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ABSTRACT

TRACER AND MUTUAL DIFFUSION IN SEVERAL

ISOTHERMAL NON—IDEAL LIQUID

NON-ELECTROLYTE SYSTEMS

By

C. Michael Kelly

Hydrodynamic theory is used to develOp equatiOns

predicting the effect of intermolecular association upon

tracer and mutual diffusion. On the basis of simple

assumptions about the volume of associated complexes, it

is shown that Onsager's Reciprocal Relation should be

valid in certain associated systems.

An experimental study is made of tracer and mutual

diffusion in several systems. It is found that the

association characteristics of a given system may be

determined from plots of the tracer diffusivity-viscosity

product vs. composition.

It is further shown that several systems which are

non-associated, as can be seen from the D*n products, fail

to obey the Hartley-Crank equation. Possible reasons for

this failure are presented.



C. Michael Kelly

A study has been made of the method currently

employed for measuring ternary diffusivities. Weaknesses

in the current method are pointed out, and suggestions are

made for improvements. Within experimental precision,

however, ternary measurements support both the predictions

of hydrodynamic theory, and the Onsager Reciprocal

Relations.
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INTRODUCTION

Interest in molecular diffusion in liquids has

increased considerably in the past few years, from both

experimental and theoretical points of view. Several

techniques have been developed for measuring ordinary

(both binary and multi—component) and tracer diffusive

fluxes [22].. A large number of binary solutions, both

electrolytic and non-electrolytic, have been studied. In

the past few years a number of multi-component systems

have also been investigated. Although much work has been

done, when one considers the large number of simple

systems available it becomes apparent that the surface

has barely been scratched. Much more work needs to be

done before there can be a precise understanding of

molecular diffusion.

Theoretical efforts have centered on determining

the relationship between diffusive fluxes and the

physical and chemical properties of the system, such as

molecular weight, molecular size and shape, viscosity,

state variables and solution thermodynamics. There has

also been considerable interest in the relationship of

ordinary diffusion to tracer diffusion, both from a

predictive and a correlative standpoint. In multicomponent

l



systems, much emphasis has also been placed upon verify-

ing the theory of Onsager based upon the principles of

irreversible thermodynamics, particularly the Onsager

reciprocal relationships.

There have been two basic theoretical approaches

to the description of diffusion processes. One is based

upon modifications of the absolute reaction rate theory

of Eyring [16], and the other upon modifications of the

hydrodynamic flow model of Stokes [29]. This work will

follow the hydrodynamic approach.

According to hydrodynamic theory, transport of a

species through a solution in which there is a concentra-

tion gradient of that species takes place by means of

two processes. The first process is the flow of individual

molecules through the surrounding medium as a result of

a force acting upon those molecules. This has been

termed by Hartley and Crank 'intrinsic diffusion' [20].

The second process is the transport of molecules due to

flow of the medium. This flow occurs because of

hydrostatic pressure gradients which arise from the

differing volumes of the diffusing species. Hartley and

Crank termed this process bulk flow.

The first process can be characterized by a combina-

tion of chemical and physical properties of the diffusing

species which Hartley and Crank called the 'intrinsic

diffusivity.‘ This 'intrinsic diffusivity' is the



product of two terms, one involving the physical

properties of the diffusing species and the surrounding

medium, and the other involving solution thermodynamics.

The first term will be called here the "intrinsic

mobility" of the species, as suggested by Carman [6].

Equations have been developed relating diffusivities

to the intrinsic mobilities of diffusing species and

solution thermodynamics. These have been modified by

assuming that in some systems molecular interactions can

be characterized by a chemical association. In these

systems, a given stoichiometric component may undergo

intrinsic diffusion not only as monomers, but as dimers,

trimers, and other associated complexes as well.

In this work ordinary (binary mutual, and ternary)

diffusion has been studied by means of a Mach-Zehnder

interferometer [5], and tracer diffusion has been studied

by a capillary technique, for several systems of interest.

It is shown that the degree of associative behavior in a

given system can be determined from the tracer diffusi-

vities of the components. Equations are developed

relating association (as determined from tracer

diffusivities) to the intrinsic diffusion process, and

to solution thermodynamics, upon which ordinary diffusion

is highly dependent. These equations will be tested by

the diffusivity data previously mentioned.



It will be shown that hydrodynamic theory predicts

that the Onsager reciprocal relations are valid for non—

associated systems, and several specific types of

associated system. Experimental measurements made in the

ternary system acetone - benzene - chloroform agree with

Onsager's reciprocal relation within experimental

accuracy.

Unfortunately, precise experimental verification

by this method is quite difficult, for reasons which

will be discussed later. An analysis has been made of

the probable causes of low experimental precision in the

measurement of ternary diffusivities by this method.

Possible avenues of investigation will be suggested which

might lead to an improvement in the method. It is hoped

that future work along these lines will lead to a precise

experimental verification of Onsager's reciprocal

relation.



BACKGROUND

Hydrodynamic Flow Equations
 

Hydrodynamic theory states that a diffusing

molecule behaves like a particle undergoing viscous

flow through a continuous medium. The driving fOrce for

diffusion which causes this flow is generally agreed to

be the gradient of the chemical potential of the diffusing

species, acting in the direction opposite to the gradient

of the chemical potential:

Fid = - Vui (1)

Since there is assumed to be no acceleration, this must

be balanced by a drag force upon the molecule, due to

the viscosity of the medium.

Sutherland [29] and Einstein [10] independently

showed that the viscous drag force for a sphere flowing

through a continuous medium is given by

= - 2Fsr 61rrsnvSm ( )

where rS is the radius of the sphere, n is the

viscosity of the medium, and vsm is the velocity of the

sphere with respect to the medium,-and the negative



Sign is because the drag force is in the direction

opposite to the flow.

If the molecule were truly a sphere diffusing

through a continuous medium, equations (1) and (2)

could be combined to obtain

dui

.. “dz = enrinvim
(3)

dui

where Vui has been replaced by d§_’ denoting one-

dimensional diffusion. Multiplying by the concentra—

tion of the diffusing species, and solving for the flux

of that species gives

C. du.

=_ l l

i Vim Ci 6nrin dz (4)
 

m is the flux of species i with respect to thewhere Ji

medium. However, most molecules are essentially non—

spherical, and unless the diffusing molecules are much

larger than the surrounding molecules the medium cannot

be considered continuous. Therefore, the radius of the

diffusing molecule rS will be replaced by an empirical

constant 2%, which will be called the 'friction

coefficient‘ of species i. This yields

Ci dui

Ji =-61-fi-a'E- (5)



The defining equation for the chemical potential of

species i is given by

0

pi = “i + R1 Ln ai (0)

Substituting into equation (5) gives, at constant T

and P,

 

Ji = - o.n EE- (7)

m Ci [aLnai Sci]

1 L. i T,P T,P

This is the expression for the flux of Species i due

solely to the random molecular motion of 1 molecules,

with respect to a coordinate system fixed in the sur-

rounding medium. However, this is not a directly

measurable quantity (although experiments can be conceived

which could measure this flux, they are beyond the

capabilities of current techniques). The flux which is

measured in most experiments is the flux of component i

with respect to a coordinate plane across which the

total volume flux is zero.

This flux may be obtained from equation (7) by

the following argument. First, the flux of component i

with respect to a coordinate system fixed in the

laboratory in an N-component system is given by the

expression
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where vmc is the velocity of the medium with respect

to laboratory-fixed coordinates, and v is the
Vc

velocity of the volume-fixed coordinate system with

respect to laboratory—fixed coordinates. This can be

seen by making a balance of volumes of diffusing

species in the laboratory-fixed coordinate system. The

quantity

which has the units of velocity, represents the flux

of volume due to random molecular motion, relative to

the medium. To relieve hydrostatic pressure gradients,

the medium itself must flow, relative to fixed coordi-

nates, and this velocity is Vmc'

Unless the partial molar volumes of the diffusing

species are constant, the total volume changes as

diffusion proceeds. As a result, the volume-fixed

coordinate system acquires a velocity relative to fixed

coordinates, va. The total volume flux (which is a

velocity, and is represented by the left side of

equation (8)) with respect to fixed coordinates must



equal the velocity of the volume-fixed coordinate

system with respect to fixed coordinates. Equation

(8) can then be solved for the velocity of the medium:

i=1 1 i Vc (9)

Wirth [34] gives a detailed derivation of this

expression.

The measurable flux Jiv is given by

i (Vmc - VVc) (10)

Combining equations (7), (8) and (10) gives the

basic hydrodynamic flow equation:

v i

J = - ———

i din

 

Q
)

A
I
:

3
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p
.

+

:
3

}
,
.
1

’=1 0 Bz I (11)

Solution Thermodynamics

Historically, there have been two approaches to

describing non-ideal liquid solutions. It is agreed

that intermolecular forces lead to deviations from

Raoult's law. The differences between the two approaches

arise from different interpretations of these inter-

molecular interactions.

The more widely accepted approach, as originally

developed by van Laar [32] and van der Waals and their
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followers, considers all intermolecular forces to be

general in character. They arise from such phenomena as

coulombic attraction and repulsion, dipole interaction

(both permanent and induced dipoles), and van der Waals

forces. This approach is called the "physical approach,"

and is readily applicable to most types of solutions.

The second approach, originally set forth by

Dolezalek [9], considers all deviations from

Raoult's law to arise from specific intermolecular

forces which lead to chemical bonds between molecules.

According to this theory, a solution of components A

and B consists of A monomers, B monomers, plus various

associated complexes such as A2, A3, A4,..., B2, B3,

B4,..., AB, A2B, A32, and so forth, depending upon

the specific interactions present. These individual

species are then assumed to obey Raoult's Law. The

proportions of the species present in solution are

determined by an equilibrium characterized by an

equilibrium constant, such as A + B ++ AB. Because of

KAB

this equilibrium assumption, this is known as the

"chemical model" of solution non-ideality.

Dolezalek originally proposed this model before

the nature of chemical bonding was well understood. He

was led by his model into some rather improbable

hypotheses. For example, he tried to describe the



ll

vapor-liquid equilibrium in the system nitrogen—argon

by postulating the dimerization of argon, a most unlikely

occurrence.

These two approaches are not mutually exclusive,

though for years there was rather heated debate

between the two schools. As our knowledge of chemical

bonding increased, it became apparent that some systems

really do associate in liquid solution. This is

especially true of molecules which are capable of

hydrogen bonding, such as water, alcohols, amines, etc.,

and of molecules which form charge-transfer complexes.

On the other hand, there are many non-ideal solutions

in which the formation of associated complexes is rather

unlikely. Further, there is no good reason to conclude

a priori that the various species present in an associated

solution should obey Raoult's Law, as Dolezalek assumed.

It would seem logical to try to combine the two

approaches.

Non—associated Solutions
 

Before considering associated solutions, it would

be well to look at non-associated solutions. Perhaps

the simplest method of describing activity data in

non-associated systems is to assume that the natural

logarithm of the activity coefficients can be expressed

as a power series expansion of the mole fractions of

the stoichiometric components. This is the approach
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taken by Margules in deriving the equations which bear

his name. The constants in the power series expansion

are restricted by the Gibbs-Duhem equation. Within

these restrictions, the values of the constants are

determined by fitting the series to experimental

thermodynamic data, generally vapor-liquid equilibria,

by means of least—squares analysis. The equation can

be made to fit experimental data to whatever degree of

accuracy desired by simply taking more and more terms

into the series expansion, though at the expense of

introducing more arbitrary constants. It can be extended

quite easily to multicomponent systems, and is not

restricted in its range of application except by the

number of terms in the series that one wishes to use [35].

Though this procedure is mathematically rigorous,

and useful for describing experimental data for use in

design calculations, it sheds very little light on the

true nature of interactions in liquid solutions. Van

Laar [32] proposed a far more restricted equation,

based upon theoretical considerations, for binary

systems. This equation, and modifications of it, have

been very successful in describing binary systems,

especially those for which the activity data are rather

symmetrical, and for which the molecular sizes and shapes

are not too different. It has several disadvantages,

though. It is not easily extended to multicomponent
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systems, without introducing further assumptions and

more arbitrary constants, which tend to decrease the

physical meaning of the equation. Also, it cannot be

used reliably for those systems in which there is

considerable bonding—type molecular interaction, nor for

such systems as high-polymer solutions. Both the

Margules and van Laar equations, as well as several

modifications, are discussed in considerable detail by

Wohl [35].

Another approach which is based upon theoretical

thermodynamic considerations is that of Hildebrand and

Scott for regular solutions [25]. Since it forms the

basis for some later conclusions, it will be described

in a little more detail.

If a solution contains enough thermal energy, the

different intermolecular forces of the various com-

ponents will not be sufficient to cause any one molecule

to tend to aggregate with any particular type of

molecule, either like or unlike. The entropy of mixing

will then be the same as for an ideal solution. Such

a solution is termed 'regular', even though it is non-

ideal, and the partial molar entropy of mixing is given

by

AS = - R Ln x (12)



1A

By making three assumptions, Hildebrand and Scott

show that the heat of mixing in the binary regular

system of components i and j is

(13)

where oi is the volume fraction of component i

(neglecting expansion on mixing) and 61 is defined by

where EiV is the internal energy of vaporization. The

assumptions leading to this relationship are: (a)

the energy of interaction between two molecules depends

only upon the distance between them and their orienta-

tion, (b) the volume change of mixing at constant

pressure is zero, and (c) the mixing of molecules is

random. The third assumption is essentially the

definition of a regular solution. The first, although

not rigorously correct, has been the basis for most

successful attempts at modeling the liquid state. The

second can be eliminated by extensive modification, as

shown by Hildebrand and Scott [21], but will not be done

here.

For regular solutions, where the entropy of mixing

is ideal, the activity coefficients are given by



[
>

E
l

H
.

1Ln yi = = if. 4). (c3 - s.)2 (114)

:
3
0

*
3

P

C
4

L
1
.

P

This can be extended to multicomponent systems

quite easily. Under the same assumptions as before,

for a ternary system we find that

where

with 6 and ¢i as defined before. Detailed derivations
i

of equations (12) through (15) are given by Hildebrand

and Scott [21].

Associated Solutions

The intermolecular forces which define an

associated solution would seem to be precisely those

forces which disqualify that solution from being

considered a regular solution. In a regular solution,

the molecules mix as though they had no preference as to

the nature of their nearest neighbors. In associated

solution, on the other hand, any given molecule has a

distinct preference for another molecule as its nearest

neighbor, as expressed by the polymerization equilibrium.

For example, a molecule with a hydroxyl group will prefer
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to have another molecule with a hydroxyl group as

nearest neighbor (rather than a saturated hydrocarbon,

say) due to its ability to form the hydrogen bond.

It might then be a good assumption that all those

forces which lead to a solution not being regular are

due to complex formation by chemical bonding. Certainly

chemical bonding would be the major contributor to non—

regularity in associated solutions. It would seem

logical then that the true species present mix to form a

regular solution.

The mole fractions of the true species are

determined by the equilibrium equation and the stoichio-

metric mole fractions. Consider for example a binary

system in which one component dimerizes as a regular

ternary system, consisting of monomers of each component

plus dimers. Equations (15) can then be used to predict

the activity data from knowledge of the equilibrium

constant K. Alternatively, the equilibrium constant can

be determined from activity data by adjusting it until

equations (15) give the best fit.

This procedure requires knowledge of the partial

molar volume and the molar energy of vaporization of the

dimer. This can be handled in either of two ways. These

quantities may be treated as adjustable parameters, in

which case equations (15) will be a three—parameter set

of equations for the binary system [13]. Otherwise,
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assumptions can be made about the values of these

parameters, or their relation to those parameters for

the monomers. Equations (15) will then be a one-parameter

set of equations for the activity coefficients in the

binary system. The latter method will be used later

for fitting activity data in both binary and ternary

associated systems.



THEORY

Solution Thermodynamics—-

Nonassociated Solutions

 

 

The Gibbs free energy of a system of N components

is given by

where n1 is the number of moles of i, G10 is the molar

free energy of pure component i, Xi the mole fraction

of i, and AG represents the difference in free energy

between one mole of real solution and one mole of an

ideal solution with the same composition.

The partial molar free energy of component i, the

chemical potential of i, is given by

:1 LG = “10 + RT Ln Y1 XI (17)

where “10 is a function of T and P only. Carrying out

the indicated differentiation on equation (16), and

equating to equation (17) gives

Ln yi - filr‘r‘ —°—— [AG 2 mil (18)
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If a power series expansion is written for AG,

and the coefficients constrained by the Gibbs-Duhem

equation, after drOpping terms of higher order than X3

there results

+ X1X32al3 + X2X3 2a23

2 2 . 2

1 2 33112 1 2 3&122 + X1 X3 3a113 (l9)

2 2 2

113 2 3 3a223 + X2X3 3a233

X X+ X1 2 3 6a123

This is the three-suffix Margules Equation for a ternary

system [35]. Binary systems may be treated as Special

cases, and the corresponding Margules Equation obtained

from equation (19) by simply setting X3 equal to zero.

Carrying out the differentiations in equation (18) gives

the activity coefficients:

2
= [- .. _.

Ln Yi 2X1X2 LA21 X1A21 X2A12J + X2 A12

. 2
_ _ ]+ 2xlx3 [A31 x1113l X3A13] + x3 A13 (20)

+ (x2x3 - 2xlx2x3) [A21 + A13 + A32 - t]



2O

2
u — r _ _

n Y2 2X2X1 ~A12 X2A12 X1A21J + X1 A21

2
+ A _ _.2x2xj [A32 X2A32 ‘ X3A23] + x3 A23 (21)

+ (xlx3 - 2xl x3) [A2l + Al3 + A32 0]

Ln Y = 2X X [A - X A - X ] + x 2 A
3 3 l ‘13 3 l3 1 31 l 31

2
+ 2X2X3 [A13 - X3A13 x1 31] + x1 A31 (22)

+ (xlx2 - 2xlx2x3) [A21 + A13 + A32 - C]

where the constants are defined by

2a12 + 3a122 = Ai2

2a12 + 3°112 ‘ A21

2&13 + 3a133 ‘ A13 (23)

2al3 + 3a113 = A31

2a23 + 3a233 = A23

2a23 + 3a223 = A32

3all2 + 3°i33 + 3a223 ' °°i23 = C

The binary analogues to equations (20), (21) and

(22) are

2
Ln yl = 2xlx2[A21 - xlA21 - X2Al2] + x2 Al2 (2A)

2
Ln Y2 = 2X2 xltA12 — X2Al2 - xlA21] + x1 A21 (25)
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Wohl [35] gives detailed derivations of equations

formally similar, and algebraically identical to

equations (20) through (25).

If isothermal ternary activity data are available

equations (20), (21) and (22) can be fit to the data by

a le st-squares technique, with seven adjustablem

oarameters. This is an unreasonably large number, but

some may be specified by other means. If the ternary

data are available, then binary data for each of the

three pairs of components are almost sure to be available.

The binary data may be fit by a least-squares technique,

thus fixing six of the seven constants in equations (20)

through (23). The constant C may then be determined from

the ternary data.

In most cases of interest, ternary isothermal data

is not available, but these equations are still useful.

Wohl interprets the various constants in equation (19) in

terms of physical interactions between molecules. Thus

a12 represents the energy of interaction of molecules 1

and 2, a the interaction between two molecules of type

113

l and one of type 3, etc. From equation (23) we see that

under this interpretation C is a ternary interaction

parameter. Since in non-electrolyte solutions three-

molecule interactions are not so strong as two-molecule

interactions, C can probably be taken as zero. As long

as this holds, ternary activity data can be predicted
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from data for the subsidiary binaries. This has been

done for the system acetone-benzene-chloroform. Data

for the system acetone—chloroform have been taken from

Hildebrand and Scott [21], for benzene-chloroform and

acetone—benzene from Timmermans [30]. These data, and

their approximations by equations (24) and (25), as well

Aas the least-squares parameters A 21,... are given
12’

in Tables F—l through F-A of Appendix F.

Solution Thermodynamics--

Associated Solutions

 

 

As discussed previously, an associated solution may

be thought of as a regular solution of the true species

present. By making approximations as to the values of‘V

and 6 for the associated complexes, the equilibrium

constants may be treated as adjustable parameters in

fitting the activity data. This will be done here for

a specific case, a binary system of components A and B,

where the association reaction

A + B ++ AB

occurs. To avoid later confusion, let us refer to the

stoichiometric components by letters A and B, and the

true species present by numbers 1, 2, and 12, where 1

refers to the monomer of component A, 2 to the monomer of

B and 12 to the dimer. The true equilibrium constant
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for this reaction is given by Ka’ the ratio of

activities of species:

 

a

waif
l 2

Defining K and KY by

K = Xi2

X1X2

Y:
fi=_:‘_a.

Y Y1Y2

we see that

Ka = KK

Nikol'skii [27] has shown that the chemical

potential of a component in solution is equal to the

chemical potential of its monomer:

= X
AYA 1Y1

Hence, the activity coefficient of component A is

given by

The activity coefficient YA is a directly measurable

quantity, but Y1 is not.

(27)

(28)

(29)

(30)

(31)

(32)
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For a regular solution, equation (15) holds:

 

V .

Ln Y1 = —l (51 —a>2 (15)
RT '

where 61 and 8 are defined by

~ s h

31"

51 = :__ (33)

V.

l

_ 3

5 = 2 n1 Si . (3“)

i=1

xii/’1.

4’1‘xV +xi7‘ +xV (35)
1 1 2 2 12 12

Similar equations give the values of Lny2 and LnY12°

Now, for a given X and XB’ the mole fractions of
A

the true Species depend only upon the value of K, and can

be determined from equations (28) and the stoichiometric

relationships

(36)

Let us make the following approximations:
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a) V12 = V1 + V5 (37)

b) E¥2 = EX + E; (38)

Assumption a) is required for consistency of constant

molar volumes which will be assumed later, and which

Kett [23] determined to be a good assumption for the

associated system ether—chloroform-carbon tetrachloride.

Assumption b) is reasonable if the energy of the dimer—

ization bond is approximately the same in the vapor state

as in the liquid state, that is, if AE for the equilibrium

reaction is the same in both states. Note that AH will

probably be different, as there is a change in PV in the

vapor state.

Now equations (15) and (32) through (39) can be

combined to give ln YA in terms of measurable quantities

(V's, EV 'S, stoichiometric mole fractions, temperature)

and one adjustable parameter K.

It is now possible to determine the value of K from

experimental isothermal activity data, by a least-squares

technique. This has been done for the system ether-

chloroform from total-pressure data at 25°C from Kohnstamm

and van Dalfson [2A]. The results agree reasonably well

with the data of Guglielmo [30] at an apparently higher

unreported temperature for the vapor-liquid equilibrium.
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This procedure can be easily extended to a ternary

system of A, B, and C where A and B dimerize as before,

and C is inert. The value of K found for the binary

dimerization equilibrium Should not change in the ternary

solution, provided the solvent C does not change the

mechanism of the reaction but merely dilutes the reactive

components. By making this reasonable assumption, it is

possible to predict the ternary activity data for such an

associating system from physical properties and activity

data for the associating binary pair of components.

These principles are easily carried over to other

forms of association.

Tracer Diffusivities-—

Nonassociated Systems

 

 

The tracer diffusivity is defined by a modified

version of Fick‘s Law:

 

(39)

where the superscript * designates the tagged molecules.-

Since the tagged molecules are considered to be

identical to the untagged molecules physically and

chemically, if there are no external pressure gradients

there will be no bulk flow.. For every molecule diffusing

in one direction, there will be another molecule diffusing

back in the other direction. Since these molecules have
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the same volume, there will be no hydrostatic pressure

gradients, and therefore no bulk flow. In this case, the

velocity of the medium-fixed coordinate system and the

volume-fixed coordinate system will be zero (relative to

laboratory-fixed coordinates).

This means that for tracer diffusion equation (11)

becomes

 

  
 

C * d *
—'. ll-

J.V* = I.m* :: _ —_"'__. _I' ((40)

l l o.n dz
1

For tracer diffusion equation (17) becomes

* o. x x

= 7“ "7‘hi hi + R1 Ln Yi Xi (A1)

*

Applying the chain rule gives the derivative of “i :

x x * Y x *

du du. dC d Ln . d Ln x. d C

= 1? d:=RT[‘—T“—‘l+ *lein)

°Z dci dci d0; Z

Since the solution is chemically uniform, it can be Shown

that

x

d Ln Yi

- 0
_____¥__

dCi

(43)

x

d Ln Xi

—"——-'¥'

d Ln Ci
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Combining equations (A0), (A2) and (A3) gives

v, RT i (AA)
  

i din , (A5)

Carman [5] suggested that the combination of physical

properties on the right hand side of this equation be

termed the ‘intrinsic mobility' of species 1. This

designation will be adopted here. The important result

is that the tracer diffusivity of a non-associated com-

ponent is equal to the intrinsic mobility of that

component.

Tracer Diffusion-—Associated

[Systems

The most easily analyzed case of tracer diffusion

 

in an associated system is the binary system of A and B

where there is an association to form an AB dimer.

Denoting the species present as l, 2 and 12, the total

concentration of tagged component A is given by

C = C + C (A6)

The flux of A molecules in tracer diffusion is



29

 
V*-_ ‘ _TV* V*

JA ’ DA dz ‘ ”1 + J12 (“7)

Substituting equation (A0) for the fluxes gives

* *-

dC dC

l + 1 A2 ] (A8)
dz dz

°12

  
V* = _ ET _1

JA n Ecl

*

Differentiating equation (A6) with respect to CA gives

8C * “C *
1 ° 2 ’

A 8 CA

Substituting into equation (A8) gives

* ii- * it

so 1 acA RT 3012 A

*“ dz - o * dz

  JV*=__Rr£.[l-
(50)

A °1n ac

2

A

If the physical and chemical properties of the

tagged molecules are the same as the untagged molecules,

we may assume that the distribution of tagged molecules

is the same in the two species as in the component:

c

____ = ___ = ___ (51)

This ratio is a constant, since it depends only upon the

*

proportion of CA and CA when the solution was made up.

Therefore,
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'X'

8C12 _ 12
- C

(52)

acA A

Now for convenience, define the pseudo-mole fraction of

component 12 by

X12 = E“:‘C" (53)

Combining this with equation (52) and substituting into

equation (50) gives, after rearrangement of terms

0 *

V, _ RT - 1 1 1 X12 aCA _

J1 "—n'-3‘+<5‘-“3— 7—3? (5“)
1 12 1 A

Comparing this with the defining equation, Fick's Law,

leads to the desired result:

0

X
* r't

DA=5—;-£-C,—l-+(;L-3-l-) -——,l{21 (55)
2 12 1 A

The derivation for component B only requires renumbering

the species and components in the previous equation, so

that A becomes B, 1 becomes 2, and vice versa. Equation

(55) then becomes

0

x
* _ RT . 1 1 _g 12

DB-—HL3—+<5—-o -———X1 (56)
2 12 2 B
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Wirth [3A] derived equivalent equations, and

carried the derivations out for two other simple systems,

a binary system where one component is inert and the other

forms a self-dimer, and a ternary system where two

components form a cross-dimer and the third component is

inert. These equations, along with those to be derived

in this work are given in Table l, on page .

Theoretically, equations corresponding to (5A) and

(55) can be developed for any associating system, provided

an equation can be written for each association

equilibrium. Practically, such equations become very

difficult to handle if there are more than 2 or 3 such

equilibria. Furthermore, Since a considerable part of

the value of these equations lies in their ability to

model the measured tracer diffusivity data, the number

of associations must be small, or there will be a large

number of adjustable parameters available to fit the data.

Also, whenever the equations become too complex, they

lose much of their physical meaning in the algebra.

We will now consider another simple system, and

develop equations predicting the tracer diffusivities.

Let components A, B and C be ternary system in which

there are two competing equilibria

A + B ++ AB

A+C++AC
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Let the true species present be designated 1, 2, 3, l2 and

13 representing A, B, C monomers, AB and AC dimers

respectively. The relative concentrations at any compo-

sition can be determined from the equilibrium constants

K and K . The fluxes and concentrations are given by
l 2

the following:

 

8C

V * . VJA x = _ DA "'5“: = J1 * + J1 V* + .113V* (57)

NC *

V * o B V V _

JB * = ' DB 32 = J2 * + J12 * (98)

8C

V * C V V

JC * = — DC -a-Z— = JB * + J13 * (59)

if 'X' * 9(-

CA - C1 + 012 + 013 (60)

* x * ,

C2 = C2 + C12 (01)

if * 9(-

CC = C3 + C13 (62)

Equations (58), (59), (61), and (62) are equivalent

to those for the binary system just considered. The

tracer diffusivities are analogous to those in equations

(5A) and (55):

X o

l 4) i2] 1(63)
2 °12 °2 B
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a
:

:
I
)

*
3

1

l3

) i: 1 (6A)+ (
_ 1

D - [3; o    

O :
5

_I

C73

The equations for component A are slightly more

complex. From equation (57):

  

  

 

 

 
 

* x *

V* _ RT 3C1 RT 8C12 RT ac13 ,

JA — - [c n 82 + o n 32 + o n 32 J (05)
1 12 13

*

Differentiating equation (60) with respect to CA and

substituting into equation (65) gives

C n * x * x

V, _ RT 1 3 12 3"13 1 8C12 1 ac13 CA
JA - -7 5—(l-——-.xr - -———T)+C 0’ f] (66)

1 BOA BOA 12 BCA 13 BCA

* *

8C12 3C13

AS before, the derivatives ————¥ and ———;— can be written

8C BC

A A

0 C12
in terms of pseudo-mole fractions X12 = C + C “+ C and

A C

C
° 13 .

X = to give
13 CA + CB + CC

0 o . *

v, RT 1 1 1 X12 1 1 X13 °CA

JA - - —H E 3— ( o - 3—) X + (o - 3—0- X J 82
1 12 1 A 13 1 A

(67)
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From this it can easily be seen that

O O

x
1 12 1 1 13 2

+ (--—- -) + (— --) -——-] (08)

1 XA 013 O1 XA

  

which is the desired result. The generalization to a

larger number of competing equilibria is obvious. If

component A dimerizes with N other components, the

tracer diffusivity of A will be given by

 

. 0

DA = --]-:- C— + Z (5__ - a") 31(1 1 (69)

' 1 i=2 11 l A

This equation is general, and though it provides

physical insight into the effect of several association

reactions on tracer diffusion, it is probably not too

useful in fitting experimental data, since it allows N

adjustable parameters (the friction factors Gli) if the

equilibrium constants can be determined independently,

or N2 if they are also considered free. The physical

meaning of this equation is that the tracer diffusivity

of an associating component is equal to the intrinsic

mobility of that species, decreased by the difference

between the mobilities of the monomer and the associated

complex (corrected for the amount of association) for each

of the association reactions.
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This same type of result can be obtained for the

slightly more complicated case in which one component

associates with itself. Consider the binary system in

which component A reacts to form a dimer, according to

*

and component B is inert. In this case, the flux of A

is given by

**
3011

11 RT

,2. 1 (70)
11n

 
  

where the dimer can carry either one or two tags, as

denoted by the number of asterisks. Stoichiometry Shows

* * 'X' **

= +CA C1 + Cll 2Cll (71)

Proceeding as before, we write

 

3" * 3C * 3" ** BC *
v, RT ”1 RT 11 ”11 . A .JA 1 { ___¥ [._——¥-+ 2-———1—u} -———(72

nol n no 32
3 11 3C GO

A A A

Differentiating (71) gives

3C * 3C * "C **0

BOA BCA 30A
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which, when substituted into (72) yields, after

rearrangement,

 
 

5(-

96*

V RT 1 1 1 ac11 1 1)°Cii 3 A
.1A * + - -—l;— + (3—— - g— h + 2(g- - g— x 1 «z

n 1 11 1 ac 11 1 ac °
A A

(7A)

Equation (7A) can be written

ac * ac **
V m, ..

JA * = - 5% 13$ + (g—i - 5;) (———£% + 2 -——i%—)J (75)

1 11 1 acA acA

The derivatives again depend only upon the equilibrium

constant K, although calculation of their values is some-

what involved. The tracer diffusivity, from equation (77)

is then

ac * ac ‘*
3%

DA =Eg-[5-l-+(5—l—-3-l-) <—1—}+2-—-i%—)1 <76)
1 11 l BCA 30A

Wirth [3A] gives a Slightly different derivation,

which leads to a formula which is less difficult to

evaluate:

* RT 1

-—-C
1
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The form given by Wirth is more useful for trying to fit

data for which there is only one dimerization equilibrium.

It is diffucult to generalize, however, while the

derivation of generalized forms of equation (78) is

rather simple.

Consider the system where there are two components,

one of which undergoes two self—polymerization reactions,

A + A<H+A2

A2 + A*-->A3

and the second Component B is inert. The flux of tagged

A molecules is

 

 

  

* C * **

v, RT 1 3C1 1 3 11 8C11

JA = - fi—'£3_' 82 + o E 82 + 2 3z 3
1 11

3C * “C ** a" ***

-\ d U

+ O l (__%11_.. 2 __%ll__.+ 3 $11 . :)1 <78)
111 Z 02 Z

and the stoichiometric formula is

+ *** <79)

By the same process as before, this time leaving out the

intermediate steps,



 

“A * 3C *3!-

* 1 l 1 OK“

A ‘B'fla‘l' <.——-.—> .4...” 11>
1 11 1 3C GO

A A

8C * 3C ** 3" ***

1 1 'V+ (O 1 _ 5-) ( 111 + 2 11 + 111 3 (80)

111 1 BOA BOA BOA

The generalization of this equation by this method to a

system where one molecule undergoes repeated Simple self—

polymerization reactions is straight-forward, but

notationally very difficult.

The effect of repeated polymerization on tracer

diffusivity is easily seen from equation (80), however.

The tracer diffusivity in this case is given by the

intrinsic mobility of the monomer, decreased by a

correction factor for each polymer. These correction

factors involve the intrinsic mobilities of each polymer,

the number of tags carried by each polymer, and the

amount of each polymer present (determined by the equilibrium

constants).

Once again this model is not too useful in fitting

tracer diffusion data unless the number of polymerizations

is small, and there is some information indicating that

there is no further polymerization beyond a certain point.

Of course, assumptions could be made to reduce the number

of adjustable parameters. For instance, it would seem

reasonable that for hydrogen bonding molecules, after the
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of Hydrodynamic Theory Predictions of Tracer Diffusivities.

 

System and

Association

Predicted Tracer Diffusivities

 

A, a, c,....u
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O

n X

«a DA *_.[_1.(_l_-_1)}1(23

“’ n 01 012 01 A

A + B ++AB

( O

I." ‘ a

b, —; [—l + ( l - —l) A“ 1
-J O) 0.13 02 [LB

7 .1. O l" O

A, a, c L, 1% [EA + ’01 - EA) :- + (El - El) 33 j

“ 1 12 1 “A 13 1 ‘A

A + a ++AB

, .. O

A + C +*AC -A

H ~_i;_1.1_1-1>%23
”a ” °2 °12 OT *5

1( O

1.11. . __l_ _ .1613;
VG n ‘03 \013 01/ 2X“ 4

n c

A, a, L, A w ET . _1 + E+l ( 1 _ 1. X11 7
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A + 21+» All .... . . * ,.
other components as in LB above

A b , * C **

. , ’ D‘- F‘T {—3. + \__l_. _. A) 21.11.}. 2(_1 _. __1_) 34%.]

A + A++:A, “ ” °1 °11 O1 3:, O1 011 acA

B inert

D2 RT

5 no;

A, B 3 fi * C **

b a

A + A+-A DA 5% [6; + (EL‘ ‘ El) “"li+ ““l%—'
2 1 11 1 8 C, BC

A A

A + A2++ A3

* ** **5

ac 3 c 3c

- .1. _ .1 111 111 111
B inert (0111 01) (ma—E—1F + 2 -.—;E_¥ + 3 a )1

A ' A CA

RT

DB n02
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first one or two polymerizations, all the equilibrium

constants might be assumed equal. It might also

reasonably be assumed that no polymer carries more than

a certain number of tags, say three or four at most.

This would make computation much easier. The physical

insight of equations of this type is considerable, as

will be seen in later discussion.

Binary Mutual Diffusion--

Nonassociated Systems

 

 

For a binary nonassociated system with components

A and B, equation (11) gives the flux of component A:

v'- CA BuA C CAVA auA + CBVB BuB

A 82 GB az

 (81)

Substituting the definition of chemical potential gives

 

 

 

J v'= BE.[_ SA a Ln aA + C (CAVA 3 Ln aA +

A n 0A az A 0A 82

C V 8 Ln a

+ 8 B 82 B)] (82)
B

By the chain rule

a Ln aA = _£ 3 Ln aA 8 CA (83)

32 C 8 Ln CA 8z

“2:8 = .3: : :2 :3
B B



Substituting (85) and (86) into (84) gives

 

 

J V = -D 3C = 52 [_ _l 3 Ln aA + CAVA 3 Ln aB

A AB 02 n GA 8 Ln Cn CB 3 Ln bB

+ CAVA : in :A] ~ (85)

CA n A

From the definition of mole fraction and partial molar

volume the following hold:

 

8 Ln X X,

a'Ln CA = c; (86)
A B B

8 Ln XB = XA (87)

3 L C“ C V

n D A A

Substituting (86) and (87) into equation (85) and making

use of the fact that CAVA + CBVB = 1 one obtains the well

known Hartley-Crank Equation [20]:

RT‘ B A A

D = — E— —] --.——-— (88>
AB n CA GB 3 Ln XA

This equation has been used with some success in

predicting mutual diffusivities in non-associating

solutions. It was originally derived under the assumption

that the molar volumes were constant, but this is not a

necessary condition.



Taking the limits as

comparing to equation (#5)

A2

XA + O and as XB + O, and

we see that

Lim .
D _ = ——| = D

(89)
XA+O AB noA A

Lim _ RT _ *

XB+O DAB ‘ noB ‘ DB (90)

Binary Mutual Diffusion-—

Associated Systems

 

 

Consider a system of two components A and B, in

which component A undergoes the simple dimerization

A + A ++ A2

and the second component B is inert. The flux of A is

 

 

V , Cl aul Cll Bull Clvl 3“1

JA - ' o n 82 - 20 n 32 + CA( o 32
1 11 l

Cllvll a“11 C2V2 3“2

+ o 82 + o 32) (91)

11 2

where the true species have been numbered as previously.

Proceeding as in the derivation of the Hartley-Crank

Equation, using the definition of the chemical potential,

the chain rule, the relation CAVA

the mutual diffusivity is found

+ CBVé = l, and the

2Vassumption V11 = A’

to be
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x x O X 0
RT A l 1 ll 1 3 Ln a

D =—-—[——+X..(-—-——+ ——-)l————— (92)
AB n 02 D XA 01 XA all 8 Ln X

Detailed derivation of this result is given by Anderson,

<3r Wirth [34], and will not be reproduced here.

Consider a system of two components A and B, in

vfluich the dimerization reaction

A + B ++ AB

The flux of A is given here by

 

occurs.

v _ C1 3“1 C12 8“12 Clvl 3“1

JA - ' o n 32 ' o n 32 + CA< o 82
1 l2 1

 

 

+ C12V12 01112 + C2V2,3“2)

012 32 02 32

By’ the same process, with the assumption that

VBJB = VA + V5 this leads to the diffusivity:

o o
m X X

DAB=E%[FLJ—XB+E££~XA
l A 2 B

o 2

+ 1 X12 (XA ‘ XB) 3 Ln a (94)

X X 3 Ln X 

°12 A B

Detailed derivation is again given by Anderson [1] or

Wirth [3n].

 

(93)
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Note that equations (92) and (94) differ from the

Hartley-Crank equation only in the addition of an extra

term. In the case of self-association, this term is

positive, and predicts that the mutual diffusivity is

more than that predicted by the Hartley-Crank equation.

In the case of cross-association, this term predicts a

smaller diffusivity.

It is generally true that the activity term in the

Hartley-Crank Equation over-corrects. That is, when the

system shows positive deviations from Raoult's Law, the

thermodynamic correction predicts the diffusivity to be

less than it would be if the solution were ideal. In

many of these cases, the experimentally measured diffusi-

vities are greater than those predicted by the Hartley-

Crank Equation, though still less than for an ideal

solution. When the system shows negative deviations

from Raoult‘s Law, the thermodynamic correction predicts

diffusivities higher than for an ideal solution. In

these cases, the measured mutual diffusivities are found

to be less than those predicted by the Hartley-Crank

Equation, but still larger than for an ideal solution.

Equations (94) and (96) reduce the magnitude of the

deviation of the Hartley-Crank Equation from ideality.

In a system where association takes place, they should be

better predictors of diffusivity than the Hartley-Crank

Equation. This has been found to be so for several
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systems. However, in some cases there is strong evidence

that the components do not associate significantly, and

the Hartley-Crank Equation still tends to over—correct.

Two such systems will be presented here. Some

theoretical explanation must still be found for this

discrepancy.

Ternary Mutual Diffusivities--

Nonassociated Systems

 

 

There have been two major approaches to multi-

component diffusion. Onsager [28] proposed a set of

equations for an N-component system relating the flux

of each component to the concentration gradients of all

the components, thereby defining N2 diffusion coefficients:

J = g D 30'
1 j 13 -—l i = 1, 2,....N (95)

Then, based upon the theories of irreversible thermo-

dynamics, he showed that only (N - l)2 of these diffusion

coefficients were independent. These diffusion

coefficients, however, are not easily measured.

Baldwin, Dunlop and Gosting [3] therefore proposed

a different description, involving only N - 1 independent

fluxes, and (N - l)2 diffusivities:

Jul
J

0

D15 ——l 1 = l, 2,....N - l (96)
32

_l a

i 1
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These diffusivities are not the same as the Onsager

diffusivities, but are related by the expressions

{71'

.7 ' '=l,2,....N-l (97)

Since then, Costing and coworkers have presented

several methods for experimentally determining the Dij's

[13, 14]. It is preferred, therefore, to relate hydro—

chynamic theory to the Costing diffusivities. This will

bee done for a nonassociated ternary system to demonstrate

true method. It is also useful to develop equations

puredicting the phenomenological coefficients of the

Cuisager theory, to show that hydrodynamic theory predicts

tine validity of the Onsager Reciprocal Relations.

From equation (ll), the fluxes are

 

  

V - Cl Bul A CiVl Bul C2Vé 3u2 C3V3 3u3

Jl - - o n 32 + °l( o 32 + o 82 + o 32)
l l 2 3 .

(98)

J V = - C2 Bul + c (Clvl Bul + C2V2 8u2 + C3V3 3H3)

2 o2n 32 2 Ol 82 02 82 03 82

(99)

13 = - 8.1. La - :2. L...
32 C3 32 C3 82
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Combining equations (98), (99) and (100) to eliminate the

gradient of chemical potential of component 3 gives

 

 

v c- l-V.C VQC, an , c c V V an

51 = " a: “—0;l) + 3‘3 5: ' "—12C3; ‘ 53'] ““322 (101)
l 3 ° 9 3 2

J v = _ clcztv; _ El] 8ul _ 32 [(l-C2V2) + V3C2] 8H2 (102)

2 n 0 ol 82 n 02 G3 82

Mathematically, the total derivative of the chemical

potential can be given in terms of the partials of all

the independent variables. For a ternary system at

constant temperature and pressure, there are only two

  

   

independent variables, which may be taken as Cl and C2.

Therefore,

8ul = 8ul 8Cl + 8ul 802 (103‘

82 8 l 2 8C2 82 )

8u2 = 8u2 8Cl + 8u2 8C2 (10“)

82 8Cl 82 8C2 82

Substituting these into equations (101) and (102) yields

7 V C C 8n

  

   

v _ Ci (i-Clvl) C1V31 25“1 3 2 l 2 2 Cl

J1"{T[T_+8Jac+(§_"a_) na—_}'§T
l 3 l 3 2 l

C — 1 "n_ {_l [(1 clvl + clv3] all + clc2 v; _‘V2) 8u2} at,

n Cl 03 802 n 03 02 8C2 82

(105)

I
I
O

.

 



 

 

 

v _ 0102 v3 V1 8111 C2I_(l—C2V2) c273 3112 301

J2 - 4-? <5— “ 5—)T + “at o + 0 33c 82
1 1 2 3 1

_{clc2 (v3— _ [haul + oath-02V” + 057313112} 302

0 01 C2 n 02 03 8C2 82

(106)

From the definition of chemical potential, these can be

 

 

 

 

 

 

written

J V = - 52 {C r(l-Clvl) + ClV3] 8 Ln a1.

1 n 1 Cl 03 801

3 2 1

RT r(l-Clvl) ClV3 8 Ln al

' _fi {GIL o + o 3 8C
1 3 l

V V 8 Ln a 8C
3 2 2 2

+ C C (—— ——) } (107)

l 2 03 02 802 82

JV=-3?-{CC(Y-§-—Y33Lnal+
2 n l 2 03 02 8Cl

+ C [(l'c2v2) + C2V'2j 801 8 Ln a2 } 801

2 02 03 82 801 82
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V 'V 3 Ln a

  

 
 

 

RT 3 l l

- ——-{c c <—— - -—
n l 2 03 Cl 8Cl

+ 02[(l'C2V2) + C2V3] 8 Lralfla2 8:2 (108)

02 03 C2 2

Comparing these to the defining equations (96) gives the FT

diffusivities predicted by hydrodynamic theory:

ll AA n l Cl 03. 801

V ‘V 8 Ln a
3 2 2

+ 0.0 — - ) } (109)
l 2 O3 02 3Cl

12 AB n 1 Cl 03 802

V V 8 Ln a
3 2 2 -

+ C C —— — —— } (110)l 2 03 02 801

D =D =BE{CC (E-EBLnal

21 BA n l 2 03 Cl 801

1 c V‘ C'V 3 Ln a

+ c2 [( 2 2) + 2 3] 2} (111)



(112) 

Kett [23] derived these equations, and generalized them

to a system of N components, obtaining

 

D = c; [(1—vici) + civN] 3:;

13 n Oi ON 8C3

N-l cch Vk V? a k

k=l ” ON Ok 3

k#i

The theory of irreversible thermodynamics states

that the rate of entropy production in the ternary

diffusing system is

V 8“2
T ——-= — J ——— J ——— J- ———

dt 1 82 2 82 3 82

However, equation (100) can be used to eliminate u3, amd

the constant volume relationship lel + J2V2 + J3V3 = O

can be used to eliminate J3:

T 9§ = J V Y + J V Y (11%)

 



2 8p.
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Substituting the expressions for Y from (115) into
1

equations (116) and (ll?) and rearranging yields

V 8“1 3“2

J1 ’ -(aLll + YL12) 82 ‘ (BL11 + 5L12) 82

8p 8p

V.. 1. __l _ ._i§

J2 “ ”(8L21 ' YL22) 82 (BL21 + 5L22) 82

where a, B, y, and 5 are defined by

l l 2 l
a=l+———-—— B=_..___

C3V3 C3V3

C3 3 C3 3

Equating coefficients between (118), (119) and (101),

(102) yields four independent equations for the LiJ's:

(115)

(116)

(117)

(118)

(119)

 

 



 

 
 

 

l l) l
Llla + Ll2Y —E E C + O 1 (120)

l 3

c c V V

_ __l_2_ _3_ _ .2.-

L118 + L12‘S ' n [o o J (121)
3 2

c c ‘V ‘V .
_ l 2 ,-_3_ _ _2_ g...

L210L + L22Y ' n L03 0 1 (122) g

c 1-V c v c '
_ _2 ( 2 2) 3 2

L218 + L226 - n E O + ————Ol (123)

2 3

The Onsager Reciprocal Relation states that L12 = L21.

To test this, solve equations (120) through (123) to

obtain

—- - - la - --—E + 18
n o o n o o

L = 3 2 l 3 (124)
12 a6 - BY

0102 [X1 V1:lcs C2 [(l-V2C2) + V3C2]

n o ' 3— ' n o G Y
L = 3 1 2 3 (125)
21 a3"; BY

lV1 + C2V2+ C3V3= l, and the defining

expressions for a, 8, y, and 6 we may obtain from

Using the relation C

equations (124) and (125) the desired result:



12 — 21

C
l
C2V1(1‘C1V1)

0'1n

53

C C
_ 1 2

Vé(1-CZVE)

0'21] 3

Therefore, hydrodynamic theory states that Onsager's

Reciprocal Relation is valid for ternary isothermal dif—

fusion in a nonassociating system. The only required

assumption is that of constant molar volume, used in

obtaining equations (101) and (102).

Miller [26] has developed equations which allow

Onsager's Reciprocal Relation to be tested experimentally:

where

 

 

= a D12 - c Dll
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(127)

(128)

(129)

(130)

(131)
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C3 3 8C2 C3V3 8 2

Ternary Mutual Diffusion--

Associated Systems
 

(132)

Kett [23] has developed equations for the ternary

diffusivities in a ternary system of components A, B and

C subject to the dimerization equilibrium

where

AA

AB

A +_B ++ AB

component C is inert.

Kett's equations are given here without derivation:

 

 

 

 

c c- V'c an

F l (1 V c ) + ‘2 (1 v c ) + 3 A] l1 _ _
cl 1 A 012 12 A o3n 8CA

V c c c- _ V’c c an

E 202 A + 0 i2 (1’V12CA) + 30A B] 302
2n 12n 3n A

— 2
C C V C 8n

1 — 12 — 3 A 1

[o n (l’VlCA) + o n (l V12CA) + o,n 3 8C
- 12 3 B

v c c c v c c an

E“ 8 i A + o 12 (1‘V12CA) + 3oAnBJ 302
2 12 3 B

(133)

(134)
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BA "

02 _ c VCB

E 32—; ”'Vzca) + —— ————n—-J 5—1— (135)+

V c c c 'V c c aul

D = [- -——l—§ + 12 (l-V12CB) + o

 

O'

— 2
C _ C _ V C 8n

+ [_—_2 (l-V ) + ——-——l2 (l-V C ) + 3 B J 2c (136)
G2” 2 B 012” 12 B

 

By making the assumption that V12 =‘V + VB he obtained
A

c c V c C‘V

.. - _.:.L__B__ -- _. 42.45.... -—

LBA ‘ LAB ’ " oln <1 VlCA) 02 (l V208)

c C V c
A B 3 — — l2 - —+ o3n (l'VlCA'V2CB) + 3:;fi(14vl2CA) (l-V12CB) (137)

thus verifying Onsager's Reciprocal Relation for this

simple associated system. The assumption of constant

molar volume leads to the assumption made above, so this

verification is exactly as reliable as the previous

case. Kett [23] also developed similar equations and

verified the Onsager Reciprocal Relation for the self—

dimerization system of A, B and C, where A is subject to

the equilibrium



56

A + A ++ A

and B and C are inert.

Equations of this type now will be derived for a

slightly more complex type of associated system.

sider the ternary system with competing equilibria pre-

viously discussed under Tracer Diffusion.

same nomenclature, the fluxes in ternary diffusion are

  

  

 

 

  

Using the

 

 

given by

J V = _ .31 iii _ 012 Bul2 _ C13 3“13

A oln 82 012” 82 01311 82

n 01 82 012 82 013 32

87 a c V
1 2 2 .12 1 .3.1 .13

02 82 o 82

3

J V = _ C2 3“2 _ C12 Bu12

B o2n 82 012” 82

CB C1V1 3“1 + C 2V12 a“12 C13V13 3“13

+ '71- E o 32 o 32 + o 32
1 12 13

  

(138)

(139)



For this system

 

 

 

8“12 = 8“1

82 82

8u13 = 8ul

82 82

Therefore, equations

C
V 1 _

UJA - -[EI(l-CAV1) +

c
12 —

-[-—(1-c V ) -
012 A 12

c
V 12

nJ - -[-——(l-c V )
B 012 B 12

c

-[5-1—2-(1-cBV2> +
12

c c V
_ B 3 3J 3“3

G3 82

57

 
 

 

 

a“2 .

8u3

1
(138) and (139) become

0 c an IT

———(l-C V 1) + ———(l-C V )]———
012 A 12 013 A 13 32

C C V Bu C C C V an

A 2 2 2 B A 3 3 3

J -[ (l-C V )- J
02 82 5'13 A 13 03 82

(142)

_ CBCI 1 _ CB013V1333‘J1

01 013 82

012 B 12 82 013

(143)

By combining the stoichiometric relationships



 

 

A l l2 13

CE = 02 + 012 (144)

CC = C3 + Cl3

with the Gibbs-Duhem equation, we obtain ?

211-313.111-323“? (1145) ‘1
82 CC 82 CC 82

Since the chemical potentials are functions of CA and CB

only, the expression for the total derivative gives

  B (146)

    

(147)

Substituting (145), (146) and (147) into equations (142)

and (143) yields, after considerable algebraic manipula-

tion



 

 

 

an c c c

nJA = -[,Cl{Ol(1--cAVl ) + 012(1——cAV12 ) + (1-55)(1-CAV#)

A 112 C13

c503 V3 23112 012 CB (:13 __

+ .C o } + ac {o (l-CAV12) ' 5" (l-CAV13)
c 3 A 12 c 13

_ CA02V2 + CACBC3V3 Joe, _ [3“1 {El(1-C'V )

o2 Cco3 oz BOB 01 A l

2C _.

c 0 CA 3V
12 A 3

+ (1-c V ) + (1———)(1—c )— }
012 A 12 cC AV3 oi13 Acc3 3

8“2 C12 1 "B C1 — CAC2V2

+ at {o (l'tAV12) "5‘ 8""(1‘CAVB> ' o
B 12 c 13 2

c c c V ac

+ ‘éfié—l'i} 1 .3 (1A8)
CO3 02
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an _

r‘JB "' ' [’a‘t‘l {FEM-CBV12) ' CB( <2: 1 + lg 13)A 12 1 13

c c c. V. c V Bu C CA B 3 13 3 3 2 12 V 2 '-
+ ( 1 ),+M{ (1CV)+-—(l—CV>

CC 013 O3 °VA 0‘12 A 12 °2 B 2

c 2 c V c V ac a c
+ 2(13 13 + 3 3)}3 A A _ {£1 {lg—(141v )C 013 03 OZ A 012 D 12

VlCl V13C13 CAGE Cl3VlB C3V3

”an, + o >+c<o “'3’”1 l3 l3 3

311,) c C_ 12 — 2 "+ {—(1 c v ) + ~<l—C V )EC; 012 A 12 O2 3 2

CB2 C13V13 C3V3 3C3
+ C ( C + C ) j 82

(149)

C 13 3

Comparing this to the defining equations for the

diffusivities gives the desired results:

 



  

 

 

 

 

 

c c c
1 1 A 12 A 13

D — — [——(1-c V ) + (1-c V, ) + (1-:— (1—c v )
AA n 01 A l 012 A 12 C 013 A 13

CA2C3V3 auj 1 ch chl,

+ 3n‘+-£ (l—CV)-n “(lCV)
Cc°3 acA n 012 A 12 0013 A 13

CAC2V AoBC3V3 8u2 A

_ o + —-c G 3 BC (lSU)

2 c 3 A

c V.c. V c
1 12 1 1 13 13

D = — [———(1—c V, > - C-\ + ——————>
BB n 012 B 12 B Cl Gl3

cAcB 013V13 C3V3 Bul 1 012 _

+ C ( o + o )1 BC + F [a (l'CBVl2)
c 13 3 B 12

c _ c - c V V c an

+ 53(1—CBV2) + g ( 13 13 + g 3)] —53 (151)

2 C 13 3 B

Toe cross-coefficients are given by the same expressions,

except that the differentiation of the chemical potential

is with respect to the other component.

The validity of the Onsager Reciprocal Relation will

now be demonstrated fcr this system. As before, the rate

of entropy production is given by



    

Bun 8n Bu” 8% 8n
g§ _ _ 1 _ 1 2 _ T 3 _ 12 _ 13 .

T dt J1 32 ”2 éz U3 32 J12 82 J13 32 (152)

Applying equations (1“1 ) and (142) gives

d8 8“1 3“2

T E? ‘ ’(J1 + J12 + J13) az ‘ (J2 + J12) az

3u3

8p?

Equation (146) allows —§§ to be eliminated:

C C 8p

m ds- r V .1: ~ .1 -___1
1 5E — -LJl + 412 - d3 + (1-C ) J13J 82

C C

CD 3u2

- LJ2 + J12 - q (.43 + J13)] T-Z— (1514)

The assumption of constant volume

lel + J2V2 + U3V3 + J12V12 + J13Vl3 = O (193)

allows J3 to be eliminated from equation (154):

T d8 - P* “J R' NJ (1")

a? ’ ‘ d1 ‘ W 2 ‘ J12 ’ 13 9°

where the expressions P, Q, R, W are defined by



   

Applying equations (141) and (142) gives

 

 

d5 341 8“2

* a? = ’(Ji + J12 + J13) az ‘ (J2 + J12) az

3u3

_ (03 + 013) BZ
(193)

an

Equation (146) allows —53 to be eliminated:

C C 3p

m d8 _ F T i "’ ‘ i l

1 at ’ -LJ1 + “12 ‘ on 03 + (*'c ) J131 82
C C

C: an?

_ ' _ .z T 1 — \

The assumption of constant volume

’ - _ J _ — _ = R'—alvl + J2V2 + 3V3 + J12V12 + J13V13 0 (1,3)

allows J3 to be eliminated from equation (154):

l - QJ2 - Rdl2 — WJl3

where the expressions P, Q, R, w are defined by

(156)
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Bul C V aul CBVl 3u2

——-—-——— + ————'-r“.
CV3 82 ‘ CCVB oz

8L‘2 C3V2 aue CAV2 3“i

Q‘ W+W7§+QV§TE

  

    
 

82 32 CC 3 oZ CCVé 32

w = 3“1 + °“2 + CAV12 “1 + (l_ig aul + CBV13 °“2

Bz 32 CCV3 2 CC 32 CC‘V’3 Bz

_ .Cji 3.31.2
CC 2

JA = Jl + J12 + Jl3

JB = J2 + Jl2

yields

m 9§ = — J P - J Q - J (R-P-Q) - J (w-P> (157)
‘ dt A B l2 13

Now if we assume that Vl2 = Vl + V2 and Vl3 = Vl + V3,

leaving

T g_s_=_J (3141 + CAVl 3“1 + CBVl 3112

dt A 32 CCVB az CCVS az

-J(31‘2+E£.Y_2_3_‘11+C_BY32‘_2_) (158)
B 32 GOV: az COVE az
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Irreversible thermodynamics also states that the fluxes

are related to the phenomenological coefficients:

J v= _ L (3“1 + CAVl 3“1 + CBVl 3“2

A AA 82 C V 32 C V 82

C 3 C 3

— L (ill-a + CAV2 :3; + CBV2 :33 (159)
AB 82 Cnv 82 C V 82

C 3 C 3

J v= _ L (3“1 + CAV1 aul + CBVl 3“2)

B BA 82 C W 82 C v 82

C 3 C 3

- L (8u2 + CAV2 aul + CBV2 8u2) (160

BB 32 C V 82 C V 32

C 3 C 3

Carrying out the multiplications in equations (159)

and (160), equating coefficients to equations (142) and

(143) and solving for LAB and LBA gives

c c V c C‘V

.. —_1_1.3__- 2A :
LAB ‘ LBA ‘ ' oln (l‘VlCA) ' 02n (1’ 2°B)

c c V
A B 3 — — _
O3” (VlcA + V2CB 1)

C

12 — —

+ g——fi(l-V12CA)(l-V12CB)

12

C13 — —
+ 8——fi(l'V13CA)(l'V13CB) (161)

13



[’Y‘a‘

1nus, hydrodynamic theory predicts the validity of the

Onsager Reciprocal Relation for this associated system,

under the assumptions of constant volume and that the

volume of the dimer is equal to the sum of the volumes

of the component monomers.



EXPERIMENTAL

Tracer Diffusivities
 

Tracer diffusivities for this work were measured by

means of the capillary technique, as modified by Wirth

[8]. In the basic capillary technique, a capillary of

known length, with one end closed, is filled with a

solution containing tagged molecules of one component.

This capillary is then immersed in a relatively large

volume of a solution with the same chemical composition,

but containing no tagged molecules. Diffusion is then

allowed to proceed for a period of time, after which the

capillary is removed from the bulk solution and emptied.

The relative amounts of tagged material before and after

the experiment are determined. The boundary value problem

for diffusive transfer from the capillary is then solved

to give the change in the concentration of tagged

molecules as a function of time, capillary dimensions and

tracer diffusivity. Since the time and capillary dimensions

are known, the tracer diffusivity can then be found from

the change in concentration of tagged material.

Ordinarily, the molecules are tagged with a radio-

active isotope. In this case it is easiest to measure

66'
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the total amount of radioactivity present rather than the

concentration. This presents no difficulty, however.

There are four main sources of error in this basic

technique:

a. Inaccuracies in determining precisely the

amount of radioactivity before and after diffusion. This

is particularly important in determining the initial

count rate.

b. Proper maintoinance of the conditions of the

boundary value problem during the experiment. This means

that there must be no convective mixing within the

capillary during the experiment, and no material may be

transferred by any means other than diffusion.

c. Immersion effects. Material must not be washed

out the end of the capillary by the turbulence created in

the bulk solution when immersing the capillary or removing

it at the end of the experiment.

d. Convective transfer during the experiment.

Convection near the end of the capillary must be strong

enough to maintain the boundary condition of zero con-

centration at the end of the capillary. Yet it must not

bee so strong that it washes material from a segment of the

capillary, thus effectively shortening the length of the

capillary during the experiment.

The two latter problems are due to the open end of

the capillary, and are difficult to correct as long as the
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end is open. The other two problems are generally less

serious.

To correct for (c) and (d), Wirth covered the open

end of the capillary with a very thin (0.007 in.) porous

glass disc. This changed the boundary value problem,

introducing a resistance term at the end instead of a

constant concentration. Since material could diffuse

through the disc, but could not flow through, this pro-

cedure effectively eliminated convection from the

capillary. However, since the resistance of the frit had

to be calibrated by measuring a known diffusivity, a new

possible source of error was introduced.

The error due to (b) can be largely eliminated by

making the bulk solution slightly less dense than that

in the capillary. Then, as diffusion proceeds, a density

gradient is established, which tends to eliminate convec-

tion within the capillary. This unfortunately introduces

the possibility of some mutual diffusion occurring along

with the tracer diffusion. It has been shown by Van Geet

and Adamson [31] that if the concentration difference

between bulk and capillary solutions is greater for tracer

diffusion than for ordinary diffusion, the tracer flux will

be much greater than the ordinary diffusive flux. Since

the difference in the concentration gradients was quite

large in these experiments, the author feels that any error
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introduced from simultaneous mutual diffusion will be

covered by the calibration of the resistance of the glass

frit.

Inaccuracies introduced by (a) can be decreased

only by careful experimental technique. Wirth's [34]

original technique was modified in this study only

slightly to improve the accuracy of the initial count.

The procedure for an experimental run is given in

some detail in Appendix A.

Calculation of Tracer Diffusivities
 

Let the closed end of the capillary be designated

z = O, and the open end be designated 2 = L, the length

of the capillary. If transfer of material within the

capillary is only due to diffusion, the well-known

diffusion equation holds. The initial concentration is

constant throughout the capillary. At the closed end, a

material balance will show that the concentration

gradient must be zero. If, at the Open end there is a

constant resistance to flow, the following boundary

value problem holds:

1 (162)  



*

0C,

5.C. 1; 2‘ - O for 2 = C t > 0
OZ 3 —

x

r— 2 D * as. N *

DOG. : - l _. .L r‘ 9" ') _ - qu

v n * A* v-

1.C. ~C, = C, for t - 0, o 5.2 5.2
1,0

x a ,

wnere C is Cu concentration 01 tagged component i,

n * .

t lS the time, 2 is the distance coordinate, C,O is the

*3

o o a - * a a n 4- .

initial value of C. and n is_the constant resistance to

n -‘ O A ‘r‘ ’- ‘ 'r I"; '3‘. «.‘f‘ A r‘ ‘2 q - .Y

transfer from the open end 01 Cue Capillary.

This boundary value problem can be easily solved

by separatioh of variables, to give the concentration as

 

* a v-

C, m sin 1,2 2 *
.L r" L; \ ‘1

———— = 22 ' - . ~- - ex —A D 2 “OS A 2
* _,‘A C + Sin A 2 cos 1 2 p( n i ’° n ‘

C. n-i n n n
1,0 '

(164)

where Ar is given by the solution of
A

'A " "“ * ACO: K 4." - :4

n I L n

A detailed solution of the boundary-value problem is

given in Appendix III of reference [343

F
.
)

If equation (164) is integrated over the length 0

"
3

the capi lary, a very use-ul ratio results:
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0* m sin2 8 D *t
2‘ i

_£%EKE = 22 [ . n exp(-B -—§-J] (165)

Ci 0 n=1 Bn‘an + Sin 8n cos 8n) n L

where an is given by the solution of

*

RD.
_ l

cot 8n - Sn L
 

*

where C is the average concentration in the
i,ave

*

capillary, as defined by the expression I: Ci dV =

*

Ci V. This ratio is the ratio of the final count to
,ave

the initial count measured for the capillary in the

experiment.

Since transfer through the frit is diffusive, as

soon as the process reaches steady-state the resistance of

the frit becomes inversely prOportional to the dif-

fusivity:

R-—d—'g’

Di

The constant of proportionality a depends only upon*the

RD

i is
 pore geometry of the frit. Therefore the group

dependent only upon geometry of the experimental

apparatus, and can be determined by some calibration

technique.
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From equation (165) a plot can be made of

  

* * *

Ci av Di t RDi
——f——E vs 2 for several values of L . Then

i,o L

from an experiment with a chemical whose self—diffusivity

is known, the value of R may be determined. Wirth did *

RD.

this, using carbon tetrachloride. He determined that ~31—

’1':-

had a value of 0.012, with a variation from capillary to

capillary which would lead to a .7% maximum variation in

measured tracer diffusivity. Consequently, the value of

*

RD

L was taken as 0.012. 

*3
|
:

*

C, D t RD

Using a plot of ‘ avg vs 12 for L = .012,

L

 
 

the tracer diffusivity is determined from the count rates

resulting from each experiment. The ratio of final count

 

*

C

rate to initial count rate is equal to -£¢3KE. The value

C

it * 1,0

Ci av Di t
of -—:¥—5 fixes the value of L2 . Since t and L are

i o
3

*

known, the diffusivity Di is easily calculated.

Mutual Diffusivities

Mutual diffusivities were measured in this labora-

tory by means of a Mach-Zehnder [4,5] interferometer.

This instrument is shown schematically in Figure B-l of
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Appendix B. A collimated monochromatic light beam is

split into two beams by a half—silvered mirror. One

beam is passed through a solution in which diffusion is

occurring. The other beam is passed through a reference

solution in which there is no concentration gradient.

When the two beams are recombined, if the optical path

lengths are only Slightly different, interference pro-

duces h
)

fringe pattern.

Since the optical path length is dependent upon the

refractive index of the medium, it can be shown that the

fringe pattern formed by the recombination of the beams

ve index vs position in the*
J
n

represents a plot of refraCt

diffusing system. The refractive index is in turn'related

to the composition of the system. By photographically

H
,

beF
l

’
5
3

d "
f

recording the changes ringe pattern with time,

1

the changes in compositior (and hence the diffusivities).
.

can be determined.

ahe diffusion cell was constructed so that a step-

change initial condition could be approximated, and so

that diffusion would be one—dimensional along the vertical

axis. The cell was filled from the bottom with the

denser of two solutions varying slightly in composition.

The less dense solution was slowly introduced down the

wall of the cell, forming a layer above the denser

solution. When the cell was full, and had reached

e uilibrium temperature in the interferOJeter thermostat
b ,
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solution was removed slowly through slits on opposite

sides of the cell, and replaced in the cell from top and

bottom; After some time, a steady state was reached, in

which the solution above the slit was of one composition,

and that below the slit of another. The thickness of the

boundary determined how closely the step-change approxi-

mation was obeyed. In practice, the boundary could be

made small enough that it closely approximated the con-

centration distribution after a few seconds of diffusion

from a true step—change initial condition.

The flow into and out of the cell was stopped, and

free diffusion from this initial condition occurred,

which was followed photographically. Details of an

experimental run are given in Appendix B.

Analysis of_Results of Binary Mutual

Diffusion Experiment

 

 

The problem of one-dimensional free diffusion in

an infinite medium is an old one. It was solved by

Wiener [33] in 1893. If the initial position of the

boundary is designated as 2 = O, and the initial distribu-

tion of concentration gradients is Gaussian, the solution

for the gradient in terms of position.and time is given

by

AC

dC o ' 2
_ g —- exp(_z /u D t) (166)

dz 2’?D_—t' AB

AB
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provided the diffusivity is constant. If the initial

concentration difference is small enough, both these

conditions will be met. Furthermore, the refractive

index difference may be considered a linear function of

the concentration difference for small AC. This solution

may then be written

3% = _.___A_r_1___ exp {—22/4 DABt) (167)
2/NDABt

This may be integrated to give the refractive

index difference between the points z = 0 and z = 2.

n2 - no 1
Ar = 5 erf (2/ V4DABt ) (168)

Solving this for 2 gives

n

z = VED, t erf.l (Z—E————9) (169)

The photographic image can be considered a plot of

refractive index vs position in the cell. The total

refractive index difference between any two points is

proportional to the number of fringes crossed by a

vertical line between the two points. The fringe number

can then be used as a measure of refractive index. Call

the fringe number of a reference point in the straight

line portion of the photograph fringe number zero. The
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total number of fringes crossed by the vertical line is

J. The fringe number of the point z = O is J/2, from the

choice of coordinates in the boundary value problem.

The difference between the refractive indexes of the

point 2 = 23 and 2 = 0 is given by

0 I ’O = .

.-%5_— “J (170)

The distance between any two fringes numbered 3 and k is

n1 — nn.-n

z - 2 = /4D Lt [erf-1(2—JEE——9) - erf 1(2‘éfifi"'9)3

(171)

The actual distance in the cell is not the same as that

measured on the photograph, but differs by the magnifica-

tion factor of the camera:

2, = M2. ‘ (172)
d J

t

where aj is the measured distance, 23 the true distance

and M the magnification factor of the camera. Com-

bining equations (170), (171) and (172) leads to the

desired result:

 

4M2D t = E 23 - 2k 12 (173)

AB err‘l(—1——2'J) - err'l(———2k‘J>
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The true time of diffusion is not the measured time,

since the initial boundary was not a perfect step-change:

where tm is the measured time, t is the true time, and

t the true initial time. If the right side of equation
0

(173) is plotted vs tm, the slope of the line will give

the diffusivity, and the intercept the true initial time:

2

slope 4M DAB

(174)

intercept - 4M2 D t
AB 0

Calculation of Binary Mutual

Diffusivities
 

The photographic plate was measured by a microsc0pe

with a traveling eyepiece, capable of measuring down to

0.0001 cm. The total number of fringes was counted and

recorded. Then a set of ten fringe numbers was chosen,

five of which were higher than J/2 and five of which were

lower. These were chosen so as not to extend into the

region of curved fringes near the edge of the diffusion

boundary. These were paired, and the right side of

equation (173) calculated for each pair.

For each exposure, 23' and Zk’ were measured for

each pair of fringes. From the measurements and the

previous calculations, five values of the right side of

equation (173) were calculated and averaged. The average
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values were then plotted against tm as described above.

A straight line was fit to these points by the method

of least-squares. If the correlation coefficient was

less than .995, the run was rejected (although generally

it was above .999). Otherwise, the value of D was
AB

calculated from the least-squares slope and intercept.

Analysis of Results of Ternary

Mutual Diffusion Experiment

 

 

Fujita and Costing [13] have shown that the ternary

diffusivities defined by equations (98) can be determined

experimentally from knowledge of the behavior of the

refractive index gradient curves as diffusion proceeds.

Their method involves measuring the second moment and

the height-area ratio of graphs of %% vs 2 at several

times during the experiment, and from these determining

the reduced second moment and the reduced height-area

ratio. This is done for several different initial

composition differences, and the graphs of reduced

second moment and reduced height-area ratio vs refractive

index fraction are then used to calculate the diffusivities.

A typical plot of refractive index gradient vs

position is shown on the following page. Here 20 is the

centroid of the curve, and 22 is the maximum value of
d2

max

dn

32’ which is at the centroid for Gaussian curves.
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The centroid is defined by

if” 2(33) d2

(175)

° f°° (%)d2
-00

It can easily be seen th.at the denominator is equal to

the total refractive index change across the boundary,

which is proportional to the number of fringes 0.

Therefore

2 = .l___ foo 2(92) C12 (176)

1 d2

where A is the proportionality constant.

The second moment is defined by

M(Z-Z >2 (g2) dz 1 m

a = x3 I
cog—hz)dz

 (ca—20>2 <33) dz

(177)
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and the total area under the curve is

co

An = f (331—21) d2 =)(J (178)area
.CD

The refractive index gradient can be determined

from the photographic plate as follows. Near the center

of the boundary, where the fringes are almost straight,

%% can be approximated from the distance between two

fringes:

8n

(a ) A
02 = (179)

m 2 = ZJ+1 + J ZJ+l - J

 

 

In the curved portions of the pattern near the edges of

the boundary, this approximation does not hold, and the

value of g?“ must be determined by measuring the tangent

to the curve:

d2 dy dy

QB_=9£a%—Y.=9£tane (180)

m m

The value of gg-can be determined by measuring the

distance between two fringes in the y direction:

n - n A(j+1 - J) A

(.12. = 1+1 41 = = (181)

dy yj+l-yj yJ+l-yj yJ+l-yj

Equation (180) can now be written
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tan 6 (182)

Q
:

N

%

L
1 + H

I

V

C
.
» €
H
V

where A and w are proportionality constants representing

the change in refractive index per fringe in the z

direction, and the distance between fringes in the y

direction respectively.

The distances measured on the photograph are not

true distances, so equations (176) and (177) must be

corrected for the magnification factor of the camera:

 

<—) dzm (183)

 

dzm (184)

Note that in substituting for %%— the constant A cancels.

m

The reduced second moment is defined by

E
?

l
\
)

D2m = 2? . (185)

and the reduced height-area ratio is defined by

 
 

 

- 2 2
' le), (AJ)

D = =
(186)

A 1m: {3-3 12 41rtM2 [z A __ z 32
max » 3+1 3

max
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The measured time is not the true time, but t = tm + tO

so these can be written

 

 

2 _

—2 ‘ D2m m + D2m t0 (187)

J2

= D t + D t (188)
“WMZ E l - z 32 A m A 0

3+1 J max

m

D2m and DA can be calculated by plotting 5; and

the left side of equation (188) vs tm. The slopes will be

D2m and DA respectively, and the intercepts will give the

true initial time. The left side of equation (188) and

m

_3 can be calculated from measurements of the photographic
2

plate. This would ordinarily be rather difficult, but a

computer program has been written for this. This

program, the data deck structure, and the procedure for

measuring the plate are given in Appendix C. Sample

refractive index gradient curves and plots of IEE-Ivs tm

are given in Appendix D, with the experimental results.

In a ternary system, the refractive index can be

expressed as a function of the concentrations of any two

components, for example n = n(CA,CB). This in turn)

can be expressed as a Taylor series expansion in terms

of CA and CB. For small enough concentration differences,

the higher order terms of the expansion can be dropped,

and
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An = RAACA + RBACB

Defining the refractive index fraction of component A by.

R AC
A Aa =

(189)
A RAACA + RBACB
 

we see that

d + d = l (190)

The values of RA and RB can be determined from

measurements of An at several different AC's by a least-

squares technique. Since accurate direct measurements

of An require relatively large concentration differences,

the preferred method is to determine the values of RA'

and RB. defined by the equation

! l

J = RA ACA + RB ACB (191)

I I

where RA = ARA and RB = ARB.

This will allow smaller composition differences to be

used, since J can be measured more precisely than An.

. -AC

By equation (191), we see that if J A is plotted vs. 

AC ' ‘
-7f3 , the result should be a straight line, with slope
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R!

fiTE-and intercept §%-. As can be seen in figure D-10,

A A

this is true for the ternary system chloroform acetone-

benzene which will be investigated in this work. Note

R R

that .75.: fig and that only this ratio is needed in

R B B

defining the refractive index fraction.

Fujita and Gosting [13] have shown that plots of

reduced second moments and the reciprocal of the square-

root of the reduced height-area ratio vs. refractive index

fraction of one component should be straight lines:

Dzm = 82m GA + 12m (192)

l —

WA ‘ SA 0‘A * IA (193)

where 32m and SA are the slopes and 12m and IA are the

intercepts at dA = 0. Their proof is based on the same

assumptions which have been made here, and which hold

whenever the concentration differences are small.

For convenience in notation, define the intercepts

at dA = l by the expressions

L2m = I + 32m ~ (194)

LA = 1A + sA (195)



where

reference [23].

diffusivities is given in Appendix C.
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Their expressions for the diffusivities are

L L2m S2m IA
 

 

 

     

2

D = _ JDljj + L2m J D131 + SA

AA 32

m

t I2m S2m LA

D = - DlJ + 12m DiJ + sA

BB 32

m

AB 31 i2m ”33’

R1

DBA 2; (”2m ' DAA)

[DH]15 is the root of the cubic equation

3/2

lDljl + (12m ‘ IA ‘EZQ [D

A detailed derivation of these equations is given by

Fujita and Gosting, or may be found in Appendix II of

1

(200) for [Dul’2 and then calculates the four ternary

the plots of equations (192) and (193) for the system

studied in this work may be seen in Appendix D.

(196)

(197)

(198)

(199)

(200)

A computer program which solves equation

The linearity of



RESULTS AND DISCUSSION

The following systems were studied experimentally

in this work:

8.. Tracer diffusivity of 2—butanone in the

system 2—butanone - carbon tetrachloride

Tracer diffusivity of p-benzoquinone in the

system p-benzoquinone - benzene

Mutual diffusivity in the system

p-benzoquinone — benzene

Tracer diffusivity of diethyl ehter in the

system ether - carbon tetrachloride

Mutual diffusivity in the system diethyl

ether — carbon tetrachloride

Mutual diffusivity in the system carbon

tetrachloride - chloroform

Mutual diffusivity in the system benzene -

chloroform

Ternary mutual diffusion at equimolar composition

in the system acetone - benzene - chloroform

Experimental results, and intermediate determinations for

the ternary system, are given in Appendixes D through F.

The discussion of results will be organized by type

of diffusivity studied, rather than by composition of the

systems studied.

87
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Tracer Diffusivities

Equation (82) predicts that for a self—associating

component in a binary system, the product of the tracer

diffusivity and the viscosity should have its highest

value when that component is very dilute. As the con-

centration increases, the ratio of polymers to monomers

present in the system will increase, and the tracer

diffusivity will decrease.

In binary system with cross-association the situa-

tion is slightly different. As can be seen from the

equilibrium constant expression,

‘the ratio of dimers to monomers of component A is pro-

portional to the mole fraction of component B. Hence

‘the percentage of A molecules which are tied up in the

(dimers is highest when component A is very dilute, i.e.

XMhen xB + 1. Therefore, the tracer diffusivity-

‘Viscosity product of a component is lowest when that

Ccnnponent is extremely dilute, and increases as the

Concentrat ion increases .

*

Figure 1 shows the variation of the DAn product

for associating components in three systems. In the

Systems ethanol - carbon tetrachloride and acetic acid

carbon tetrachloride hydrogen bonding is quite strong
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between ethanol molecules and acetic acid molecules.

Carbon tetrachloride, on the other hand, is probably

quite inert. The curves for these two systems have

*

exactly the shape predicted by equation (80). The DAn

product is highest when x + 0, and decreases as
A

x + l.
A

In the system ether - chloroform, spectroscopic

evidence [15] suggests that hydrogen bonding occurs

between ether and chloroform to form dimers with the

form

Presumably, steric hindrance prevents the formation of

larger ploymers in this system. Ether—chloroform is

therefore a cross-associating system. The curves in

Figure 1 agree with the predictions of equation (55).

s

in

component is extremely dilute, and increases as the

The D product for each component is lowest when that

concentration increases.

I Equation (45) predicts that for a system where

neither component associates appreciably, the tracer

diffusivity - viscosity product will be a constant

independent of composition. Figure 2 shows the tracer

diffusivity - viscosity product for several systems in
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which there is good reason to believe that there is no

association. The normal iodides for instance are

essentially non—polar, saturated, and contain no groups

active enough to form hydrogen bonds. Carbon

tetrachloride is also non-polar, and the electron

clouds of the chlorines are quite inert to hydrogen

bonding, even in an electron-donor capacity.

As predicted by equation (45) the D:n products for

these systems are straight lines. Furthermore, the D:n

product for 0C1“ is the same for all the systems given

here. This can be taken as supporting evidence for the

assumption that diffusing species behave like particles

flowing through a continuous medium. The diffusion

process is influenced by the viscosity of the medium,

but not by the character of the molecules which comprise

the medium.

Spectroscopic studies have suggested that ketones,

'being polar molecules, undergo some dipole-dipole inter-

actions which lead to the formation of self-polymers in

ssolution. Anderson [1] successfully applied the self-

(dimerization model to explain the positive deviation

:from Raoult's Law in the system 2-butanone - carbon

‘tetrachloride. He then used equation (92) to fit

experimentally measured mutual diffusivity data with

excellent results. Wirth [34] later measured the tracer
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diffusivities of carbon tetrachloride in this system,

confirming the fact that carbon tetrachloride did not

associate.

In this work, the tracer diffusivities of 2-butanone

were measured, hoping to verify the self-association

model. ‘Experimental results for this system are given

in Appendix E, and shown in Figure 3.

The tracer diffusivity - viscosity products for

s

in

products are constant throughout the entire concentra-

this system are shown in Figure 4. Since the D

tion range, it must be concluded that there is no associa-

tion in this system, at least with respect to diffusion.

The dipole-dipole interactions observed spectroscopically

apparently are not strong enough to hold the dimers

together against the shear forces they presumably undergo

while diffusing. This would indicate that the inability

of equation (88) to predict mutual diffusivities in this

system is not due to the formation of polymers. A

possible cause would be inaccuracies in the vapor-liquid

data in the literature. The system clearly warrants

further study.

Spectroscopic studies have shown that highly con-

jugated molecules with electron withdrawing groups

adjacent to the conjugation, such as
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g E p-benzoquinone * \_, 1,3,5-trinitro

4,// Nd;\// N02 benzene

'0

can undergo charge-transfer interactions with donor

molecules, usually aromatics, which stabilize the

structure ’::\C

0:," ,eeo

It has been established that p-benzoquinone will

associate to form dimers in solution with aromatics

[2, 11] and equilibrium constants have been measured for

several of these systems.-

In an effort to experimentally verify equations

(150) through (151) for a ternary system with competing

equilibria, it was decided to study the system

p-benzoquinone — benzene — p-xylene. It was expected

that the quinone would form dimers with benzene and xylene,

and that no other associations would occur.

Mutual and tracer diffusivities were studied for

the component binary system quinone-benzene. Since

quinone is only slightly soluble in benzene at 25°C, the

results cover only the solubility range. Experimental

results are given in Appendix E and shown in Figure 5.
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The tracer diffusivity-viscosity product for

quinone is also given in Figure 5. The variation of

this DZn product should be that predicted by equation

(55), since this system is considered to have only cross—

association. That is, the DZn product should increase

as the concentration of quinone increases. As can be

seen in the figure, it does not increase, but decreases

instead. This was interpreted as some sort of interaction

leading to self-association of quinone which masked the

effect of the cross-association.

The change in the D:n product for a small change

in concentration is much greater for self-association

than for cross-association. It is possible that if the

concentration of quinone could be increased, the cross-

association effect would again become predominant. In

any event, the associations present are too complex to

be treated by the equations developed here, and work in

the ternary system was not carried further.

Tracer diffusivities were measured for ether in the

system diethyl ether — carbon tetrachloride across the

entire composition range, and for carbon tetrachloride

at the two endpoints. Results for this system are given

in Appendix E, and shown in Figure 6. There were con-

siderable experimental difficulties in working with this

system, due to the high volatility, the low viscosity,

and the surface-wetting characteristics of solutions with

4
.
;

I
A
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Figure 6.-—Mutual and Tracer Diffusivities in the System
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high ether content. As a result, the uncertainty of

this data is higher than for the other systems studied,

as indicated by the bars on Figure 6.

It was assumed that the ether — carbon tetra-

chloride system would be a simple nonassociated system,

and tracer diffusivities would be as predicted by

equation (45). In fact, the shape of the DZn product

curve for ether is more like what one would expect for

a cross-associated system. Since the carbon tetra-

chloride is non-polar, and its chlorines do not form

hydrogen bonds, this phenomenon is rather difficult to

explain.

Being somewhat unfamiliar with the mechanics of

charge-transfer complexing, the author hesitates to

eliminate this possibility, but it does seem unlikely.

Furthermore, over a period of time the bulk solution

discolored, indicating a reaction of some sort pro-

ceeding. It is possible that the reaction (though not

extensive and rather slow) indicates that some inter—

molecular interactions were occuring beyond the usual

attractive and repulsive forces. Another alternative is

that the assumption of a continuous medium breaks down

here. This is supported by the fact that the Dgn

product of CClu changes only about 10% over the concen-

tration range, while that for ether changes about 30%.

Again, this system warrants further study. Investigation
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of other properties besides diffusion might also provide

some insight.

Mutual Diffusivities

As part of a study of the ternary system ether -

chloroform - carbon tetrachloride, Wirth [34] measured

tracer diffusivities for both chloroform and carbon

tetrachloride in the component binary chloroform - carbon

tetrachloride. These measurements showed that, as expected,

both chloroform and carbon tetrachloride are nonassociated

in this system.

The Hartley-Crank Equation, equation (88), should

describe mutual diffusion in this system. Wirth [34]

measured mutual diffusivities in this system to

experimentally verify this equation. He encountered some

experimental difficulties, and scatter of data cast some

doubt on his results. The best data he could obtain from

his results, however, showed that the Hartley-Crank

Equation is inadequate to describe this system. The

shape of the Hartley-Crank curve is wrong when compared

to Wirth's data. It was of interest then to attempt to

duplicate Wirth's data, to determine whether thel

discrepency is truly in the equation, or whether it might

be in the experimental results.

The author encountered less experimental difficulty

in measuring this system. Experimental results are

given in Appendix E, and shown (along with Wirth's
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results) in Figure 7. As can be seen, the author's

results agree quite well with the best results obtained

by Wirth. The Hartley-Crank Equation is definitely

inadequate for describing this system.

The discrepancy in this case is very hard to

explain. The assumption of a continuous medium is

probably a good one, since otherwise the effects would

have shown up in the tracer diffusivities as well. The

activity data reported in the literature used in calcu-

lating the thermodynamic correction factor appear to be

quite good. The system is only slightly non—ideal, so

the correction factor is not too large in any case.

There is definitely no association, as can be seen from

the Dzn products. This phenomenon is puzzling, and will

probably require further investigation to provide an

explanation.

The Hartley-Crank Equation also fails in another

nonassociated system, 2-butanone - carbon tetrachloride.

In this case, however, the predicted mutual diffusivity

curve has the correct shape, differing only in the

magnitude of the correction from ideality (see Figure 3).

The author suggests that this may be due to a slight-

error in the activity data, from the experimental vapor-

liquid equilibrium measurements of Fowler and Norris

[12].
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The author measured mutual diffusivities in the

system benzene - chloroform, to further test the Hartley-

Crank Equation. Experimental results are given in

Appendix E, and shown in Figure 8.‘ It was expected that

this would be a simple nonassociated system. Although

tracer diffusivities were not measured in this system,

the self—diffusivities of both components are available.

When the D:n product of the pure component is compared

to the D Bn product when that component is extremely
A

dilute, the results indicate that both components are

nonassociated.

As can be seen in Figure 8, the Hartley-Crank

Equation again fails for this system. The shape of the

curve is qualitatively correct, but the correction is

again too much. The error in this case is probably too

large to attribute to inaccurate activity data.

Further investigation in this system is warranted,

particularly measurement of the tracer diffusivities

over the entire concentration range, to make certain

there is no association.

The author has also measured mutual diffusivities

in the system diethyl ether - carbon tetrachloride.

Activity data are not available for this system, there—

fore it cannot be used to test the Hartley-Crank

Equation. Furthermore, experimental difficulties

(previously described under Tracer Diffusivities) caused
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considerable scatter in the data, especially near the

center of the concentration range. Experimental

results are given in Appendix E, and shown in Figure 6.

As a measure of the uncertainty, the standard deviation

of the data are listed in Table E-3, and are indicated

by bars on Figure 6.

Mutual diffusivities were also measured for the a

system p-benzoquinone - benzene, up to the solubility .

limit. Results are given in Appendix E, and shown in

Figure 5. Again, no activity data are available. The 'fi

complex associations present in this system precluded

testing the hydrodynamic equations in any case.

Error Analysis--Mutual and

Tracer Diffusion

 

 

Bidlack [27] and Kett [16] found that for the

instrument used in this study, the experimental precision

was i1% for volatile liquids such as used here. This

was based upon several runs on aquaeous solutions of

sucrose. These runs were compared to determinations

made by Gosting [17] on the sucrose - water system, with

agreement within i0.5%. They therefore conservatively

estimated the precision of the method using this inter-

ferometer as 21%.

This author accepts the figure of i1% for the

precision of the method and the instrument. Since the

experimental procedure was not changed from earlier
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procedures, the only remaining source of error would be

that introduced by the experimenter. The author takes the

agreement between his data and that collected by Wirth for

the system chloroform - carbon tetrachloride as evidence

that no systematic error has been introduced which would

give consistently high or low experimental diffusivities.

At several compositions in the systems chloroform -

carbon tetrachloride and benzene - chloroform mutual

diffusivities were measured two or more times. At all

these compositions, the values obtained agreed within

12%, and in most cases within 21%. The author takes this

as evidence that random error introduced by the experi-

menter is within the precision specified for the method

by Bidlack and Kett. The experimental precision for the

studies in this work will therefore be taken as 21%.

This figure does not apply to the system ether -

carbon tetrachloride, because of experimental diffi-

culties felt to be inherent in this system, which have

been discussed previously. In this system four or more,

determinations were made at each composition, and

averaged. The averages are reported, along with the

standard deviation of the data, in Appendix E.

Wirth [34] has shown that the modified capillary

technique used in this study has an experimental pre-

cision of 22%. This was shown.by comparing tracer

diffusivities at extreme dilution with mutual diffusivi-

ties extrapolated to zero concentration (which must be
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identical according to equations (91) and (92)), and by

repeated runs for the same composition and comparing the

reproducibility.

The author accepts this as the experimental precision

of the method using this experimental apparatus. To

determine the amount of error introduced by changing the

experimenter, the author reproduced the self diffusivity of

carbon tetrachloride (which Wirth used for calibrating the

cells), with a deviation of about 21%. Further evidence

is the comparison between mutual and tracer experimental

diffusivities at extreme dilution in the systems

2-butanone - carbon tetrachloride, and p-benzoquinone -

benzene. The author concludes that the experimental

error introduced into the method by changing the experi-

menter is within the experimental precision reported by

Wirth. Tracer diffusivities reported here are therefore

assumed to be accurate to within 22%.

Again, this does not apply to the system ether -

carbon tetrachloride. Experimental difficulties here make

the results somewhat more uncertain. Determination of

precision is rather difficult. The values at extreme

dilution are within 25% of mutual diffusivities (which

are themselves uncertain). The author estimates tracer

diffusivities in this system are accurate within 25%,

and are so reported in Appendix E.

‘
4
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TernaryADiffusivities
 

Ternary diffusivities were measured in the system

acetone — benzene - chloroform, at an average composition

of x = x = x = .333. Typical curves showing the
A B C

change of the refractive index gradient throughout the

run are given in Figure D-l. Values of D2m and DA and.

the time correction factors are given in Appendix D.

The linearity of equations (187) and (188), which are

used to evaluate the reduced quantities, can be seen in

Figures D-2 and D-3.

and V DA vs refractive index

fractions for all three independent choices of components

Plots of D2m

are given in Figures D—4 through D-9. (Ternary Dif-

fusivities can be expressed in three different ways,

depending on which components are considered, i.e.,

D D D D or D D D D or D D

BA’ BB AA’ AC’ CA’ CC BB’

As will be pointed out later one set of

AA’ AB’ BC’

D D
CB’ CC'

diffusivities may be more advantageous in testing the

hydrodynamic model and Onsager's Reciprocal Relation

than the other two sets.) The slopes and intercepts of

these lines were determined by a least-squares analysis,

and are given in Appendix D. These slopes and intercepts

were then used with the computer program given in

Appendix C to determine the diffusivities, which are

given in Table 2 for the optimal choice of components

for this system.
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TABLE 2.-—Predicted and Experimental Ternary Diffusivities

in the System Chloroform (C) - Acetone (A) - Benzene (B)

at 25°C.
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characteristics. As can be see. in Figure 9 and Figure0 O

10, the scatter in the data is large enough to mask any

curvature due to association. It is probable that there

may be some cross—association in the binary acetone -

chloroform, but the other two bi.aries are felt to be

In any event, the curvature due to association

is not likely to be extreme, since the end points vary

by only 25% in the binary systems. It was therefore

assumed that the ternary system could be considered a
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non-associated system, at least as an approximation.

Equations (lll) through (114) can'then be used to predict

the ternary diffusivities. These equations depend on

the assumption that the molar volumes are constant.

Since the composition differences within the diffusion

cell were kept very small, the author feels that this

assumption has been met experimentally.

Activity data for the three binaries were fit to

Margules equations and then combined to give ternary

isothermal activity data (as discussed on pages 18-21).

The friction factors were taken to be the weighted

averages of the friction factors at the end-points in

the various binaries. Viscosity was measured with a

Canon-Fenske viscometer. These quantities were then

used with the computer program in Appendix C to predict

the ternary diffusivities, which are given in Table 2

along with the experimentally measured values.

The 95% confidence levels of the measured data,

which will be determined in the next section are also

listed with the experimental data. It can be seen

that the predicted values of the diffusivities fall well

within the 95% confidence limits. The author therefore

feels that the experimental determinations support

hydrodynamic theory. The predicted values of the

phenomenological coefficients L and L2]- are also
12

within the 95% confidence limits of the measured values.

A
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Within experimenta' precision, this can be taken as

empirical verification of the Onsager Reciprocal

Relations.

The 95% confidence levels are quite large for this

set of experimental data. This will be discussed in the

next section in detail. It will be shown that the

values of the cross—coefficients are extremely sensitive

to the experimentally measured intercepts, and that a

very slight error in determining the intercepts can

lead to an extreme error in the cross-coefficients,

as well as a significant error in the main coefficient.

From this sensitivity analysis, and a consideration

of theexperimental data, suggestions will be made for

modifying this procedure. The author believes that

through a thorough investigation of certain factors

leading to experimental uncertainties in the present

method, techniques can be developed which will allow this

method to give 95% confidence levels within 20% or so

for the cross-coefficients. This would then give a

rigorous test of the hydrodynamic model and the Onsager

Reciprocal Relation.

Error Analysis—~Ternary Diffusion
 

Since ternary diffusion has been studied in so few

systems, and since the time involved in making a complete

determination at any one composition is so long,

0

determination of experimental preCision by comparison to
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published data is virtually impossible. The number of

reference systems is also quite small. In the past, the

usual procedure was simply to determine the experimental

uncertainties in the measurement of the various slopes

and intercepts used in calculating the experimental

ternary diffusivities.

Kett [23], for instance, reported 95% confidence

levels of a percent or so, and concluded (implicitly)

that his experimental diffusivities were of the same

order of precision, a percent or so. In fact, this

confidence level would lead to a much larger confidence

level for the cross-diffusivities than he implied. Later

evaluation of his data showed that the confidence levels

were actually somewhat larger than he reported, which

would lead to even more error in the diffusivities.

The errors in the cross-coefficient resulting from

a 1% error in the value of the intercepts can be as

large as 200%. This is because the calculation of the

cross-diffusivities involves subtraction of two rather

large numbers to obtain a small one, so that uncertainties

in the larger numbers are greatly magnified. Furthermore,

errors in the main coefficients as large as 20% can result

from a 1% error in the intercepts. It would seem quite

worthwhile then to look at the sensitivity coefficients

of the ternary diffusivities, which relate the change in

a calculated diffusivity to a change in a measured

parameter.
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If a dependent variable is a function of several

independent variables, the functidnal form usually

involves several arbitrary parameters. The values of

the parameters for a given physical system are usually

determined by measuring the dependent variable at

several values of the independent variables. The

experimental "best" values of the parameters are then

assumed to be those which give the least-square error

when fitted to the data of the experimental measurements.

If the equation is of the form

y = f(al a2 ... a x2 ...x ) (201)

where the ai's are the parameters and the xi's are the

independent variables, then the sensitivity coefficients

are defined by

 

a? iaj = l: 2: 00- n

ya = (a; )a x K = l, 2, ... m (202

i i J’ K j # i

The sensitivity coefficients measure the change in the

dependent variable with a change in the parameters, and

are themselves functions of the independent variables.

Ternary diffusivities can be treated as dependent

variables whose values depend upon independent variables

(component mole fractions, temperature and pressure)

Iand the parameter I SA’ and S2m‘ The functional
A’ 2m’

form of this dependence is given by equations (196)
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through (200). Since the functional form is rather

complex, analytical evaluation of the sensitivity

coefficients is rather difficult. They can easily be

determined numerically with the aid of a computer,

however. A small change is made in the value of one

of the slopes or intercepts, keeping the others constant,

and the change in the diffusivities is noted. This has

been done for the system measured in this study.

If the sensitivity coefficient is multiplied by

bitrary parameter, a reduced sensi-p
)

*
5

the value of the

tivity coefficient may be defined

 s: s a. y = a. < df) (203)

i i i a

2

This gives the chan~e in the diflusivities for a one—

percent change in the parameter. This is useful, since

if the percentage uncertainty in experimentally

measured parameters is known, the uncertainty in the

diffusivities can be determined. These same arguments

also hold for the phenomenological coefficients used to

test the Onsager Reciprocal Relations.

If the experimental data are to be used to test a

proposed model, it would be best if the sensitivity

coefficients with respect to the measured parameters

were as small as possible. In the case of ternary dif-

fusivities, three independent choices of components may



be made. The sensitivity of the main and cross-

diffusivities will not necessarily be the same for each

choice. It would be best then to choose those components

for which the sensiti <
;
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lowest. It can be seen

from Table 3 that in the s stem acetone (A) - benzene‘%

(B) - chloroform (C), the sensitivity coefficients are

generally lower when the set of diffusivities DCC’ DCA’

DAC and DAA is Chosen to describe diffusion. This is the

basis for the choice made in ,reparing Table 2.

If the 95% confidence levels for the parameters

are known, then the 95% confidence levels for the dif-

F
l
o

fus vities can be approximated from the sensitivity

coefficients. By assuming that the sensitivity

coefficients are constant for different values of the

parameters, upper a.d lower limits for the diffusivities

tmay be calcula
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by means of a statistical t—test:
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TABLE 3.——Reduced Sensitivity Coefficients, sgi in the

System Acetone (A) - Benzene (B) - Chloroform (C) for

all Choiced of Coordinates.

 

 

a

i I2m IA S2m SA
y

DAA + 12 + 18 + 03 - Ol

DAB — 09 - 10 +.O3 +.03 -5

x10 “

DBA + 12 +.24 0 0 0 0

DBB - 09 - l3 +.O3 + 04 ;

DAA - 19 + 34 0 0 + 01

D - 08 + 12 - 02 + 02

AC x10-5

DCA + 38 -.78 0 0 - 02

DCC + 16 - 27 + 03 -.05

DBB - 21 — 36 + 03 - 04

D - ll - 23 0 0 0 0

BC xlo 5

DCB + A2 + 65 - 08 + 07

DCC + 2H +.42 O O 0.0

 

where t stands for the statistical parameter from the

t-test, and s:(a1) is the statistical estimate of

variance of the parameter a1, as determined from the

least-squares analysis. The 95% confidence limits on



120

the diffusivities were determined by these formulae,

and are given with the values of the diffusivities in

Table 2.

To provide a rigorous test of hydrodynamic theory

and of the Onsager Reciprocal Relations, it would be

necessary to reduce the 95% confidence levels on the

main coefficients to about 10% or so of the values of

those coefficients, and the 95% confidence levels on

the cross-coefficients to at least 50% or so of the

values of the cross-coefficients. Since the sensitivity

coefficients for the intercepts are so high, it would

be necessary to reduce the variances of those intercepts

to within a few tenths of a percent. It would also be

necessary to reduce the value of t from the t-test.

Since t decreases with the number of degrees of freedom

(i.e. experimental measurements made) at a given con-

fidence level, a statistically large number of measure-

ments should be made for every set of diffusivities

desired.

Since t approaches a constant value as the number

of measurements increases, it becomes apparent that the

sample variance must also be reduced. Concisely, this

means that more precise measurements must be made, as

well as more of them.

This means that the spread in the data seen in

l

the plots of D and MDA vs a must be reduced. The
2m
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reasons for the spread in the data are difficult to

determine. One probably important cause of this spread

is the quality of the initial boundary. It can be seen

from Table A th t the true initial time determined from

equation (187) and the 321 vs t curves is not the same

eas that determined from quation (188) and the

1 - w-fi ~ 9 I 0 1 ~

vs t durves. ii the initial boundary nad been
m

VD

A

a true step change, and the timer started the instant

 

that flow from the cell was stopped, the true initial

Wl—
~l

c
1

time would have been t” = 0.
1.;

s assumed that them

initial boundary is such as would have been formed by

‘

diffusion from a step—change for a short period of time.

This would have resulted in a true initial boundary in

which the refractive index gradient curve was Gaussian,

and the true initial time would have been the same whether

determined from equation (18?) or (188).

It can be seen that the measured refractive index

gradient curves in some runs are obviously not Gaussian.

The curves are slightly skewed to one side or the other.

Ternary iffusion from a step change boundary always

gives skew curves, except at two times during the run

when they are true Gaussian curves. However, in order

M f
-
’

for equations (187) and (188) to apply, the true init a

distributions must be Gaussian. (Note that this is the

true initial di (
1
)

tribution, not the experimental boundary.)

The author believes that the error introduced by a
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TABLE 4.--True Initial Times for Ternary Runs, as

Predicted by Equations (187) and (188).

 

 

to’ sec. to, sec.

Run Number eq. (187) eq. (188)

60 -20 —43.8

62 -23 -37.1

63 -90 -55.2

65 -56 "”9°2

66 -13 ' 7'8
68 _52

-65.7

69 _74 -72.8

70 —58 -“7.9

 

non—step-change boundary can be related mathematically

to the difference in the initial times determined from

the two curves, and possibly one measurement of the

refractive index gradient during the run. He was not

able to derive such a relation, however.

It certainly seems reasonable, however, to use the

difference between the time corrections for the two

curves as a criterion for rejecting a run. If the two

initial times varied by more than a certain amount, the

run would be rejected. Determination of what difference

should lead to rejection will probably take considerable

study and experimentation.



It might also

possible methods of

this boundary could

be worthwhile to investigate other

forming the original boundary. If

be improved, the better approximation

to a step-change would undoubtedly lead to better

.1

.-

 

results, and less spread in the D2fi and /3_ vs a
H .‘

A

curves.

In summary, t'e experimental results for the

system acetone — benzene - chloroform support the

predictions of hydrodynamic theory, within the experi—
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SUMMARY

Hydrodynamic theory has been used to derive equa-

tions describing the effects of composition on mutual

and tracer diffusion in certain associated and non-

associated liquid systems. These equations have been

tested by experimental measurements of binary mutual,

ternary mutual and tracer diffusivities.

Tracer diffusivities have generally verified the

predictions of hydrodynamic theory quite well (ether -

carbon tetrachloride being an exception). As the per-

centage of a component which is associated into

complexes increases, the tracer diffusivity - viscosity

product decreases, and vice—versa.

Although many systems have been found for which

hydrodynamic theory does apply quite well, three non-

associated systems are presented here which seem to be

exceptions. In non-associated systems, the Hartley-

Crank equation should describe mutual diffusion. In

benzene - chloroform and 2-butanone - carbon tetrachloride,

the Hartley-Crank equation qualtitatively predicts the

shape of the mutual diffusivity curve, but fails

quantitatively. In chloroform - carbon tetrachloride,

it fails qualitatively as well. These failures may well

124
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be due to inaccurate vapor — liquid equilibrium data,

however. In the ternary system acetone - benzene -

chloroform (which is here considered to be non-

associated) hydrodynamic theory predicts the ternary

diffusivities, within experimental precision. Unfor-

tunately, experimental uncertainty is rather large, and

this may not be considered a rigorous test of the

theory. Within experimental precision, hydrodynamic

theory also predicts the validity of the Onsager Reciprocal

Relation.

The author feels that this experimental uncertainty

is due primarily to the difficulty of forming a good

boundary within the diffusion cell, which is critical in

measuring ternary diffusivities. Suggestions are given

for future investigations to reduce the experimental error

and provide a more rigorous test of hydrodynamic theory.



The author suggests that future work in liquid

non—electrolyte di“lusion is needed in four particular

areas: (a) improvement of experimental methods and

techniques, so that difquivities may be measured more

precisely, reliably, and hopefully more easily than is

now possible; (b) more systems need to be studied to

support conclusions which have been previously arrived

at on the basis of a small number of studies; (c) those

systems which seem to offer contradictions to hydro-

dynamic theory need to be studied more carefully;

(d) further theoretical work needs to be done,

*
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Iextending the principles used here to continuous assoc

tion, or simultaneous self-a sociation and.cross—U
)

association for example.

Experimental problems which lead to low precision

in measurements were discussed considerably under the

Ternary Diffusion error analysis. The author feels that

a thorough study of the effects of different boundary

conditions, different methods of forming the initial

boundary, and possibly a new mathematical treatment for

obtaining diffusivities from refractive index gradient

curves would be a self—contained and quite worthwhile

research program.
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Besides this work on ternary diffusivities,

however, the author feels that much improvement could

still be made in the techniques used for measuring

binary mutual and tracer diffusivities. For example, a

technique which would totally eliminate convection in the

capillary, perhaps by using a porous capillary instead

of an open one, would be well worth developing. Or an

interferometer which used a laser light source and a

better set of lenses, or for which a better boundary

could be established, would be worth investigating.

Although the systems so far studied have generally

supported hydrodynamic theory, there is not enough

evidence to conclusively say that it is correct. This

is a general problem in liquid diffusion--there simply

has not been enough raw data generated in the past to

thoroughly test any new theory prOposed except for a

comparatively small number of cases. For instance, to

the author's knowledge, there has never been published a

complete study of any ternary system (mutual and tracer

isotherms of all three component binaries, ternary mutual

diffusion isotherms, and ternary tracer diffusion, to say

nothing of the effect of temperature on all of these).

Systems such as 2-butanone — carbon tetrachloride,

and chloroform - carbon tetrachloride, which appear to

contradict hydrodynamic theory (or at least present

ambiguities to be resolved) should be studied more



carefully. It is quite possible that studies of

phenomena other than difiusion would be very useful

here. It has been recently proposed that the chlorine

atoms of carbon tetrachloride engage in a limited form

of hydrogen bonding with alcohols, and therefore they

might cause some very weak bonding effects in these

to the breakdown of the Hartley-Q
.

systems which lea

Crank equation. This seems unlikely, but perhaps

spectroscopic studies directed at this particular

’
0henomenon might provi‘e some useful information.

1

Theoretical work based upon lydrodynamic theory

J

could be directed at finding a simplification bf equation

(80) and its generalization which could be applied to

tracer diffusivity in a ~ystem with extensive association,

such as ethanol - hexane, r aniline - benzene. Or

equations could be developed for application to systems

like aniline — toluol where there is both self-

association and cross-association. Equations for con-

tinuous self-association as pplied to tracer diffusionp
a

could be related to imilar equations for mutualU
)

. -

eH
,

F
l

0
.
.

diffusion. This is again open for much investigation.
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Figure n-l lS a schematic diagra

capillaly. SpeCific details regarding

.
‘
1

C
)

p
)

|
.
J

F
.
J

§
<

C
f

0prepared gravimetif

by means of a CLristian and Becker

balance.

i alo
r

mole fraction on a large analy c
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m of the diffusion

dimensions,
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.
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fraction,

torsion

Bulk solutions were prepared to within 1.005

The tracer

for 15

solution.*

‘e following procedure:

malleable nickel

to insure

and placed

ary was inserted

*

Air bubbles coming out of solution during the run

and drifting up to the glass disc were

experimental difficulties. They would

the capillary as they drifted upwards,

changed the resistance constant in the

condition at the capillary end.

F
“

W .
.
J

one of the principle

mix the contents of

and probably

boundary
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Figure A-l.--Schematic Diagram of the Modified

Capillary Cell.



F
.
)

L
A
)

L
A
)

into the screw cap, and tightened with a pair

of pliers to insure a good seal to the foil

The capillary was immersed to within one half

inch in the bulk solution, and the bulk con-

equilibrate at 25°C for one hour.

The capillaries were then filled with degassed

(
h

tracer <olution by a .50 cc tuberculin syringe,

with a 19 ga needle cut to the same length as

the capillary. Great care was taken to avoid

trapping air bubbles in the capillary. The

syringe was emptied of air bubbles by inverting

and ejeCting some of the solution. The syringe

was then inserted in the capillary, and with—

drawn siowiy, discharging solution as it was

removed. A puddle of tracer solution was left

covering the top of the capillary.

The glass frit was then filled by dipping it

.‘

n the bulk solution, and allowing the excess toH
-

drain away. The frit was then carefully placed

on top of the capillary, in such a way that no

air bubbles were trapped, and with the puddle of

tracer solution covering the frit.

The frit holder was then placed over the end of

the capillary. By this time the excess tracer

m

mentioned above had generally evaporated. lo
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prevent the frit from drying out and trapping

air, the depression in the frit holder was

filled with tracer solution. The entire

assembly was then placed in the bulk solution,

washing away the excess tracer solution in

the process.

After all six capillaries had been filled, the top

was placed on the bulk container, leaving the vent open

until the vapor pressure could drive out the excess

air. The bulk container was then placed in the thermostat,

and the time recorded. The filling process took about

half an hour for all six capillaries;

1

After tnree to five days, depending upon the

diffusivity, the bulk solution was removed from the

thermostat. The six capillaries were emptied into nylon

counting vials as follows:

I. 5 cc of scin illation fluid was placed in the

bottom of the counting vial, and a syringe was

filled with l0 cc of scintillation fluid for

step number (4) below.

2. The capillary was removed from the bulk

solution, and the frit holder carefully removed

without disturbing the frit. The excess

solution on the frit was allowed to evaporate.

3. The capillary was inverted into the counting

vial, which washed the frit from the end. The



end of the capillary was kept beneath the

surface to avoid flash evaporation of tracer

A. The conical depression in the screw cap was

filled with fluid from the syringe mentioned

in step I). The foil disc was then punctured

U
‘

C
)
.

y the syringe nee le, and tracer solution

If lary with scintillationF
A

ushed from the capi

fluid. When 2 or 3 cc remained in the syringe,

the capillary was removed from the vial, and

washed off with the remaining scintillation

fluid, so that all the tracer solution was in

the vial.

5. The coun ing vial was capped, and identified

by the capillary number. It was shaken gently

to thoroughly mix the contents, and the glass

frit was removed. The glass frit was washed

in acetone to remove scintillation material in

preparation for the next experiment.

for all six capillaries,{
)
1

This procedure w s repeateOQ
)

and the time recorded. The emptying proceSs took about

20 minutes.

The capillaries and screw caps were then cleaned

with acetone, dried, and prepared as before. Initial

counts were then prepared as follows:



F
!

U
)

0
\

A counting vial was prepared as in step (1)

that the puddle was kept as sma

P rocedure.

filled with tracer solution

J

the filiin} procedure, except0
9

F
»
!

l as possible,

ideally covering only the opening of the

capillary.*

The excess tracer solution was allowed to

evaporate until level with the surface of the

O
-

. l‘ (
D

F
]

m '
5

CE.

'
0

inverted into th

in the previous

C

(
D

apillary was then quickly

counting vial, and flushed as

mptying procedure. The vial was

then identified by the capillary number as an

initial count.

 

*This procedure had to be modified slightly for

containing a high concentration of ether, since

these wetted the surface of the capillary extensively.

The solutions would not evaporate level with the surface,

but would form a depression into the capillary before all

the solution had evaporated from the surface.

The capillaries were filled with a solution for

which wetting was not a problem, and emptied in the usual

manner. They were then refilled with the same solution,

and allowed to evaporate to the same estimated depth as

solutions

the problem solutions. Emptying these and comparing the

count rates from the two sets gives an estimate of the

ratio of the true

for the problem solutions.

initial count to the measured counts

Since the depth of the depression could only be

estimated by eye, this procedure introduces some error,

but it is at least a random error, due to the estimation,

rather than a systematic error due to incorrect initial

counts. The diffusivities for these solutions are

reported with an uncertainty of :5%, instead of the

usual i2%.
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The equipment was th n cleaned and prepared for

The initial and final counts were then counted

using a Packard Tri-Carb scintillation counter. Since

some of the chemicals used, notably carbon tetrachloride

and p-benzoqui.one, acted as quenching agents, the gain

of the scintillation counter was reset before every

counting session to give optimum count rates.

When the data from the count rates had been

of the five closest values of theC
)
;

analyzed, if the sprea

tracer diffusivity (as calculated for the six capillaries)

‘l

was reater than 5%, i.e. 12.5% from the mean Value, the

0
9

experiment w discarded. This was to eliminate those9
)

U
)

runs in which there may have been convective mixing

within the capillaries. Since the magnitude of such

effects depends upon when during the experiment they

occurred, convection would cause a spread in the values-

of the diffusivity as well as an increase in the apparent

1 I

value. It was felt that this screening procedure would

1

eliminate those runs in which convection occurred.
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Figure B-l is a schematic diagram of the Mach-

Zehnder interferometer used for measuring the binary

and ternary mutual diffusivities. Figure B-2 is a

diagram of the diffusion cell. Specific details of

construction are given by Bidlack [A], as are instruc-

tions for alignment and adjustment of mirrors to produce

the proper fringe pattern.

Two solutions with slightly different compositions

were prepared gravimetrically using a Christian and Becker

Torbal torsion balance. The difference in composition

of the two solutions was generally .01 mole fraction for

binary systems, but could be varied to give the proper

number of fringes, depending upon the refractive indexes

of the two components. The cell was filled according to

the following procedure:

1. The plunger was placed in the filling syringe,

and all valves were closed, except valve 2.

2. Approximately 40 cc of the denser solution were

placed in reservoir B, and the top of the

139
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glass solution reservoirs

made from 50 cc syringes

[‘__j filling E] A [[‘% B[£

_ syringe

 

        
    

 

 

 

 

 
 

 
 

  
  
   

valve 2 valve 1

\ cell

cell body

window “*

$-

valve A

/;;/ valve 3

boundary ’//4

sharpening

slits

siphon valve 5

Figure B-2.——Diagram of Diffusion Cell.
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reservoir was covered with aluminum foil to

retard evaporation.

Valve 5 was Opened, and solution allowed to

fill the cell to just below the level of the

slit. The filling syringe was then used to

draw fluid back and forth through valve 5 to

remove air bubbles trapped near the valve

stem. Solution was then allowed to fill the

cell to about one hal inch above the slit.  
Valve 5 was then closed.

 

Valve A was then opened. Solution was forced

through valve A by the filling syringe, until

the solution level in the cell was just above

the slit. Care was taken not to force any

air from the cell into the siphon line. Valve A

was then closed, and valve 5 opened. Solution

was allowed to flow into the cell until the

level was again on half inch above the slit.

Step (A) was repeated until fluid flowed from

the siphon line, to insure that the line was

0 O '
3

F
C
)

|
.
_
J

(
D

C
I‘

(
D

ly filled up to the tee in the line.

The process of steps (A) and (5) was then

repeated for valve 3, to fill the other side

of the siphon line.



10.

1A3

Valve 1 was opened, and the plunger removed

from the filling syringe. At this point, the

siphon was checked by slightly opening valves

3 and A consecutively to make sure fluid would

flow freely from the cell. Valves 3 and A

were left closed after checking the siphon.

Valve 2 was closed, and the filling syringe

filled with the less dense solution. The

plunger was then replaced.

Valve 2 was then opened very slightly, and

solution was allowed to flow very slowly down

the wall of the cell. The flow rate was kept

very slow until the level was an inch or so

above the slit, to avoid turbulence and mixing

at the boundary. After this time, valve 2 was

opened a little to allow solution to flow in

more freely. To stabilize the boundary, valves

3 and A were opened so that solution flowed

through the siphon at a rate of one drop every

two or three seconds.

When solution began to appear in reservoir A,

valves 3 and A were again closed. Solution was

forced back and forth through valve 1 to remove

any air bubbles from the valve stem. With

liquid above the bottom of reservoir A, valve

2 was then closed.

 

 



The less dense solution was then added toF
J

F
l

reservoir A until the level was even with that

in reservoir B. Reservoir A was then covered

with aluminum foil to retard evaporation.

The diffusion cell was now ready to be placed in the

water bath for the experiment.

Before the cell was placed in the water bath, the

fringe pattern was checked to make sure the fringes were

straight, vertical and in focus. It was usually found

that they had drifted slightly away from the vertical

since the last experiment. This could almost always be

corrected by making a fine adjustment of mirror 3.

The cell was then placed in the water bath. Valves

1 and 5 were opened several turns each. Valve three was

then opened until the flow rate from the siphon was

approximately one drop every six seconds. Valve A was

then opened until the flow rate was one drop every three

seconds. It was important that the flow rate be the same

_from each side of the cell maintain flat boundary. It()
1

was also important that the flow rate into the top and

1

bottom of the cell be the same so that the initial

(
‘
f

distribution of concentra ion gradients would be

symmetric about the boundary.

It usually took about 20 to 30 minutes for the

cell to reach the equilibrium temperature, and for a good

77'

boundary to form. wne

i

. the boundary had formed, valvesp

15‘
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D c
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of seven pictures, at intervals of 2 minutes were taken.

(In the faster diffusing systems, the intervals were

somewhat shorter.) In some cases, valves 3, 4 and 5

were again opened, anOther boundary formed, and a second

set of pictures taken.

The photographic plate, a Kodak Type M plate, was

developed by the following procedure:

1. The plate was developed for 5 minutes in

2. The developme.t was then stopped by a one-

(
1
'
)

minute oak, with continual a in tap

0
‘
!

water.

3. The image was then fixed by a 5-minute soak,

with irtermittent agitation, in Kodak Rapidfix

4. The plate was then removed from the fixer, and

washed for about one minute under running

F
4
)

water, and then allowed to dry or at least

The photographic plates were extremely sensitive to light,

1

solute darkness (no safe0
‘

and had to be handled in a

light) throughoout the entire procedure, until the fixing

step had been co.pl eted.

A new plate was then inserted into the film holder,

making sure that the er*u lsion side of the plate faced

outward. This was irportant because the thickness of the



.
.
J

:
i

0
\

plate was enough to throw the image out of focus, and

perhaps change the magnification factor of the camera.

The developer and fixer were replaced after every ten

runs, in order to maintain a consistently high imag

quality in develonment.
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COFRUTLR PROGRAMS FOR ATA ANALYSISU

The following computer program uses measured

values of the slopes and intercepts to calculate experi-

mental values of the ternary diffusivities. The program

language is FORTRAN IV, with specific deck structure

.
1
:

H 0
:
)

C
)

O O O ’
I

U {
:
1

(
‘
1
‘

(
D

*
5

O *
b

c
1
‘

1
’
3

(
D

O 0 F
J

forl the IB lege of Engineering,

 

. .. n . . 2 L
hiChigan State niversity. One constant, R /R1, mUSb

be specified within the program at the designated point.

-‘

Other data (the lepes and intercepts) is read by the

computer.

// J$B

// RflR TDIRF

*IECS (CARD, 14A

*EXTENDRD RRECIS

*NCNRRZCESS RRflG

*ZNE NERD l\iLoL

AM

-REAL 12M, IA, L2x, LA

CEMMZN x

READ (2,10

FERMAT (A E

LA = IA + SA

L2M = 12M + 3

IF (12M) 3, u,

WRITE (3, 20)

o FERMAT lHl, 6

2% IA, 82M, SA

H
F
J

o

3

:2N, IA, s2M, SA, L2M, LA

3 15.5)

2R /R1 MUST BE SPECIFIEDLL U3 Q?

3

2

C

C TIR AL

C AT THIS REINTR

C

e.g. R = .A2999

1A8
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APPENDIX D

oncentrations in the system

* (B) - Benzene(C)
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Téikolle E—1.--Experimenta1 B'

£33ystem.Chloroform(A) — C

b

{
o
i
o
k
l
l
l
b
m

4
2
4
4
0
0
0

fl
a
t
t
O
t
t

‘TAEBILIS E-2.--Experimental Binary Mutual Diffusivities in the

X
APPENDIX E

EXPERIMENTAL RESULTS

nary1 Mutual Diffusivities in the

arbon Tetrachloride(B) at 25°C.

D
AB

x 105, cm2/sec'

1.557

1.572

1.680

1.757

1.779

1.970

2.007

System Benzene(A) - Chloroform(B) at 25°C.

D
AB

x 105, cm2/sec

 

IX
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0.207

0-31453
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0.7'8355

0.785
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J

O
\

0
0

TABLE E-3.-—Experimenta1 Binary Mutual Diffusivities in the

System Ether(A) - Carbon Tetrachloride(B) at 25°C.

 

XA DAB x 105, cm2/sec

0.005 1.50 i .05

0.200 1.95 i .06

0.1400 2.38 i .114

0.600 2.99 i .20

0-800 3.76 i .34

0. 995 A 2:

 

.59 .07 ”“3

TABLE B—A.-—Experimenta1 Binary Mutual Diffusivities in the

System p-benzoquinone(A) - Benzene(B) at 25°C.

  

 

 

 

5 2 isteink DAB x 10 , cm /sec

0.0041 2.20

0.0057 2.16

0.0132 2.09

0.0239 1.98

0.0266 1.95

0.0315 1.96

0.01430 IL9A

TAE31613 E-S.-—Experimenta1 Tracer Diffusivities in the

System 2-Butanone(A) — Carbon Tetrachloride(B) at 25°C.

 

 

J<1X D: x 105, cm2/sec D; x 105, cm2/sec

\

“-000 1.320

8-837 1.611

0.518 2.260

0' '78 2.720

0.325 3.183

' 82 3.300

0995 2.973/



F
J

0
\

K
C
)

0
.
3

‘AES ‘E-6.--Experimenta1 Tracer Diffusivities in the
T17

fSysytenip-benzoquinone(A) - Benzene(B) at 25°C.

 

 

XA DA x 10 , cm /sec 08x 10 , cm /sec

0.0000 2037

<0.0010 2.%2

0.0103 201

0.0464 201

 

'TAEHJS E—7.--Experimenta1 Tracer Diffusivities in the

Ehystem.Ether (A) - Carbon Tetrachloride(B) at 25°C.

 

 

* *

xA DA x 105, cm2/sec Dfax 105, cm2/sec

0.000 1.32

0.024 1.629 t .082

0.024 1.674 t .084

0.332 2.636 t .132

0.530 3.796 t .190

0.850 5.383 t .269

0.999 4.395 i .220

1.000 7.91 r .396

 

TABLE E-8.--Experimenta1 Density and Viscosity in the

System p-benzoquinone(A) - Benzene(B) at 25°C.

 

 

XA density, g/ml viscosity, cp

0.0011 0.8738 0.600

0.0103 0.8767 0.608

0.0283 0.8826 0.617

0.0387 0.8861 0.629

0.0464 0.8896 0.631
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TABLEIL9.-—Experimenta1 Density and Viscosity in the

EWstem Ether(A) - Carbon Tetrachloride(B) at 25°C.

 

 

 

 

 

 

XA density, g/ml viscosity, cp

0.000 1.585 0.913

0.1851 1.4177 0.677

0.3119 1.3047 0.445

0.4808 1.1536 0.583 .

1.000 0.7074 0.225

TABLE E-10.-—Experimenta1 Density and Viscosity in the _ I;

System Acetone(A) — Benzene(B) - Chloroform(C) at 25°C.

xA xB XC density, g/ml viscosity, cp

0.328 0.339 0.333 1.0457 0.4869

0.339 0.332 0.329 1.0427 0.4870
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APPENDIX F

THERMODYNAMIC DATA

TABLE F-1.--Activity Data for Acetone (1) — Benzene (2)

at 25°C (from Timmermans [30]).

 

 

 

 

X lny2, 1n72, 1nyl, lnyl,

' 2 exp. eq. (24) exp. eq. (25)

0.1251 .5002 .4827 .0011 .0060

0.2500 .3937 .3896 .0265 .0278

0.3652 .3122 .3022 .0662 .0669

0.5550 .1829 .1672 .1802 .1835

0.7150 .0898 .0750 .3400 .3452

0.8249 .0659 .0300 .4846 .4966

0.8862 .0387 .0131 .5793 .5971

0.9500 .0301 .0026 .7169 .7148

Margules constants: Al2 = .8169

A21 = .5685

TABLE F-2.--Activity Data for Acetone (1) — Chloroform

(3) at 25°C (from Hildebrand and Scott [21]).

 

 

 

X3 1ny3, lny3, 1nyl, 1nyl,

exp. eq. (24) exp. eq. (25)

.0600 -.6733 -.6771 -.0101 -.0019

.1840 -.5276 -.5502 -.0202 -.0198

.2630 -.4308 -.4700 -.0513 -.0431

.3610 -.3711 ~.3723 -.0943 -.0873

.4240 -.3285 —.3126 -.1278 -.1259

.5080 -.2614 -.2379 —.l985 -.l913

.5810 —.l985 -.1788 -.2877 -.2621

.6620 -.1287 -.1208 -.3857 -.3574

.8020 -.0513 -.0441 -.5798 -.5682

.9180 —.0101 -.0079 -.7765 -.7917

Margules constants: A13 = -.9791

A31 - -.7372
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TABLE F-3.-—Activity Data for Benzene (2) - Chloroform (3)

at 25°C (from Timmermans [30]).

 

 

 

 -
-
1
5

x2 1nY2 1nY2 1nY3 1ny3

exp. eq. (24) exp. eq. (25)

0.1340 -.3439 -.2248 +.01l9 —.0066

0.2600 —.2837 -.1548 +.0109 -.0237

0.3180 -.1767 -.1278 -.Ol31 -.0347

0.6400 -.0598 —.0299 -.0845 -.1225

0.7160 -.0284 -.0178 -.1301 -.l480

0.8660 -.0202 -.0036 -.1532 -.2012

Margules Constants: A23 - -.3180

A32 = -.2500

TABLE F-4.-—Constants for use in equations (20) through

(24) for the system Acetone (1) - Benzene (2) - Chloroform

(3) at 25°C.

 

Al2 = .8169

A21 = .5685

A13 = -.9791

A31 = -.7372

A23 = -.3180

A32 = -.2500

C = 0.0
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Capitals
 

A

C

APPENDIX G

NOMENCLATURE

interaction perameter a]

concentration, interaction parameter

 diffusivity

Onsager diffusivity

reduced second moment

reduced height-area ratio

energy of vaporization

force

Gibbs free energy

enthalpy of mixing

intercept of second—moment curve at a = 0.

intercept of height-area ratio curve at a = 0.

flux, fringe number

equilibrium constant

phenomenological coefficient; length of capillary

intercept of second-moment curve at a = 1.0

intercept of height-area ratio curve at a = 1.0

magnification factor of camera

number of species in solution

simplifying constants
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+
<
E
Z
<
1
P
3

Small
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gas law constant; refractive index constant;

simplifying constant

entropy

slope of second-moment curve

slope of height—area ratio curve

statistical variance

reduced sensitivity coefficient

temperature

volume

simplifying constant

thermodynamic parameter

activity; arbitrary parameter; Miller coefficient

Miller coefficients

arbitrary function

fringe number

moment

number of moles; refractive index

time; statistical t-test parameter

velocity

mole fraction

distance

Greek Capital
 

A

2

difference

summation

 



Greek small
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prOportionality constant; refractive-index

simplifying constant

activity coefficient; simplifying constant

solubility parameter; Kroneker delta;

constant in friction coefficient

 

activity-defined equilibrium constant

laboratory-fixed coordinates

medium-fixed coordinates

activity-coefficient—defined equilibrium

chemical components A, B, C

species i, 3

species 1, 2, 3

driving force

a fraction;

8 simplifying constant

8n eigen value

Y

0

simplifying constant

n viscosity

6 time

A proportionality constant

An eigen value

p chemical potential

0 constant 3.14159 ...

o

0 volume fraction

Subscripts

a refers to

0 refers to

m refers to

y refers to

constant

A,B,C refers to

1,3 refers to

j1,2,3 refers to

d refers to

r refers to resisting force

 



 

5 refers

V refers

3 refers

z refers

0 refers

ave refers

max refers

Superscripts

m refers

V refers

0 refers

* refers

' refers

to

to

to

to

to

to

t0

to

to

to

to
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sphere

volume-fixed coordinates

fringe number j

distance 2

initial value

average value

maximum value

medium-fixed reference plane

volume—fixed reference plane

standard-state

tagged species

related quantity

molar property
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