ALGORITHMS FOR DEEP PACKET INSPECTION

By

Jignesh D. Patel

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2012

ABSTRACT
ALGORITHMS FOR DEEP PACKET INSPECTION
By

Jignesh D. Patel

The core operation in network intrusion detection and prevention systemsis Deep Packet
Inspection (DPI), in which each security threat is represented as a signature, and the pay-
load of each data packet is matched against the set of current security threat signatures.
DPI is also used for other networking applications like advanced QoS mechanisms, proto-
col identification etc.. In the past, attack signatures were specified as strings. Today most
DPI systems use Regular Expression (RE)s to represent signatures. RE matching for
networking applications is difficult for several reasons. First, the DPI application is usually
implemented in network devices, which have limited computing resources. Second, as new
threats are discovered, the size of the signature set grows over time. Last, the matching
needs to be done at network speeds, the growth of which outpaces improvements in com-
puting speed; so there is a need for novel solutions that can deliver higher throughput. As

a result, RE matching for DPI is a very important and active research area.

We study existing methods proposed for RE matching, identify their limitations, and pro-
pose new methods to overcome these limitations. RE matching remains a fundamentally
challenging problem due to the difficulty in compactly encoding Deterministic Finite
state Automata (DFA). While the DFA for any one RE is typically small, the DFA that

corresponds to the entire set of REs is usually too large to be constructed or deployed.

To address this issue, many alternative automata implementations that compress the size
of the final automaton have been proposed. We improve upon previous research in three
ways. First, we propose a more efficient “Minimize then Union” framework for constructing
compact alternative automata that minimizes smaller automata before combining them.
Previously proposed automata construction algorithms employ a “Union then Minimize”
framework where the automata for each RE are joined before minimization occurs. This
leads to expensive minimization on a large automata and a large intermediate memory foot-
print. Our minimize then union approach requires much less time and memory, allowing us
to handle a much larger RE set. Second, we propose the first hardware-based RE match-
ing approach that uses Ternary Content Addressable Memory (TCAM). Prior hardware
based RE matching algorithms typically use FPGA. The main drawback of FPGA is that
resynthesizing and updating FPGA circuitry to handle RE updates is slow and difficult.
In contrast, TCAM supports easy RE updates, and we show that we can achieve very
high throughput. Furthermore, TCAMs are widely used in modern networking devices for
tasks such as packet classification, so no major architecture modifications are needed to
implement our approach in existing networking devices. Finally, we propose new overlay
automata models that effectively address the replication of DFA states that occurs when
multiple REs are combined. The idea is to group together the replicated DFA structures
instead of repeating them multiple times. The result is that we get a final automata size
that is close to that of a NFA (which is linear in the size of the RE set), and simultaneously

achieve fast deterministic matching speed of a DFA.

ACKNOWLEDGMENTS

I would like to take this opportunity to thank all the people who have helped me during

my graduate career and made this Dissertation possible.

First and foremost, I would like to thank my advisor, Dr. Eric Torng, for his constant

guidance, support and encouragement.

I would like to express my earnest gratitude to my thesis committee members Dr. Richard

Enbody, Dr. Alex Liu and Dr. Peter Magyar for being there for me whenever I needed.

I would also like to thank the staff of the CSE department for all their help and support.

Finally I would like to thank my friends and family for all their support and encourage-

ment.

v

TABLE OF CONTENTS

List of Tables o e e e e e e e ix

List of Figures e e X

Chapter 1 Introduction 1
1.1 Problem Statement

1.2 Research Problemso 2

1.3 Research Goals 0 i i e e 4

Chapter 2 Related Work., 7

Chapter 3 Background e 12

3.1 DFA for RE Matching 12

3.2 Understanding DFA space explosion 14

3.2.1 Transition Sharing« e e e e 17

3.2.2 State Replication 18

3.3 D2FA. .t 19

3.3.1 D2FA Definitiont 20

3.3.2 Original D?FA Algorithm 24

3.3.3 Limiting Deferment Depth in Original D®FA Algorithm 25

3.3.4 Backpointer D?FA Algorithm 26

3.4 Classifiers L e e e e e e 27

3.4.1 Classifier definition e 27

3.4.1.1 PrefixClassifier 28

3.4.1.2 Ternary Classifier. 29

3.4.1.3 Weighted Classifier 29

3.4.2 Classifier Minimization 30

3.5 TCAM Introduction e 30

Chapter 4 Software Implementation 32

4.1 Introduction/Motivation Lo o 32

4.1.1 Solution Goals v o e e e e e e 33

4.1.2 Summary and Limitations of Prior Art 33

4.1.3 Summary of Our Approach 35

4.1.3.1 Advantages of our algorithm 36

4.2 Minimum State PMDFA construction 37

4.3 Efficient D?FA Construction 41

4.3.1 Improved D?FA Construction for One RE 41

4.3.2 D2FA Merge Algorithm 46

4.3.3 Direct D2FA construction for REset 51

4.3.4 Optional Final Compression Algorithm 53

4.4 D2FA Merge Algorithm Properties 53

4.4.1 Proof of Correctness e 54

4.4.2 Limiting Deferment Depth 55

4.43 Deferment toa Lower Level 57

4.44 Algorithmic Complexity 0oL 59

4.5 Experimental Results. 61

4.5.1 Methodology @ . . e e e 61

45.1.1 DataSets e 61

45.1.2 Metrics e 62

4.5.1.3 Measuring SpPace « . v v e e e e e e e e e 63

4.5.1.4 Correctness v o vt e e e e 65

452 D?FAMERGE versus ORIGINAL 65

4.5.3 Assessment of Final Compression Algorithm 68
45.4 D2?FAMERGE versus ORIGINAL with Bounded Maximum Defer-

ment Depth 69

455 D?FAMERGE versus BACKPTR 71

4.5.6 Scalability results 73

Chapter 5 TCAM Implementation 75

5.1 Introduction/Motivationo 75

5.1.1 TCAM Architecture for RE matching 76

5.1.2 Reducing TCAM size o i i i ittt e i e 7

5.1.2.1 Transitions Sharing 78

5.1.2.2 Table Consolidation 79

5.1.3 Increasing Matching Throughput 80

5.1.4 Comparison of Transition Sharing with D®FA 81

5.2 Transition Sharing L 82

5.2.1 Character Bundling L o 82

5.2.2 Shadow Encoding e 83

5.2.2.1 Observations o i it 83

vi

5.2.2.2 Determining Table Order 85

5.2.2.3 Shadow Encoding Algorithm 86

5.2.2.4 Choosing Transitions 95

5.3 Table Consolidation 98
5.3.1 Observations e 99
5.3.2 Computing a k-decision table 101
5.3.3 Choosing States to Consolidate 103
5.3.3.1 Greedy Matching L L. 105

5.3.4 Effectiveness of Table Consolidation 107

5.4 Variable Striding e e e e e e 108
5.4.1 Observations 109
5.4.2 Eliminating State Explosion 110
5.4.3 Controlling Transition Explosion 111
5.4.3.1 Self-Loop Unrolling Algorithm 111

5.4.3.2 k-var-stride Transition Sharing Algorithm 113

5.4.4 Variable Striding Selection Algorithm 116

5.5 Implementation and Modeling 118
5.6 Experimental Results. oo oL, 120
5.6.1 Methodology e 120
5.6.2 Resultson T-stride DFAs 121
5.6.3 Results on 7-var-stride DFAs, 126
Chapter 6 Overlay Automata. 131
6.1 Introduction L 131
6.1.1 Limitations of Prior Automata Models 132
6.1.2 Summary of Overlay Automata Approach 133
6.1.2.1 Overlay DFA Lo 133

6.1.2.2 Overlay D2FA it 134

6.1.2.3 Building OD?FA i i 135

6.1.2.4 Implementing OD2FAo v i i .. 136

6.2 Overlay DFA o . e 136
6.3 Overlay D2FA 144
6.3.1 ODZ2FA Multiplicative Compression « v v v v v v v v v v .. 147
6.3.2 Effectiveness of OD?FA onIdeal REset 148

6.4 OD2ZFA Construction v v v v v e et 149
6.4.1 OD?FA Construction from One RE 150
6.4.2 OD?FA Construction from 2 OD?FAS 154
6.4.3 Direct OD?FA Construction from 2 OD?FAs 162

6.5 Building Super-state Transitions 166
6.5.1 Combining State Transitions 168

Vil

6.5.1.1 Computing State Transitions 170

6.5.2 Creating Overlay Classifier. 173

6.5.3 Minimizing Overlay Classifier 175

6.5.3.1 Pre-merging Bits Lo, 179

6.5.3.2 Bit Merging Algorithm 180

6.5.4 Overlay Discussion o v v i i i i it e 182

6.5.4.1 Restricting Overlay Count to Powerof 2 182

6.5.4.2 Eliminating Overlay Bits 184

6.6 ODZ?FA Software Implementation 185
6.6.1 Implementing OD?FA o i vt 186

6.6.2 Overlay Classifier Storage and Lookup 187

6.6.3 Space Requirement 188

6.7 OD?FA Implementation in TCAM v v v v v i i 188
6.7.1 Generating Super-state IDs and Codes 189

6.7.2 Implementing Super-state Transitions 190

6.7.3 TCAM Table Generation., 191

6.7.4 Variable Striding 193

6.7.4.1 Self-loop Unrolling 193

6.7.4.2 Full Variable Striding 194

6.8 Experimental Results. 198
6.8.1 Effectiveness of OverlayCAM 199

6.8.2 Resultson 7-var-stride oo 203

6.8.2.1 Self-loop Unrolling 203

6.8.2.2 Full Variable Striding 204

6.8.3 Scalability of OverlayCAM 205
Chapter 7 Conclusion oo 208
Appendix e e e e 211
Glossary o e e e 211
ACTonyms e e e e e e e e e e e e e 212
Notation e 213
Bibliography e 216

viil

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 5.1

Table 5.2

Table 6.1

Table 6.2

Table 6.3

LIST OF TABLES

Performance data of ORIGINAL and D?FAMERGE 65
Comparing D°FAMERGE and D?FAMERGEOPT with ORIGINAL. 66
Performance data of D2°FAMERGEOPT oo 68

The D?FA size and D?FA average 1 deferment depth for ORIGI-
NAL and D?FAMERGE on our eight primary RE sets given maxi-
mum deferment depth bounds of 1,2and 4. 70

Comparing D°FAMERGE with ORIGINAL given maximum defer-
ment depth boundsof 1,2and 4. 70

Performance data for both variants of BACKPTR and D2FAMERGE

with the back-pointer property. 71
Comparing D°FAMERGE with both variants of BACKPTR. 72
TCAM size and Latency 119
TCAM size and throughput for 1-stride DFAs 121

Experimental results of OverlayCAM on 8 RE sets in comparison
with RegCAM-TC and RegCAM+TC v v v v v v e e e e . 201

Number of TCAM rules for RegCAM-TC and OverlayCAM for 1-
stride, with self-loop unrolling and with 7-var-stride. 204

Average stride values for self-loop unrolling and 7-var-stride for
RegCAM-TC and OverlayCAM for ppy = 0,50 and 95. 205

X

Figure 3.1

Figure 3.2

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

LIST OF FIGURES

Example of DFA and state replication.

D2FA example.

Edge weights distribution in a typical SRG.

Example showing D2FA with non self-looping root states.

D2FA merge example.

Algorithm D2FAMerge(D7, D;) for merging two D?FAs.

Memory and time required to build D2FA versus number of Scale
REs used for ORIGINAL'’s D?FA and D?’FAMERGE’s D?FA.

A DFA with its TCAM table.

TCAM table with shadow encoding.

D?FA, SRG, and deferment tree of the DFA in Figure 5.1.
Shadow encoding example. L.
Shadow Encoding Algorithm.
3-decision table for 3 states in Figure 5.1

Consolidating two trees.

85

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Algorithm for Consolidating Trees. 106

D2FA for RE set {/abc/, /abd/, /e . x£/} 107
3-var-stride transition table for sy 110
States s7 and s; share transitionaa. 113

Uncompressed 2-var-stride transition tables for D?FA in Figure 5.3(a)
(a=97,0=T111) 116

TCAM entries per DFA state (a) and compute time per DFA state
(b) for Scale 26 through Scale 34. 124

Consolidation times for Scale 26 through Scale 34 for Optimal and

Greedy consolidation algorithms. 125
The throughput and average stride length of RE sets. 128
Relationship of Automata Models.. 135
Example of DFA, state replication and Overlay DFA. 137
OD?FA Example. oo v i 146
OD?FA construction fromone RE. 151
D?FA and OD?FA for RE /cd[" n]+pr/. « « o v oo 154
Merged OD2FA construction example. 155
Algorithm OD2FAMerge(Dy,D;) for merging two OD?FAs. 159

Algorithm DirectOD2FAMerge(D;, D;) for merging two OD?FAs. 167

Overlay classifier and corresponding super-state transitions for the
super-states in OD?FA in Figure 6.6(c). 175

xi

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Algorithm CreateOverlayClassifier(Dec,Reqd). 176

Minimizing overlay classifier example. 177
Algorithm MinimizeOverlayClassifier(C).. 178
Overlay Padding Example. 182
TCAM rules for RegCAM and OD?FA. 192

Root super-state self loop unrolling example for TCAM rules in
Figure 6.14. e e 195

variable stride transitions generated for super-state O from 1-stride
transition in Figure 6.9. oL L. 198

Algorithm BuildVarStrideOD2FA(D) to build k-var-stride rules. . 199

(a) TEF vs. # NFA states for OverlayCAM and RegCAM, (b) SEF
vs. # NFA states for OverlayCAM 207

xii

Chapter 1

Introduction

1.1 Problem Statement

Deep Packet Inspection (DPI) is the core component of many networking devices on
the Internet such as Network Intrusion Detection (or Prevention) Systems (NIDS/NIPS),
firewalls, and layer 7 switches. In DPI, in addition to examining the packet headers, the
entire contents of each packet is compared against a set of signatures to check if any
signature is found in the packet or not. For instance, for security applications, each in-
dividual virus or attack threat is represented using one signature. The payload of each
packet passing through the network device is compared against the set of signatures, and
a match indicates the corresponding threat is found. Necessary action to neutralize the
threat can then be taken. Application level signature analysis is also used for provid-

ing advanced QoS mechanisms, detecting peer-to-peer traffic, and in general application

protocol identification.

In the past, DPI typically used string matching as the core operation, in which signatures
are specified as simple strings. Today, DPI typically uses Regular Ezpression (RE)
matching as the core operation, in which signatures are specified as REs. REs are used
instead of simple string patterns because REs are fundamentally more expressive and
thus are able to describe a wider variety of attack signatures [43]. Most open source and
commercial intrusion detection and prevention systems such as Snort [2,39], Bro [37], HP
TippingPoint and Cisco networking appliances use RE matching. Likewise, some operating
systems such as Cisco IOS and Linux [1] have built RE matching into their layer 7 filtering

functions.

So the problem we are trying to solve is as follows: given a set of REs, R, and an input

stream, we want to quickly find all occurrences of each RE from R in the input stream.

1.2 Research Problems

There are several challenges in implementing RE matching parsers for network applica-
tions. First, for many DPI applications, the signature set size rapidly grows over time.
For example for security applications, new attack threats are regularly discovered and so
the signature set size keeps growing. The current release of the Snort rules has close to
2000 REs in it. So the DPI engine should be able to handle a large RE set and it also

needs to be scalable. Second, since each packet needs to be scanned in real time as it is

processed, the DPI engine needs to be able to process the packets at a fast and determinis-
tic rate. As network speed increases, this becomes an increasingly difficult and important
problem to solve. Finally, the DPI engine is typically implemented in a network device,
like a router, which usually has limited memory and processing power. So the DPI engine
needs to achieve the high throughput using limited hardware resources. As both traffic
rates and signature set sizes are rapidly growing over time, fast and scalable RE matching
is now a core network security issue. As a result, there has been a lot of recent work on

implementing high speed RE parsers for network applications.

The straightforward approach to performing RE matching is to convert the RE set into an
equivalent automata and use the packet payloads as input strings for the automata. T'wo
standard choices are Deterministic Finite state Automata (DFA) and Nondeter-
manistic Finite state Automata (NFA). The DFA has the advantage of maintaining only
a single active state at any time. Thus processing each input character requires only a
single lookup, so the throughput achieved is fast and deterministic. However, DFAs expe-
rience state explosion where the number of states in the DFA can be exponential in terms
of the number of REs. Thus, DFAs require too much memory to store them. The NFA
has the advantage of small size where the number of states in the NFA is typically linear
in the number of REs, hence requiring little memory to store them. However, the NFA has
no limits on the number of active states, which means that the number of lookups needed
to process each input character is high and unpredictable. So NFAs cannot achieve high

and deterministic throughput.

1.3 Research Goals

As high and deterministic throughput is the primary requirement on networking devices,
high speed RE matching is typically based on the DFA. But the high memory requirement
of DFAs limits the number of REs in the ruleset that can be parsed simultaneously. In
this thesis, we propose algorithmic solutions to implement RE matching based on the DFA

that simultaneously achieves high throughput and low memory requirement.

Storing a DFA requires a large amount of memory because (1) the number of states grows
exponentially with the number of REs, and (2) more states implies more transitions need

to be stored since each state needs to store 256 = 28 transitions.

The first research goal was to develop efficient algorithms that reduce the number of tran-
sitions of a DFA that need to be stored. The Delayed Input DFA (D?FA) proposed
by Kumar et al. [26] reduces the number of stored transitions by exploiting redundancy
among the transitions. This and other previous techniques employ a “union then mini-
mize” framework, in which they first build a large automata corresponding to all the REs
in the ruleset, and then perform an expensive minimization on the large automata. We
develop algorithms that use a “minimize then union” framework to build the D2FA. In
this approach we first minimize the automata corresponding to each individual RE in the
ruleset, which is an inexpensive step because the automata are very small. We then use
a fast algorithm to union the minimized automata together in such a way that the mini-

mization is not lost. The D2FA can be used for a software implementation of a DPI engine.

The compressed transition table is stored in RAM, and the processor does a RAM lookup
for each transition of the automata. The drawback of implementing D2FA in software is

that the throughput is reduced (we explain this in Section 3.3.3.)

The second research goal was to find an efficient implementation of RE matching in net-
working device hardware. To this end, we develop techniques to implement the D2FA
for RE matching using Ternary Content Addressable Memory (TCAM). TCAMs
are already widely used in networking devices for header based packet forwarding, so our
techniques can be implemented on current TCAM hardware without requiring major mod-
ifications. We also develop techniques to increase throughput by processing more than one

input character in each cycle.

While the D2FA is much smaller than a DFA, the memory requirement is still proportional
to the number of DFA states, which grows exponentially with the number of REs. The
ultimate goal for RE matching is to develop an automata model for RE matching that
achieves throughput close to that of a DFA but only requires space close to that of a NFA.
Our final research goal was to develop such an automata model. For this, we have developed
two new automata models, Overlay Deterministic Finite state Automata (ODFA) and
Overlay Delayed Input DFA (OD?FA) as well as algorithms to implement OD?FA automata
in both software and hardware. Our hardware OD2FA implementation achieves the speed

of a DFA and the memory requirement of a NFA for many RE sets.

The rest of this proposal is organized as follows. In Chapter 2 we discuss related problems

and research. Background about DFA, D?FA and TCAM is presented in Chapter 3. Our

research related to D2FA and implementing RE matching in TCAM is presented in Chap-
ters 4 and 5, respectively. Chapter 6 presents our research for the OD2FA automata model

and implementation. Finally, Chapter 7 ends the dissertation with concluding remarks.

Chapter 2

Related Work

In the past, DPI typically used string matching (often called pattern matching) as a core
operator; string matching solutions have been extensively studied [4, 5, 44,46,48,49,52].
Several TCAM-based solutions have been proposed for string matching [5,12,46,52], but
they do not generalize to RE matching because they only deal with independent strings
and do not use DFAs. Sommer and Paxson [43] first proposed using REs instead of strings
to specify attack signatures. Today most DPI engines uses RE matching as a core operator

because strings are not adequate to precisely describe attack signatures.

There are two main approaches in previous work to developing RE matching solutions.
One is to start with a DFA and compress it. The second is to start with an NFA and

develop methods for coping with multiple active states.

We first review DFA compression work. Great work has been done in reducing the number

of transitions stored per DFA state such as D?FA [6,8,17,26,27]. These techniques exploit

transition redundancy between states to compress the size of the DFA. We present a novel
“minimize then union” approach of building the D?FA incrementally. Our approach can
build much larger D?FAs in fraction of the time compared to the previous solutions. This
work is presented in [36]. Recently and independently, Liu et al. proposed to construct
DFA by hierarchical merging [29]. That is, they essentially propose the “minimize then
union” framework for DFA construction. They consider merging multiple DFAs at a time
rather than just two. However, they do not consider D2FA, and they do not prove any

properties about their merge algorithm including that it results in minimum state DFAs.

Another approach to reducing the number of transitions stored per DFA state is alphabet
encoding. In this approach the input characters are mapped to a new alphabet such that
input characters which are always treated identically in the DFA are combined into one
new character, thus reducing the size of the alphabet [8,9,13,22]. This work is orthogonal

to our techniques, and can be used together to improve the results.

In [32] we present our current RE matching solution using TCAMs. Here we exploit both
inter state and intra state transition redundancy to minimize the number of transitions

stored per DFA state.

There has been work to increase the throughput by creating multi-stride DFAs and NFAs
that scan multiple characters per transition [9,13]. This work primarily applies to FPGA
NFA implementations since multiple character SRAM based DFAs have only been eval-
uated for a small number of REs. The ability to increase stride has been limited by the

constraint that all transitions must be increased in stride; this leads to excessive memory

explosion for strides larger than 2. In [32] we present the technique of variable striding,
in which we increase stride selectively on a state by state basis while carefully control-
ling the increase in required space. Alicherry et al. have explored variable striding for
TCAM-based string matching solutions [5] but not for DFAs that apply to arbitrary RE

sets.

Our techniques in [32] achieve very high transition compression; requiring close to just
1 transition per state. However, that might still not be practical if the number of states
grows exponentially with the number of REs. Some work has attempted to address state

explosion that occurs due to extensive state replication.

One approach is to simply partition REs into groups building an automata for each group
[7,42,51]. With this approach, at run time, each automata must process all packet payloads;
that is, similar to an NFA, multiple active states must be maintained. The one advantage
this approach has compared to an NFA is that the number of active states at any given
time is known in advance, so a system can be designed to accommodate the increased
bandwidth requirements for processing packet payloads. This approach is usually used
with any of the RE matching techniques when all REs cannot be compiled into a single
automata. Our goal is to conquer state explosion so that such partitioning is not needed. If
we cannot fully achieve our goal, our work should at least reduce the number of partitions
required. In particular, because our techniques achieve greater compression of DFAs than

previous software-based techniques, less partitioning of REs will be required.

A second approach is to use “scratch memory” to manage state replication and avoid state

explosion [10,25,41]. However, there are several issues with this approach. First, the size
of the required scratch memory may itself be significant. Second, the processing required
to update the scratch memory after each transition may be significant. Finally, many of
these approaches are not fully automated. For example, as Yang et al. write in [50] about
XFA, “... prior work on improved signature representations has required manual analysis

of REs (e.g., to identify and eliminate ambiguity [41]) ...”.

Liu et al. developed a new method for RE matching that was the first to introduce
relative state addressing through the use of offset transitions [28]. In their work, they
significantly reduce the number of stored transitions by exploiting state replication and
transition sharing without using TCAM. However, they do require the use of bitmaps for
each DFA state which means they still require at least one bit per DFA state which means
they ultimately do not address the state explosion problem. The current best approach
for coping with state explosion is that of Peng et al. [38], though they do not offer an
automata model. We propose new automata model, ODFA, which facilitates reasoning
about state replication and provides a systematic way of handling state replication. Some
preliminary results indicate that our technique require significantly fewer TCAM entries

than the technique in [38].

Much of the NFA work has exploited the parallel processing capabilities of FPGA technol-
ogy to cope with the multiple active states that arise from NFA [7,9,14,15,33,34,40,45].
However, it is not clear that FPGA’s can cope with the large number of active states

required when processing large signature sets. Furthermore, FPGA’s cannot be quickly

10

reconfigured when the RE sets change and they have relatively slow clock speeds. Also,
FPGAs are not commonly embedded in network processors as TCAMs commonly are.
One recent work in this direction is that of Yang et al. [50] where they use ordered bi-
nary decision diagrams to facilitate updating a set of active states in one operation. This
is an intriguing idea that merits further study and comparison with DFA compression

approaches.

11

Chapter 3

Background

In this section, we first discuss the background material for the research presented in the

later sections.

3.1 DFA for RE Matching

Most RE parsers use some variant of the Deterministic Finite state Automata (DFA)
representation of REs. Any set of REs can be converted into an equivalent DFA with
the minimum number of states [19,20]. Traditionally, a DFA is defined as a 5-tuple
D =(Q,X,qp,A,d), where

Q is the set of states,

2 is the alphabet,

qo € Q is the start state, and

A C Q is the set of accepting states.

12

d: Q x X — Q is the transition function,

DFAs have the property of needing constant memory access per input symbol, and hence
result in predictable and fast bandwidth. The main problem with DFAs is space explosion:
a huge amount of memory is needed to store the transition function & which has |Q] x |X]
entries. Specifically, the number of states can be very large (state explosion), and the

number of transitions per state is large (|Z| = 256).

A straightforward approach to implement DFAs is to store the transition function 6 in a
two dimensional (|Q| by |X|) array. However, |Q| is very large (typically ten thousand or
larger) and |X| = 28*k, where k > 1, for k-stride DFAs that process k 8 bit characters per
transition. Thus, although a |Q| by |Z| array is fast in theory, it is not in reality because
it consumes so much memory (hundreds of megabytes) that it has to be stored in DRAM

instead of SRAM and DRAM is an order of magnitude slower than SRAM.

In a standard DFA, each state is only marked as either accepting or non-accepting. Given
the set of REs R, reaching an accepting state only tells us that some RE in R matched, but
does not tell specifically which RE in R matched. However, in DPI applications we must
keep track of which REs in R have been matched. For example, each RE may correspond

to a unique security threat that requires its own processing routine.

This leads us to define Pattern Matching Deterministic Finite State Automata (PMDFA).
The key difference between a PMDFA and a DFA is that for each state q in a PMDFA, we
cannot simply mark it as accepting or rejecting; instead, we must record which REs from

R are matched when we reach q.

13

Definition 1 (Pattern Matching DFA (PMDFA)). Given as wnput a set of REs R, a
PMDFA 1s a 5-tuple (Q, L, qp, M,) where the term M 1s defined as M: Q — 2R For
each state q wn the DFA, M gwes the set of REs from R that are matched when we

reach q. All the other terms are defined in the same way as in a DFA.

In a PMDFA, there can be many pairs of states that are equivalent except for the set of
REs accepted by the two states. In a DFA, such a pair of states will be merged since they
would be completely equivalent. Because of this, the resulting minimum state PMDFA is
typically larger than the minimum state DFA. Since we always use a PMDFA, in the rest

of the report we just use the term DFA to mean a PMDFA.

3.2 Understanding DFA space explosion

DFAs suffer from space explosion due to two reasons, which we call transitions sharing

and state replication. We explain these reasons using the DFAs shown in Figure 3.1.

We first define some of our notation for the DFAs in Figure 3.1 for the RE sets {/abc/,
/abd/} and {/abc/, /abd/, /e.*x£/}. Note that any RE that is not anchored (i.e. does
not begin with a ‘*’) has an implicit ‘. +’ in the beginning, since the RE match can begin
anywhere in the input stream. To simplify the diagram, we condense many transitions that
have a common destination state on common input characters as follows. These transitions
are denoted with double arrows with their character labels next to the double arrow. The

source states for these transitions are denoted as “From [x..y]” which represents the set

14

From [0..4] From [1..4]

(a) DFA for RE set {/abc/, /abd/}.

From [0..4] From [1..4]

(b) DFA for RE set {/abc/, /abd/, /e.*£/}.

Figure 3.1: Example of DFA and state replication. (For interpretation of the references
to color in this and all other figures, the reader is referred to the electronic version of this
dissertation.)

of states with state IDs in the range [x..y]. For example, we represent four transitions
starting in states 1 through 4 that end in state 1 on character ‘a’ using double arrows
beneath “From [1..4]” and an ‘a’ next to the double arrow. When the text next to a

double arrow is “fail”, this represents all character transitions not explicitly shown in the

15

figure. For example, the “fail” transition in Figure 3.1(a) represents all transitions out of
state O for characters that are not ‘a’, all transitions out of state 1 for characters that are
not 'b’, and so on. Finally, in an accepting state, the number(s) following the ‘/’ represents
the ID(s) of the RE matched by that accepting state. We also use the notation s; — s

to denote the transition 8(sq, 0) = s>.

We define a self-looping state as a state which has more than X /2 (= 128) of its outgoing
transitions going back to itself. Self-looping states are the “failure states” on which the
DFA stays when the current input character does not advance the (partial) matching of
any of the REs in the RE set. For example in Figure 3.1(b) states 0 and 5 are self-looping

states. The transitions in a DFA can be categorized into three types:

1. Failure transitions are those that go to the self-looping states. It indicated that
the current input character does not advance (or start) the matching of any RE. In

Figure 3.1(a), all the incoming transitions of state O are failure transitions.

2. Restartable transitions are those that go to a state at a lower level than the current
state, usually a non self-looping state. It indicates that the current partial matches
are lost but there is a new partial match of another (possibly the same) RE. In
Figure 3.1(b), the incoming transitions of state 5 on character ‘e’ from states [1..4]
are restartable transitions. For instance the transitions 2 < 5 means that we had a
partial match (ab) of REs/abc/ and /abd/ (since the current state is 2), and the
current input ‘e’ does not advance the match of either of these REs, but it starts the

matching of a new RE /e.xf/.

16

3. Forward transitions are the those that go from one state to the next in a chain
of states that identify a RE. These transitions advance the current partial match of
the RE by one character. In Figure 3.1(b), the outgoing transition of state 0 on

characters ‘a’ and ‘e’ are forward transitions.

3.2.1 Transition Sharing

We say two transitions are shared when, out of the three values in a transition (source
state, input character, destination state), they differ in only one value. Two shared tran-
sitions can only possibly differ in either the input character or the source state (since a
DFA has only one transition per source state and input character pair). This gives us two

causes of transition sharing: character redundancy and state redundancy.

Character redundancy is when two shared transitions differ in only the input character
value. That is, for a state q € Q, we often have 8(q,07) = 8(q,0) for characters o
and oy in X. A DFA has a lot of character redundancy since for most states, most of
their transitions are failure transitions going to the same self-looping state. Only a few of
transitions for most states are either restartable or forward transitions. In addition, if a
RE has a chracter range (like ‘[a—-z]’) in it, then it leads to character redundant forward
transitions. For example in Figure 3.1(a), 254 of the 256 transitions for state 1 go to the

same state 0.

State redundancy is when two shared transitions differ in only the source state value. That

is, for a character o € Z, we have &(p, 0) = 8(q, o) for states p and q in Q. The cause for

17

the large amount of state redundancy is failure and restartable transitions, because both
of these types of transitions go to the same next state for many different states in the DFA.
For example in Figure 3.1(a), for all the states in the DFA, their failure transitions go to

state 0, and their transition on input character ‘a’ goes to state 1.

3.2.2 State Replication

When the NFA is converted to an equivalent DFA, the number of states typically increases
exponentially. This happens because most of the states in the NFA are replicated many
times in the DFA. To understand this, consider the DFAs in Figure 3.1. Figure 3.1(a)
shows the DFA for the RE set {/abc/, /abd/}, and Figure 3.1(b) shows the DFA after
the RE /e.xf/ is added to this RE set. As we can see, the entire DFA in Figure 3.1(a) is
repeated twice in the DFA in Figure 3.1(b). Each state is replicated twice because of the

wildcard closure ‘.«’ in the new RE that is added.

In general when building the DFA for an RE set where some REs contains «’s, the states in
the DFAs that corresponds to individual REs are replicated multiple times. And when a
state is replicated, we automatically get replication of the transitions of that state, causing

transitions replication.

18

3.3 DZFA

The Delayed Input DFA (D?FA) was proposed by Kumar et al. [26] to compress the size
of the DFA transition function & by exploiting state redundancy. The basic idea of D2FA is
that in a typical DFA for real world RE set, given two states u and v, 6(u, o) = 8(v, o) for
many symbols o0 € £. We can remove all the transitions for v from o for which 6(u, o) =
d(v, o) and make a note that v’s transitions were removed based on u’s transitions. When
the D?FA is later processing input and is in state v and encounters input symbol o, if
§(v, 0) is missing, the D2FA can use 5(u, o) to determine the next state. We can do the
same thing for most states in the DFA, and it results in tremendous transition compression.
Kumar et al. observe an average decrease of 97.6% in the amount of memory required to

store a D?FA when compared to its corresponding DFA.
In more detail, to build a D2FA from a DFA, we just do the following two steps:

1. For each state u € Q, pick a deferred state, denoted by F(u). (We can have F(u) =

w.)

2. For each state u € Q for which F(u) # u, remove all the transitions for u for which

5(u, o) = 8(F(u), o).

When traversing the D2FA, if on current state u and current input symbol o, if §(u, o) is
missing (z.e. has been removed), we can use §(F(u), o) to get the next state. Of course,
d(F(u), o) might be missing too, in which case we then use &(F(F(u)), o) to get the next

state, and so on.

19

Figure 3.2(a) shows a DFA for the REs set {/ . xa.xbcb/, /.*c.xbcb/}, and Figure 3.2(c)
shows the D2FA built from the DFA. The dashed lines represent deferred states. The DFA
has 13 x 256 = 3328 transitions, whereas the D?FA only has 1030 actual transitions and 9

deferred transitions.

3.3.1 D?2?FA Definition

We formally define a D®FA and introduce some notation here.

Definition 2 (D?FA). Let D = (Q, X, qg, M, 8) be a DFA. A corresponding D?FA D’
is defined as a 6-tuple D' = (Q, %, qo, M, p,F). The first four terms here are defined

the same way as in the DFA. The function F: Q — Q defines a unique deferred state

from 1,3

z-{b,C}

from from 4,6,7,9,10,12

4,6,10(C

from 2,5,8,11 b
(a) DFA for RE set {/.%a.xbcb/, /.xc.%bcb/}

Figure 3.2: D?FA example.

20

(b) SRG for the DFA. Edges with weight < 1 are not shown. Unlabeled edges have
weight 255

2.-{a,b}
(c) The corresponding D?FA. Dashed edges represent deferment.

Figure 3.2: D?FA example (cont’d).

21

for each state in Q, and the partial function p: Q x X — Q s a partially defined
transition function. Together, the deferment function F and the partial transition
function p are equivalent to DFA transition function 6. We use dom(p) to denote
the domain of p, i.e. the values for which p is defined. The key property of the D?FA

D’ that corresponds to DFA D is as follows:

V(s,0) € Q x L,(s,0) € dom(p) <= (F(s) = sV d(s,0) # 5(F(s), 0))

That 1s, for each state, p only has those transitions that are different from that of

its deferred state in the underlying DFA. When defined, p(s,0) = d(s, 0).

The function F defines a directed graph on the states of Q, which we call the deferment
forest. A D?FA is well defined if and only if there are no cycles of length > 1 in the

deferment forest (i.e. there are no cycles except self-loops.)

The total transition function for the D?FA (derived from p) is defined as

p(s,0) if (s,0) € dom(p)
8'(s,0) =

5'(F(s), o) else

It is easy to see that d' is well defined and equal to & if the D?FA is well defined.

We need the restriction that the deferment forest cannot have a cycle other than a self-loop
on the states because otherwise all states on the cycle might have their transitions on some

o € X removed, and there would no way of finding the next state.

22

We also use the term deferment pointer to refer to the deferred state of a state. That is,
if F(u) =v /A u # v, we say the deferment pointer of state u is set to state v. If F(u) =,

we say the deferment pointer for state u is not set.

States that defer to themselves (z.e. deferment pointer is not set), which we call root states,
must have all their transitions defined. Each connected component of the deferment forest
is called a deferment tree. It is easy to see that each deferment tree has exactly one root
state in it, and the deferment pointer of all the other states in the deferment tree are set

towards the root state.

We use u—v to denote F(u) = v, 7.e. u directly defers to v. In this case, we say state u
is a child of state v, and state v is the parent of state u, in the deferment forest. We use
u—»Vv to denote that there is a path from u to v in the deferment forest defined by F. In
this case we say state u is a descendant of state v, and state v is the ancestor of state u,

in the deferment forest.

The deferment depth of state u, denoted \(u), is the distance, in the deferment tree
containing u, of state u from the root state of that deferment tree. The (maximum)
deferment depth of D?FA D’, denoted ¥(D’), is the maximum deferment depth among
all the states in D’. We use {(D’) to denote the average deferment depth among all the

states in D’.

We use uv to denote the number of transitions in common between states u and v; z.e.

uflv=Ho|oe ZAdu,o) =>58(v,0)}.

23

We only consider D®FA that correspond to minimum state DFA, though the definition

applies to all DFA.

3.3.2 Original D?FA Algorithm

In this section we explain the original D2FA construction algorithm proposed by Kumar

et al. [26]. They first build a DFA for the given RE set.

The amount of transition compression achieved by the D2FA depends on the number of
common transition between each (non-root) state and its deferred state. So next, in order
to maximize transition compression, they essentially solve a maximum weight spanning
tree problem on the following weighted graph which they calla Space Reduction Graph
(SRG). The SRG is a complete graph with the DFA states, Q, as its vertices. The weight
of any edge (u,Vv) in the SRG is equal to the number of common transitions between DFA
states u and v. They use the the Kruskal’s algorithm [23] to construct the maximum
weight spanning tree. Edges with weight < 1 are not considered (selecting an edge with
weight 1 does not reduce the transition function, since it will result in removal of one
actual transition and addition of the deferment pointer transition.) For this reason the

maximum weight spanning tree construction might result in a forest.

Once the spanning forest is constructed, (one of) the state(s) in the center of each tree
is selected as the root for that tree, and all edges are directed towards the root. These

directed edges give the deferred state for each state.

24

Figure 3.2(b) shows the SRG built for the DFA in Figure 3.2(a), along with the maximum

weight spanning forest with roots selected and the edges directed.

3.3.3 Limiting Deferment Depth in Original D?2FA Algorithm

A D?FA has the drawback that while parsing the input string, the current input character
is not advanced when a deferment transition is followed (hence the name delayed input
DFA.) In the worst case for a given state u and current input character o, we might have
to do P(u) + 1 lookups to find the next state 6’(u, o); that is P (u) lookups to get to the

root state following deferment transitions and 1 more lookup to get the actual next state.

This is a problem since we no longer get deterministic throughput, which was the main
reason for using the DFA. So, in general, it is better to have low deferment depth for all
states. If we set an upper bound on W, then we achieve deterministic throughput, since

we would have a constant bound on the number of lookups per input character.

Recall that during the maximum weight spanning tree construction, Kruskal’s algorithm
considers edges in decreasing edge weight order. At any time during the construction,
many edges will have the current largest edge weight (since there are only 257 possible
edge weights.) In order to reduce the deferment depth of the resulting D?FA, Kumar et al.
propose the following tie breaking heuristic: among all edges with the current maximum
weight, pick the one that will result in the least increase in the diameter when added to

the spanning forest.

25

Also, given an upper bound, (), on the D2FA deferment depth V¥, Kumar et al. propose
the following method to generate D2FA with deferment depth within the bound: during
the maximum weighted spanning tree construction, an edge is only added to the spanning
tree if it does not cause the tree diameter to go over 2 x (). Since the tree center is chosen

as the root state, this guarantees that ¥(D') < Q.

3.3.4 Backpointer D?FA Algorithm

The level of a state u in a DFA is the length of the shortest string that takes the DFA from
the start state to state u. Becchi and Crowley [8] propose an algorithm to build the D?FA
based on the following idea: each state in the DFA should defer to a state that is at a
lower level than itself. Because of this, every deferred transition followed will decrease the
level of the current state by at least 1. Any actual transition taken can only increase the
level of the current state by 1. Therefore, when processing any input string of length n, at
most n — 1 deferred transitions will be followed. So this method guarantees an amortized

cost of at most 2 lookups per input character.

To build the D2FA, they build the DFA for the given RE set first. Next, for each state u,
among all the states at a lower level than u, they set F(ut) to be the state which shares the
most transitions with u. Since each state defers to a state at a lower level than itself, the

deferment forest can never have a cycle, so the D?FA is well defined.

The resulting D2FA is typically a bit larger in size than the D2FA built using the algorithm

proposed by Kumar et al..

26

3.4 Classifiers

In this section we define a classifier, related terminology and describe a classifier minimiza-
tion problem. A classifier is essentially a mapping function from the source domain to the

target domain. In a d-dimensional classifier, the input value is composed of d fields.

A classifier is traditionally defined for the (header based) packet classification problem.
The input value is the packet header, which has five fields: Protocol type, Source IP
address, Source port number, Destination IP address and Destination port number. The
output is the decision or action to be taken for the packet, which typically has values
like accept, discard, accept and log, discard and log etc.. So the classifier is defined as a
5-dimensional classifier, with the set of possible packet headers as the source domain, and
set of possible actions as the target domain. For each possible packet header, the classifier

gives the action to be taken.

3.4.1 Classifier definition

We now formally define a d-dimensional classifier and related terminology.

A field F; is a finite width variable. The domain of field F; of w bit width is dom(F;) =
[0..2" —1]. The domain of a d-dimensional classifier, f, defined over the d fields Fy,...,F4
is dom(f) = dom(Fy) x --- x dom(F4). A packet is a d-tuple (p1,...,pq), Where, for

1 <i<d, p; € dom(F).

A rule has the form (predicate) — (decision). A rule (predicate) is a d-tuple (Sy,...,Sq),

27

where, for 1 <1i < d, S; € dom(F;); and it covers the set of packets S;x---xSq3 € dom(f).
A packet p matches rule r if and only if the predicate of r covers p. The set of possible

rule decisions is denoted by H.

The classifier f = (ry,...,Tn) is specified as a sequence of rules. For packet p, the first
rule in the sequence that p matches is said to be the binding rule for p. If p does not
match any rule in f, then p does not have any binding rule (or is unbound). For a bound
packet p, the output of the classifier, f(p), is given by the decision of the binding rule for
p. For unbound packets, p, f(p) is undefined. The cost of a classifier f, denoted Cost(f),

is the number of rules in f.

The Cowver of a classifier f, denoted Cover(f), is defined as the set of packets in dom(f)
that have a binding rule in f (i.e. set of packets that match at least one rule in f.) A
classifier f, is said to be a complete classifier if Cover(f) = dom(f), otherwise f is said

to be an incomplete classifier.

Clearly, two rules in a classifier can be overlapping (i.e. at least one packet matches both
rules), as well as conflicting (7.e. overlapping and having different decisions). But that is

ok, since the classifier output for a bound packet is uniquely defined by its binding rule.

3.4.1.1 Prefix Classifier

A prefiz {0, 1+~ with k leading bits (z.e. Os or 1s), for a field of width w, denotes

the range of values [{0, 1}¥{0}V%,{0, 1}*{1~X]. A rule is said to be a prefiz rule if and

28

only if every S; in the rule predicate (Sq,...,Sq) is represented as a prefix. A classifier f

is said to be a prefiz classifier if and only if every rule in f is a prefix rule.

3.4.1.2 Ternary Classifier

A ternary value for a field of width w is of the form {0, 1,*}", and denotes the set of
values obtained by replacing the *’s with 0’s and 1’s in all possible combinations (if there
are k x’s, there are 2K ways to replace the «’s with 0’s and 1’s.) A rule is said to be a
ternary rule if and only if every S; in the rule predicate (Sy,...,Sq4) is represented as a
ternary value. A classifier f is said to be a ternary classifier if and only if every rule in f

is a ternary rule.

A prefix classifier is a special case of a ternary classifier, since every prefix is also a ternary

value.

3.4.1.3 Weighted Classifier

In a weighted classifier, each decision in H has a weight associated with it. The cost of a
classifier f is then equal to the sum of the weights of decisions of all the rules in f. The
unweighted classifier is a special case of weighted classifier with weights of all the decisions

set to 1.

29

3.4.2 Classifier Minimization

Two classifiers f| and f; are equivalent, denoted f; = f,, if and only if Cover(f;) =
Cover(f,) and Vp € Cover(fy),f1(p) = f2(p). For a classifier f, we use {f} to denote the

set of all classifiers that are equivalent to f.

The classifier minimization problem is then defined as follows.

Definition 3 (Classifier Minimization Problem). Given a classifier fi, find a prefiz

classifier £y € {f1} such that for any prefiz classifier f € {f{}, Cost(fy) < Cost(f).

Multi-dimensional classifier minimization has been shown to be NP-hard. An optimal
solution for 1-dimensional complete classifier minimization was proposed by Suri et al. [47].
Meiners et al. [30,31] proposed algorithms for 1-dimensional complete weighted classifier

minimization and 1-dimensional incomplete weighted classifier minimization.

3.5 TCAM Introduction

In any regular memory, the input is the memory address location, and the output is the
contents of the memory at that location. In a Ternary Content Addressable Memory
(TCAM), as the name suggests, it is the exact opposite. The input to a TCAM is binary
value, and the output of the TCAM is the address of the location, if any, at which the
given value occurs. The ternary refers to the fact that the contents of the memory are

ternary bits, ¢.e. 0, 1 or x (don’t care). The x matches both a 0 and a 1.

30

If more than one location matches the given (binary) value, then the address of the first
location that matches the value is returned. We call this the first match semantics of

TCAM.

The key thing about TCAMs is that the output is returned in constant time. TCAMs
internally have a massively parallel hardware that searches the given input against all the
entries stored in the TCAM at once, and returns the address of the first match. For this
reason, TCAM memory chips have very limited size. The largest available chip is about
72Mb, and typical sizes are around 1Mb to 8Mb. TCAM chips also consume a lot of energy

compared to regular memory.

The TCAM chip is usually paired with a corresponding SRAM that stores output values.
The matching address from the TCAM is used as input to the SRAM to get the output

value.

TCAM chips are widely used in networking devices for packet classification. A ternary
classifier for packet classification can be naturally implemented in a TCAM. All the rules
predicates are stored, in order, in the TCAM, and the corresponding rule decisions are
stored in the SRAM. The packet header is then used as a lookup key for the TCAM, and

the matching SRAM values gives the decision for the packet.

31

Chapter 4

Software Implementation

In this section we present our work on the software implementation of RE matching. A
software solution typically uses a DFA to achieve deterministic throughput. The software

solution can be implemented on general purpose processors, or on customized ASIC chips.

4.1 Introduction/Motivation

The straightforward way to implement a DFA in software is to store the DFA transition
table, 9, in a two dimensional Q x X array. But DFAs suffer from space explosion when
multiple REs are combined, making them impractical even for moderately sized RE set.
D?FA are very effective at dealing with the space explosion problem of the DFA. In par-
ticular, D2FA exhibit tremendous transition compression reducing the size of the DFA by
a huge factor. This makes D2FA much more practical for a software implementation of

RE matching than DFAs. In our work we focus on the D2FA.

32

4.1.1 Solution Goals

For software implementation of RE matching, given as input a set of REs R, we need
to be able to build a compact D?FA as efficiently as possible that also supports frequent
updates. Efficiency is important because RE matching solutions are typically implemented
in networking devices, which usually have very limited computing resources. Current
methods for constructing DFA may be so expensive in both time and space that they may
not be able to construct the final D2FA even if the D2FA is small enough to be deployed
in networking devices that have limited computing resources. Such issues become doubly
important when we consider the issue of the frequent updates (typically additions) to R

that occur as new security threats are identified.

4.1.2 Summary and Limitations of Prior Art

Given the input RE set R, any solution that builds a D?FA for R will have to do the
following two operations: (a) union the automata corresponding to each RE in R and
(b) minimize the automata, both in terms of the number of states and the number of
edges. Previous solutions [8,26] (discussed in Section 3.3) employ a “Union then Minimize”
framework in which: (1) they first build automata for each RE within R, and perform
union operations on these automata to arrive at one combined automaton for all the
REs in R, and (2) next they minimize the resulting combined automaton. In particular,
previous solutions first construct the combined NFA for the RE set. Then they perform a

computationally expensive NFA to DFA subset construction on the large combined NFA,

33

followed by or composed with DFA minimization (for states). And last they perform the

D2?FA minimization (for edges).

There are three fundamental limitations with prior solutions, due to which they do not
meet our goals. First, they perform the minimization on the large combined automata
which is expensive in both time and space. Second, prior methods build the corresponding
minimum state DFA before constructing the final D?FA. This is very costly in both space
and time. The D?FA is typically 50 to 100 times smaller than the DFA, so even if the
D2FA would fit in available memory, the intermediate DFA might be too large, making
it impractical to build the D?FA. This is exacerbated in the case of the Kumar et al.
algorithm which needs the SRG which ranges from about the size of the DFA itself to over
50 times the size of the DFA. The resulting space and time required to build the DFA
and SRG impose serious limits on the D®FA that can be practically constructed. We do
observe that the method proposed in [8] does not need to create the SRG. Furthermore,
as the authors have noted, there is a way to go from the NFA directly to the D2FA, but
implementing such an approach is still very costly in time as many transition tables need
to be repeatedly recreated in order to realize these space savings. In addition, this direct
NFA to D2FA construction would still need to perform the expensive subset construction
on the large combined NFA. Third, none of the previous methods support updating the
D2FA when a new RE is added to R. The whole D2FA would have to be rebuilt when the

RE set is updated.

34

4.1.3 Summary of Our Approach

To address the limitations of prior solutions, we propose a “Minimize then Union frame-
work”. Specifically, we first minimize the small automata corresponding to each RE from
R, and then union the minimized automata together. In particular, given R, we first build
a DFA and D?FA for each individual RE in R. The heart of our technique is the D?FA
merge algorithm that performs the union. It merges two smaller D?FAs into one larger
D2FA such that the merged D2FA is equivalent to the union of REs that the D2FAs being
merged were equivalent to. Starting from the the initial D2FAs for each RE, using this
D?FA merge subroutine, we merge two D?FAs at a time until we are left with just one
final D2FA. The initial D2FAs are each equivalent to their respective REs, so the final
D?FA will be equivalent to the union of all the REs in R. A key property of our D?FA
merge algorithm is that it automatically produces a minimum state D?FA without explicit
state minimization. Likewise, it creates efficient state deferment in the merged D2FA using
state deferment information from the input D?FAs. Together, these optimizations lead to

a vastly more efficient D2FA construction algorithm in both time and space.

The D?FA produced by our merge algorithm can be larger than the minimal D2FA pro-
duced by the Kumar et al. algorithm. This is because the Kumar et al. algorithm does
a global optimization over the whole DFA (using the SRG), whereas our merge algorithm
efficiently computes state deferment in the merged D2FA based on state deferment in the
two input D2FAs. In most cases, the D2FA produced by our approach is sufficiently small

to be deployed. However, in situations where more compression is needed, we offer an

35

efficient final compression algorithm that produces a D®FA very similar in size to that
produced by the Kumar et al. algorithm. This final compression algorithm uses an SRG;
we improve efficiency by using the deferment already computed in the merged D2FA to
greatly reduce the size of this SRG and thus significantly reduce the time and memory

required to do this compression.

4.1.3.1 Advantages of our algorithm

One of the main advantages of our algorithm is a dramatic increase in time and space
efficiency. These efficiency gains are partly due to our use of the Minimize then Union
framework instead of the Union then Minimize framework. More specifically, our improved
efficiency comes about from the following four factors. First, other than for the initial DFAs
that correspond to individual REs in R, we build D?FA bypassing DFAs. Those initial
DFAs are very small (typically < 50 states), so the memory and time required to build
the initial DFAs and D2FAs is negligible. The D?FA merge algorithm directly merges the
two input D2FAs to get the output D2FA without creating the DFA first. Second, other
than for the initial DFAs, we never have to perform the NFA to DFA subset construction.
Third, other than for the initial DFAs, we never have to perform DFA state minimization.
Fourth, when setting deferred states in the D2FA merge algorithm, we use deferment
information from the two input D2FA. This typically involves performing only a constant
number of comparisons per state rather than a linear in the number of states comparison

per state as is required by previous techniques. All told, our algorithm has a practical time

36

complexity of O(n|Z|) where n is the number of states in the final D2FA and |Z| is the size
of the input alphabet. In contrast, Kumar et al.’s algorithm [26] has a time complexity
of O(nz(log(n) + |X])) and Becchi and Crowley’s algorithm [8] has a time complexity of
O(n?|Z|) just for setting the deferment state for each state and ignoring the cost of the
NFA subset construction and DFA state minimization. Section 4.4.4 has a more detailed

complexity analysis.

Because of these efficiency advantages in time and space complexity, given the same lim-
ited resources, our algorithm can build much larger D2FAs than are possible with previous
methods. Besides being much more efficient in constructing D2FA from scratch, our algo-
rithm is very well suited for frequent RE updates. When an RE needs to be added to the
current set, we just need to merge the D2FA for the RE to the current D?FA using our

merge routine which is a very fast operation.

4.2 Minimum State PMDFA construction

Before we present our algorithm for efficient D2FA construction, we consider the problem

of constructing minimum state DFA for a given RE set.

Given a set of REs R, we can build the corresponding minimum state DFA using the
standard Union then Minimize framework: first build a combined NFA for all the REs in
R, then convert the NFA to a DFA, and finally minimize the DFA. This method can be

very slow, mainly due to subset construction in the NFA to DFA conversion, which often

37

results in an exponential growth in the number of states. Instead, we propose a more

efficient Minimize then Union framework.

Let Ry and R, denote any two disjoint subsets of R, and let D and D be their correspond-
ing minimum state DFAs. We use the standard union cross product construction for DFAs
to construct a minimum state DFA D3 that corresponds to R3 = Ry UR,. Specifically, sup-
pose we are given the two DFAs Dy = (Qq, X, qo1, M1,91) and D) = (Qy, %, q02, M2, 83).

The union cross product DFA of Dy and D>, denoted as UCP(D1, D>), is given by

D3 = UCP(D1,D;) = (Q3,Z, q03, M3, 83)

where

Q3=Q1 xQ2
903 = (do1>902)
Vqi € Q1,Vq5 € Q2, M3((ay, 45)) = Mi(qi) UM;(qj)

Vo € ,Vq; € Q1,Vq; € Q2, 83((di, qj), 0) = (81(4y, 0), 82(qj, 0))

Each state in D3 corresponds to a pair of states, one from D and one from D,. For
notational clarity, we use (and) to enclose an ordered pair of states. Transition function
d3 just simulates both 07 and 6, in parallel. Many states in Q3 might not be reachable
from the start state qp3. Thus, while constructing D3, we only create states that are

reachable from the start state qo3.

38

We now argue that this construction is correct. This is a standard construction, so the fact
that D3 is a DFA for R3 = Ry U R; is straightforward and covered in standard automata
theory textbooks (e.g. [20]). We now show that D3 is also a minimum state DFA for R3
assuming Ry N Ry = (). Recall that we are using DFA to mean a PMDFA (see Section 3.1.)
For a traditionally defined DFAs, the UCP construction is not guaranteed to produce a

minimum state DFA.

Theorem 1. Gwen two RE sets, Ry and Ry, and equivalent minimum state DFAs, D
and D,, the union cross product DFA D3 = UCP(D1,D;), with only reachable states

constructed, is the minimum state DFA equivalent to R3 = R; URy 4f Ry N Ry = 0.

Proof. First since only reachable states are constructed, D3 cannot be trivially reduced.
Now assume D3 is not minimum. That would mean there are two different states in D3,

say (p1,p2) and (qq, qz), that are indistinguishable. This implies that

Vx € I¥, M3(83((p1,P2),%)) = M3(83((q1,q2),x)).

Working on both sides of this equality, we get,

Vx € ¥, M3(83((p1,P2),%)) = M3((81(p1,%),82(p2,%)))

= M;(81(p1,%)) UM2(82(p2,x))

39

as well as,

vx € I*, M3(83((q1,q2),x)) = M3((51(q1,%), 52(q2,%)))

= M;(81(q71,%)) UM;(82(q2,%))

This implies that

Vx € I*, M1(81(p1,%x)) UM3(82(p2,%)) = M1 (81(q7,%)) UM;z(82(qz2,%))

Now since Ry N Ry = (), this gives us

Vx € Z*, M1(81(p1,%)) =M (81(q1,x)) and

¥x € I, My(81(p2,x)) = M2(81(q2,x))

This implies that p; and q; are indistinguishable in D and p;, and q; are indistinguishable
in D,. Since (p1,p2) # (q1,92), we have that p; # ps» V q1 # (3, implying that at least
one of Dy or D) is not a minimum state DFA, which is a contradiction and the result

follows. L

Our efficient construction algorithm works as follows. First, for each RE r € R, we build
an equivalent minimum state DFA D for r using the standard method, resulting in a set of
DFAs D. Then we merge two DFAs from D at a time using the above UCP construction

until there is just one DFA left in D. The merging in done in a greedy manner: in each step,

40

the two DFAs with the fewest states are merged together. Note the condition RyNR, = () is

always satisfied in all the merges, so Theorem 1 ensures that we always have a minimized

DFA.

In our experiments, our Minimize then Union technique runs exponentially faster than the
standard Union then Minimize technique because we only apply the NFA to DFA subset
construction step on the NFAs that correspond to each individual RE rather than on the
combined NFA for all the REs. This makes a significant difference even when we have a
relatively small number of REs. For example, for the C7 RE set which contains 7 REs,
the standard technique requires 385.5 seconds to build the DFA, but our technique builds

the DFA in only 0.66 seconds.

4.3 Efficient D?FA Construction

In this section, we describe how we can extend the Minimize then Union technique to
directly build the D2FA bypassing the DFA construction. We first build the D?FA for each
individual RE in the RE set, and then merge these D2FAs together to get the combined

D2FA for the entire RE set.

4.3.1 Improved D?FA Construction for One RE

To build the initial D?FA for each RE in R, we can use the original D2FA algorithm

proposed in [26]. However, we propose several improvements to original algorithm that

41

facilitate our D2FA merge algorithm, our techniques for hardware implementation of RE

matching presented in Chapter 5 and the overlay automata approach presented in Chapter

6.
Edge weight distribution
1.0E+8 22
1.0E+7
1.0E+6
— 1.0E+5 —
C
3 1.0E+4 h -
O 1.0E+3
1.0E+2
1.0E+1
1.0E+0 T IIIIIIIIIIIIIIIIH?"'?IIIIIIIIIIII III TTTTTTTTITTTTITTITTITTT
O n © n O N O N O N O N O MO MO MmO wmwOo uwm
— «— N N 00O 00 OO O O 0O d A1 N AN N N &S < 10D N
I 4 AN AN AN AN AN AN AN AN AN AN AN
Edge Weight

Figure 4.1: Edge weights distribution in a typical SRG.

Figure 4.1 shows the typical distribution of the weights of the edges in the SRG. The
distribution is typically bimodal. The weights of the edges are very high (> 128) or very
low (< 20). The reason behind this is that, for all state pairs for which both states have
their failure transitions going to the same self-looping state, the two states will have most
of their transitions in common, and hence result in a very high weight edge in the SRG.
Likewise, for all state pairs for which both states have their failure transitions going to
different self-looping states, the two states will have none (or very few) of their transitions
in common, and hence result in a very low weight edge in the SRG. If we remove the

low weight edges from the SRG, we get a natural partitioning of the states based on the

42

self-looping state they fail to. Let us call this partitioning of states P. Each partition in

P will have at most one self-looping state.

Multiple deferment trees: We remove the low weight (< 20) edges from the SRG
before building the maximum spanning tree. The result of this is that the deferment
forest has multiple deferment trees, one tree for each partition in . This only results in
a small increase in the number of transitions in the resulting D®FA, since edges removed
from the SRG have very low weight. For each partition in P, the unique self-looping state

(if any) within the partition is chosen as the root of the corresponding deferment tree.

Handling non-self-looping roots: We can have a partition in P which does not have
any self-looping state. In such cases we will have a non self-looping state selected for
the partition. This will happen for REs that have a ‘.’ (or a large range like ["a])
without the closure ‘«’. For example consider that D2FA shown in Figure 4.2(a) for the
RE /a.xb..c/. The deferment forest will have 4 root states, 0, 1, 2 and 3. States 0 and

1 are self-looping. However, states 2 and 3 are not self-looping and are only roots states

because they have no transition in common with other states.

In such cases, we make these states non root states and set their deferment as follows. We
look at the deferment of the next state where the transition on the ‘.’ goes to. If we have
more than one consecutive ‘.’, we note the state where the last ‘.’ transitions to. In our
example, the next state of the last ‘.’ is state 4. We follow the deferment of this state

until we reach its root, and select that root as the deferred state of the non self-looping

43

(b) D?FA after setting deferment for non self-looping roots

Figure 4.2: Example showing D?FA with non self-looping root states.

roots. In our example, the deferment chain of state 4 ends in state 1, so state 1 is chosen

as the deferred state for both states 2 and 3. Figure 4.2(b) shows the resulting D2FA.

Setting the deferment of non self-looping roots in this manner does not reduce the size
of the D?FA since these states will not have any transitions (or very few transitions)
in common with their deferred states. However, this results in a better structure of the
deferment forest. It also ensures we have the condition that all roots states are self-looping

states and vice versa.

Improved edge weight tie breaking: Recall that during the construction of the max-
imum spanning tree using Kruskal’s algorithm, at any time there are usually many edges

with the current maximum weight. We use the following tie breaking strategy.

For each state u, we store a value, deg’(u), which is initially set to 0. During Kruskal’s

44

algorithm, when an edge e = (u,v) is added to the current spanning tree, deg’(u) is
incremented by 2 if level(u) < level(v); otherwise it is incremented by 1. Recall that
level(u) is the length of the shortest string that takes the DFA from the start state to
state u. We similarly update deg’(v). Then we use the following tie breaking order among

edges having the current maximum weight.

1. Edges that have a self-looping state as one of their end points are given the highest

priority.
2. Next, priority is given to edges with higher sum of deg’ of their end vertices.

3. Next, priority is given to edges with higher difference between the levels of their end

vertices.

The sum of degrees of end vertices is used for tie breaking in order to prioritize states that
are already highly connected. However, we also want to prioritize connecting to states at
lower levels, so we use deg’ instead of just the degree. Using the difference between levels
of end points for tie breaking also prioritizes states at a lower level. This helps reduce
the deferment depth and the DFA size for RE sets whose D?FAs have a higher average

deferment depth.
There are several benefits of these improvements.

1. Having the self-looping states in the center helps to minimize the average height of
the deferment tree. Also, prioritizing edges with well connected endpoints increases

the fanout, which again reduces tree height. The result is that we get a D2FA that

45

has a much lower deferment depth.

2. The state partitioning P identifies a natural partitioning of states, such that all
replications of one NFA state are in different partitions. So typically all partitions
in P have sizes close to each other; and because of our tie breaking strategy, all
the deferment trees have very similar structure. This property helps to improve the
effectiveness of our D?FA merge algorithm explained in the next section, and of our

table consolidation technique explained in Section 5.3.

3. Having self-looping states as roots helps to improve the effectiveness of our variable
striding technique which we describe in Section 5.4. And the condition that all
roots states are self-looping states and vice versa is needed for our overlay automata

approach described in Chapter 6.

4.3.2 D?FA Merge Algorithm

The UCP construction merges two DFAs together. We extend the UCP construction to
merge two D?FAs together as follows. To build a D?FA from a DFA, we basically just need
to set the deferment pointer, F(u), for each state. During the UCP construction, as each
new state u is created, we define F(u) at the same time. We then define p to only include

transitions for u that differ from F(u).

To help explain our algorithm, Figure 4.3 shows an example execution of the D2FA

merge algorithm. Figures 4.3(a) and 4.3(b) show the D?FAs for the REs/.xa.xbcb/

46

and /.%c.+bcb/. Figure 4.3(c) shows the merged D2FA for the D?FAs in Figures 4.3(a)
and 4.3(b). We use the following conventions when depicting a D?FA. The dashed lines
correspond to the deferred state for a given state. For each state in the merged D2FA, the
pair of numbers above the line refers to the states in the original D2FAs that correspond
to the state in the merged D®FA. The number below the line is the state in the merged
D2FA. The number(s) after the ¢/’ in accepting states gives the id(s) of the pattern(s)
matched. Figure 4.3(d) shows how the deferred state is set for a few states in the merged

D?FA D3. We explain the notation in this figure as we give our algorithm description.

For each state u € D3, we set the deferred state F(u) as follows. While merging D2FAs
D and D, let state u = (pp, qo) be the new state currently being added to the merged
D?FA Dj3. Let pg—pj—---—7p; be the maximal deferment chain DC; (i.e. p; defers

to itself) in D starting at py, and qp—q7—---—qm be the maximal deferment chain

(b) Dy, the D?FA for RE /.xc.+bcb/.

Figure 4.3: D?FA merge example.

47

>-{a,c} >-{b,c}

1

1

)

I

I

1

}
|
\

> S

2---->1
Deferment for 5=(0,2) Deferment for 7=(2,2)

§---->2----»1 421

. A
?,2—56 152 756
2%---»1 4----»2----»1

Deferment for 9=(4,2) Deferment for 12=(4,4)
(d) Hlustration of setting deferment for some states in D3.

Figure 4.3: D?FA merge example (cont’d).

48

DC; in D) starting at qq. For example, in Figure 4.3(d), we see the maximal deferment
chains for u =5 = (0,2), u =7 = (2,2), u =9 = (4,2), and u = 12 = (4,4). For
u =9 = (4,2), the top row is the deferment chain of state 4 in D and the bottom row is
the deferment chain of state 2 in D;. We will choose some state (pj, q;) where 0 <i <1
and 0 <j < m to be F(u). In Figure 4.3(d), we represent these candidate F(u) pairs with
edges between the nodes of the deferment chains. For each candidate pair, the number
on the top is the corresponding state number in D3 and the number on the bottom is
the number of common transitions in D3 between that pair and state u. For example,
for u = 9 = (4,2), the two candidate pairs represented are state 7 ((2,2)) which shares
256 transitions in common with state 9 and state 4 ((1,1)) which shares 255 transitions in
common with state 9. Note that a candidate state pair is only considered if it is reachable
in D3. In Figure 4.3(d) with uw =9 = (4,2), three of the candidate pairs corresponding to
(4,1), (2,1), and (1, 2) are not reachable, so no edge is included for these candidate pairs.
Ideally, we want i and j to be as small as possible though not both 0. For example, our
best choices are typically (pg, q1) or (p1,qo)- In the first case, poMp1 = (pPo, 90) M (P1, d0),
and we already have pyp—p; in Dy. In the second case, qoMq7 = (po, 90) 1 {Po, q1), and we
already have qp—qj in D,. In Figure 4.3(d), we set F(u) to be (pg, q7) for u=5=(0,2)
and u = 12 = (4,4), and we use (p7,qo) for u = 9 = (4,2). However, it is possible that
both states are not reachable from the start state in D3. This leads us to consider other
possible (p;, qj). For example, in Figure 4.3(d), both (2,1) and (1,2) are not reachable in

D3, so we use reachable state (1,1) as F(u) for u =7 = (2,2).

49

We consider a few different algorithms for choosing (p;, qj>. The first algorithm which we
call the first match method is to find a pair of states (py, q;) for which (py, q;) € Q3 and
14 j is minimum. Stated another way, we find the minimum z > 1 such that the set of
states Z = {(py, q,—1) | (max(0,z—m) < i < min(l,2)) A ((pi,q,—i) € Q3)} # 0. From
the set of states Z, we choose the state that has the most transitions in common with
(po, qo) breaking ties arbitrarily. If Z is empty for all z > 1, then we just pick (pg, qo),
t.e. the deferment pointer is not set (or the state defers to itself). The idea behind the
first match method is that (pg, qo) M (py, q;j) decreases as i+ j increases. In Figure 4.3(d),

all the selected F(u) correspond to the first match method.

A second more complete algorithm for setting F(w) is the best match method where we
always consider all (1+1) x (m+1)—1 pairs and pick the pair that is in Q3 and has the most
transitions in common with (pg, qp). The idea behind the best match method is that it is
not always true that (po, qo) M (px, qy) = (Po, do) M (Px+i» dy+j) for i+j > 0. For instance
we can have po Mp, < pp Mp3, which would mean (py, qo) (P2, 4o) < {(Po, do) [(P3, do)-
In such cases, the first match method will not find the pair along the deferment chains
with the most transitions in common with (pg, qp). In Figure 4.3(d), all the selected F(u)
also correspond to the best match method. It is difficult to create a small example where

first match and best match differ.

When adding the new state u to D3, it is possible that some state pairs along the deferment
chains that were not in Q3 while finding the deferred state for u will later on be added

to Q3. This means that after all the states have been added to Q3, the deferment for u

50

can potentially be improved. Thus, after all the states have been added, for each state
we again find a deferred state. If the new deferred state is better than the old one, we
reset the deferment to the new deferred state. Algorithm 4.4 shows the pseudocode for the
D?FA merge algorithm with the first match method for choosing a deferred state. Note
that we use u and (uy,uy) interchangeably to indicate a state in the merged D?FA Dj
where u is a state in Q3, and uy and u, are the states in Q7 and Q;, respectively, that

state u corresponds to.

4.3.3 Direct D?FA construction for RE set

Similar to efficient DFA construction, we first build the D?FA for each RE in R. We
now need to merge the D2FAs together using the D2FAMerge algorithm from the previous
section. We consider a variety of methods for merging the D?FAs together including
a greedy “Huffman” approach, where in each step, the two smallest D®FA are merged
together. The best approach, we have found experimentally, is to merge all the D2FAs
in a balanced binary tree fashion. This is because a binary tree minimizes the worst-case

number of merges that any RE experiences.

We use two different variations of our D2FAMerge algorithm while merging D?FAs. For
all merges except the final merge, we use the first match method for setting F(u). When
doing the final merge to get the final D®FA, we use the best match method for setting
F(u). It turns out that using the first match method results in a better deferment forest

structure in the DQFA, which helps when the D?FA is further merged with other D2FAs.

51

Input: A pair of D?°FAs, Dy = (Q1, Z, p1, qoy, M1, Fi) and Dy = (Q2, Z, p2, 402, M2, F2),
corresponding to RE sets, say Ry and R;, with Ry N Ry = ().
Output: A D?FA corresponding to the RE set R; UR;

1 Initialize D3 to an empty D?FA;

2 Initialize queue as an empty queue;

3 queue.push ({qo,, q0,));

4 while queue not empty do

5 (uyuy)uz ¢ queue.pop();

6 Q3 + Q3 U{uk;

7 foreach c € X do

8 nxt « (81 (u1,c), 85 (uz,c));

9 if nxt ¢ Q3 /\ nxt ¢ queue then queue.push (nxt);
10 Add (u,c) — nxt transition to p3;

11 M3 (u) & My (ur) U Mz(uz);
12 F3(u) ¢ FindDefState(u);
13 Remove transitions for u from p3 that are in common with F3(u);

14 foreach u € Q3 do

15 newDptr < FindDefState(u);

16 if (newDptr # F3(u)) /\ (newDptr Mu > F3(u) Mu) then

17 F3(u) < newDptr;

18 L Reset all transitions for u in p; and then remove ones that are in common with F3(u);

19 return Ds3;

20 Function FindDefState((vi,v2))

21 Let (po =Vv1,P1,-..,p1) be the list of states on the deferment chain from v; to the root in
Dy;

22 Let (qo =v2,9q1,---,qm) be the list of states on the deferment chain from v, to the root
in Dy;

23 forz=1to (1+m) do
24 S —{(pi)qz-i) | (max(0,z—m) < i< min(l,z))A ((pi, qz—1) € Q3)}
25 if S # () then return argmax,s((vi,v2) Mv);

26 return (vi,vy);

Figure 4.4: Algorithm D2FAMerge(D1, D) for merging two D2FAs.

The local optimization achieved by using the best match method only helps when used in

the final merge.

52

4.3.4 Optional Final Compression Algorithm

When there is no bound on the deferment depth (see Section 4.4.2), the original D?FA
algorithm proposed in [26] results in a D?FA with smallest possible size because it runs
Kruskal’s algorithm on a large SRG. Our D?FA merge algorithm results in a slightly larger
D2FA because it uses a greedy approach to determine deferment. We can further reduce
the size of the D2FA produced by our algorithm by running the following compression

algorithm on the D?FA produced by the D?FA merge algorithm.

We construct an SRG and perform a maximum weight spanning tree construction on the
SRG, but we only add edges to the SRG that have the potential to reduce the size of the
D2FA. More specifically, let u and v be any two states in the current D2FA. We only add
the edge e = (u,Vv) in the SRG if its weight w(e) is > min(urmF(u), v F(v)). Here, F(u) is
the deferred state of u in the current D2FA. As a result, very few edges are added to the
SRG, so we only need to run Kruskal’s algorithm on a small SRG. This saves both space
and time compared to previous D?FA construction methods. However, this compression
step does require more time and space than the D?FA merge algorithm because it does

construct an SRG and then runs Kruskal’s algorithm on the SRG.

4.4 D?FA Merge Algorithm Properties

We now discuss some properties of the D2FA merge algorithm itself and the resulting

D2FA.

53

4.4.1 Proof of Correctness

The D?FA merge algorithm exactly follows the UCP construction to create the states.
So the correctness of the underlying DFA follows from the the correctness of the UCP

construction.

Theorem 2 shows that the merged D?FA is also well defined (no cycles in deferment forest).

Lemma 1. In the D?°FA D3 = D2FAMerge(D1,D5), (11, w)—(v,v2) = uj—v; Auy—

V7.

Proof. If (u1,uy) = (v1,v,) then the lemma is trivially true. Otherwise, let (u;,uy)—
(W1, wy)—(v1,vy) be the deferment chain in D3. When selecting the deferred state for
(ug,uy), D2FA Merge always choose a state that corresponds to a pair of states along
deferment chains for uy and u; in Dy and D;, respectively. Therefore, we have that
(ur,u2)— (wy,wy) = uy—wj; Auy—»wj. By induction on the length of the deferment

chain and the fact that the — relation is transitive, we get our result. [

Theorem 2. If D°FAs Dy and D, are well defined, then the D°FA D3 = D2FAMerge(D1, D)

15 also well defined.

Proof. Since Dy and D, are well defined, there are no cycles in their deferment forests.

Now assume that D3 is not well defined, 7.e. there is a cycle in its deferment forest. Let

54

(uy,uy) and (vq,vy) be two distinct states on the cycle. Then, we have that

(ur,uz)=(vy,v2) A (v1,v2)=(ug, up)

Using Lemma 1 we get

(W—=v) Auy—vr) A (vi—ug A vy—uy)

.e. (u—=vi Avi—=ug) A (uy—vy Avy—uy)

Since (uy,uy) # (vq1,v2), we have uy # v; V uy # vy which implies that at least one of D;

or D; has a cycle in its deferment forest, which is a contradiction.]

4.4.2 Limiting Deferment Depth

Since no input is consumed while traversing a deferred transition, in the worst case, the
number of lookups needed to process one input character is given by the deferment depth
of the D2FA. As proposed in [26], we can guarantee a worst case performance by limiting

the deferment depth of the D2FA.

Recall that {(u) denoted the deferment depth of state u, and W(D) denoted the deferment

depth of the D?FA D.

Lemma 2. In the D?°FA D3 = D2FAMerge(D1,D5), Y(uj,w) € Qz, b((uj,uy)) <

Plug) +P(uy).

55

Proof. Let V((u1,uy)) = d. If ¥({(ug,uy)) = 0, then (uj,u,) is a root and the lemma
is trivially true. So, we consider d > 1 and assume the lemma is true for all states with
P < d. Let (uy,up)—(wy,wy)—(vq,v;) be the deferment chain in D3. Using the inductive

hypothesis, we have

P((wy,wa)) <P(wy) +h(wy)

Given (uq,uy) # (wi,wy), we assume without loss of generality that u; # wj. Using
Lemma 1 we get that u;—wj. Therefore (wq) < P(uy) — 1. Combining the above, we

get

P((ug,uz)) =W((wy,wy)) + 1
<P(wy) +Pp(wy) +1
< (Plwg) =T1) +db(up) +1

<U(ug) +b(uy)

Lemma 2 directly gives us the following Theorem.

Theorem 3. If D3 = D2FAMerge(D1,D,), then ¥(D3) < ¥(D¢) +¥(D,).

For an RE set R, if the initial D2FAs have ¥ = d, in the worst case, the final merged
D2FA corresponding to R can have ¥ = d x |R|. Although Theorem 3 gives the value of

Y in the worst case, in practical cases, ¥(D3) is very close to max(¥(D7),¥(D;)). Thus

56

the deferment depth of the final merged D2FA is usually not much higher than d.

Let QO denote the desired upper bound on ¥. To guarantee W(D3) < Q, we modify the
FindDefState subroutine in Algorithm 4.4 as follows: When selecting candidate pairs for
the deferred state, we only consider states with 1 < (. Specifically, we replace line 24

with the following

S = {(pi,qz—i) | (max(0,z—m) < i <min(l,z)) A (pi, q,—i) € Q3) N (W((pi, qz—1)) < Q)}

When we do the second pass (lines 14-18), we may increase the deferment depth of nodes
that defer to nodes that we readjust. We record the affected nodes and then do a third
pass to reset their deferment states so that the maximum depth bound is satisfied. In

practice, this happens very rarely.

When constructing a D?FA with a given bound Q, we first build D?FAs without this
bound. We only apply the bound () when performing the final merge of two D2FAs to

create the final D2FA.

4.4.3 Deferment to a Lower Level

Becchi and Crowley [8] propose a D?FA algorithm where each state defers to a state at a
lower level than itself (see Section 3.3.4.) More formally, they ensure that for all states u,
level(u) > level(F(u)) if F(u) # u. We call this property the back-pointer property. If the

back-pointer property holds, then every deferred transition taken decreases the level of the

57

current state by at least 1. Since a regular transition on an input character can only increase
the level of the current state by at most 1, there have to be fewer deferred transitions taken
on the entire input string than regular transitions. This gives an amortized cost of at most

2 transitions taken per input character.

Unfortunately, if D?FAs D; and D, have the back-pointer property, the merged D?FA
D3 = D2FAMerge(D1, D;) is not guaranteed to have the back-pointer property. A simple
counter example is when trying to merge the D2FAs corresponding to the REs/ (aaa) +/
and / (aaaa) +/. Typically, for practical cases, if the initial D2FAs have the back-pointer

property, in the final merged D2FA, almost all of the states have the back-pointer property.

In order to guarantee the D2FA D3 has the back-pointer property, we perform a similar
modification to the FindDefState subroutine in Algorithm 4.4 as we performed when we
wanted to limit the maximum deferment depth. When selecting candidate pairs for the
deferred state, we only consider states with a lower level. Specifically, we replace line 24

with the following:

S ={{pi, qz—1) | (max(0,z—m) <1i<min(l,z)) A

((Piy dz—1) € Q3) A (level({vy,v2)) > level((pi, q.—i)))}

For states for which no candidate pairs are found, we just search through all states in Q3
that are at a lower level for the deferred state. In practice, this search through all the states

needs to be done for very few states because if D?°FAs Dy and D, have the back-pointer

58

property, then almost all the states in D2FAs D 3 have the back-pointer property. As with
limiting maximum deferment depth, we only apply this restriction when performing the

final merge of two D2FAs to create the final D2FA.

4.4.4 Algorithmic Complexity

The time complexity of the original D2FA algorithm proposed in [26] is O(n2(log(n)+Z)).
The SRG has O(n?) edges, and O(|Z|) time is required to add each edge to the SRG and
O(log(n)) time is required to process each edge in the SRG during the maximum spanning
tree routine. The time complexity of the D2FA algorithm proposed in [8] is O(n?|Z|). Each

state is compared with O(n) other states, and each comparison requires O(|Z|) time.

The time complexity of our new D2FAMerge algorithm to merge two D?FAs is O(n¥{¥,|Z|),
where 1 is the number of states in the merged D?FA, and ¥; and ¥, are the maximum
deferment depths of the two input D?FAs. When setting the deferment for any state
u = (ug,uy), in the worst case the algorithm compares (1, u;) with all the pairs along
the deferment chains of u; and uy, which are at most ¥; and ¥, in length, respectively.
Each comparison requires O(|Z|) time. In practice, the time complexity is O(n|Z|) as each
state needs to be compared with very few states for the following three reasons. First, the
maximum deferment depth W is usually very small. The largest value of ¥ among our 8
primary RE sets in Section 4.5 is 7. Second, the length of the deferment chains for most
states is much smaller than W. The largest value of average deferment depth \» among

our 8 RE sets is 2.54. Finally, many of the state pairs along the deferment chains are

59

not reachable in the merged D®FA. Among our 8 RE sets, the largest value of the average

number of comparisons needed is 1.47.

When merging all the D?FAs together for an RE set R, the total time required in the
worst case would be O(nW¥¥,|Z|log(|R])). The worst case would happen when the RE set
contains strings and there is no state explosion. In this case, each merged D2FA would
have a number of states roughly equal to the sum of the sizes of the D2FAs being merged.
When there is state explosion, the last D?FA merge would be the dominating factor, and

the total time would just be O(n¥¥,|Z|).

When modifying the D2FAMerge algorithm to maintain back-pointers, the worst case time
would be O(n?|Z|) because we would have to compare each state with O(n) other states
if none of the candidate pairs are found at a lower level than the state. In practice, this

search needs to be done for very few states, typically less than 1%.

The worst case time complexity of the final compression step is the same as that of Kumar
et al.’s D2FA algorithm, which is O(n?(log(n) + |Z|)), since both involve computing a
maximum weight spanning tree on the SRG. However, because we only consider edges
which improve upon the existing deferment forest, the actual size of the SRG in practice is
typically linear in the number of nodes. In particular, for the real-world RE sets that we
consider in the experiments section, the size of the SRG generated by our final compression
step is on average 100 times smaller than the SRG generated by Kumar et al.’s algorithm.
As a result the optimization step requires much less memory and time compared to the

original algorithm.

60

4.5 Experimental Results

In this section, we evaluate the effectiveness of our algorithms on real-world and syn-
thetic RE sets. We consider two variants of our D?FA merge algorithm: the main variant
D?FAMERGE which just merged the D2FAs, and D?°FAMERGEOPT, which applies
our final compression algorithm after running D2FAMERGE. We compare our algorithms
with the original D?FA construction algorithm proposed in [26] ORIGINAL that optimizes
transition compression and the D?FA construction algorithm proposed in [8] BACKPTR

that enforces the back-pointer property described in Section 4.4.3.

4.5.1 Methodology

4.5.1.1 Data Sets

Our main results are based on eight real RE sets, four proprietary RE sets C7, C8,
C10, and C613 from a large networking vendor and four public RE sets Bro217, Snort
24, Snort31, and Snort 34, that we partition into three groups, STRING, WILDCARD,
and SNORT, based upon their RE composition. For each RE set, the number indicates
the number of REs in the RE set. The STRING RE sets, C613 and Bro217, contain
mostly string matching REs. The WILDCARD RE sets, C7, C8 and C10, contain mostly

¢

REs with multiple wildcard closures ‘.«’. The SNORT RE sets, Snort24, Snort31, and
Snort34, contain a more diverse set of REs, roughly 40% of which have wildcard closures.

To test scalability, we use Scale, a synthetic RE set consisting of 26 REs of the form

61

/ .*xcy0123456.%xc1789! #%&/, where ¢, and c| are the 26 uppercase and lowercase al-
phabet letters. Even though all the REs are nearly identical differing only in the character
after the two .«’s, we still get the full multiplicative effect where the number of states in

the corresponding minimum state DFA roughly doubles for every RE added.

4.5.1.2 Metrics

We use the following metrics to evaluate the algorithms. First, we measure the re-
sulting D?FA size (# transitions) to assess transition compression performance. Our
D?FAMERGE algorithm typically performs almost as well as the other algorithms even
though it builds up the D2FA incrementally rather than compressing the final minimum
state DFA. Second, we measure the the maximum deferment depth (V) and average de-
ferment depth () in the D?FA to assess how quickly the resulting D?FA can be used
to perform regular expression matching. Smaller ¥ and 1\ mean that fewer deferment
transitions that process no input characters need to be traversed when processing an in-
put string. Our D?FAMERGE significantly outperforms the other algorithms. Finally,
we measure the space and time required by the algorithm to build the final automaton.
Again, our D°FAMERGE significantly outperforms the other algorithms. When compar-
ing the performance of D2FAMERGE with another algorithm A on a given RE or RE set,
we define the following quantities to compare them: transition increase is (D2FAMERGE
D2FA size - A D?FA size) divided by A D2?FA size, transition decrease is (A D?FA size -

D?FAMERGE D?FA size) divided by A D2FA size, average (maximum) deferment depth

62

ratio is A average (maximum) deferment depth divided by D?FAMERGE average (maxi-
mum) deferment depth, space ratio is A space divided by D°FAMERGE space, and time

ratio is A build time divided by D°FAMERGE build time.

4.5.1.3 Measuring Space

When measuring the required space for an algorithm, we measure the maximum amount
of memory required at any point in time during the construction and then final storage
of the automaton. This is a difficult quantity to measure exactly; we approximate this
required space for each of the algorithms as follows. For D2FAMERGE, the dominant data
structure is the D2FA. For a D2FA, the transitions for each state can be stored as pairs of
input character and next state id, so the memory required to store a D2FA is calculated as
= (#transitions) x 5 bytes. However, the maximum amount of memory required while
running D2FAMERGE may be higher than the final D?FA size because of the following
two reasons. First, when merging two D2FAs, we need to maintain the two input D2FAs
as well as the output D?FA. Second, we may create an intermediate output D2FA that
has more transitions than needed; these extra transitions will be eliminated once all D2FA
states are added. We keep track of the worst case required space for our algorithm during
D2FA construction. This typically occurs when merging the final two intermediate D2FA

to form the final D2FA.

For ORIGINAL, we measure the space required by the minimized DFA and the SRG. For

the DFA, the transitions for each state can be stored as an array of size ¥ with each array

63

entry requiring four bytes to hold the next state id. For the SRG, each edge requires
17 bytes as observed in [8]. This leads to a required memory for building the D?FA of

=|Q| x || x 4 4+ (#edges in SRG) x 17 bytes.

For D2FAMERGEOPT, the space required is the size of the final D2FA resulting from the
merge step, plus the size of the SRG used by the final compression algorithm. The sizes

are computed as in the case of D2FAMERGE and ORIGINAL.

For BACKPTR, we consider two variants. The first variant builds the minimized DFA
directly from the NFA and then sets the deferment for each state. For this variant, no
SRG is needed, so the space required is the space needed for the minimized DFA which
is Q] x |X| x 4 bytes. The second variant goes directly from the NFA to the final D2FA;
this variant uses less space but is much slower as it stores incomplete transition tables for
most states. Thus, when computing the deferment state for a new state, the algorithm
must recreate the complete transition tables for each state to determine which has the most
common transitions with the new state. For this variant, we assume the only space required
is the space to store the final D®FA which is = (#transitions) x 5 bytes even though
more memory is definitely needed at various points during the computation. We also note
that both implementations must perform the NFA to DFA subset construction on a large

NFA which means even the faster variant runs much more slowly than D?FAMERGE.

64

4.5.1.4 Correctness

We tested correctness of our algorithms by verifying the final D®FA is equivalent to the
corresponding DFA. Note, we can only do this check for our RE sets where we were able
to compute the corresponding DFA. Thus, we only verified correctness of the final D2FA

for our eight real RE sets and the smaller Scale RE sets.

4.5.2 D2?FAMERGE versus ORIGINAL

We first compare D°FAMERGE with ORIGINAL that optimizes transition compression
when both algorithms have unlimited maximum deferment depth. These results are shown

in Table 4.1 for our 8 primary RE sets.

ORIGINAL D’FAMERGE

RE # Def. depth | RAM | Time Def. depth | RAM | Time
set | States | # Trans | o x| (MB) | (s) |7 T [Avg [Max. | (MB)| (s)
Bro217 | 6533 9816 | 3.42 8| 179.3|119.4| 11737| 2.15 5/ 0.13] 3.2
C613 | 11308 | 21633 | 8.43| 16 |1039.5|326.0| 26709 | 2.69 7| 023 9.7
C7| 24750 | 205633 [19.18 | 30| 47.4|397.7| 207540 | 1.14 3| 1.07| 0.9

C8| 3108| 23209| 8.95| 13 49| 145| 23334 1.14 2| 0.14] 0.2
C10 | 14868 | 96793 |13.68| 27| 25.5(141.0| 97296 | 1.18 3| 052| 0.6
Snort24 | 13886 | 38485 | 9.53| 20| 861.2(299.2| 39409 | 1.56 4| 0.32| 0.2
Snort31 | 20068 | 70701 |11.41| 23| 298.5|244.3| 92284 | 2.00 6| 1.29| 2.6
Snort34 | 13825 | 40199 | 9.99| 17| 795.4|309.9| 43141| 1.38 5| 027| 1.8

Table 4.1: The D?FA size, D?FA average 1 and maximum ¥ deferment depths, space
estimate and time required to build the D?FA for ORIGINAL and D?FAMERGE.

Table 4.2 summarizes these results by RE group. We make the following observations.

(1) D?FAMERGE uses much less space than ORIGINAL. On average, D°FAMERGE

uses 1500 times less memory than ORIGINAL to build the resulting D2FA. This difference

65

RE set D?FAMERGE D?FAMERGEOPT
group Trans | Def. depth ratio| Space|Time| Trans|Def. depth ratio |Space|Time
increase | Avg. Max.| ratio| ratio|increase|Avg. Max. | ratio| ratio
All| 10.8%| 7.5 5.2/1499.8|154.5 04%| 7.4 54]113.1| 9.4
STRING| 21.5%| 24 1.9|2994.8| 35.4 0.0%| 2.1 1.6] 103.5| 0.8
WILDCARD 1.0%| 12.1 8.5| 42.8(246.6 1.0% | 12.1 10.0| 16.8| 10.8
SNORT| 13.3%| 6.3 4.1/1960.3|141.8 0.0%| 6.1 3.3| 215.8| 13.7

Table 4.2: Average values of transition increase, deferment depth ratios, space ratios, and
time ratios for D2FAMERGE and D?FAMERGEOPT compared with ORIGINAL.

is most extreme when the SRG is large, which is true for the two STRING RE sets and
Snort24 and Snort34. For these RE sets, D2FAMERGE uses between 1422 and 4568 times
less memory than ORIGINAL. For the RE sets with relatively small SRGs such as those
in the WILDCARD and Snort31, D2FAMERGE uses between 35 and 231 times less space

than ORIGINAL.

(2) D?FAMERGE is much faster than ORIGINAL. On average, D°2FAMERGE builds
the D2FA 155 times faster than ORIGINAL. This time difference is maximized when the
deferment chains are shortest. For example, D2ZFAMERGE only requires an average of 0.05
msec and 0.09 msec per state for the WILDCARD and SNORT RE sets, respectively, so
D°FAMERGE is, on average, 247 and 142 times faster than ORIGINAL for these RE sets,
respectively. For the STRING RE sets, the deferment chains are longer, so D2FAMERGE
requires an average of 0.67 msec per state, and is, on average, 35 times faster than ORIG-

INAL.

(3) D?FAMERGE produces D?FA with much smaller average and mazimum defer-
ment depths than ORIGINAL. On average, D?FAMERGE produces D2FA that have

average deferment depths that are 7.5 times smaller than ORIGINAL and maximum de-

66

ferment depths that are 5.2 times smaller than ORIGINAL. In particular, the average
deferment depth for D2FAMERGE is less than 2 for all but the two STRING RE sets,
where the average deferment depths are 2.15 and 2.69. Thus, the expected number of
deferment transitions to be traversed when processing a length n string is less than n.
One reason D2FAMERGE works so well is that it eliminates low weight edges from the
SRG so that the deferment forest has many shallow deferment trees instead of one deep
tree. This is particularly effective for the WILDCARD RE sets and, to a lesser extent, the
SNORT RE sets. For the STRING RE sets, the SRG is fairly dense, so D2FAMERGE has

a smaller advantage relative to ORIGINAL.

(4) D?FAMERGE produces D?FA with only slightly more transitions than ORIG-
INAL, particularly on the RE sets that need transition compression the most. On
average, D2FAMERGE produces D?FA with roughly 11% more transitions than ORIGI-
NAL does. D°FAMERGE works best when state explosion from wildcard closures creates
DFA composed of many similar repeating substructures. This is precisely when transition
compression is most needed. For example, for the WILDCARD RE sets that experience
the greatest state explosion, D?FAMERGE only has 1% more transitions than ORIGINAL.
On the other hand, for the STRING RE sets, D°FAMERGE has, on average, 22% more
transitions. For this group, ORIGINAL needed to build a very large SRG and thus used
much more space and time to achieve the improved transition compression. Furthermore,
transition compression is typically not needed for such RE sets as all string matching REs

can be placed into a single group and the resulting DFA can be built.

67

In summary, D?FAMERGE achieves its best performance relative to ORIGINAL on the
WILDCARD RE sets (except for space used for construction of the D?FA) and its worst
performance relative to ORIGINAL on the STRING RE sets (except for space used to
construct the D?FA). This is desirable as the space and time efficient D?°FAMERGE is
most needed on RE sets like those in the WILDCARD because those RE sets experience

the greatest state explosion.

4.5.3 Assessment of Final Compression Algorithm

We now assess the effectiveness of our final compression algorithm by comparing
D?FAMERGEOPT to ORIGINAL and D?FAMERGE. The results are shown in Table 4.3

for our 8 primary RE sets.

RE # 4 Trans Def. depth | RAM | Time
set | States Avg. | Max. | (MB) | (s)

Bro217 6533 9816 | 2.44 7| 2.64| 99.2

C613 | 11308 21633 | 3.04 8| 7.48 | 940.4

C7 | 24750 | 207540 | 1.14 3| 249 | 457

C8 3108 23334 | 1.14 2 0.32 1.0

C10 | 14868 97296 | 1.17 2 1.61 14.8

Snort24 | 13886 38601 | 1.57 4| 2.67 | 19.9

Snort31 | 20068 70780 | 2.17 8| 15.61 | 59.1

Snort34 | 13825 40387 | 1.42 8 2.60 | 14.2

Table 4.3: The D2FA size, D°FA average 1 and maximum ¥ deferment depths, space
estimate and time required to build the D2FA for D2FAMERGEOPT.

Table 4.2 summarizes these results by RE group. As expected D?FAMERGEOPT produces
a D?FA that is almost as small as that produced by ORIGINAL; on average, the number

of transitions increases by only 0.4%. There is a very small increase for WILDCARD and

68

SNORT because ORIGINAL also considers all edges with weight > 1 in the SRG, whereas
D2FAMERGEOPT does not use edges with weight < 10. There is a significant benefit to
not using these low weight SRG edges; the deferment depths are much higher for the D?FA

produced by ORIGINAL when compared to the D2FA produced by D2FAMERGEOPT.

The final compression algorithm of D°FAMERGEOPT does require more resources than
are required by D?FAMERGE. In some cases, this may limit the size of the RE set
D?FAMERGEOPT can be used for. However, as explained earlier, D2FAMERGE per-
forms best on the WILDCARD (which has the most state explosion) and performs the
worst on the STRING (which has the no or limited state explosion). So the final com-
pression algorithm is only needed for and is most beneficial for RE sets with limited state
explosion. Finally, we observe that D2FAMERGEOPT requires on average 113 times less

RAM than ORIGINAL, and, on average, runs 9 times faster than ORIGINAL.

4.5.4 D2FAMERGE versus ORIGINAL with Bounded Maximum

Deferment Depth

We now compare D°FAMERGE and ORIGINAL when they impose a maximum deferment
depth bound Q of 1, 2, and 4. Because time and space do not change significantly, we
focus only on number of transitions and average deferment depth. These results are shown
in Table 4.4. Note that for these data sets, the resulting maximum depth ¥ typically is
identical to the maximum depth bound Q; the only exception is for D?FAMERGE and

QO =4; thus we omit the maximum deferment depth from Table 4.4.

69

ORIGINAL D?FAMERGE
Trans Avg. def. depth # Trans Avg. def. depth
Q=1 O=2|0=4|0=110=2|0=4|0=10=20=4|0=110=2|0=4
Bro217| 698229 | 296433 | 52628 | 0.62| 1.18| 2.09| 50026 | 15087| 11757| 1.00| 1.83| 2.15
C613|1204831| 507613/102183| 0.62| 1.17| 2.16| 154548 | 51858 | 27735| 1.00| 1.94| 2.64
C7|2044171| 597544 |206814| 0.71| 1.24| 2.07|215940 | 208044 [207540| 0.97| 1.13| 1.14
C8| 206897| 40411 23261| 0.77| 1.32| 2.561| 24090 | 23334 | 23334| 0.98| 1.14| 1.14
C10|1105160| 325536| 97137| 0.75| 1.31| 2.39|101556| 97326 | 97296| 0.98| 1.18| 1.18
Snort24 (1376779 | 543378 |106211| 0.66| 1.25| 2.39| 68906 | 42176| 39409| 0.99| 1.47| 1.56
Snort31|2193679 (1102693 |405785| 0.62| 1.11| 2.08 208136119810 | 95496| 1.00| 1.562| 1.97
Snort34 1357697 | 559255| 85800| 0.66| 1.19| 2.17| 57187 | 44607| 43231| 1.00| 1.34| 1.38

RE
set

Table 4.4: The D2?FA size and D?FA average 1 deferment depth for ORIGINAL and
D?FAMERGE on our eight primary RE sets given maximum deferment depth bounds of
1, 2 and 4.

Table 4.5 summarizes the results by RE group highlighting how much better or worse
D?FAMERGE does than ORIGINAL on the two metrics of number of transitions and

average deferment depth .

RE set Q=1 Q=2 Q=4
group Trans | Avg. def. | Trans | Avg. def. | Trans | Avg. dptr
decr. | depth ratio | decr. | depth ratio | decr. len ratio
All | 91.3% 0.7 79.4% 0.9 42.5% 1.5
STRING | 90.0% 0.6 92.5% 0.6 75.5% 0.9
WILDCARD | 89.3% 0.8 59.0% 1.1 0.0% 2.0
SNORT | 94.0% 0.7 91.0% 0.8 63.0% 1.4

Table 4.5: Average values of transition decrease and average deferment depth ratios for
D?FAMERGE compared with ORIGINAL for our RE set groups given maximum defer-
ment depth bounds of 1, 2 and 4.

Overall, D°FAMERGE performs very well when presented a bound Q. In particular, the
average increase in the number of transitions for D°FAMERGE with Q equal to 1, 2 and
4, is only 131%, 20% and 1% respectively, compared to D2FAMERGE with unbounded

maximum deferment depth. Stated another way, when D?FAMERGE is required to have

a maximum deferment depth of 1, this only results in slightly more than twice the number

70

of transitions in the resulting D2FA. The corresponding values for ORIGINAL are 3121%,

1216% and 197%.

These results can be partially explained by examining the average deferment depth data.
Unlike in the unbounded maximum deferment depth scenario, here we see that D°FAMERGE
has a larger average deferment depth 1 than ORIGINAL except for the WILDCARD when
Q is 1 or 2. What this means is that D°FAMERGE has more states that defer to at least
one other state than ORIGINAL does. This leads to the lower number of transitions in
the final D?FA. Overall, for Q = 1, D’FAMERGE produces D?FA with roughly 91% fewer
transitions than ORIGINAL for all RE set groups. For QO = 2, D?FAMERGE produces
D2FA with roughly 59% fewer transitions than ORIGINAL for the WILDCARD RE sets

and roughly 92% fewer transitions than ORIGINAL for the other RE sets.

4.5.5 D2?FAMERGE versus BACKPTR

BACKPTR D?’FAMERGE with back-pointer

RE Def. depth | RAM | Time|RAM2| Time2 Def. depth |RAM | Time

set |7 Trans | TMax. | (MB)| (s)| (MB)| (s)|7 "r°"Avg [Max.|(MB)| (s)
Bro217| 11247| 2.61 6| 6.38| 88.08| 0.05| 273.95| 13567| 2.33 6| 0.13| 6.24
C613| 26222| 2.50 5/11.04| 55.91| 0.13| 971.45| 33777/ 2.30 5| 0.25/10.78
C7| 217812| 5.94| 13|24.17(277.80| 1.04|1950.00| 219684 | 1.15 4| 1.12| 4.51

C8| 34636 2.44 8| 3.04| 12.61| 0.17| 27.76| 35476 1.20 4| 0.19| 0.69
C10| 157139] 2.13 7(14.52| 96.86| 0.75| 476.54| 158232| 1.21 4| 0.80(11.94
Snort24| 46005| 8.74| 17|13.56| 70.95| 0.22[1130.00| 58273/ 1.62 8| 0.41|47.77
Snort31| 82809 2.87 8/19.60/109.56| 0.39|1110.00| 124584 1.74 6| 1.29| 3.61
Snort34| 46046| 7.05| 14|13.50| 94.19| 0.22| 983.98| 51557 1.42 5/ 0.30| 6.06

Table 4.6: The D?FA size, D?FA average 1 and maximum ¥ deferment depths, space
estimate and time required to build the D2FA for both variants of BACKPTR and
D?FAMERGE with the back-pointer property.

71

We now compare D°FAMERGE with BACKPTR which enforces the back-pointer prop-
erty described in Section 4.4.3. We adapt D2FAMERGE to also enforce this back-pointer
property. The results for all our metrics are shown in Table 4.6 for our 8 primary RE sets.
We consider the two variants of BACKPTR described in Section 4.5.1.3, one which con-
structs the minimum state DFA corresponding to the given NFA and one which bypasses
the minimum state DFA and goes directly to the D2FA from the given NFA. We note the
second variant appears to use less space than D2FAMERGE. This is partially true since
BACKPTR creates a smaller D2FA than D?FAMERGE. However, we underestimate the
actual space used by this BACKPTR variant by simply assuming its required space is the
final D2FA size. We ignore, for instance, the space required to store intermediate complete
tables or to perform the NFA to DFA subset construction. Table 4.7 summarizes these
results by RE group displaying ratios for many of our metrics that highlight how much

better or worse D2FAMERGE does than BACKPTR.

RE set Trans | Def. depth ratio | Space | Time | Space2 | Time2
group increase | Avg. Max. | ratio | ratio ratio ratio
All 17.9% 2.9 1.9 | 304 | 193 0.7 | 1425

STRING 25.0% 1.1 1.0 | 473 9.7 0.5 67.0
WILDCARD 1.3% 3.0 2.3 18.5 29.3 0.9 170.8
SNORT 29.7% 4.0 2.1 31.1 15.8 0.5 164.5

Table 4.7: Average values of transition increase, deferment depth ratios, space ratios,
and time ratios for D2FAMERGE compared with both variants of BACKPTR for RE set
groups.

Similar to D?’FAMERGE versus ORIGINAL, we find that D°FAMERGE with the back-
pointer property performs well when compared with both variants of BACKPTR. Specifi-

cally, with an average increase in the number of transitions of roughly 18%, D2FAMERGE

72

runs on average 19 times faster than the fast variant of BACKPTR and 143 times faster
than the slow variant of BACKPTR. For space, D2FAMERGE uses on average almost 30
times less space than the first variant of BACKPTR and on average roughly 42% more
space than the second variant of BACKPTR. Furthermore, D°FAMERGE creates D?FA
with average deferment depth 2.9 times smaller than BACKPTR and maximum deferment
depth 1.9 times smaller than BACKPTR. As was the case with ORIGINAL, D2FAMERGE
achieves its best performance relative to BACKPTR on the WILDCARD RE sets and its
worst performance relative to BACKPTR on the STRING RE sets. This is desirable as
the space and time efficient D2FAMERGE is most needed on RE sets like those in the

WILDCARD because those RE sets experience the greatest state explosion.

4.5.6 Scalability results

Finally, we assess the improved scalability of D°FAMERGE relative to ORIGINAL using
the Scale RE set assuming that we have a maximum memory size of 1GB. For both
ORICGINAL and D?’FAMERGE, we add one RE at a time from Scale until the space
estimate to build the D2FA goes over the 1GB limit. For ORIGINAL, we are able only
able to add 12 REs; the final D2FA has 397,312 states and requires over 71 hours to
compute. As explained earlier, we include the SRG edges in the RAM size estimate. If we
exclude the SRG edges and only include the DFA size in the RAM size estimate, we would
only be able to add one more RE before we reach the 1GB limit. For D2FAMERGE, we are

able to add 19 REs; the final D2FA has 80,216, 064 states and requires only 77 minutes to

73

compute. This data set highlights the quadratic versus linear running time of ORIGINAL
and D°FAMERGE, respectively. Figure 4.5 shows how the space and time requirements
grow for ORIGINAL and D?FAMERGE as REs from Scale are added one by one until 19

have been added.

Memory required to build

1000 ¢ . . —a—
- 3 //-’ -
L =
100 |t S T .
C .
~ - /-//
M 10 b i e S S _|
2 10
2
o R S (O - """"""" =
o1l ,ORIGINAL —&— |]
' D°FAMERGE -—-#--- |]
0.01 .'/ | | | | | | | |
14 16 18 20
#REs
Time required to build
1e+006 F T | | | T T T I 3
100000 g
10000 F o T
G00E T
g 0p VA I R o E
S R St L L R
10 : : : : : : : k
i LORIGINAL —&— |]
0.1 D’FAMERGE ---#--- |4
0.01 ! ! !]

14 16 18 20

#REs

Figure 4.5: Memory and time required to build D2FA versus number of Scale REs used
for ORIGINAL’s D?FA and D?’FAMERGE’s D?FA.

74

Chapter 5

TCAM Implementation

In this section we present our work on the hardware implementation of RE matching using

TCAM, which we call RegCAM.

5.1 Introduction/Motivation

Previous hardware solutions of RE matching have be based on FPGA. Although FPGA-
based solutions can be modified, resynthesizing and updating FPGA circuitry in a deployed
system to handle RE updates is slow and difficult. This makes FPGA-based solutions
difficult to be deployed in many networking devices (such as NIDS/NIPS and firewalls)

where the RE need to be updated frequently.

We propose the first TCAM based RE matching solution. TCAMs are prevalent in net-

working devices because TCAM-based packet classification is the de facto industry stan-

75

dard for high-speed packet classification, z.e., header-based filtering. We show that TCAMs

are also very effective for high-speed DPI, 1.e., payload-based filtering.

5.1.1 TCAM Architecture for RE matching

We first explain the straightforward implementation of RE matching using TCAM without

any compression.

Given a RE set, we first construct an equivalent minimum state DFA. Second, we build
a two column TCAM lookup table where each column encodes one of the two inputs to
O: the source state ID and the input character. Third, for each TCAM entry, we store
the destination state ID in the same entry of the associated SRAM. Figure 5.1 shows an
example DFA, its TCAM lookup table, and its SRAM decision table. We illustrate how
this DFA processes the input stream “01101111, 01100011”. We form a TCAM lookup key
by appending the current input character to the current source state ID; in this example,
we append the first input character “01101111” to “00”, the ID of the initial state s, to
form “0001101111”. The first matching entry is the second TCAM entry, so “01”, the
destination state ID stored in the second SRAM entry is returned. We form the next
TCAM lookup key “0101100011” by appending the second input character “011000011”

to this returned state ID “01”, and the process repeats.

Directly encoding a DFA in a TCAM using one TCAM entry per transition is infeasible.
For example, consider a DFA with 25,000 states that consumes one 8 bit character per

transition. Each state has 28 transitions, and each transition needs 8 bits for the character

76

TCAM SRAM

Source Input Dest.
ID character ID
00 :0110 0000 |—| 00 SO
fail So1| 00 {0110 =#xx | 01 [Sg
A || 00 i ks sk [00 50
[01 {0110 0000 || 00 |Sg
. 01 :0110 0010 |—| 01 Sl
fa|| Sl"
01 {0110 sk | [10 [Sy
Q [a..0] [| 01 §sssx sxsx [5] 00 | Sy
[10 {0110 0000 || 00 [Sg
g s 10 (0110 001=* |—>| 01 51
2 10 {0110 =xxx [10 |Sy
S
a,[c..0] | 10 wskewsk ks [(.)0 0
i) :
@ Src ID Input '
A A 1
_/ S R |
a,[d..o] Input stream
(a) Example DFA. (b) Corresponding TCAM table.

Figure 5.1: A DFA with its TCAM table.

and [log 25000] bits for the source state ID. Thus, we would need a total of 140.38 Mb
(= 25000 x 28 x (8 + [log 25000])). This is infeasible given the largest available TCAM
chip has a capacity of only 72 Mb. To address this challenge, we use two techniques that

minimize the TCAM space for storing a DFA: transition sharing and table consolidation.

5.1.2 Reducing TCAM size

Recall that the two causes of DFA space explosion are transitions sharing and state repli-

cation (Section 3.2). We propose two techniques to reduce the size of TCAM required

7

to implement a DFA: Transitions Sharing that exploits transitions sharing and Table
Consolidation that exploits state replication. The basic idea is to combine multiple tran-
sitions into one such that we use the ternary nature and first-match semantics of TCAMs

to encode multiple DFA transitions using one TCAM entry.

5.1.2.1 Transitions Sharing

The two reasons for transition sharing are character redundancy and state redundancy.

Character redundancy: Prior work exploits character redundancy mainly by alphabet
encoding, where the alphabet is mapped to a smaller alphabet ¥’. Alphabet encoding
cannot fully leverage all the compression opportunities presented by character redundancy,
as it can only exploit global character redundancy that is common to all states in the
DFA. Specifically, alphabet encoding can map two characters oy and o) in X to the same

character ¢’ in £’ if and only if Vq € Q, 8(q, 07) = 8(q, 03).

To exploit character redundancy at each state, we propose the technique of character
bundling. In character bundling, we leverage the ternary nature and first-match semantics
of TCAMs on the input character field to represent multiple characters and thus multiple

transitions that share the same source and destination states.

State redundancy: Prior work exploits state redundancy mainly by deferred transi-

tions, where one state p might defer most of the transitions for another state q. Existing

78

deferred transition based solutions cannot fully exploit state redundancy because of the
speed penalty, t.e., traversal of a deferred transition leads to no input being processed.
Thus, to alleviate this speed penalty, such solutions often choose deferred transitions that

do not fully compress the transition table.

To exploit state redundancy, we propose the technique of shadow encoding. In shadow
encoding, we leverage the ternary nature and first-match semantics of TCAMs on the
current state ID field to encode many incoming transitions of a state from different states

using only one TCAM entry.

5.1.2.2 Table Consolidation

We get state explosion in a DFA because each NFA state is replicated multiple times in
the DFA. Table Consolidation exploits state replication in a DFA based on the following
observation: two DFA states that are replications of the same NFA state, will usually have
transitions remaining in the D?FA (i.e. non-deferred transitions) on the same set of input
characters (although the corresponding transitions in the two states might go to different
states.) In this case, the TCAM tables for the two states will be exactly the same except
for the state IDs. If the corresponding transition go to different next state then the SRAM

tables for the two states will be different.

The idea is that we can merge the TCAM tables for the two states into one TCAM table,
and store both the SRAM tables side by side. This results in reduction in the TCAM size,

at the cost of possibly increasing SRAM size, which is fine since TCAM size is much more

79

critical than SRAM size.

5.1.3 Increasing Matching Throughput

Another challenge that we address is improving RE matching speed and thus throughput.
One way to improve the throughput by up to a factor of k is to use k-stride DFAs that
consume k input characters per transition. However, this leads to an exponential increase
in both state and transition spaces. For example, a k-stride DFA requires 28k transitions
per state, so the transition space grows exponentially in k. Previous multi-stride DFAs
suffer from a significant increase in the number of states and the number of transitions

such that only 2-stride DFAs are achieved in practice [9, 13].

To avoid this space explosion, we use the novel idea of variable striding. The basic idea
is to use transitions with variable strides, 7.e. different transitions can consume different
numbers of input characters. This allows us to increase the average number of characters
consumed per transition while ensuring all the transitions fit within the allocated TCAM
space. This idea is based on two key observations. First, for many states, we can capture
many but not all k-stride transitions using relatively few TCAM entries whereas capturing
all k-stride transitions requires prohibitively many TCAM entries. Second, with TCAMs,
we can easily store transitions with different strides in the same TCAM lookup table.
Variable striding would be very difficult to implement without TCAMs and thus it is not

surprising variable striding has not been considered before.

80

5.1.4 Comparison of Transition Sharing with D?FA

The observation behind the transition sharing technique, namely many states share a large
number of outgoing transactions, is similar to that of deferred transition in a D?FA. We
use a D?FA as the starting point for transition sharing, and it can be viewed as a way of

implementing a D2FA in TCAM.

But there are several differences between transition sharing and D?FA:

(1) The transitions stored at each state is given by the D?FA. But our character bundling
technique achieves further compression, and so the total number of TCAM rules is signif-
icantly less than the number of transitions in the D2FA.

(2) D2FA suffers from speed penalty, as no input is consumed when a deferred transition is
taken. The number of lookups needed in the worst case is given the the deferment depth
of the current state. Because of or shadow encoding technique, there is no speed penalty
in transition sharing. Only one TCAM lookup is needed for each character, irrespective
of the deferment depth of the current state.

(3) Because of the speed penalty in the D2FA, for practical implementation, the deferment
depth of the D2FA is bounded, which significantly increases the number of transitions
in the D®FA. For transition sharing, we build D®FA without any limit on the deferment

depth, achieving maximum transition compression.

We now explain each of our techniques in detail.

81

5.2 Transition Sharing

The basic idea of transition sharing is to combine multiple transitions into a single TCAM
entry. We propose two transition sharing ideas: character bundling and shadow encod-
ing. Character bundling exploits intra-state optimization opportunities and minimizes
TCAM tables along the input character dimension. Shadow encoding exploits inter-state

optimization opportunities and minimizes TCAM tables along the source state dimension.

5.2.1 Character Bundling

Character bundling exploits character redundancy by combining multiple transitions from
the same source state to the same destination into one TCAM entry. Character bundling
consists of four steps. (1) Assign each state a unique ID of [log |Q[] bits. (2) For each state,
enumerate all 256 transition rules where for each rule, the predicate is a transition’s label
and the decision is the destination state ID. (3) For each state, treating the 256 rules as a
1-dimensional packet classifier and leveraging the ternary nature and first-match semantics
of TCAMs, we minimize the number of transitions using the optimal 1-dimensional TCAM
minimization algorithm (Section 3.4.2). (4) Concatenate the |Q| 1-dimensional minimal
prefix classifiers together by prepending each rule with its source state ID. The resulting
list can be viewed as a 2-dimensional classifier where the two fields are source state ID and
transition label and the decision is the destination state ID. Figure 5.1 shows an example

DFA and its TCAM lookup table built using character bundling. The three chunks of

82

TCAM entries encode the 256 transitions for sy, sy, and s;, respectively. Because each
TCAM entry matches one or more input characters, we need only 11 total TCAM entries

instead of the naive implementation that requires 256 x 3 = 768 entries.

5.2.2 Shadow Encoding

Whereas character bundling encodes multiple transitions with the same source and desti-
nation states using one TCAM entry, shadow encoding encodes multiple transitions with
the same character label and destination state ID using one TCAM entry. This technique
is based upon the observation of state redundancy. More specifically, character bundling
uses ternary codes in the input character field to encode multiple input characters, and
shadow encoding uses ternary codes in the source state ID field to encode multiple source

states.

5.2.2.1 Observations

We use our running example in Figure 5.1 to illustrate shadow encoding. We observe that
all transitions with source states s; and s, have the same destination state except for the
transitions on character c. Likewise, source state sy differs from source states s; and s;
only in the character range [a..0]. This implies there is a lot of state redundancy. The
table in Figure 5.2 shows how we can exploit state redundancy to further reduce required
TCAM space. First, since states s; and s, are more similar, we give them the state IDs 00

and 0T, respectively. State s, uses the ternary code of Ox in the state ID field of its TCAM

83

entries to share transitions with state s;. We give state sy the state ID of 10, and it uses the
ternary code of #x in the state ID field of its TCAM entries to share transitions with both
states s; and s). Second, we order the state tables in the TCAM so that state sy is first,
state s, is second, and state sy is last. This facilitates the sharing of transitions among
different states where earlier states have incomplete tables deferring some transitions to
later tables. Specifically, s; has an incomplete table with only a single TCAM entry to
specify the transitions it does not share with s,, and s, has an incomplete table with only

3 TCAM entries to specify the transitions it (and s;) does not share with s.

TCAM SRAM
Source Input Dest.
SC character ID

Sl 00 0110 0011 |—| 01 52
[| 0+ 0110 001* | 00 |S;
S,4| 0+ 0110 0000 || 10 |Sg
[| 0% (0110 =k [01 |[S;
[l =+ {0110 0000 || 10 |Sg
Soq| ** 0110 #xxx | 00 |S1
| ** *kkx kkxk [10 SO

Figure 5.2: TCAM table with shadow encoding.

Implementing shadow encoding requires solving three key problems: (1) Find the best
order of the state tables in the TCAM (any order is allowed). (2) Choose binary IDs and
ternary codes for each state given the state table order. (3) Identify entries to remove from

each state table.

84

5.2.2.2 Determining Table Order

We first describe how we compute the order of tables within the TCAM. In order to exploit
inter-state transition sharing, we first build a D2FA for the given RE set. If p—q (u.e. state
p is a descendant of state q), we say that state p is in state q’s shadow. We use the partial
order of the deferment forest of the D2FA to determine the order of state transition tables
in the TCAM. Specifically, state q’s transition table must be placed after the transition
tables of all states in state q’s shadow. That is, the state order in given by a depth first

traversal of the deferment forest.

(b) SRG (c) Deferment tree

Figure 5.3: D°FA, SRG, and deferment tree of the DFA in Figure 5.1.

Figure 5.3 shows the D2FA, SRG, and the deferment tree, respectively, for the DFA in

Figure 5.1.

85

5.2.2.3 Shadow Encoding Algorithm

We now describe our shadow encoding algorithm which takes as input a deferment forest F,
and outputs the state IDs. We also use the term nodes to refer to states in the description
of the algorithm. To ensure that proper sharing of transitions occurs, we need to compute
a shadow encoding for the given deferment forest. In a valid shadow encoding, each state
q is assigned a binary state ID (ID(q)) and a ternary shadow code (SC(q)). Binary state
IDs are used in the destination state ID field (in the SRAM) of transition rules. Ternary
shadow codes are used in the source state ID field (in the TCAM) of transition rules. The
shadow length of a shadow encoding is the common length of every state ID and shadow

code.

A valid shadow encoding for a given deferment forest F must satisfy the following four

Shadow Encoding Properties (SEP):

1. Uniqueness Property: For any two distinct states p and q, ID(p) # ID(q) and

SC(p) # SC(q).

2. Self-Matching Property: For any state p, ID(p) € SC(p) (z.e., ID(p) matches

SC(p)).

3. Deferment Property: For any two states p and q, p—q (z.e., q is an ancestor of p

in the given deferment forest) if and only if SC(p) € SC(q).

4. Non-interception Property: For any two distinct states p and q, p—q if and only

if ID(p) € SC(q).

86

Lemma 3. Gwen a valid shadow encoding for deferment forest F, for any state q

and all states p in q’s shadow, ID(p) € SC(q).

Proof. The deferment property implies that SC(p) C SC(q). The self-matching property

implies that ID(p) € SC(p). Thus, the result follows.]

Lemma 4. Gwen a valid shadow encoding for deferment forest F, for any state q

and all states p not in q’s shadow, ID(p) ¢ SC(q).

Proof. This follows immediately from the non-interception property. O

Intuitively, q’s shadow code must match the state ID of all states in q’s shadow and cannot

match the state ID of any states not in q’s shadow.

Theorem 4. Gwwen a wvalid shadow encoding for a DFA M and deferment forest
F and a TCAM classifier C that uses only binary state IDs for both source and
destination state IDs wn transition rules and that orders the state tables according
to F, the TCAM classifier formed by replacing each source state ID in C with the
corresponding shadow code and each destination state ID in C with the corresponding

state ID will be equivalent to C.

Proof. This follows from the first match nature of TCAMs, the state tables are ordered

according to F, and Lemmas 3 and 4.]

We give a shadow encoding algorithm where the deferment forest is a single deferment tree

DT. We handle deferment forests by simply creating a virtual root node whose children

87

are the roots of the deferment trees in the forest and then running the algorithm on this

tree.

Our algorithm uses the following internal variables for each node v: a local binary ID
denoted L(v), a global binary ID denoted G(v), and an integer weight denoted W/(v) that
is the shadow length we would use for the subtree of DT rooted at v. Intuitively, the
state ID of v will be G(v)|L(v) where | denotes concatenation, and the shadow code of v
will be the prefix string G(v) followed by the required number of *’s; some extra padding
characters may be needed. We use #L(v) and #G(v)to denote the number of bits in L(v)

and G(v), respectively.

Our algorithm works as follows. For all v, we initially set L(v) = G(v) = and W(v) = 0.
Our algorithm works recursively in a bottom-up fashion. We mark nodes red when they
have been processed. We begin by marking each leaf node of DT as processed. We process
an internal node v when all its children vy,---,v, are marked red. Once a node v is
processed, its weight W/(v) and its local ID L(v) are fixed, but we will prepend additional

bits to its global ID G(v) when we process its ancestors in DT.

While precessing v, we assign v and each of its n children a variable-length binary code
HCode that is prefix free (2.e. no HCode is a prefix of another HCode.) One option is to
assign each of the (n + 1) nodes a binary number from 0 to n using log,(n + 1) bits. To
minimize the shadow length W(v), we use a Huffman coding style algorithm to compute
the HCodes and W/(v). This algorithm uses two data structures: a binary encoding tree

T with n 4 1 leaf nodes, one for v and each of its children, and a min-priority queue PQ,

88

initialized with n + 1 elements (one for v and each of its children) that is ordered by node
weight. While PQ has more than one element, we remove the two elements x and y with
lowest weight from PQ, create a new internal node z in T with two children x and y, and
set weight(z)=maximum(weight(x), weight(y))+1, and then put element z into PQ. When
PQ has only one element, T is complete. The HCode assigned to each leaf node v’ is the
path in T from the root node to v/ where left edges have value 0 and right edges have value

1.

We update the internal variables of v and its descendants in DT as follows. We set L(v)
to be its HCode, and W(v) to be the weight of the root node of T; G(v) is left empty. For
each child v;, we prepend v;’s HCode to the global ID of every node in the subtree rooted
at v; including v; itself. We then mark v as red. This continues until all nodes in DT are

red.

We now set state IDs and a shadow codes. The shadow length is k, the weight of the root
node of DT. We use {x}™ to denote a ternary string with m x’s and {0} to denote a
binary string with m 0’s. For each node v, we compute v’s state ID and shadow code as
follows:

ID(v) = GW)[LM) O #EM=#LVI | sC(v) = G)|+ #EM),

We illustrate our shadow encoding algorithm in Figure 5.4. Figure 5.4(a) shows all the
internal variables just before v; is processed. Figure 5.4(b) shows the Huffman style binary

encoding tree T built for node vy and its children v;, v3, and v4 and the resulting HCodes.

89

G:10
L:d
W:0

Weight: [0

Node: vy vV, Vs V,
HCode: 000 001 01 1

(b) Build Hufman tree and assigned HCodes while
processing vj.

Figure 5.4: Shadow encoding example.

90

G: 0 gC=sxxx
L 2000 p =000
W 3
L:J L:0 ID =010 L :00 1p =100
W:0 W:1 W: 2

/

SC=001 / \\
ID =001 \
G:011 G:101 G:110
L:J @ % L:OD
W:0 W:0 W:0
SC=011 SC=101 SC=110
ID =011 ID =101 ID =110

(c) Internal variables before processing v; and assigned state IDs and
shadow codes.

Figure 5.4: Shadow encoding example (cont’d).

Figure 5.4(c) shows each node’s final weight, global ID, local ID, state ID and shadow code.

The pseudo-code for the Shadow Encoding algorithm is given in figure Algorithm 5.5.

We now prove two properties of our shadow encoding algorithm using induction on the
height n of the deferment tree T. In both proofs, in the inductive case, we let s denote
the root node of T, s7 through s. denote the c children of s, and T; for T < 1i < ¢ denote

the subtree rooted at s;.

Theorem 5. The state IDs and shadow codes generated by our Shadow Encoding

algorithm satisfy the SEP.

Proof. We prove by induction on the height n of T. The base case where n = 0 is trivial
since there is only a single node. For the inductive case, our inductive hypothesis is that

the shadow codes and state IDs generated for T; for 1 < i < c satisfy the SEP. Note, we do

91

=W N =

© 0w

10

11
12
13
14
15
16

17
18
19

20
21
22
23

24
25
26
27

28
29
30

Input: Deferment forest, DF, with n states, sq,...,sn.
Output: ID[1..n] and SC[1..n] for each state.

Add state sy to DF with all the tree roots as its children;
Set all ID[1..n] and SC[1..n] to the empty string;
ShadowEncode (so);

return ID[1..n] and SC[1..n};

Function ShadowEncode(s)
// Base case
if s has no children then return 0;
// Recursive case
1 ¢+ Number of children of s;
CHILD[1..r] « List of children of s;
for i=1 to rdo
LVVVﬁ]e—ShadowEncode(CHILDﬁD;

WI[0] « 0;
G « HCode(W);
1+ maxo<i<,(|G[i]| + WIi]);
fori=1tordo
Append 0’s at end of G[i] to make |G(1)|+W(i) =1,
L Attach GIi] in front of ID and SC for each state in the subtree of CHILDIiJ;

ID(s) « (0)%;
SC(s) « (%)}

return l;

Function HCode(W/[0..1])
Initialize Q as a min priority queue of binary tree nodes;
fori=0to rdo
L Insert leaf node n; in Q with value V[n;] « W[i];

while [Q] > 1 do
ny pop(Q)J;
n; « pop(Q);
Insert node n in Q with n; and n, as left and right children, and value
V] « max(Vn,Vin,]) +T;

n « pop(Q);
Generate the codes based on the Huffman Tree rooted at n;
return the codes assigned to the leaf nodes;

Figure 5.5: Shadow Encoding Algorithm.

92

not process the root node s in this assumption. We now consider what happens when we
process s. For each node v € T; for 1 < 1i < ¢, HCode(s;) is prepended to the SC(v) and
ID(v). Thus, the SEP still holds for all the nodes within T; for 1 <1 < ¢. For any nodes p
and ¢ from different subtrees T; and T:, it follows that ID(p) ¢ SC(q) and ID(q) ¢ SC(p)
because HCode(s;) and HCode(s;) are not prefixes of each other. Finally, for all nodes

veT,ID(v) e SC(s) because SC(s) contains only *’s. O

We define a prefix shadow encoding as a shadow encoding where all shadow codes are
prefix strings; that is, all *’s are after any O’s or 1’s. For any prefix shadow encoding &
of T, 5Ti denotes the subset of state ids and shadow codes for all v € T;. For any state
id or shadow code X, p|X denotes the first p characters of X, and X|,, denotes the last p

characters of X. We define ETin ={XJplXe Er.)-

Lemma 5. Consider a deferment tree T with a valid length x prefix shadow encoding
& that satisfies the SEP. For every child s;,1 <1i < c, of the root of T, there exist two

values p; and q; such that:
1.V, 0<pi <x,0<qgi<x and pi +q; = Xx.
2. Yi, WeT, p | ID(v) = Pi |ISC(v) = Pi |SC(si).
3. Vi, 5Tqui 15 a valid prefiz shadow encoding of T;.

4. The set E1p :{Pi SC(si) | 1 <1< c} is prefiz free.

Proof. Since & is a prefix shadow encoding, for any child s;, SC(s;) must be of the form

93

{0, 1}%x}*~9. Let p; = a and q; = x — a. Now, p; > 0, otherwise we would have
SC(s;) = {x}*, which is not possible as it would violate the deferment and non-interception
properties. This proves (1). Also, since £ satisfies the deferment and self-matching prop-
erties, we must have (2) and (3). And we must have (4) because of the non-interception

property. [

Our shadow encoding algorithm produces minimum length encodings.

Theorem 6. For any deferment tree T, our shadow encoding algorithm generates the

shortest possible prefix shadow encoding that satisfies the SEP.

Proof. First, our shadow encoding algorithm generates a prefix shadow encoding. We
prove by induction on the height n of T that it is the shortest possible prefix shadow
encoding. The base case where n = 0 is trivial since the encoding for a single node is
empty and thus optimal. For the inductive case, our inductive hypothesis is that the

prefix shadow encoding for T; for 1 <1 < c is the shortest possible.

Let £ be the prefix shadow encoding generated by our shadow encoding algorithm and
F be the optimal prefix shadow encoding. Let 1 and m be the lengths of £ and F
respectively. Let g; and w; be the values defined by Lemma 5 for £. And let p; and q;
be the corresponding values for /. By the inductive hypothesis, we have w; < q; for

1<i<ec.

If m < 1, this implies that the optimal shortest prefix shadow encoding for T must compute

a better set of HCode equivalents for each child node s;. In particular, we have that

94

max;(p; + qi) < max;(g; +wj). That is, given equal or larger initial lengths, {q;}, optimal
prefix shadow encoding computes prefix-free codes Fjp for the children that are shorter
than the prefix-free codes &p computed by the HCode subroutine. However, this is a
contradiction, since the Huffman style encoding used to compute the HCodes minimizes

the term max;(g; +wj) [21]. Therefore, we must have | < m. O

Experimentally, we found that our shadow encoding algorithm is effective at minimizing
shadow length. No DFA had a shadow length larger than [log; |Q|] + 3 where [log, |Q]] is

the shortest possible shadow length.

5.2.2.4 Choosing Transitions

Section 5.2.1 describes how the TCAM tables are generated for states with all 256 tran-
sitions (z.e. for root states) using 1-dimensional complete classifier minimization. But
non-root states do not have complete tables. We now describe how we apply the character

bundling technique to generate the TCAM tables for non-root states.

For a given DFA and a corresponding deferment forest, we construct a D2FA by choosing
which transitions to encode in each transition table as follows. If state p has a default
transition to state q, we identify p’s deferrable transitions which are the transitions that are
common to both p’s transition table and q’s transition table. These deferrable transitions
are optional for p’s transition table; that is, they can be removed to create an incomplete
transition table or included if that results in fewer TCAM entries. Figure 5.2 is an example

where including a deferrable transition produces a smaller classifier. The second entry in

95

s7’s table in Figure 5.2 can be deferred to state sy’s transition table. However, this results
in a classifier with at least 4 TCAM entries whereas specifying the transition allows a
classifier with just 3 TCAM entries. This leads us to the following problem for which we

give an optimal solution.

Definition 4 (Partially Deferred Incomplete One-dimensional TCAM Minimization Prob-
lem). Given a one-dimensional packet classifier f on (x}° and a subset D C {x}°, find
the minimum cost prefic classifier f' such that Cover(f') D {x}P\ D and is equivalent

to f over Cover(f’).

Here b is the field width (in bits), D is the set of packets that can be deferred, and Cover(c)
is the union of the predicates of all the rules in c (z.e. all the packets matched by c). For
simplicity of description, we assume that f has flattened rule set (i.e. one rule for each
packet with the packet as the rule predicate). Assuming the packet is a one byte character,

this implies f has 256 rules.

We provide a dynamic programming formulation for solving this problem that is similar to
the dynamic programming formulation used in [31] and [47] to solve the related problem
when all transitions must be specified. In these previous solutions for complete classifiers,
for each prefix, the dynamic program maintains an optimal solution for each possible final
decision. It then specifies how to combine these optimal solutions for matching prefixes
into an optimal solution for the prefix that is the union of the two matching prefixes;
in this step, two final rules for each prefix that have the same decision can be replaced

by a single final rule for the combined prefix resulting in a savings of one TCAM entry.

96

The main change is to maintain an optimal solution for each prefix where we defer some

transitions within the prefix.

We now formally specify this dynamic program introducing the following notation. Let
d;,i > 1 denote the actual decisions in a classifier. For a prefix P = {0, 1}*{}>~X, we use P
to denote the prefix {0, 100k~ , and P to denote the matching prefix {0, TR —k—1,
For a classifier f on {*}b and a prefix P C {*}b, fp denotes a classifier on P that is equivalent
to f (2.e. the subset of rules in f with predicates that are in P). So f = f{*}b. Fori>1, f;i}
denotes a classifier on P that is equivalent to f and the decision of the last rule is d;. Note
that all packets in P are specified by such classifiers. Classifier f;ijo denotes the optimal
classifier that is equivalent to f except that it possibly defers some packets within D. We
use C (f;i}) to denote the cost of the minimum classifier equivalent to f;i} for i > 0. [P(x)]

evaluates to 1 when the statement inside is true; otherwise it evaluates to 0. We use x to

represent some packet in the prefix P currently being considered.

Theorem 7. Gwen a one-dimensional classifier f on {x}° and a subset D C {x}° with
a set of possible decisions {dy,d),...,d;} and a prefiz P C {x}°, we have that C(f?})

15 calculated as follows:
(1) Fori>0

1+ [f(x) #di] o f s consistent on P

iz (CUD 1 cI) 1441 el
min;_; (C(fp) + (5)— +[j #1il) else

97

(2) For i=0:

o |0 #PcD
C(£20) =
min(minZ_, (C(f5)), C(£30) + C(f%o)) else

Proof. (1) When i > 0, we just build a minimum cost complete classifier. The recursion

and the proof is exactly the same as given in [31] Theorem 4.1 (with decision weights = 1).

(2) We consider two possibilities. Either the optimal classifier is a complete classifier or
the optimal classifier is an incomplete classifier. If the optimal classifier is incomplete, we
consider two cases. If the entire prefix P is contained with D and can be deferred, the
minimum cost classifier is to defer all transitions and has cost 0. Otherwise, the minimum
cost classifier for P would just be the minimum cost classifier for P concatenated with the
minimum cost classifier for P. This is represented by the last term in the minimization
for case (2). The possibility that the optimal classifier is a complete classifier is handled

by the first term in the first minimization for case (2). O

5.3 Table Consolidation

We now present table consolidation where we combine multiple transition tables for
different states into a single transition table such that the combined table takes less TCAM
space than the total TCAM space used by the original tables. To define table consolidation,

we need two new concepts: k-decision rule and k-decision table. A k-decision rule is a rule

98

whose decision is an array of k decisions. A k-decision table is a sequence of k-decision
rules following the first-match semantics. Given a k-decision table T and i (0 <1i < k), if
for any rule r in T we delete all the decisions except the i-th decision, we get a 1-decision
table, which we denote as T[i]. In table consolidation, we take a set of k 1-decision tables
To,- -+, Tx_1 and construct a k-decision table T such that for any i (0 < i < k), the
condition T; = T[i] holds where T; = T[i] means that T; and TI[i] are equivalent (z.e., they
have the same decision for every search key). We call the process of computing k-decision

table T table consolidation, and we call T the consolidated table.

5.3.1 Observations

Table consolidation is based on three observations. First, semantically different TCAM
tables may share common entries with possibly different decisions. For example, the three
tables for sgy, s; and s, in Figure 5.1 have three entries in common: 01100000, 0110,
and sk, Table consolidation provides a novel way to remove such information re-
dundancy. Second, given any set of k 1-decision tables Ty, ---,Ty_1, we can always find
a k-decision table T such that for any i (0 <1i < k), the condition T; = T[i] holds. This is
easy to prove as we can use one entry per each possible binary search key in T. Third, a
TCAM chip typically has a build-in SRAM module that is commonly used to store lookup
decisions. For a TCAM with n entries, the SRAM module is arranged as an array of
n entries where SRAM]i| stores the decision of TCAM [i] for every i. A TCAM lookup

returns the index of the first matching entry in the TCAM, which is then used as the

99

index to directly find the corresponding decision in the SRAM. In table consolidation,
we essentially trade SRAM space for TCAM space because each SRAM entry needs to
store multiple decisions. As SRAM is cheaper and more efficient than TCAM, moderately

increasing SRAM usage to decrease TCAM usage is worthwhile.

Figure 5.6 shows the TCAM lookup table and the SRAM decision table for a 3-decision
consolidated table for states s, s7, and s; in Figure 5.1. In this example, by table con-
solidation, we reduce the number of TCAM entries from 11 to 5 for storing the tran-
sition tables for states sy, sj, and s,. This consolidated table has an ID of 0. As
both the table ID and column ID are needed to encode a state, we use the notation

< Table ID > @ < Column ID > to represent a state.

TCAM SRAM
Consolidated Input Column ID
Src Table ID | Character 00 | 01|10

0 0110 0000 | — | so | so | so
0 0110 0010 | — | s1 | s1 | 7
0 0110 0011 — | $1 S2 S
0 0110 ***x | — | S1 | S2 | 2
0 skkk kkkk | — | So | So | So

Figure 5.6: 3-decision table for 3 states in Figure 5.1

We illustrate input character stream processing with table consolidation using this example
3-decision table. Suppose the input character string is “01101111, 01100011”. The initial
state is state sy which is represented as 0@Q00. We append sy’s table ID of O to the first
character 01101111 to form the lookup key 001101111. This matches the fourth TCAM
entry in the 3-decision table. We now need to find the decision. We use sy’s column ID

00 to determine that the first decision is the correct decision. This gives us the state s;

100

which is represented as 0@01. We then prepend s;’s table ID of 0 to the second character
01100011 to form the lookup key 001100011. This matches the third TCAM entry. We
use s1’s column ID of 01 to determine that the second decision is the correct decision.
This gives us the next state s, which has code 0@10. Because s, is an accepting state, we
would accept the input string. Note that because this DFA has only 3 states which have
all been consolidated together, all three states have the same table ID of 0. In general,

with more states than just those consolidated together, we would have more table IDs.

There are two key technical challenges in table consolidation. The first challenge is how
to consolidate k 1-decision transition tables into a k-decision transition table. The second
challenge is which 1-decision transition tables should be consolidated together. Intuitively,
the more similar two 1-decision transition tables are, the more TCAM space saving we
can get from consolidating them together. However, we have to consider the deferment

relationship among states. We present our solutions to these two challenges.

5.3.2 Computing a k-decision table

In this section, we assume we know which states need to be consolidated together and
present a local state consolidation algorithm that takes a ki-decision table for state set
Si and a kj-decision table for another state set S; as its input and outputs a consolidated
(kg + ky)-decision table for state set S; U Sj. For ease of presentation, we first assume that

ki =k =1.
Let s7 and s; be the two input states which have default transitions to states s3 and s4.

101

The consolidated table will be assigned a common table ID X. We assign state s; column
ID 0 and state s column ID 1. Thus, we encode s; as X@0 and s, as X@1. We enforce
a constraint that if we do not consolidate s3 and s, together, then s; and s, cannot defer
any transitions at all. If we do consolidate s3 and s, together, then s; and s, may have

incomplete transition tables due to default transitions to s3 and s4, respectively.

The key concepts underlying this algorithm are breakpoints and critical ranges. To define
breakpoints, it is helpful to view ¥ as numbers ranging from 0 to |Z| — 1; given 8 bit
characters, |Z| = 256. For any state s, we define a character i € X to be a breakpoint for s
if 5(s,1) # 8(s,i—1). For the end cases, we define 0 and |Z| to be breakpoints for every state
s. Let b(s) be the set of breakpoints for state s. We then define b(S) = (J;c5 b(s) to be the
set of breakpoints for a set of states S C Q. Finally, for any set of states S, we define r(S)
to be the set of ranges defined by b(S): r(S) ={[0,by—1], [by, b3 —1],..., [b\b(8)|—1> |Z|—1]}
where b; is ith smallest breakpoint in b(S). Note that 0 = b; is the smallest breakpoint
and |X| is the largest breakpoint in b(S). Within r(S), we label the range beginning at

breakpoint b; as r; for 1 <1 < [b(S)|—1. If &(s, b;) is deferred, then r; is a deferred range.

When we consolidate s and s, together, we compute b({s1,ss}) and r({sy,s,}). For each
v’ € r({s1,sy}) where v’ is not a deferred range for both sy and s,, we create a consolidated
transition rule where the decision of the entry is the ordered pair of decisions for state s;
and s, on v/, For each 1’ € v({s7,s;}) where r’ is a deferred range for one of s; but not the
other, we fill in 1/ in the incomplete transition table where it is deferred, and we create

a consolidated entry where the decision of the entry is the ordered pair of decisions for

102

state s; and s, on r’. Finally, for each 1’ € r({sq,s,}) where 1’ is a deferred range for both
s1 and sy, we do not create a consolidated entry. This produces a non-overlapping set of
transition rules that may be incomplete if some ranges do not have a consolidated entry.
If the final consolidated transition table is complete, we minimize it using the optimal
1-dimensional TCAM minimization algorithm in [30,47]. If the table is incomplete, we
minimize it using the 1-dimensional incomplete classifier minimization algorithm in [31].
We generalize this algorithm to cases where k; > 1 and k; > 1 by simply considering

kq + k; states when computing breakpoints and ranges.

5.3.3 Choosing States to Consolidate

We now describe our global consolidation algorithm for determining which states to con-
solidate together. As we observed earlier, if we want to consolidate two states sy and s;
together, we need to consolidate their parent nodes in the deferment forest as well or else
lose all the benefits of shadow encoding. Thus, we propose to consolidate two deferment

trees together.

A consolidated deferment tree must satisfy the following properties. First, each node is
to be consolidated with at most one node in the second tree; some nodes may not be
consolidated with any node in the second tree. Second, a level i node in one tree must
be consolidated with a level i node in the second tree. The level of a node is its distance
from the root. We define the root to be a level 0 node. Third, if two level i nodes are

consolidated together, their level i — 1 parent nodes must also be consolidated together.

103

An example legal matching of nodes between two deferment trees is depicted in Figure 5.7.

7
- ’ \
v/ \

elolcloNolo

ojclolONC
&

Figure 5.7: Consolidating two trees.

-’

~
~
~
~
~
| l
]

Given two deferment trees, we start the consolidation process from the roots. After we
consolidate the two roots, we need to decide how to pair their children together. For
each pair of nodes that are consolidated together, we again must choose how to pair their
children together, and so on. We make an optimal choice using a combination of dynamic
programming and matching techniques. Suppose we wish to compute the minimum cost
C(x,y), measured in TCAM entries, of consolidating two subtrees rooted at nodes x and
y where x has u children X = {xj,...,xy} and y has v children Y = {y1,...,yv}. We
first recursively compute C(xi,y]-) for 1 <i<wuand 1 <j < v using our local state
consolidation algorithm as a subroutine. We then construct a complete bipartite graph
Kx,y such that each edge (xj,y;) has the edge weight C(x;,y;) for 1 <i<uand1<j<w.
Here C(x,y) is the cost of a minimum weight matching [24,35] of K(X,Y) plus the cost of

consolidating x and y. When [X| # [Y|, to make the sets equal in size, we pad the smaller

104

set with null states that defer all transitions.

Finally, we must decide which trees to consolidate together. We assume that we produce
k-decision tables where k is a power of 2. We describe how we solve the problem for k = 2
first. We create an edge-weighted complete graph with where each deferment tree is a
node and where the weight of each edge is the cost of consolidating the two corresponding
deferment trees together. We find a minimum weight matching [16, 18] of this complete
graph to give us an optimal pairing for k = 2. For larger k = 2l we then repeat this

process L — 1 times. Our matching is not necessarily optimal for k > 2.

In some cases, the deferment forest may have only one tree. In such cases, we consider con-
solidating the subtrees rooted at the children of the root of the single deferment tree. We
also consider similar options if we have a few deferment trees but they are not structurally

similar.

Figure Algorithm 5.8 shows the pseudo-code for the algorithm.

5.3.3.1 Greedy Matching

Our algorithm using the matching subroutines gives the optimal pairing of deferment trees
but can be relatively slow on larger DFAs. When running time is a concern, we present
a greedy matching routine. When we need to match children of two nodes, x and y, we
consider one child at a time from the node with fewer children (say x). First all children of

y are set unmarked. For each child, x;, of x, we find the best match from the unmarked

105

Input: Deferment forest, DF, with r tree roots, si,...,s;.
Output: Optimal matching of the r roots.

1 For each pair of roots, s; and s;, compute C(s;, s;);
Construct complete graph K., with the roots as vertices and C(si, s;) as edge weights;
3 return Minimum Weight Matching(K;);

N

4 Function C(s1,s3)

// Base case

if sy and sy have no children then
t return Consolidated Cost(sy,s2);

[=2 I

// Recursive case
7 Attach NULL children so that both s; and s; have same number of children, q;
8 Construct complete bipartite graph K, 4, with the children of s; and s; as the vertices,
and set C(sy, sy) as the edge weight between vertices sy and sy;
9 M =Minimum Weight Bipartite Matching(Ky) gives the matching of the children;
10 count « (O
11 foreach matching (s, sy) € M do
12 L count ¢ count + C(sy, sy);

13 return (count + Consolidated_Cost(sy,s2));

Figure 5.8: Algorithm for Consolidating Trees.

children of y, match them up, and set the matched child in y as marked. The best match
for x; is given by

) C(Xi> y])
ATgMINy, c{unmarked children of YCxy) + Cly:)
1)

where C(x) is just the cost (in TCAM entries) of the subtree rooted at x. If C(x;) +Cly;) =
0, then we set the ratio to 0.5. All unmarked children of y at the end are matched with
null states. We consider the children of x in decreasing order of C(x;) to prioritize the
larger children of x. We use the same approach for matching roots. First all roots are set
unmarked. Each time we consider the largest unmarked root, find the best match for it,

and then mark the newly matched roots.

In our experiments, this greedy approach runs much faster than the optimal approach

106

and the resulting classifier size is not much larger. We also observe that another greedy

C(XpU)

approach that uses C(xj,y;) instead of Ca)1Cmu)
i j

produces classifiers with much larger
TCAM sizes. This approach often matches a large child of x with a small child of y that

it does not align well with.

5.3.4 Effectiveness of Table Consolidation

We now explain why table consolidation works well on real-world RE sets.

4

Most real-world RE sets contain REs with wildcard closures ‘.’ where the wildcard ‘.’
matches any character and the closure ‘x’ allows for unlimited repetitions of the preceding

character. Wildcard closures create deferment trees with lots of structural similarity.

For example, consider the D?FA in Figure 5.9 for RE set {/abc/, /abd/, /e.xf/}

Figure 5.9: D?FA for RE set {/abc/, /abd/, /e.xf/}.

107

where we use dashed arrows to represent the default transitions. The second wildcard

¢

closure ‘.+’ in the RE /e.xf/ duplicates the entire DFA sub-structure for recognizing
REs/abc/ and /abd/. Thus, table consolidation of the subtree (0,1,2,3,4) with the

subtree (5,6,7,8,9,10) will lead to significant space saving.

5.4 Variable Striding

We explore ways to improve RE matching throughput by consuming multiple characters
per TCAM lookup. One possibility is a k-stride DFA which uses k-stride transitions that
consume k characters per transition. Although k-stride DFAs can speed up RE matching
by up to a factor of k, the number of states and transitions can grow exponentially in
k. To limit the state and transition space explosion, we propose variable striding using
variable-stride DFAs. A k-var-stride DFA consumes between 1 and k characters in each
transition with at least one transition consuming k characters. Conceptually, each state in
a k-var-stride DFA has 256% transitions, and each transition is labeled with (1) a unique
string of k characters and (2) a stride length j (1 < j < k) indicating the number of

characters consumed.

In TCAM-based variable striding, each TCAM lookup uses the next k consecutive charac-
ters as the lookup key, but the number of characters consumed in the lookup varies from
1 to k; thus, the lookup decision contains both the destination state ID and the stride

length.

108

There are many technical challenges in implementing variable striding. First, we need to
control the exponential growth in the number of states. Second, we need to control the
exponential growth in the number of transitions. Third, we need to carefully choose which
transitions to expand from 1-stride to multi-stride given a specific amount of available
TCAM space. Fourth, we need to carefully decide on the maximum stride length k.
Increasing k can help by increasing average RE matching throughput; however, increasing
k can hurt by requiring more TCAM space. Specifically, implementing a k-var-stride DFA
in TCAM requires 8k bits for the k input characters in each lookup key. The width of
a TCAM chip is configurable, but not arbitrary. Commercially available TCAM chips
typically can be configured with length 36, 72, 144, 288, or 576 bits. We must choose k so

that we optimize throughput while not wasting bits in each TCAM entry.

5.4.1 Observations

We use an example to show how variable striding can achieve a significant RE matching
throughput increase with a small and controllable space increase. Figure 5.10 shows a
3-var-stride transition table that corresponds to state sy in Figure 5.1. This table only has
7 entries as opposed to 116 entries in a full 3-stride table for sy. If we assume that each of
the 256 characters is equally likely to occur, the average number of characters consumed

per 3-var-stride transition of sy is 1x1/16 +2 % 15/256 + 3 % 225/256 = 2.82.

109

TCAM SRAM

Src state | Inp charl | Inp char2 | Inp char3 Dest state | Stride
S0 0110 0000 | sk skoksor | skt skokskk | — S0 1
S0 : 0110 k%% : sokkok Hokkok : foksok dokkk | —) S1 : 1
S0 ook opok | 0TT0 0000 1 sokxk soxxx | — S0 2
S0 : sokokk Hokkk : 0110 stk : Kokxk kokxk | —) S1 : 2
S0 otk kol | sk ki | 0110 0000 | — S0 '3
S0 Lok spokk |k opkk | 0110 ok | — $1 '3
S0 |k SRRk | Rk Rk | RoRk Rk |) S0 '3

Figure 5.10: 3-var-stride transition table for s

5.4.2 Eliminating State Explosion

We first explain how converting a 1-stride DFA to a k-stride DFA causes state explosion.
For a source state and a destination state pair (s, d), a k-stride transition path from s to
d may contain k — 1 intermediate states (excluding d); for each unique combination of
accepting states that appear on a k-stride transition path from s to d, we need to create
a new destination state because a unique combination of accepting states implies that the
input has matched a unique combination of REs. This can be a very large number of new

states.

We eliminate state explosion by ending any k-var-stride transition path at the first ac-
cepting state it reaches. Thus, a k-var-stride DFA has the exact same state set as its
corresponding 1-stride DFA. Ending k-var-stride transitions at accepting states does have
subtle interactions with table consolidation and shadow encoding. We end any k-var-stride
consolidated transition path at the first accepting state reached in any one of the paths
being consolidated which can reduce the expected throughput increase of variable strid-

ing. There is a similar but even more subtle interaction with shadow encoding which we

110

describe in the next section.

5.4.3 Controlling Transition Explosion

In a k-stride DFA converted from a 1-stride DFA with alphabet X, a state has |Z| outgoing
k-stride transitions. Although we can leverage our techniques of character bundling and
shadow encoding to minimize the number of required TCAM entries, the rate of growth
tends to be exponential with respect to stride length k. We have two key ideas to control

transition explosion: self-loop unrolling and k-var-stride transition sharing.

5.4.3.1 Self-Loop Unrolling Algorithm

We now consider root states, all of which are self-looping states. We have two methods
to compute the k-var-stride transition tables of root states. The first is direct expansion
(stopping transitions at accepting states) since these states do not defer to other states
which results in an exponential increase in table size with respect to k. The second method,

which we call self-loop unrolling, scales linearly with k.

Self-loop unrolling increases the stride of all the self-loop transitions encoded by the last
default TCAM entry. Self-loop unrolling starts with a root state j-var-stride transition
table encoded as a compressed TCAM table of n entries with a final default entry repre-
senting most of the self-loops of the root state. Note that given any complete TCAM table
where the last entry is not a default entry, we can always replace that last entry with a de-

fault entry without changing the semantics of the table. We generate the (j+1)-var-stride

111

transition table by expanding the last default entry into n new entries, which are obtained
by prepending 8 x’s as an extra default field to the beginning of the original n entries.
This produces a (j+1)-var-stride transition table with 2n — 1 entries. Figure 5.10 shows

the resulting table when we apply self-loop unrolling twice on the DFA in Figure 5.1.

We next illustrate the idea of self-loop unrolling using an example. Consider state sg
of Figure 5.1. The default transition in sy’s table is a self-loop that is matched by 240
characters; one self-loop is matched by the first TCAM entry in sy’s table. We can “unroll”
this self-loop and increase the stride of many but not all 2-stride and 3-stride transitions
as follows. First, we leave in place the first two 1-stride transitions. We then make 2-stride
copies of these transitions where we shift the characters over by one and put a default
character in the first position. These 2-stride transitions capture the case where the first
character in the transition self-loops but is not 01100000 and the second character leaves
state s or is 01100000. We then make 3-stride copies of these transitions where we shift the
characters over by one again and put default characters for the first two positions. Finally,
we include a stride-3 default transition that self-loops back to state 0. The resulting 7
transition variable-stride table is shown in Figure 5.10. In this example, we could continue
using self-loop unrolling to create even larger stride transitions with an additional cost of

only 2 TCAM entries per extra character consumed.

112

5.4.3.2 k-var-stride Transition Sharing Algorithm

Similar to 1-stride DFAs, there are many transition sharing opportunities in a k-var-stride
DFA. Consider two states sy and s7 in a 1-stride DFA where s, defers to sj. The deferment
relationship implies that s, shares many common 1-stride transitions with s;. In the k-
var-stride DFA constructed from the 1-stride DFA, all k-var-stride transitions that begin
with these common 1-stride transitions are also shared between sy and s;. Furthermore,
two transitions that do not begin with these common 1-stride transitions may still be
shared between sy and sj. For example, in the 1-stride DFA fragment in Figure 5.11,
although s; and s; do not share a common transition for character a, when we construct
the 2-var-stride DFA, s; and s; share the same 2-stride transition on string aa that ends

at state ss.

Figure 5.11: States s and s; share transition aa

To promote transition sharing among states in a k-var-stride DFA, we first need to decide
on the deferment relationship among states. The ideal deferment relationship should be
calculated based on the SRG of the final k-var-stride DFA. However, the k-var-stride DFA

cannot be finalized before we need to compute the deferment relationship among states

113

because the final k-var-stride DFA is subject to many factors such as available TCAM
space. There are two approximation options for the final k-var-stride DFA for calculating
the deferment relationship: the 1-stride DFA and the full k-stride DFA. We have tried both
options in our experiments, and the difference in the resulting TCAM space is negligible.
Thus, we simply use the deferment forest of the 1-stride DFA in computing the transition

tables for the k-var-stride DFA.

Second, for any two states s; and s where s defers to s,, we need to compute s;’s k-var-
stride transitions that are not shared with s, because those transitions will constitute s;’s
k-var-stride transition table. Although this computation is trivial for 1-stride DFAs, this
is a significant challenge for k-var-stride DFAs because each state has too many (256k)
k-var-stride transitions. The straightforward algorithm that enumerates all transitions
has a time complexity of O(IQIZIZIk), which grows exponentially with k. We propose
a dynamic programming algorithm with a time complexity of O(!Q!z\Zﬂc), which grows
linearly with k. Our key idea is that the non-shared transitions for a k-stride DFA can be
quickly computed from the non-shared transitions of a (k-1)-var-stride DFA. For example,
consider the two states sy and s; in Figure 5.11 where sy defers to s,. For character a,
s1 transits to s3 while s, transits to s4. Assuming that we have computed all (k-1)-var-
stride transitions of s3 that are not shared with the (k-1)-var-stride transitions of s4, if we
prepend all these (k-1)-var-stride transitions with character a, the resulting k-var-stride
transitions of sy are all not shared with the k-var-stride transitions of s,, and therefore

should all be included in s;’s k-var-stride transition table. Formally, using n(s;, sj,k) to

114

denote the number of k-stride transitions of s; that are not shared with s;, our dynamic
programming algorithm uses the following recursive relationship between n(sy, sj, k) and

n(si,sj k—1):

0 if §i = Sj
TL(Si,S]',O) - (5.1)
1 if Si 75 Sj
n(sy, sj, k) Zn (si,c),8(s5,¢), k—1) (5.2)
ceL

The above formulae assume that the intermediate states on the k-stride paths starting

from s; or s;

j are all non-accepting. For state s;, we stop increasing the stride length along

a path whenever we encounter an accepting state on that path or on the corresponding
path starting from S The reason is similar to why we stop a consolidated path at an
accepting state, but the reasoning is more subtle. Let p be the string that leads s; to
an accepting state. The key observation is that we know that any k-var-stride path that
starts from s; and begins with p ends at that accepting state. This means that s; cannot

exploit transition sharing on any strings that begin with p.

Figure 5.12 shows the resultant 2-var-stride transition tables for all three states sg, s1,
and s, of the D?FA in Figure 5.3(a). Note that the one transition out of state s; and two

self-loop transitions for state s, have stride-1 because they end at s, an accepting state.

The above dynamic programming algorithm produces non-overlapping and incomplete

115

TCAM SRAM

Src state | Inp charl | Inp char2 Dest state | Stride
st e * — $2 1
sz [b.cl | [c] — 2 |2
52! [a] | * — 7 1
S2 1 [d..O] I * — S2 1
so, la.ol | [0..96] — S0 2
so, la.ol | [a] — $2 2
So : [a..o] : [b] — S1 : 2
so 1 la.o] 1 [c..0] — S2 2
so | la.ol | [112.255] | — S0 |2
so | [0.96] | [0..96] — S0 |2
So : [0..96] : la..o] — S$1 : 2
so 1 [0..96] 1 [112..255] | — S0 12
so) [112.255] |, [0.96] | — S0 |2
so | [112..255] | [a..0] — $1 |2
so ' [112..255] 1 [112..255] | — S0 2

Figure 5.12: Uncompressed 2-var-stride transition tables for D?FA in Figure 5.3(a) (a = 97,
o=111)

transition tables that we compress using the 1-dimensional incomplete classifier minimiza-

tion algorithm in [31].

5.4.4 Variable Striding Selection Algorithm

We now propose solutions for the third key challenge - which states should have their stride
lengths increased and by how much, 2.e., how should we compute the transition function
5. Note that each state can independently choose its variable striding length as long as
the final transition tables are composed together according to the deferment forest. This
can be easily proven based on the way that we generate k-var-stride transition tables. For
any two states s; and s, where s; defers to s,, the way that we generate s;’s k-var-stride

transition table is seemingly based on the assumption that s,’s transition table is also

116

k-var-stride; actually, we do not have this assumption. For example, if we choose k-var-
stride (2 < k) for sy and 1-stride for s,, all strings from s; will be processed correctly; the

only issue is that strings deferred to s, will process only one character.

We view this as a packing problem: given a TCAM capacity C, for each state s, we select
a variable stride length value Kg, such that ZseQ IT(s,Ks)| < C, where T(s,Kg) denotes
the Ks-var-stride transition table of state s. This packing problem has a flavor of the
knapsack problem, but an exact formulation of an optimization function is impossible
without making assumptions about the input character distribution. We propose the
following algorithm for finding a feasible & that strives to maximize the minimum stride
of any state. First, we use all the 1-stride tables as our initial selection. Second, for each
j-var-stride (j > 2) table t of state s, we create a tuple (1, d,|t|]) where 1 denotes variable
stride length, d denotes the distance from state s to the root of the deferment tree that
s belongs to, and |t| denotes the number of entries in t. As stride length 1 increases, the
individual table size |[t| may increase significantly, particularly for the complete tables of
root states. To balance table sizes, we set limits on the maximum allowed table size for
root states and non-root states. If a root state table exceeds the root state threshold when
we create its j-var-stride table, we apply self-loop unrolling once to its (j — 1)-var-stride
table to produce a j-var-stride table. If a non-root state table exceeds the non-root state
threshold when we create its j-var-stride table, we simply use its (j — 1)-var-stride table as
its j-var-stride table. Third, we sort the tables by these tuple values in increasing order

first using 1, then using d, then using |t|, and finally a pseudorandom coin flip to break

117

ties. Fourth, we consider each table t in order. Let t’ be the table for the same state s in
the current selection. If replacing t’ by t does not exceed our TCAM capacity C, we do

the replacement.

5.5 Implementation and Modeling

We now describe some implementation issues associated with our TCAM based RE match-
ing solution. First, the only hardware required to deploy our solution is the off-the-
shelf TCAM (and its associated SRAM). Many deployed networking devices already have
TCAMs, but these TCAMs are likely being used for other purposes. Thus, to deploy our
solution on existing network devices, we would need to share an existing TCAM with
another application. Alternatively, new networking devices can be designed with an addi-

tional dedicated TCAM chip.

Second, we describe how we update the TCAM when an RE set changes. First, we must
compute a new DFA and its corresponding TCAM representation. For the moment, we
recompute the TCAM representation from scratch, but we believe a better solution can be
found and is something we plan to work on in the future. We report some timing results
in our experimental section. Fortunately, this is an offline process during which time the
DFA for the original RE set can still be used. The second step is loading the new TCAM
entries into TCAM. If we have a second TCAM to support updates, this rewrite can occur

while the first TCAM chip is still processing packet flows. If not, RE matching must halt

118

while the new entries are loaded. This step can be performed very quickly, so the delay

will be very short. In contrast, updating FPGA circuitry takes significantly longer.

We have not developed a full implementation of our system. Instead, we have only de-
veloped the algorithms that would take an RE set and construct the associated TCAM
entries. Thus, we can only estimate the throughput of our system using TCAM mod-
els. We use Agrawal and Sherwood’s TCAM model [3] assuming that each TCAM chip is
manufactured with a 0.18um process to compute the estimated latency of a single TCAM
lookup based on the number of TCAM entries searched. These model latencies are shown
in Table 5.1. We recognize that some processing must be done besides the TCAM lookup
such as composing the next state ID with the next input character; however, because the
TCAM lookup latency is much larger than any other operation, we focus only on this

parameter when evaluating the potential throughput of our system.

Entries TCAM TCAM Latency
Chip size Chip size ns
(36-bit wide) | (72-bit wide)

1024 0.037 Mb 0.074 Mb 0.94
2048 0.074 Mb 0.147 Mb 1.10
4096 0.147 Mb 0.295 Mb 1.47
8192 0.295 Mb 0.590 Mb 1.84
16384 0.590 Mb 1.18 Mb 2.20
32768 1.18 Mb 2.36 Mb 2.57
65536 2.36 Mb 4.72 Mb 2.94
131072 4.72 Mb 9.44 Mb 3.37

Table 5.1: TCAM size and Latency

119

5.6 Experimental Results

In this section, we evaluate our TCAM-based RE matching solution on real-world RE sets

focusing on two metrics: TCAM space and RE matching throughput.

5.6.1 Methodology

We use the same 8 RE sets used in Section 4.5 for the main results.

To test the scalability of our algorithms, we use one family of 34 REs from a recent public
release of the Snort rules with headers (JSEXTERNAL NET, $HTTP_PORTS, $HOME NET,
any), most of which contain wildcard closures ‘. «'. We added REs one at a time until the

number of DFA states reached 305,339. We name this family Scale.

We calculate TCAM space by multiplying the number of entries by the TCAM width: 36,
72, 144, 288, or 576 bits. For a given DFA, we compute a minimum width by summing
the number of state ID bits required with the number of input bits required. In all cases,
we needed at most 16 state ID bits. For 1-stride DFAs, we need exactly 8 input character
bits, and for 7-var-stride DFAs, we need exactly 56 input character bits. We then calculate
the TCAM width by rounding the minimum width up to the smallest larger legal TCAM
width. For all our 1-stride DFAs, we use TCAM width 36. For all our 7-var-stride DFAs,

we use TCAM width 72.

We estimate the potential throughput of our TCAM-based RE matching solution by using

the model TCAM lookup speeds we computed in Section 5.5 to determine how many

120

TCAM lookups can be performed in a second for a given number of TCAM entries and
then multiplying this number by the number of characters processed per TCAM lookup.
With 1-stride TCAMs, the number of characters processed per lookup is 1. For 7-var-stride
DFAs, we measure the average number of characters processed per lookup in a variety of

input streams.

We use Becchi et al.’s network traffic generator [11] to generate a variety of synthetic
input streams. This traffic generator includes a parameter that models the probability
of malicious traffic pyq. With probability pp, the next character is chosen so that it
leads away from the start state. With probability (1 —pp), the next character is chosen

uniformly at random.

5.6.2 Results on 1-stride DFAs

TS TS + TC2 TS + TC4

RE set #states| tcam #rows thru| tcam F#rows thru| tcam Frows thru
Mbits per state Gbps | Mbits per state Gbps | Mbits per state Gbps
Bro217 6533 0.31 1.40 3.64] 021 094 435 0.17 0.78 4.35
Ce613 11308| 0.63 1.61 311 052 1.35 3.64| 045 1.7 3.64

C10 14868 | 0.61 1.20 3.11 031 0.61 3.64| 0.16 032 435
c7 247501 1.00 1.18 3.11 0.53 0.62 3.64| 029 0.34 3.64
C8 3108 0.13 1.20 544 0.07 0.62 544| 0.03 0.33 8.51

Snort24 13886| 0.55 1.16 3.64| 030 0.64 3.64| 0.18 0.38 4.35
Snort31 20068| 1.43 2.07 272 0.81 1.7 2,721 050 0.72 3.64
Snort34 13825| 0.56 1.18 3.11 030 0.62 3.64| 0.17 0.36 4.35

Table 5.2: TCAM size and throughput for 1-stride DFAs

Table 5.2 shows our experimental results on the 8 RE sets using 1-stride DFAs. We

use T'S to denote our transition sharing algorithm including both character bundling and

121

shadow encoding. We use TC2 and TC4 to denote our table consolidation algorithm
where we consolidate at most 2 and 4 transition tables together, respectively. For each
RE set, we measure the number states in its 1-stride DFA, the resulting TCAM space
in megabits, the average number of TCAM table entries per state, and the projected RE
matching throughput; the number of TCAM entries is the number of states times the
average number of entries per state. The TS column shows our results when we apply
TS alone to each RE set. The T'S+TC2 and TS+TC4 columns show our results when we
apply both TS and T'C under the consolidation limit of 2 and 4, respectively, to each RE

set.

We draw the following conclusions from Table 5.2. (1) Our RE matching solution is
extremely effective in saving TCAM space. Using TS+TC4, the maximum TCAM size
for the 8 RE sets is only 0.50 Mb, which is two orders of magnitude smaller than the current
largest commercially available TCAM chip size of 72 Mb. More specifically, the number of
TCAM entries per DFA state ranges between .32 and 1.17 when we use T'C4. We require
16, 32, or 64 SRAM bits per TCAM entry for TS, TS+TC2, and TS+TC4, respectively
as we need to record 1, 2, or 4 state 16 bit state IDs in each decision, respectively. (2)
Transition sharing alone s very effective. With the transition sharing algorithm alone,
the maximum TCAM size is only 1.43Mb for the 8 RE sets. Furthermore, we see a relatively
tight range of TCAM entries per state of 1.16 to 2.07. Transition sharing works extremely
well with all 8 RE sets including those with wildcard closures and those with primarily

strings. (3) Table comsolidation is very effective. On the 8 RE sets, adding TC2 to

122

TS improves compression by an average of 41% (ranging from 16% to 49%) where the
maximum possible is 50%. We measure improvement by computing (TS — (TS+TC2))/TS).
Replacing T'C2 with TC4 improves compression by an average of 36% (ranging from 13% to
47%) where we measure improvement by computing ((TS+TC2) — (TS+TC4))/(TS+TC2).
Here we do observe a difference in performance, though. For the two RE sets Bro217 and
C613 that are primarily strings without table consolidation, the average improvements of
using TC2 and T'C4 are only 24% and 15%, respectively. For the remaining six RE sets that
have many wildcard closures, the average improvements are 47% and 43%, respectively.
The reason, as we touched on in Section 5.3.4, is how wildcard closure creates multiple
deferment trees with almost identical structure. Thus wildcard closures, the prime source
of state explosion, is particularly amenable to compression by table consolidation. In
such cases, doubling our table consolidation limit does not greatly increase SRAM cost.
Specifically, while the number of SRAM bits per TCAM entry doubles as we double the
consolidation limit, the number of TCAM entries required almost halves! (4) Our RE
matching solution achieves high throughput with even 1-stride DFAs. For the TS+TC4
algorithm, on the 8 RE sets, the average throughput is 4.60Gbps (ranging from 3.64Gbps

to 8.51Gbps).

We use our Scale dataset to assess the scalability of our algorithms’ performance focusing
on the number of TCAM entries per DFA state. Figure 5.13(a) shows the number of TCAM
entries per state for T'S, TS+TC2, and TS+TC4 for the Scale REs containing 26 REs (with

DFA size 1275) to 34 REs (with DFA size 305,339). The DFA size roughly doubled for

123

2 LR LN t
£ 12 -
7 16 .
L 14t - TS ——
8125 J TS+TC2 -----
(@) & 0 & I msemxe o] TSHTCA o
o Y.Or . N
1000 10000 100000
states
510000 ——rrrrr——rrrr——
S 1000 E | I_%,;,—X: TS Build ——
S ; o ¥ 7 1 TS+TC2Build >~
o 100 Fe g wo W oW W] TS+TC4 Build -
(b) & 10 Ee¥" - TS BW 8-
o L b, "] TS+TC2BW - =~
= i 1 TS+TC4BW --o--
S T
1000 10000 100000
states

Figure 5.13: TCAM entries per DFA state (a) and compute time per DFA state (b) for
Scale 26 through Scale 34.

every RE added. In general, the number of TCAM entries per state is roughly constant and
actually decreases with table consolidation. This is because table consolidation performs
better as more REs with wildcard closures are added as there are more trees with similar

structure in the deferment forest.

We now analyze running time. We ran our experiments on the Michigan State University
High Performance Computing Center (HPCC). The HPCC has several clusters; most of
our experiments were executed on the fastest cluster which has nodes that each have 2
quad-core Xeons running at 2.3GHz. The total RAM for each node is 8GB. Figure 5.13(b)

shows the compute time per state in milliseconds. The build times are the time per DFA

124

state required to build the non-overlapping set of transitions (applying T'S and TC); these
increase linearly because these algorithms are quadratic in the number of DFA states. For
our largest DFA Scale 34 with 305,339 states, the total time required for TS, TS+TC2, and
TS+TC4 is 19.25 mins, 118.6 hrs, and 150.2 hrs, respectively. These times are cumulative;
that is going from TS+TC2 to TS+TC4 requires an additional 31.6 hours. This table
consolidation time is roughly one fourth of the first table consolidation time because the
number of DFA states has been cut in half by the first table consolidation and table
consolidation has a quadratic running time in the number of DFA states. The BW times are
the time per DFA state required to minimize these transition tables using the Bitweaving
algorithm in [31]; these times are roughly constant as Bitweaving depends on the size of
the transition tables for each state and is not dependent on the size of the DFA. For our
largest DFA Scale 34 with 305,339 states, the total Bitweaving optimization time on T'S,
TS+TC2, and TS+TC4 is 10 hrs, 5 hrs, and 2.5 hrs. These times are not cumulative and

fall by a factor of 2 as each table consolidation step cuts the number of DFA states by a

factor of 2.

’glOOOO — T —— T ——
2 OptTC2 ——
E 1000 Opt TC4 --x-
& 100 3 Greedy TC2 --*---
g == @% Greedy TC4 8-~
g 10 ;‘;_:_:,%—:' '—'% -

1000 10000 100000

states

Figure 5.14: Consolidation times for Scale 26 through Scale 34 for Optimal and Greedy
consolidation algorithms.

125

Figure 5.14 shows the time required per state for the greedy and optimal consolidation
algorithms on the Scale dataset. The greedy algorithm runs roughly 6 times faster than
the optimal algorithm. The average increase in the number of resulting TCAM rules is

around 4% for TC2 and around 9% for TCA4.

The partially deferred algorithm given in Section 5.2.2.4 always performs at least as well
as the completely deferred minimization algorithm given in [31]. For the three Snort RE
sets and C613, the partially deferred algorithm results in a reduction of 1, 2, 152, and 194
TCAM entries over the completely deferred algorithm. For the other RE sets, both algo-
rithms perform equally well. The partially deferred algorithm is slower than the completely
deferred algorithm because there are more unique decisions during minimization, so we
use the completely deferred minimization algorithm for computing classifier sizes during
consolidation, and we use the partially deferred minimization algorithm for generating the

final TCAM classifiers for each state.

5.6.3 Results on 7-var-stride DFAs

We consider two implementations of variable striding assuming we have a 2.36 megabit
TCAM with TCAM width 72 bits (32,768 entries). Using Table 5.1, the latency of a
lookup is 2.57 ns. Thus, the potential RE matching throughput of by a 7-var-stride DFA

with average stride S is 8 x S/.00000000257 = 3.11 x S Gbps.

In our first implementation, we only use self-loop unrolling of root states in the deferment

forest. Specifically, for each RE set, we first construct the 1-stride DFA using transition

126

sharing. We then apply self-loop unrolling to each root state of the deferment forest to
create a 7-var-stride transition table. Because of the linear increase in transition table size,
we know that the resulting TCAM table will increase in size by at most a factor of 7. In
all our experiments, the size never increased by more than a factor of 2.25, and the largest
DFA (for C7) required only 2.25 megabits. We can decrease the TCAM space by using
table consolidation; this was very effective for all RE sets except the string matching RE
sets Bro217 and C613. This was unnecessary since all self-loop unrolled tables fit within

our available TCAM space.

Second, we apply full variable striding. Specifically, we first create 1-stride DFAs using
transition sharing and then apply variable striding with no table consolidation, table con-
solidation with 2-decision tables, and table consolidation with 4-decision tables. We use
the best result that fits within the 2.36 megabit TCAM space. For the RE sets Bro217,
C8, C613, Snort24 and Snort34, no table consolidation is used. For C10 and Snort31, we
use table consolidation with 2-decision tables. For C7, we use table consolidation with

4-decision tables.

We now run both implementations of our 7-var-stride DFAs on traces of length 287484
to compute the average stride. For each RE set, we generate 4 traces using Becchi et
al.’s trace generator tool using default values 35%, 55%, 75%, and 95% for the parameter
Pm- These generate increasingly malicious traffic that is more likely to move away from
the start state towards distant accept states of that DFA. We also generate a completely

random string to model completely uniform traffic such as binary traffic patterns which

127

we treat as pp = 0.

We group the 8 RE sets into 3 groups: group (a) represents the two string matching
RE sets Bro217 and C613; group (b) represents the three RE sets C7, C8, and C10 that
contain all wildcard closures; group (c) represents the three RE sets Snort24, Snort31, and
Snort34 that contain roughly 40% wildcard closures. Figure 5.15 shows the average stride
length and throughput for the three groups of RE sets according to the parameter py

(the random string trace is ppq = 0).

Self-Loop Unrolling

20 T T T T I [6
" Group (a) —8— T .
) PR ‘ § iS)
o : c
5 2
bt 43
=) : b
g g
o ()
S — 28
£ 3
<
0 i i i i i i 0
0 0.2 0.4 0.6 0.8 1
Pm
Variable Striding
20 T T T T I [
8. | | Group (a) —=— 71 6 _
Q@ Group (b) ---m--- 5
I o Group () o | 5
:, : AN : : : 4 8
=) = =
2 2
= | 3
o % 2 g
£ 3
<
0 i i i i i i 0
0 0.2 0.4 0.6 0.8 1
Pm

Figure 5.15: The throughput and average stride length of RE sets.

128

We make the following observations. (1) Self-loop unrolling is extremely effective on
the uniform trace. For the non string matching sets, it achieves an average stride length
of 5.97 and 5.84 and RE matching throughput of 18.58 and 18.15 Gbps for groups (b)
and (c), respectively. For the string matching sets in group (a), it achieves an average
stride length of 3.30 and a resulting throughput of 10.29 Gbps. Even though only the
root states are unrolled, self-loop unrolling works very well because the non-root states
that defer most transitions to a root state will still benefit from that root state’s unrolled
self-loops. In particular, it is likely that there will be long stretches of the input stream
that repeatedly return to a root state and take full advantage of the unrolled self-loops.
(2) The performance of self-loop unrolling does degrade steadily as py tncreases for
all RE sets except those in group (b). This occurs because as py, increases, we are more
likely to move away from any default root state. Thus, fewer transitions will be able to
leverage the unrolled self-loops at root states. (8) For the uniform trace, full variable
striding does little to increase RE matching throughput. Of course, for the non-string
matching RE sets, there was little room for improvement. (4) As pp increases, full
variable striding does significantly increase throughput, particularly for groups (b)
and (c). For example, for groups (b) and (c), the minimum average stride length is 2.91
for all values of ppq which leads to a minimum throughput of 9.06Gbps. Also, for all
groups of RE sets, the average stride length for full variable striding is much higher than
that for self-loop unrolling for large ppq. For example, when pyy = 95%, full variable
striding achieves average stride lengths of 2.55, 2.97, and 3.07 for groups (a), (b), and (c),

respectively, whereas self-loop unrolling achieves average stride lengths of only 1.04, 1.83,

129

and 1.06 for groups (a), (b), and (c), respectively.

These results indicate the following. First, self-loop unrolling is extremely effective at
increasing throughput for random traffic traces. Second, other variable striding techniques

can mitigate many of the effects of malicious traffic that lead away from the start state.

130

Chapter 6

Overlay Automata

In this section we present our overlay automata model for handling DFA state replication,

and the implementation of the overlay automata in both software and hardware.

6.1 Introduction

As discussed in Section 3.2, the main reason for redundancy in a DFA is state replication,
which causes the exponential increase in the size of the DFA as multiple REs are combines.
Ideally we would like to build an automata whose size is proportional to a NFA and
matching speed close to that of a DFA. We achieve this goal using our new overlay automata

model.

131

6.1.1 Limitations of Prior Automata Models

DFA-based automata models have been developed to address DFA space explosion. T'wo
representative models are D2FA proposed by Kumar et al. [26] and XFA proposed by Smith
et al. [41]. D?FAs reduce the number of transitions stored per state by using deferred
transitions to compactly represent common transitions, 7.e., the transitions with the same
input character and destination state. This elegant solution can be automated; however,
it only handles transition sharing, and does not address state replication, and resulting
replicated transitions. So although there is a huge reduction in space required, it is still
proportional to the number of DFA states, which grows exponentially with the number of
REs in the RE set. XFAs deal with state replication using scratch memory and auxiliary
code stored at each state that must be executed before or after each transition. This
interesting solution models state replication; however, it cannot be fully automated [50].
Furthermore, the code that needs to be executed for each transition limits the throughput

that can be achieved.

Our technique of table consolidation presented in Section 5.3 actually exploits state repli-
cation to reduce the size of TCAM required, but it does so accidentally. That is, table
consolidation works well because of state replication, but the the technique is oblivious
to state replication. The algorithm does not explicitly search for replicated states, it only
looks for state pairs that are good matches for consolidation. But replicate states are
usually good matches for consolidation, and so states that are consolidated together are

usually replications of the same NFA state. There are several limitations of table consoli-

132

dation because of which state replication is not fully exploited. First, there is a practical
limit on the number of TCAM tables that can be consolidated. For instance we only con-
sider consolidating 4 tables together. Thus, table consolidation can only lead to a constant
factor reduction in TCAM storage no matter how much state replication exists in the DFA.
So the final TCAM size can still be exponential in the size of the RE set. Ideally we would
like to combine together all the replications of a NFA state. Second, table consolidation
does not reduce the associated SRAM required to store decisions because although the
TCAM entries are merged, the decisions are not. Furthermore, the SRAM required by

table consolidation might increase due to imperfect merging of tables.

6.1.2 Summary of Overlay Automata Approach

We developed a new overlay automata model which exploit state replication to compress
the size of the DFA. The idea is to group together the replicated DFA structures instead
of repeating them multiple times. We briefly describe here the overlay automata model

and how the automata is implmented in software and hardware.

6.1.2.1 Overlay DFA

We propose Overlay Deterministic Finite state Automata (ODFA) that models state
replication in DFAs. The basic idea is to overlay all the DFA states that are replications
of the same NFA state vertically together into what we call a super-state. If we view a

DFA as a 2-D object, then an ODFA can be viewed as a 3-D object. Figure 6.2 depicts

133

the DFA and ODFA for the RE set {/abc/, /abd/, /e.xf/}. The ODFA model gives
us the following key benefits. Furst, 1t allows us to easily identify replications of the
same NFA state as they are all in the same super-state. For example, in Figure 6.2, we
merge states 0 and 5 and states 1 and 6 into super-states Sy and Sy, respectively. Second,
1t allows us to represent replications of the same NFA transition by one super-state
transition between two super-states. For example, for any NFA transition from s7 to s;
on character o, in the corresponding ODFA, all replications of state s; are in the same
super-state say Sp, all replications of state s, are in the same super-state say S;, and
all replicates of state s; have a transition on o to their corresponding replicates on state
sy. We merge these replicate transitions into one combined super-state transition from
super-state S; to super-state S, on character 0. For example, in Figure 6.2, we merge
the two transitions from states 0 and 5 on character ‘a’ into one super-state transition on

character ‘a’.

6.1.2.2 Overlay D2FA

Combining our overlay idea, which models state replication and replicated transitions, and
the delayed input idea in D®FA, which models sharing non-replicated transitions among
non-replicated DFA states (z.e. trans