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ABSTRACT

PL INVOLUTIONS ON

LENS SPACES AND OTHER 3-MANIFOLDS

BY

Paik Kee Kim

This thesis is to complete the classification problem

for sense preserving PL involutions with non-empty fixed

point sets on 3-dimensiona1 lens spaces L = L(p,q). The

classification problem for PL involutions on the pro-

jective 3-space P3 as well as that for PL involutions

on P3 # P3 will be settled. The principal results are

the following theorems.

Theorem 1: If h is an orientation preserving PL

involution on L(p,q), p even, which preserves sense and

has non-empty fixed point set F, then F is a disjoint

union of two simple closed curves.

Theorem 2: Up to PL equivalences, there is exactly

one orientation preserving PL involution on L(p,q), p

even, which preserves sense and has non-empty fixed point

set.

Corollary 3: Up to PL equivalences, there is exactly

one orientation preserving PL involution on P3 with non-

empty fixed point set and there is exactly one free

involution on P3.
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Theorem 4: Let h be an orientation preserving PL

involution on a lens space L = L(p,q), p even, which pre-

serves sense and has non-empty fixed point set . Then there

exists a PL equivariant homeomorphism t on L such that

t interchanges the two components of Fix(h) if and only

if L is symmetric.

Corollary 5: Let h be an orientation preserving PL
 

involution on P3 # P3. If Fix(h) = ¢ or Fix(h) is con-

nected, h is the obvious involution which interchanges

the two P3. If Fix(h) is not connected, Fix(h) is a

disjoint union of three simple closed curves and there is

exactly one such h, up to PL equivalences.
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INTRODUCTION

An involution h of a lens space L = L(p,q) is

called sense preserving if h induces the identity of

H1(L). The purpose of this thesis is to classify the ori-

entation preserving PL involutions of L which preserve

sense and have non-empty fixed point sets for p even. As

results, this thesis will lead a complete classification of

the PL involutions on the projective 3-space P3 as well as

that of the PL involutions on P3 # P3.

We work in the piecewise linear (PL) category. All

PL involutions are known on 83 (see Livesay [5,6] and

Waldhausen [20]) and on 81 x 82 (see Fremon [3], Kwun

[8], Tao [18], and Tollefson [19]). Therefore, in this the-

sis we will not consider S3 and S1 x 52 as lens spaces.

Kwun [9,10] classified all orientation reversing PL involu-

tions of L and all orientation preserving PL involutions

of L(p,q), p Egg, which preserve sense and have non-empty

fixed point sets. The classification problem of the (sense

preserving) free involutions on L(p,q), p > 2), is still

open, bUt the prdblem on P3 will be solved by using Rice's

work [15]. It will be shown that, up to PL equivalences.

there are exactly three PL involutions on P3.

Let Mi (i = 1,2) be oriented 3-manifolds and hi be

involutions on “1' If there is a suitable invariant 3-cell

l



in each Mi' by taking the connected sum M1 # M2, along

the 3-cells, one can define an involution, denoted by

hl # h2, on M1 #M2 induced by hl and h2' The connected

sum M1 # M2 is obtained by removing the interior of a nice

invariant 3-ce11 from each, and then matching the resulting

boundaries using an orientation reversing equivariant homeo-

morphism. Notice that hl # h2 depends on the choice of

the invariant 3-cells along whose boundaries the connected

sum is constructed. All orientation reversing involutions on

L(p,q) # L(p,§) are known ([7], [13], [16]). We will also

investigate some orientation preserving PL involutions on

L(p,q) # L(§,§). As a consequence, up to PL equivalences,

there are exactly seven PL involutions on P3 # P3.



CHAPTER I

FIXED POINT SETS

In this chapter we shall study the fixed point set of

an orientation preserving involution on a lens space

L = L(p,q) which preserves sense and has non—empty fixed

point set.

Lemma 1.1: Let X be a m-manifold which has a con-

tractible universal covering space. If H1(X) is of rank

2 n and there is a short exact sequence O-oA-fi H1(X) S Zp 4 0

where A is a free abelian group of rank n, then H1(X)

is a free abelian group of rank n.

Proof: Let be a basis for A. Since

[ai]i = l,2,---,n

f is a monomorphism, we simply identify A 'with the image

f(A). Let t be an element of' n1(X) such that g(t) gen-

erates Zp' Then H1(X) is generated by the ai and t.

Denote the image of an element e of nl(x) by 5 under the

natural homomorphism of H1_ to H1. Let Q be the ration-

als. H1(X7Q) = H1(X) 3 Q is generated by the 51 ® 1 and

t ® 1. Since g(tp) = 0, tp E A, and tp = pt is gener-

ated by the Si (notice that we shift from the multiplica-

tion notation '25 to the additive notation pt as H1(X)

is abelian) . Hence pt® 1 E ([51 ® 1}) which is Q-submod-

ule of H1(X) ® Q generated by the Si ® 1. Hence,

'E e 1 e ((51% 11>, and ((51 e 1D = H1(X) a Q. Since

3



H1(X) ® Q is a vector space over Q of rank 2 n, {Si ® 1]

is a basis for H1(X) 8 Q. Since A is a normal subgroup

k._ n

of H (X), t la.t = H a.J for some k.s'. Abelianizing

l n 1 j=1 j n 3

it, a. = k.a.. Hence -. l = k. 5. ® 1 . Hence

1 3&1 J 3 a1 ‘8 32:31 3( J )

ki = 1 and kj 0 if j # i. Therefore, n1(X) is abel-

ian. Since 0 4 A 4 n1(X) 4 Zp 4 O is exact and Q is

torsion free, A ® Q = H1(X) 8 Q. Since H1(X) is a finite-

ly generated abelian group, nl(X) is of rank n. But no

non-trivial finite group can act freely on a finite dimen-

sional contractible space (due to P.A. Smith [4], 287).

Therefore, n1(X) has no torsion subgroup. This completes

the lemma.

Definition 1.2: Let M1 and M2 be PL manifolds.

Two PL homeomorphisms hi on Mi (i = 1,2) are

called PL equivalent if there is a PL homeomorphism t of

M onto M such that h t = th In this case t is

1 2 2 1'

called PL equivariant with respect to h1 and h2° We some-

times denote the fact by h1 ~ h2.

When hi (i = 1,2) happen to be involutions on

M. obviously any equivariant map t sends the fixed point
1'

set of h onto the fixed point set of h

l 2'

Definition 1.3: Let h be an involution on a space M.
 

The quotient space M/Z2 of M generated by h is called

the orbit space of h and the projection g: M 4 M/Z2 is

called the orbit map of h. ‘We denote the fixed point set

of h 'by Fix (h).



The following theorem is due to Stallings [17].

Theorem (Stallings): If M is a compact irreducible

connected 3-manifold, and if‘ n1(M) has a finitely gener-

ated normal subgroup K different from Z whose quotient
2!

group is Z, then M is the total space of a fiber space

with base space a circle and with fiber a connected 2-mani-

fold T embedded in M. whose fundamental group is K.

Let D2 be the unit disk in the Gaussian plane of com-

plex numbers and 81 its boundary. D2 x S1 is a solid

torus whose points can be denoted by (pzl,zz) where

1
21,2 6 S and O s p s 1.

2

Lemma 1.4: The orbit space of a free PL involution h

on D2 x S1 is homeomorphic to a disk bundle over $1, and

h is PL equivalent to an involution h1 given by either

h1(pzl,zz) = (pzl,-zz) or h1(pzl,zz) = ( p21,-22).

Proof: Since h is free, the orbit space D2 x 81/22

is a connected orientable compact 3-manifold with boundary.

2 1 _ _
x S /Z2 93 — O and p0 — 1.

Since D2 X 51/22 is covered by D2 x 81, we have a short

Hence the Betti numbers of D

exact sequence 0 4 Z 4111(D2 x Sl/ZZ) 4 Z2 4 0. Since

X<D2 x 51) = 2'X(D2 x 51/22). X(D2 x 51/22) = 0. Hence plzzl.

By Lemma 1.1, 111(D2 x 31/22) = Z. On the other hand,

D2 x Sl/Z2 is irreducible as it is covered by D2 x 81.

Therefore by Stallings' theorem, D2 x 81/22 is homeomor-

phic to a disk bundle over 81. That is, D2 x 81/22 is a

solid torus or a non-orientable disk bundle over 81, according



to h preserving or reversing the orientation. Let h and

h’ be any two orientation preserving (or reversing) free

PL involutions of D2 x 81. Let t’ be a PL homeomorphism

between the two orbit spaces of h and h’.

Consider the following diagram.

9

s1 \D2 xslg‘h’X

9i 9’

ti

1:)2 x 31/22 2

 r1191)2

>1) x 81/22 

where g and g’ are the orbit maps of h and h’ res-

pectively.

Since g#[I11(D2 x 81)] = ZZ c: 1'11(D2 x 51/22) = Z,

by the lifting theorem, we have a PL homeomorphism t of

2

D x S1 which makes the above diagram commutes. It follows

that th = h’t. This completes the Lemma.

Remark 1.5: Let h be a PL involution of a finite tri-

angulated n-manifold M1. It can be shown that h becomes

simplicial after a suitable subdivision such that the fixed

point set of h is a subcomplex of the subdivision M2. Let

M be the second barycentric subdivision of M2. Then it is

easy to check the following properties: (1) F is full sub-

complex of M (2) the orbit map 9 of h and the orbit

space of h are simplicial and g maps each simplex homeo—

morphically.



The following result seems to be well-known and freely

used by various authors ([10], [19]). For the sake of com-

pleteness, we give a proof.

Lemma 1.6: Up to PL equivalences, there exists exactly

one PL involution h of D2 x S1 with the center circle as

the fixed point set.

Proof: We first show that the orbit space of h is a

solid torus. Let M 'be a triangulation of D2 x S1 as in

Remark 1.5 and U be the simplicial neighborhood of the

center circle F in M. Then U m D2 x S1 is an invariant

neighborhood and U’ = g(U) is a simplicial neighborhood of

F’ = g(F) where g is the orbit map of h. Since h is

orientation preserving, the orbit space M’ of h is an

orientable manifold. Since U’ is orientable, (U’,F’) e

(D2 x SI, 0 x 81). 'We want jfl1(M’ - U”) = Z @ Z. Since

M- ’~ S1 x S1 x I, X(M-U) = O, and x(M’-U’) = 0. But

i Z

H2(M’-U’: Q) a H2(M-U: Q) 2 which is 22-invariant homol-

ogy with rational coefficient Q (for the proof, see Floyd

[2]). By the definition of Z -invariant homology,
2

Z

H2(M-U: Q) 2 = {album = a. a e Hzm-U: on 2: {a1h.(a) = a.

a e H2(S1 x 51: Q)] where S1 x S1 is the boundary of hd-IJ

and h’ = h|S1 x 81. Since h’ preserves the orientation,

the induced isomorphism h; is the identity, and

H2(M’ - U’; Q) = Q. Hence the Betti number of H2(M’ - U’)

is p2 = 1. Since X(M’ - U’) = O, H1(M’-U’) 'is of rank

2. Since M’-U’ is covered by M- U, by Lemma 1.1,



n1(M’-U’) = Z @ Z. Therefore, by Stallingsf theorem,

L’-U’ is fibered over a circle with fiber T and ‘n1(T)==Z.

Since T is a connected 2-manifold, T would be S1 x I or

mobius band. But since L’-U’ is orientable, T is orient-

able, and T must be S1 x I. Thus L’-U’ may be obtained

from S1 x I x I by identifying each (x,0)(x e S1 x I)

‘with (f(x),l) ‘where f is a homeomorphism of S1 x I.

Since the number of components of M’-U’ is two, f car-

ries Slix i onto S1 x i (i = 0,1). Hence, since M’-U’

is orientable, f must preserve the orientation, and it can

22be shown that f is isotopic to the identity. Hence M’-U’

S1 x S1 x I. Since U’ is a solid torus, M’ must be a sol-

id torus. Let ‘h be the PL involution of D2 x S1 given by

'h(pzl,zz) = (-pzl,zz). Let ‘H be a triangulation of szs1

with respect to_ h’as in Remark 1.5, ‘6 the simplicial neigh-

borhood of the center circle ‘3 in ‘M, ‘M’ the orbit space

of h and ‘5 the orbit map of B. By the above argument,

M’ = D2 x s; U S1 x S1 x I = HY where g(U) = D2 x S1 = 3(5)

and S1 x S1 is the boundary of D2 x 81. Since U and V

are invariant simplicial neighborhoods of the fixed point

sets, one can find invariant 2-cells C and D regularly

embedded in U and V as subpolyhedra, respectively. Con-

sider the following diagram.



’
0

ham-F = (Dz-O) x s1

[g

(DZ-O) x81 U SlelxI»

 

->(D2-0)xsluslxslxr
 

where we will define a PL homeomorphism 1 later. Let (1,0)

be generators of' H1(M"F) and n1(fi-P) represented by the

path ac and 5D in M and ‘M, respectively. For the

sake of briefness, again (1,0) and (0,1) be the canoni-

cal generators of’ I11(S1 x 81) ‘which are the fundamental

groups of M’-F’ and M’-P’ where P” = g(P) and Sle1

is the boundary of U’ = D2 x S1 = 3’. Without loss of gen-

erality, we may assume that (1,0) are generated by g(aC)

and 9(aD) of g(aU) and ‘§(3U), respectively. The in-

duced homomorphism g# sends (1,0) to (2,0), so that

g# (Z a Z) = 22 + ((d,e)) where g#[(0,l)] = (d,e) for some

integers d and e, and ((d,e)) is the subgroup of

111(81 x 81) generated by (d,e). Since 9 is the double

covering projection, ((d,e)) can not be contained in

((1,0)). Moreover, ((1,0)) n ((d,e)) = [0] since other-

wise <(d,e)> c ((1,0)). Hence <(1,0)> + ((d,e)) = <(1,0>@

<(d.e)>. and g#(z e 2) = 22 e <(d.e)>. Since [n1(slxsl):

22 e <(d.e>>J = 2. [I11(Slx81)= z e <(d.e)>J = 1. and

n1(S1 x 81) = Z ®‘<(d,e)>. Since g(C) and g(D) are reg-

ularly embedded in U’ and H’ as subpolyhedra, there ex-

ists a PL homeomorphism q’ of U’ onto V’ carrying g(C)

onto ‘§(D). Hence there exists an extended PL homeomorphism

q of ‘M’ onto H’. Therefore, q# sends (1,0) to (1,0)
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and (d.e) to (a.b>. and q#<z e <<d.e)>) = z o <(a.b)> =

n1(S1 x 81). We may assume b = 1. Define a PL homeomor—

. ~ 2 1 ' -a
phism t’ of V’ = D x S by t’(pzl.zz) = (pzl.z2 ,22).

Since M’ = D2 x S1 U S1 x S1 x I, there exists an exten-

sion t on ‘H’. Now define L = tq. Let m be the nice

1
path generating (0,1) of’ I11(S1 x S ) ==n1(fi’ - P’). Con-

sidering the action of ‘h and the fact that V is the in-

variant simplicial neighborhood of P, g_ (m) is a disjoint

union of two simple closed curves. Denote one of them by m’.

Let a be an element of’ n1(HF-F) represented by the path

cp’. Then §‘#[(1,0)] = (2,0) and §#(a) = (0,1), and

((1,0)) n <a> = [0]. Suppose the contrary that <(l,0)> @

(d) is a proper subgroup of ‘nl(M-V§). Then since 34 is

monomorphism, ((2,0)) @‘<(0,1)> is a proper subgroup of

g#[n1(FI-'F")J. But [n1~<§m-F))=§#arlm-F>)J= 2. There-

fore [’§’# (ulnar-r): <(2,0)> e ((0,1)>] = 1. This is a con-

tradiction. Let us look at the following diagram which is a

concentration of the work done so far.

 

  

n1(M-F)=zez snlm-r‘)=ze<a>

(1,0) (001) (1,0) (I

.# J i .#

V1 1(2.0) <d.e> z, .11 1 (2.0) (0.1)
 

H1(S xS)=Z®Z $H1(S xs=zez

1

( 0

and L#g#(0,l) = (0,1). Hence by the lifting theorem, we

Since t# = -i ), one can check that L#g#[(l,0)]==(2,0)

have a PL homeomorphism f which makes the following diagram

commute



11

l f

 

1119(1)2 - 0) x s

l i...
g ,9

i’ 1 1 'Y 1
(D2- 0) x s )(02 — 0) x s

~--—->(D2 - O) x Slg’h’

 

1 = gm)2 - 0) x sl). EHDZ - 0) x 51).‘where (D2 - O) x S

Hence fh ='hf. One can extend f to D2 x S1 in an obv-

ious way such that fh = hf on D2 x 51. This completes

the lemma.

Let h be an orientation preserving PL involution on

a lens space L = L(p,q) ‘which preserves sense and has non-

empty fixed point set F. By the dimensional parity theo-

rem, each component F of F is of l-dimension, and F

O

is a simple closed curve. Let U be a regular neighbor-

O

hood of F0 such that U n F = F0.

ering projection g: S3 4 L. By the lifting theorem, we

bConsider the usual cov-

have a PL involution 'h:(S3,yO) 4 (S3,y0) 'where g(yo)(EFd

Suppose h is sense preserving. Then g-1(F ) is connect-

-1

O

 

ed, and ‘F = 9 (F0) is the fixed point set of 3} By

Waldhausen [20], F is an unknotted simple closed curve. Hence

33 - g-1(U) is a solid torus, and. L-U is a solid torus.

An explicit argument of the above may be found in [10].

Theorem 1.7: If h is an orientation preserving PL

involution of L = L(p,q), p even, which preserves sense

and has non-empty fixed point set F, then F is a disjoint

union of two simple closed curves.
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Proof: By the above discussion, L = D2xS1 Uk Sl)(D2

such that D2 x S1 is an invariant regular neighborhood of

a component of F for an attaching map k of S1 x 81.

Denote hID2 x S1 and hls1 x D2 by hi and hé, respect-

ively. Suppose the contrary that Fix (hé) = ¢. Define h1

on D2 x S1 by h1(pzl,zz) = (-pzl.zz). By Lemma 1.6, there

exists a PL homeomorphism t’ on D2 x S1 such that

h1 = t’hit’-1. Define t of D2 x S1 Uk S1 x D2 onto

D2 x S1 Ukt’-1 S1 x D2 by the following:

t = t’ on D2 x S1

l 1 2
t = identity on S x D

It is a well defined PL homeomorphism. Define h’ on

2 1 l 2

D xs u -15 xD by K=tht"1. Since h1=t’h]’_t"l,

kt’

h|D2 x51 = h1 and ‘h|Sl x D2 = hé. It is checked that h

is a PL involution, and h and h' are PL equivalent. Hence

'we may assume that h(pzl,22) = (-pzl.zz) on D2 x 51. By

Lemma 1.4 and the similar argument as the above, we may fur-

ther assume that h(zl,pzz) = (-zl,pzz) on S1 x D2 since

Fix (h) = ¢. That is, we may assume that L=D2 x 51 Uf 81 x D2

for an appropriate attaching map f of S1 x S1 and h is

given by h(pzl,zz) = (-pzl,zz) on D2 x S1 and h(zl,pzz)

(-zl,pzz) on S1 x D2. Consider the following commuta-

tive diagram



 

 

f
81 X 51 A/ 51 X Sl

Cpl [ cp f

/ X A2

D2 x S1 81 x D2

V

L(p.q)

where m1 and $2 are the inclusion maps.

Let (1,0) and (0,1) be the canonical generators of

1'11(S1 x 51) such that f (1,0) = (a,b) and f (0,1) = (c,dL

# #

where f# is the isomorphism induced by f (we disregard

the base point as I11(S1 x Sl,*) is abelian). We may as—

sume that I: 3| = 1. One can show that by Van Kampen

theorem. H1(L) = [mBl Bc= a. Ba = 1} = (B! Ba= 1} where

a and B are the canonical generators of’ I11(D2 x 51) and

111(8l x D2), respectively. Since n1(L(p,q)) = Zp, a = ip,

A

and a is even. Let g and g be the orbit maps of

MD2 x S1 and h]S1 x D2, respectively. Then by Lemma 1.4

and the proof of Lemma 1.6, g(D2 x 81) and 3(51 x D2) are

solid tori. Consider the following diagram

f

D2 x s1 a s1 sl---——————,ls1 x s1 c s1 x 132

I I
A

g

X

l/ f ’
D2x813S1x51 Aslxslcslxn2

L
Q

 

. A .

where g’ and 8’ are induced by g and g, respective—

ly and f’ is the induced attaching map in the orbit space

A

of h. Notice that g#(r,s) = (2r,s) and g#(r,s) = (2r,s)

l 1
for any element (r,s) E H1(S x S ). Let fé[(l,0)]= urfibfi
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and f#[(0,l)] = (c’,d’). By chasing the above commutative

diagram, easy computation shows that b = 2b’, and b is

even. Since a is even, we have a contradiction to the

fact ad - bc = 1. Therefore, Fix(hlS1 x D2) can not be

empty. By Tollefson [l9], Fix(hlSl x D2) is a simple

closed curve. This completes the proof.



CHAPTER II

PL INVOLUTIONS ON SOME 3-MANIFOLDS

In this chapter, we will investigate all orientation

preserving PL involutions on L(p,q), p even, which pre-

serve sense and have non-empty fixed point sets.

Kwun [9] considered all orientation reversing PL invol-

utions on lens spaces, and proved that no lens space except

the projective 3-space P3 admits an orientation reversing

PL involution and there exists exactly one orientation re-

versing PL involution on P3, up to PL equivalences. In

this case, the fixed point set is a projective plane P2 plus

an isolated point. Using this result applied to Kim and

Tollefson's work [7] and Showers"work [16], the orientation

reversing PL involutions on the connected sum of two lens

spaces are easily classified. Myung [13] initiated this

problem and gave a partial solution. We will also study all

3 as well asorientation preserving PL involutions on P3 # P

those on P3. Kwun [10] also showed that up to PL equival-

ences, there is exactly one orientation preserving PL involu-

tion h on L = L(p,q), p ggg, which preserves sense and

has non-empty fixed point set if L is symmetric and there

are exactly two such h if L is non-symmetric. In the

latter case, the two different orbit spaces are L(p,q’) and

L(p,q”) where 2q’ 2 i q and 2q”q a *1 mod p. In either

case, Fix(h) is a simple closed curve.

15
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Let (1,0) and (0,1) be the canonical generators of

fll(Sl x 81) and k be a PL homeomorphism on S1 x S1 such

that k#[(1,0)] = (a,b) and k#[(0,l)] = (c,d). We may

assume I: g] = 1 and a 2 O.

l 2
2xSJ'U-kS xDDefinition 2.1: Define Lk(a,c,b,d) = D

where l: E] = 1 and a 2 0. We sometimes denote

Lk(a,c,b,d) by Lk if no confusion arises.

By Mangler [11], the isotopy classes of homeomorphisms

of S1 x S1 are precisely the automorphism classes of

111(81 x 81). Hence, the integers a,b,c and d completely

determine the isotopy class of k in Definition 2.1, and

hence the homeomorphic type of Lk(a,c,b,d). As Kwun [10]

pointed out, if a = 0, Lk is homeomorphic to S1 x 32, if

a = l, Lk is homeomorphic to $3, and if a > 1, Lk is

homeomorphic to L(a,b). Recall that L(p,q) is homeomorphic

I

to L(p,q’) ifandonly if q a i q or qq’ a 1:1 modp [12,14].

Lemma 2.2: Let h be a PL involution of Lk(aoC.b.d)

such that h(D2 x 51) = D2 x S1 and h is given by

2

h(pzl,zz) = (“921.22) on D x S1 and h(zl,p22)==(zl,-pzz)

on S1 x D2. Then the orbit space of h is homeomorphic to

Lk,‘(%,c,b,2d), and a is even, where k’ is the attaching

map induced by k.

Proof: By Lemma 1.6, the orbit space of hID2 x S1

2
and hISl x D are solid tori. Hence the orbit space of
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h is homeomorphic to Lk,(p’,c’,b’,d’) for suitable k’,

p’,b’,c’ and d’. Consider the following diagram.

 

 

 

k

szslzslxsl >slxslcslxn2

9i 9’

, .

D2 xSlZDSlel k >Sl'..x SlcS1 xD2

where g and g’ are induced by the orbit maps of h]D2xS1

and h|S1 x D2, respectively. Notice that g#[(l,0)] =

(2.0). g#[(0.1)] = (0.1). g;[(1.0)] = (1.0) and g#[(0.1)]=

(0,2). Easy computation shows that p = 2p’, b = b’, c==c’

and 2d = d’. Hence the orbit space of h is homeomorphic

to Lk,(§,c,b,2d). This completes the lemma.

Definition 2.3: Let p be even and a homeomorphism f

of S1 x S1 be given by f(zl,22) = (z§z§,z?zg). Define

an involution of Lf(p,c,b,d) by h(pz1,zz) = (-pzl,zz) on

2 l l 2

D x S and h(zl,pzz) = (21,-pzz) on S x D . ‘We denote

the involution by h(p,c,b,d).

In the above definition, since p is even and b is

odd (recall that pdebc = 1), one can easily check that

h = h(p,c,b,d) is compatible with the attaching map, i.e.,

fh = hf.

Lemma 2.4: Let hi(i = 1,2) be PL involutions on

L. = Lf (a,c,b,d) such that hi(D2 x 81) = D2 x 51, and

i
J.

1
hi(le.zz) = (-le.22) on 92 x s and hi(zl,pzz) =

1 2
(21,-p22) on S x D . Then hl and h2 are PL equivalent.



18

Prgof: By Lemma 2.2, the orbit spaces of hi are

homeomorphic to Lf,(%,c,b,2d) for some attaching maps f1.

i

Hence f1 and f’ are isotopic, and there exists a level
2

preserving PL homeomorphism H of S1 x S1 x I such that

I _ I _ 0 o u 1 l o

H1 1 — f2 and H0 — identity. Since S x S x I 18 a

boundary collar of S1 x D2, there exists a PL homeomorphism

t’ of S1 x D2 c L , onto S1 x D2 c L , such that t’f’==
f1 f2 1

I ' ' . _

f2. Define a homeomorphism t1. Lfl 4 Lfé by t1(pzl,zz)-—

2 1
(pzl.zz) on D x S and tl(zl,pzz) = t’(zl,pzz) on

S1 x D2. One can check that t1 is well defined. Consider

the following diagram.

. 2 .

1‘149 L1 'F11 F12”"""“‘“““_ I'2 — {F21 F22G h2

I

igl 392

' t1 I
_ I _ I ..._...,.._-,...-._ _ I _ I

Lfi F11 F12 '9 sz’ F21 F22

where Fij (j = 1,2) are the components of the fixed point

set Fi of hi' gi are the orbit maps of hi and

_ I

Since S1 x D2 is a regular neighborhood of Pi ,

2
_ _ 2 l _ _ 2 _ 1

Fi)—II1(D xs Fil)—II1((D 0) x5).

1 2

Since t1 is identity on D2 x 81, by the lifting theorem,

II‘Li'Fi

we have a lifting t such that the above diagram computes.

One can extend t to whole L1 in an obvious way such that

thl = h2t on L1. This completes the proof.
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Remark 2.5: Let h be an orientation preserving PL in-

volution h of L = L (p,q) , p even, which preserves sense and has

non-empty fixed point set.’ By Tollefson [19], any orienta-

tion preserving PL involution on S1 x D2 ‘with non—empty

fixed point set is PL equivalent to the involution h’ giv-

en by h?zl,pzz) = (21,-pz2). Therefore, by using same

technique as in the proof of Theorem 1.7, we may assume that

L = D2 x S1 Uf S1 x D2 for an appropriate attaching map f

and h is given by h(pzl,22) = (-pz1,zz) on D2 x s; and

h(zl,pzz) = (21,-pzz) on S1 x D2. Hence, by Lemma 2.4, we

may assume h = h(p,c,b,d) on Lf(p,c,b,d) where f is

. _ p c b d .
given by f(zl,22) — (2122,2122). Since Lf(p,c,b,d) ~

L(p,b), b E iq or bq a 11 mod p. By Lemma 2.2, the or-

bit space of h is homeomorphic to L(gub) where b E iq

or bq - i1 mod p.

Proposition 2.6: h = h(p,c,b,d) can be extended to

an effective circle action.

Proof: For each Z 6 81, define Sl-action by

_ 2 l _z.(pzl,z2) _ (pzlz,zz) on D x S and z ~(zl.pzz) -

(zlzP,pzzzb) on S1 x D2.

Remark 2.7: If an involution h of L(p,q) can be

extended to an effective circle action, h must be clearly

sense preserving. By Proposition 2.6, h(p,c,b,d) is sense

preserving. Therefore, by Remark 2.5, the classification

prOblem of orientation preserving PL involutions of L(p,qL
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p even, which preserve sense and have non-empty fixed point

sets is the same problem as the classification of those

h(p,c,b,d) for various possible c,b,d with pd-cb = 1.

The information that we have is that bq a i]. or b ic;

mod p.

Now we analyze the involution h(p,c,b,d). If h(p,c,b,d)

is equivalent to h(p,c’,b’,d’), we denote the fact by

h(p.C.b.d) ~ h(P.C’.b’.d’)-

Lemma 2.8: For any integers c,b,d with pd-cb = l,

(l) h(p,b,c,d) ~ h(p,c’,b,d’) for any integers c’ and

d’ with pd’-c’b = l.

(2) h(p,c,b,d).~ h(p,c,b+mp,d+mc)

(3) h(P.C.b.d) ~ h(P.-C.-b.d)

(4) h(P,C,b,d) ~ h(pI-bo-cod)

Proof: We will define a homeomorphism t: Lf 4 Lf,

where Lf = Lf(p,c,b,d) and LE,

to the equivalent involution claimed in (i), i = 1,2,3,4.

is the space corresponding

In (1), since pd-bc = l : pd’ - bc’, c’ = c+mp, d’= d+mb

for some integer m. Define t: Lf 4 Lf, by t(pz1.22) =

-m 2 l
(pzlz2 ’22) on D x S and t(zl,p22) — (zl,p22) on

1 2 .
S x D . For (2), difine t. Lf 4 Lf, by t(pzl,zz) _

2 _ m
(pzl,zz) on D x S and t(zl.p22) - (zl,pzzzl) on

1 2 .

s x D . For (3), define t. Lf 4 Lf, by t(pzl.22) —

-l 2 l _ -1 l 2
(pzl.z2 ) on D x S and t(zl,pzz) — (zl,pz2 ) on S )cD.

For (4), define t: Lf 4 Lf, by t(pzl.22) = (zz,pzl) on

D2 x S1 and t(zl.pz2) = (pzz.zl) on S1 x D2 such that
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t(D2 x 81) = S1 x D2. It is checked that those t are well

defined and equivariant homeomorphisms. This completes the

proof.

Now we are in a position to state our main theorem.

Theorem 2.9: Up to PL equivalences, there is exactly

one orientation preserving PL involution on L(p,q), P

even, which preserves sense and has non-empty fixed point set.

Proof: By Remark 2.7, we will consider two involutions

h = h(p,c,b,d) and h = h(p,c’,b’,d’). Let L =
1 2 l

Lf(p,c,b,d) and L2 = Lf,(p,c’,b’,d’) corresponding to h1

and h respectively. Since L z L(p,b) and L m

2' 1 2

L(p,b’), b 5 ib’ or bb’ :— ilmod p. If b s ib’mod p,

b = ila’+ mp for some integer m. By (1), (2), and (3)

h1‘~ h2. Suppose bb’ a $21 mod p. Since pd - bc = 1,

b’ = i<2+ mp for some m. By (1), (2), (3), and (4), again

h1 ~ h2. This completes the theorem.

Now consider free Zz-action h on p3. The orbit

space M of h is a closed 3-manifold. Since we have a

universal covering projection S3 4 P3 4 M, the order of

film) is 4. and IIl(M) =z @922 on 2 . Epstein [1]
2 4

completely determined all possible abelian groups which can

be fundamental groups of closed 3-manifolds: Z, Z @ Z a z,

Z a 22, and Zr' Hence H1(M) should be Z4. Hence

83/24 = M. Rice [15] discussed free Z4-action on 83. As a

consequence of the discussion, M = L(4,1). Since every
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involution on P3 is sense preserving, by Theorem 2.9 and

the above discussion, we have the following Corollary.

Corollary 2.10: Up to PL equivalences, there is exact-

ly one orientation preserving PL involution h on P3 with

Fix(h) # ¢ and there is exactly one free involution on

P3.

Definition 2.11: L(p,q) is called symmetric if

i1 mod p..
Q m

Since L(p,q) and L(p,q’) are homeomorphic if and

I

only if q’ a TC} or qq s 11 mod p, L being symmetric

is a topological property.

Let h be an orientation preserving PL involution

on a lens space L(p,q), p even, which preserves sense and

non-empty fixed point set. By Theorem 1.7, Fix(h) is a dis-

and F . We

1 2

ask that under what condition there exists a PL equivalent

joint union of two simple closed curves F

homeomorphism t with respect to h such that t(Fl)==F2.

Indeed, there exists such a t if L(p,q) is symmetric.

Furthermore, the converse is true; By Theorem 2.9, we may

assume h = h(p,c,b,d) on Lf(p,c,b,d). If L(p,q) is

symmetric, b2 E :hl mod p. Since pd-cb = 1, c = ib+mp

for some integer m. By Lemma 2.8, we have the following

equivariant mapstti. h(p,c,b,d) = :(p, ib+mp, b,d).E:

h(p, b,ib+mp,d) ~2 h(p, b,ib,d-mb)a~3 h(P.ib,b,d-mb) ~4

h(P.ib+mp,b,d) = h(p.c,b,d). Recall that t1(D2 x 31) =

l 2 12 2 1
S x D and ti(D x S ) = D x S . Let t — t4t3t2tl.
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Then t is a PL equivartut homeomorphism on Lf(p,c,b,d)

such that t(0 x 51) = S1 x 0. Conversely, suppose that

there exists a PL equivariant homeomorphism t on L(p,q) such

that t(F1) = F2. By the proof of Theorem 1.7, n1(L) =

{a,BIE#:= a, Bp = 1} ‘where a and B are represented by

the loops F1 and F2, respectively. Let t# be the

automorphism induced by t. Then t#(a) = 68 and t#(B)==a5

2

‘where e = i]. and 5 = $1.. Since t#(Bc) = aéc = 65C

6 3 6c2 2 .
and t#(a) = B . B = B , and c a $21 mod p. Since

pd - bc = 1, b2 a 11 mod p, which implies L(p,q) is

symmetric. Thus, we have the following theorem.

Theorem 2.11: Let h be an orientation preserving PL

involution on a lens space L = L(p,q), p even, which pre—

serves sense and has non-empty fixed point set. Then there

exists a PL equivariant homeomorphism t such that t

interchanges the two components of Fix(h) if and only if

L is symmetric.

Let Mi (i = 1,2) be oriented, connected, closed,

irreducible 3-manifolds. It is known [7] that a PL involu-

tion h on M1 # M2 is either the obvious involution which

interchanges M1 and M or of the form h1 # h2 where

2

each hi is a PL involution on Mi' In the latter case,

Fix(h) is not empty, and if dim Fix(h) = l, the 2-sphere

along which the M1 and M2 are joined meets F in gen-

eral position. ‘When each Mi happens to be a lens space

and h is of the form hl # h2, it will be convenient to
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call decomposed sense preserving if h induces the identity

of H1(M) = H1(M1) @ H1(M2). ObVlously, if h is decom-

posed sense preserving, each hi is sense preserving. In

this case, if h is orientation preserving involution with

Fix(h) # ¢ and M is symmetric, by Theorem 2.11, h does
1

not depend on how an invariant 3-cell of M1 is chosen to

construct hl # h2. Therefore, the following corollary is

obtained by using Kwun's result [10] and Theorem 2.9.

Corollaryygélg: Up to PL equivalences, there exists

exactly one decomposed sense preserving PL involution h on

L(p,q) # L(p,q), which preserves the orientation if L(p,q)

and L(p,q) are symmetric (p,§ are any integers). There

exist exactly two such h if L(p,q) is symmetric and

L(p,q) is non-symmetric lens space with 5 odd (p is any

integer).

Since any involution h on P3 # P3 of the form

h1 # h2 is decomposed sense preserving, we have the follow-

ing corollary.

Corollagy 2.13: Let h be an orientation preserving

3 3
PL involution on P # P . If Fix(h) = ¢ or Fix(h) is

connected, h is the obvious involution which interchanges

the two P3. If Fix(h) is not connected, Fix(h) is a

disjoint union of three simple closed curves and there is

exactly one such h, up to PL equivalences.
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