to obtain a matrix, Q(l) , which has the

sign-pattern either of type (1) or type (2) indicated below:

r— — — -
+ o+ 4 S
+ o+ + o+ (3.3.4)
+ +

(1) (2)

(cf. 3.3.1). This can always be done easily. If the sign-pattern
of matrix Q(l) belongs to type (2), proceed to step 2(b) below.
2(a). Interchange suitable rows and the corresponding
columns of matrix O(l) so as to obtain a matrix, Q, which has
the smallest entry in its position (1, 3). Proceed to step 3 below.

2(b). Compute the quantities A = q(lll) q(213) (1) Iq(l)l

B =qly) o) + a0 1al)], ana c= ol o) +ql)] ml -
(i) If A> 1)
C, let Q=0Q and proceed to step 3.
B>
(ii) If A >
2 let Q - U(sl) E(11,3,2)Q(1)53(11,3,2)U;1)

C,
pe|
and proceed to step 3.
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N

(iii) If A <

N

~

s 1 1 s

and proceed to step 3.

(iv) If A <

c tet & - v g(1,3,2) 5(1) (1,3, 2) ;1)
B < r ’ S 1 1 s
J and compute:

A A ~ ~
D=4y G+ 1851 4,
A A A A
and  E=3,,|q);] +d,5 4, -
A
(iva) If D> E , let Q = Q and proceed to step 3.

(ivb) If D< E, let @ = v E>1IG p13)40)
and proceed to step 3.

3. Let Y=Q+ (g - qZZ)-l Q ,Q, . Select any one value
of g, > a5, such that matrix Y assumes a uniformly tapered form.
(This is always possible.)

4. Realize the uniformly tapered matrix Y as shown in
Figure 3.3.1 (Figure 3.3.3). From this realization of Y, obtain
the realization of matrix Q as shown in Figure 3.3.2 (Figure 3.3.4).
Realization of the original matrix, Q(Z), as the s.c. conductance
matrix (o.c. resistance matrix) will follow when cross-sign change
operations and/or interchanges of the rows and the corresponding
columns carried out in the earlier steps are taken into consideration
for the purpose of assigning proper numberings and orientations

to the ports.
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3.4. Example

Consider the realization of the paramount matrix

— b
7 -2 1
¥ - |2 12 3
1 3 5

(3.4.1)

both as a s.c. conductance matrix and an o.c. resistance matrix

by the procedure established in the previous section.

1. We observe that reversing the signs of the first row

and the first column results in a sign-pattern of type (2) defined

in (3.3.4). Let, therefore, Q)= Ug) Q(Z)U(Sl) e,

K 2 1

oM - | 2 12 3

-1 3 5

2(b). A = ()(3) +(2)(1) = 23
= (5)(2) +(3)(1) = 13

C = (2)(3) +(12)(1) = 18

Since A > C > B, let

Q = uM 132 o) 3.2y

s 1
r —
7 1 -2
= 1 5 3
-2 3 12
L -

(1)

S

(3.4.2)

(3.4.3)
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3. Y = Q+ (g, -q?_z)"l Q,Q, (3.4.4)

In order to obtain a parameter g, > d455 such that this
matrix Y assumes a uniformly tapered form, pre- and post-

multiply the above relation by:

1 0 0
T = | -1 1 0 (3.4.5)
0 -l 1
so that
TYT = TQT +(g, -4q,,) TQ ,Q, T
Fé -q 4,5, - g ] -q )
11 %2 12 13 93 12
_ ) 1 _ q q q
-l * 922792379 2%913 923793 +(g0-q22) 92279 2|| 12 22 732
“922 932
% x 9337923 93279,
- - - (3.4.6)
¢ 3 2 [
= | x  a 5| + 4 [}4 2 %]
gO
X b'e 9 -2
p— — — -—
6 3 -2 -4 2 3
1
= x -l 5 | + x 8 12 (3.4.7)
(g, = 5)
x x 9 x x -6
— — - ——
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From the entry

o
v
n

wiv

in position (1,1)
L -

From the entry

e}

t

($2)
v
wlo
-

o
e}
\%
vl
w| v

in position (3, 3)
- -

p— p—

From the entry (g -5)< %_ , i.e., g

in position (1, 3)
L —

-
From the entry

b-"m

, i. e., <13
o
in position (2, 2)

e —

It follows, therefore, that matrix Y in (3.4.4) will assume a uniformly
tapered form if g6 is assigned any value within the lower and upper
bounds of 5-5— and 612 respectively. We shall assign the limiting
values to g, and obtain two distinct minimal realizations of matrix
Q(Z) considered both as a s.c. conductance matrix and an o.c.
resistance matrix. Figures 3.4.1 and 3. 4.2 depict the realizations
when Q(Z) is considered as a s.c. conductance matrix. Figures

3.4.3 and 3. 4. 4 depict the realizations when Q(Z) is considered

as an o.c. resistance matrix.

For 8, = 5% , (3.4.7) yields:

B 17
0 6 2-?:
TYT = | x 11 23 (3.4.8)
X X 0




For

For :

we h:



_ ¢l : .
For go—6§, (3.4.7) yields:

TYT

3

X

X

1
3

111

(3.4.9)

For assigning the proper numberings and orientations to the ports,

we have only to observe that:

Q

1

S

C

U 6 v

Figure 3.4.3

v g1,3,2) (1) &

S

(1,3,2) 5(1)
1 s

o) 5(13,2) 1) @)y &

S

(1,3,2) (1)
8

Figure 3.4.4



Chapter 4

CONCLUSION

A complete solution is presented in this thesis to the problem
of synthesis of n-port resistive networks from short circuit conduc-
tance matrices which are realizable with two-tree port-structures.
The fact that the conductance values of (n+l) constituent resistors
themselves are considered as parameters provides excellent
control over the maximum number of resistors which constitute
the network. This is directly illustrated by the attainment of
""minimal'' realizations in the case of a certain class of matrices
described in section 2.7 of the thesis.

It is possible that certain nth-order short circuit conductance
matrices may be realizable only with k-tree port-structures
(3 < k< n). Itwould be an interesting problem for further
research to investigate whether the '"conductance-parameter"
approach presented in the thesis can be extended to the realization

of these matrices.
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APPENDIX 1

An interesting "'special case'' was discussed on pp. 27-28.
If matrices Y=[y..] and Q=[q..]_ as considered there
ij’n ij’n
are non-singular, then we can observe that the above special
case can also be regarded as a special case of the considerations
on p. 82. As a consequence, matrices Y and Q must be related
by:

vy = @} -R)'l (A.1.1)

where matrix R = [ rij] n is defined by:

> 0 for i=j=nh h constant < n.

1j
= 0 otherwise
A\

That the relation in (2.2.37) is, in fact, an alternate form
of the above relation, (A.1.1), can be easily proved by applying
Theorem 1 on p. 79. However, we present below an interesting
direct proof for the indicated fact by exploiting the theory of

functions of matrices:

Proof: The relation in (A.1.1) can be written as:

vy = @'tv-arn™!
- v -ar'a
- w-B'lao (A.1.2)
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where
0...0 9 h 0...0
_ 0...0 PN 0...0
B = QR = T . . . (A.1.3)
0...0 q 0...0
nh
_ _
Let 3(B) = (U -B)"! (A.1.4)
so that the relation in (A.1.2) assumes the form:
Y = 3(B)Q (A.1.5)

Note that (n-1) eigenvalues of matrix B are zero, the n-th eigen-

value being = T h Yhh e
Let t Tih ahh .

By definition, the minimal polynomial of matrix B = m(\) = I)\U -Bl/p()\)

where p(\) denotes the highest common factor amongst all the

entries of the adjoint of matrix (AU - B) [ KO1]. In the present

case, it can be easily seen that p(\) = )\n-Z . Therefore,

mh) = A"l - A=)

Hence the Lagrange-Sylvester interpolation polynomial [ KO 1] for

$(X) on the spectrum of matrix B = h(\) = )\_; t. $(0) +:—‘ $(t)

-t N -1
=2l E (1=t

A \

1 +(1 -t)-l)\



Therefore,

h(B) = &(B) = U+(1 -t)" ' B

so that, from (A.1.2) - (A.1.5),

Y

"

[U+a -t 1B @

Q + (1 -t)'1 BQ

Q+(1 -r

-
hh 9nh)  Thh

b

— _ el = =
Q+(1/ryy -ay) Q4 Q

fact, identical to the one in (2.2.37).

Q. E. D.

(0.

0...

9n

9Qhn

O
o

nh

(A.1.6)

Since g = l/rhh and g - ahh = x, the relation in (A.1.6) is, in

ol



APPENDIX 2

It is seen that the conductance-parameter procedure
established in section 2.4 has, at its basis, the relation (2. 2.35).
Several similar relations can be discovered so as to build the
procedure upon them. The derivations of these relations are
fundamentally of the same nature as in section 2.2. We shall
state these relations directly in the following with the purpose of

making them available for ready reference.
-1 -

Ref.: Figures A.2.1 and A. 2. 2.

Y :6-A+(nz-l:.l -a )-16' -Q—'
k=1 8k T~ 9h-1,h-1 .h-1"h-1

where
[ 1"1-1] Qpy = |-
1 2 )

Q, = [qgl)] and Q, = [qgl)] with

) - g - 5 (i=1,2 h-1)

qll B ql,h-l k:]. gh_k - gy &Ly ooy

(2) _ n-i+l )

%G = 9,po1 T Z Bhikal (=L ...n)
Further, A =[a..]_ with

ij’n
i . - . .
i =k2=31 gy, _k (i=1,2,...,h-1;j=1,i+l,..., h-1)
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Ref.:
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= h,h+l,...,n)

[
1l
(]
—
—
1
ot
oV

[ ]

L]
lon
]
—

[
|

ij
n-j+1

a.ij W2 gh k-1 (j=h,h+l,...,n;51

h, h+l,...,])

Figures A.2.3 - A.2.5.

Let matrix Y = Yij] , be obtained from Y such that the

former is the s.c. conductance matrix for the same resistive

network which is shown in Figure A. 2.3, the port-numberings

being altered as indicated in Figure A.2.4. Matrix Y is uniformly

tapered and = El Y_El , where the exact nature of matrix E1 can

be readily decided by comparing the port-structures associated

with matrices Y and Y. Then

where

_ n+l _ ] = =
= - - 1 1
Y = EjQFE) -A+(Z g o-a9,;) Q4,9

o1 =9y = |--
Q.2 (n-h+1)

n |z i -
qil - qh—i’l - k§1 gh_k (1 - l’Z’QOQ,h-l)
(2) - n-i+l ‘
qll = qn+h-i, 1 + kz::l gh+k-l (i=h,h+l,..., n)



120
Further, A =[a..]_ with
ij’n

aij ) 8h -k (i=1,2,...,h-1;j=1,i+l,...,h-1)

P
1
o
—~
-
1
[
[\¥)
on
1
—
s
|

. = h,h+l,...,n)
ij

h,h+l,...,n;i=h, htl,...,])

%j T 2] Bhtk-l (J

Ref.: Figures A.2.6 - A.2.8.

Let matrix Y = Yij] n be obtained from Y such that the
former is the s.c. conductance matrix for the same resistive
network which is shown in Figure A. 2.6, the port-numberings
being altered as indicated in Figure A.2.7. Matrix Y is uniformly
tapered and = E1 Y El , where the exact nature of matrix El can

be readily decided by comparing the port-structures associated

with matrices Y and Y. Then

_ n+l - -l=, =,
Y = EQE -A+ (151 8k ~ Iy Q%
where
T _ Q1 (h-1)
(Q] =@ R
n. . n
Q2 (n-h+1)

2 .
Ql = [qil] and Q2 = [qgl)] with

(i= 1’2’000:}1'1)
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Y = [;1_]] n

Figure A.2.6

1 c h-1 h k n
= & anOmmanm—( Figure A.2.7
H G

F E B A L

The port-numbering igs in the natural order.
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-3 "z i = h, htl
%1 7 Ynthei,n T 2p Bnchoksz (07 BRFLL..m)

Further, A =[a..] with
ij’ n

i

ij kE:l €. _htl+k (i=1,2,...,h=1;j =1i,i+l,..., h-1)

")
"

a; = 0 (i=1,2,...,hl;j=h,htl,...,n)
n-j+l . . )
aij = k:zl 8 hok+2 (j = h,h+l,...,n;i="h,htl,...,])

Ref.: Figures A.2.9 - A.2.13.

The derivation of the relation stated in this section incorporates
some ides that are somewhat different from those used in section 2. 2.
These ideas will be applicable even in deriving the relations stated
in the following three sections, and have been described in sufficient
details below.

Let Y = [;1_]] n denote the s.c. conductance matrix for the
network shown in Figure A.2.9. Let matrix Y = US E1 -Y_El US be
obtained from Y such that the former is the s.c. conductance
matrix for the same network after the port-numberings and port-
orientations are altered as indicated in Figure A.1.10. Matrix Y
is uniformly tapered and the exact forms of matrices US and E1
can be readily determined by comparing the port-structures
associated with matrices Y and Y.

Let Q = [alj] n denote the s.c. conductance matrix for the
network derived from the one in Figure A.2.9 as shown in Figure A.2.11.

Then in establishing the relation between matrices Y and Q, it is

A
necessary to consider the s.c. conductance matrix Q% corresponding to the
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derived network whose port-structure is modified as shown in Fig. A.2.12.
A uniformly tapered matrix, Q%, can be easily obtained from
6* by suitably interchanging some of its rows and the corresponding
columns and by applying cross-sign change operations. Let the
network shown in Figure A, 2.13 be obtained from the one in
Figure A.1.12 by shorting port h*. Then, as in section 3.2,
the s.c. conductance matrix, 5, corresponding to this last
network is required to be considered in the derivation of the

relation, which is stated below:

n+l
- e} a -l= &
Y = UE)QE U -AF(Z g -ay,) Q9
where
Q1 (h-1)
—_ T —_
' —_ 1 — -—
(o1 =19, = |-
Q2 (n-h+1)

1 i1

N . % (i=1,2 h-1)
il 9h-i,h T 5] Bn-k+2 PEres

(2) — i-§+l .

%1 % T 9%,n " % En-hik (T RBFL..om)

Further, A =[a..] with
ij’ n

i ) g k42 (i=1,2,...,h=1;j=1,i+l,...,h-1)

aij = O (i = 1’ 2, o e oy h-l ; j = h, h+1 9 ® 0 0y n)
j-n+l ' .
aij = kél 8. _hik (j = h,h+l,...,n; i =h,htl,...,j)
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-5 -

Ref.: Figures A.2.14 - A.2.16.

Let matrix Y = yij] , De obtained from Y such that the
former is the s.c. conductance matrix for the same resistive
network which is shown in Figure A.2.14, the port-numberings
and port-orientations being altered as indicated in Figure A.2.15.
Matrix Y is uniformly tapered and = Us E1 Y El Us , where the
exact nature of matrices Us and El can be readily determined
by comparing the port-structures associated with matrices Y

and Y . Then

n+l
= Ie) a -l & o
Y5 UGB QE Uy -A+(Z -9, hat) Qna®ha

where
— T _ Q1 (h-1)
! = 1 -
(900 = Qpy = |-—-
QZ (n-h+1)
1 2) :
Q1 = [ qgl)] and QZ = [ qgll] with
1 — L .
qgl) = qi, h-1 ~ k?l gh_k (i=1,2, .., h-1)
(2) - i-n+l '
%1 7 Gnth-i, h-1 T Z] Bntk (i=h, htl,...,n)
Further, A =[a ]n with
i
= Z g (i=1,2,...,h=1;j=1i,i+l,...,h-1)

a.. = 0 (i=1,2,...,h-1;j=h,htl,...,n)
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j=-n+l ' )
ij - kzzl g1k (j = h,h+l,...,n;j=h,htl,...,j)

-6 -

Ref.: Figures A.2.17 - A,2.18.

ij] n be obtained from Y such that the

Let matrix Y =[y
former is the s.c. conductance matrix for the same resistive
network which is shown in Figure A.2.17, the port-numberings
and port-orientations being altered as indicated in Figure A.2.18.
Matrix Y is uniformly tapered and = Us El _Y—El US , where the
exact nature of matrices US and El can be readily determined

by comparing the port-structures associated with matrices Y and

Y. Then

— n+l ) [
- - ' 1
Y = UsEIQElUs'A+(kZ:1 gy qll) Q.lQl

where
_ T _ Ql (h-1)
[y 1 =9 =|---
QZ (n-h+1)
[,

Q, =[q(1)] and  Q, = [qgf)] with

il
(1) = - a + é g (i = l, 2, o 0 0y h-l)
i1 9h-i,1 7 2 Ehek
(2) . i-n+l X
. Z e ) (i = h, }1+1, o o oy J)

91 qi, 1 - k‘:Z’ Entk



|
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Further, A =[a..] with
ij’n

a'ij =kzl S (i=1,2,...,h=1;j=1,i+l,...,h-1)

aij = 0 (i=1,2,...,h=1; j=h,h+l,...,n)
j=-n+l ) ) )

aij = kZ:II g4k (j=h,htl,...,n;i="h,htl,...,])

Ref.: Figures A.2.20 - A.2.22.

Let matrix Y =[ yij] , be obtained from Y such that the
former is the s.c. conductance matrix for the same network which
is shown in Figure A. 2. 20, the port-numberings and port-orientations
being altered as indicated in Figure A.2.21. Matrix Y is uniformly
tapered and = Us El ?El US , where the exact nature of matrices
US and E1 can be readily determined by comparing the port-

structures associated with matrices Y and Y. Then

— n+l _ ] = =
_ 1 !
Y—USEIQEIUS—A+(§: gk-qnn) Q.nQn.
where
Ql (h-1)
R N
Q‘2 (n-h+1)
1 2 )
Ql = [qgl)] and Q2 = [qgl)] with
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(2) _ i-1n+l

%1 7 " 9nthei,n Ty 5 Bn-hik (i=h htl,...,n)

Further, A =[a..] with
ij'n

i
= i = ..., h-l:j=1,i+l,..., h-1
ij 151 8 ks (i=1,2, , h=1;j = 1,1+l )
ay = 0 (i=1,2,...,h=1;j=h,htl,...,n)
)-ptl h, h+l i = h, htl )
%ij T 2 Bn-htk (j=hh+tl,...,n;i=hhtl, ..., ]
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