
ALGORITHMS FOR DEEP PACKET INSPECTION

By

Jignesh D. Patel

A DISSERTATION

Submitted to

Michigan State University

in partial ful�llment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2012

ABSTRACT

ALGORITHMS FOR DEEP PACKET INSPECTION

By

Jignesh D. Patel

The core operation in network intrusion detection and prevention systems is Deep Packet

Inspection (DPI), in which each security threat is represented as a signature, and the pay-

load of each data packet is matched against the set of current security threat signatures.

DPI is also used for other networking applications like advanced QoS mechanisms, proto-

col identi�cation etc.. In the past, attack signatures were speci�ed as strings. Today most

DPI systems use Regular Expression (RE)s to represent signatures. RE matching for

networking applications is di�cult for several reasons. First, the DPI application is usually

implemented in network devices, which have limited computing resources. Second, as new

threats are discovered, the size of the signature set grows over time. Last, the matching

needs to be done at network speeds, the growth of which outpaces improvements in com-

puting speed; so there is a need for novel solutions that can deliver higher throughput. As

a result, RE matching for DPI is a very important and active research area.

We study existing methods proposed for RE matching, identify their limitations, and pro-

pose new methods to overcome these limitations. RE matching remains a fundamentally

challenging problem due to the di�culty in compactly encoding Deterministic Finite

state Automata (DFA). While the DFA for any one RE is typically small, the DFA that

corresponds to the entire set of REs is usually too large to be constructed or deployed.

To address this issue, many alternative automata implementations that compress the size

of the �nal automaton have been proposed. We improve upon previous research in three

ways. First, we propose a more e�cient \Minimize then Union" framework for constructing

compact alternative automata that minimizes smaller automata before combining them.

Previously proposed automata construction algorithms employ a \Union then Minimize"

framework where the automata for each RE are joined before minimization occurs. This

leads to expensive minimization on a large automata and a large intermediate memory foot-

print. Our minimize then union approach requires much less time and memory, allowing us

to handle a much larger RE set. Second, we propose the �rst hardware-based RE match-

ing approach that uses Ternary Content Addressable Memory (TCAM). Prior hardware

based RE matching algorithms typically use FPGA. The main drawback of FPGA is that

resynthesizing and updating FPGA circuitry to handle RE updates is slow and di�cult.

In contrast, TCAM supports easy RE updates, and we show that we can achieve very

high throughput. Furthermore, TCAMs are widely used in modern networking devices for

tasks such as packet classi�cation, so no major architecture modi�cations are needed to

implement our approach in existing networking devices. Finally, we propose new overlay

automata models that e�ectively address the replication of DFA states that occurs when

multiple REs are combined. The idea is to group together the replicated DFA structures

instead of repeating them multiple times. The result is that we get a �nal automata size

that is close to that of a NFA (which is linear in the size of the RE set), and simultaneously

achieve fast deterministic matching speed of a DFA.

ACKNOWLEDGMENTS

I would like to take this opportunity to thank all the people who have helped me during

my graduate career and made this Dissertation possible.

First and foremost, I would like to thank my advisor, Dr. Eric Torng, for his constant

guidance, support and encouragement.

I would like to express my earnest gratitude to my thesis committee members Dr. Richard

Enbody, Dr. Alex Liu and Dr. Peter Magyar for being there for me whenever I needed.

I would also like to thank the sta� of the CSE department for all their help and support.

Finally I would like to thank my friends and family for all their support and encourage-

ment.

iv

TABLE OF CONTENTS

List of Tables . ix

List of Figures . x

Chapter 1 Introduction . 1

1.1 Problem Statement . 1

1.2 Research Problems . 2

1.3 Research Goals . 4

Chapter 2 Related Work . 7

Chapter 3 Background . 12

3.1 DFA for RE Matching . 12

3.2 Understanding DFA space explosion . 14

3.2.1 Transition Sharing . 17

3.2.2 State Replication . 18

3.3 D2FA . 19

3.3.1 D2FA De�nition . 20

3.3.2 Original D2FA Algorithm . 24

3.3.3 Limiting Deferment Depth in Original D2FA Algorithm 25

3.3.4 Backpointer D2FA Algorithm . 26

3.4 Classi�ers . 27

3.4.1 Classi�er de�nition . 27

3.4.1.1 Pre�x Classi�er . 28

3.4.1.2 Ternary Classi�er . 29

3.4.1.3 Weighted Classi�er . 29

3.4.2 Classi�er Minimization . 30

3.5 TCAM Introduction . 30

Chapter 4 Software Implementation . 32

4.1 Introduction/Motivation . 32

v

4.1.1 Solution Goals . 33

4.1.2 Summary and Limitations of Prior Art 33

4.1.3 Summary of Our Approach . 35

4.1.3.1 Advantages of our algorithm 36

4.2 Minimum State PMDFA construction . 37

4.3 E�cient D2FA Construction . 41

4.3.1 Improved D2FA Construction for One RE 41

4.3.2 D2FA Merge Algorithm . 46

4.3.3 Direct D2FA construction for RE set 51

4.3.4 Optional Final Compression Algorithm 53

4.4 D2FA Merge Algorithm Properties . 53

4.4.1 Proof of Correctness . 54

4.4.2 Limiting Deferment Depth . 55

4.4.3 Deferment to a Lower Level . 57

4.4.4 Algorithmic Complexity . 59

4.5 Experimental Results . 61

4.5.1 Methodology . 61

4.5.1.1 Data Sets . 61

4.5.1.2 Metrics . 62

4.5.1.3 Measuring Space . 63

4.5.1.4 Correctness . 65

4.5.2 D2FAMERGE versus ORIGINAL . 65

4.5.3 Assessment of Final Compression Algorithm 68

4.5.4 D2FAMERGE versus ORIGINAL with Bounded Maximum Defer-

ment Depth . 69

4.5.5 D2FAMERGE versus BACKPTR . 71

4.5.6 Scalability results . 73

Chapter 5 TCAM Implementation . 75

5.1 Introduction/Motivation . 75

5.1.1 TCAM Architecture for RE matching 76

5.1.2 Reducing TCAM size . 77

5.1.2.1 Transitions Sharing . 78

5.1.2.2 Table Consolidation . 79

5.1.3 Increasing Matching Throughput . 80

5.1.4 Comparison of Transition Sharing with D2FA 81

5.2 Transition Sharing . 82

5.2.1 Character Bundling . 82

5.2.2 Shadow Encoding . 83

5.2.2.1 Observations . 83

vi

5.2.2.2 Determining Table Order 85

5.2.2.3 Shadow Encoding Algorithm 86

5.2.2.4 Choosing Transitions . 95

5.3 Table Consolidation . 98

5.3.1 Observations . 99

5.3.2 Computing a k-decision table . 101

5.3.3 Choosing States to Consolidate . 103

5.3.3.1 Greedy Matching . 105

5.3.4 E�ectiveness of Table Consolidation 107

5.4 Variable Striding . 108

5.4.1 Observations . 109

5.4.2 Eliminating State Explosion . 110

5.4.3 Controlling Transition Explosion . 111

5.4.3.1 Self-Loop Unrolling Algorithm 111

5.4.3.2 k-var-stride Transition Sharing Algorithm 113

5.4.4 Variable Striding Selection Algorithm 116

5.5 Implementation and Modeling . 118

5.6 Experimental Results . 120

5.6.1 Methodology . 120

5.6.2 Results on 1-stride DFAs . 121

5.6.3 Results on 7-var-stride DFAs . 126

Chapter 6 Overlay Automata . 131

6.1 Introduction . 131

6.1.1 Limitations of Prior Automata Models 132

6.1.2 Summary of Overlay Automata Approach 133

6.1.2.1 Overlay DFA . 133

6.1.2.2 Overlay D2FA . 134

6.1.2.3 Building OD2FA . 135

6.1.2.4 Implementing OD2FA . 136

6.2 Overlay DFA . 136

6.3 Overlay D2FA . 144

6.3.1 OD2FA Multiplicative Compression 147

6.3.2 E�ectiveness of OD2FA on Ideal RE set 148

6.4 OD2FA Construction . 149

6.4.1 OD2FA Construction from One RE 150

6.4.2 OD2FA Construction from 2 OD2FAs 154

6.4.3 Direct OD2FA Construction from 2 OD2FAs 162

6.5 Building Super-state Transitions . 166

6.5.1 Combining State Transitions . 168

vii

6.5.1.1 Computing State Transitions 170

6.5.2 Creating Overlay Classi�er . 173

6.5.3 Minimizing Overlay Classi�er . 175

6.5.3.1 Pre-merging Bits . 179

6.5.3.2 Bit Merging Algorithm . 180

6.5.4 Overlay Discussion . 182

6.5.4.1 Restricting Overlay Count to Power of 2 182

6.5.4.2 Eliminating Overlay Bits 184

6.6 OD2FA Software Implementation . 185

6.6.1 Implementing OD2FA . 186

6.6.2 Overlay Classi�er Storage and Lookup 187

6.6.3 Space Requirement . 188

6.7 OD2FA Implementation in TCAM . 188

6.7.1 Generating Super-state IDs and Codes 189

6.7.2 Implementing Super-state Transitions 190

6.7.3 TCAM Table Generation . 191

6.7.4 Variable Striding . 193

6.7.4.1 Self-loop Unrolling . 193

6.7.4.2 Full Variable Striding . 194

6.8 Experimental Results . 198

6.8.1 E�ectiveness of OverlayCAM . 199

6.8.2 Results on 7-var-stride . 203

6.8.2.1 Self-loop Unrolling . 203

6.8.2.2 Full Variable Striding . 204

6.8.3 Scalability of OverlayCAM . 205

Chapter 7 Conclusion . 208

Appendix . 211

Glossary . 211

Acronyms . 212

Notation . 213

Bibliography . 216

viii

LIST OF TABLES

Table 4.1 Performance data of ORIGINAL and D2FAMERGE 65

Table 4.2 Comparing D2FAMERGE and D2FAMERGEOPT with ORIGINAL. 66

Table 4.3 Performance data of D2FAMERGEOPT 68

Table 4.4 The D2FA size and D2FA average ψ deferment depth for ORIGI-

NAL and D2FAMERGE on our eight primary RE sets given maxi-

mum deferment depth bounds of 1, 2 and 4. 70

Table 4.5 Comparing D2FAMERGE with ORIGINAL given maximum defer-

ment depth bounds of 1, 2 and 4. 70

Table 4.6 Performance data for both variants of BACKPTR and D2FAMERGE

with the back-pointer property. 71

Table 4.7 Comparing D2FAMERGE with both variants of BACKPTR. 72

Table 5.1 TCAM size and Latency . 119

Table 5.2 TCAM size and throughput for 1-stride DFAs 121

Table 6.1 Experimental results of OverlayCAM on 8 RE sets in comparison

with RegCAM-TC and RegCAM+TC . 201

Table 6.2 Number of TCAM rules for RegCAM-TC and OverlayCAM for 1-

stride, with self-loop unrolling and with 7-var-stride 204

Table 6.3 Average stride values for self-loop unrolling and 7-var-stride for

RegCAM-TC and OverlayCAM for pM = 0, 50 and 95. 205

ix

LIST OF FIGURES

Figure 3.1 Example of DFA and state replication. 15

Figure 3.2 D2FA example. 20

Figure 4.1 Edge weights distribution in a typical SRG. 42

Figure 4.2 Example showing D2FA with non self-looping root states. 44

Figure 4.3 D2FA merge example. 47

Figure 4.4 Algorithm D2FAMerge(D1, D2) for merging two D2FAs. 52

Figure 4.5 Memory and time required to build D2FA versus number of Scale

REs used for ORIGINAL's D2FA and D2FAMERGE's D2FA. . . . 74

Figure 5.1 A DFA with its TCAM table. 77

Figure 5.2 TCAM table with shadow encoding. 84

Figure 5.3 D2FA, SRG, and deferment tree of the DFA in Figure 5.1. 85

Figure 5.4 Shadow encoding example. 90

Figure 5.5 Shadow Encoding Algorithm. 92

Figure 5.6 3-decision table for 3 states in Figure 5.1 100

Figure 5.7 Consolidating two trees. 104

x

Figure 5.8 Algorithm for Consolidating Trees. 106

Figure 5.9 D2FA for RE set f/abc/, /abd/, /e.?f/g. 107

Figure 5.10 3-var-stride transition table for s0 110

Figure 5.11 States s1 and s2 share transition aa 113

Figure 5.12 Uncompressed 2-var-stride transition tables for D2FA in Figure 5.3(a)

(a = 97, o = 111) . 116

Figure 5.13 TCAM entries per DFA state (a) and compute time per DFA state

(b) for Scale 26 through Scale 34. 124

Figure 5.14 Consolidation times for Scale 26 through Scale 34 for Optimal and

Greedy consolidation algorithms. 125

Figure 5.15 The throughput and average stride length of RE sets. 128

Figure 6.1 Relationship of Automata Models. 135

Figure 6.2 Example of DFA, state replication and Overlay DFA. 137

Figure 6.3 OD2FA Example. 146

Figure 6.4 OD2FA construction from one RE. 151

Figure 6.5 D2FA and OD2FA for RE /cd[ˆn]?pr/. 154

Figure 6.6 Merged OD2FA construction example. 155

Figure 6.7 Algorithm OD2FAMerge(D1,D2) for merging two OD2FAs. 159

Figure 6.8 Algorithm DirectOD2FAMerge(D1,D2) for merging two OD2FAs. 167

Figure 6.9 Overlay classi�er and corresponding super-state transitions for the

super-states in OD2FA in Figure 6.6(c). 175

xi

Figure 6.10 Algorithm CreateOverlayClassifier(Dec, Reqd). 176

Figure 6.11 Minimizing overlay classi�er example. 177

Figure 6.12 Algorithm MinimizeOverlayClassifier(C). 178

Figure 6.13 Overlay Padding Example. 182

Figure 6.14 TCAM rules for RegCAM and OD2FA. 192

Figure 6.15 Root super-state self loop unrolling example for TCAM rules in

Figure 6.14. 195

Figure 6.16 variable stride transitions generated for super-state 0 from 1-stride

transition in Figure 6.9. 198

Figure 6.17 Algorithm BuildVarStrideOD2FA(D) to build k-var-stride rules. . 199

Figure 6.18 (a) TEF vs. # NFA states for OverlayCAM and RegCAM, (b) SEF

vs. # NFA states for OverlayCAM 207

xii

Chapter 1

Introduction

1.1 Problem Statement

Deep Packet Inspection (DPI) is the core component of many networking devices on

the Internet such as Network Intrusion Detection (or Prevention) Systems (NIDS/NIPS),

�rewalls, and layer 7 switches. In DPI, in addition to examining the packet headers, the

entire contents of each packet is compared against a set of signatures to check if any

signature is found in the packet or not. For instance, for security applications, each in-

dividual virus or attack threat is represented using one signature. The payload of each

packet passing through the network device is compared against the set of signatures, and

a match indicates the corresponding threat is found. Necessary action to neutralize the

threat can then be taken. Application level signature analysis is also used for provid-

ing advanced QoS mechanisms, detecting peer-to-peer tra�c, and in general application

1

protocol identi�cation.

In the past, DPI typically used string matching as the core operation, in which signatures

are speci�ed as simple strings. Today, DPI typically uses Regular Expression (RE)

matching as the core operation, in which signatures are speci�ed as REs. REs are used

instead of simple string patterns because REs are fundamentally more expressive and

thus are able to describe a wider variety of attack signatures [43]. Most open source and

commercial intrusion detection and prevention systems such as Snort [2,39], Bro [37], HP

TippingPoint and Cisco networking appliances use RE matching. Likewise, some operating

systems such as Cisco IOS and Linux [1] have built RE matching into their layer 7 �ltering

functions.

So the problem we are trying to solve is as follows: given a set of REs, R, and an input

stream, we want to quickly �nd all occurrences of each RE from R in the input stream.

1.2 Research Problems

There are several challenges in implementing RE matching parsers for network applica-

tions. First, for many DPI applications, the signature set size rapidly grows over time.

For example for security applications, new attack threats are regularly discovered and so

the signature set size keeps growing. The current release of the Snort rules has close to

2000 REs in it. So the DPI engine should be able to handle a large RE set and it also

needs to be scalable. Second, since each packet needs to be scanned in real time as it is

2

processed, the DPI engine needs to be able to process the packets at a fast and determinis-

tic rate. As network speed increases, this becomes an increasingly di�cult and important

problem to solve. Finally, the DPI engine is typically implemented in a network device,

like a router, which usually has limited memory and processing power. So the DPI engine

needs to achieve the high throughput using limited hardware resources. As both tra�c

rates and signature set sizes are rapidly growing over time, fast and scalable RE matching

is now a core network security issue. As a result, there has been a lot of recent work on

implementing high speed RE parsers for network applications.

The straightforward approach to performing RE matching is to convert the RE set into an

equivalent automata and use the packet payloads as input strings for the automata. Two

standard choices are Deterministic Finite state Automata (DFA) and Nondeter-

ministic Finite state Automata (NFA). The DFA has the advantage of maintaining only

a single active state at any time. Thus processing each input character requires only a

single lookup, so the throughput achieved is fast and deterministic. However, DFAs expe-

rience state explosion where the number of states in the DFA can be exponential in terms

of the number of REs. Thus, DFAs require too much memory to store them. The NFA

has the advantage of small size where the number of states in the NFA is typically linear

in the number of REs, hence requiring little memory to store them. However, the NFA has

no limits on the number of active states, which means that the number of lookups needed

to process each input character is high and unpredictable. So NFAs cannot achieve high

and deterministic throughput.

3

1.3 Research Goals

As high and deterministic throughput is the primary requirement on networking devices,

high speed RE matching is typically based on the DFA. But the high memory requirement

of DFAs limits the number of REs in the ruleset that can be parsed simultaneously. In

this thesis, we propose algorithmic solutions to implement RE matching based on the DFA

that simultaneously achieves high throughput and low memory requirement.

Storing a DFA requires a large amount of memory because (1) the number of states grows

exponentially with the number of REs, and (2) more states implies more transitions need

to be stored since each state needs to store 256 = 28 transitions.

The �rst research goal was to develop e�cient algorithms that reduce the number of tran-

sitions of a DFA that need to be stored. The Delayed Input DFA (D2FA) proposed

by Kumar et al. [26] reduces the number of stored transitions by exploiting redundancy

among the transitions. This and other previous techniques employ a \union then mini-

mize" framework, in which they �rst build a large automata corresponding to all the REs

in the ruleset, and then perform an expensive minimization on the large automata. We

develop algorithms that use a \minimize then union" framework to build the D2FA. In

this approach we �rst minimize the automata corresponding to each individual RE in the

ruleset, which is an inexpensive step because the automata are very small. We then use

a fast algorithm to union the minimized automata together in such a way that the mini-

mization is not lost. The D2FA can be used for a software implementation of a DPI engine.

4

The compressed transition table is stored in RAM, and the processor does a RAM lookup

for each transition of the automata. The drawback of implementing D2FA in software is

that the throughput is reduced (we explain this in Section 3.3.3.)

The second research goal was to �nd an e�cient implementation of RE matching in net-

working device hardware. To this end, we develop techniques to implement the D2FA

for RE matching using Ternary Content Addressable Memory (TCAM). TCAMs

are already widely used in networking devices for header based packet forwarding, so our

techniques can be implemented on current TCAM hardware without requiring major mod-

i�cations. We also develop techniques to increase throughput by processing more than one

input character in each cycle.

While the D2FA is much smaller than a DFA, the memory requirement is still proportional

to the number of DFA states, which grows exponentially with the number of REs. The

ultimate goal for RE matching is to develop an automata model for RE matching that

achieves throughput close to that of a DFA but only requires space close to that of a NFA.

Our �nal research goal was to develop such an automata model. For this, we have developed

two new automata models, Overlay Deterministic Finite state Automata (ODFA) and

Overlay Delayed Input DFA (OD2FA) as well as algorithms to implement OD2FA automata

in both software and hardware. Our hardware OD2FA implementation achieves the speed

of a DFA and the memory requirement of a NFA for many RE sets.

The rest of this proposal is organized as follows. In Chapter 2 we discuss related problems

and research. Background about DFA, D2FA and TCAM is presented in Chapter 3. Our

5

research related to D2FA and implementing RE matching in TCAM is presented in Chap-

ters 4 and 5, respectively. Chapter 6 presents our research for the OD2FA automata model

and implementation. Finally, Chapter 7 ends the dissertation with concluding remarks.

6

Chapter 2

Related Work

In the past, DPI typically used string matching (often called pattern matching) as a core

operator; string matching solutions have been extensively studied [4, 5, 44, 46, 48, 49, 52].

Several TCAM-based solutions have been proposed for string matching [5, 12, 46, 52], but

they do not generalize to RE matching because they only deal with independent strings

and do not use DFAs. Sommer and Paxson [43] �rst proposed using REs instead of strings

to specify attack signatures. Today most DPI engines uses RE matching as a core operator

because strings are not adequate to precisely describe attack signatures.

There are two main approaches in previous work to developing RE matching solutions.

One is to start with a DFA and compress it. The second is to start with an NFA and

develop methods for coping with multiple active states.

We �rst review DFA compression work. Great work has been done in reducing the number

of transitions stored per DFA state such as D2FA [6,8,17,26,27]. These techniques exploit

7

transition redundancy between states to compress the size of the DFA. We present a novel

\minimize then union" approach of building the D2FA incrementally. Our approach can

build much larger D2FAs in fraction of the time compared to the previous solutions. This

work is presented in [36]. Recently and independently, Liu et al. proposed to construct

DFA by hierarchical merging [29]. That is, they essentially propose the \minimize then

union" framework for DFA construction. They consider merging multiple DFAs at a time

rather than just two. However, they do not consider D2FA, and they do not prove any

properties about their merge algorithm including that it results in minimum state DFAs.

Another approach to reducing the number of transitions stored per DFA state is alphabet

encoding. In this approach the input characters are mapped to a new alphabet such that

input characters which are always treated identically in the DFA are combined into one

new character, thus reducing the size of the alphabet [8,9,13,22]. This work is orthogonal

to our techniques, and can be used together to improve the results.

In [32] we present our current RE matching solution using TCAMs. Here we exploit both

inter state and intra state transition redundancy to minimize the number of transitions

stored per DFA state.

There has been work to increase the throughput by creating multi-stride DFAs and NFAs

that scan multiple characters per transition [9, 13]. This work primarily applies to FPGA

NFA implementations since multiple character SRAM based DFAs have only been eval-

uated for a small number of REs. The ability to increase stride has been limited by the

constraint that all transitions must be increased in stride; this leads to excessive memory

8

explosion for strides larger than 2. In [32] we present the technique of variable striding,

in which we increase stride selectively on a state by state basis while carefully control-

ling the increase in required space. Alicherry et al. have explored variable striding for

TCAM-based string matching solutions [5] but not for DFAs that apply to arbitrary RE

sets.

Our techniques in [32] achieve very high transition compression; requiring close to just

1 transition per state. However, that might still not be practical if the number of states

grows exponentially with the number of REs. Some work has attempted to address state

explosion that occurs due to extensive state replication.

One approach is to simply partition REs into groups building an automata for each group

[7,42,51]. With this approach, at run time, each automata must process all packet payloads;

that is, similar to an NFA, multiple active states must be maintained. The one advantage

this approach has compared to an NFA is that the number of active states at any given

time is known in advance, so a system can be designed to accommodate the increased

bandwidth requirements for processing packet payloads. This approach is usually used

with any of the RE matching techniques when all REs cannot be compiled into a single

automata. Our goal is to conquer state explosion so that such partitioning is not needed. If

we cannot fully achieve our goal, our work should at least reduce the number of partitions

required. In particular, because our techniques achieve greater compression of DFAs than

previous software-based techniques, less partitioning of REs will be required.

A second approach is to use \scratch memory" to manage state replication and avoid state

9

explosion [10, 25, 41]. However, there are several issues with this approach. First, the size

of the required scratch memory may itself be signi�cant. Second, the processing required

to update the scratch memory after each transition may be signi�cant. Finally, many of

these approaches are not fully automated. For example, as Yang et al. write in [50] about

XFA, \... prior work on improved signature representations has required manual analysis

of REs (e.g., to identify and eliminate ambiguity [41]) ...".

Liu et al. developed a new method for RE matching that was the �rst to introduce

relative state addressing through the use of o�set transitions [28]. In their work, they

signi�cantly reduce the number of stored transitions by exploiting state replication and

transition sharing without using TCAM. However, they do require the use of bitmaps for

each DFA state which means they still require at least one bit per DFA state which means

they ultimately do not address the state explosion problem. The current best approach

for coping with state explosion is that of Peng et al. [38], though they do not o�er an

automata model. We propose new automata model, ODFA, which facilitates reasoning

about state replication and provides a systematic way of handling state replication. Some

preliminary results indicate that our technique require signi�cantly fewer TCAM entries

than the technique in [38].

Much of the NFA work has exploited the parallel processing capabilities of FPGA technol-

ogy to cope with the multiple active states that arise from NFA [7, 9, 14, 15, 33, 34, 40, 45].

However, it is not clear that FPGA's can cope with the large number of active states

required when processing large signature sets. Furthermore, FPGA's cannot be quickly

10

recon�gured when the RE sets change and they have relatively slow clock speeds. Also,

FPGAs are not commonly embedded in network processors as TCAMs commonly are.

One recent work in this direction is that of Yang et al. [50] where they use ordered bi-

nary decision diagrams to facilitate updating a set of active states in one operation. This

is an intriguing idea that merits further study and comparison with DFA compression

approaches.

11

Chapter 3

Background

In this section, we �rst discuss the background material for the research presented in the

later sections.

3.1 DFA for RE Matching

Most RE parsers use some variant of the Deterministic Finite state Automata (DFA)

representation of REs. Any set of REs can be converted into an equivalent DFA with

the minimum number of states [19, 20]. Traditionally, a DFA is de�ned as a 5-tuple

D = (Q,Σ, q0, A, δ), where

Q is the set of states,

Σ is the alphabet,

q0 ∈ Q is the start state, and

A ⊆ Q is the set of accepting states.

12

δ : Q× Σ→ Q is the transition function,

DFAs have the property of needing constant memory access per input symbol, and hence

result in predictable and fast bandwidth. The main problem with DFAs is space explosion:

a huge amount of memory is needed to store the transition function δ which has |Q|× |Σ|

entries. Speci�cally, the number of states can be very large (state explosion), and the

number of transitions per state is large (|Σ| = 256).

A straightforward approach to implement DFAs is to store the transition function δ in a

two dimensional (|Q| by |Σ|) array. However, |Q| is very large (typically ten thousand or

larger) and |Σ| = 28∗k, where k ≥ 1, for k-stride DFAs that process k 8 bit characters per

transition. Thus, although a |Q| by |Σ| array is fast in theory, it is not in reality because

it consumes so much memory (hundreds of megabytes) that it has to be stored in DRAM

instead of SRAM and DRAM is an order of magnitude slower than SRAM.

In a standard DFA, each state is only marked as either accepting or non-accepting. Given

the set of REs R, reaching an accepting state only tells us that some RE in R matched, but

does not tell speci�cally which RE in R matched. However, in DPI applications we must

keep track of which REs in R have been matched. For example, each RE may correspond

to a unique security threat that requires its own processing routine.

This leads us to de�ne Pattern Matching Deterministic Finite State Automata (PMDFA).

The key di�erence between a PMDFA and a DFA is that for each state q in a PMDFA, we

cannot simply mark it as accepting or rejecting; instead, we must record which REs from

R are matched when we reach q.

13

Definition 1 (Pattern Matching DFA (PMDFA)). Given as input a set of REs R, a

PMDFA is a 5-tuple (Q,Σ, q0,M, δ) where the term M is de�ned as M : Q→ 2R. For

each state q in the DFA, M gives the set of REs from R that are matched when we

reach q. All the other terms are de�ned in the same way as in a DFA.

In a PMDFA, there can be many pairs of states that are equivalent except for the set of

REs accepted by the two states. In a DFA, such a pair of states will be merged since they

would be completely equivalent. Because of this, the resulting minimum state PMDFA is

typically larger than the minimum state DFA. Since we always use a PMDFA, in the rest

of the report we just use the term DFA to mean a PMDFA.

3.2 Understanding DFA space explosion

DFAs su�er from space explosion due to two reasons, which we call transitions sharing

and state replication. We explain these reasons using the DFAs shown in Figure 3.1.

We �rst de�ne some of our notation for the DFAs in Figure 3.1 for the RE sets f/abc/,

/abd/g and f/abc/, /abd/, /e.?f/g. Note that any RE that is not anchored (i.e. does

not begin with a `ˆ') has an implicit `.?' in the beginning, since the RE match can begin

anywhere in the input stream. To simplify the diagram, we condense many transitions that

have a common destination state on common input characters as follows. These transitions

are denoted with double arrows with their character labels next to the double arrow. The

source states for these transitions are denoted as \From [x..y]" which represents the set

14

0
c

1

3/1

a 2b

d
4/2

From [1..4]
afail

From [0..4]

(a) DFA for RE set f/abc/, /abd/g.

0
c

1
3/1

a 2b

d 4/2

From [1..4]
a

5
c

6
8/1

a 7b

d 9/2

From [6..10]
a

f

e

10/3 f From [6..10]

e
From [1..4]

fail
From [0..4]

fail
From [5..10]

(b) DFA for RE set f/abc/, /abd/, /e.?f/g.

Figure 3.1: Example of DFA and state replication. (For interpretation of the references

to color in this and all other �gures, the reader is referred to the electronic version of this

dissertation.)

of states with state IDs in the range [x..y]. For example, we represent four transitions

starting in states 1 through 4 that end in state 1 on character `a' using double arrows

beneath \From [1..4]" and an `a' next to the double arrow. When the text next to a

double arrow is \fail", this represents all character transitions not explicitly shown in the

15

�gure. For example, the \fail" transition in Figure 3.1(a) represents all transitions out of

state 0 for characters that are not `a', all transitions out of state 1 for characters that are

not 'b', and so on. Finally, in an accepting state, the number(s) following the `/' represents

the ID(s) of the RE matched by that accepting state. We also use the notation s1
σ
−→ s2

to denote the transition δ(s1, σ) = s2.

We de�ne a self-looping state as a state which has more than Σ/2 (= 128) of its outgoing

transitions going back to itself. Self-looping states are the \failure states" on which the

DFA stays when the current input character does not advance the (partial) matching of

any of the REs in the RE set. For example in Figure 3.1(b) states 0 and 5 are self-looping

states. The transitions in a DFA can be categorized into three types:

1. Failure transitions are those that go to the self-looping states. It indicated that

the current input character does not advance (or start) the matching of any RE. In

Figure 3.1(a), all the incoming transitions of state 0 are failure transitions.

2. Restartable transitions are those that go to a state at a lower level than the current

state, usually a non self-looping state. It indicates that the current partial matches

are lost but there is a new partial match of another (possibly the same) RE. In

Figure 3.1(b), the incoming transitions of state 5 on character `e' from states [1..4]

are restartable transitions. For instance the transitions 2
e
−→ 5 means that we had a

partial match (ab) of REs/abc/ and /abd/ (since the current state is 2), and the

current input `e' does not advance the match of either of these REs, but it starts the

matching of a new RE /e.?f/.

16

3. Forward transitions are the those that go from one state to the next in a chain

of states that identify a RE. These transitions advance the current partial match of

the RE by one character. In Figure 3.1(b), the outgoing transition of state 0 on

characters `a' and `e' are forward transitions.

3.2.1 Transition Sharing

We say two transitions are shared when, out of the three values in a transition (source

state, input character, destination state), they di�er in only one value. Two shared tran-

sitions can only possibly di�er in either the input character or the source state (since a

DFA has only one transition per source state and input character pair). This gives us two

causes of transition sharing: character redundancy and state redundancy.

Character redundancy is when two shared transitions di�er in only the input character

value. That is, for a state q ∈ Q, we often have δ(q, σ1) = δ(q, σ2) for characters σ1

and σ2 in Σ. A DFA has a lot of character redundancy since for most states, most of

their transitions are failure transitions going to the same self-looping state. Only a few of

transitions for most states are either restartable or forward transitions. In addition, if a

RE has a chracter range (like `[a-z]') in it, then it leads to character redundant forward

transitions. For example in Figure 3.1(a), 254 of the 256 transitions for state 1 go to the

same state 0.

State redundancy is when two shared transitions di�er in only the source state value. That

is, for a character σ ∈ Σ, we have δ(p, σ) = δ(q, σ) for states p and q in Q. The cause for

17

the large amount of state redundancy is failure and restartable transitions, because both

of these types of transitions go to the same next state for many di�erent states in the DFA.

For example in Figure 3.1(a), for all the states in the DFA, their failure transitions go to

state 0, and their transition on input character `a' goes to state 1.

3.2.2 State Replication

When the NFA is converted to an equivalent DFA, the number of states typically increases

exponentially. This happens because most of the states in the NFA are replicated many

times in the DFA. To understand this, consider the DFAs in Figure 3.1. Figure 3.1(a)

shows the DFA for the RE set f/abc/, /abd/g, and Figure 3.1(b) shows the DFA after

the RE /e.?f/ is added to this RE set. As we can see, the entire DFA in Figure 3.1(a) is

repeated twice in the DFA in Figure 3.1(b). Each state is replicated twice because of the

wildcard closure `.?' in the new RE that is added.

In general when building the DFA for an RE set where some REs contains ?'s, the states in

the DFAs that corresponds to individual REs are replicated multiple times. And when a

state is replicated, we automatically get replication of the transitions of that state, causing

transitions replication.

18

3.3 D2FA

The Delayed Input DFA (D2FA) was proposed by Kumar et al. [26] to compress the size

of the DFA transition function δ by exploiting state redundancy. The basic idea of D2FA is

that in a typical DFA for real world RE set, given two states u and v, δ(u, σ) = δ(v, σ) for

many symbols σ ∈ Σ. We can remove all the transitions for v from δ for which δ(u, σ) =

δ(v, σ) and make a note that v's transitions were removed based on u's transitions. When

the D2FA is later processing input and is in state v and encounters input symbol σ, if

δ(v, σ) is missing, the D2FA can use δ(u, σ) to determine the next state. We can do the

same thing for most states in the DFA, and it results in tremendous transition compression.

Kumar et al. observe an average decrease of 97.6% in the amount of memory required to

store a D2FA when compared to its corresponding DFA.

In more detail, to build a D2FA from a DFA, we just do the following two steps:

1. For each state u ∈ Q, pick a deferred state, denoted by F(u). (We can have F(u) =

u.)

2. For each state u ∈ Q for which F(u) 6= u, remove all the transitions for u for which

δ(u, σ) = δ(F(u), σ).

When traversing the D2FA, if on current state u and current input symbol σ, if δ(u, σ) is

missing (i.e. has been removed), we can use δ(F(u), σ) to get the next state. Of course,

δ(F(u), σ) might be missing too, in which case we then use δ(F(F(u)), σ) to get the next

state, and so on.

19

Figure 3.2(a) shows a DFA for the REs set f/.?a.?bcb/, /.?c.?bcb/g, and Figure 3.2(c)

shows the D2FA built from the DFA. The dashed lines represent deferred states. The DFA

has 13× 256 = 3328 transitions, whereas the D2FA only has 1030 actual transitions and 9

deferred transitions.

3.3.1 D2FA Definition

We formally de�ne a D2FA and introduce some notation here.

Definition 2 (D2FA). Let D = (Q,Σ, q0,M, δ) be a DFA. A corresponding D2FA D ′

is de�ned as a 6-tuple D ′ = (Q,Σ, q0,M, ρ, F). The �rst four terms here are de�ned

the same way as in the DFA. The function F : Q→ Q de�nes a unique deferred state

a

b

-{a,c}

-{b,c}

0

1 3

a

c

-{a,b,c}

-{b,c}

2

4

6

b

b

5

7

9/1

b b

8

10c 12/1,2

c

c b

c

11/2

from 1,3

from 2,5,8,11

from 4,6,7,9,10,12from
4,6,10
c

a
from 5,8,11 b

b

b

b

b

cc

b
c
c

c

(a) DFA for RE set f/.?a.?bcb/, /.?c.?bcb/g

Figure 3.2: D2FA example.

20

2

8

5

11

254

254

256

0

1

3

64

712

910

254
254

256
254 256

256

254

254

254

(b) SRG for the DFA. Edges with weight ≤ 1 are not shown. Unlabeled edges have

weight 255

a

b

-{a,c}

-{b,c}

0

1 3

a

c

-{a,b}

-b

2

4

6

b

b

5

7

9/1

b b

8

10c
12/1,2

c
c b

c

11/2

(c) The corresponding D2FA. Dashed edges represent deferment.

Figure 3.2: D2FA example (cont'd).

21

for each state in Q, and the partial function ρ : Q × Σ → Q is a partially de�ned

transition function. Together, the deferment function F and the partial transition

function ρ are equivalent to DFA transition function δ. We use dom(ρ) to denote

the domain of ρ, i.e. the values for which ρ is de�ned. The key property of the D2FA

D ′ that corresponds to DFA D is as follows:

∀〈s, σ〉 ∈ Q× Σ, 〈s, σ〉 ∈ dom(ρ) ⇐⇒ (F(s) = s∨ δ(s, σ) 6= δ(F(s), σ))

That is, for each state, ρ only has those transitions that are di�erent from that of

its deferred state in the underlying DFA. When de�ned, ρ(s, σ) = δ(s, σ).

The function F de�nes a directed graph on the states of Q, which we call the deferment

forest. A D2FA is well de�ned if and only if there are no cycles of length > 1 in the

deferment forest (i.e. there are no cycles except self-loops.)

The total transition function for the D2FA (derived from ρ) is de�ned as

δ ′(s, σ) =


ρ(s, σ) if 〈s, σ〉 ∈ dom(ρ)

δ ′(F(s), σ) else

It is easy to see that δ ′ is well de�ned and equal to δ if the D2FA is well de�ned.

We need the restriction that the deferment forest cannot have a cycle other than a self-loop

on the states because otherwise all states on the cycle might have their transitions on some

σ ∈ Σ removed, and there would no way of �nding the next state.

22

We also use the term deferment pointer to refer to the deferred state of a state. That is,

if F(u) = v∧ u 6= v, we say the deferment pointer of state u is set to state v. If F(u) = u,

we say the deferment pointer for state u is not set.

States that defer to themselves (i.e. deferment pointer is not set), which we call root states,

must have all their transitions de�ned. Each connected component of the deferment forest

is called a deferment tree. It is easy to see that each deferment tree has exactly one root

state in it, and the deferment pointer of all the other states in the deferment tree are set

towards the root state.

We use u→v to denote F(u) = v, i.e. u directly defers to v. In this case, we say state u

is a child of state v, and state v is the parent of state u, in the deferment forest. We use

u�v to denote that there is a path from u to v in the deferment forest de�ned by F. In

this case we say state u is a descendant of state v, and state v is the ancestor of state u,

in the deferment forest.

The deferment depth of state u, denoted ψ(u), is the distance, in the deferment tree

containing u, of state u from the root state of that deferment tree. The (maximum)

deferment depth of D2FA D ′, denoted Ψ(D ′), is the maximum deferment depth among

all the states in D ′. We use ψ(D ′) to denote the average deferment depth among all the

states in D ′.

We use uu v to denote the number of transitions in common between states u and v; i.e.

u u v = |{σ | σ ∈ Σ∧ δ(u, σ) = δ(v, σ)}|.

23

We only consider D2FA that correspond to minimum state DFA, though the de�nition

applies to all DFA.

3.3.2 Original D2FA Algorithm

In this section we explain the original D2FA construction algorithm proposed by Kumar

et al. [26]. They �rst build a DFA for the given RE set.

The amount of transition compression achieved by the D2FA depends on the number of

common transition between each (non-root) state and its deferred state. So next, in order

to maximize transition compression, they essentially solve a maximum weight spanning

tree problem on the following weighted graph which they call a Space Reduction Graph

(SRG). The SRG is a complete graph with the DFA states, Q, as its vertices. The weight

of any edge (u, v) in the SRG is equal to the number of common transitions between DFA

states u and v. They use the the Kruskal's algorithm [23] to construct the maximum

weight spanning tree. Edges with weight ≤ 1 are not considered (selecting an edge with

weight 1 does not reduce the transition function, since it will result in removal of one

actual transition and addition of the deferment pointer transition.) For this reason the

maximum weight spanning tree construction might result in a forest.

Once the spanning forest is constructed, (one of) the state(s) in the center of each tree

is selected as the root for that tree, and all edges are directed towards the root. These

directed edges give the deferred state for each state.

24

Figure 3.2(b) shows the SRG built for the DFA in Figure 3.2(a), along with the maximum

weight spanning forest with roots selected and the edges directed.

3.3.3 Limiting Deferment Depth in Original D2FA Algorithm

A D2FA has the drawback that while parsing the input string, the current input character

is not advanced when a deferment transition is followed (hence the name delayed input

DFA.) In the worst case for a given state u and current input character σ, we might have

to do ψ(u) + 1 lookups to �nd the next state δ ′(u, σ); that is ψ(u) lookups to get to the

root state following deferment transitions and 1 more lookup to get the actual next state.

This is a problem since we no longer get deterministic throughput, which was the main

reason for using the DFA. So, in general, it is better to have low deferment depth for all

states. If we set an upper bound on Ψ, then we achieve deterministic throughput, since

we would have a constant bound on the number of lookups per input character.

Recall that during the maximum weight spanning tree construction, Kruskal's algorithm

considers edges in decreasing edge weight order. At any time during the construction,

many edges will have the current largest edge weight (since there are only 257 possible

edge weights.) In order to reduce the deferment depth of the resulting D2FA, Kumar et al.

propose the following tie breaking heuristic: among all edges with the current maximum

weight, pick the one that will result in the least increase in the diameter when added to

the spanning forest.

25

Also, given an upper bound, Ω, on the D2FA deferment depth Ψ, Kumar et al. propose

the following method to generate D2FA with deferment depth within the bound: during

the maximum weighted spanning tree construction, an edge is only added to the spanning

tree if it does not cause the tree diameter to go over 2×Ω. Since the tree center is chosen

as the root state, this guarantees that Ψ(D ′) ≤ Ω.

3.3.4 Backpointer D2FA Algorithm

The level of a state u in a DFA is the length of the shortest string that takes the DFA from

the start state to state u. Becchi and Crowley [8] propose an algorithm to build the D2FA

based on the following idea: each state in the DFA should defer to a state that is at a

lower level than itself. Because of this, every deferred transition followed will decrease the

level of the current state by at least 1. Any actual transition taken can only increase the

level of the current state by 1. Therefore, when processing any input string of length n, at

most n− 1 deferred transitions will be followed. So this method guarantees an amortized

cost of at most 2 lookups per input character.

To build the D2FA, they build the DFA for the given RE set �rst. Next, for each state u,

among all the states at a lower level than u, they set F(u) to be the state which shares the

most transitions with u. Since each state defers to a state at a lower level than itself, the

deferment forest can never have a cycle, so the D2FA is well de�ned.

The resulting D2FA is typically a bit larger in size than the D2FA built using the algorithm

proposed by Kumar et al..

26

3.4 Classifiers

In this section we de�ne a classi�er, related terminology and describe a classi�er minimiza-

tion problem. A classi�er is essentially a mapping function from the source domain to the

target domain. In a d-dimensional classi�er, the input value is composed of d �elds.

A classi�er is traditionally de�ned for the (header based) packet classi�cation problem.

The input value is the packet header, which has �ve �elds: Protocol type, Source IP

address, Source port number, Destination IP address and Destination port number. The

output is the decision or action to be taken for the packet, which typically has values

like accept, discard, accept and log, discard and log etc.. So the classi�er is de�ned as a

5-dimensional classi�er, with the set of possible packet headers as the source domain, and

set of possible actions as the target domain. For each possible packet header, the classi�er

gives the action to be taken.

3.4.1 Classifier definition

We now formally de�ne a d-dimensional classi�er and related terminology.

A �eld Fi is a �nite width variable. The domain of �eld Fi of w bit width is dom(Fi) =

[0..2w− 1]. The domain of a d-dimensional classi�er, f, de�ned over the d �elds F1, . . . , Fd

is dom(f) = dom(F1) × · · · × dom(Fd). A packet is a d-tuple (p1, . . . , pd), where, for

1 ≤ i ≤ d, pi ∈ dom(Fi).

A rule has the form 〈predicate〉→ 〈decision〉. A rule 〈predicate〉 is a d-tuple (S1, . . . , Sd),

27

where, for 1 ≤ i ≤ d, Si ⊆ dom(Fi); and it covers the set of packets S1×· · ·×Sd ⊆ dom(f).

A packet p matches rule r if and only if the predicate of r covers p. The set of possible

rule decisions is denoted by H.

The classi�er f = 〈r1, . . . , rn〉 is speci�ed as a sequence of rules. For packet p, the �rst

rule in the sequence that p matches is said to be the binding rule for p. If p does not

match any rule in f, then p does not have any binding rule (or is unbound). For a bound

packet p, the output of the classi�er, f(p), is given by the decision of the binding rule for

p. For unbound packets, p, f(p) is unde�ned. The cost of a classi�er f, denoted Cost(f),

is the number of rules in f.

The Cover of a classi�er f, denoted Cover(f), is de�ned as the set of packets in dom(f)

that have a binding rule in f (i.e. set of packets that match at least one rule in f.) A

classi�er f, is said to be a complete classi�er if Cover(f) = dom(f), otherwise f is said

to be an incomplete classi�er.

Clearly, two rules in a classi�er can be overlapping (i.e. at least one packet matches both

rules), as well as con
icting (i.e. overlapping and having di�erent decisions). But that is

ok, since the classi�er output for a bound packet is uniquely de�ned by its binding rule.

3.4.1.1 Prefix Classifier

A pre�x {0, 1}k{∗}w−k with k leading bits (i.e. 0s or 1s), for a �eld of width w, denotes

the range of values [{0, 1}k{0}w−k, {0, 1}k{1}w−k]. A rule is said to be a pre�x rule if and

28

only if every Si in the rule predicate (S1, . . . , Sd) is represented as a pre�x. A classi�er f

is said to be a pre�x classi�er if and only if every rule in f is a pre�x rule.

3.4.1.2 Ternary Classifier

A ternary value for a �eld of width w is of the form {0, 1, ∗}w, and denotes the set of

values obtained by replacing the ∗'s with 0's and 1's in all possible combinations (if there

are k ∗'s, there are 2k ways to replace the ∗'s with 0's and 1's.) A rule is said to be a

ternary rule if and only if every Si in the rule predicate (S1, . . . , Sd) is represented as a

ternary value. A classi�er f is said to be a ternary classi�er if and only if every rule in f

is a ternary rule.

A pre�x classi�er is a special case of a ternary classi�er, since every pre�x is also a ternary

value.

3.4.1.3 Weighted Classifier

In a weighted classi�er, each decision in H has a weight associated with it. The cost of a

classi�er f is then equal to the sum of the weights of decisions of all the rules in f. The

unweighted classi�er is a special case of weighted classi�er with weights of all the decisions

set to 1.

29

3.4.2 Classifier Minimization

Two classi�ers f1 and f2 are equivalent, denoted f1 ≡ f2, if and only if Cover(f1) =

Cover(f2) and ∀p ∈ Cover(f1), f1(p) = f2(p). For a classi�er f, we use {f} to denote the

set of all classi�ers that are equivalent to f.

The classi�er minimization problem is then de�ned as follows.

Definition 3 (Classi�er Minimization Problem). Given a classi�er f1, �nd a pre�x

classi�er f2 ∈ {f1} such that for any pre�x classi�er f ∈ {f1}, Cost(f2) ≤ Cost(f).

Multi-dimensional classi�er minimization has been shown to be NP-hard. An optimal

solution for 1-dimensional complete classi�er minimization was proposed by Suri et al. [47].

Meiners et al. [30, 31] proposed algorithms for 1-dimensional complete weighted classi�er

minimization and 1-dimensional incomplete weighted classi�er minimization.

3.5 TCAM Introduction

In any regular memory, the input is the memory address location, and the output is the

contents of the memory at that location. In a Ternary Content Addressable Memory

(TCAM), as the name suggests, it is the exact opposite. The input to a TCAM is binary

value, and the output of the TCAM is the address of the location, if any, at which the

given value occurs. The ternary refers to the fact that the contents of the memory are

ternary bits, i.e. 0, 1 or ∗ (don't care). The ∗ matches both a 0 and a 1.

30

If more than one location matches the given (binary) value, then the address of the �rst

location that matches the value is returned. We call this the �rst match semantics of

TCAM.

The key thing about TCAMs is that the output is returned in constant time. TCAMs

internally have a massively parallel hardware that searches the given input against all the

entries stored in the TCAM at once, and returns the address of the �rst match. For this

reason, TCAM memory chips have very limited size. The largest available chip is about

72Mb, and typical sizes are around 1Mb to 8Mb. TCAM chips also consume a lot of energy

compared to regular memory.

The TCAM chip is usually paired with a corresponding SRAM that stores output values.

The matching address from the TCAM is used as input to the SRAM to get the output

value.

TCAM chips are widely used in networking devices for packet classi�cation. A ternary

classi�er for packet classi�cation can be naturally implemented in a TCAM. All the rules

predicates are stored, in order, in the TCAM, and the corresponding rule decisions are

stored in the SRAM. The packet header is then used as a lookup key for the TCAM, and

the matching SRAM values gives the decision for the packet.

31

Chapter 4

Software Implementation

In this section we present our work on the software implementation of RE matching. A

software solution typically uses a DFA to achieve deterministic throughput. The software

solution can be implemented on general purpose processors, or on customized ASIC chips.

4.1 Introduction/Motivation

The straightforward way to implement a DFA in software is to store the DFA transition

table, δ, in a two dimensional Q × Σ array. But DFAs su�er from space explosion when

multiple REs are combined, making them impractical even for moderately sized RE set.

D2FA are very e�ective at dealing with the space explosion problem of the DFA. In par-

ticular, D2FA exhibit tremendous transition compression reducing the size of the DFA by

a huge factor. This makes D2FA much more practical for a software implementation of

RE matching than DFAs. In our work we focus on the D2FA.

32

4.1.1 Solution Goals

For software implementation of RE matching, given as input a set of REs R, we need

to be able to build a compact D2FA as e�ciently as possible that also supports frequent

updates. E�ciency is important because RE matching solutions are typically implemented

in networking devices, which usually have very limited computing resources. Current

methods for constructing D2FA may be so expensive in both time and space that they may

not be able to construct the �nal D2FA even if the D2FA is small enough to be deployed

in networking devices that have limited computing resources. Such issues become doubly

important when we consider the issue of the frequent updates (typically additions) to R

that occur as new security threats are identi�ed.

4.1.2 Summary and Limitations of Prior Art

Given the input RE set R, any solution that builds a D2FA for R will have to do the

following two operations: (a) union the automata corresponding to each RE in R and

(b) minimize the automata, both in terms of the number of states and the number of

edges. Previous solutions [8,26] (discussed in Section 3.3) employ a \Union then Minimize"

framework in which: (1) they �rst build automata for each RE within R, and perform

union operations on these automata to arrive at one combined automaton for all the

REs in R, and (2) next they minimize the resulting combined automaton. In particular,

previous solutions �rst construct the combined NFA for the RE set. Then they perform a

computationally expensive NFA to DFA subset construction on the large combined NFA,

33

followed by or composed with DFA minimization (for states). And last they perform the

D2FA minimization (for edges).

There are three fundamental limitations with prior solutions, due to which they do not

meet our goals. First, they perform the minimization on the large combined automata

which is expensive in both time and space. Second, prior methods build the corresponding

minimum state DFA before constructing the �nal D2FA. This is very costly in both space

and time. The D2FA is typically 50 to 100 times smaller than the DFA, so even if the

D2FA would �t in available memory, the intermediate DFA might be too large, making

it impractical to build the D2FA. This is exacerbated in the case of the Kumar et al.

algorithm which needs the SRG which ranges from about the size of the DFA itself to over

50 times the size of the DFA. The resulting space and time required to build the DFA

and SRG impose serious limits on the D2FA that can be practically constructed. We do

observe that the method proposed in [8] does not need to create the SRG. Furthermore,

as the authors have noted, there is a way to go from the NFA directly to the D2FA, but

implementing such an approach is still very costly in time as many transition tables need

to be repeatedly recreated in order to realize these space savings. In addition, this direct

NFA to D2FA construction would still need to perform the expensive subset construction

on the large combined NFA. Third, none of the previous methods support updating the

D2FA when a new RE is added to R. The whole D2FA would have to be rebuilt when the

RE set is updated.

34

4.1.3 Summary of Our Approach

To address the limitations of prior solutions, we propose a \Minimize then Union frame-

work". Speci�cally, we �rst minimize the small automata corresponding to each RE from

R, and then union the minimized automata together. In particular, given R, we �rst build

a DFA and D2FA for each individual RE in R. The heart of our technique is the D2FA

merge algorithm that performs the union. It merges two smaller D2FAs into one larger

D2FA such that the merged D2FA is equivalent to the union of REs that the D2FAs being

merged were equivalent to. Starting from the the initial D2FAs for each RE, using this

D2FA merge subroutine, we merge two D2FAs at a time until we are left with just one

�nal D2FA. The initial D2FAs are each equivalent to their respective REs, so the �nal

D2FA will be equivalent to the union of all the REs in R. A key property of our D2FA

merge algorithm is that it automatically produces a minimum state D2FA without explicit

state minimization. Likewise, it creates e�cient state deferment in the merged D2FA using

state deferment information from the input D2FAs. Together, these optimizations lead to

a vastly more e�cient D2FA construction algorithm in both time and space.

The D2FA produced by our merge algorithm can be larger than the minimal D2FA pro-

duced by the Kumar et al. algorithm. This is because the Kumar et al. algorithm does

a global optimization over the whole DFA (using the SRG), whereas our merge algorithm

e�ciently computes state deferment in the merged D2FA based on state deferment in the

two input D2FAs. In most cases, the D2FA produced by our approach is su�ciently small

to be deployed. However, in situations where more compression is needed, we o�er an

35

e�cient �nal compression algorithm that produces a D2FA very similar in size to that

produced by the Kumar et al. algorithm. This �nal compression algorithm uses an SRG;

we improve e�ciency by using the deferment already computed in the merged D2FA to

greatly reduce the size of this SRG and thus signi�cantly reduce the time and memory

required to do this compression.

4.1.3.1 Advantages of our algorithm

One of the main advantages of our algorithm is a dramatic increase in time and space

e�ciency. These e�ciency gains are partly due to our use of the Minimize then Union

framework instead of the Union then Minimize framework. More speci�cally, our improved

e�ciency comes about from the following four factors. First, other than for the initial DFAs

that correspond to individual REs in R, we build D2FA bypassing DFAs. Those initial

DFAs are very small (typically < 50 states), so the memory and time required to build

the initial DFAs and D2FAs is negligible. The D2FA merge algorithm directly merges the

two input D2FAs to get the output D2FA without creating the DFA �rst. Second, other

than for the initial DFAs, we never have to perform the NFA to DFA subset construction.

Third, other than for the initial DFAs, we never have to perform DFA state minimization.

Fourth, when setting deferred states in the D2FA merge algorithm, we use deferment

information from the two input D2FA. This typically involves performing only a constant

number of comparisons per state rather than a linear in the number of states comparison

per state as is required by previous techniques. All told, our algorithm has a practical time

36

complexity of O(n|Σ|) where n is the number of states in the �nal D2FA and |Σ| is the size

of the input alphabet. In contrast, Kumar et al.'s algorithm [26] has a time complexity

of O(n2(log(n) + |Σ|)) and Becchi and Crowley's algorithm [8] has a time complexity of

O(n2|Σ|) just for setting the deferment state for each state and ignoring the cost of the

NFA subset construction and DFA state minimization. Section 4.4.4 has a more detailed

complexity analysis.

Because of these e�ciency advantages in time and space complexity, given the same lim-

ited resources, our algorithm can build much larger D2FAs than are possible with previous

methods. Besides being much more e�cient in constructing D2FA from scratch, our algo-

rithm is very well suited for frequent RE updates. When an RE needs to be added to the

current set, we just need to merge the D2FA for the RE to the current D2FA using our

merge routine which is a very fast operation.

4.2 Minimum State PMDFA construction

Before we present our algorithm for e�cient D2FA construction, we consider the problem

of constructing minimum state DFA for a given RE set.

Given a set of REs R, we can build the corresponding minimum state DFA using the

standard Union then Minimize framework: �rst build a combined NFA for all the REs in

R, then convert the NFA to a DFA, and �nally minimize the DFA. This method can be

very slow, mainly due to subset construction in the NFA to DFA conversion, which often

37

results in an exponential growth in the number of states. Instead, we propose a more

e�cient Minimize then Union framework.

Let R1 and R2 denote any two disjoint subsets ofR, and letD1 andD2 be their correspond-

ing minimum state DFAs. We use the standard union cross product construction for DFAs

to construct a minimum state DFA D3 that corresponds to R3 = R1∪R2. Speci�cally, sup-

pose we are given the two DFAs D1 = (Q1, Σ, q01,M1, δ1) and D2 = (Q2, Σ, q02,M2, δ2).

The union cross product DFA of D1 and D2, denoted as UCP(D1, D2), is given by

D3 = UCP(D1, D2) = (Q3, Σ, q03,M3, δ3)

where

Q3 = Q1 ×Q2

q03 = 〈q01, q02〉

∀qi ∈ Q1,∀qj ∈ Q2, M3(〈qi, qj〉) =M1(qi) ∪M2(qj)

∀σ ∈ Σ,∀qi ∈ Q1, ∀qj ∈ Q2, δ3(〈qi, qj〉, σ) = 〈δ1(qi, σ), δ2(qj, σ)〉

Each state in D3 corresponds to a pair of states, one from D1 and one from D2. For

notational clarity, we use 〈 and 〉 to enclose an ordered pair of states. Transition function

δ3 just simulates both δ1 and δ2 in parallel. Many states in Q3 might not be reachable

from the start state q03. Thus, while constructing D3, we only create states that are

reachable from the start state q03.

38

We now argue that this construction is correct. This is a standard construction, so the fact

that D3 is a DFA for R3 = R1 ∪ R2 is straightforward and covered in standard automata

theory textbooks (e.g. [20]). We now show that D3 is also a minimum state DFA for R3

assuming R1 ∩R2 = ∅. Recall that we are using DFA to mean a PMDFA (see Section 3.1.)

For a traditionally de�ned DFAs, the UCP construction is not guaranteed to produce a

minimum state DFA.

Theorem 1. Given two RE sets, R1 and R2, and equivalent minimum state DFAs, D1

and D2, the union cross product DFA D3 = UCP(D1, D2), with only reachable states

constructed, is the minimum state DFA equivalent to R3 = R1 ∪ R2 if R1 ∩ R2 = ∅.

Proof. First since only reachable states are constructed, D3 cannot be trivially reduced.

Now assume D3 is not minimum. That would mean there are two di�erent states in D3,

say 〈p1, p2〉 and 〈q1, q2〉, that are indistinguishable. This implies that

∀x ∈ Σ?, M3(δ3(〈p1, p2〉, x)) =M3(δ3(〈q1, q2〉, x)).

Working on both sides of this equality, we get,

∀x ∈ Σ?, M3(δ3(〈p1, p2〉, x)) =M3(〈δ1(p1, x), δ2(p2, x)〉)

=M1(δ1(p1, x)) ∪M2(δ2(p2, x))

39

as well as,

∀x ∈ Σ?, M3(δ3(〈q1, q2〉, x)) =M3(〈δ1(q1, x), δ2(q2, x)〉)

=M1(δ1(q1, x)) ∪M2(δ2(q2, x))

This implies that

∀x ∈ Σ?, M1(δ1(p1, x)) ∪M2(δ2(p2, x)) =M1(δ1(q1, x)) ∪M2(δ2(q2, x))

Now since R1 ∩ R2 = ∅, this gives us

∀x ∈ Σ?, M1(δ1(p1, x)) =M1(δ1(q1, x)) and

∀x ∈ Σ?, M2(δ1(p2, x)) =M2(δ1(q2, x))

This implies that p1 and q1 are indistinguishable inD1 and p2 and q2 are indistinguishable

in D2. Since 〈p1, p2〉 6= 〈q1, q2〉, we have that p1 6= p2 ∨ q1 6= q2, implying that at least

one of D1 or D2 is not a minimum state DFA, which is a contradiction and the result

follows.

Our e�cient construction algorithm works as follows. First, for each RE r ∈ R, we build

an equivalent minimum state DFA D for r using the standard method, resulting in a set of

DFAs D. Then we merge two DFAs from D at a time using the above UCP construction

until there is just one DFA left in D. The merging in done in a greedy manner: in each step,

40

the two DFAs with the fewest states are merged together. Note the condition R1∩R2 = ∅ is

always satis�ed in all the merges, so Theorem 1 ensures that we always have a minimized

DFA.

In our experiments, our Minimize then Union technique runs exponentially faster than the

standard Union then Minimize technique because we only apply the NFA to DFA subset

construction step on the NFAs that correspond to each individual RE rather than on the

combined NFA for all the REs. This makes a signi�cant di�erence even when we have a

relatively small number of REs. For example, for the C7 RE set which contains 7 REs,

the standard technique requires 385.5 seconds to build the DFA, but our technique builds

the DFA in only 0.66 seconds.

4.3 Efficient D2FA Construction

In this section, we describe how we can extend the Minimize then Union technique to

directly build the D2FA bypassing the DFA construction. We �rst build the D2FA for each

individual RE in the RE set, and then merge these D2FAs together to get the combined

D2FA for the entire RE set.

4.3.1 Improved D2FA Construction for One RE

To build the initial D2FA for each RE in R, we can use the original D2FA algorithm

proposed in [26]. However, we propose several improvements to original algorithm that

41

facilitate our D2FA merge algorithm, our techniques for hardware implementation of RE

matching presented in Chapter 5 and the overlay automata approach presented in Chapter

6.

1.0E+0
1.0E+1
1.0E+2
1.0E+3
1.0E+4
1.0E+5
1.0E+6
1.0E+7
1.0E+8

0 5 10 15 20 17
5

18
0

18
5

19
0

19
5

20
0

20
5

21
0

21
5

22
0

22
5

23
0

23
5

24
0

24
5

25
0

25
5

Co
un

t

Edge Weight

Edge weight distribution




Figure 4.1: Edge weights distribution in a typical SRG.

Figure 4.1 shows the typical distribution of the weights of the edges in the SRG. The

distribution is typically bimodal. The weights of the edges are very high (> 128) or very

low (< 20). The reason behind this is that, for all state pairs for which both states have

their failure transitions going to the same self-looping state, the two states will have most

of their transitions in common, and hence result in a very high weight edge in the SRG.

Likewise, for all state pairs for which both states have their failure transitions going to

di�erent self-looping states, the two states will have none (or very few) of their transitions

in common, and hence result in a very low weight edge in the SRG. If we remove the

low weight edges from the SRG, we get a natural partitioning of the states based on the

42

self-looping state they fail to. Let us call this partitioning of states P. Each partition in

P will have at most one self-looping state.

Multiple deferment trees: We remove the low weight (< 20) edges from the SRG

before building the maximum spanning tree. The result of this is that the deferment

forest has multiple deferment trees, one tree for each partition in P. This only results in

a small increase in the number of transitions in the resulting D2FA, since edges removed

from the SRG have very low weight. For each partition in P, the unique self-looping state

(if any) within the partition is chosen as the root of the corresponding deferment tree.

Handling non-self-looping roots: We can have a partition in P which does not have

any self-looping state. In such cases we will have a non self-looping state selected for

the partition. This will happen for REs that have a `.' (or a large range like [ˆa])

without the closure `?'. For example consider that D2FA shown in Figure 4.2(a) for the

RE /a.?b..c/. The deferment forest will have 4 root states, 0, 1, 2 and 3. States 0 and

1 are self-looping. However, states 2 and 3 are not self-looping and are only roots states

because they have no transition in common with other states.

In such cases, we make these states non root states and set their deferment as follows. We

look at the deferment of the next state where the transition on the `.' goes to. If we have

more than one consecutive `.', we note the state where the last `.' transitions to. In our

example, the next state of the last `.' is state 4. We follow the deferment of this state

until we reach its root, and select that root as the deferred state of the non self-looping

43

a b  

‐a ‐{n,b}

0 1 2 3 c4 5

(a) D2FA for RE /a.?b..c/ with non self-looping roots

a b  

‐a ‐{n,b}

0 1 2 3 c4 5

(b) D2FA after setting deferment for non self-looping roots

Figure 4.2: Example showing D2FA with non self-looping root states.

roots. In our example, the deferment chain of state 4 ends in state 1, so state 1 is chosen

as the deferred state for both states 2 and 3. Figure 4.2(b) shows the resulting D2FA.

Setting the deferment of non self-looping roots in this manner does not reduce the size

of the D2FA since these states will not have any transitions (or very few transitions)

in common with their deferred states. However, this results in a better structure of the

deferment forest. It also ensures we have the condition that all roots states are self-looping

states and vice versa.

Improved edge weight tie breaking: Recall that during the construction of the max-

imum spanning tree using Kruskal's algorithm, at any time there are usually many edges

with the current maximum weight. We use the following tie breaking strategy.

For each state u, we store a value, deg ′(u), which is initially set to 0. During Kruskal's

44

algorithm, when an edge e = (u, v) is added to the current spanning tree, deg ′(u) is

incremented by 2 if level(u) ≤ level(v); otherwise it is incremented by 1. Recall that

level(u) is the length of the shortest string that takes the DFA from the start state to

state u. We similarly update deg ′(v). Then we use the following tie breaking order among

edges having the current maximum weight.

1. Edges that have a self-looping state as one of their end points are given the highest

priority.

2. Next, priority is given to edges with higher sum of deg ′ of their end vertices.

3. Next, priority is given to edges with higher di�erence between the levels of their end

vertices.

The sum of degrees of end vertices is used for tie breaking in order to prioritize states that

are already highly connected. However, we also want to prioritize connecting to states at

lower levels, so we use deg ′ instead of just the degree. Using the di�erence between levels

of end points for tie breaking also prioritizes states at a lower level. This helps reduce

the deferment depth and the D2FA size for RE sets whose D2FAs have a higher average

deferment depth.

There are several bene�ts of these improvements.

1. Having the self-looping states in the center helps to minimize the average height of

the deferment tree. Also, prioritizing edges with well connected endpoints increases

the fanout, which again reduces tree height. The result is that we get a D2FA that

45

has a much lower deferment depth.

2. The state partitioning P identi�es a natural partitioning of states, such that all

replications of one NFA state are in di�erent partitions. So typically all partitions

in P have sizes close to each other; and because of our tie breaking strategy, all

the deferment trees have very similar structure. This property helps to improve the

e�ectiveness of our D2FA merge algorithm explained in the next section, and of our

table consolidation technique explained in Section 5.3.

3. Having self-looping states as roots helps to improve the e�ectiveness of our variable

striding technique which we describe in Section 5.4. And the condition that all

roots states are self-looping states and vice versa is needed for our overlay automata

approach described in Chapter 6.

4.3.2 D2FA Merge Algorithm

The UCP construction merges two DFAs together. We extend the UCP construction to

merge two D2FAs together as follows. To build a D2FA from a DFA, we basically just need

to set the deferment pointer, F(u), for each state. During the UCP construction, as each

new state u is created, we de�ne F(u) at the same time. We then de�ne ρ to only include

transitions for u that di�er from F(u).

To help explain our algorithm, Figure 4.3 shows an example execution of the D2FA

merge algorithm. Figures 4.3(a) and 4.3(b) show the D2FAs for the REs/.?a.?bcb/

46

and /.?c.?bcb/. Figure 4.3(c) shows the merged D2FA for the D2FAs in Figures 4.3(a)

and 4.3(b). We use the following conventions when depicting a D2FA. The dashed lines

correspond to the deferred state for a given state. For each state in the merged D2FA, the

pair of numbers above the line refers to the states in the original D2FAs that correspond

to the state in the merged D2FA. The number below the line is the state in the merged

D2FA. The number(s) after the `/' in accepting states gives the id(s) of the pattern(s)

matched. Figure 4.3(d) shows how the deferred state is set for a few states in the merged

D2FA D3. We explain the notation in this �gure as we give our algorithm description.

For each state u ∈ D3, we set the deferred state F(u) as follows. While merging D2FAs

D1 and D2, let state u = 〈p0, q0〉 be the new state currently being added to the merged

D2FA D3. Let p0→p1→ · · ·→pl be the maximal deferment chain DC1 (i.e. pl defers

to itself) in D1 starting at p0, and q0→q1→· · ·→qm be the maximal deferment chain

a b c b

-a -b

0 1 2 3 4/1

(a) D1, the D
2FA for RE /.?a.?bcb/.

c b c b

-c -b

0 1 2 3 4/2

(b) D2, the D
2FA for RE /.?c.?bcb/.

Figure 4.3: D2FA merge example.

47

a b

-{a,c} -{b,c}

0,0
0

1,0
1

2,0
3

a

c

-{a,b}

-b

0,1
2

1,1
4

3,1
6

b b

0,2
5

2,2
7

4,2
9/1

b

b

0,3
8

3,3
10

c

4,4
12/1,2

c

c

b

c

0,4
11/2

(c) D3, the merged D2FA.

7
256

4
255

9
256

4 2 1

4 2 1

124
255

7
256

4 2 1

2 1

9

2 1

2 1

7 4
255

2
255

0

2 1

5

Deferment for 5=0,2 Deferment for 7=2,2

Deferment for 9=4,2 Deferment for 12=4,4

(d) Illustration of setting deferment for some states in D3.

Figure 4.3: D2FA merge example (cont'd).

48

DC2 in D2 starting at q0. For example, in Figure 4.3(d), we see the maximal deferment

chains for u = 5 = 〈0, 2〉, u = 7 = 〈2, 2〉, u = 9 = 〈4, 2〉, and u = 12 = 〈4, 4〉. For

u = 9 = 〈4, 2〉, the top row is the deferment chain of state 4 in D1 and the bottom row is

the deferment chain of state 2 in D2. We will choose some state 〈pi, qj〉 where 0 ≤ i ≤ l

and 0 ≤ j ≤ m to be F(u). In Figure 4.3(d), we represent these candidate F(u) pairs with

edges between the nodes of the deferment chains. For each candidate pair, the number

on the top is the corresponding state number in D3 and the number on the bottom is

the number of common transitions in D3 between that pair and state u. For example,

for u = 9 = 〈4, 2〉, the two candidate pairs represented are state 7 (〈2, 2〉) which shares

256 transitions in common with state 9 and state 4 (〈1, 1〉) which shares 255 transitions in

common with state 9. Note that a candidate state pair is only considered if it is reachable

in D3. In Figure 4.3(d) with u = 9 = 〈4, 2〉, three of the candidate pairs corresponding to

〈4, 1〉, 〈2, 1〉, and 〈1, 2〉 are not reachable, so no edge is included for these candidate pairs.

Ideally, we want i and j to be as small as possible though not both 0. For example, our

best choices are typically 〈p0, q1〉 or 〈p1, q0〉. In the �rst case, p0up1 = 〈p0, q0〉u〈p1, q0〉,

and we already have p0→p1 in D1. In the second case, q0uq1 = 〈p0, q0〉u〈p0, q1〉, and we

already have q0→q1 in D2. In Figure 4.3(d), we set F(u) to be 〈p0, q1〉 for u = 5 = 〈0, 2〉

and u = 12 = 〈4, 4〉, and we use 〈p1, q0〉 for u = 9 = 〈4, 2〉. However, it is possible that

both states are not reachable from the start state in D3. This leads us to consider other

possible 〈pi, qj〉. For example, in Figure 4.3(d), both 〈2, 1〉 and 〈1, 2〉 are not reachable in

D3, so we use reachable state 〈1, 1〉 as F(u) for u = 7 = 〈2, 2〉.

49

We consider a few di�erent algorithms for choosing 〈pi, qj〉. The �rst algorithm which we

call the �rst match method is to �nd a pair of states (pi, qj) for which 〈pi, qj〉 ∈ Q3 and

i + j is minimum. Stated another way, we �nd the minimum z ≥ 1 such that the set of

states Z = {〈pi, qz−i〉 | (max(0, z −m) ≤ i ≤ min(l, z)) ∧ (〈pi, qz−i〉 ∈ Q3)} 6= ∅. From

the set of states Z, we choose the state that has the most transitions in common with

〈p0, q0〉 breaking ties arbitrarily. If Z is empty for all z > 1, then we just pick 〈p0, q0〉,

i.e. the deferment pointer is not set (or the state defers to itself). The idea behind the

�rst match method is that 〈p0, q0〉 u 〈pi, qj〉 decreases as i+ j increases. In Figure 4.3(d),

all the selected F(u) correspond to the �rst match method.

A second more complete algorithm for setting F(u) is the best match method where we

always consider all (l+1)×(m+1)−1 pairs and pick the pair that is in Q3 and has the most

transitions in common with 〈p0, q0〉. The idea behind the best match method is that it is

not always true that 〈p0, q0〉u 〈px, qy〉 ≥ 〈p0, q0〉u 〈px+i, qy+j〉 for i+ j > 0. For instance

we can have p0 u p2 < p0 u p3, which would mean 〈p0, q0〉 u 〈p2, q0〉 < 〈p0, q0〉 u 〈p3, q0〉.

In such cases, the �rst match method will not �nd the pair along the deferment chains

with the most transitions in common with 〈p0, q0〉. In Figure 4.3(d), all the selected F(u)

also correspond to the best match method. It is di�cult to create a small example where

�rst match and best match di�er.

When adding the new state u toD3, it is possible that some state pairs along the deferment

chains that were not in Q3 while �nding the deferred state for u will later on be added

to Q3. This means that after all the states have been added to Q3, the deferment for u

50

can potentially be improved. Thus, after all the states have been added, for each state

we again �nd a deferred state. If the new deferred state is better than the old one, we

reset the deferment to the new deferred state. Algorithm 4.4 shows the pseudocode for the

D2FA merge algorithm with the �rst match method for choosing a deferred state. Note

that we use u and 〈u1, u2〉 interchangeably to indicate a state in the merged D2FA D3

where u is a state in Q3, and u1 and u2 are the states in Q1 and Q2, respectively, that

state u corresponds to.

4.3.3 Direct D2FA construction for RE set

Similar to e�cient DFA construction, we �rst build the D2FA for each RE in R. We

now need to merge the D2FAs together using the D2FAMerge algorithm from the previous

section. We consider a variety of methods for merging the D2FAs together including

a greedy \Hu�man" approach, where in each step, the two smallest D2FA are merged

together. The best approach, we have found experimentally, is to merge all the D2FAs

in a balanced binary tree fashion. This is because a binary tree minimizes the worst-case

number of merges that any RE experiences.

We use two di�erent variations of our D2FAMerge algorithm while merging D2FAs. For

all merges except the �nal merge, we use the �rst match method for setting F(u). When

doing the �nal merge to get the �nal D2FA, we use the best match method for setting

F(u). It turns out that using the �rst match method results in a better deferment forest

structure in the D2FA, which helps when the D2FA is further merged with other D2FAs.

51

1 Input: A pair of D2FAs, D1 = (Q1, Σ, ρ1, q01,M1, F1) and D2 = (Q2, Σ, ρ2, q02,M2, F2),

corresponding to RE sets, say R1 and R2, with R1 ∩ R2 = ∅.
Output: A D2FA corresponding to the RE set R1 ∪ R2

1 Initialize D3 to an empty D2FA;

2 Initialize queue as an empty queue;

3 queue.push (〈q01 , q02〉);
4 while queue not empty do

5 〈u, u1〉u2 ← queue.pop();

6 Q3 ← Q3 ∪ {u};

7 foreach c ∈ Σ do

8 nxt← 〈δ ′1(u1, c), δ ′2(u2, c)〉;
9 if nxt /∈ Q3 ∧ nxt /∈ queue then queue.push (nxt);

10 Add (u, c)→ nxt transition to ρ3;

11 M3(u)←M1(u1) ∪M2(u2);

12 F3(u)← FindDefState(u);

13 Remove transitions for u from ρ3 that are in common with F3(u);

14 foreach u ∈ Q3 do
15 newDptr← FindDefState(u);

16 if (newDptr 6= F3(u))∧ (newDptr u u > F3(u) u u) then

17 F3(u)← newDptr;

18 Reset all transitions for u in ρ3 and then remove ones that are in common with F3(u);

19 return D3;

20 Function FindDefState(〈v1, v2〉)
21 Let 〈p0 = v1, p1, . . . , pl〉 be the list of states on the deferment chain from v1 to the root in

D1;

22 Let 〈q0 = v2, q1, . . . , qm〉 be the list of states on the deferment chain from v2 to the root

in D2;

23 for z = 1 to (l+m) do

24 S← {〈pi, qz−i〉 | (max(0, z−m) ≤ i ≤ min(l, z))∧ (〈pi, qz−i〉 ∈ Q3)};
25 if S 6= ∅ then return argmaxv∈S(〈v1, v2〉 u v);

26 return 〈v1, v2〉;

27
Figure 4.4: Algorithm D2FAMerge(D1, D2) for merging two D2FAs.

The local optimization achieved by using the best match method only helps when used in

the �nal merge.

52

4.3.4 Optional Final Compression Algorithm

When there is no bound on the deferment depth (see Section 4.4.2), the original D2FA

algorithm proposed in [26] results in a D2FA with smallest possible size because it runs

Kruskal's algorithm on a large SRG. Our D2FA merge algorithm results in a slightly larger

D2FA because it uses a greedy approach to determine deferment. We can further reduce

the size of the D2FA produced by our algorithm by running the following compression

algorithm on the D2FA produced by the D2FA merge algorithm.

We construct an SRG and perform a maximum weight spanning tree construction on the

SRG, but we only add edges to the SRG that have the potential to reduce the size of the

D2FA. More speci�cally, let u and v be any two states in the current D2FA. We only add

the edge e = (u, v) in the SRG if its weight w(e) is ≥ min(uuF(u), vuF(v)). Here, F(u) is

the deferred state of u in the current D2FA. As a result, very few edges are added to the

SRG, so we only need to run Kruskal's algorithm on a small SRG. This saves both space

and time compared to previous D2FA construction methods. However, this compression

step does require more time and space than the D2FA merge algorithm because it does

construct an SRG and then runs Kruskal's algorithm on the SRG.

4.4 D2FA Merge Algorithm Properties

We now discuss some properties of the D2FA merge algorithm itself and the resulting

D2FA.

53

4.4.1 Proof of Correctness

The D2FA merge algorithm exactly follows the UCP construction to create the states.

So the correctness of the underlying DFA follows from the the correctness of the UCP

construction.

Theorem 2 shows that the merged D2FA is also well de�ned (no cycles in deferment forest).

Lemma 1. In the D2FA D3 = D2FAMerge(D1, D2), 〈u1, u2〉�〈v1, v2〉⇒ u1�v1 ∧ u2�

v2.

Proof. If 〈u1, u2〉 = 〈v1, v2〉 then the lemma is trivially true. Otherwise, let 〈u1, u2〉→
〈w1, w2〉�〈v1, v2〉 be the deferment chain in D3. When selecting the deferred state for

〈u1, u2〉, D2FA Merge always choose a state that corresponds to a pair of states along

deferment chains for u1 and u2 in D1 and D2, respectively. Therefore, we have that

〈u1, u2〉→〈w1, w2〉 ⇒ u1�w1 ∧ u2�w2. By induction on the length of the deferment

chain and the fact that the � relation is transitive, we get our result.

Theorem 2. If D2FAs D1 and D2 are well de�ned, then the D2FA D3 = D2FAMerge(D1, D2)

is also well de�ned.

Proof. Since D1 and D2 are well de�ned, there are no cycles in their deferment forests.

Now assume that D3 is not well de�ned, i.e. there is a cycle in its deferment forest. Let

54

〈u1, u2〉 and 〈v1, v2〉 be two distinct states on the cycle. Then, we have that

〈u1, u2〉�〈v1, v2〉∧ 〈v1, v2〉�〈u1, u2〉

Using Lemma 1 we get

(u1�v1 ∧ u2�v2)∧ (v1�u1 ∧ v2�u2)

i.e. (u1�v1 ∧ v1�u1)∧ (u2�v2 ∧ v2�u2)

Since 〈u1, u2〉 6= 〈v1, v2〉, we have u1 6= v1∨u2 6= v2 which implies that at least one of D1

or D2 has a cycle in its deferment forest, which is a contradiction.

4.4.2 Limiting Deferment Depth

Since no input is consumed while traversing a deferred transition, in the worst case, the

number of lookups needed to process one input character is given by the deferment depth

of the D2FA. As proposed in [26], we can guarantee a worst case performance by limiting

the deferment depth of the D2FA.

Recall that ψ(u) denoted the deferment depth of state u, and Ψ(D) denoted the deferment

depth of the D2FA D.

Lemma 2. In the D2FA D3 = D2FAMerge(D1, D2), ∀〈u1, u2〉 ∈ Q3, ψ(〈u1, u2〉) ≤

ψ(u1) +ψ(u2).

55

Proof. Let ψ(〈u1, u2〉) = d. If ψ(〈u1, u2〉) = 0, then 〈u1, u2〉 is a root and the lemma

is trivially true. So, we consider d ≥ 1 and assume the lemma is true for all states with

ψ < d. Let 〈u1, u2〉→〈w1, w2〉�〈v1, v2〉 be the deferment chain in D3. Using the inductive

hypothesis, we have

ψ(〈w1, w2〉) ≤ ψ(w1) +ψ(w2)

Given 〈u1, u2〉 6= 〈w1, w2〉, we assume without loss of generality that u1 6= w1. Using

Lemma 1 we get that u1�w1. Therefore ψ(w1) ≤ ψ(u1) − 1. Combining the above, we

get

ψ(〈u1, u2〉) = ψ(〈w1, w2〉) + 1

≤ ψ(w1) +ψ(w2) + 1

≤ (ψ(u1) − 1) +ψ(u2) + 1

≤ ψ(u1) +ψ(u2)

Lemma 2 directly gives us the following Theorem.

Theorem 3. If D3 = D2FAMerge(D1, D2), then Ψ(D3) ≤ Ψ(D1) + Ψ(D2).

For an RE set R, if the initial D2FAs have Ψ = d, in the worst case, the �nal merged

D2FA corresponding to R can have Ψ = d × |R|. Although Theorem 3 gives the value of

Ψ in the worst case, in practical cases, Ψ(D3) is very close to max(Ψ(D1), Ψ(D2)). Thus

56

the deferment depth of the �nal merged D2FA is usually not much higher than d.

Let Ω denote the desired upper bound on Ψ. To guarantee Ψ(D3) ≤ Ω, we modify the

FindDefState subroutine in Algorithm 4.4 as follows: When selecting candidate pairs for

the deferred state, we only consider states with ψ < Ω. Speci�cally, we replace line 24

with the following

S := {〈pi, qz−i〉 | (max(0, z−m) ≤ i ≤ min(l, z))∧ 〈pi, qz−i〉 ∈ Q3)∧ (ψ(〈pi, qz−i〉) < Ω)}

When we do the second pass (lines 14-18), we may increase the deferment depth of nodes

that defer to nodes that we readjust. We record the a�ected nodes and then do a third

pass to reset their deferment states so that the maximum depth bound is satis�ed. In

practice, this happens very rarely.

When constructing a D2FA with a given bound Ω, we �rst build D2FAs without this

bound. We only apply the bound Ω when performing the �nal merge of two D2FAs to

create the �nal D2FA.

4.4.3 Deferment to a Lower Level

Becchi and Crowley [8] propose a D2FA algorithm where each state defers to a state at a

lower level than itself (see Section 3.3.4.) More formally, they ensure that for all states u,

level(u) > level(F(u)) if F(u) 6= u. We call this property the back-pointer property. If the

back-pointer property holds, then every deferred transition taken decreases the level of the

57

current state by at least 1. Since a regular transition on an input character can only increase

the level of the current state by at most 1, there have to be fewer deferred transitions taken

on the entire input string than regular transitions. This gives an amortized cost of at most

2 transitions taken per input character.

Unfortunately, if D2FAs D1 and D2 have the back-pointer property, the merged D2FA

D3 = D2FAMerge(D1, D2) is not guaranteed to have the back-pointer property. A simple

counter example is when trying to merge the D2FAs corresponding to the REs/(aaa)+/

and /(aaaa)+/. Typically, for practical cases, if the initial D2FAs have the back-pointer

property, in the �nal merged D2FA, almost all of the states have the back-pointer property.

In order to guarantee the D2FA D3 has the back-pointer property, we perform a similar

modi�cation to the FindDefState subroutine in Algorithm 4.4 as we performed when we

wanted to limit the maximum deferment depth. When selecting candidate pairs for the

deferred state, we only consider states with a lower level. Speci�cally, we replace line 24

with the following:

S :={〈pi, qz−i〉 | (max(0, z−m) ≤ i ≤ min(l, z)) ∧

(〈pi, qz−i〉 ∈ Q3)∧ (level(〈v1, v2〉) > level(〈pi, qz−i〉))}

For states for which no candidate pairs are found, we just search through all states in Q3

that are at a lower level for the deferred state. In practice, this search through all the states

needs to be done for very few states because if D2FAs D1 and D2 have the back-pointer

58

property, then almost all the states in D2FAs D3 have the back-pointer property. As with

limiting maximum deferment depth, we only apply this restriction when performing the

�nal merge of two D2FAs to create the �nal D2FA.

4.4.4 Algorithmic Complexity

The time complexity of the original D2FA algorithm proposed in [26] is O(n2(log(n)+|Σ|)).

The SRG has O(n2) edges, and O(|Σ|) time is required to add each edge to the SRG and

O(log(n)) time is required to process each edge in the SRG during the maximum spanning

tree routine. The time complexity of the D2FA algorithm proposed in [8] is O(n2|Σ|). Each

state is compared with O(n) other states, and each comparison requires O(|Σ|) time.

The time complexity of our new D2FAMerge algorithm to merge two D2FAs isO(nΨ1Ψ2|Σ|),

where n is the number of states in the merged D2FA, and Ψ1 and Ψ2 are the maximum

deferment depths of the two input D2FAs. When setting the deferment for any state

u = 〈u1, u2〉, in the worst case the algorithm compares 〈u1, u2〉 with all the pairs along

the deferment chains of u1 and u2, which are at most Ψ1 and Ψ2 in length, respectively.

Each comparison requires O(|Σ|) time. In practice, the time complexity is O(n|Σ|) as each

state needs to be compared with very few states for the following three reasons. First, the

maximum deferment depth Ψ is usually very small. The largest value of Ψ among our 8

primary RE sets in Section 4.5 is 7. Second, the length of the deferment chains for most

states is much smaller than Ψ. The largest value of average deferment depth ψ among

our 8 RE sets is 2.54. Finally, many of the state pairs along the deferment chains are

59

not reachable in the merged D2FA. Among our 8 RE sets, the largest value of the average

number of comparisons needed is 1.47.

When merging all the D2FAs together for an RE set R, the total time required in the

worst case would be O(nΨ1Ψ2|Σ| log(|R|)). The worst case would happen when the RE set

contains strings and there is no state explosion. In this case, each merged D2FA would

have a number of states roughly equal to the sum of the sizes of the D2FAs being merged.

When there is state explosion, the last D2FA merge would be the dominating factor, and

the total time would just be O(nΨ1Ψ2|Σ|).

When modifying the D2FAMerge algorithm to maintain back-pointers, the worst case time

would be O(n2|Σ|) because we would have to compare each state with O(n) other states

if none of the candidate pairs are found at a lower level than the state. In practice, this

search needs to be done for very few states, typically less than 1%.

The worst case time complexity of the �nal compression step is the same as that of Kumar

et al.'s D2FA algorithm, which is O(n2(log(n) + |Σ|)), since both involve computing a

maximum weight spanning tree on the SRG. However, because we only consider edges

which improve upon the existing deferment forest, the actual size of the SRG in practice is

typically linear in the number of nodes. In particular, for the real-world RE sets that we

consider in the experiments section, the size of the SRG generated by our �nal compression

step is on average 100 times smaller than the SRG generated by Kumar et al.'s algorithm.

As a result the optimization step requires much less memory and time compared to the

original algorithm.

60

4.5 Experimental Results

In this section, we evaluate the e�ectiveness of our algorithms on real-world and syn-

thetic RE sets. We consider two variants of our D2FA merge algorithm: the main variant

D2FAMERGE which just merged the D2FAs, and D2FAMERGEOPT, which applies

our �nal compression algorithm after running D2FAMERGE. We compare our algorithms

with the original D2FA construction algorithm proposed in [26]ORIGINAL that optimizes

transition compression and the D2FA construction algorithm proposed in [8] BACKPTR

that enforces the back-pointer property described in Section 4.4.3.

4.5.1 Methodology

4.5.1.1 Data Sets

Our main results are based on eight real RE sets, four proprietary RE sets C7, C8,

C10, and C613 from a large networking vendor and four public RE sets Bro217, Snort

24, Snort31, and Snort 34, that we partition into three groups, STRING, WILDCARD,

and SNORT, based upon their RE composition. For each RE set, the number indicates

the number of REs in the RE set. The STRING RE sets, C613 and Bro217, contain

mostly string matching REs. The WILDCARD RE sets, C7, C8 and C10, contain mostly

REs with multiple wildcard closures `.?'. The SNORT RE sets, Snort24, Snort31, and

Snort34, contain a more diverse set of REs, roughly 40% of which have wildcard closures.

To test scalability, we use Scale, a synthetic RE set consisting of 26 REs of the form

61

/.?cu0123456.?cl789!#%&/, where cu and cl are the 26 uppercase and lowercase al-

phabet letters. Even though all the REs are nearly identical di�ering only in the character

after the two .?'s, we still get the full multiplicative e�ect where the number of states in

the corresponding minimum state DFA roughly doubles for every RE added.

4.5.1.2 Metrics

We use the following metrics to evaluate the algorithms. First, we measure the re-

sulting D2FA size (# transitions) to assess transition compression performance. Our

D2FAMERGE algorithm typically performs almost as well as the other algorithms even

though it builds up the D2FA incrementally rather than compressing the �nal minimum

state DFA. Second, we measure the the maximum deferment depth (Ψ) and average de-

ferment depth (ψ) in the D2FA to assess how quickly the resulting D2FA can be used

to perform regular expression matching. Smaller Ψ and ψ mean that fewer deferment

transitions that process no input characters need to be traversed when processing an in-

put string. Our D2FAMERGE signi�cantly outperforms the other algorithms. Finally,

we measure the space and time required by the algorithm to build the �nal automaton.

Again, our D2FAMERGE signi�cantly outperforms the other algorithms. When compar-

ing the performance of D2FAMERGE with another algorithm A on a given RE or RE set,

we de�ne the following quantities to compare them: transition increase is (D2FAMERGE

D2FA size - A D2FA size) divided by A D2FA size, transition decrease is (A D2FA size -

D2FAMERGE D2FA size) divided by A D2FA size, average (maximum) deferment depth

62

ratio is A average (maximum) deferment depth divided by D2FAMERGE average (maxi-

mum) deferment depth, space ratio is A space divided by D2FAMERGE space, and time

ratio is A build time divided by D2FAMERGE build time.

4.5.1.3 Measuring Space

When measuring the required space for an algorithm, we measure the maximum amount

of memory required at any point in time during the construction and then �nal storage

of the automaton. This is a di�cult quantity to measure exactly; we approximate this

required space for each of the algorithms as follows. For D2FAMERGE, the dominant data

structure is the D2FA. For a D2FA, the transitions for each state can be stored as pairs of

input character and next state id, so the memory required to store a D2FA is calculated as

= (#transitions) × 5 bytes. However, the maximum amount of memory required while

running D2FAMERGE may be higher than the �nal D2FA size because of the following

two reasons. First, when merging two D2FAs, we need to maintain the two input D2FAs

as well as the output D2FA. Second, we may create an intermediate output D2FA that

has more transitions than needed; these extra transitions will be eliminated once all D2FA

states are added. We keep track of the worst case required space for our algorithm during

D2FA construction. This typically occurs when merging the �nal two intermediate D2FA

to form the �nal D2FA.

For ORIGINAL, we measure the space required by the minimized DFA and the SRG. For

the DFA, the transitions for each state can be stored as an array of size Σ with each array

63

entry requiring four bytes to hold the next state id. For the SRG, each edge requires

17 bytes as observed in [8]. This leads to a required memory for building the D2FA of

= |Q|× |Σ|× 4+ (#edges in SRG)× 17 bytes.

For D2FAMERGEOPT, the space required is the size of the �nal D2FA resulting from the

merge step, plus the size of the SRG used by the �nal compression algorithm. The sizes

are computed as in the case of D2FAMERGE and ORIGINAL.

For BACKPTR, we consider two variants. The �rst variant builds the minimized DFA

directly from the NFA and then sets the deferment for each state. For this variant, no

SRG is needed, so the space required is the space needed for the minimized DFA which

is |Q| × |Σ| × 4 bytes. The second variant goes directly from the NFA to the �nal D2FA;

this variant uses less space but is much slower as it stores incomplete transition tables for

most states. Thus, when computing the deferment state for a new state, the algorithm

must recreate the complete transition tables for each state to determine which has the most

common transitions with the new state. For this variant, we assume the only space required

is the space to store the �nal D2FA which is = (#transitions) × 5 bytes even though

more memory is de�nitely needed at various points during the computation. We also note

that both implementations must perform the NFA to DFA subset construction on a large

NFA which means even the faster variant runs much more slowly than D2FAMERGE.

64

4.5.1.4 Correctness

We tested correctness of our algorithms by verifying the �nal D2FA is equivalent to the

corresponding DFA. Note, we can only do this check for our RE sets where we were able

to compute the corresponding DFA. Thus, we only veri�ed correctness of the �nal D2FA

for our eight real RE sets and the smaller Scale RE sets.

4.5.2 D2FAMERGE versus ORIGINAL

We �rst compare D2FAMERGE with ORIGINAL that optimizes transition compression

when both algorithms have unlimited maximum deferment depth. These results are shown

in Table 4.1 for our 8 primary RE sets.

RE

set

#

States

ORIGINAL D2FAMERGE

Trans
Def. depth RAM Time

Trans
Def. depth RAM Time

Avg. Max. (MB) (s) Avg. Max. (MB) (s)

Bro217 6533 9816 3.42 8 179.3 119.4 11737 2.15 5 0.13 3.2

C613 11308 21633 8.43 16 1039.5 326.0 26709 2.69 7 0.23 9.7

C7 24750 205633 19.18 30 47.4 397.7 207540 1.14 3 1.07 0.9

C8 3108 23209 8.95 13 4.9 14.5 23334 1.14 2 0.14 0.2

C10 14868 96793 13.68 27 25.5 141.0 97296 1.18 3 0.52 0.6

Snort24 13886 38485 9.53 20 861.2 299.2 39409 1.56 4 0.32 0.2

Snort31 20068 70701 11.41 23 298.5 244.3 92284 2.00 6 1.29 2.6

Snort34 13825 40199 9.99 17 795.4 309.9 43141 1.38 5 0.27 1.8

Table 4.1: The D2FA size, D2FA average ψ and maximum Ψ deferment depths, space

estimate and time required to build the D2FA for ORIGINAL and D2FAMERGE.

Table 4.2 summarizes these results by RE group. We make the following observations.

(1) D2FAMERGE uses much less space than ORIGINAL. On average, D2FAMERGE

uses 1500 times less memory than ORIGINAL to build the resulting D2FA. This di�erence

65

RE set

group

D2FAMERGE D2FAMERGEOPT

Trans Def. depth ratio Space Time Trans Def. depth ratio Space Time

increase Avg. Max. ratio ratio increase Avg. Max. ratio ratio

All 10.8% 7.5 5.2 1499.8 154.5 0.4% 7.4 5.4 113.1 9.4

STRING 21.5% 2.4 1.9 2994.8 35.4 0.0% 2.1 1.6 103.5 0.8

WILDCARD 1.0% 12.1 8.5 42.8 246.6 1.0% 12.1 10.0 16.8 10.8

SNORT 13.3% 6.3 4.1 1960.3 141.8 0.0% 6.1 3.3 215.8 13.7

Table 4.2: Average values of transition increase, deferment depth ratios, space ratios, and

time ratios for D2FAMERGE and D2FAMERGEOPT compared with ORIGINAL.

is most extreme when the SRG is large, which is true for the two STRING RE sets and

Snort24 and Snort34. For these RE sets, D2FAMERGE uses between 1422 and 4568 times

less memory than ORIGINAL. For the RE sets with relatively small SRGs such as those

in the WILDCARD and Snort31, D2FAMERGE uses between 35 and 231 times less space

than ORIGINAL.

(2) D2FAMERGE is much faster than ORIGINAL. On average, D2FAMERGE builds

the D2FA 155 times faster than ORIGINAL. This time di�erence is maximized when the

deferment chains are shortest. For example, D2FAMERGE only requires an average of 0.05

msec and 0.09 msec per state for the WILDCARD and SNORT RE sets, respectively, so

D2FAMERGE is, on average, 247 and 142 times faster than ORIGINAL for these RE sets,

respectively. For the STRING RE sets, the deferment chains are longer, so D2FAMERGE

requires an average of 0.67 msec per state, and is, on average, 35 times faster than ORIG-

INAL.

(3) D2FAMERGE produces D2FA with much smaller average and maximum defer-

ment depths than ORIGINAL. On average, D2FAMERGE produces D2FA that have

average deferment depths that are 7.5 times smaller than ORIGINAL and maximum de-

66

ferment depths that are 5.2 times smaller than ORIGINAL. In particular, the average

deferment depth for D2FAMERGE is less than 2 for all but the two STRING RE sets,

where the average deferment depths are 2.15 and 2.69. Thus, the expected number of

deferment transitions to be traversed when processing a length n string is less than n.

One reason D2FAMERGE works so well is that it eliminates low weight edges from the

SRG so that the deferment forest has many shallow deferment trees instead of one deep

tree. This is particularly e�ective for the WILDCARD RE sets and, to a lesser extent, the

SNORT RE sets. For the STRING RE sets, the SRG is fairly dense, so D2FAMERGE has

a smaller advantage relative to ORIGINAL.

(4) D2FAMERGE produces D2FA with only slightly more transitions than ORIG-

INAL, particularly on the RE sets that need transition compression the most. On

average, D2FAMERGE produces D2FA with roughly 11% more transitions than ORIGI-

NAL does. D2FAMERGE works best when state explosion from wildcard closures creates

DFA composed of many similar repeating substructures. This is precisely when transition

compression is most needed. For example, for the WILDCARD RE sets that experience

the greatest state explosion, D2FAMERGE only has 1% more transitions than ORIGINAL.

On the other hand, for the STRING RE sets, D2FAMERGE has, on average, 22% more

transitions. For this group, ORIGINAL needed to build a very large SRG and thus used

much more space and time to achieve the improved transition compression. Furthermore,

transition compression is typically not needed for such RE sets as all string matching REs

can be placed into a single group and the resulting DFA can be built.

67

In summary, D2FAMERGE achieves its best performance relative to ORIGINAL on the

WILDCARD RE sets (except for space used for construction of the D2FA) and its worst

performance relative to ORIGINAL on the STRING RE sets (except for space used to

construct the D2FA). This is desirable as the space and time e�cient D2FAMERGE is

most needed on RE sets like those in the WILDCARD because those RE sets experience

the greatest state explosion.

4.5.3 Assessment of Final Compression Algorithm

We now assess the e�ectiveness of our �nal compression algorithm by comparing

D2FAMERGEOPT to ORIGINAL and D2FAMERGE. The results are shown in Table 4.3

for our 8 primary RE sets.

RE

set

#

States
Trans

Def. depth RAM Time

Avg. Max. (MB) (s)

Bro217 6533 9816 2.44 7 2.64 99.2

C613 11308 21633 3.04 8 7.48 940.4

C7 24750 207540 1.14 3 2.49 45.7

C8 3108 23334 1.14 2 0.32 1.0

C10 14868 97296 1.17 2 1.61 14.8

Snort24 13886 38601 1.57 4 2.67 19.9

Snort31 20068 70780 2.17 8 15.61 59.1

Snort34 13825 40387 1.42 8 2.60 14.2

Table 4.3: The D2FA size, D2FA average ψ and maximum Ψ deferment depths, space

estimate and time required to build the D2FA for D2FAMERGEOPT.

Table 4.2 summarizes these results by RE group. As expected D2FAMERGEOPT produces

a D2FA that is almost as small as that produced by ORIGINAL; on average, the number

of transitions increases by only 0.4%. There is a very small increase for WILDCARD and

68

SNORT because ORIGINAL also considers all edges with weight > 1 in the SRG, whereas

D2FAMERGEOPT does not use edges with weight < 10. There is a signi�cant bene�t to

not using these low weight SRG edges; the deferment depths are much higher for the D2FA

produced by ORIGINAL when compared to the D2FA produced by D2FAMERGEOPT.

The �nal compression algorithm of D2FAMERGEOPT does require more resources than

are required by D2FAMERGE. In some cases, this may limit the size of the RE set

D2FAMERGEOPT can be used for. However, as explained earlier, D2FAMERGE per-

forms best on the WILDCARD (which has the most state explosion) and performs the

worst on the STRING (which has the no or limited state explosion). So the �nal com-

pression algorithm is only needed for and is most bene�cial for RE sets with limited state

explosion. Finally, we observe that D2FAMERGEOPT requires on average 113 times less

RAM than ORIGINAL, and, on average, runs 9 times faster than ORIGINAL.

4.5.4 D2FAMERGE versus ORIGINAL with Bounded Maximum

Deferment Depth

We now compare D2FAMERGE and ORIGINAL when they impose a maximum deferment

depth bound Ω of 1, 2, and 4. Because time and space do not change signi�cantly, we

focus only on number of transitions and average deferment depth. These results are shown

in Table 4.4. Note that for these data sets, the resulting maximum depth Ψ typically is

identical to the maximum depth bound Ω; the only exception is for D2FAMERGE and

Ω = 4; thus we omit the maximum deferment depth from Table 4.4.

69

RE

set

ORIGINAL D2FAMERGE

Trans Avg. def. depth # Trans Avg. def. depth

Ω = 1 Ω = 2 Ω = 4 Ω=1 Ω=2 Ω=4 Ω = 1 Ω = 2 Ω = 4 Ω=1 Ω=2 Ω=4

Bro217 698229 296433 52628 0.62 1.18 2.09 50026 15087 11757 1.00 1.83 2.15

C613 1204831 507613 102183 0.62 1.17 2.16 154548 51858 27735 1.00 1.94 2.64

C7 2044171 597544 206814 0.71 1.24 2.07 215940 208044 207540 0.97 1.13 1.14

C8 206897 40411 23261 0.77 1.32 2.51 24090 23334 23334 0.98 1.14 1.14

C10 1105160 325536 97137 0.75 1.31 2.39 101556 97326 97296 0.98 1.18 1.18

Snort24 1376779 543378 106211 0.66 1.25 2.39 68906 42176 39409 0.99 1.47 1.56

Snort31 2193679 1102693 405785 0.62 1.11 2.08 208136 119810 95496 1.00 1.52 1.97

Snort34 1357697 559255 85800 0.66 1.19 2.17 57187 44607 43231 1.00 1.34 1.38

Table 4.4: The D2FA size and D2FA average ψ deferment depth for ORIGINAL and

D2FAMERGE on our eight primary RE sets given maximum deferment depth bounds of

1, 2 and 4.

Table 4.5 summarizes the results by RE group highlighting how much better or worse

D2FAMERGE does than ORIGINAL on the two metrics of number of transitions and

average deferment depth ψ.

RE set

group

Ω = 1 Ω = 2 Ω = 4

Trans Avg. def. Trans Avg. def. Trans Avg. dptr

decr. depth ratio decr. depth ratio decr. len ratio

All 91.3% 0.7 79.4% 0.9 42.5% 1.5

STRING 90.0% 0.6 92.5% 0.6 75.5% 0.9

WILDCARD 89.3% 0.8 59.0% 1.1 0.0% 2.0

SNORT 94.0% 0.7 91.0% 0.8 63.0% 1.4

Table 4.5: Average values of transition decrease and average deferment depth ratios for

D2FAMERGE compared with ORIGINAL for our RE set groups given maximum defer-

ment depth bounds of 1, 2 and 4.

Overall, D2FAMERGE performs very well when presented a bound Ω. In particular, the

average increase in the number of transitions for D2FAMERGE with Ω equal to 1, 2 and

4, is only 131%, 20% and 1% respectively, compared to D2FAMERGE with unbounded

maximum deferment depth. Stated another way, when D2FAMERGE is required to have

a maximum deferment depth of 1, this only results in slightly more than twice the number

70

of transitions in the resulting D2FA. The corresponding values for ORIGINAL are 3121%,

1216% and 197%.

These results can be partially explained by examining the average deferment depth data.

Unlike in the unbounded maximum deferment depth scenario, here we see that D2FAMERGE

has a larger average deferment depth ψ than ORIGINAL except for the WILDCARD when

Ω is 1 or 2. What this means is that D2FAMERGE has more states that defer to at least

one other state than ORIGINAL does. This leads to the lower number of transitions in

the �nal D2FA. Overall, for Ω = 1, D2FAMERGE produces D2FA with roughly 91% fewer

transitions than ORIGINAL for all RE set groups. For Ω = 2, D2FAMERGE produces

D2FA with roughly 59% fewer transitions than ORIGINAL for the WILDCARD RE sets

and roughly 92% fewer transitions than ORIGINAL for the other RE sets.

4.5.5 D2FAMERGE versus BACKPTR

RE

set

BACKPTR D2FAMERGE with back-pointer

Trans
Def. depth RAM Time RAM2 Time2

Trans
Def. depth RAM Time

Avg. Max. (MB) (s) (MB) (s) Avg. Max. (MB) (s)

Bro217 11247 2.61 6 6.38 88.08 0.05 273.95 13567 2.33 6 0.13 6.24

C613 26222 2.50 5 11.04 55.91 0.13 971.45 33777 2.30 5 0.25 10.78

C7 217812 5.94 13 24.17 277.80 1.04 1950.00 219684 1.15 4 1.12 4.51

C8 34636 2.44 8 3.04 12.61 0.17 27.76 35476 1.20 4 0.19 0.69

C10 157139 2.13 7 14.52 96.86 0.75 476.54 158232 1.21 4 0.80 11.94

Snort24 46005 8.74 17 13.56 70.95 0.22 1130.00 58273 1.62 8 0.41 47.77

Snort31 82809 2.87 8 19.60 109.56 0.39 1110.00 124584 1.74 6 1.29 3.61

Snort34 46046 7.05 14 13.50 94.19 0.22 983.98 51557 1.42 5 0.30 6.06

Table 4.6: The D2FA size, D2FA average ψ and maximum Ψ deferment depths, space

estimate and time required to build the D2FA for both variants of BACKPTR and

D2FAMERGE with the back-pointer property.

71

We now compare D2FAMERGE with BACKPTR which enforces the back-pointer prop-

erty described in Section 4.4.3. We adapt D2FAMERGE to also enforce this back-pointer

property. The results for all our metrics are shown in Table 4.6 for our 8 primary RE sets.

We consider the two variants of BACKPTR described in Section 4.5.1.3, one which con-

structs the minimum state DFA corresponding to the given NFA and one which bypasses

the minimum state DFA and goes directly to the D2FA from the given NFA. We note the

second variant appears to use less space than D2FAMERGE. This is partially true since

BACKPTR creates a smaller D2FA than D2FAMERGE. However, we underestimate the

actual space used by this BACKPTR variant by simply assuming its required space is the

�nal D2FA size. We ignore, for instance, the space required to store intermediate complete

tables or to perform the NFA to DFA subset construction. Table 4.7 summarizes these

results by RE group displaying ratios for many of our metrics that highlight how much

better or worse D2FAMERGE does than BACKPTR.

RE set

group

Trans Def. depth ratio Space Time Space2 Time2

increase Avg. Max. ratio ratio ratio ratio

All 17.9% 2.9 1.9 30.4 19.3 0.7 142.5

STRING 25.0% 1.1 1.0 47.3 9.7 0.5 67.0

WILDCARD 1.3% 3.0 2.3 18.5 29.3 0.9 170.8

SNORT 29.7% 4.0 2.1 31.1 15.8 0.5 164.5

Table 4.7: Average values of transition increase, deferment depth ratios, space ratios,

and time ratios for D2FAMERGE compared with both variants of BACKPTR for RE set

groups.

Similar to D2FAMERGE versus ORIGINAL, we �nd that D2FAMERGE with the back-

pointer property performs well when compared with both variants of BACKPTR. Speci�-

cally, with an average increase in the number of transitions of roughly 18%, D2FAMERGE

72

runs on average 19 times faster than the fast variant of BACKPTR and 143 times faster

than the slow variant of BACKPTR. For space, D2FAMERGE uses on average almost 30

times less space than the �rst variant of BACKPTR and on average roughly 42% more

space than the second variant of BACKPTR. Furthermore, D2FAMERGE creates D2FA

with average deferment depth 2.9 times smaller than BACKPTR and maximum deferment

depth 1.9 times smaller than BACKPTR. As was the case with ORIGINAL, D2FAMERGE

achieves its best performance relative to BACKPTR on the WILDCARD RE sets and its

worst performance relative to BACKPTR on the STRING RE sets. This is desirable as

the space and time e�cient D2FAMERGE is most needed on RE sets like those in the

WILDCARD because those RE sets experience the greatest state explosion.

4.5.6 Scalability results

Finally, we assess the improved scalability of D2FAMERGE relative to ORIGINAL using

the Scale RE set assuming that we have a maximum memory size of 1GB. For both

ORIGINAL and D2FAMERGE, we add one RE at a time from Scale until the space

estimate to build the D2FA goes over the 1GB limit. For ORIGINAL, we are able only

able to add 12 REs; the �nal D2FA has 397, 312 states and requires over 71 hours to

compute. As explained earlier, we include the SRG edges in the RAM size estimate. If we

exclude the SRG edges and only include the DFA size in the RAM size estimate, we would

only be able to add one more RE before we reach the 1GB limit. For D2FAMERGE, we are

able to add 19 REs; the �nal D2FA has 80, 216, 064 states and requires only 77 minutes to

73

compute. This data set highlights the quadratic versus linear running time of ORIGINAL

and D2FAMERGE, respectively. Figure 4.5 shows how the space and time requirements

grow for ORIGINAL and D2FAMERGE as REs from Scale are added one by one until 19

have been added.

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

R
A

M
 (

M
B

)

#REs

Memory required to build

ORIGINAL
D2FAMERGE

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

)

#REs

Time required to build

ORIGINAL
D2FAMERGE

Figure 4.5: Memory and time required to build D2FA versus number of Scale REs used

for ORIGINAL's D2FA and D2FAMERGE's D2FA.

74

Chapter 5

TCAM Implementation

In this section we present our work on the hardware implementation of RE matching using

TCAM, which we call RegCAM.

5.1 Introduction/Motivation

Previous hardware solutions of RE matching have be based on FPGA. Although FPGA-

based solutions can be modi�ed, resynthesizing and updating FPGA circuitry in a deployed

system to handle RE updates is slow and di�cult. This makes FPGA-based solutions

di�cult to be deployed in many networking devices (such as NIDS/NIPS and �rewalls)

where the RE need to be updated frequently.

We propose the �rst TCAM based RE matching solution. TCAMs are prevalent in net-

working devices because TCAM-based packet classi�cation is the de facto industry stan-

75

dard for high-speed packet classi�cation, i.e., header-based �ltering. We show that TCAMs

are also very e�ective for high-speed DPI, i.e., payload-based �ltering.

5.1.1 TCAM Architecture for RE matching

We �rst explain the straightforward implementation of RE matching using TCAM without

any compression.

Given a RE set, we �rst construct an equivalent minimum state DFA. Second, we build

a two column TCAM lookup table where each column encodes one of the two inputs to

δ: the source state ID and the input character. Third, for each TCAM entry, we store

the destination state ID in the same entry of the associated SRAM. Figure 5.1 shows an

example DFA, its TCAM lookup table, and its SRAM decision table. We illustrate how

this DFA processes the input stream \01101111, 01100011". We form a TCAM lookup key

by appending the current input character to the current source state ID; in this example,

we append the �rst input character \01101111" to \00", the ID of the initial state s0, to

form \0001101111". The �rst matching entry is the second TCAM entry, so \01", the

destination state ID stored in the second SRAM entry is returned. We form the next

TCAM lookup key \0101100011" by appending the second input character \011000011"

to this returned state ID \01", and the process repeats.

Directly encoding a DFA in a TCAM using one TCAM entry per transition is infeasible.

For example, consider a DFA with 25, 000 states that consumes one 8 bit character per

transition. Each state has 28 transitions, and each transition needs 8 bits for the character

76

[a..o]

fail

S0

S1

S2

b

a,[c..o]b,c

a,[d..o]

fail
fail

(a) Example DFA.

TCAM SRAM
Source
ID

Input
character

Dest.
ID

00 0110 0000  00
00 0110   01
00    00
01 0110 0000  00
01 0110 0010  01
01 0110   10
01    00
10 0110 0000  00
10 0110 001  01
10 0110   10
10    00

S0

S1

S2

S0
S1
S0
S0
S1
S2
S0
S0
S1
S2
S0

Input stream

Src ID Input

(b) Corresponding TCAM table.

Figure 5.1: A DFA with its TCAM table.

and dlog 25000e bits for the source state ID. Thus, we would need a total of 140.38 Mb

(= 25000 × 28 × (8 + dlog 25000e)). This is infeasible given the largest available TCAM

chip has a capacity of only 72 Mb. To address this challenge, we use two techniques that

minimize the TCAM space for storing a DFA: transition sharing and table consolidation.

5.1.2 Reducing TCAM size

Recall that the two causes of DFA space explosion are transitions sharing and state repli-

cation (Section 3.2). We propose two techniques to reduce the size of TCAM required

77

to implement a DFA: Transitions Sharing that exploits transitions sharing and Table

Consolidation that exploits state replication. The basic idea is to combine multiple tran-

sitions into one such that we use the ternary nature and �rst-match semantics of TCAMs

to encode multiple DFA transitions using one TCAM entry.

5.1.2.1 Transitions Sharing

The two reasons for transition sharing are character redundancy and state redundancy.

Character redundancy: Prior work exploits character redundancy mainly by alphabet

encoding, where the alphabet Σ is mapped to a smaller alphabet Σ ′. Alphabet encoding

cannot fully leverage all the compression opportunities presented by character redundancy,

as it can only exploit global character redundancy that is common to all states in the

DFA. Speci�cally, alphabet encoding can map two characters σ1 and σ2 in Σ to the same

character σ ′ in Σ ′ if and only if ∀q ∈ Q, δ(q, σ1) = δ(q, σ2).

To exploit character redundancy at each state, we propose the technique of character

bundling. In character bundling, we leverage the ternary nature and �rst-match semantics

of TCAMs on the input character �eld to represent multiple characters and thus multiple

transitions that share the same source and destination states.

State redundancy: Prior work exploits state redundancy mainly by deferred transi-

tions, where one state p might defer most of the transitions for another state q. Existing

78

deferred transition based solutions cannot fully exploit state redundancy because of the

speed penalty, i.e., traversal of a deferred transition leads to no input being processed.

Thus, to alleviate this speed penalty, such solutions often choose deferred transitions that

do not fully compress the transition table.

To exploit state redundancy, we propose the technique of shadow encoding. In shadow

encoding, we leverage the ternary nature and �rst-match semantics of TCAMs on the

current state ID �eld to encode many incoming transitions of a state from di�erent states

using only one TCAM entry.

5.1.2.2 Table Consolidation

We get state explosion in a DFA because each NFA state is replicated multiple times in

the DFA. Table Consolidation exploits state replication in a DFA based on the following

observation: two DFA states that are replications of the same NFA state, will usually have

transitions remaining in the D2FA (i.e. non-deferred transitions) on the same set of input

characters (although the corresponding transitions in the two states might go to di�erent

states.) In this case, the TCAM tables for the two states will be exactly the same except

for the state IDs. If the corresponding transition go to di�erent next state then the SRAM

tables for the two states will be di�erent.

The idea is that we can merge the TCAM tables for the two states into one TCAM table,

and store both the SRAM tables side by side. This results in reduction in the TCAM size,

at the cost of possibly increasing SRAM size, which is �ne since TCAM size is much more

79

critical than SRAM size.

5.1.3 Increasing Matching Throughput

Another challenge that we address is improving RE matching speed and thus throughput.

One way to improve the throughput by up to a factor of k is to use k-stride DFAs that

consume k input characters per transition. However, this leads to an exponential increase

in both state and transition spaces. For example, a k-stride DFA requires 28∗k transitions

per state, so the transition space grows exponentially in k. Previous multi-stride DFAs

su�er from a signi�cant increase in the number of states and the number of transitions

such that only 2-stride DFAs are achieved in practice [9, 13].

To avoid this space explosion, we use the novel idea of variable striding. The basic idea

is to use transitions with variable strides, i.e. di�erent transitions can consume di�erent

numbers of input characters. This allows us to increase the average number of characters

consumed per transition while ensuring all the transitions �t within the allocated TCAM

space. This idea is based on two key observations. First, for many states, we can capture

many but not all k-stride transitions using relatively few TCAM entries whereas capturing

all k-stride transitions requires prohibitively many TCAM entries. Second, with TCAMs,

we can easily store transitions with di�erent strides in the same TCAM lookup table.

Variable striding would be very di�cult to implement without TCAMs and thus it is not

surprising variable striding has not been considered before.

80

5.1.4 Comparison of Transition Sharing with D2FA

The observation behind the transition sharing technique, namely many states share a large

number of outgoing transactions, is similar to that of deferred transition in a D2FA. We

use a D2FA as the starting point for transition sharing, and it can be viewed as a way of

implementing a D2FA in TCAM.

But there are several di�erences between transition sharing and D2FA:

(1) The transitions stored at each state is given by the D2FA. But our character bundling

technique achieves further compression, and so the total number of TCAM rules is signif-

icantly less than the number of transitions in the D2FA.

(2) D2FA su�ers from speed penalty, as no input is consumed when a deferred transition is

taken. The number of lookups needed in the worst case is given the the deferment depth

of the current state. Because of or shadow encoding technique, there is no speed penalty

in transition sharing. Only one TCAM lookup is needed for each character, irrespective

of the deferment depth of the current state.

(3) Because of the speed penalty in the D2FA, for practical implementation, the deferment

depth of the D2FA is bounded, which signi�cantly increases the number of transitions

in the D2FA. For transition sharing, we build D2FA without any limit on the deferment

depth, achieving maximum transition compression.

We now explain each of our techniques in detail.

81

5.2 Transition Sharing

The basic idea of transition sharing is to combine multiple transitions into a single TCAM

entry. We propose two transition sharing ideas: character bundling and shadow encod-

ing. Character bundling exploits intra-state optimization opportunities and minimizes

TCAM tables along the input character dimension. Shadow encoding exploits inter-state

optimization opportunities and minimizes TCAM tables along the source state dimension.

5.2.1 Character Bundling

Character bundling exploits character redundancy by combining multiple transitions from

the same source state to the same destination into one TCAM entry. Character bundling

consists of four steps. (1) Assign each state a unique ID of dlog |Q|e bits. (2) For each state,

enumerate all 256 transition rules where for each rule, the predicate is a transition's label

and the decision is the destination state ID. (3) For each state, treating the 256 rules as a

1-dimensional packet classi�er and leveraging the ternary nature and �rst-match semantics

of TCAMs, we minimize the number of transitions using the optimal 1-dimensional TCAM

minimization algorithm (Section 3.4.2). (4) Concatenate the |Q| 1-dimensional minimal

pre�x classi�ers together by prepending each rule with its source state ID. The resulting

list can be viewed as a 2-dimensional classi�er where the two �elds are source state ID and

transition label and the decision is the destination state ID. Figure 5.1 shows an example

DFA and its TCAM lookup table built using character bundling. The three chunks of

82

TCAM entries encode the 256 transitions for s0, s1, and s2, respectively. Because each

TCAM entry matches one or more input characters, we need only 11 total TCAM entries

instead of the na��ve implementation that requires 256× 3 = 768 entries.

5.2.2 Shadow Encoding

Whereas character bundling encodes multiple transitions with the same source and desti-

nation states using one TCAM entry, shadow encoding encodes multiple transitions with

the same character label and destination state ID using one TCAM entry. This technique

is based upon the observation of state redundancy. More speci�cally, character bundling

uses ternary codes in the input character �eld to encode multiple input characters, and

shadow encoding uses ternary codes in the source state ID �eld to encode multiple source

states.

5.2.2.1 Observations

We use our running example in Figure 5.1 to illustrate shadow encoding. We observe that

all transitions with source states s1 and s2 have the same destination state except for the

transitions on character c. Likewise, source state s0 di�ers from source states s1 and s2

only in the character range [a..o]. This implies there is a lot of state redundancy. The

table in Figure 5.2 shows how we can exploit state redundancy to further reduce required

TCAM space. First, since states s1 and s2 are more similar, we give them the state IDs 00

and 01, respectively. State s2 uses the ternary code of 0∗ in the state ID �eld of its TCAM

83

entries to share transitions with state s1. We give state s0 the state ID of 10, and it uses the

ternary code of ∗∗ in the state ID �eld of its TCAM entries to share transitions with both

states s1 and s2. Second, we order the state tables in the TCAM so that state s1 is �rst,

state s2 is second, and state s0 is last. This facilitates the sharing of transitions among

di�erent states where earlier states have incomplete tables deferring some transitions to

later tables. Speci�cally, s1 has an incomplete table with only a single TCAM entry to

specify the transitions it does not share with s2, and s2 has an incomplete table with only

3 TCAM entries to specify the transitions it (and s1) does not share with s0.

TCAM SRAM
Source
SC

Input
character

Dest.
ID

00 0110 0011  01
0 0110 001  00
0 0110 0000  10
0 0110   01
 0110 0000  10
 0110   00
    10

S1

S2

S0

S2
S1
S0
S2
S0
S1
S0

Figure 5.2: TCAM table with shadow encoding.

Implementing shadow encoding requires solving three key problems: (1) Find the best

order of the state tables in the TCAM (any order is allowed). (2) Choose binary IDs and

ternary codes for each state given the state table order. (3) Identify entries to remove from

each state table.

84

5.2.2.2 Determining Table Order

We �rst describe how we compute the order of tables within the TCAM. In order to exploit

inter-state transition sharing, we �rst build a D2FA for the given RE set. If p�q (i.e. state

p is a descendant of state q), we say that state p is in state q's shadow. We use the partial

order of the deferment forest of the D2FA to determine the order of state transition tables

in the TCAM. Speci�cally, state q's transition table must be placed after the transition

tables of all states in state q's shadow. That is, the state order in given by a depth �rst

traversal of the deferment forest.

[a..o]

fail

S0

S1

S2

cb,c

a,[d..o]
(a) D2FA

242

S0

S0 S0

243

255
(b) SRG

S0

S2

S1
(c) Deferment tree

Figure 5.3: D2FA, SRG, and deferment tree of the DFA in Figure 5.1.

Figure 5.3 shows the D2FA, SRG, and the deferment tree, respectively, for the DFA in

Figure 5.1.

85

5.2.2.3 Shadow Encoding Algorithm

We now describe our shadow encoding algorithm which takes as input a deferment forest F,

and outputs the state IDs. We also use the term nodes to refer to states in the description

of the algorithm. To ensure that proper sharing of transitions occurs, we need to compute

a shadow encoding for the given deferment forest. In a valid shadow encoding, each state

q is assigned a binary state ID (ID(q)) and a ternary shadow code (SC(q)). Binary state

IDs are used in the destination state ID �eld (in the SRAM) of transition rules. Ternary

shadow codes are used in the source state ID �eld (in the TCAM) of transition rules. The

shadow length of a shadow encoding is the common length of every state ID and shadow

code.

A valid shadow encoding for a given deferment forest F must satisfy the following four

Shadow Encoding Properties (SEP):

1. Uniqueness Property : For any two distinct states p and q, ID(p) 6= ID(q) and

SC(p) 6= SC(q).

2. Self-Matching Property : For any state p, ID(p) ∈ SC(p) (i.e., ID(p) matches

SC(p)).

3. Deferment Property : For any two states p and q, p�q (i.e., q is an ancestor of p

in the given deferment forest) if and only if SC(p) ⊂ SC(q).

4. Non-interception Property : For any two distinct states p and q, p�q if and only

if ID(p) ∈ SC(q).

86

Lemma 3. Given a valid shadow encoding for deferment forest F, for any state q

and all states p in q's shadow, ID(p) ∈ SC(q).

Proof. The deferment property implies that SC(p) ⊂ SC(q). The self-matching property

implies that ID(p) ∈ SC(p). Thus, the result follows.

Lemma 4. Given a valid shadow encoding for deferment forest F, for any state q

and all states p not in q's shadow, ID(p) /∈ SC(q).

Proof. This follows immediately from the non-interception property.

Intuitively, q's shadow code must match the state ID of all states in q's shadow and cannot

match the state ID of any states not in q's shadow.

Theorem 4. Given a valid shadow encoding for a DFA M and deferment forest

F and a TCAM classi�er C that uses only binary state IDs for both source and

destination state IDs in transition rules and that orders the state tables according

to F, the TCAM classi�er formed by replacing each source state ID in C with the

corresponding shadow code and each destination state ID in C with the corresponding

state ID will be equivalent to C.

Proof. This follows from the �rst match nature of TCAMs, the state tables are ordered

according to F, and Lemmas 3 and 4.

We give a shadow encoding algorithm where the deferment forest is a single deferment tree

DT . We handle deferment forests by simply creating a virtual root node whose children

87

are the roots of the deferment trees in the forest and then running the algorithm on this

tree.

Our algorithm uses the following internal variables for each node v: a local binary ID

denoted L(v), a global binary ID denoted G(v), and an integer weight denoted W(v) that

is the shadow length we would use for the subtree of DT rooted at v. Intuitively, the

state ID of v will be G(v)|L(v) where | denotes concatenation, and the shadow code of v

will be the pre�x string G(v) followed by the required number of ∗'s; some extra padding

characters may be needed. We use #L(v) and #G(v)to denote the number of bits in L(v)

and G(v), respectively.

Our algorithm works as follows. For all v, we initially set L(v) = G(v) = ∅ and W(v) = 0.

Our algorithm works recursively in a bottom-up fashion. We mark nodes red when they

have been processed. We begin by marking each leaf node of DT as processed. We process

an internal node v when all its children v1, · · · , vn are marked red. Once a node v is

processed, its weight W(v) and its local ID L(v) are �xed, but we will prepend additional

bits to its global ID G(v) when we process its ancestors in DT .

While precessing v, we assign v and each of its n children a variable-length binary code

HCode that is pre�x free (i.e. no HCode is a pre�x of another HCode.) One option is to

assign each of the (n + 1) nodes a binary number from 0 to n using log2(n + 1) bits. To

minimize the shadow length W(v), we use a Hu�man coding style algorithm to compute

the HCodes and W(v). This algorithm uses two data structures: a binary encoding tree

T with n + 1 leaf nodes, one for v and each of its children, and a min-priority queue PQ,

88

initialized with n+ 1 elements (one for v and each of its children) that is ordered by node

weight. While PQ has more than one element, we remove the two elements x and y with

lowest weight from PQ, create a new internal node z in T with two children x and y, and

set weight(z)=maximum(weight(x), weight(y))+1, and then put element z into PQ. When

PQ has only one element, T is complete. The HCode assigned to each leaf node v ′ is the

path in T from the root node to v ′ where left edges have value 0 and right edges have value

1.

We update the internal variables of v and its descendants in DT as follows. We set L(v)

to be its HCode, and W(v) to be the weight of the root node of T ; G(v) is left empty. For

each child vi, we prepend vi's HCode to the global ID of every node in the subtree rooted

at vi including vi itself. We then mark v as red. This continues until all nodes in DT are

red.

We now set state IDs and a shadow codes. The shadow length is k, the weight of the root

node of DT . We use {∗}m to denote a ternary string with m ∗'s and {0}m to denote a

binary string with m 0's. For each node v, we compute v's state ID and shadow code as

follows:

ID(v) = G(v)|L(v)|{0}k−#G(v)−#L(v), SC(v) = G(v)|{∗}k−#G(v).

We illustrate our shadow encoding algorithm in Figure 5.4. Figure 5.4(a) shows all the

internal variables just before v1 is processed. Figure 5.4(b) shows the Hu�man style binary

encoding tree T built for node v1 and its children v2, v3, and v4 and the resulting HCodes.

89

v1

v3v2 v4

v5 v7v6

G : 
L : 
W: 0

G : 
L : 
W: 0

G : 
L : 0
W: 1

G : 
L : 00
W: 2

G : 1
L : 
W: 0

G : 01
L : 
W: 0

G : 10
L : 
W: 0

(a) Deferment tree with internal variables before processing v1.

Weight:

Node: v1 v2 v3 v4
HCode: 000 001 01 1

1
=max(0,0)+1

0 0 1 2

2
=max(1,1)+1

3
=max(2,2)+1

0

10

1

0 1

(b) Build Hufman tree and assigned HCodes while

processing v1.

Figure 5.4: Shadow encoding example.

90

v1

v3v2 v4

v5 v7v6

G : 
L : 000
W: 3

G : 001
L : 
W: 0

G : 01
L : 0
W: 1

G : 1
L : 00
W: 2

G : 011
L : 
W: 0

G : 101
L : 
W: 0

G : 110
L : 
W: 0

SC = 001
ID = 001

SC = 
ID = 000

SC = 01
ID = 010

SC = 1
ID = 100

SC = 011
ID = 011

SC = 101
ID = 101

SC = 110
ID = 110

(c) Internal variables before processing v1 and assigned state IDs and

shadow codes.

Figure 5.4: Shadow encoding example (cont'd).

Figure 5.4(c) shows each node's �nal weight, global ID, local ID, state ID and shadow code.

The pseudo-code for the Shadow Encoding algorithm is given in �gure Algorithm 5.5.

We now prove two properties of our shadow encoding algorithm using induction on the

height n of the deferment tree T . In both proofs, in the inductive case, we let s denote

the root node of T , s1 through sc denote the c children of s, and Ti for 1 ≤ i ≤ c denote

the subtree rooted at si.

Theorem 5. The state IDs and shadow codes generated by our Shadow Encoding

algorithm satisfy the SEP.

Proof. We prove by induction on the height n of T . The base case where n = 0 is trivial

since there is only a single node. For the inductive case, our inductive hypothesis is that

the shadow codes and state IDs generated for Ti for 1 ≤ i ≤ c satisfy the SEP. Note, we do

91

1 Input: Deferment forest, DF, with n states, s1, . . . , sn.

Output: ID[1..n] and SC[1..n] for each state.

1 Add state s0 to DF with all the tree roots as its children;

2 Set all ID[1..n] and SC[1..n] to the empty string;

3 ShadowEncode (s0);

4 return ID[1..n] and SC[1..n];

5 Function ShadowEncode(s)

// Base case

6 if s has no children then return 0;

// Recursive case

7 r← Number of children of s;

8 CHILD[1..r]← List of children of s;

9 for i = 1 to r do

10 W[i]← ShadowEncode(CHILD[i]);

11 W[0]← 0;

12 G← HCode(W);

13 l← max0≤i≤r(|G[i]|+W[i]);

14 for i = 1 to r do

15 Append 0's at end of G[i] to make |G(i)|+W(i) = l;

16 Attach G[i] in front of ID and SC for each state in the subtree of CHILD[i];

17 ID(s)← (0)l;

18 SC(s)← (∗)l;
19 return l;

20 Function HCode(W[0..r])

21 Initialize Q as a min priority queue of binary tree nodes;

22 for i = 0 to r do

23 Insert leaf node ni in Q with value V[ni]←W[i];

24 while |Q| > 1 do

25 nl ← pop(Q);

26 nr ← pop(Q);

27 Insert node n in Q with nl and nr as left and right children, and value

V[n]← max(V[nl],V[nr]) + 1;

28 n← pop(Q);

29 Generate the codes based on the Hu�man Tree rooted at n;

30 return the codes assigned to the leaf nodes;

31
Figure 5.5: Shadow Encoding Algorithm.

92

not process the root node s in this assumption. We now consider what happens when we

process s. For each node v ∈ Ti for 1 ≤ i ≤ c, HCode(si) is prepended to the SC(v) and

ID(v). Thus, the SEP still holds for all the nodes within Ti for 1 ≤ i ≤ c. For any nodes p

and q from di�erent subtrees Ti and Tj, it follows that ID(p) /∈ SC(q) and ID(q) /∈ SC(p)

because HCode(si) and HCode(sj) are not pre�xes of each other. Finally, for all nodes

v ∈ T , ID(v) ∈ SC(s) because SC(s) contains only ∗'s.

We de�ne a pre�x shadow encoding as a shadow encoding where all shadow codes are

pre�x strings; that is, all ∗'s are after any 0's or 1's. For any pre�x shadow encoding E

of T , ETi denotes the subset of state ids and shadow codes for all v ∈ Ti. For any state

id or shadow code X, pbX denotes the �rst p characters of X, and Xcp denotes the last p

characters of X. We de�ne ETicp = {Xcp | X ∈ ETi}.

Lemma 5. Consider a deferment tree T with a valid length x pre�x shadow encoding

E that satis�es the SEP. For every child si, 1 ≤ i ≤ c, of the root of T , there exist two

values pi and qi such that:

1. ∀i, 0 < pi ≤ x, 0 ≤ qi < x and pi + qi = x.

2. ∀i, ∀v ∈ Ti, pibID(v) = pi
bSC(v) = pi

bSC(si).

3. ∀i, ETicqi is a valid pre�x shadow encoding of Ti.

4. The set EID = {pibSC(si) | 1 ≤ i ≤ c} is pre�x free.

Proof. Since E is a pre�x shadow encoding, for any child si, SC(si) must be of the form

93

{0, 1}a{∗}x−a. Let pi = a and qi = x − a. Now, pi > 0, otherwise we would have

SC(si) = {∗}x, which is not possible as it would violate the deferment and non-interception

properties. This proves (1). Also, since E satis�es the deferment and self-matching prop-

erties, we must have (2) and (3). And we must have (4) because of the non-interception

property.

Our shadow encoding algorithm produces minimum length encodings.

Theorem 6. For any deferment tree T , our shadow encoding algorithm generates the

shortest possible pre�x shadow encoding that satis�es the SEP.

Proof. First, our shadow encoding algorithm generates a pre�x shadow encoding. We

prove by induction on the height n of T that it is the shortest possible pre�x shadow

encoding. The base case where n = 0 is trivial since the encoding for a single node is

empty and thus optimal. For the inductive case, our inductive hypothesis is that the

pre�x shadow encoding for Ti for 1 ≤ i ≤ c is the shortest possible.

Let E be the pre�x shadow encoding generated by our shadow encoding algorithm and

F be the optimal pre�x shadow encoding. Let l and m be the lengths of E and F

respectively. Let gi and wi be the values de�ned by Lemma 5 for E . And let pi and qi

be the corresponding values for F . By the inductive hypothesis, we have wi ≤ qi for

1 ≤ i ≤ c.

Ifm < l, this implies that the optimal shortest pre�x shadow encoding for T must compute

a better set of HCode equivalents for each child node si. In particular, we have that

94

maxi(pi+qi) < maxi(gi+wi). That is, given equal or larger initial lengths, {qi}, optimal

pre�x shadow encoding computes pre�x-free codes FID for the children that are shorter

than the pre�x-free codes EID computed by the HCode subroutine. However, this is a

contradiction, since the Hu�man style encoding used to compute the HCodes minimizes

the term maxi(gi +wi) [21]. Therefore, we must have l ≤ m.

Experimentally, we found that our shadow encoding algorithm is e�ective at minimizing

shadow length. No DFA had a shadow length larger than dlog2 |Q|e+ 3 where dlog2 |Q|e is

the shortest possible shadow length.

5.2.2.4 Choosing Transitions

Section 5.2.1 describes how the TCAM tables are generated for states with all 256 tran-

sitions (i.e. for root states) using 1-dimensional complete classi�er minimization. But

non-root states do not have complete tables. We now describe how we apply the character

bundling technique to generate the TCAM tables for non-root states.

For a given DFA and a corresponding deferment forest, we construct a D2FA by choosing

which transitions to encode in each transition table as follows. If state p has a default

transition to state q, we identify p's deferrable transitions which are the transitions that are

common to both p's transition table and q's transition table. These deferrable transitions

are optional for p's transition table; that is, they can be removed to create an incomplete

transition table or included if that results in fewer TCAM entries. Figure 5.2 is an example

where including a deferrable transition produces a smaller classi�er. The second entry in

95

s2's table in Figure 5.2 can be deferred to state s0's transition table. However, this results

in a classi�er with at least 4 TCAM entries whereas specifying the transition allows a

classi�er with just 3 TCAM entries. This leads us to the following problem for which we

give an optimal solution.

Definition 4 (Partially Deferred Incomplete One-dimensional TCAM Minimization Prob-

lem). Given a one-dimensional packet classi�er f on {∗}b and a subset D ⊆ {∗}b, �nd

the minimum cost pre�x classi�er f ′ such that Cover(f ′) ⊇ {∗}b \D and is equivalent

to f over Cover(f ′).

Here b is the �eld width (in bits), D is the set of packets that can be deferred, and Cover(c)

is the union of the predicates of all the rules in c (i.e. all the packets matched by c). For

simplicity of description, we assume that f has
attened rule set (i.e. one rule for each

packet with the packet as the rule predicate). Assuming the packet is a one byte character,

this implies f has 256 rules.

We provide a dynamic programming formulation for solving this problem that is similar to

the dynamic programming formulation used in [31] and [47] to solve the related problem

when all transitions must be speci�ed. In these previous solutions for complete classi�ers,

for each pre�x, the dynamic program maintains an optimal solution for each possible �nal

decision. It then speci�es how to combine these optimal solutions for matching pre�xes

into an optimal solution for the pre�x that is the union of the two matching pre�xes;

in this step, two �nal rules for each pre�x that have the same decision can be replaced

by a single �nal rule for the combined pre�x resulting in a savings of one TCAM entry.

96

The main change is to maintain an optimal solution for each pre�x where we defer some

transitions within the pre�x.

We now formally specify this dynamic program introducing the following notation. Let

di, i ≥ 1 denote the actual decisions in a classi�er. For a pre�x P = {0, 1}k{∗}b−k, we use P

to denote the pre�x {0, 1}k0{∗}b−k−1, and P to denote the matching pre�x {0, 1}k1{∗}w−k−1.

For a classi�er f on {∗}b and a pre�x P ⊆ {∗}b, fP denotes a classi�er on P that is equivalent

to f (i.e. the subset of rules in f with predicates that are in P). So f = f
{∗}b . For i ≥ 1, f

di
P

denotes a classi�er on P that is equivalent to f and the decision of the last rule is di. Note

that all packets in P are speci�ed by such classi�ers. Classi�er f
d0
P denotes the optimal

classi�er that is equivalent to f except that it possibly defers some packets within D. We

use C(f
di
P) to denote the cost of the minimum classi�er equivalent to f

di
P for i ≥ 0. [P(x)]

evaluates to 1 when the statement inside is true; otherwise it evaluates to 0. We use x to

represent some packet in the pre�x P currently being considered.

Theorem 7. Given a one-dimensional classi�er f on {∗}b and a subset D ⊆ {∗}b with

a set of possible decisions {d1, d2, . . . , dz} and a pre�x P ⊆ {∗}b, we have that C(f
di
P)

is calculated as follows:

(1) For i > 0

C(f
di
P) =


1+ [f(x) 6= di] if f is consistent on P

minzj=1(C(f
dj
P) + C(f

dj

P) − 1+ [j 6= i]) else

97

(2) For i = 0:

C(f
d0
P) =


0 if P ⊆ D

min(minzi=1(C(f
di
P)), C(f

d0
P) + C(f

d0
P)) else

Proof. (1) When i > 0, we just build a minimum cost complete classi�er. The recursion

and the proof is exactly the same as given in [31] Theorem 4.1 (with decision weights = 1).

(2) We consider two possibilities. Either the optimal classi�er is a complete classi�er or

the optimal classi�er is an incomplete classi�er. If the optimal classi�er is incomplete, we

consider two cases. If the entire pre�x P is contained with D and can be deferred, the

minimum cost classi�er is to defer all transitions and has cost 0. Otherwise, the minimum

cost classi�er for P would just be the minimum cost classi�er for P concatenated with the

minimum cost classi�er for P. This is represented by the last term in the minimization

for case (2). The possibility that the optimal classi�er is a complete classi�er is handled

by the �rst term in the �rst minimization for case (2).

5.3 Table Consolidation

We now present table consolidation where we combine multiple transition tables for

di�erent states into a single transition table such that the combined table takes less TCAM

space than the total TCAM space used by the original tables. To de�ne table consolidation,

we need two new concepts: k-decision rule and k-decision table. A k-decision rule is a rule

98

whose decision is an array of k decisions. A k-decision table is a sequence of k-decision

rules following the �rst-match semantics. Given a k-decision table T and i (0 ≤ i < k), if

for any rule r in T we delete all the decisions except the i-th decision, we get a 1-decision

table, which we denote as T[i]. In table consolidation, we take a set of k 1-decision tables

T0, · · · ,Tk−1 and construct a k-decision table T such that for any i (0 ≤ i < k), the

condition Ti ≡ T[i] holds where Ti ≡ T[i] means that Ti and T[i] are equivalent (i.e., they

have the same decision for every search key). We call the process of computing k-decision

table T table consolidation, and we call T the consolidated table.

5.3.1 Observations

Table consolidation is based on three observations. First, semantically di�erent TCAM

tables may share common entries with possibly di�erent decisions. For example, the three

tables for s0, s1 and s2 in Figure 5.1 have three entries in common: 01100000, 0110∗∗∗∗,

and ∗∗∗∗∗∗∗∗. Table consolidation provides a novel way to remove such information re-

dundancy. Second, given any set of k 1-decision tables T0, · · · ,Tk−1, we can always �nd

a k-decision table T such that for any i (0 ≤ i < k), the condition Ti ≡ T[i] holds. This is

easy to prove as we can use one entry per each possible binary search key in T. Third, a

TCAM chip typically has a build-in SRAM module that is commonly used to store lookup

decisions. For a TCAM with n entries, the SRAM module is arranged as an array of

n entries where SRAM[i] stores the decision of TCAM [i] for every i. A TCAM lookup

returns the index of the �rst matching entry in the TCAM, which is then used as the

99

index to directly �nd the corresponding decision in the SRAM. In table consolidation,

we essentially trade SRAM space for TCAM space because each SRAM entry needs to

store multiple decisions. As SRAM is cheaper and more e�cient than TCAM, moderately

increasing SRAM usage to decrease TCAM usage is worthwhile.

Figure 5.6 shows the TCAM lookup table and the SRAM decision table for a 3-decision

consolidated table for states s0, s1, and s2 in Figure 5.1. In this example, by table con-

solidation, we reduce the number of TCAM entries from 11 to 5 for storing the tran-

sition tables for states s0, s1, and s2. This consolidated table has an ID of 0. As

both the table ID and column ID are needed to encode a state, we use the notation

< Table ID > @ < Column ID > to represent a state.

TCAM SRAM

Consolidated Input Column ID

Src Table ID Character 00 01 10

0 0110 0000 → s0 s0 s0
0 0110 0010 → s1 s1 s1
0 0110 0011 → s1 s2 s1
0 0110 ∗∗∗∗ → s1 s2 s2
0 ∗∗∗∗ ∗∗∗∗ → s0 s0 s0

Figure 5.6: 3-decision table for 3 states in Figure 5.1

We illustrate input character stream processing with table consolidation using this example

3-decision table. Suppose the input character string is \01101111, 01100011". The initial

state is state s0 which is represented as 0@00. We append s0's table ID of 0 to the �rst

character 01101111 to form the lookup key 001101111. This matches the fourth TCAM

entry in the 3-decision table. We now need to �nd the decision. We use s0's column ID

00 to determine that the �rst decision is the correct decision. This gives us the state s1

100

which is represented as 0@01. We then prepend s1's table ID of 0 to the second character

01100011 to form the lookup key 001100011. This matches the third TCAM entry. We

use s1's column ID of 01 to determine that the second decision is the correct decision.

This gives us the next state s2 which has code 0@10. Because s2 is an accepting state, we

would accept the input string. Note that because this DFA has only 3 states which have

all been consolidated together, all three states have the same table ID of 0. In general,

with more states than just those consolidated together, we would have more table IDs.

There are two key technical challenges in table consolidation. The �rst challenge is how

to consolidate k 1-decision transition tables into a k-decision transition table. The second

challenge is which 1-decision transition tables should be consolidated together. Intuitively,

the more similar two 1-decision transition tables are, the more TCAM space saving we

can get from consolidating them together. However, we have to consider the deferment

relationship among states. We present our solutions to these two challenges.

5.3.2 Computing a k-decision table

In this section, we assume we know which states need to be consolidated together and

present a local state consolidation algorithm that takes a k1-decision table for state set

Si and a k2-decision table for another state set Sj as its input and outputs a consolidated

(k1+ k2)-decision table for state set Si ∪ Sj. For ease of presentation, we �rst assume that

k1 = k2 = 1.

Let s1 and s2 be the two input states which have default transitions to states s3 and s4.

101

The consolidated table will be assigned a common table ID X. We assign state s1 column

ID 0 and state s2 column ID 1. Thus, we encode s1 as X@0 and s2 as X@1. We enforce

a constraint that if we do not consolidate s3 and s4 together, then s1 and s2 cannot defer

any transitions at all. If we do consolidate s3 and s4 together, then s1 and s2 may have

incomplete transition tables due to default transitions to s3 and s4, respectively.

The key concepts underlying this algorithm are breakpoints and critical ranges. To de�ne

breakpoints, it is helpful to view Σ as numbers ranging from 0 to |Σ| − 1; given 8 bit

characters, |Σ| = 256. For any state s, we de�ne a character i ∈ Σ to be a breakpoint for s

if δ(s, i) 6= δ(s, i−1). For the end cases, we de�ne 0 and |Σ| to be breakpoints for every state

s. Let b(s) be the set of breakpoints for state s. We then de�ne b(S) =
⋃
s∈S b(s) to be the

set of breakpoints for a set of states S ⊂ Q. Finally, for any set of states S, we de�ne r(S)

to be the set of ranges de�ned by b(S): r(S) = {[0, b2−1], [b2, b3−1], . . . , [b|b(S)|−1, |Σ|−1]}

where bi is ith smallest breakpoint in b(S). Note that 0 = b1 is the smallest breakpoint

and |Σ| is the largest breakpoint in b(S). Within r(S), we label the range beginning at

breakpoint bi as ri for 1 ≤ i ≤ |b(S)|−1. If δ(s, bi) is deferred, then ri is a deferred range.

When we consolidate s1 and s2 together, we compute b({s1, s2}) and r({s1, s2}). For each

r ′ ∈ r({s1, s2}) where r ′ is not a deferred range for both s1 and s2, we create a consolidated

transition rule where the decision of the entry is the ordered pair of decisions for state s1

and s2 on r
′. For each r ′ ∈ r({s1, s2}) where r ′ is a deferred range for one of s1 but not the

other, we �ll in r ′ in the incomplete transition table where it is deferred, and we create

a consolidated entry where the decision of the entry is the ordered pair of decisions for

102

state s1 and s2 on r
′. Finally, for each r ′ ∈ r({s1, s2}) where r ′ is a deferred range for both

s1 and s2, we do not create a consolidated entry. This produces a non-overlapping set of

transition rules that may be incomplete if some ranges do not have a consolidated entry.

If the �nal consolidated transition table is complete, we minimize it using the optimal

1-dimensional TCAM minimization algorithm in [30, 47]. If the table is incomplete, we

minimize it using the 1-dimensional incomplete classi�er minimization algorithm in [31].

We generalize this algorithm to cases where k1 > 1 and k2 > 1 by simply considering

k1 + k2 states when computing breakpoints and ranges.

5.3.3 Choosing States to Consolidate

We now describe our global consolidation algorithm for determining which states to con-

solidate together. As we observed earlier, if we want to consolidate two states s1 and s2

together, we need to consolidate their parent nodes in the deferment forest as well or else

lose all the bene�ts of shadow encoding. Thus, we propose to consolidate two deferment

trees together.

A consolidated deferment tree must satisfy the following properties. First, each node is

to be consolidated with at most one node in the second tree; some nodes may not be

consolidated with any node in the second tree. Second, a level i node in one tree must

be consolidated with a level i node in the second tree. The level of a node is its distance

from the root. We de�ne the root to be a level 0 node. Third, if two level i nodes are

consolidated together, their level i − 1 parent nodes must also be consolidated together.

103

An example legal matching of nodes between two deferment trees is depicted in Figure 5.7.

x0

x3x2 x4x1

x7x6x5

x9x8

y0

y3y2 y4y1

y6y5

y7

Figure 5.7: Consolidating two trees.

Given two deferment trees, we start the consolidation process from the roots. After we

consolidate the two roots, we need to decide how to pair their children together. For

each pair of nodes that are consolidated together, we again must choose how to pair their

children together, and so on. We make an optimal choice using a combination of dynamic

programming and matching techniques. Suppose we wish to compute the minimum cost

C(x, y), measured in TCAM entries, of consolidating two subtrees rooted at nodes x and

y where x has u children X = {x1, . . . , xu} and y has v children Y = {y1, . . . , yv}. We

�rst recursively compute C(xi, yj) for 1 ≤ i ≤ u and 1 ≤ j ≤ v using our local state

consolidation algorithm as a subroutine. We then construct a complete bipartite graph

KX,Y such that each edge (xi, yj) has the edge weight C(xi, yj) for 1 ≤ i ≤ u and 1 ≤ j ≤ v.

Here C(x, y) is the cost of a minimum weight matching [24,35] of K(X, Y) plus the cost of

consolidating x and y. When |X| 6= |Y|, to make the sets equal in size, we pad the smaller

104

set with null states that defer all transitions.

Finally, we must decide which trees to consolidate together. We assume that we produce

k-decision tables where k is a power of 2. We describe how we solve the problem for k = 2

�rst. We create an edge-weighted complete graph with where each deferment tree is a

node and where the weight of each edge is the cost of consolidating the two corresponding

deferment trees together. We �nd a minimum weight matching [16, 18] of this complete

graph to give us an optimal pairing for k = 2. For larger k = 2l, we then repeat this

process l− 1 times. Our matching is not necessarily optimal for k > 2.

In some cases, the deferment forest may have only one tree. In such cases, we consider con-

solidating the subtrees rooted at the children of the root of the single deferment tree. We

also consider similar options if we have a few deferment trees but they are not structurally

similar.

Figure Algorithm 5.8 shows the pseudo-code for the algorithm.

5.3.3.1 Greedy Matching

Our algorithm using the matching subroutines gives the optimal pairing of deferment trees

but can be relatively slow on larger DFAs. When running time is a concern, we present

a greedy matching routine. When we need to match children of two nodes, x and y, we

consider one child at a time from the node with fewer children (say x). First all children of

y are set unmarked. For each child, xi, of x, we �nd the best match from the unmarked

105

1 Input: Deferment forest, DF, with r tree roots, s1, . . . , sr.

Output: Optimal matching of the r roots.

1 For each pair of roots, si and sj, compute C(si, sj);

2 Construct complete graph Kr, with the roots as vertices and C(si, sj) as edge weights;

3 return Minimum Weight Matching(Kr);

4 Function C(s1, s2)

// Base case

5 if s1 and s2 have no children then

6 return Consolidated Cost(s1, s2);

// Recursive case

7 Attach NULL children so that both s1 and s2 have same number of children, q;

8 Construct complete bipartite graph Kq,q, with the children of s1 and s2 as the vertices,

and set C(sx, sy) as the edge weight between vertices sx and sy;

9 M = Minimum Weight Bipartite Matching(Kq,q) gives the matching of the children;

10 count← 0;

11 foreach matching (sx, sy) ∈ M do

12 count← count+ C(sx, sy);

13 return (count+ Consolidated Cost(s1, s2));

14
Figure 5.8: Algorithm for Consolidating Trees.

children of y, match them up, and set the matched child in y as marked. The best match

for xi is given by

argminyj∈{unmarked children of y}

C(xi, yj)

C(xi) + C(yj)

where C(x) is just the cost (in TCAM entries) of the subtree rooted at x. If C(xi)+C(yj) =

0, then we set the ratio to 0.5. All unmarked children of y at the end are matched with

null states. We consider the children of x in decreasing order of C(xi) to prioritize the

larger children of x. We use the same approach for matching roots. First all roots are set

unmarked. Each time we consider the largest unmarked root, �nd the best match for it,

and then mark the newly matched roots.

In our experiments, this greedy approach runs much faster than the optimal approach

106

and the resulting classi�er size is not much larger. We also observe that another greedy

approach that uses C(xi, yj) instead of
C(xi,yj)

C(xi)+C(yj)
produces classi�ers with much larger

TCAM sizes. This approach often matches a large child of x with a small child of y that

it does not align well with.

5.3.4 Effectiveness of Table Consolidation

We now explain why table consolidation works well on real-world RE sets.

Most real-world RE sets contain REs with wildcard closures `.?' where the wildcard `.'

matches any character and the closure `?' allows for unlimited repetitions of the preceding

character. Wildcard closures create deferment trees with lots of structural similarity.

For example, consider the D2FA in Figure 5.9 for RE set f/abc/, /abd/, /e.?f/g

f

e

10/3

0
c

1
3/1

a 2b

d 4/2

‐{a,e}

5
c

6
8/1

a 7b

d 9/2

‐{a,f}

Figure 5.9: D2FA for RE set f/abc/, /abd/, /e.?f/g.

107

where we use dashed arrows to represent the default transitions. The second wildcard

closure `.?' in the RE /e.?f/ duplicates the entire DFA sub-structure for recognizing

REs/abc/ and /abd/. Thus, table consolidation of the subtree (0, 1, 2, 3, 4) with the

subtree (5, 6, 7, 8, 9, 10) will lead to signi�cant space saving.

5.4 Variable Striding

We explore ways to improve RE matching throughput by consuming multiple characters

per TCAM lookup. One possibility is a k-stride DFA which uses k-stride transitions that

consume k characters per transition. Although k-stride DFAs can speed up RE matching

by up to a factor of k, the number of states and transitions can grow exponentially in

k. To limit the state and transition space explosion, we propose variable striding using

variable-stride DFAs. A k-var-stride DFA consumes between 1 and k characters in each

transition with at least one transition consuming k characters. Conceptually, each state in

a k-var-stride DFA has 256k transitions, and each transition is labeled with (1) a unique

string of k characters and (2) a stride length j (1 ≤ j ≤ k) indicating the number of

characters consumed.

In TCAM-based variable striding, each TCAM lookup uses the next k consecutive charac-

ters as the lookup key, but the number of characters consumed in the lookup varies from

1 to k; thus, the lookup decision contains both the destination state ID and the stride

length.

108

There are many technical challenges in implementing variable striding. First, we need to

control the exponential growth in the number of states. Second, we need to control the

exponential growth in the number of transitions. Third, we need to carefully choose which

transitions to expand from 1-stride to multi-stride given a speci�c amount of available

TCAM space. Fourth, we need to carefully decide on the maximum stride length k.

Increasing k can help by increasing average RE matching throughput; however, increasing

k can hurt by requiring more TCAM space. Speci�cally, implementing a k-var-stride DFA

in TCAM requires 8k bits for the k input characters in each lookup key. The width of

a TCAM chip is con�gurable, but not arbitrary. Commercially available TCAM chips

typically can be con�gured with length 36, 72, 144, 288, or 576 bits. We must choose k so

that we optimize throughput while not wasting bits in each TCAM entry.

5.4.1 Observations

We use an example to show how variable striding can achieve a signi�cant RE matching

throughput increase with a small and controllable space increase. Figure 5.10 shows a

3-var-stride transition table that corresponds to state s0 in Figure 5.1. This table only has

7 entries as opposed to 116 entries in a full 3-stride table for s0. If we assume that each of

the 256 characters is equally likely to occur, the average number of characters consumed

per 3-var-stride transition of s0 is 1 ∗ 1/16+ 2 ∗ 15/256+ 3 ∗ 225/256 = 2.82.

109

TCAM SRAM

Src state Inp char1 Inp char2 Inp char3 Dest state Stride

s0 0110 0000 ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ → s0 1

s0 0110 ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ → s1 1

s0 ∗∗∗∗ ∗∗∗∗ 0110 0000 ∗∗∗∗ ∗∗∗∗ → s0 2

s0 ∗∗∗∗ ∗∗∗∗ 0110 ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ → s1 2

s0 ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ 0110 0000 → s0 3

s0 ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ 0110 ∗∗∗∗ → s1 3

s0 ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ → s0 3

Figure 5.10: 3-var-stride transition table for s0

5.4.2 Eliminating State Explosion

We �rst explain how converting a 1-stride DFA to a k-stride DFA causes state explosion.

For a source state and a destination state pair (s, d), a k-stride transition path from s to

d may contain k − 1 intermediate states (excluding d); for each unique combination of

accepting states that appear on a k-stride transition path from s to d, we need to create

a new destination state because a unique combination of accepting states implies that the

input has matched a unique combination of REs. This can be a very large number of new

states.

We eliminate state explosion by ending any k-var-stride transition path at the �rst ac-

cepting state it reaches. Thus, a k-var-stride DFA has the exact same state set as its

corresponding 1-stride DFA. Ending k-var-stride transitions at accepting states does have

subtle interactions with table consolidation and shadow encoding. We end any k-var-stride

consolidated transition path at the �rst accepting state reached in any one of the paths

being consolidated which can reduce the expected throughput increase of variable strid-

ing. There is a similar but even more subtle interaction with shadow encoding which we

110

describe in the next section.

5.4.3 Controlling Transition Explosion

In a k-stride DFA converted from a 1-stride DFA with alphabet Σ, a state has |Σ|k outgoing

k-stride transitions. Although we can leverage our techniques of character bundling and

shadow encoding to minimize the number of required TCAM entries, the rate of growth

tends to be exponential with respect to stride length k. We have two key ideas to control

transition explosion: self-loop unrolling and k-var-stride transition sharing.

5.4.3.1 Self-Loop Unrolling Algorithm

We now consider root states, all of which are self-looping states. We have two methods

to compute the k-var-stride transition tables of root states. The �rst is direct expansion

(stopping transitions at accepting states) since these states do not defer to other states

which results in an exponential increase in table size with respect to k. The second method,

which we call self-loop unrolling, scales linearly with k.

Self-loop unrolling increases the stride of all the self-loop transitions encoded by the last

default TCAM entry. Self-loop unrolling starts with a root state j-var-stride transition

table encoded as a compressed TCAM table of n entries with a �nal default entry repre-

senting most of the self-loops of the root state. Note that given any complete TCAM table

where the last entry is not a default entry, we can always replace that last entry with a de-

fault entry without changing the semantics of the table. We generate the (j+1)-var-stride

111

transition table by expanding the last default entry into n new entries, which are obtained

by prepending 8 ∗'s as an extra default �eld to the beginning of the original n entries.

This produces a (j+1)-var-stride transition table with 2n − 1 entries. Figure 5.10 shows

the resulting table when we apply self-loop unrolling twice on the DFA in Figure 5.1.

We next illustrate the idea of self-loop unrolling using an example. Consider state s0

of Figure 5.1. The default transition in s0's table is a self-loop that is matched by 240

characters; one self-loop is matched by the �rst TCAM entry in s0's table. We can \unroll"

this self-loop and increase the stride of many but not all 2-stride and 3-stride transitions

as follows. First, we leave in place the �rst two 1-stride transitions. We then make 2-stride

copies of these transitions where we shift the characters over by one and put a default

character in the �rst position. These 2-stride transitions capture the case where the �rst

character in the transition self-loops but is not 01100000 and the second character leaves

state s0 or is 01100000. We then make 3-stride copies of these transitions where we shift the

characters over by one again and put default characters for the �rst two positions. Finally,

we include a stride-3 default transition that self-loops back to state 0. The resulting 7

transition variable-stride table is shown in Figure 5.10. In this example, we could continue

using self-loop unrolling to create even larger stride transitions with an additional cost of

only 2 TCAM entries per extra character consumed.

112

5.4.3.2 k-var-stride Transition Sharing Algorithm

Similar to 1-stride DFAs, there are many transition sharing opportunities in a k-var-stride

DFA. Consider two states s0 and s1 in a 1-stride DFA where s0 defers to s1. The deferment

relationship implies that s0 shares many common 1-stride transitions with s1. In the k-

var-stride DFA constructed from the 1-stride DFA, all k-var-stride transitions that begin

with these common 1-stride transitions are also shared between s0 and s1. Furthermore,

two transitions that do not begin with these common 1-stride transitions may still be

shared between s0 and s1. For example, in the 1-stride DFA fragment in Figure 5.11,

although s1 and s2 do not share a common transition for character a, when we construct

the 2-var-stride DFA, s1 and s2 share the same 2-stride transition on string aa that ends

at state s5.

S1 S3 S5

S2 S4 S6

a a

a b

a

b

Figure 5.11: States s1 and s2 share transition aa

To promote transition sharing among states in a k-var-stride DFA, we �rst need to decide

on the deferment relationship among states. The ideal deferment relationship should be

calculated based on the SRG of the �nal k-var-stride DFA. However, the k-var-stride DFA

cannot be �nalized before we need to compute the deferment relationship among states

113

because the �nal k-var-stride DFA is subject to many factors such as available TCAM

space. There are two approximation options for the �nal k-var-stride DFA for calculating

the deferment relationship: the 1-stride DFA and the full k-stride DFA. We have tried both

options in our experiments, and the di�erence in the resulting TCAM space is negligible.

Thus, we simply use the deferment forest of the 1-stride DFA in computing the transition

tables for the k-var-stride DFA.

Second, for any two states s1 and s2 where s1 defers to s2, we need to compute s1's k-var-

stride transitions that are not shared with s2 because those transitions will constitute s1's

k-var-stride transition table. Although this computation is trivial for 1-stride DFAs, this

is a signi�cant challenge for k-var-stride DFAs because each state has too many (256k)

k-var-stride transitions. The straightforward algorithm that enumerates all transitions

has a time complexity of O(|Q|2|Σ|k), which grows exponentially with k. We propose

a dynamic programming algorithm with a time complexity of O(|Q|2|Σ|k), which grows

linearly with k. Our key idea is that the non-shared transitions for a k-stride DFA can be

quickly computed from the non-shared transitions of a (k-1)-var-stride DFA. For example,

consider the two states s1 and s2 in Figure 5.11 where s1 defers to s2. For character a,

s1 transits to s3 while s2 transits to s4. Assuming that we have computed all (k-1)-var-

stride transitions of s3 that are not shared with the (k-1)-var-stride transitions of s4, if we

prepend all these (k-1)-var-stride transitions with character a, the resulting k-var-stride

transitions of s1 are all not shared with the k-var-stride transitions of s2, and therefore

should all be included in s1's k-var-stride transition table. Formally, using n(si, sj, k) to

114

denote the number of k-stride transitions of si that are not shared with sj, our dynamic

programming algorithm uses the following recursive relationship between n(si, sj, k) and

n(si, sj, k− 1):

n(si, sj, 0) =


0 if si = sj

1 if si 6= sj

(5.1)

n(si, sj, k) =
∑
c∈Σ

n(δ(si, c), δ(sj, c), k− 1) (5.2)

The above formulae assume that the intermediate states on the k-stride paths starting

from si or sj are all non-accepting. For state si, we stop increasing the stride length along

a path whenever we encounter an accepting state on that path or on the corresponding

path starting from sj. The reason is similar to why we stop a consolidated path at an

accepting state, but the reasoning is more subtle. Let p be the string that leads sj to

an accepting state. The key observation is that we know that any k-var-stride path that

starts from sj and begins with p ends at that accepting state. This means that si cannot

exploit transition sharing on any strings that begin with p.

Figure 5.12 shows the resultant 2-var-stride transition tables for all three states s0, s1,

and s2 of the D
2FA in Figure 5.3(a). Note that the one transition out of state s1 and two

self-loop transitions for state s2 have stride-1 because they end at s2, an accepting state.

The above dynamic programming algorithm produces non-overlapping and incomplete

115

TCAM SRAM

Src state Inp char1 Inp char2 Dest state Stride

s1 [c] ∗ → s2 1

s2 [b..c] [c] → s2 2

s2 [a] ∗ → s2 1

s2 [d..o] ∗ → s2 1

s0 [a..o] [0..96] → s0 2

s0 [a..o] [a] → s2 2

s0 [a..o] [b] → s1 2

s0 [a..o] [c..o] → s2 2

s0 [a..o] [112..255] → s0 2

s0 [0..96] [0..96] → s0 2

s0 [0..96] [a..o] → s1 2

s0 [0..96] [112..255] → s0 2

s0 [112..255] [0..96] → s0 2

s0 [112..255] [a..o] → s1 2

s0 [112..255] [112..255] → s0 2

Figure 5.12: Uncompressed 2-var-stride transition tables for D2FA in Figure 5.3(a) (a = 97,

o = 111)

transition tables that we compress using the 1-dimensional incomplete classi�er minimiza-

tion algorithm in [31].

5.4.4 Variable Striding Selection Algorithm

We now propose solutions for the third key challenge - which states should have their stride

lengths increased and by how much, i.e., how should we compute the transition function

δ. Note that each state can independently choose its variable striding length as long as

the �nal transition tables are composed together according to the deferment forest. This

can be easily proven based on the way that we generate k-var-stride transition tables. For

any two states s1 and s2 where s1 defers to s2, the way that we generate s1's k-var-stride

transition table is seemingly based on the assumption that s2's transition table is also

116

k-var-stride; actually, we do not have this assumption. For example, if we choose k-var-

stride (2 ≤ k) for s1 and 1-stride for s2, all strings from s1 will be processed correctly; the

only issue is that strings deferred to s2 will process only one character.

We view this as a packing problem: given a TCAM capacity C, for each state s, we select

a variable stride length value Ks, such that
∑
s∈Q |T(s, Ks)| ≤ C, where T(s, Ks) denotes

the Ks-var-stride transition table of state s. This packing problem has a
avor of the

knapsack problem, but an exact formulation of an optimization function is impossible

without making assumptions about the input character distribution. We propose the

following algorithm for �nding a feasible δ that strives to maximize the minimum stride

of any state. First, we use all the 1-stride tables as our initial selection. Second, for each

j-var-stride (j ≥ 2) table t of state s, we create a tuple (l, d, |t|) where l denotes variable

stride length, d denotes the distance from state s to the root of the deferment tree that

s belongs to, and |t| denotes the number of entries in t. As stride length l increases, the

individual table size |t| may increase signi�cantly, particularly for the complete tables of

root states. To balance table sizes, we set limits on the maximum allowed table size for

root states and non-root states. If a root state table exceeds the root state threshold when

we create its j-var-stride table, we apply self-loop unrolling once to its (j − 1)-var-stride

table to produce a j-var-stride table. If a non-root state table exceeds the non-root state

threshold when we create its j-var-stride table, we simply use its (j− 1)-var-stride table as

its j-var-stride table. Third, we sort the tables by these tuple values in increasing order

�rst using l, then using d, then using |t|, and �nally a pseudorandom coin
ip to break

117

ties. Fourth, we consider each table t in order. Let t ′ be the table for the same state s in

the current selection. If replacing t ′ by t does not exceed our TCAM capacity C, we do

the replacement.

5.5 Implementation and Modeling

We now describe some implementation issues associated with our TCAM based RE match-

ing solution. First, the only hardware required to deploy our solution is the o�-the-

shelf TCAM (and its associated SRAM). Many deployed networking devices already have

TCAMs, but these TCAMs are likely being used for other purposes. Thus, to deploy our

solution on existing network devices, we would need to share an existing TCAM with

another application. Alternatively, new networking devices can be designed with an addi-

tional dedicated TCAM chip.

Second, we describe how we update the TCAM when an RE set changes. First, we must

compute a new DFA and its corresponding TCAM representation. For the moment, we

recompute the TCAM representation from scratch, but we believe a better solution can be

found and is something we plan to work on in the future. We report some timing results

in our experimental section. Fortunately, this is an o�ine process during which time the

DFA for the original RE set can still be used. The second step is loading the new TCAM

entries into TCAM. If we have a second TCAM to support updates, this rewrite can occur

while the �rst TCAM chip is still processing packet
ows. If not, RE matching must halt

118

while the new entries are loaded. This step can be performed very quickly, so the delay

will be very short. In contrast, updating FPGA circuitry takes signi�cantly longer.

We have not developed a full implementation of our system. Instead, we have only de-

veloped the algorithms that would take an RE set and construct the associated TCAM

entries. Thus, we can only estimate the throughput of our system using TCAM mod-

els. We use Agrawal and Sherwood's TCAM model [3] assuming that each TCAM chip is

manufactured with a 0.18µm process to compute the estimated latency of a single TCAM

lookup based on the number of TCAM entries searched. These model latencies are shown

in Table 5.1. We recognize that some processing must be done besides the TCAM lookup

such as composing the next state ID with the next input character; however, because the

TCAM lookup latency is much larger than any other operation, we focus only on this

parameter when evaluating the potential throughput of our system.

Entries TCAM TCAM Latency

Chip size Chip size ns

(36-bit wide) (72-bit wide)

1024 0.037 Mb 0.074 Mb 0.94

2048 0.074 Mb 0.147 Mb 1.10

4096 0.147 Mb 0.295 Mb 1.47

8192 0.295 Mb 0.590 Mb 1.84

16384 0.590 Mb 1.18 Mb 2.20

32768 1.18 Mb 2.36 Mb 2.57

65536 2.36 Mb 4.72 Mb 2.94

131072 4.72 Mb 9.44 Mb 3.37

Table 5.1: TCAM size and Latency

119

5.6 Experimental Results

In this section, we evaluate our TCAM-based RE matching solution on real-world RE sets

focusing on two metrics: TCAM space and RE matching throughput.

5.6.1 Methodology

We use the same 8 RE sets used in Section 4.5 for the main results.

To test the scalability of our algorithms, we use one family of 34 REs from a recent public

release of the Snort rules with headers ($EXTERNAL NET, $HTTP PORTS, $HOME NET,

any), most of which contain wildcard closures `.?'. We added REs one at a time until the

number of DFA states reached 305, 339. We name this family Scale.

We calculate TCAM space by multiplying the number of entries by the TCAM width: 36,

72, 144, 288, or 576 bits. For a given DFA, we compute a minimum width by summing

the number of state ID bits required with the number of input bits required. In all cases,

we needed at most 16 state ID bits. For 1-stride DFAs, we need exactly 8 input character

bits, and for 7-var-stride DFAs, we need exactly 56 input character bits. We then calculate

the TCAM width by rounding the minimum width up to the smallest larger legal TCAM

width. For all our 1-stride DFAs, we use TCAM width 36. For all our 7-var-stride DFAs,

we use TCAM width 72.

We estimate the potential throughput of our TCAM-based RE matching solution by using

the model TCAM lookup speeds we computed in Section 5.5 to determine how many

120

TCAM lookups can be performed in a second for a given number of TCAM entries and

then multiplying this number by the number of characters processed per TCAM lookup.

With 1-stride TCAMs, the number of characters processed per lookup is 1. For 7-var-stride

DFAs, we measure the average number of characters processed per lookup in a variety of

input streams.

We use Becchi et al.'s network tra�c generator [11] to generate a variety of synthetic

input streams. This tra�c generator includes a parameter that models the probability

of malicious tra�c pM. With probability pM, the next character is chosen so that it

leads away from the start state. With probability (1 − pM), the next character is chosen

uniformly at random.

5.6.2 Results on 1-stride DFAs

TS TS + TC2 TS + TC4

RE set #states tcam #rows thru tcam #rows thru tcam #rows thru

Mbits per state Gbps Mbits per state Gbps Mbits per state Gbps

Bro217 6533 0.31 1.40 3.64 0.21 0.94 4.35 0.17 0.78 4.35

C613 11308 0.63 1.61 3.11 0.52 1.35 3.64 0.45 1.17 3.64

C10 14868 0.61 1.20 3.11 0.31 0.61 3.64 0.16 0.32 4.35

C7 24750 1.00 1.18 3.11 0.53 0.62 3.64 0.29 0.34 3.64

C8 3108 0.13 1.20 5.44 0.07 0.62 5.44 0.03 0.33 8.51

Snort24 13886 0.55 1.16 3.64 0.30 0.64 3.64 0.18 0.38 4.35

Snort31 20068 1.43 2.07 2.72 0.81 1.17 2.72 0.50 0.72 3.64

Snort34 13825 0.56 1.18 3.11 0.30 0.62 3.64 0.17 0.36 4.35

Table 5.2: TCAM size and throughput for 1-stride DFAs

Table 5.2 shows our experimental results on the 8 RE sets using 1-stride DFAs. We

use TS to denote our transition sharing algorithm including both character bundling and

121

shadow encoding. We use TC2 and TC4 to denote our table consolidation algorithm

where we consolidate at most 2 and 4 transition tables together, respectively. For each

RE set, we measure the number states in its 1-stride DFA, the resulting TCAM space

in megabits, the average number of TCAM table entries per state, and the projected RE

matching throughput; the number of TCAM entries is the number of states times the

average number of entries per state. The TS column shows our results when we apply

TS alone to each RE set. The TS+TC2 and TS+TC4 columns show our results when we

apply both TS and TC under the consolidation limit of 2 and 4, respectively, to each RE

set.

We draw the following conclusions from Table 5.2. (1) Our RE matching solution is

extremely e�ective in saving TCAM space. Using TS+TC4, the maximum TCAM size

for the 8 RE sets is only 0.50 Mb, which is two orders of magnitude smaller than the current

largest commercially available TCAM chip size of 72 Mb. More speci�cally, the number of

TCAM entries per DFA state ranges between .32 and 1.17 when we use TC4. We require

16, 32, or 64 SRAM bits per TCAM entry for TS, TS+TC2, and TS+TC4, respectively

as we need to record 1, 2, or 4 state 16 bit state IDs in each decision, respectively. (2)

Transition sharing alone is very e�ective. With the transition sharing algorithm alone,

the maximum TCAM size is only 1.43Mb for the 8 RE sets. Furthermore, we see a relatively

tight range of TCAM entries per state of 1.16 to 2.07. Transition sharing works extremely

well with all 8 RE sets including those with wildcard closures and those with primarily

strings. (3) Table consolidation is very e�ective. On the 8 RE sets, adding TC2 to

122

TS improves compression by an average of 41% (ranging from 16% to 49%) where the

maximum possible is 50%. We measure improvement by computing (TS−(TS+TC2))/TS).

Replacing TC2 with TC4 improves compression by an average of 36% (ranging from 13% to

47%) where we measure improvement by computing ((TS+TC2)−(TS+TC4))/(TS+TC2).

Here we do observe a di�erence in performance, though. For the two RE sets Bro217 and

C613 that are primarily strings without table consolidation, the average improvements of

using TC2 and TC4 are only 24% and 15%, respectively. For the remaining six RE sets that

have many wildcard closures, the average improvements are 47% and 43%, respectively.

The reason, as we touched on in Section 5.3.4, is how wildcard closure creates multiple

deferment trees with almost identical structure. Thus wildcard closures, the prime source

of state explosion, is particularly amenable to compression by table consolidation. In

such cases, doubling our table consolidation limit does not greatly increase SRAM cost.

Speci�cally, while the number of SRAM bits per TCAM entry doubles as we double the

consolidation limit, the number of TCAM entries required almost halves! (4) Our RE

matching solution achieves high throughput with even 1-stride DFAs. For the TS+TC4

algorithm, on the 8 RE sets, the average throughput is 4.60Gbps (ranging from 3.64Gbps

to 8.51Gbps).

We use our Scale dataset to assess the scalability of our algorithms' performance focusing

on the number of TCAM entries per DFA state. Figure 5.13(a) shows the number of TCAM

entries per state for TS, TS+TC2, and TS+TC4 for the Scale REs containing 26 REs (with

DFA size 1275) to 34 REs (with DFA size 305, 339). The DFA size roughly doubled for

123

(a)

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 1000 10000 100000

en

tr
ie

s/
st

at
e

states

TS
TS+TC2
TS+TC4

(b)

 0.1
 1

 10
 100

 1000
 10000

 1000 10000 100000

tim
e/

st
at

e
(m

se
c)

states

TS Build
TS+TC2 Build
TS+TC4 Build

TS BW
TS+TC2 BW
TS+TC4 BW

Figure 5.13: TCAM entries per DFA state (a) and compute time per DFA state (b) for

Scale 26 through Scale 34.

every RE added. In general, the number of TCAM entries per state is roughly constant and

actually decreases with table consolidation. This is because table consolidation performs

better as more REs with wildcard closures are added as there are more trees with similar

structure in the deferment forest.

We now analyze running time. We ran our experiments on the Michigan State University

High Performance Computing Center (HPCC). The HPCC has several clusters; most of

our experiments were executed on the fastest cluster which has nodes that each have 2

quad-core Xeons running at 2.3GHz. The total RAM for each node is 8GB. Figure 5.13(b)

shows the compute time per state in milliseconds. The build times are the time per DFA

124

state required to build the non-overlapping set of transitions (applying TS and TC); these

increase linearly because these algorithms are quadratic in the number of DFA states. For

our largest DFA Scale 34 with 305,339 states, the total time required for TS, TS+TC2, and

TS+TC4 is 19.25 mins, 118.6 hrs, and 150.2 hrs, respectively. These times are cumulative;

that is going from TS+TC2 to TS+TC4 requires an additional 31.6 hours. This table

consolidation time is roughly one fourth of the �rst table consolidation time because the

number of DFA states has been cut in half by the �rst table consolidation and table

consolidation has a quadratic running time in the number of DFA states. The BW times are

the time per DFA state required to minimize these transition tables using the Bitweaving

algorithm in [31]; these times are roughly constant as Bitweaving depends on the size of

the transition tables for each state and is not dependent on the size of the DFA. For our

largest DFA Scale 34 with 305, 339 states, the total Bitweaving optimization time on TS,

TS+TC2, and TS+TC4 is 10 hrs, 5 hrs, and 2.5 hrs. These times are not cumulative and

fall by a factor of 2 as each table consolidation step cuts the number of DFA states by a

factor of 2.

 1

 10

 100

 1000

 10000

 1000 10000 100000

tim
e/

st
at

e
(m

se
c)

states

Opt TC2
Opt TC4

Greedy TC2
Greedy TC4

Figure 5.14: Consolidation times for Scale 26 through Scale 34 for Optimal and Greedy

consolidation algorithms.

125

Figure 5.14 shows the time required per state for the greedy and optimal consolidation

algorithms on the Scale dataset. The greedy algorithm runs roughly 6 times faster than

the optimal algorithm. The average increase in the number of resulting TCAM rules is

around 4% for TC2 and around 9% for TC4.

The partially deferred algorithm given in Section 5.2.2.4 always performs at least as well

as the completely deferred minimization algorithm given in [31]. For the three Snort RE

sets and C613, the partially deferred algorithm results in a reduction of 1, 2, 152, and 194

TCAM entries over the completely deferred algorithm. For the other RE sets, both algo-

rithms perform equally well. The partially deferred algorithm is slower than the completely

deferred algorithm because there are more unique decisions during minimization, so we

use the completely deferred minimization algorithm for computing classi�er sizes during

consolidation, and we use the partially deferred minimization algorithm for generating the

�nal TCAM classi�ers for each state.

5.6.3 Results on 7-var-stride DFAs

We consider two implementations of variable striding assuming we have a 2.36 megabit

TCAM with TCAM width 72 bits (32,768 entries). Using Table 5.1, the latency of a

lookup is 2.57 ns. Thus, the potential RE matching throughput of by a 7-var-stride DFA

with average stride S is 8× S/.00000000257 = 3.11× S Gbps.

In our �rst implementation, we only use self-loop unrolling of root states in the deferment

forest. Speci�cally, for each RE set, we �rst construct the 1-stride DFA using transition

126

sharing. We then apply self-loop unrolling to each root state of the deferment forest to

create a 7-var-stride transition table. Because of the linear increase in transition table size,

we know that the resulting TCAM table will increase in size by at most a factor of 7. In

all our experiments, the size never increased by more than a factor of 2.25, and the largest

DFA (for C7) required only 2.25 megabits. We can decrease the TCAM space by using

table consolidation; this was very e�ective for all RE sets except the string matching RE

sets Bro217 and C613. This was unnecessary since all self-loop unrolled tables �t within

our available TCAM space.

Second, we apply full variable striding. Speci�cally, we �rst create 1-stride DFAs using

transition sharing and then apply variable striding with no table consolidation, table con-

solidation with 2-decision tables, and table consolidation with 4-decision tables. We use

the best result that �ts within the 2.36 megabit TCAM space. For the RE sets Bro217,

C8, C613, Snort24 and Snort34, no table consolidation is used. For C10 and Snort31, we

use table consolidation with 2-decision tables. For C7, we use table consolidation with

4-decision tables.

We now run both implementations of our 7-var-stride DFAs on traces of length 287484

to compute the average stride. For each RE set, we generate 4 traces using Becchi et

al.'s trace generator tool using default values 35%, 55%, 75%, and 95% for the parameter

pM. These generate increasingly malicious tra�c that is more likely to move away from

the start state towards distant accept states of that DFA. We also generate a completely

random string to model completely uniform tra�c such as binary tra�c patterns which

127

we treat as pM = 0.

We group the 8 RE sets into 3 groups: group (a) represents the two string matching

RE sets Bro217 and C613; group (b) represents the three RE sets C7, C8, and C10 that

contain all wildcard closures; group (c) represents the three RE sets Snort24, Snort31, and

Snort34 that contain roughly 40% wildcard closures. Figure 5.15 shows the average stride

length and throughput for the three groups of RE sets according to the parameter pM

(the random string trace is pM = 0).

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

T
hr

ou
gh

pu
t (

G
bp

s)

A
ve

ra
ge

 S
tr

id
e

le
ng

th

pM

Self-Loop Unrolling

Group (a)
Group (b)
Group (c)

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

T
hr

ou
gh

pu
t (

G
bp

s)

A
ve

ra
ge

 S
tr

id
e

le
ng

th

pM

Variable Striding

Group (a)
Group (b)
Group (c)

Figure 5.15: The throughput and average stride length of RE sets.

128

We make the following observations. (1) Self-loop unrolling is extremely e�ective on

the uniform trace. For the non string matching sets, it achieves an average stride length

of 5.97 and 5.84 and RE matching throughput of 18.58 and 18.15 Gbps for groups (b)

and (c), respectively. For the string matching sets in group (a), it achieves an average

stride length of 3.30 and a resulting throughput of 10.29 Gbps. Even though only the

root states are unrolled, self-loop unrolling works very well because the non-root states

that defer most transitions to a root state will still bene�t from that root state's unrolled

self-loops. In particular, it is likely that there will be long stretches of the input stream

that repeatedly return to a root state and take full advantage of the unrolled self-loops.

(2) The performance of self-loop unrolling does degrade steadily as pM increases for

all RE sets except those in group (b). This occurs because as pM increases, we are more

likely to move away from any default root state. Thus, fewer transitions will be able to

leverage the unrolled self-loops at root states. (3) For the uniform trace, full variable

striding does little to increase RE matching throughput. Of course, for the non-string

matching RE sets, there was little room for improvement. (4) As pM increases, full

variable striding does signi�cantly increase throughput, particularly for groups (b)

and (c). For example, for groups (b) and (c), the minimum average stride length is 2.91

for all values of pM which leads to a minimum throughput of 9.06Gbps. Also, for all

groups of RE sets, the average stride length for full variable striding is much higher than

that for self-loop unrolling for large pM. For example, when pM = 95%, full variable

striding achieves average stride lengths of 2.55, 2.97, and 3.07 for groups (a), (b), and (c),

respectively, whereas self-loop unrolling achieves average stride lengths of only 1.04, 1.83,

129

and 1.06 for groups (a), (b), and (c), respectively.

These results indicate the following. First, self-loop unrolling is extremely e�ective at

increasing throughput for random tra�c traces. Second, other variable striding techniques

can mitigate many of the e�ects of malicious tra�c that lead away from the start state.

130

Chapter 6

Overlay Automata

In this section we present our overlay automata model for handling DFA state replication,

and the implementation of the overlay automata in both software and hardware.

6.1 Introduction

As discussed in Section 3.2, the main reason for redundancy in a DFA is state replication,

which causes the exponential increase in the size of the DFA as multiple REs are combines.

Ideally we would like to build an automata whose size is proportional to a NFA and

matching speed close to that of a DFA. We achieve this goal using our new overlay automata

model.

131

6.1.1 Limitations of Prior Automata Models

DFA-based automata models have been developed to address DFA space explosion. Two

representative models are D2FA proposed by Kumar et al. [26] and XFA proposed by Smith

et al. [41]. D2FAs reduce the number of transitions stored per state by using deferred

transitions to compactly represent common transitions, i.e., the transitions with the same

input character and destination state. This elegant solution can be automated; however,

it only handles transition sharing, and does not address state replication, and resulting

replicated transitions. So although there is a huge reduction in space required, it is still

proportional to the number of DFA states, which grows exponentially with the number of

REs in the RE set. XFAs deal with state replication using scratch memory and auxiliary

code stored at each state that must be executed before or after each transition. This

interesting solution models state replication; however, it cannot be fully automated [50].

Furthermore, the code that needs to be executed for each transition limits the throughput

that can be achieved.

Our technique of table consolidation presented in Section 5.3 actually exploits state repli-

cation to reduce the size of TCAM required, but it does so accidentally. That is, table

consolidation works well because of state replication, but the the technique is oblivious

to state replication. The algorithm does not explicitly search for replicated states, it only

looks for state pairs that are good matches for consolidation. But replicate states are

usually good matches for consolidation, and so states that are consolidated together are

usually replications of the same NFA state. There are several limitations of table consoli-

132

dation because of which state replication is not fully exploited. First, there is a practical

limit on the number of TCAM tables that can be consolidated. For instance we only con-

sider consolidating 4 tables together. Thus, table consolidation can only lead to a constant

factor reduction in TCAM storage no matter how much state replication exists in the DFA.

So the �nal TCAM size can still be exponential in the size of the RE set. Ideally we would

like to combine together all the replications of a NFA state. Second, table consolidation

does not reduce the associated SRAM required to store decisions because although the

TCAM entries are merged, the decisions are not. Furthermore, the SRAM required by

table consolidation might increase due to imperfect merging of tables.

6.1.2 Summary of Overlay Automata Approach

We developed a new overlay automata model which exploit state replication to compress

the size of the DFA. The idea is to group together the replicated DFA structures instead

of repeating them multiple times. We brie
y describe here the overlay automata model

and how the automata is implmented in software and hardware.

6.1.2.1 Overlay DFA

We propose Overlay Deterministic Finite state Automata (ODFA) that models state

replication in DFAs. The basic idea is to overlay all the DFA states that are replications

of the same NFA state vertically together into what we call a super-state. If we view a

DFA as a 2-D object, then an ODFA can be viewed as a 3-D object. Figure 6.2 depicts

133

the DFA and ODFA for the RE set f/abc/, /abd/, /e.?f/g. The ODFA model gives

us the following key bene�ts. First, it allows us to easily identify replications of the

same NFA state as they are all in the same super-state. For example, in Figure 6.2, we

merge states 0 and 5 and states 1 and 6 into super-states S0 and S1, respectively. Second,

it allows us to represent replications of the same NFA transition by one super-state

transition between two super-states. For example, for any NFA transition from s1 to s2

on character σ, in the corresponding ODFA, all replications of state s1 are in the same

super-state say S1, all replications of state s2 are in the same super-state say S2, and

all replicates of state s1 have a transition on σ to their corresponding replicates on state

s2. We merge these replicate transitions into one combined super-state transition from

super-state S1 to super-state S2 on character σ. For example, in Figure 6.2, we merge

the two transitions from states 0 and 5 on character `a' into one super-state transition on

character `a'.

6.1.2.2 Overlay D2FA

Combining our overlay idea, which models state replication and replicated transitions, and

the delayed input idea in D2FA, which models sharing non-replicated transitions among

non-replicated DFA states (i.e. transition sharing) through a state deferment relationship,

we propose Overlay Delayed Input DFA (OD2FA) to model state replication, repli-

cated transitions, and transition sharing. The relationship among these automata models,

DFA, D2FA, ODFA, and OD2FA, is illustrated in Figure 6.1. A key bene�t of OD2FA

134

is that we can represent the deferment relationship among D2FA states more compactly

using deferment among OD2FA super-states. From the perspective of transitions, OD2FA

optimizes both deferred transitions (i.e., common transitions among states) and replicated

transitions.

DFA

ODFA D2FA

OD2FA

Models
State
Replication

Models
Transition
Sharing

Models State Replication and Transition Sharing

Figure 6.1: Relationship of Automata Models.

6.1.2.3 Building OD2FA

To build an OD2FA, we propose algorithms for constructing it from a given set of REs

incrementally. We �rst construct the equivalent OD2FA for each RE. We then e�ciently

merge OD2FAs until only a single OD2FA for the entire set of REs is left. We propose an

incremental construction algorithm that builds the OD2FA D for RE set R1∪R2 by merging

the OD2FA D1 for R1 with the OD2FA D2 for R2. This algorithm automatically identi�es

and groups together replicate states in D into super-states and replicate transitions into

super-state transitions without having to perform an expensive analysis of the �nal DFA

structure.

135

6.1.2.4 Implementing OD2FA

We develop techniques for implementing the OD2FA is software and hardware.

We extend the software implementation of a D2FA to OD2FA. The main problem we

need to solve is that, since an OD2FA only stores super-state transitions, how do we

e�ciently lookup state transitions from the super-state transitions. Our e�cient encoding

of super-state transition facilitates in performing this lookup very quickly.

For the hardware implmentation, we develop a solution which we call OverlayCAM, by

extending RegCAM to implement the OD2FA in TCAM. Again, our e�cient encoding

of super-state transition allows us to implement each super-state transition using only

one TCAM entry. So OverlayCAM not only encodes multiple deferred state transitions

using one TCAM entry but also encodes multiple non-deferred state transitions that are

replications of the same NFA transition using only one TCAM entry. We also extend the

variable striding technique in RegCAM for use with OverlayCAM to increase the matching

throughput.

6.2 Overlay DFA

In this section, we formally de�ne a new automata, Overlay Deterministic Finite state

Automata (ODFA), which we propose to deal with state explosion in DFA.

There are two ideas behind an ODFA. The �rst is to group all DFA states that are repli-

136

cations of the same NFA state into a single super-state. The second is to merge as many

transitions from the replicate states within a super-state as possible. To de�ne ODFA, we

will use the concepts of super-states, overlays, super-state transitions, and overlay o�sets.

We begin by informally de�ning ODFA and these concepts using the ODFA in Figure 6.2

as a running example.

0
c

1

3/1

a 2b

d
4/2

From [1..4]
afail

From [0..4]

(a) DFA for RE set f/abc/, /abd/g

0
c

1
3/1

a 2b

d 4/2

From [1..4]
a

5
c

6
8/1

a 7b

d 9/2

From [6..10]
a

f

e

10/3 f From [6..10]

e
From [1..4]

fail
From [0..4]

fail
From [5..10]

(b) DFA for RE set f/abc/, /abd/, /e.?f/g

Figure 6.2: Example of DFA, state replication and Overlay DFA.

137

0

c

1

3/1

a 2b

d

4/2

From [1..4]
a

5

c

6

8/1

a 7b

d

9/2

From [6..10]
a

f

e

S3

S4

S2S1S0

10/3

S5

f
From [6..10]

e
From [1..4]

fail
From [0..4]

fail

From [5..10]

(c) Corresponding ODFA

0

c

1

3

a
2

b

0

4

From [S1..S5]

a 0

5

0

6

8

0
7

0

d

9

f

S3/1

S4/2

S2S1S0

10

S5/3

f
From [6..10]

e

From [S0..S5]

From [S0..S5]

fail 0

f

From [0..4]

(d) ODFA with super-state transitions

Figure 6.2: Example of DFA, state replication and Overlay DFA (cont'd).

138

Figure 6.2(a) shows the DFA for the RE set f/abc/, /abd/g from Figure 3.1(a). The

notations used in the �gure are explained in Section 3.2. Figure 6.2(b) shows the DFA

after the RE /e.?f/ is added to the RE set (same as Figure 3.1(b).) This DFA illustrates

the potential for ODFA as the entire DFA for the RE set f/abc/, /abd/g is replicated

twice. The corresponding ODFA is shown in Figure 6.2(c).

In Figure 6.2(c), we overlay the two copies of the DFA for the RE set f/abc/, /abd/g)

on top of each other. Each pair of replicated DFA states is a super-state in the ODFA.

Each layer of states is called an overlay. The ODFA in Figure 6.2(c) has six super-states

S0, . . . , S5 and two overlays. Each overlay contains a subset of the states in the entire DFA;

in Figure 6.2(c), the �rst overlay does not contain a state from super-state S5.

We now introduce the concept of super-state transitions. One super-state transition

represents multiple DFA transitions much as one super-state represents a group of DFA

states. In a standard DFA transition, the source state is a DFA state. In a super-state

transition, the source state is an ODFA super-state and represents transitions from all the

replicated DFA states within the super-state. The destination state is usually an ODFA

super-state but can sometimes be a DFA state. The two super-state transition forms are

S1
σ
−→ S2, o, 1 and S1

σ
−→ S2, O, 0 (distinguished by the last bit value 1/0). In the �rst form,

the semantics are that each DFA state q in super-state S1 transitions on character σ to

a DFA state q ′ in super-state S2, with o = (overlay of q ′ − overlay of q)mod #overlays.

We call this di�erence in the overlay value the overlay o�set (or just o�set for short.)

The value of the overlay o�set o is usually 0. In the second form, the semantics are that

139

each DFA state q in super-state S1 transitions on character σ to the DFA state located in

super-state S2 at overlay O. For example, consider the two DFA state transitions 1
b
−→ 2

and 6
b
−→ 7 in Figure 6.2(c). These two transitions can be represented by one super-state

transition S1
b
−→ S2, 0; the 0 denotes no change in overlay. As a second example, consider

the two DFA state transitions 3
e
−→ 5 and 8

e
−→ 5 in Figure 6.2(c). These two transitions

can be represented by one super-state transition S3
e
−→ S2, 1, 0.

In the ideal case, all DFA transitions can be replaced by super-state transitions which

reduces the total number of transitions by the number of overlays in the ODFA. In some

cases, not all states in a super-state have transitions that can be merged. We generalize

super-state transitions to allow super-state transitions to be de�ned for a speci�c subset

of overlays X within a given super-state. Technically, traditional transitions from a single

state s are super-state transitions where X contains only s's overlay. We refer to these as

singleton super-state transitions.

Figure 6.2(d) shows the ODFA for our running example with non-singleton super-state

transitions denoted with thick edges. For example, the two transitions 0
a
−→ 1 and 5

a
−→ 6

from Figure 6.2(c) are represented with one super-state transition S0
a
−→ S1, 0, 1. For

super-state transitions of the form S1
σ
−→ S2, o, 1 (i.e. destination is also a super-state),

the number besides the thick edge gives the overlay o�set o. As we use double arrows

to represent multiple transitions, we use thick double arrows to represent multiple non-

singleton super-state transitions. For example, the two transitions 0
e
−→ 5 and 5

e
−→ 5 from

Figure 6.2(c) are included in one super-state transition S0
e
−→ S0, 1, 0 which is part of the

140

thick double arrow labeled with `e' ending at state 5. The DFA in Figure 6.2(b) has

11 × 256 = 2816 total transitions; the ODFA in Figure 6.2(d) has 1542 total super-state

transitions which is close to the best possible result of 2816/2 = 1408 total super-state

transitions; only a few of these transitions are singleton super-state transitions.

Recall the DFA is de�ned as a 5-tuple (Q,Σ, q0,M, δ) (Section 3.1). We now formally

de�ne the ODFA.

Definition 5 (Overlay Deterministic Finite state Automata (ODFA)). An ODFA for a

set of REs R is de�ned as a 7-tuple D = (Q,Σ, q0,S,O,M, ∆). The �rst three terms

are the same as those in the above DFA de�nition.

The next two terms de�ne the overlay structure on top of a DFA: S = {S0, . . . , S|S |−1}

is a set of super-states that partitions Q, while O = {O0, . . . , O|O|−1} is a set of overlays

that also partitions Q. We shall treat each overlay as a unique number in the range

[0..|O|). We overload notation and de�ne S : Q → S and O : Q → O as functions

mapping states to super-states and overlays, respectively. For any two states si 6= sj,

it must be the case that (S(si),O(si)) 6= (S(sj),O(sj)). For any super-state S and

overlay O, S ∩O is either empty or contains one state s ∈ Q.

The term M : S → 2R gives the subset of REs matched by any super-state. The

set of REs matched by any state s ∈ Q is then given by M(S(s)). The �nal term

∆ : S × 2O × Σ → S × [0..|O|) × {0, 1} is a partial function and de�nes the super-state

transition function. For any s ∈ Q and any σ ∈ Σ, all the transition (S(s), X, σ) ∈

dom(∆) with O(s) ∈ X must have the same value; i.e. if we have two transitions

141

(S(s), X, σ) ∈ dom(∆) and (S(s), Y, σ) ∈ dom(∆), with O(s) ∈ X∩Y, then we must have

∆(S(s), X, σ) = ∆(S(s), Y, σ). We de�ne the derived total state transition function

δ ′′(s, σ) based on this unique transition value, say (S ′, o, b), as follows. First, if b = 0,

we call the transition a non-o�set transition, and δ ′′(s, σ) = S ′∩o. Otherwise (b = 1),

we call the transition an o�set transition, and δ ′′(s, σ) = S ′∩ ((O(s)+o)mod |O|). The

value b is called the o�set bit. It must be the case that overlay (O(s) + o)mod |O|

does intersect S ′. Normally for o�set transitions o = 0, so the resulting overlay is

just O(s).

We use the notation (S1, O)
σ
−→ (S2, o, b) to denote the super-state transition ∆(S1, O, σ) =

(S2, o, b). Even though an ODFA has super-states and overlays, an ODFA processes an

input string much like a DFA does. That is, the ODFA is always in a unique state and each

character processed moves the ODFA to a potentially new state. The main di�erence is that

the ODFA hopefully compresses multiple DFA transitions into a single ODFA super-state

transition, and the RE matching information is stored at the super-state level rather than

at the state level. For example, given the ODFA in Figure 6.2(d) and the input string

abea, the ODFA begins in state 0. After processing character a, the ODFA moves to state

1. After processing character b, the ODFA moves to state 2. After processing character

e, the ODFA moves to state 5. Finally, after processing character a, the ODFA moves

to state 6. The �rst and fourth transitions are actually the same super-state transition.

The third transition corresponds to the �rst form of super-state transition with speci�ed

destination state 5. In all cases,M(S(s ′)) = ∅, so no RE is matched at any point in time.

142

Overlays and super-states are two orthogonal partitionings of states in Q; intuitively,

super-states partition Q vertically and overlays partition Q horizontally. There exist many

possible ways to partition the states of a DFA into super-states and overlays. The bene�ts

of an ODFA are only realized by a careful partitioning; for example, grouping replicate

states of the same NFA state together in a super-state. Note that some super-states may

not have DFA states in each overlay. If overlay O in super-state S is empty, we denote it

by S∩O =⊥ (i.e. ⊥ denotes an empty location). In Figure 6.2(d), super-state S5 contains

only one DFA state 10 which belongs to the second overlay. The compressive power of a

super-state transition increases with the number of overlays that it includes. In the best

case, all overlays are included in a super-state transition. In Figure 6.2(d), most super-state

transitions include all overlays; there are only a few singleton super-state transitions. In

more complex ODFA, there may be cases where a given super-state transition includes

more than one overlay but not all overlays.

In an ODFA the RE matching is stored at the super-state level (i.e. M) and state matching

is de�ned by M. So when constructing an ODFA D for a given DFA D, we must create

the super-states such that the following condition is satis�ed

∀S ∈ SD, ∀s1, s2 ∈ S, MD(s1) =MD(s2), (C1)

143

6.3 Overlay D2FA

In this section we present another new automata, Overlay Delayed Input DFA (OD2FA),

which we propose to deal with both state and transition explosion in DFA.

Recall that, given a DFA D=(Q,Σ, q0,M, δ), its corresponding D2FA D ′ is de�ned as a

6-tuple (Q,Σ, q0,M, ρ, F) (Section 3.3).

ODFAs address state explosion and D2FAs address transition explosion. We propose

OD2FA to address both state and transition explosion in DFAs.

Definition 6 (Overlay D2FA (OD2FA)). We de�ne an OD2FA as an 8-tuple (Q, Σ,

q0, F , S, O, M, ∆), where the �rst three terms are the same as in de�ning D2FA.

The last four terms are the same as in de�ning ODFA. The only di�erence is that,

we derive a partial state transition function ρ ′ : Q × Σ → Q from ∆. Since ρ ′ is a

partial function, we do not require the existence of a covering transition in ∆ for

each s ∈ Q and σ ∈ Σ. F : S → S is the super-state deferment function, and gives

the deferred super-state for each super-state. We de�ne the D2FA state deferment

function F from F as F(s) = F(S(s)) ∩ O(s)). To ensure this is a valid deferment

function, F must satisfy the following two conditions. First,

∀s ∈ Q,F(S(s)) ∩ O(s)) 6=⊥, (C2)

Second, the deferment forest of super-states de�ned by F has no cycles other than

self-loops. Finally, ρ ′ and F de�ne the derived total state transition function δ ′′ as

144

follows.

δ ′′(s, σ) =


ρ ′(s, σ) if 〈s, σ〉 ∈ dom(ρ ′)

δ ′′(F(s), σ) else

We say that 〈s, σ〉 ∈ dom(ρ ′) if there exists a transition (S(s), X, σ) ∈ ∆ with O(s) ∈ X.

If 〈s, σ〉 ∈ dom(ρ ′), then ρ ′(s, σ) is de�ned as δ ′′ is de�ned for ODFA.

We say that super-state S overlay covers super-state S ′ if ∀O ∈ O, (S ∩ O =⊥) →
(S ′ ∩ O =⊥). That is, every overlay that is empty in S is also empty in S ′. Then,

Condition (C2) says that for every super-state S, super-state F(S) overlay covers S.

The transition function δ ′′ is computed by �nding the transition (S(s), X, σ) ∈ ∆ with

O(s) ∈ X if such a transition exists. If not, the OD2FA follows the super-state deferment

function.

As de�ned, we store F rather than F; thus deferment information is stored only at the

super-state level. Likewise, we store just RE matching informationM at the super-state

level. Finally, with ∆, many super-state transitions represent multiple singleton transi-

tions. Combined, we can achieve signi�cant savings.

Figure 6.3(a) shows the D2FA for the RE set f/abc/, /abd/, /e.?f/g. The dashed edges

are deferment transitions. Figure 6.3(b) shows the corresponding OD2FA. The D2FA needs

to store 518 actual transitions and 10 deferment transitions while the OD2FA only needs to

store 260 actual transitions, most of which are non-singleton super-state transitions, and

5 super-state deferred transitions. For this example, we achieve near optimal compression

145

f

e

10/3

0
c

1
3/1

a 2b

d 4/2

‐{a,e}

5
c

6
8/1

a 7b

d 9/2

‐{a,f}

(a) D2FA for RE set f/abc/, /abd/, /e.?f/g

0

c

1

3

a
2

b

0

4

5

0

6

8

0
7

0

d

9

f

S3/1

S4/2

S2S1

e

‐{a,e}

10

0

S0

S5/3

(b) Corresponding OD2FA

Figure 6.3: OD2FA Example.

146

given only two overlays in the OD2FA when compared to the D2FA.

6.3.1 OD2FA Multiplicative Compression

OD2FA multiplies the compressive e�ect of D2FA and ODFA to signi�cantly reduce the

space required to store transitions. ODFA reduces the storage space for transitions among

DFA replicates by storing one super-state transition for each replicated transition. The

compression limit for ODFA is the number of DFA replicates. D2FA reduces the storage

space for transitions within each DFA replicate using deferment transitions. The com-

pression limit for D2FA is the number of states within each DFA replicate. OD2FA is able

to do both simultaneously. The compression limit is the number of DFA replicates multi-

plied by the number of states within each replicate which is essentially the total number

of DFA states.

To illustrate this multiplicative compression, consider again the OD2FA in Figure 6.3(b).

The original DFA for this RE set requires 11× 256 = 2816 transitions. The corresponding

ODFA in Figure 6.2(d) is able to reduce the number of transitions by almost a factor of 2 by

storing one super-state transition for each pair of replicated transitions. The corresponding

D2FA in Figure 6.3(a) is able to reduce the number of transitions by more than a factor of

5 using deferment transitions. In particular, in both replicates, almost all of the transitions

for all states except the self-looping start states are eliminated. Finally, the OD2FA in

Figure 6.3(b) multiplies both e�ects and ends up with 260 super-state transitions and 5

super-state deferment transitions. This is almost a factor of 11 times smaller than the

147

original DFA where 11 is the compression limit since the DFA has 11 states. Starting from

the D2FA, the OD2FA is able to replicate all the self-looping transitions out of the two

self-looping states in the D2FA (adding one singleton transition on `f' for state 5). This

is critical since the vast majority of transitions remaining in many D2FA are self-looping

transitions.

6.3.2 Effectiveness of OD2FA on Ideal RE set

We can further demonstrate the e�ectiveness of OD2FA using an example set of n REs

where each RE is of the form /Ai,1Ai,2 · · ·Ai,p.?Bi,1Bi,2 · · ·Bi,p/, 1 ≤ i ≤ n; that is, each

RE has p characters followed by `.?' and another p characters and all the 2np characters

are unique. This is a simple RE set, in the sense that there is no interaction between the

REs in the set, and we get a simple exponential increase in the size of the DFA relative to

the number of REs in the set n because of state replication.

In this case, the NFA has (2p+1)n+2 (O(pn)) states and the DFA has ((2p−1)n+2)2n−1

(O(pn2n)) states. The D2FA has ((p − 1)n + 256)2n (O(pn2n)) transitions, and our

RegCAM presented in Section 5.2 will generate (pn+1)2n (O(pn2n)) TCAM entries. The

OD2FA only has pn+ 1 (O(pn)) super-states, 2pn+ 256 (O(pn)) super-state transitions,

and a straightforward TCAM implementation of these transitions needs only 2pn + 1

(O(pn)) TCAM entries. The number of rules with the OD2FA is the same as the NFA

size, which is a lower bound on the compression any method can achieve.

148

6.4 OD2FA Construction

In this section we present our algorithms for constructing an OD2FA for a set of REs.

Given a set of REs, we construct its equivalent OD2FA incrementally in two phases. In

the �rst phase, we construct an equivalent individual OD2FA for each RE. In the second

phase, we merge all the individual OD2FAs in a binary tree fashion; i.e. we merge two

OD2FAs into one OD2FA at a time until there is only one OD2FA for the entire given RE

set.

Constructing an OD2FA involves three main steps: (1) creating the super-states (i.e.

assigning a super-state, overlay pair for each DFA state), (2) setting the deferment for each

super-state and (3) for each super-state creating the (combined) super-state transitions

from the (singleton) state transitions. The algorithms for the �rst two steps (creating

super-states and setting deferment) are di�erent for the two phases mentioned above.

However the algorithms for the third step (creating super-state transitions) are almost

identical for the two phases. So we describe the OD2FA construction algorithms in two

parts. In this section we demonstrate how the super-states are created and how super-state

deferment is set (i.e. steps 1 and 2) during both the phases. In the next section we show

how super-state transitions are built from state transitions (i.e. step 3).

149

6.4.1 OD2FA Construction from One RE

Given one RE, we �rst build its equivalent D2FA using the technique described in Sec-

tion 4.3.1. The deferment relationship among states in this D2FA de�nes a deferment

forest. The root states in this forest are all self-looping states which means they transit

to themselves for more than |Σ|/2 = 128 characters. Most failure transitions end in self-

looping states. For example, in the D2FA in Figure 6.4, states 0 and 2 are self-looping

states. An important property of the D2FA constructed using the technique described in

Section 4.3.1 is that each self-looping state in the DFA is the root of a tree in the deferment

forest of the D2FA, and vice versa. Furthermore, all the states whose failure transitions

go to a self-looping state s are in the deferment tree rooted at s.

Now we describe our algorithm for constructing the OD2FA from a D2FA using the example

in Figure 6.4 for the RE /ab[ˆn]?pq/. A key observation is that any D2FA is also a

valid OD2FA with only a single overlay, singleton super-states, and singleton super-state

transitions. We gradually convert the D2FA into a more compact OD2FA �rst creating

valid overlays and super-states and then updating the super-state transition function to

combine multiple transitions into one super-state transition.

We begin by specifying the number of deferment trees in the super-state deferment forest

and the number of overlays in a super-state. We accomplish these tasks by partitioning the

self-looping root states of the D2FA into two groups, accepting root states and rejecting

root states. If either partition is empty, we create one deferment tree in the OD2FA;

otherwise there are two deferment trees. The number of overlays in the OD2FA is the

150

larger of the number of accepting root states and the number of rejecting root states.

For any non-empty partition, we merge the root states in that partition into a single

root super-state in the OD2FA. Typically, self-looping states are failure states, so the

accepting root state partition is empty and the resulting root super-state is not formed.

This observation holds for all of our experimental RE sets. Thus, the deferment forest of

the OD2FA typically has one deferment tree rooted at the rejecting root super-state. For

example, the OD2FA in Figure 6.4 has one deferment tree with two overlays, 0 and 1, and

the rejecting root super-state is 0 2 .

a b p q

‐a ‐{n,p}

0 1 2 3 4/1

n

0

1

2

3 4

D2FA for RE ab[^n]pq

D2FA deferment forest

Corresponding OD2FA (singleton
super-state transitions not shown)

0 20
0 1

1 31
0 1

 42
0 1

0

‐{n} n

Figure 6.4: OD2FA construction from one RE.

There are two reasons we group root states into super-states even though the self-looping

states in the D2FA are usually not replications of the same NFA state. First, all the com-

151

mon self-loops can be merged into super-state transitions. We specify this more precisely

in Section 6.5. Second, as self-looping states are typically the \replication points" when

combining REs, grouping self-looping states into a common super-state helps us automati-

cally identify the state replications and replicated transitions when we merge two OD2FAs.

We elaborate this more in Section 6.4.2. Condition (C2) is satis�ed as the root super-state

defers to itself.

We now describe how we assign the remaining states to super-states and overlays ensuring

Condition (C2) is maintained. Given a super-state S that is in the OD2FA deferment

forest, our algorithm groups the children of the states in S into new super-states that

defer to S. This grouping is recursively applied to the new super-states formed until all

states are assigned to super-states. We now specify how the children of the states of S

are grouped into super-states. Let n be the number of non-empty overlays in S, and let

s1, . . . , sn be the states in these overlays. Let Ci = F
−1(si) be the set of children for each

state si in S, and let U =
⋃n
i=1Ci be the total set of states to be grouped into super-states.

To ensure all states in a super-state match the same REs, we partition U into accepting

states and rejecting states and work with each partition independently. Without loss of

generality, we assume U has one partition. We create super-states with the following two

goals in mind: grouping together states u ∈ U from di�erent Ci to (1) maximize the

number of super-state transitions that can be formed and (2) minimize the total number

of super-states formed.

We propose the following greedy strategy. We start with an arbitrary state u from the �rst

152

non-empty Ci removing u from Ci and creating super-state S ′ with just u in O(si). From

each of the remaining non-empty Ck, we pick the state uk that has the most common

non-deferred transitions with u, delete uk from Ck, and add uk to super-state S
′ in O(sk).

State uk must have at least one common non-deferred transition with u to be selected.

We repeat this process until all the Ci are empty. Condition (C2) is maintained because

a state s ′ in a super-state S ′ is added to overlay O if and only if the corresponding state

s in F(S) is in overlay O. For the D2FA in Figure 6.4 with root super-state 0 2 as S,

we have C0= {1} and C1= {3, 4}, and we create three super-states, 1 ⊥ , ⊥ 3 and ⊥ 4 ,

each of which defers to 0 2 . No super-states with more than one overlay occupied are

formed because states 1 and 3 as well as 1 and 4 do not have any common non-deferred

transitions.

After the super-states have been created, we greedily merge together compatible pairs of

super-states. Two super-states are compatible if there is no overlay that is non-empty in

both super-states. For our example in Figure 6.4, the super-states 1 ⊥ and ⊥ 3 will

be merged together, giving us two �nal super-states 1 3 and ⊥ 4 .

The last step is to create the super-state transitions which is discussed in Section 6.5.

We use greedy algorithms in several of our steps. This does not have much e�ect on

overall compression because most compression opportunities are accidental; they are not

the result of replications of the same NFA state. The key compression that is attained

results from grouping the root states together and combining the resulting self-loops into

super-state transitions; everything else is a bonus.

153

6.4.2 OD2FA Construction from 2 OD2FAs

We present our OD2FA merge algorithm, which we call OD2FAMerge, that constructs

OD2FA D3 with underlying D2FA D3 for the RE set R3 = R1 ∪ R2 given two OD2FAs, D1

with underlying D2FA D1 for RE set R1 and D2 with underlying D2FA D2 for RE set R2

where R1 ∩ R2 = ∅.

c d p r

‐c ‐{n,p}

0 1 2 3 4/1

n

D2FA for RE cd[^n]pr

0 20
0 1

1 31
0 1

 42
0 1

0

‐{n} n

Corresponding OD2FA (singleton
super-state transitions not shown)

Figure 6.5: D2FA and OD2FA for RE /cd[ˆn]?pr/.

The �rst step is to create the merged D2FA D3 using the the D2FA merge algorithm

described in Section 4.3.2. For example, Figure 6.6(a) shows the D2FA constructed from

the D2FAs in Figure 6.4 and Figure 6.5. For each state, the number below the line is the

state id in D3 and the two numbers above the line are the state ids of the states in D1

154

and D2 that this state corresponds to.

We now construct OD2FA D3 = (Q3, Σ, q03, F3, S3, O3,M3, ∆3) from the input OD2FAs

D1 = (Q1, Σ, q01, F1, S1, O1, M1, ∆1) and D2 = (Q2, Σ, q02, F2, S2, O2, M2, ∆2) as

well as the merged D2FA D3. The �rst three terms in D3 are derived from D3. We then

set S3 = S1 ×S2 and O3 = O1 ×O2. We reduce S3 to only include reachable super-states

(a super-state is reachable if it contains at least one reachable state). We discuss how we

handle empty overlays in Section 6.5.4.

a b

‐{a,c} ‐{c,n,p}

0,0
0

1,0
1

2,0
3

n

‐{a,n,p}

‐{n,p}

0,1
2

d
n

0,2
4

2,2
9

n

q

0,3
8

3,3
12

p

c

p

r r

0,4
11/2

4,2
13/1

2,1
5

1,2
7

4,0
10/1

2,4
14/2

3,0
6

p q

a b

c

d

(a) D2FA merged from D2FAs in Figures 6.4 and 6.5.

Figure 6.6: Merged OD2FA construction example.

155

156

0
‐{n} n

{0,1}

0
{0,1}

2a
b

{0,2}

0
c

{0,2}

1
d

0,0
0

0,0
0

0,2
4

0 1
2,0
3

2,2
9

2 3


1,0
3

1,0
1

1,2
7

0 1
3,0
6

2 3 1,1
4  

0 1

 3,3
12

2 3 2,0
5/1  

0 1
4,0
10

4,2
13

2 3


0,2
2/2  0,4

11

0 1
2,4
14

2 3


0,1
1

0,1
2

0,3
8

0 1
2,1
5

2 3

merged

0,0 0,1 1,0 1,1

(b) OD2FA merged from OD2FAs in Figures 6.4 and 6.5.

SS SSCD SSID
0  000
1 001 001
2 010 010
3 011 011
4 100 100

0 0,0
0

0,2
4

0 1
2,0
3

2,2
9

2 3

3 1,0
1

1,2
7

0 1
3,0
6

3,3
12

2 3
4/1  

0 1
4,0
10

4,2
13

2 3

2/2  0,4
11

0 1
2,4
14

2 3

1 0,1
2

0,3
8

0 1
2,1
5 
2 3

0
‐{n} n

{0,1}

0
{0,1}

2a
b

{2,3}

0
p

{0,2}

0
c

{0,2}

1
d

{2,3} 0q

(c) Corresponding optimized OD2FA.

Figure 6.6: Merged OD2FA construction example (cont'd).

Recall that the notation S3=〈S1, S2〉 means super-state S3 in D3 corresponds the pair of

super-states super-state S1 from D1 and S2 from D2. Both S3 and 〈S1, S2〉 refer to the

same super-state in D3. Then for any super-state S3=〈S1, S2〉 ∈ S3, we set M3(S3) =

M1(S1) ∪M2(S2). Condition (C1) holds because all the states in super-state S1 match

the REs inM1(S1) and all the states in super-state S2 match the REs inM2(S2).

Just as each state in D3 (D3) corresponds to a pair of states from D1 (D1) and D2 (D2),

each super-state in D3 will correspond to a pair of super-states from D1 and D2, and

similarly each overlay in D3 will correspond to a pair of overlays from D1 and D2. Any

state in D3 is assigned to a super-state and an overlay as follows. Let u=〈v,w〉 be a state

in D3. Then S3(u) ← 〈S1(v),S2(w)〉 and O3(u) ← 〈O1(v),O2(w)〉. That is, we assign u
to the super-state (overlay) that corresponds to the pair of super-states (overlay) that v

and w belong to in D1 and D2 respectively.

Figure 6.6(b) shows the OD2FA D3 constructed from OD2FA D1 in Figure 6.4 and OD2FA

D2 in Figure 6.5. In this �gure, for each super-state, the number below the line is the

super-state ID in D3 and the pair numbers above the line are the super-state IDs of the

super-states in D1 and D2 that this super-state corresponds to. For instance, consider

state 7 in D3, which corresponds to state 1 in D1 and state 2 in D2. As we can see

from Figures 6.4 and 6.5, state 1 ∈ D1 belongs to super-state 1 and overlay 0, and state

2 ∈ D2 belongs super-state 0 and overlay 1. Therefore, in OD2FA D3, we assign state

7 to super-state 3, which corresponds to super-state 1 from D1 and super-state 0 from

D2; similarly, we assign state 7 to overlay 1, which corresponds to overlay 0 from D1 and

157

overlay 1 from D2. In Figure 6.6(b), the input character and overlay o�set are shown along

each super-state transition. For super-state transitions that do not include all the overlays

in the super-state, the set of numbers at the base of the transition gives the included

overlays.

We de�ne the super-state deferment relationship F3 as follows: for any super-state S, which

contains one or more states in Q3, we defer it to the super-state that contains most of the

states that the states in S defer to; i.e., ∀S ∈ S, F3(S)← mode({S3(F3(u)) | u ∈ S}). After

de�ning F3, we need to adjust the deferment relationship F for D2FA D3. Speci�cally, for

each state s in a super-state S where S defers to super-state S ′, we let s defer to state s ′ in

S ′ where s and s ′ are in the same overlay if s ′ 6=⊥. If s ′ =⊥, we split S into two super-states

S1 = S \ {s} and S2 = {s}, where S2 defers to the super-state that contains the state that

s defers to (i.e., F3(S2) := S3(F3(s))). Note that the case that s ′ =⊥ rarely happens in

our experimental RE sets. This super-state splitting ensures that Condition (C2) holds

for D3.

We show how the super-state transitions are created for the merged OD2FA Section 6.5.

Pseudo-code for our OD2FAMerge algorithm is given in Algorithm 6.7.

We now consider the following optimization for D3. Among the super-states that defer to

the same super-state, we merge two compatible super-states into one super-state if merging

them results in more super-state transitions. This will commonly be the case when we

lose a D2FA state we expect to generate from a self-looping state. For example, in D2FA

Figure 6.6(a), we lost the expected states 〈2, 3〉 and 〈3, 2〉 getting instead state 12 = 〈3, 3〉.

158

1 Input: OD2FAs, D1 and D2, with underlying D2FAs D1 and D2, corresponding to RE sets

R1 and R2.

Output: An OD2FA and its underlying D2FA corresponding to the RE set R1 ∪ R2.
1 Let D3 ← D2FAMerge(D1, D2) // algorithm from Section 4.3.2

2 Set #overlays in D3, |O3| = n← |O1|× |O2|;
3 foreach Si ∈ S1 × Sj ∈ S2 do // Create the super-states

4 Initialize super-state S=〈Si, Sj〉 with n NULL states;

5 foreach Ok∈O1, 0≤ k< |O1| × Ol ∈O2, 0≤ l< |O2| do
6 if state s=〈Si ∩ Ok, Sj ∩ Ol〉 ∈ Q3 then
7 Assign s to overlay O(k×|O2|+l) in super-state S;

8 if at least one non-NULL state in S then

9 Add S to S3;
10 M3(S)←M1(Si) ∪M2(Sj);

11 foreach S ∈ S3 do // set super-state deferment

12 Set F3(S)← mode({S3(F3(s)) | s ∈ S});

13 Let P = {s | (s ∈ S)∧ (F3(S) ∩ O3(s) =⊥)};
14 foreach state u ∈ P do

15 Remove u from super-state S;

16 Create new super-state S ′ with just state u in overlay O3(u) and add S ′ to S3;
17 SetM3(S

′)←MD3
(u);

18 Set F(S ′)← S3(F3(u));
19 foreach state s ∈ S with F3(s) 6= F3(S) ∩ O3(s) do
20 Set F3(s)← F3(S) ∩ O3(s), and regenerate non-deferred transitions for ρ3 in D3 for

state s;

21 foreach S ∈ S3 × c ∈ Σ do // create super-state trans.

22 CreateSupreStateTrans(S, c);

23 Function CreateSupreStateTrans(S, c)

24 C← CreateSupreStateTransClassifier(S,F3(S), c);
25 For each rule, ri ∈ C add super-state transition ∆3(S,P(ri), c) = D(ri);

26 Function CreateSupreStateTransClassifier(S,DS, c)

/* Generate transitions for character c and super-state S when it defers to

DS */

27 Let ODec[n] be the o�set decision vector initialized to ~;
28 Let NODec[n] be the non-o�set decision vector initialized to ~;
29 Let Reqd[n] be the required vector initialized to False;

30(cont'd)

31
Figure 6.7: Algorithm OD2FAMerge(D1,D2) for merging two OD2FAs.

159

11(cont'd)

30 foreach O ∈ O3 do
31 if S ∩ O 6=⊥ then

32 u=〈u1, u2〉← S ∩ O; // current state

33 nu← δ ′3(u, c); // next state

34 if ρ3(u, c) is de�ned then // not deferred

35 if S 6= DS∨ u 6= nu then Reqd[O]← True

36 ODec[O]← (S3(nu), (O3(nu)−O) mod n, 1);

37 NODec[O]← (S3(nu), O3(nu), 0);

38 if #Unique values in ODec ≤ #Unique values in NODec then

39 return CreateOverlayClassifier(ODec,Reqd);

40 else

41 return CreateOverlayClassifier(NODec,Reqd);

42
Figure 6.7: Algorithm OD2FAMerge(D1,D2) for merging two OD2FAs (cont'd).

As a result, in Figure 6.6(b), the super-states 13 = 2 8 5 ⊥ and 33 = 1 7 6 ⊥ have

⊥ in overlay 3, and there is the super-state 43 = ⊥ ⊥ ⊥ 12 with just state 12 in overlay

3, and super-state 43 is compatible with both super-states 13 and 33. We can create new

super-state transitions by merging super-state 43 with either 13 or 33. In Figure 6.6(c),

we show the resulting OD2FA when we merge 43 from Figure 6.6(b) with 33 adding the

super-state transitions out of super-state 03 on `p' to super-state 33 for overlays 2 and 3

with o�set o = 0 and the super-state transitions out of super-state 33 to super-state 53

(renamed 43 in Figure 6.6(c)) on 'q' for overlays 2 and 3 with o�set o = 0. Alternatively,

we could have merged super-state 43 from Figure 6.6(b) with super-state 13 and added

a super-state transition out of super-state 03 on `p' to super-state 13 for overlays 1 and

3 with o�set o = 0 and a super-state transition out of super-state 13 on r to super-state

23 for overlays 1 and 3 with o�set o = 0. After merging super-states, we regenerate

the super-state transitions for all the super-states and not just the super-states that were

160

merged, as merging super-states could lead additional transition merging opportunities in

other super-states too.

Theorem 8. Given as input OD2FAs D1 and D2 and corresponding equivalent D2FAs

D1 and D2 for RE sets R1 and R2, the OD2FAMerge algorithm outputs an OD2FA

D3 that is equivalent to D2FA D3 for RE set R1 ∪ R2.

Proof. The D2FA D3 constructed by merging D2FAs D1 and D2 using D2FAMerge algo-

rithm is equivalent to RE set R1 ∪ R2 ([36]). Line 20 only changes the deferred state for

some states and so D3 is equivalent to RE set R1 ∪ R2.

We now show that the generated OD2FA D3 is equivalent to D2FA D3. To show equiva-

lence, we need to show that for each state s ∈ Q3, the deferred state for s, the non-deferred

transitions for s, and the matched REs for s, derived from D3 are same as in D3. Let

s= 〈s1, s2〉 ∈ Q3 be any state in D3. First, S3(s) and O3(s) are de�ned as we take a

complete cross product of S1 × S2 and O1 ×O2. The super-state transitions are directly

generated from the D2FA state transitions. It is easy to see that ∀σ ∈ Σ, ρ ′3(s, σ) is de�ned

in D3 ⇐⇒ ρ3(s, σ) is de�ned in D3; and when de�ned ρ ′3(s, σ) = ρ3(s, σ).

Then we have the following two cases.

Case 1: S3(s) added to S3 on line 16. Then REs matched in D3 by s = MD3(s) ∪

M3(S(s)) =MD3
(s) (∵MD3(s) = ∅).

Deferred state of s in D3 = F3(S3(s)) ∩ O3(s) = S3(F3(s)) ∩ O3(F3(s)) = F3(s).

Case 2: S3(s) added on line 9. Then let S3(s) = S=〈S1, S2〉. REs matched in D3 by s =

161

MD3(s) ∪M3(S) =M1(S1) ∪M2(S2) =MD1
(s1) ∪MD2

(s2) =MD3
(s).

Deferred state of s in D3 = F3(S) ∩ O3(s) = F3(s).

6.4.3 Direct OD2FA Construction from 2 OD2FAs

Our OD2FA merge algorithm presented in Section 6.4.2 requires the underlying D2FA to

be stored along with the OD2FA. This underlying D2FA requirement for merging OD2FAs

is problematic for two main reasons. First, in most practical cases, we would need to

update the RE set over time. If the underlying D2FA is discarded, then when a new RE

is added to the RE set, we cannot use the merge algorithm to merge the OD2FA for the

new RE into the existing OD2FA. Instead, we will have to build the entire OD2FA again.

This defeats one of the main advantages of the merge approach to building the OD2FA

which is automatic support for updating the RE set. The second problem is that because

the underlying D2FA is generally orders of magnitude larger than the OD2FA, the size of

the D2FA limits the scalability of the algorithm.

We now present our algorithm, called DirectOD2FAMerge, to merge two OD2FAs which

does not require storing the underlying D2FA. After the initial OD2FAs have been built

for each individual RE, we only store the OD2FA at each merge step.

The input is two OD2FAs, D1 = (Q1, Σ, q01, F1, S1, O1, M1, ∆1) for RE set R1 and

D2 = (Q2, Σ, q02, F2, S2, O2,M2, ∆2) for RE set R2 where R1∩R2 = ∅, and we construct

construct OD2FA D3 = (Q3, Σ, q03, F3, S3, O3,M3, ∆3) for the RE set R3 = R1 ∪ R2.

162

Just as in our OD2FAMerge algorithm in Section 6.4.2, each state (super-state) in D3

corresponds to a pair of states (super-states) from D1 and D2. The �rst step is to compute

Q3, i.e. �nd which states in the underlying DFA for D3 that are reachable. The set Q3 is

not stored explicitly but is implicit from the set of non-empty overlays for each super-state.

If we store the set of non-empty overlays for each super-state as a list, the total size will

be proportional to Q3, which can be very large. So the set of non-empty overlays for each

super-state is stored as a ternary classi�er (similar to how we store super-state transitions

which is discussed in Section 6.5.)

One option to �nd the reachable states is to simulate a UCP construction of the underlying

DFAs of D1 and D2. That is, we do the UCP construction, but after computing the

transitions of each merged state, we do not store them. The UCP construction also gives

the state to super-states and overlay assignment. The problem with this method is that

the queue of unexplored states while doing the UCP construction can be proportional to

|Q3|.

To avoid this, we simulate the UCP construction focusing on super-states instead of states.

The construction works as follows. For each discovered super-state in D3, we maintain two

sets of overlays: (1) the Explored set containing the overlays which have a reachable DFA

state that have already been explored, and (2) the Unexplored set containing the overlays

which have a reachable DFA state that have not already been explored. We maintain a

queue, Queue, of super-states in D3 that currently need to be explored, and explore one

super-state from the queue at a time. For the super-state, say S, currently being explored,

163

we explore all the states corresponding to the overlays in S's Unexplored set, and them

move all the overlays from the Unexplored to the Explored set.

When a new state, say (S ′ ∩ O ′), is discovered, it is processed as follows. If S ′ is

a newly discovered super-state, we add it to Queue and set Explored(S ′) = ∅ and

Unexplored(S ′) = O ′. Otherwise S ′ is already discovered and so is in S3. In this case, if

O ′ ∈ Explored(S ′) or O ′ ∈ Unexplored(S ′), then we do not have to do anything as the

state has already been discovered. Otherwise, this is a newly discovered state, so we add

O ′ to Unexplored(S ′), and add S ′ to Queue if S ′ is not already there.

A super-state may be added to Queue and explored multiple times because all non-empty

overlays within a super-state are not discovered at the same time. As mentioned earlier,

the Explored and Unexplored overlay sets are maintained as ternary classi�ers. As new

overlays are added to the sets, the classi�ers are minimized using the bit merging algorithm

that is explained in Section 6.5.3.

After computing the reachable states, we have all the terms in D3 constructed except for

F3 and ∆3.

For the OD2FAs in Figure 6.4 and Figure 6.5, this new merge algorithm results in the

same OD2FA as earlier shown in Figure 6.6(b).

To set the super-state deferment, we use a method similar to that used in Section 4.3.2

to set state deferment when merging D2FAs. Let S=〈S0, T0〉 be the current super-state in

D3 for which we need to compute the deferment. Let S0→S1→· · ·→Sl be the maximal

164

deferment chain DC1 (i.e. Sl is the root super-state) in D1 starting at S0, and T0→T1→
· · ·→Tm be the maximal deferment chain DC2 in D2 starting at T0. We will choose some

super-state 〈Si, Tj〉 where 0 ≤ i ≤ l and 0 ≤ j ≤ m to be F3(S). We only consider a

candidate super-state pair if it is reachable in D3 and it overlay covers super-state S (so

Condition (C2) holds). Ideally, we want i and j to be as small as possible though not both

0. For example, our best choices are typically 〈S0, T1〉 or 〈S1, T0〉. However, it is possible

that both super-states are not eligible (either not reachable or do not overlay cover S).

This leads us to consider other possible 〈Si, Tj〉.

For any candidate super-state pair 〈Si, Tj〉, we build the super-state transitions for super-state

S as if it were to defer to super-state 〈Si, Tj〉 in D3 (we show how to build the super-state

transitions in Section 6.5). The number of super-state transitions built gives us the mea-

sure of the e�ectiveness of the deferment; the fewer transitions built, the better it is. One

strategy (the best match method) is to consider all candidate super-state pairs, and pick

the one that results in the fewest super-state transitions built for super-state S. A faster

strategy (the �rst match method) is to consider the `distance sum' z = i + j in increas-

ing order, from 1 to l +m. For the current distance sum z, we consider all super-state

pairs at that distance; i.e. the set of super-states Z = {〈Si, Tz−i〉 | (max(0, z −m) ≤ i ≤

min(l, z)) ∧ (〈Si, Tz−i〉 ∈ Q3) ∧ (〈Si, Tz−i〉 overlay coversS)}. From the set of super-states

Z, we choose the super-state that results in the fewest super-state transitions built for

super-state S. We can always �nd an eligible super-state to set as F3(S), since the

root super-state pair 〈Sl, Tm〉 is always reachable in D3 and it overlay covers all other

165

super-states.

For example in Figure 6.6(b), for super-state 4=〈1, 1〉, there are three reachable super-state

pairs along the deferment chains: 1=〈0, 1〉, 3=〈1, 0〉 and 0=〈0, 0〉. However super-states

1=〈0, 1〉 and 3=〈1, 0〉 do not overlay cover super-state 4=〈1, 1〉, leaving the super-state

0=〈0, 0〉 as the only candidate pair, which is chosen as the deferred super-state.

How the super-state transitions are created for the merged OD2FA is shown in Section 6.5.

Pseudo-code for our DirectOD2FAMerge algorithm is given in Algorithm 6.8.

At the end, we apply the same optimization of merging sibling super-states together as in

the case of our OD2FAMerge algorithm.

6.5 Building Super-state Transitions

In this section we describe how we combine state transitions to create super-state tran-

sitions after the super-states have been created. The OD2FA captures similarity among

states in di�erent overlays within a super-state. So we would expect that state transitions

(which are just singleton super-state transitions) would be combined over the overlay �eld;

i.e. multiple singleton super-state transitions with the same current super-state, current

input character and decision values but di�erent overlay values will be combined.

The super-state transitions are created for each super-state and input character at a time.

In the rest of the section, S refers to the current super-state and σ refers to the current

166

1 Input: OD2FAs, D1 = (Q1, Σ, q01, F1, S1, O1,M1, ∆1) and D2 = (Q2, Σ, q02, F2, S2, O2,
M2, ∆2), corresponding to RE sets R1 and R2.

Output: An OD2FA and its underlying D2FA corresponding to the RE set R1 ∪ R2.
1 Initialize D3 to an empty OD2FA;

2 Set #overlays in D3, |O3| = n← |O1|× |O2|;
// Create the super-states

3 Initialize queue as an empty queue;

4 queue.push (〈q01 , q02〉);
5 while queue not empty do

6 u=〈u1, u2〉← queue.pop();

7 Q3 ← Q3 ∪ {u};

8 S1 ← S1(u1); O1 ← O1(u1);
9 S2 ← S2(u2); O2 ← O2(u2);

10 if super-state S=〈S1, S2〉 /∈ S3 then
11 Initialize super-state S=〈S1, S2〉 with n NULL states;

12 Add S to S3;
13 M3(S)←M1(S1) ∪M2(S2);

14 Assign u to overlay (O1 × |O2|+ O2) in super-state S;

15 foreach c ∈ Σ do

16 nxt← 〈δ ′′1 (u1, c), δ ′′2 (u2, c)〉;
17 if nxt /∈ Q3 ∧ nxt /∈ queue then queue.push (nxt);

18 foreach S ∈ S3 do F3(S)← FindDefState(S); // set super-state deferment

19 foreach S ∈ S3 × c ∈ Σ do // create super-state trans.

20 CreateSupreStateTrans(S, c);

21 Function FindDefState(〈S1, S2〉)
22 Let 〈p0 = S1, p1, . . . , pl〉 be the list of super-states on the deferment chain from S1 to the

root super-state in D1;
23 Let 〈q0 = S2, q1, . . . , qm〉 be the list of super-states on the deferment chain from S2 to the

root super-state in D2;
24 for z = 1 to (l+m) do

25 S ′ ← {〈pi, qz−i〉 | (max(0, z−m) ≤ i ≤ min(l, z))∧ (〈pi, qz−i〉 ∈ S3)};
26 if S ′ 6= ∅ then return argminDS∈S ′(Σc∈Σ

Cost(CreateSupreStateTransClassifier(〈S1, S2〉,DS, c)));

27 return 〈S1, S2〉;

28 Function CreateSupreStateTrans(S, c)

29 C← CreateSupreStateTransClassifier(S,F3(S), c);
30 For each rule, ri ∈ C add super-state transition ∆3(S,P(ri), c) = D(ri);

31(cont'd)

32
Figure 6.8: Algorithm DirectOD2FAMerge(D1,D2) for merging two OD2FAs.

167

11(cont'd)

31 Function CreateSupreStateTransClassifier(S,DS, c)

/* Generate transitions for character c and super-state S when it defers to

DS */

32 Let ODec[n] be the o�set decision vector initialized to ~;
33 Let NODec[n] be the non-o�set decision vector initialized to ~;
34 Let Reqd[n] be the required vector initialized to False;

35 foreach O ∈ O3 do
36 if S ∩ O 6=⊥ then

37 u=〈u1, u2〉← S ∩ O; // current state

38 nu1 ← δ ′′1 (u1, c); nu2 ← δ ′′2 (u2, c); // next state

39 if S = DS then // for the root super-state

40 if (u1 6= nu1)∨ (u2 6= nu2) then Reqd[O]← True; // not a self-loop

41 else

42 du=〈du1, du2〉← DS ∩ O;

43 if (δ ′′1 (du1, c) 6= nu1)∨ (δ ′′2 (du2, c) 6= nu2) then Reqd[O]← True; // not

deferred

44 ODec[O]← (S3(〈nu1, nu2〉), (O3(〈nu1, nu2〉)−O) mod n, 1);

45 NODec[O]← (S3(〈nu1, nu2〉), O3(〈nu1, nu2〉), 0);

46 if #Unique values in ODec ≤ #Unique values in NODec then

47 return CreateOverlayClassifier(ODec,Reqd);

48 else

49 return CreateOverlayClassifier(NODec,Reqd);

50
Figure 6.8: Algorithm DirectOD2FAMerge(D1,D2) for

merging two OD2FAs (cont'd).

input character for which we want to build the super-state transitions. T refers to the

current (or potential) deferred super-state of S.

6.5.1 Combining State Transitions

To combine the state (singleton super-state) transitions, we �rst need to identify the

(subset of) overlays that have the same decision; that is, the same next super-state, overlay

value and the o�set bit.

168

A trivial way to combine state transitions is to create one super-state transition for each

unique decision value among all the overlay decisions. All the overlays (i.e. state transi-

tions) having the same decision will be combined into the super-state transition for that

decision. In this case, we will have the smallest possible number of super-state transitions,

which is equal to the number of unique decisions.

The problem with this approach is that we may have any arbitrary subset of overlays in a

super-state transition. Thus, we will need to represent arbitrary subsets of overlays. This

is problematic because any such representation will have a size that will be linear in the

size of the overlay set, O. The combined memory requirement of such a representation over

all the super-state transitions for all super-states will essentially be linear in terms of the

number of state transitions. This defeats the purpose of combining the state transitions.

To address this issue, we only create overlay subsets (i.e. only combine state transitions)

for states whose overlay sets that can be concisely represented. Speci�cally, we only create

overlay subsets that can be represented as a ternary value; i.e. the set of overlays in

each combined super-state transition is equal to the ternary expansion of a ternary value.

Recall that we treat the overlays as integers in the range [0..|O|) and |O| is always a power

of 2. In most cases this restriction does not result in lost state combining opportunities.

In almost all cases, we are able to combine all state transitions with the same decision into

a single super-state transition.

169

6.5.1.1 Computing State Transitions

For each overlay O ∈ O, we can have one of the following three cases: (a) S ∩O =⊥, i.e.

the overlay is empty, (b) S∩O = s and δ ′′(s, σ) 6= δ ′′(T ∩O,σ), i.e. state transition is not

deferred and (c) S ∩ O = s and δ ′′(s, σ) = δ ′′(T ∩ O,σ), i.e. state transition is deferred.

Of ⊆ O denotes the set of �lled overlays, and Or ⊆ Of denotes the set of overlays for

which the state transition is not deferred. Note that Of depends on S, and Or depends on

S, T and σ. The super-state transitions generated for super-state S need to cover all the

overlays in Or. We make the following two observations which help us combine the state

transitions into fewer super-state transitions.

� We never do a lookup on the OD2FA for any overlay O ∈ O \Of for super-state

S. Because of this, empty overlays can have any decision, and so can be `merged' with

any overlay. For example, suppose we have |O| = 4, where overlay 2 = (10)2 is empty,

and overlays 0 = (00)2, 1 = (01)2 and 3 = (11)2 all have the same decision. If we try

to combine just the �lled overlays, we get two super-state transitions with overlay sets

0∗ and 11. But since we would never do a lookup on the empty overlay, we can include

it in the super-state transition, which results in only one transition with overlay set

∗∗. For every empty overlay we designate a special wildcard decision, denoted by

~, that matches any actual decision. Also note that if we include empty overlays

in super-state transitions, Condition (C2) is necessary and su�cient to ensure that

transition deferment works correctly.

� It is not necessary to defer transitions that match the deferred state. When

170

combining state transitions, including transitions that can be deferred can result

in fewer super-state transitions. For example, suppose we have |O| = 4, where all

four overlays are �lled and all have the same decision, but the transition for overlay

2 = (10)2 is deferred, whereas transitions for overlays 0 = (00)2, 1 = (01)2 and

3 = (11)2 are not deferred. If we require that the transition for overlay 2 must be

deferred, then we need need two super-state transitions with overlay sets 0∗ and

11 to cover the remianing overlays. Including the state transition for overlay 2 in

the combined super-state transition results in only one super-state transition with

overlay set ∗∗.

Before we can combine state transitions, we �rst need to compute the state transition and

deferment for each overlay. We create a Decision array which records the decision for each

overlay, and a corresponding Boolean Required array which records whether the decision

is necessary or not (i.e. whether it must be speci�ed or it can be deferred). For empty

overlays, the Decision value is set to ~ and Required is set to false. For �lled overlays,

how the state transitions are computed depends on the stage of the OD2FA construction.

During initial OD2FA construction for one RE: The underlying D2FA is available

during the initial OD2FA construction, so the state transitions and deferments are deter-

mined by the D2FA.

During OD2FAMerge: Since the underlying D2FA is stored in OD2FAMerge, again the

state transitions and deferments are determined by the stored D2FA. The D2FA lookup

171

from the underlying D2FA corresponds to lines 33 and 35 in Algorithm 6.7.

During DirectOD2FAMerge: During DirectOD2FAMerge, we do a lookup from the

input OD2FAs to compute the state transitions and deferments. The lookup from the two

input OD2FAs corresponds to lines 38 and 43 in Algorithm 6.8.

For the root super-state, for self-loop state transitions we set the Required value to false,

even though these transitions are not deferred. As a result, the root super-state will not

store the self-looping super-state transitions. If lookup fails for a non-root super-state,

then we would follow the deferment pointer and do a lookup on its deferred super-state. If

lookup fails for the root super-state, there no deferment pointer to follow along; however

we would know that the missing transition is a self-loop (on the root super-state), so the

destination super-state is the root super-state and the destination overlay is the current

overlay. Since most transitions for the root super-state are self-loops, this greatly reduces

the resulting number of super-state transitions.

We need to determine which of the two forms of super-state transitions (o�set transitions

or non-o�set transitions) to create. Clearly we would use the form which results in fewer

super-state transitions. So we create a Decision array for both o�set and non-o�set

decision, and use the one which has fewer unique values in it to create the super-state

transitions. In most of the cases using the o�set decisions results in fewer super-state

transitions.

We only compute and store transitions for all states in one super-state at at time. Once the

172

super-state transitions have been constructed, the state transitions are discarded. Hence

we never store state transitions for all states in the OD2FA at the same time.

For example consider super-state 1 and input character d in the OD2FA in Figure 6.6(c).

The OD2FA has four overlays so O = {0, 1, 2, 3}. In this case we have Of = {0, 1, 2} and

Or = {0, 2}. The Decision array will be [(0, 1, 1), (0, 0, 1), (0, 1, 1),~] and the Required

array will be [true, false, true, false].

6.5.2 Creating Overlay Classifier

The set of state transitions for each overlay for super-state S and input character σ es-

sentially forms a 1-dimensional classi�er over the overlay �eld. The problem of creating a

minimum set of covering super-state transitions then boils down to �nding an equivalent

ternary minimized classi�er.

We introduce some standard terminology �rst. A 1-dimensional classi�er is de�ned over a

�eld F and consists of a list of rules. Each rule r has a predicate P(r) ⊆ F and a decision

D(r). A packet p ∈ F matches rule r if p ∈ P(r). The decision of the classi�er C for a

packet p is given by the �rst rule in C that matches p. For our purpose of using a classi�er

to build super-state transitions, we de�ne a generalized version of a classi�er that we call

an overlay classi�er.

Definition 7 (Overlay classi�er). An overlay classi�er, C, is 1-dimensional classi�er

over the �eld O. Each rule r has a Boolean
ag, denoted by R(r), that indicates

173

whether the rule is required or not. Rules with decision ~ have their
ag R(r) set to

false. The rules in C satisfy the following properties:

� Ternary classi�er: For each rule r ∈ C, its predicate P(r) is a ternary value.

� Non-con
icting property: For every packet p ∈ Of, all the rules that match p (if

any) also have matching decisions (note that ~ matches any actual decision.)

� Covering property: For every packet p ∈ Or, there is at least one rule r ∈ C that

matches p and R(r) is true (which also implies D(r) 6= ~.)

� Restricted equivalence: Two overlay classi�ers are equivalent if, for every packet

in Of for which both overlay classi�ers have a match, they both have the same

decision.

Given the Decision and Required values for each overlay, we �rst construct an overlay

classi�er with one rule for each overlay. Speci�cally, we create an empty overlay classi�er

C over O. Then for each overlay O, we add the rule Rule(O,Decision[0], Required[O]) to

C. Here Rule(x, y, z) refers to creating a rule r with P(r) = x, D(r) = y and R(r) = z. Next

we minimize the rules in C to get an equivalent overlay classi�er C ′ (which is discussed

in the next section). After minimizing, each rule r ∈ C ′ with R(r) = true gives us a

combined super-state transition ∆(S,P(r), σ) = D(r) in the OD2FA.

The covering property of overlay classi�ers ensures that super-state S will have a super-state

transition covering every overlay in Or. The non-con
icting property of overlay classi�er

ensures that each overlay in Of has at most one decision. Note that we can have more

174

than one super-state transition covering an overlay, but in that case the non-con
icting

property ensures that they all have the same decision.

For example with super-state 1 and input character d in the OD2FA in Figure 6.6(c), the

overlay classi�er created will have just one required rule ∗0 → (0, 1, 1), which gives us

the super-state transition (1, ∗0) d
−→ (0, 1, 1). Figure 6.9 shows the overlay classi�ers and

corresponding super-state transitions generated for all the super-states in the OD2FA in

Figure 6.6(c).

Super-state Char. Overlay classi�er Super-state transition

0

a 0∗→ (3, 0, 1) (0, 0∗) a
−→ (3, 0, 1)

c ∗0→ (1, 0, 1) (0, ∗0) c
−→ (1, 0, 1)

n ∗∗→ (0, 0, 0) (0, ∗∗) n
−→ (0, 0, 0)

p
01→ (1, 0, 1) (0, 01)

p
−→ (1, 0, 1)

1∗→ (3, 0, 1) (0, 1∗) p
−→ (3, 0, 1)

1
d ∗0→ (0, 1, 1) (1, ∗0) d

−→ (0, 1, 1)

r 01→ (2, 0, 1) (1, 01)
r
−→ (2, 0, 1)

3

b 0∗→ (0, 2, 1) (3, 0∗) b
−→ (0, 2, 1)

q 1∗→ (4, 0, 1) (3, 1∗) q
−→ (4, 0, 1)

r 11→ (2, 0, 1) (3, 11)
r
−→ (2, 0, 1)

Figure 6.9: Overlay classi�er and corresponding super-state transitions for the super-states

in OD2FA in Figure 6.6(c).

The pseudo-code for creating the overlay classi�er is given in Algorithm 6.10.

6.5.3 Minimizing Overlay Classifier

We now explain how we minimize the initial overlay classi�er created from the Decision

and Required arrays. We generalize the bit merging algorithm proposed in [31] to handle

175

1 Input: The decision, Dec[], and required value, Reqd[], for each overlay.

Output: An equivalent ternary minimized overlay classi�er.

1 n← len(Dec); // number of overlays, will be a power or 2

2 w← log2(n); // number of bits

3 Create empty overlay classi�er C with �eld width w;

4 foreach overlay o ∈ [0..n) do

5 Insert Rule(o,Dec[o],Reqd[o]) in C;

6 return MinimizeOverlayClassifier(C); // minimize the rules and return

7
Figure 6.10: Algorithm CreateOverlayClassifier(Dec, Reqd).

wildcard decision ~ and optional deferment.

We introduce some standard terminology �rst. For a ternary value T , the ternary position

mask of T , denoted by τ(T), is the binary value obtained by replacing all binary bits in T

by 0 and all ternary bits (∗) in T by 1. The ternary position mask of T basically indicates

the positions in T which have a ternary bit. The binary bit mask of T , denoted by β(T),

is the binary value obtained by replacing all ternary bits in T by 1. The ternary position

mask and binary bit mask together represent a ternary value using two binary values. If

bit location b is a 1 bit in τ(T) then T has a ∗ in location b; otherwise T has the same

binary bit in location b as in β(T). So we can represent at ternary value T as the pair of

binary values (τ(T), β(T)).

Two ternary values, T1 and T2, are said to be ternary adjacent if τ(T1) = τ(T2) and β(T1)

and β(T2) di�er in exactly one bit. In other words, T1 and T2 are ternary adjacent if they

di�er in exactly one location which has a binary bit in both T1 and T2. The ternary cover

of T1 and T2 is the ternary value (τ(T1) | (β(T1) ^ β(T2)), β(T1) | (β(T1) ^ β(T2))) (here | is

the bitwise OR, and ^ is the bitwise XOR). That is, the ternary cover is the ternary value

176

obtained by replacing the di�ering binary bit location in T1 (or in T2) by the ternary bit

∗. Two rules are said to be ternary adjacent if their predicates are ternary adjacent and

their decision match.

We �rst minimize the rules in the overlay classi�er and then remove rules that are not

required (i.e. have the R(r)
ag set to false). Minimizing the overlay classi�er is done in

two steps, pre-merging bits and bit merging. We explain these two steps using the example

in Figure 6.11.

0000→ A
0001→ ~
0010→ A?
0011→ A
0100→ ~ 000∗→ A 00∗∗→ A 00∗∗→ A
0101→ ~ 001∗→ A ∗01∗→ A? ∗01∗→ A?
0110→ B 010∗→ ~ 0∗0∗→ A? 0∗0∗→ A? 00∗∗→ A
0111→ B 011∗→ B ∗11∗→ B
1000→ B 100∗→ B ∗11∗→ B ∗11∗→ B 1∗0∗→ B
1001→ ~ 101∗→ A? 01∗∗→ B? 1∗0∗→ B
1010→ ~ 110∗→ ~ 1∗0∗→ B
1011→ A? 111∗→ B? 11∗∗→ B? ∗1∗∗→ B?
1100→ ~
1101→ ~
1110→ ~
1111→ B?

Bit 0

eliminated

Bit merge

�rst pass

Bit merge

second pass

Remove non-

required rules

Figure 6.11: Minimizing overlay classi�er example.

The pseudo-code for minimizing the overlay classi�er is given in Algorithm 6.12

177

1 Input: A initial overlay classi�er C with n = O rules.

Output: Equivalent overlay classi�er with rules minimized.

1 w← log2(n); // number of bits

2 foreach bit k ∈ [0..w) do // first try pre-merging bits

3 premerge← True;

4 foreach pair of rules, ri, rj, such that P(ri) and P(ri) di�er only in bit k do

5 if ri and rj are not ternary adjacent then // i.e. decisions of ri and rj do

not match

6 premerge← False;

7 break;

8 if premerge then // bit k is pre-merged

9 foreach pair of rules, ri, rj, such that P(ri) and P(ri) di�er only in bit k do

10 Remove rules ri and rj from C;

11 Insert rule MergedRule(ri, rj) in C;

12 C← BitMerge(C); // then do bit merging

13 foreach rule ri ∈ C do if R(ri) = False then Remove ri from C; // remove non-required

rules

14 return C;

15 Function BitMerge(C)

16 Create empty overlay classi�er C ′;

17 foreach rule ri ∈ C do Initialize covered[i]← False;

18 PM← Partition of rules in C based on rule predicate ternary position masks;

19 foreach Partition pm ∈ PM do

20 PD← Partition of rules in pm based on rule decision;

21 foreach Partition pd ∈ PD with corresponding decision d do

22 foreach pair or rules ri, rj ∈ pd do

23 if ri and rj are ternary adjacent then

24 Insert MergedRule(ri, rj) in C
′;

25 covered[i]← covered[j]← True;

26 R(ri)← R(rj)← False;

27 if d 6= ~ then

28 psd← Partition in PD corresponding to ~;
29 foreach pair or rules ri ∈ pd× rj ∈ psd do

30 if ri and rj are ternary adjacent then

31 Insert MergedRule(ri, rj) in C
′;

32 covered[i]← covered[j]← True;

33 R(ri)← R(rj)← False;

34(cont'd)

35
Figure 6.12: Algorithm MinimizeOverlayClassifier(C).

178

11(cont'd)

34 if C ′ is empty then // no rules merged

35 return C;

36 foreach rule ri ∈ C do if covered[i] = False then Insert ri in C
′;

37 Remove duplicate rules from C ′;

38 return BitMerge(C ′); // recursively call BitMerge and return the result

39 Function MergedRule(r1, r2)

40 T← ternary cover of P(r1) and P(r2);
41 if D(r1) 6= ~ then D← D(r1) else D← D(r2) ;
42 reqd← R(ri)∨ R(rj);
43 return Rule(T,D, reqd);

44
Figure 6.12: Algorithm MinimizeOverlayClassifier(C) (cont'd).

6.5.3.1 Pre-merging Bits

The initial overlay classi�er created from the Decision and Required arrays will have |O|

rules, one rule for each overlay, and the predicate of any rule ri is i (the corresponding

overlay (binary) value). For our example, the �rst column in Figure 6.11 shows the initial

overlay classi�er. We have |O| = 16. There are two unique actual decisions denoted by A

and B. A `?' next to an actual decision indicates that the rule is not required (rules with

a ~ decision are always not required).

At this point we can directly apply the bit merging algorithm, which will result in a

minimized set of rules. But in most cases, all except for a few overlays have the same

decision. So only a few bits that distinguish the overlays having di�erent decisions will

vary in the minimized rules. All the other bits will be merged to ∗'s in all the minimized

rules. We can accelerate the bit merging step by identifying these bits and pre-merging

them so that the bit-merging algorithm only needs to work on the few remaining bits that

179

are not pre-merged.

The pre-merging works as follows. For a binary value p, 0̂b(p) denotes the value obtained

by inserting a 0 bit at location b, and 1̂b(p) denotes the value obtained by inserting a 1

bit at location b. Bit location b is pre-merged if the following condition is true: ∀p ∈

[0..|O|/2), D(r
0̂b(p)

) matches D(r
1̂b(p)

). That is, for every pair of rules whose predicates

di�er only in bit location b, their decisions match. Since the decisions for every such pair

of rules match, we merge these pair of rules. A pair of such rules, lets say ri and rj are

merged as follows. We create a new merged rule, say rk. P(rk) is set to the ternary cover of

P(ri) and P(rj). If D(ri) 6= ~ then we set D(rk)← D(ri) otherwise we set D(rk)← D(rj),

and we set R(rk)← R(ri)∨ R(rj). Rules ri and rj are replaced with the merged rule rk.

We test and pre-merge one bit location at a time. Every time a bit is pre-merged, the

number of rules is reduced by half.

In our example in Figure 6.11, bit location 0 gets pre-merged, and the resulting rules are

shown in the second column.

6.5.3.2 Bit Merging Algorithm

The bit merging algorithm runs in several iterations. The input to each iteration is an

overlay classi�er C, and the output is an equivalent overlay classi�er C ′. Each iteration

works as follows.

We �rst initialize a Covered
ag to false for each rule in C. For rule ri, Covered[ri]

180

indicates if rule ri is covered by some rule in C ′. Then for every pair of rules, say ri and

rj, in C that are ternary adjacent, we insert the merged rule rk in C ′. The merged rule

rk is created in the same way as during the pre-merging step. After inserting merged rule

rk to C ′, we set Covered[ri] and Covered[rj] to true and set R(ri) and R(rj) to false.

The idea behind setting the required
ags for ri (and rj) to false is that since a rule has

already been added to C ′ that covers ri, any further rules we add to C ′ should not be set

as required because of ri.

To speed up bit merging, we partition the rules based on the ternary position mask of the

each rule's predicate and each rule's decision. This reduces the number of pairs of rules

we need to check for merging. After all pairs have been checked for merging, any rules left

in C with their Covered
ag false are added to C ′. The bit merging iterations continue

as long as there is at least one merged rule added to C ′ When no pair of rules is merged,

we stop and return the current overlay classi�er.

For our example in Figure 6.11, we have two iterations of bit merging. After the �rst

iteration, we get the rules in column 3. The �rst rule in column 3 is obtained by merging

the �rst two rules in column 2. After merging the �rst two rules in column 2, both rules

will be marked as non-required. Therefore when the third rule in column 3 is created by

merging the �rst and third rule in column 2, it is marked as non-required. We get the

rules in column 4 after the second iteration of bit merging. No more rules can be merged

after that, so bit merging stops. Finally, we remove the non-required rules to get the �nal

overlay classi�er shown in column 5.

181

6.5.4 Overlay Discussion

6.5.4.1 Restricting Overlay Count to Power of 2

We keep the number of overlays in all intermediate OD2FAs and the �nal OD2FA to be a

power of 2 and number the overlays starting with 0 and ending with |O| − 1. We achieve

this by modifying the algorithm that constructs an OD2FA from one RE to pad empty

overlays at the end if necessary. The OD2FA merge algorithm requires no modi�cation

since the number of overlays in the merged OD2FA is equal to the product of the number

of overlays in the two input OD2FAs.

We explain by example the bene�t of requiring the number of overlays to be a power of 2.

Figure 6.13(a) shows the D2FA for the RE /x.?y.?z/ and Figure 6.13(b) shows two

possible overlay structures for the OD2FA. Since there are three self-looping states in the

D2FA, 0, 1 and 2, our algorithm places them in the root super-state. The overlay structure

on the left has three overlays, with the three self-looping states in them, with no padding.

x y z

‐x ‐z

0 1 2 3/3

‐y

(a) D2FA for RE /x.?y.?x/.

0 10
0 1

2
2

 1
0 1

3
2

0 0 1
0 1

2 
2 3

1  
0 1

3 
2 3

With paddingWithout padding

(b) Possible overlay structures for the corre-

sponding OD2FA.

Figure 6.13: Overlay Padding Example.

182

3,0 1,0 1,1
0 1

1,2 
2 3

7,0 7,1
4 5

7,2 
6 7

6,0 6,1
8 9

6,2 
10 11

12,012,1
12 13

12,2 
14 15

3 1 7
0 1

6 12
2 3

0 0 1
0 1

2 
2 3

X

With padding

3,0 1,0 1,1
0 1

1,2 7,0
2 3

7,1 7,2
4 5

6,0 6,1
6 7

6,2 12,0
8 9

12,112,2
10 11

0 10
0 1

2
2

3 1 7
0 1

6 12
2 3

X

Without padding

(c) Merged super-state.

Overlay OID
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101

OID
00
010

Overlay OID
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

OID
0

Without padding With padding

(d) TCAM rules.

Figure 6.13: Overlay Padding Example (cont'd).

In the right overlay structure, we pad one empty overlay, so that the number of overlays

is a power of 2. Now consider what happens when this new OD2FA in Figure 6.13(b) with

and without padding, is merged with the OD2FA in Figure 6.6(c). As an example, we

consider the merging of super-state 3 in Figure 6.6(c), which we call S3 and super-state 0

for the new OD2FA, which we call S0. For both cases, Figure 6.13(c) shows the resulting

183

super-state in the merged OD2FA, which we call Sm. In both cases, there will be 12 states

in the merged super-state. The �rst three of these states are replications of state 1 in S3,

the next three states are replications of state 7 in S3, and so on. Furthermore, states 1 and

7 in S3 were itself replications of the state 1 of the D
2FA in Figure 6.4. Hence, the �rst

six states in Sm are replications of the same state (i.e. state 1) of the D2FA in Figure 6.4.

For the case without padding, Sm has 12 overlays, with one state in each overlay. For the

case with padding, Sm has 16 overlays, with the overlays 3, 7, 11 and 15 being empty.

Now, since the �rst six states in Sm are replications of state 1 of the D2FA in Figure 6.4,

in the merged OD2FA, they all will have one non-deferred transitions on input character

a. In both cases, the overlay o�sets will also be the same for all six state transitions. So

all six overlays will have the same decision, and will bit-merge in the overlay classi�er.

Figure 6.13(d) shows the (predicates of the) rules in the minimized overlay classi�er for

both cases. For the case without padding, we can only get down to two rules from six

rules. In the case with padding, the overlays 3 = 0011 and 7 = 0111 are empty overlays,

and hence will have ~decision during bit-merging. As a result, we can merge all six rules

into a single rule.

6.5.4.2 Eliminating Overlay Bits

We modify the OD2FA merge algorithm to eliminate unnecessary overlay ID bits and

thus reduce the required TCAM entry width. The idea behind doing a cross product of

overlays while merging is to capture the replication of states. Replicated states get assigned

184

to di�erent overlays in the same super-state. However, sometimes there is no replication

and we do not need to create extra overlays. For example, consider the merging of the

OD2FAs for REs/ab.?cd/ and /ab.?ef/. The two input OD2FAs will both have two

overlays 0 and 1, so in the merged OD2FA we will create four overlays 0, 1, 2, and 3. In

this case, since both REs have a common pre�x, there is no state replication and overlays

1 and 2 will be empty in the merged OD2FA. The two �lled overlays, 0 and 3, have overlay

IDs 00 and 11. Since the two overlays di�er in both the bits, either bit is redundant and

can be removed from the overlay ID producing only two overlays 0 and 1. In general, after

merging two OD2FAs, we eliminate as many overlay ID bits as possible by searching for

overlay ID bits i where in every pair of overlays whose overlay ID di�ers only in bit i, at

least one of the two overlays is empty. If bit i is eliminated, one empty overlay from each

pair that di�er in bit i is removed. We note that the overlay count stays a power of 2.

6.6 OD2FA Software Implementation

In this section we discus the implementation of OD2FA in software on a general purpose

processor. We �rst review the implementation of DFA and D2FA in software, then present

our proposed implementation of OD2FA.

Implementation of any �nite automta mainly involves choosing a data structure to store

the transition function and then implementing the lookup function using the given data

structure. In a DFA (Q,Σ, q0,M, δ), each state in Q has |Σ| transitions. The transition

185

function δ can be stored in memory as a 2-dimensional array of next state values, indexed

over Q and Σ. Looking up the next state requires just one memory lookup in the array

using the current state and input character as indices. If we assume a 4 byte state ID value,

then the amount of memory required to implement the transition function is |Q|× |Σ|× 4

bytes.

For a D2FA (Q,Σ, q0,M, ρ, F), each state in Q has 0 to |Σ| transition plus the deferment

pointer. Most states have only a couple of transitions. So the transitions for each state

can be stored as a list of (current character, next state) pairs in memory. To do a lookup,

we go through the list of transitions for the current state to check if there is a transition

on the current input character or not. If there is one, we get the next state, otherwise we

go to the deferred state of the current state and check its transition table. The amount

of memory required to implement the transition function is # transitions in ρ× 5 bytes

for the transitions and |Q|× 4 bytes for the deferment pointers.

6.6.1 Implementing OD2FA

We now discuss the implementation for an OD2FA (Q,Σ, q0,F ,S,O,M, ∆). All of the

�elds of an OD2FA are simple to implement except for ∆. To implement ∆, we use a

structure similar to that of a D2FA except that instead of storing next state values, we

store pointers to overlay classi�ers. Speci�cally, for each super-state, we store a list of

(current character, pointer to overlay classi�er) pairs in memory for each character that

is not deferred. Note that a character may be deferred for some overlays, but we say it is

186

not deferred if there is at least one overlay where it is not deferred.

Given the current super-state S, current overlay O and current character σ, the lookup is

done as follows. We go through the transition list for the super-state S to check if there

is an entry for character σ. If there is no entry for σ, we perform the lookup using the

deferred super-state for S F(S). If there is an entry for σ, that gives us the location of the

overlay classi�er to use. We do a lookup in this overlay classi�er for overlay O (we discuss

next how to do this). If we �nd a match, the decision gives us the next super-state and

overlay values. If we do not �nd a match, then overlay O is deferred for character σ, so

we again perform the lookup using the deferred super-state for S F(S).

6.6.2 Overlay Classifier Storage and Lookup

An overlay classi�er is just a list of rules. Each rule has a rule predicate, which is a ternary

value, and a rule decision, which is a triple of next super-state, overlay value and the o�set

bit. If we use 4 byte overlay id values, then the rule predicate can be stored using two

4 byte values. One value will be the ternary position mask of the rule predicate and the

other value will be the binary bit mask of the rule predicate. The rule decision can also

be stored as two 4 byte values, one for the next super-state and the other for the overlay

value. The single o�set bit can be encoded in either of these two values. We would just

store the list of rules in memory requiring 16 bytes per rule.

The lookup for an overlay O is done as follows. We just go through the list of rules and

check if any rule matched the overlay O. To check if a rule r matches overlay O, we need

187

to check if the rule predicate P(r) covers O. P(r) will cover O if all the bit locations that

contain a binary bit in P(r) have the same bit in both P(r) and O. This check may be

done very e�ciently using just one bitwise OR by testing (O | τ(P(r))) = β(P(r)).

6.6.3 Space Requirement

For the OD2FA, we need |S | × 4 bytes to store the super-state deferment pointers and

roughly |S | bytes to store the super-state match function M. If m = ΣS∈S(# of non-

deferred characters for S), then we needm×5 bytes to store the overlay classi�er pointers.

We optimize the size required to store the overlay classi�ers using the following observation.

The same overlay classi�er may be used by multiple super-states for multiple characters.

Rather than storing the same overlay classi�er multiple times, we store one copy of each

unique overlay classi�er. In each super-state transition list, the same pointer is used by

each entry that points to the same overlay classi�er. The memory required to store the

overlay classi�ers will be 16 times the total number of rules among all the unique overlay

classi�er stores.

6.7 OD2FA Implementation in TCAM

In this section, we describe how OD2FA can be implemented in TCAM and present our

OverlayCAM algorithm for doing so. We extend our solution of the RegCAM algorithm

described in Chapter 5 to implement the OD2FA in TCAM. The RegCAM implementation

188

uses two tables to represent an automata: a TCAM lookup table with a source state ID

column and an input character column, and a corresponding SRAM decision table which

contains the next state ID. To implement OD2FA in TCAM, we use the unique pair of

super-state ID and overlay ID as source state ID in the TCAM lookup table and next state

ID (which is pair of next super-state ID and next overlay ID) in the SRAM decision table.

The super-state ID and overlay ID columns in TCAM will be �lled with ternary values that

together match multiple states rather than a single state whereas the super-state ID and

overlay ID columns in SRAM will be binary values that together give a single state. We

add an extra bit in the SRAM decision table to specify the overlay bit in the super-state

transition decision. Just as in RegCAM, we leverage the �rst match feature of TCAMs to

ensure that the correct transition will be found in the TCAM lookup table. Speci�cally,

if super-state S defers to super-state S ′, then we list all the super-state transitions for

super-state S before those of super-state S ′. We describe the speci�c challenges of imple-

menting OD2FA in TCAM including dealing with super-states, overlays, and super-state

transitions in the remainder of this section.

6.7.1 Generating Super-state IDs and Codes

For the super-states, we apply the shadow encoding algorithm described in Section 5.2.2.3

on the super-state deferment forest of the given OD2FA. This generates a binary super-state

ID SSID(S) and a ternary super-state shadow code SSCD(S) for each super-state S that

satis�es the Shadow Encoding Properties (SEP). Figure 6.6(c) shows the SSIDs and

189

SSCDs generated for that OD2FA.

6.7.2 Implementing Super-state Transitions

We now address the implementation of super-state transitions in TCAM. Let (S1, X)
σ
−→

(S2, o, b) be the super-state transition we want to implement in TCAM. In the TCAM

table, we use SSCD(S1) in the super-state ID column. Since we restrict the set of overlays

in any super-state transition to ternary values, we can just use X in the overlay ID column

of the TCAM. For the SRAM, in the super-state ID column, we use SSID(S2), In the

overlay ID column, we use the binary representation of the overlay value o. And the o�set

bit b is stored in the o�set bit location in the SRAM.

The RE matching process works as follows. Let S be the current super-state, O be the

current overlay, and σ the current input character. So s = SSID(S) ·O denotes the current

state; s concatenated with σ is used as a TCAM lookup key. Let uid be the SSID stored

in super-state ID column in SRAM and o be the value stored in the overlay ID column

in SRAM and b be the value of the o�set bit stored in SRAM. We compute the next

super-state ID and overlay ID as follows. The next super-state ID will be uid. The next

overlay ID will be (b×O(s)+o)mod |O|. If b = 0, the next overlay ID is simply o. If b = 1,

the next overlay ID is (O(s) + o)mod |O|. In most cases where o = 0, the next overlay

ID is (O(s) + 0)mod |O| = O(s). For example, consider the OD2FA in Figure 6.6(c).

We represent the super-state transition ∆(03, {0, 1}, a) = (33, 0, 1) as follows. The TCAM

super-state ID column is �lled with SSCD(03) = ∗∗∗, the TCAM overlay ID column is 0∗,

190

the SRAM super-state ID column is �lled with SSID(33) = 011, the overlay ID column is

�lled with 0, and the o�set bit is set to 1.

6.7.3 TCAM Table Generation

We now explain how we generate the TCAM entries for OD2FA. We generate the TCAM

entries for one super-state at a time. Say S is the current super-state. We use the overlay

classi�ers of super-state S to generate its TCAM rules. For each character for which S

has an overlay classi�er, we add a TCAM entry for each rule in the overlay classi�er

as described in the previous section. After building this initial TCAM table for S, we

reduce the TCAM entries as follows. We apply the bit merging algorithm explained in

Section 6.5.3.2 on the TCAM entries generated for the super-state. The predicate of each

rule corresponding to the TCAM entries has three parts: the current super-state code

SSCD(S), the overlay set X, and the current input character. The SSCD(S) part will be

the same in all TCAM rules for S, and the bit merging algorithm was already applied on

the overlay �eld while building the overlay classi�ers, so we cannot merge TCAM rules

using any bits from these two �elds. However, we can merge rules based on the current

input character �eld. This mostly helps with case insensitive searches where transitions on

the alphabet characters will mostly occur in pairs and such pairs can be merged because

they di�er on only one bit in ASCII encoding.

We order the TCAM tables of the super-states according to the super-state deferment

relationship (every super-state table occurs before its deferred super-state table).

191

The overlay classi�ers for the root super-state exclude all the self-looping transitions. All

of these transitions are handled by the last rule added in the TCAM which is all ∗s.

State 2
State 1

State 0

State 6
State 5

State 3

State 8
State 7

State 4

State 12

State 9

TCAM SRAM
Source
SCD

Input
char.

Dest.
SID

0010 d  1000
0001 b  0100
00 a  0001
00 c  0010
00   0000
0110 q  0111
0101 d  1100
01 c  0101
01 p  0110
01 n  0000
01   0100
1010 r  1011
1001 b  1100
10 a  1001
10 p  1010
10 n  0000
10   1000
1101 q  1110
1101 r  1111
11 p  1101
11 n  0000
11   1100

Super‐
state 0

Super‐
state 3

Super‐
state 1

TCAM SRAM
Source Input

char.

Destination

SSCD Overlay
set SSID Overlay

value
offset
bit

011 0 b  000 2 1
011 1 q  100 0 1
011 11 r  010 0 1
001 0 d  000 1 1
001 01 r  010 0 1
 0 a  011 0 1
 0 c  001 0 1
 1 p  011 0 1
 01 p  001 0 1
  n  000 0 0
    000 0 1

OverlayCAM TCAM rules

RegCAM TCAM rules

Figure 6.14: TCAM rules for RegCAM and OD2FA.

Figure 6.14 shows the �nal TCAM and SRAM tables for the OD2FA in Figure 6.6, and, for

comparison purposes, the TCAM and SRAM tables generated by the RegCAM algorithm

for the same RE set f/ab[ˆn]?pq/, /cd[ˆn]?pr/g.

192

6.7.4 Variable Striding

In this section, we describe how we adapt the technique of variable striding introduced

in Section 5.4 to use with OD2FA. We �rst explain the basic idea of a variable striding

in a DFA. Creating a full k-stride DFA leads to space explosion because of two reasons.

First each state in a k-stride DFA has |Σ|k transitions. This leads to transition explosion.

Second, anytime a k-stride transition passes through an accepting state, we might need to

create multiple copies of the destination state in order to record the matching. This leads

to state explosion.

A k-var-stride DFA handles both these problems by generating variable (between 1 and k)

stride transitions. The transition decision stores the stride length of the transition along

with the destination state. The problem of transition explosion is managed by selectively

extending the stride of a limited number of transitions. The problem of state explosion is

eliminated by never extending a transition past an accepting state.

There are two implementations of variable striding that we considered in Section 5.4,

self-loop unrolling and full variable striding.

6.7.4.1 Self-loop Unrolling

The self-loop unrolling technique for the OD2FA works in the same way as for the D2FA as

presented in Section 5.4. The basic idea behind self-loop unrolling is as follows. The last

rule in the TCAM table for the root super-state is always the self-loop rule which handles

193

all the self-looping transitions for all the states in the root super-state. For example

consider the TCAM table for the root super-state (0) in Figure 6.14, which is also shown

in Figure 6.15(a).

Consider the lookup when the next two input characters are xa and 0 is the current

super-state. On the �rst input character x, we will match the last self-loop rule. This

indicates that after processing the current character, we return to the same state. We

can replace the last self-loop rule with another copy of super-state 0s TCAM table with

the input character over the second stride and ∗s in the �rst stride. This is shown in

Figure 6.15(b) with this second copy of the rules marked as Stride-2. If we do a lookup

for xa, we will match the �rst Stride-2 rule. Thus, instead performing two lookups in the

1-stride table, we get the same decision by performing one lookup in the unrolled 2-stride

table.

If we unroll the self-loop rule at the end of the second copy of the TCAM rules one more

time, we get the table shown in Figure 6.15(b). We can further unroll the self-loop rule

to extend to a k-stride table. If the 1-stride TCAM table has n rules, then the self-loop

unrolled k-stride table will have only (n− 1)k+ 1 rules.

6.7.4.2 Full Variable Striding

Adapting the full variable striding technique for the OD2FA is more challenging. The

k-var-stride transition sharing algorithm presented in Section 5.4 generates k-var-stride

tables which correctly handle state deferment in the D2FA. What we mean by this is the

194

TCAM SRAM
Source Input

char.

Destination

SSCD Overlay
set SSID Overlay

value
offset
bit

 0 a  011 0 1
 0 c  001 0 1
 1 p  011 0 1
 01 p  001 0 1
  n  000 0 0
    000 0 1

(a) 1-stride table for super-state 0.

Stride 1

TCAM SRAM
Source Input Destination

StrideSSCD Overlay
set char1 char2 char3 SSID Overlay

value
offset
bit

 0 a    011 0 1 1
 0 c    001 0 1 1
 1 p    011 0 1 1
 01 p    001 0 1 1
  n    000 0 0 1
 0  a   011 0 1 2
 0  c   001 0 1 2
 1  p   011 0 1 2
 01  p   001 0 1 2
   n   000 0 0 2
 0   a  011 0 1 3
 0   c  001 0 1 3
 1   p  011 0 1 3
 01   p  001 0 1 3
    n  000 0 0 3
      000 0 1 3

Stride 3

Stride 2

(b) Super-state 0 table unrolled to 3-var-stride.

Figure 6.15: Root super-state self loop unrolling example for TCAM rules in Figure 6.14.

195

following. Suppose s1 is the current state and it defers to state s2. If we lookup a character

and match a rule from state s2's TCAM table giving the next state s3, then state s1 also

transitions to state s3 on the same input. In general, a match found in the TCAM table

of an ancestor of s1 when doing a lookup for s1 will always be correct.

We cannot extend the k-var-stride transition sharing algorithm to OD2FA to generate

tables that correctly handle deferment. The di�culty arises from the following. In an

OD2FA, each super-state has multiple states. On the same input, di�erent states in the

same super-state might transition to states in di�erent super-states. Thus, we propose an

alternate technique to generate variable stride tables.

For each super-state S, we generate a k-var-stride table in addition to its 1-stride table.

When the k-var-stride table is implemented in TCAM, in the current super-state column

of the TCAM, we use SSID(S) instead of the SSCD(S). That way, the k-var-stride rules

of super-state S will only match when doing a lookup for itself, and will not match when

doing a lookup for any other super-state. So the k-var-stride rules only have to be correct

for S. The k-var-stride table for S is placed just before its 1-stride table in TCAM, so

higher priority is given to k-var-stride rules over the 1-stride rules.

We now explain our algorithm to generate the k-var-stride table for a super-state. We

de�ne the variable stride transition function as Γ : S × 2O × (
⋃
1≤i≤k Σ

i)→ S × [0..|O|)×

{0, 1}, which is same as ∆ except that Γ transitions over a string of characters of length

between 1 and k. Let S be the super-state for which we are generating the k-var-stride

transitions. For each 1-stride transition for super-state S, we build k-var-stride transitions

196

by extending the transitions of super-state S2 with that transition in two ways: �rst by

composing with S2's k-var-stride table, then by composing with S2's 1-stride table. More

speci�cally, let (S, X)
σ
−→ (S1, o1, 1) ∈ ∆ be any 1-stride transition for S such that S < S1

and M(S1) = ∅. We add the condition S < S1 because we only want to extend forward

transitions and this condition is true for most forward transitions. We add the condition

M(S1) = ∅ because we stop a variable stride transition at matching super-states.

If we have not already built the k-var-stride transition table for super-state S1, we recur-

sively build it �rst. Then we �rst extend the transitions in the k-var-stride table of S1: for

each transition (S1, Y)
w
−→ (S2, o2, 1) in the k-var-stride transition table of S1, if |X ∩ Y| is

large enough and len(w) < k, we add the extended transition (S, X∩Y) σ.w
−−−→ (S2, (o1+o2)

mod |O|, 1) to the k-var-stride transition table for S. Next we extend the transitions in

the 1-stride table of S1: for each transition (S1, Y)
σ2−−→ (S2, o2, 1) in the 1-stride transition

table of S1, if |X ∩ Y| is large enough, we add the extended transition (S, X ∩ Y)
σ.σ2−−−→

(S2, (o1 + o2) mod |O|, 1) to the k-var-stride transition table for S. We use the condition

|X ∩ Y| ≥ min(|X|, |Y|)/4 as the measure for large enough in our experiments. When we

extend one transition to the next, the extended transition can only cover overlays that are

common in both initial transitions. Ideally we would like both transitions to cover the

exact same set of overlays (in most cases this is true). But even when we do not have

the same overlay set, if the size of the intersection is signi�cant compared to the number

of overlays covered by the two initial transitions, it is worthwhile to add the extended

transition. We do not extend 1-stride transitions that are on the whitespace characters.

197

We have found experimentally that extending 1-stride transitions on these characters sig-

ni�cantly increases the number of TCAM rules while only marginally (if at all) increasing

the average stride. Figure 6.16 shows the k-var-stride transition table built for super-state

O from the 1-stride transition tables in Figure 6.9.

Super-state 0 rule Next super-state rule Extended var-stride rule

(0, 0∗) a
−→ (3, 0, 1) (3, 0∗) b

−→ (0, 2, 1) (0, 0∗) ab
−−→ (0, 2, 1)

(0, ∗0) c
−→ (1, 0, 1) (1, ∗0) d

−→ (0, 1, 1) (0, ∗0) cd
−−→ (0, 1, 1)

(0, 1∗) p
−→ (3, 0, 1) (3, 1∗) q

−→ (4, 0, 1) (0, 1∗) pq
−−→ (4, 0, 1)

(0, 01)
p
−→ (1, 0, 1) (1, 01)

r
−→ (2, 0, 1) (0, 01)

pr
−→ (2, 0, 1)

Figure 6.16: variable stride transitions generated for super-state 0 from 1-stride transition

in Figure 6.9.

The pseudo-code of our algorithm for building the k-var-stride transition tables is shown

in Algorithm 6.17.

6.8 Experimental Results

We implemented OverlayCAM using C++ and conducted experiments to evaluate its

e�ectiveness and scalability. We verify our results by con�rming that the TCAM table

generated by OverlayCAM is equivalent to the original DFA. That is, for every pair of

current state and input character, the next state returned by the TCAM lookup matches

the next state returned by the DFA.

198

1 Input: OD2FAs, D = (Q, Σ, q0, F , S, O,M, ∆).

Output: Builds multi-stride transitions for D.
1 foreach Si ∈ S do Initialize Built[Si]← False;

2 foreach Si ∈ S do

3 if Built[Si] = False then BuildVarStrideTrans (Si);

4 Function BuildVarStrideTrans(S)

5 foreach o�set transition (S,X)
c
−→ (Si, o, 1) ∈ ∆ for super-state S do

6 if Si ≤ S then Continue; // skip backward transition

7 if M(Si) 6= ∅ then Continue; // stop at accepting super-states

8 if Built[Si] = False then

9 BuildVarStrideTrans (Si);

// extend var-stride transitions of destination super-state

10 foreach transition (Si,Y)
w
−→ (Sj, o2, 1) ∈ Γ for super-state Si do

11 if |X ∩ Y| ≥ min(|X|, |Y|)/4 then

12 if len(w) < k then // max stride limit not reached

13 Add transition (S,X ∩ Y)
c.w
−−→ (Sj, (o+ o2) mod |O|, 1) to Γ ;

// extend 1-stride transitions of destination super-state

14 foreach o�set transition (Si,Y)
c2−→ (Sj, o2, 1) ∈ ∆ for super-state Si do

15 if |X ∩ Y| ≥ min(|X|, |Y|)/4 then

16 Add transition (S,X ∩ Y)
c.c2−−→ (Sj, (o+ o2) mod |O|, 1) to Γ ;

17 Built[S]← True;

18
Figure 6.17: Algorithm BuildVarStrideOD2FA(D) to build k-var-stride rules.

6.8.1 Effectiveness of OverlayCAM

We use the same 8 RE sets used in Section 4.5 for the main results. We de�ne the

following metric for measuring the amount of state replication in the DFA that corre-

sponds to an RE set. For any RE set R, we de�ne SR(R) to be the ratio of the

number of states in the minimum state DFA corresponding to R divided by the

number of states in the standard NFA without ε transitions corresponding to R.

Based on the characteristics of the REs, these eight sets are partitioned into three groups,

199

STRING =fC613, Bro217g, which contains mostly strings, causing little state replica-

tion (SR(Bro271) = 3.0, SR(C613) = 2.1); WILDCARD =fC7, C8 and C10g, which

contains multiple wildcard closures `.?', causing lots of state replication (SR(C7) = 231,

SR(C8) = 43, and SR(C10) = 162); and SNORT =fSnort24, Snort31, and Snort34g, which

contain a diverse set of REs, roughly 40% of the REs have wildcard closures, causing mod-

erate state replication (SR(Snort24) = 24, SR(Snort31) = 22, and SR(Snort34) = 16).

We conducted side-by-side comparison with RegCAM-TC (RegCAM without Table Consol-

idation) and RegCAM+TC (RegCAM with Table Consolidation) on all 8 real-world RE sets.

For RegCAM+TC, we consolidated 4 tables together. The results are shown in Table 6.1. For

TCAM space, we only report the number of TCAM entries because the TCAM widths for

all TCAM tables generated by RegCAM-TC, RegCAM+TC, and OverlayCAM on all 8 RE sets.

Since TCAM width typically is only allowed to be con�gured as 36, 72, or 144 bits, we

use a TCAM width of 36 in all cases.

200

201

RE

set

#

NFA

States

SR

#

NFA

Trans.

#

Over-

lays

#

Super

states

TCAM entries SRAM size (Kb) Throughput (Gbps)

RegCAM RegCAM Overlay RegCAM RegCAM Overlay RegCAM RegCAM Overlay

-TC +TC CAM -TC +TC CAM -TC +TC CAM

C8 72 43.17 2177 72 85 3722 1012 125 47.25 51.39 1.83 5.44 8.51 12.50

C10 92 161.61 2982 288 133 17824 4739 263 261.09 277.68 4.62 3.11 4.35 12.12

C7 107 231.31 3261 648 127 29196 8315 234 456.19 519.69 4.57 3.11 3.64 12.31

Snort24 575 24.15 4054 30 897 16130 5310 1426 236.28 331.88 26.46 3.64 4.35 7.27

Snort34 891 15.52 4731 48 1151 16297 5026 2293 238.73 294.49 42.55 3.64 4.35 5.44

Snort31 917 21.88 5738 32 2395 41539 14464 9478 689.61 960.50 185.12 2.72 3.64 3.64

Bro217 2132 3.06 5424 2 3401 9143 5087 6028 133.93 317.94 88.30 3.64 4.35 4.35

C613 5343 2.12 14563 1 11308 18256 13182 18256 320.91 978.35 338.73 3.11 3.64 3.11

Table 6.1: Experimental results of OverlayCAM on 8 RE sets in comparison with RegCAM-TC and RegCAM+TC

TCAM lookup speed is typically higher for smaller TCAM chips. We use the TCAM model

discussed in Section 5.5 to calculate RE matching throughput. For the two string-based

RE sets Bro217 and C613, we observe that OverlayCAM does not signi�cantly outperform

the two RegCAM algorithms. This is expected as OverlayCAM is designed to handle state

replication and string-based RE sets have little state replication.

For the other RE sets, OverlayCAM signi�cantly outperforms RegCAM and often outper-

forms NFAs. (1) OverlayCAM uses orders of magnitude less TCAM and SRAM than

RegCAM. On average, OverlayCAM uses 41 times less TCAM and 33 times less SRAM

than RegCAM-TC and 12 times less TCAM and 38 times less SRAM than RegCAM+TC. (2)

OverlayCAM has signi�cantly higher throughput than RegCAM. On average, Overlay-

CAM has 2.5 and 1.93 times higher throughput than RegCAM-TC and RegCAM+TC, respec-

tively. (3) The total number of TCAM entries used by OverlayCAM is often (far)

smaller than the total number of NFA transitions. For C7, OverlayCAM's number of

TCAM entries is 14 times less than the number of NFA transitions.

We now describe why OverlayCAM performs so well. (4) OverlayCAM is very e�ective

in conquering state replication. OverlayCAM e�ectively and automatically identi�es

all NFA state replicates and groups them together into super-states. The number of

super-states is, on average, 1.55 times the number of NFA states and is never more than

2.61 times the number of NFA states. Because of this, the larger SR(R) is, the more that

OverlayCAM outperforms RegCAM. For C7, OverlayCAM uses 125 times less TCAM and

100 times less SRAM than RegCAM-TC and 36 times less TCAM and 114 times less SRAM

202

than RegCAM+TC. (5) OverlayCAM e�ectively multiplies the compression bene�ts of

conquering state replication and transition sharing. That is, OverlayCAM e�ectively

multiplies the bene�ts of ODFA and D2FA. The average number of TCAM entries per

super-state is only 2.14, even when super-states have hundreds of constituent states.

We wanted to conduct side-by-side comparison with Peng et al.'s scheme [38]; however,

we do not have access to their code. Fortunately, Peng et al. have reported their results

on the two public RE sets Snort24 and Snort34. For these two sets, OverlayCAM requires

2.15 and 1.44 times less TCAM and SRAM space.

6.8.2 Results on 7-var-stride

We now compare the results of applying the variable striding technique with k = 7 on Over-

layCAM with the results for RegCAM-TC. We compare the average stride values achieved

using the same traces that were used for the experiments in Section 5.6.3 as well as the

number of TCAM rules.

We only compare using the RE sets in the WILDCARD and SNORT groups since the RE

sets in the STRING group have no (or limited) state replication.

6.8.2.1 Self-loop Unrolling

The root state in both RegCAM-TC and OverlayCAM are exactly the same since the self-

looping states are selected as the root states. As a result, the resulting TCAM rules

203

after unrolling the roots states are semantically equivalent. Hence we get the exact same

average stride values for both algorithms (which are shown in Table 6.3). Table 6.2 shows

the number of TCAM rules required without self-loop unrolling (i.e. for 1-stride) and

with self-loop unrolling for both algorithms.

RE

set

RegCAM-TC OverlayCAM

1-stride Unroll 7-var-stride 1-stride Unroll 7-var-stride

C8 3722 7794 8192 125 310 814

C10 17824 36336 65536 263 590 1113

C7 29196 64356 65536 234 442 1381

Snort24 16130 18627 32768 1426 1482 6942

Snort34 16297 19825 32768 2293 2577 9654

Snort31 41539 43920 65536 9478 9819 32243

Table 6.2: Number of TCAM rules for RegCAM-TC and OverlayCAM for 1-stride, with

self-loop unrolling and with 7-var-stride

Compared to RegCAM-TC, OverlayCAM requires on average 77 times fewer TCAM rules

for the WILDCARD group and 8 times fewer TCAM rules for the SNORT group. The

average percentage increase in the number of TCAM rules resulting from unrolling the

roots for the SNORT group is 14.3% for RegCAM-TC and only 6.6% for OverlayCAM. This

is because in RegCAM-TC, there are many root states that are unrolled. On the other hand,

in OverlayCAM, there is only one root super-state that is unrolled.

6.8.2.2 Full Variable Striding

Table 6.2 shows the number of TCAM rules required for full variable striding, and Ta-

ble 6.3 shows the average stride values for RegCAM-TC and OverlayCAM. As we can see,

OverlayCAM requires many fewer TCAM rules than RegCAM-TC. On average OverlayCAM

204

requires 38.8 times fewer rules for the WILDCARD group and 3.4 times fewer TCAM rules

for the SNORT.

RE

set

Self-loop 7-var-stride

unroll RegCAM-TC OverlayCAM

0 50 95 0 50 95 0 50 95

C8 6.1 2.9 1.8 6.1 4.1 2.9 6.1 3.8 3.7

C10 5.9 3.4 1.9 6.0 4.5 3.2 5.9 4.1 3.6

C7 6.1 1.9 1.8 6.1 3.7 3.8 6.1 2.7 3.8

Snort24 5.6 1.7 1.1 5.7 2.9 3.6 5.6 2.4 4.0

Snort34 5.9 1.7 1.1 5.9 3.4 3.7 5.9 2.5 4.1

Snort31 6.1 1.7 1.1 6.2 2.8 2.3 6.1 2.3 2.9

Table 6.3: Average stride values for self-loop unrolling and 7-var-stride for RegCAM-TC and

OverlayCAM for pM = 0, 50 and 95.

In general OverlayCAM is able to achieve nearly the same average stride values as RegCAM-TC.

For random tra�c (pM = 0), OverlayCAM has nearly identical average stride value as

RegCAM-TC. This is because with random tra�c, most of the transitions taken are self-loops

around the root state, whichh are unrolled to 7-stride in both algorithms. For pM = 95,

OverlayCAM is able to achieve equal or higher average stride value than RegCAM-TC for

all the RE sets. This is because with pM = 95, most of the transitions taken are forward

transitions, and OverlayCAM is able to selectively combine longer chains of forward tran-

sitions into higher stride transitions than RegCAM-TC. The average of the ratio of the stride

values across all RE sets and pM values is only 1.09.

6.8.3 Scalability of OverlayCAM

We evaluated the scalability of OverlayCAM on synthetic RE sets constructed by adding

new REs from 13 REs from a recent release of the Snort rules one at a time. Each RE

205

contains closure on the wildcard or a range; these cause the DFA size to double as each

RE is added. The �nal DFA has 225,040 states.

We �rst de�ne the TCAM Expansion Factor (TEF) of an RE set to be the number of

TCAM entries divided by the number of NFA transitions. In Figure 6.18(a), we plot the

TEF for RegCAM-TC, RegCAM+TC and OverlayCAM. We omit the �rst 5 data points because

the corresponding 5 DFAs are too small. As expected, the TEF of the RegCAM algorithms

grows exponentially with the number of NFA states due to state replication. In contrast,

the TEF of OverlayCAM grows linearly at a very slow growth rate with the number of

NFA states. We next de�ne the super-state expansion factor (SEF) of an RE set to be

the number of super-states divided by the number of NFA states. Figure 6.18(b) shows

that the SEF of OverlayCAM also grows linearly and slowly with the number of NFA

states. Note that for any RE set, the number of NFA states is the minimum compared to

any other automaton.

206

 0

 5

 10

 15

 20

 25

 30

 35

 200 250 300 350 400 450#
T
C
A
M

e
n
t
r
i
e
s
/
#
N
F
A

t
r
a
n
s

#NFA states

(a) TEF

RegCAM-TC
RegCAM+TC
OverlayCAM

 0

 0.5

 1

 1.5

 2

 200 250 300 350 400 450#
S
u
p
e
r

s
t
a
t
e
s
/
#
N
F
A

s
t
a
t
e
s

#NFA states

(b) OverlayCAM SEF

Figure 6.18: (a) TEF vs. # NFA states for OverlayCAM and RegCAM, (b) SEF vs. #

NFA states for OverlayCAM

207

Chapter 7

Conclusion

In this dissertation, we consider the problem of RE matching in DPI for networking applica-

tions. We survey current solutions for RE matching for DPI and identify their limitations.

We then develop several techniques and algorithms for fast and e�cient RE matching.

For a software solution of RE matching, we use an existing automata model D2FA. We

propose a novel Minimize then Union framework and develop e�cient algorithms for build-

ing D2FA based on the framework. Our approach requires a fraction of the memory and

time required by current algorithms. This allows us to build much larger D2FAs than

was possible with previous techniques. Our algorithm naturally supports frequent RE set

updates. We conducted experiments on real-world and synthetic RE sets that verify our

claims. For example, our algorithm requires an average of 1400 times less memory and

300 times less time than the original D2FA construction algorithm of Kumar et al.. We

believe our Minimize then Union framework can be incorporated with other alternative

208

automata for RE matching.

We propose the �rst TCAM-based RE matching solution. We prove that this unexplored

direction works very well for RE matching. We implemented our techniques and conducted

experiments on real-world RE sets. We show that small TCAMs are capable of storing

large DFAs. For example, in our experiments, we were able to store a DFA with 25K

states in a 0.5Mb TCAM chip. We also develop multi-striding techniques to increase

matching throughput wihtout signi�cantly increasing the memory requirement. We are

able to achieve a matching throughput of nearly 20Gbps.

The D2FA and our TCAM-based solution only partially handles the problem of state

replication in a DFA. We propose a new overlay automata model called the OD2FA, which

fully exploits state replication in a DFA. We develop algorithms for e�ciently constructing

the OD2FA. We also develop techniques to implement the OD2FA in software and in

hardware using TCAMs. Our experiments indicate that OD2FA is able to e�ectively

manage state replication. This results in a memory requirement proportional to that of a

NFA while maintaining fast and deterministic matching throughput like that of a DFA.

209

APPENDICES

210

Glossary

character redundancy Redundant/shared transitions within a state. 17, 78

deferment forest The directed graph with states as vertices and edges given by the

deferment relation F. 22, 211

deferment pointer The deferred state, F(s), of a state s. 23

deferment tree A tree (connected component) in the deferment forest. 23

self-looping state State with more than Σ/2 of its transitions looping back to itself.

16

state redundancy Redundant/shared transitions between two states. 17, 78

state replication Multiple replications of same NFA state in a DFA when DFAs for

two REs are combined. 14, 77, 78, 131

transitions sharing Multiple transitions within a state or between di�erent states go-

ing to the same next state. 14, 77, 78

211

Acronyms

D2FA Delayed Input DFA. 4, 19, 208, 209

DFA Deterministic Finite state Automata. ii, iii, 3, 12, 209

DPI Deep Packet Inspection. ii, 1, 208

NFA Nondeterministic Finite state Automata. iii, 3, 209

OD2FA Overlay Delayed Input DFA. 5, 134, 144, 209

ODFA Overlay Deterministic Finite state Automata. 5, 133, 136, 141

RE Regular Expression. ii, iii, 2, 208, 209

SEP Shadow Encoding Properties. 86, 91, 93, 94, 189

SRG Space Reduction Graph. 24, 42

TCAM Ternary Content Addressable Memory. iii, 5, 30, 209

212

Notation

D A DFA/D2FA. 12

D An ODFA/OD2FA. 141

Q Set of states in the DFA/D2FA/ODFA/OD2FA. 12

Σ The input alphabet. 12

S The set of super-states in an ODFA/OD2FA. 141

O The set of overlays an ODFA/OD2FA. 141

s, q, u A DFA/D2FA/ODFA/OD2FA state. 13

S An ODFA/OD2FA super-state. 141

O An ODFA/OD2FA overlay. 141

X A set of overlays in an ODFA/OD2FA. 140

M(s) Set of REs accepted by state s. 14

M(S) Set of REs accepted by all states in super-state S. 141

F(s) Deferred state of state s. 19, 20, 211

F(S) Deferred super-state of super-state S. 144

u→v State u defers to state v. 23

u�v State u descendant of state v. 23

213

⊥ NULL state/empty location. 143

δ(s, σ) The state transition function for a DFA. 13

ρ(s, σ) Partial state transition function for a D2FA. 22

∆(S, X, σ) Super-state transition function for a ODFA/OD2FA. 141

ρ ′(s, σ) Partial state transition function derived from ∆ for OD2FA. 144

δ ′(s, σ) Total transaction function derived from ρ for D2FA. 22

δ ′′(s, σ) Total transaction function derived from ∆ (ρ ′) for ODFA (OD2FA). 142

214

BIBLIOGRAPHY

215

BIBLIOGRAPHY

[1] Application layer packet classi�er for linux. http://l7-�lter.clearfoundation.com/.

[2] Snort. http://www.snort.org/.

[3] B. Agrawal and T. Sherwood. Modeling TCAM power for next generation network

devices. In Proc. IEEE Int. Symposium on Performance Analysis of Systems and

Software, pages 120{ 129, 2006.

[4] A. V. Aho and M. J. Corasick. E�cient string matching: an aid to bibliographic

search. Communications of the ACM, 18(6):333{340, 1975.

[5] M. Alicherry, M. Muthuprasanna, and V. Kumar. High speed pattern matching for

network ids/ips. In Proc. 2006 IEEE International Conference on Network Pro-

tocols, pages 187{196. Ieee, 2006.

[6] M. Becchi and S. Cadambi. Memory-e�cient regular expression search using state

merging. In Proc. INFOCOM. IEEE, 2007.

[7] M. Becchi and P. Crowley. A hybrid �nite automaton for practical deep packet in-

spection. In Proc. ACM Int. Conf. on emerging Networking EXperiments and

Technologies (CoNEXT). ACM Press, 2007.

[8] M. Becchi and P. Crowley. An improved algorithm to accelerate regular expression

evaluation. In Proc. ACM/IEEE ANCS, 2007.

[9] M. Becchi and P. Crowley. E�cient regular expression evaluation: Theory to practice.

In Proc. ACM/IEEE Symposium on Architectures for Networking and Commu-

nications Systems (ANCS), pages 50{59, 2008.

216

[10] M. Becchi and P. Crowley. Extending �nite automata to e�ciently match perl-

compatible regular expressions. In Proc. ACM Int. Conf. on emerging Networking

EXperiments and Technologies (CoNEXT). ACM Press, 2008. Article Number 25.

[11] M. Becchi, M. Franklin, and P. Crowley. A workload for evaluating deep packet

inspection architectures. In Proc. IEEE IISWC, 2008.

[12] A. Bremler-Barr, D. Hay, and Y. Koral. Compactdfa: Generic state machine com-

pression for scalable pattern matching. In Proc. IEEE INFOCOM, pages 1{9. Ieee,

2010.

[13] B. C. Brodie, D. E. Taylor, and R. K. Cytron. A scalable architecture for high-

throughput regular-expression pattern matching. SIGARCH Computer Architec-

ture News, 2006.

[14] C. R. Clark and D. E. Schimmel. E�cient recon�gurable logic circuits for matching

complex network intrusion detection patterns. In Proc. Field-Programmable Logic

and Applications, pages 956{959, 2003.

[15] C. R. Clark and D. E. Schimmel. Scalable pattern matching for high speed net-

works. In Proc. 12th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), Washington, DC, 2004.

[16] J. Edmonds. Paths, trees, and
owers. Canad. J. Math., 17:449{467, 1965.

[17] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and A. D. Pietro. An

improved DFA for fast regular expression matching. Computer Communication

Review, 38(5):29{40, 2008.

[18] H. N. Gabow. An e�cient implementation of edmonds' algorithm for maximum

matching on graphs. J. ACM, 23:221{234, April 1976.

[19] J. E. Hopcroft. The Theory of Machines and Computations, chapter An nlogn

algorithm for minimizing the states in a �nite automaton, pages 189{196. Academic

Press, 1971.

217

[20] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 2000.

[21] D. E. Knuth. Hu�man's algorithm via algebra. Journal of Combinatorial Theory,

Series A, 32(2):216 { 224, 1982.

[22] S. Kong, R. Smith, and C. Estan. E�cient signature matching with multiple al-

phabet compression tables. In Proc. 4th Int. Conf. on Security and privacy in

communication netowrks (SecureComm), page 1. ACM Press, 2008.

[23] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman

problem. Proc. American Mathematical Society, 7:48{50, 1956.

[24] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2:83{97, 1955.

[25] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese. Curing regular expressions

matching algorithms from insomnia, amnesia, and acalculia. In Proc. ACM/IEEE

ANCS, pages 155{164, 2007.

[26] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Algorithms to ac-

celerate multiple regular expressions matching for deep packet inspection. In Proc.

SIGCOMM, pages 339{350, 2006.

[27] S. Kumar, J. Turner, and J. Williams. Advanced algorithms for fast and scalable deep

packet inspection. In Proc. IEEE/ACM ANCS, pages 81{92, 2006.

[28] T. Liu, Y. Yang, Y. Liu, Y. Sun, and L. Guo. An e�cient regular expressions compres-

sion algorithm from a new perspective. In Proc. IEEE INFOCOM, pages 2129{2137,

2011.

[29] Y. Liu, L. Guo, M. Guo, and P. Liu. Accelerating DFA construction by hierarchical

merging. In Proc. IEEE 9th Int. Symposium on Parallel and Distributed Process-

ing with Applications, 2011.

218

[30] C. R. Meiners, A. X. Liu, and E. Torng. TCAM Razor: A systematic approach

towards minimizing packet classi�ers in TCAMs. In Proc. 15th IEEE Conf. on

Network Protocols (ICNP), pages 266{275, October 2007.

[31] C. R. Meiners, A. X. Liu, and E. Torng. Bit weaving: A non-pre�x approach to

compressing packet classi�ers in TCAMs. In Proc. 17th IEEE Conf. on Network

Protocols (ICNP), October 2009.

[32] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu. Fast regular expression

matching using small TCAMs for network intrusion detection and prevention systems.

In Proc. 19th USENIX Security Symposium (USENIX Security), pages 111{126,

Washington, DC, August 2010.

[33] A. Mitra, W. Najjar, and L. Bhuyan. Compiling PCRE to FPGA for accelerating

SNORT IDS. In Proc. 3rd ACM/IEEE Symposium on Architecture for networking

and communications systems ANCS. ACM Press, 2007.

[34] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos. Implementation of a content-

scanning module for an internet �rewall. In Proc. 11th IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 31{38. IEEE Com-

put. Soc, 2003.

[35] J. Munkres. Algorithms for the assignment and transportation problems. Journal of

the Society of Industrial and Applied Mathematics, 5(1):32{38, March 1957.

[36] J. Patel, A. X. Liu, and E. Torng. Bypassing space explosion in regular expression

matching for network intrusion detection and prevention systems. In Proc. Network

and Distributed System Security Symposium (NDSS'12), February 2012.

[37] V. Paxson. Bro: a system for detecting network intruders in real-time. Computer

Networks, 31(23-24):2435{2463, 1999.

[38] K. Peng, S. Tang, M. Chen, and Q. Dong. Chain-based DFA de
ation for fast and

scalable regular expression matching using TCAM. In Proc. ACM ANCS, pages

24{35, 2011.

219

[39] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proc. 13th

Systems Administration Conference (LISA), USENIX Association, pages 229{

238, November 1999.

[40] R. Sidhu and V. K. Prasanna. Fast regular expression matching using fpgas. In Proc.

IEEE Symposium on Field-Programmable Custom Computing Machines FCCM,

pages 227{238, 2001.

[41] R. Smith, C. Estan, and S. Jha. Xfa: Faster signature matching with extended

automata. In Proc. IEEE Symposium on Security and Privacy, pages 187{201,

2008.

[42] R. Smith, C. Estan, S. Jha, and S. Kong. De
ating the big bang: fast and scalable

deep packet inspection with extended �nite automata. In Proc. SIGCOMM, pages

207{218, 2008.

[43] R. Sommer and V. Paxson. Enhancing byte-level network intrusion detection signa-

tures with context. In Proc. 10th ACM Conf. on Computer and Communications

Security (CCS), pages 262{271, 2003.

[44] I. Sourdis and D. Pnevmatikatos. Pnevmatikatos: Fast, large-scale string match for

a 10gbps fpga-based network intrusion detection system. In Proc. Int. on Field

Programmable Logic and Applications, pages 880{889, 2003.

[45] I. Sourdis and D. Pnevmatikatos. Pre-decoded cams for e�cient and high-speed nids

pattern matching. In Proc. 12th IEEE Symposium on FieldProgrammable Custom

Computing Machines, volume C, pages 258{267. Ieee, 2004.

[46] J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, and B.-T. Kim. A multi-gigabit rate

deep packet inspection algorithm using tcam. In Proc. IEEE GLOBECOM, pages

453{457, 2005.

[47] S. Suri, T. Sandholm, and P. Warkhede. Compressing two-dimensional routing tables.

Algorithmica, 35:287{300, 2003.

[48] L. Tan and T. Sherwood. A high throughput string matching architecture for intrusion

detection and prevention. In Proc. 32nd Annual Int. Symposium on Computer

220

Architecture (ISCA), pages 112{122, 2005.

[49] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-e�cient

string matching algorithms for intrusion detection. In Proc. IEEE Infocom, pages

333{340, 2004.

[50] L. Yang, R. Karim, V. Ganapathy, and R. Smith. Fast, memory-e�cient regular ex-

pression matching with NFA-OBDDs. Computer Networks, 55(55):3376{3393, 2011.

[51] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast and memory-e�cient

regular expression matching for deep packet inspection. In Proc. ACM/IEEE Sym-

posium on Architecture for Networking and Communications Systems (ANCS),

pages 93{102, 2006.

[52] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit rate packet pattern-matching using

TCAM. In Proc. 12th IEEE Int. Conf. on Network Protocols (ICNP), pages

174{183, 2004.

221

	List of Tables
	List of Figures
	 Introduction
	Problem Statement
	Research Problems
	Research Goals

	 Related Work
	 Background
	DFA for RE Matching
	Understanding DFA space explosion
	Transition Sharing
	State Replication

	D2FA
	D2FA Definition
	Original D2FA Algorithm
	Limiting Deferment Depth in Original D2FA Algorithm
	Backpointer D2FA Algorithm

	Classifiers
	Classifier definition
	Prefix Classifier
	Ternary Classifier
	Weighted Classifier

	Classifier Minimization

	TCAM Introduction

	 Software Implementation
	Introduction/Motivation
	Solution Goals
	Summary and Limitations of Prior Art
	Summary of Our Approach
	Advantages of our algorithm

	Minimum State PMDFA construction
	Efficient D2FA Construction
	Improved D2FA Construction for One RE
	D2FA Merge Algorithm
	Direct D2FA construction for RE set
	Optional Final Compression Algorithm

	D2FA Merge Algorithm Properties
	Proof of Correctness
	Limiting Deferment Depth
	Deferment to a Lower Level
	Algorithmic Complexity

	Experimental Results
	Methodology
	Data Sets
	Metrics
	Measuring Space
	Correctness

	D2FAMERGE versus ORIGINAL
	Assessment of Final Compression Algorithm
	D2FAMERGE versus ORIGINAL with Bounded Maximum Deferment Depth
	D2FAMERGE versus BACKPTR
	Scalability results

	 TCAM Implementation
	Introduction/Motivation
	TCAM Architecture for RE matching
	Reducing TCAM size
	Transitions Sharing
	Table Consolidation

	Increasing Matching Throughput
	Comparison of Transition Sharing with D2FA

	Transition Sharing
	Character Bundling
	Shadow Encoding
	Observations
	Determining Table Order
	Shadow Encoding Algorithm
	Choosing Transitions

	Table Consolidation
	Observations
	Computing a k-decision table
	Choosing States to Consolidate
	Greedy Matching

	Effectiveness of Table Consolidation

	Variable Striding
	Observations
	Eliminating State Explosion
	Controlling Transition Explosion
	Self-Loop Unrolling Algorithm
	k-var-stride Transition Sharing Algorithm

	Variable Striding Selection Algorithm

	Implementation and Modeling
	Experimental Results
	Methodology
	Results on 1-stride DFAs
	Results on 7-var-stride DFAs

	 Overlay Automata
	Introduction
	Limitations of Prior Automata Models
	Summary of Overlay Automata Approach
	Overlay DFA
	Overlay D2FA
	Building OD2FA
	Implementing OD2FA

	Overlay DFA
	Overlay D2FA
	OD2FA Multiplicative Compression
	Effectiveness of OD2FA on Ideal RE set

	OD2FA Construction
	OD2FA Construction from One RE
	OD2FA Construction from 2 OD2FAs
	Direct OD2FA Construction from 2 OD2FAs

	Building Super-state Transitions
	Combining State Transitions
	Computing State Transitions

	Creating Overlay Classifier
	Minimizing Overlay Classifier
	Pre-merging Bits
	Bit Merging Algorithm

	Overlay Discussion
	Restricting Overlay Count to Power of 2
	Eliminating Overlay Bits

	OD2FA Software Implementation
	Implementing OD2FA
	Overlay Classifier Storage and Lookup
	Space Requirement

	OD2FA Implementation in TCAM
	Generating Super-state IDs and Codes
	Implementing Super-state Transitions
	TCAM Table Generation
	Variable Striding
	Self-loop Unrolling
	Full Variable Striding

	Experimental Results
	Effectiveness of OverlayCAM
	Results on 7-var-stride
	Self-loop Unrolling
	Full Variable Striding

	Scalability of OverlayCAM

	 Conclusion
	Appendix
	Glossary
	Acronyms
	Notation

	Bibliography

