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ABSTRACT

TRACER AND MUTUAL DIFFUSION IN SEVERAL
ISOTHERMAL NON-IDEAL LIQUID
NON-ELECTROLYTE SYSTEMS

By

C. Michael Kelly

Hydrodynamic theory is used to develop equations
predicting the effect of intermolecular association upon
tracer and mutual diffusion. On the basis of simple
assumptions about the volume of associated complexes, it
is shown that Onsager's Reciprocal Relation should be
valid in certain assoclated systems.

An experimental study is made of tracer and mutual
diffusion in several systems. It 1is found that the
association characteristics of a given system may be
determined from plots of the tracer diffusivity-viscoslty
product vs. composition.

It is further shown that several systems which are
non-assoclated, as can be seen from the D*n products, fail
to obey the Hartley-Crank equation. Posslble reasons for

thls fallure are presented.



C. Michael Kelly

A study has been made of the method currently
employed for measuring ternary diffusivities. Weaknesses
in the current metnocd are pointed out, and suggestions are
made for improvements. Within experimental precisilon,
however, ternary measurements support both the predictions
of hydrodynamic theory, and the Onsager Reciprocal

Relations.
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INTRODUCTION

Interest in molecular diffusion in liguids has
increased considerably in the past few years, from both
experimental and theoretical points of view. Several
techniques have been developed for measuring ordinary
(both binary and multi-component) and tracer diffusive
fluxes [22]. A large number of binary solutions, both
electrolytic and non-electrolytic, have been studied. 1In
the past few years a number of multi-component systems
have also been investigated. Although much work has been
done, when one considers the large numnber of simple
systems avallable it becomes apparent that the surface
has barely been scratched. Much more work needs to be
done before there can be a preclse understanding of
molecular diffusion.

Theoretical efforts have centered on determining
the relationship between diffusive fluxes and the
physical and chemical properties of the system, such as
molecular weight, molecular size and shape, viscosity,
state variables and solution thermodynamics. There has
also been considerable interest in the relationship of
ordinary'diffusion to\tracer diffusion, both from a
predictive and a correlative standpoint. In multicomponent

1



systems, much emphasis has also been placed upon verify-
ing the theory of Onsager based upon the prirciples of
irreversible thermodynamics, particularly the Onsager
reciprocal relationsnips.

There have been two basic theoretical approaches
to the description of diffusion processes. One 1s based
upon modifications of tne absolute reaction rate theory
of Eyring [16], and tre other upon modifications of the
nydrodynamic flow model of Stokes [29]. This work will
follow the hydrodynamic approacn.

According to hydrodynamic theory, transport of a
species through a solution in which there 1is a concentra-
tion gradient of that speciles takes place by means of
two processes. The first process i1s the flow of indalvidual
molecules through the surrounding medium as a result of
a force acting upon those molecules. Tnls has been
termed by Hartley and Crank 'intrinsic diffusiont' [20].
Tne second process i1s the transport of molecules due to
flow of the medium. Tnis flow occurs because of
hydrostatic pressure gradiencs which arise from the
differing volumes of the diffusing speciles. Hartley and
Crank termed this process pbulk flow.

Tne first process can be characterized by a combina-
tion of chemical and physical properties of the diffusing
specles which Hartley and Crank called the 'intrinsic

diffusivity.' This 'intrinsic diffusivity' is the



product of two terms, one involving the physical
propertles of the diffusing species and the surrounding
medium, and the other involving solution thermodynamics.
The first term Qill be called here the "intrinsic
mobility" of the species, as suggested by Carman [6].

Equations have been developed relating diffusivities
to the intrinsic mobilities of diffusing species and
solution thermodynamics. These have been modified by
assuming that in some systems molecular interactions can
be characterized by a chemical association. In these
systems, a given stoichiometric component may undergo
intrinsic diffusion not only as monomers, but as dimers,
trimers, and otner associated complexes as well.

In this work ordinary (binary mutual, and ternary)
diffusion has been studied by means of a Mach-Zehnder
interferometer [5], and tracer diffusion has been studied
by a capillary technique, for several systems of interest.
It 1s shown that the degree of associlative behavior in a
given system can be determined from the tracer diffusi-
vities of the components. Equations are developed
relating association (as determined from tracer
diffusivities) to the intrinsic diffusion process, and
to solution thermodynamics, upon which ordinary diffusion
is highly dependent. These equations will be tested by

the diffusivity data previously mentioned.



It will be shown that hydrodynamic theory predicts
that the Onsager reciprocal relations are valid for non-
assoclated systems, and several specific types of
assoclated system. Experimental measurements made 1in the
ternary system acetone - benzene - chloroform agree with
Onsager's reciprocal relation within experimental
accuracy.

Unfortunately, precise experimental verification
by this method is quite difficult, for reasons which
willl be discussed later. An analysis has been made of
the probable causes of low experimental precision in the
measurement of ternary diffusivities by this method.
Possible‘avenues of investigation will be suggested which
might lead to an improvement in the method. It 1s hoped
that future work along these lines will lead to a precilse
experimental verification of Onsager's reciprocal

relation.



BACKXGROUND

Hydrodynamic Flow Equations

Hydrodynamic theory states that a diffusing
molecule behaves like a particle undergoing viscous
flow through a continuous medium. The driving force for
diffusion which causes this flow is generally agreed to
be the gradlient of the chemical potential of the diffusing
specles, acting in the direction opposite to the gradient

of the chemical potential:

Fig = = Yy (1)

Since there 1s assumed to be no acceleration, this must
be balanced by a drag force upon the molecule, due to
the viscosity of the medium.

Sutherland [29] and Einstein [10] independently
showed that the viscous drag force for a sphere flowing

through a continuous medium 1s given by

= - 2
FSI‘ 6ﬂrsnvsm ( )

where ry is the radius of the sphere, N 1s the

viscosity of the medium, and v m is the velocity of the

s
sphere with respect to the medium, and the negative



slgn 1s because the drag force is in the direction
opposite to the flow.

If the molecule were truly a sphere diffusing
through a continuous medium, equations (1) and (2)

could be combined to obtain

- a"é‘i‘ = 6mrinvy (3)

du,
where Vu, has been replaced by ——i, denoting one-
i dz g

dimensional diffusion. Multiplying by the concentra-
tion of the diffusing species, and solving for the flux
of that species gives

Ci dui
J = v C, = - ——r (4)

im Vi gmrym dz

where Jim is the flux of species i1 with respect to the
medium. However, most molecules are essentially non-
spnerical, and unless the diffusing molecules are much
larger than the surrounding molecules the medium cannot
be considered continuous. Therefore, the radius of the
diffusing molecule Ty will be replaced by an empirical

o}

constant 6%’ which will be called the 'friction

coefficient' of species 1. This yields

J = e e— (5)



The defining equation for the chemical potential of

species 1 is given by

Substiltuting into equation (5) gives, at constant T

and P,

This 1s the expression for the flux of species 1 due
solely to the random molecular motlion of 1 molecules,
with respect to a coordinate system fixed in the sur-
rounding medium. Eowever, this is not a directly
measurable quantity (although experiments can be conceived
which could measure this flux, they are beyond the
capabilities of current technicues). The flux which is
measured in most experiments 1is the flux of component 1
with respect to a coordinate plane across which the
total volume flux i1s zero.

This flux may be obtained from equation (7) by
the following argument. First, the flux of component 1
with respect to a coordinate system fixed in the
laboratory 1n an N-component system 1s given by the

expression



N .
T V. 0.+ v =v (8)
1

where Vine is the velocity of the medium with respect

to laboratory-fixed coordinates, and v is the

Ve
velocity of the volume-fixed coordinate system with
respect to laboratory-fixed coordinates. This can be
seen by making a balance of volumes of diffusing

specles in the laboratory-fixed coordinate system. The

quantity

which has the units of velocity, represents the flux
of volume due to random molecular motion, relative to
the medium. To relieve hydrostatic pressure gradients,
the medium 1tself must flow, relative to fixed coordi-
nates, and this velocity is Vie®
Unless the partial molar volumes of the diffusing
species are constant, the total volume changes as
diffusion proceeds. As a result, the volume-fixed
coordinate system acquires a velocity relative to fixed
coordinates, Vye The total volume flux (which is a

veloclty, and is represented by the left side of

equation (8)) with respect to fixed coordinates must



equal the velocity of the volume-fixed coordinate
system with respect to fixed coordinates. Equation

(8) can then be solved for the velocity of the medium:

v =-35 V. J3.%4+vy (9)

Wirth [34] gives a detailed derivation of this
expression.

The measurable flux JiV is given by

Jygo = dy v Gy (Vo = Yy

) (10)

Combining equations (7), (8) and (10) gives the

basic hydrodynamic flow egquation:

3V oYy
T (11)

Solution Thermodynamics

Historically, there have been two approaches to
describing non-ideal liquid solutions. It 1s agreed
that intermolecular forces lead to deviations from
Raoult's law. The differences between the two approaches
arise from different interpretations of these inter-
molecular interactlons.

The more widely accepted approach, as originally

developed by van Laar [32] and van der Waals and their
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followers, conslders all intermolecular forces to be
general in character. They arlise from such phenomena as
coulombic attraction and repulsion, dipole interaction
(both permanent and induced dipoles), and van der Waals
forces. This approach is called the "physical approach,"
and 1s readily applicable to most types of solutions.

The second approacnh, originally set forth by
Dolezalek [9], considers all deviations from
Raoult's law to arise from specific intermolecular
forces which lead to cnemical bonds between molecules.
According to this theory, a solution of components A
and B consists of A monomers, B monomers, plus varilous
associated complexes such as A2, A3, Au,..., B2, B3,
Bu,..., AB, A2B, ABZ’ and so forth, depending uporn
the specific interactions present. These individual
species‘are then assumed to obey Raoult's Law. The
proportions of the species present in solution are

determined by an equilibrium characterized by an

equllibrium constant, such as A + B ++ AB, DBecause of
K
AB

this equilibrium assumption, this is known as the
"chemical model" of solution non-ideality.

Dolezalek originally proposed this model before
the nature of chemical bonding was well understood. He
was led by his model into some rather improbable

hypotheses. For example, he tried to describe the
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vapor-liquid equilibrium in the system nitrogen-argon
by postulating the dimerization of argon, a most unlikely
occurrence.

These two approaches are not mutually exclusive,
though for years there was rather heated debate
between the two schools. As our knowledge of chemical
bondlng 1lncreased, it became apparent that some systems
really do assoclate in liquid solution. Tﬁis is
especially true of molecules which are capable of
hydrogen bonding, such as water, alcohols, amines, etc.,
and of molecules which form charge-transfer complexes.
On the other hand, there are many non-ideal solutions
in which the formaticn of associated complexes is rather
unlikely. Further, there is no good reason to conclude
a priori that the various species present in an associated
solution.should obey Raoult's Law, as Dolezalek assumed.
It wéuld seem logical to try to combine the two

approaches.

Non-associated Solutions

Before considering associated solutions, it would
be well to look at non-associated solutions. Perhaps
the simplest method of describing activity data in
non-assoclated systems 1s to assume that the natural
logarithm of the actlvity coefflclents can be expressed
as a power series expansion of the mole fractions of

the stoichiometric components. This 1is the approach
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taken by Margules 1n deriving the equations which bear
his name. The constants in the power series expansion
are restricted by the Gibbs-Duhem equation. Within
these restrictions, the values of the constants are
determined by fitting the series to experimental
thermodynamic data, generally vapor-liquid equilibria,
by means of least-squares analysis. The equation can
be made to fit experimental data to whatever degree of
accuracy desired by simply taking more and more terms
into the series expansion, though at the expense of
introducing more arbitrary constants. It can be extended
quite easily to multicomponent systems, and is not
restricted 1In its range of application except by the
number of terms in the series that one wishes to use [351.
Though this procedure is mathematically rigorous,
and useful for describlng experimental data for use in
design calculations, it sheds very little light on the
true hature of interactions in liquid solutions. Van
Laar [32] proposed a far more restricted equation,
based upon theoretical considerations, for binary
systems. This equation, and modifications of 1it, have
been very successful in describing binary systems,
especially those for which the activlty data are rather
symmetrical, and for which the molecular sizes and shapes
are not too different. It has several disadvantages,

though. It 1s not easily extended to multicomponent
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systems, without introducing further assumptions and
more arbitrary constants, which tend to decrease the
physical meaning of the equation. Also, it cannot be
used reliably for those systems in which there is
conslderable bonding-type molecular interaction, nor for
such systems as high-polymer solutions. Both the
Margules and van Laar equations, as well as several
modifications, are discussed in considerable detall by
Wohl [35].

Another approach which is based upon theoretical
thermodynamic considerations is that of Hildebrand and
Scott for regular solutions [25]. Since it forms the
basls for some later conclusions, it will be described
in a little more detail.

If a solution contains enough thermal energy, the
different intermolecular forces of the various com-
ponents will not be sufficient to cause any one molecule
to tend to aggregate with any particular type of
molecule, elther like or unlike. The entropy of mixing
will then be the same as for an ideal solution. Such
a solution i1s termed ‘'regular', even though it 1s non-

ideal, and the partial molar entropy of mixing is given

by

AS, = - R Ln X (12)
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By making three assumptions, Hildebrand and Scott
show that the heat of mixing in the binary regular

system of components i1 and J is

where ¢i is the volume fraction of component 1

(neglecting expansion on mixing) and 61 is cefined by

where Eiv is the internal energy of vaporization. The
assumptions leading to this relationship are: (a)

the energy of interaction between two molecules depends
only upon the distance between them and their orienta-
tion, (b) the volume change of mixing at constant
pressure is zero, and (c¢) the mixing of molecules is
random. The third assumption is essentially the
definition of a regular solution. The first, although
not rigorously correct, has been the basis for most
successful attempts at modeling the liquid state. Thne
second can be eliminated by extensive modification, as
shown by Hildebrand and Scott [21], but will not be done
here.

For regular solutions, where the entropy of mixing

is ideal, the activity coefficients are given by



AH
_ i _ = 2 2
Lny; = —7 = V3 6,° (6, = 6,) (14)
This can be extended to multicomponent systems
quite easily. Under the same assumptions as before,
for a ternary system we find that
vi =2

where

with 6, and ¢i as defined before. Detailed derivations

i
of equations (12) througn (15) are given by Hildebrand

and Scott [21].

Associated Solutions

The intermolecular forces which define an
associated solution would seem to be preclsely those
forces which disqualify that solution from being
considered a regular solution. In a regular solution,
the molecules mix as though they had no preference as to
the nature of their nearest neighbors. In associated
solution, on the other hand, any given molecule has a
distinct preference for another molecule as its nearest
nelghbor, as expressed by the polymerization equilibrium.

For example, a molecule with a hydroxyl group will prefer
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to have another molecule with a hydroxyl group as
nearest neighbor (rather than a saturated hydrocarbon,
say) due to its ability to form the hydrogen bond.

It mignt then be a good assumption that all those
forces which lead to a solution not being regular are
due to complex formation by cnemical bonding. Certailnly
chemical bonding would be the major contributor to non-
regularity in associated solutions. It would seem
logical then tnat the true species present mix to form a
regular solution.

The mole fractions of the true species are
determined by the equilibrium equation and the stolchio-
metric mole fractions. Consider for example a binary
system in which one component dimerizes as a regular
ternary system, consisting of monomers of each component
plus dimers. Zquations (15) can then be used to predict
the activity data from knowledge of the equilibrium
constant K. Alternatively, the equllibrium constant can
be determined from activity data by adjusting it until
equations (15) give the best fit.

This procedure requires knowledge of the partial
molar volume and the molar energy of vaporization of the
dimer. This can be handled in either of two ways. These
quantities may be treated as adjJustable parameters, in
which case equations (15) will be a three-parameter set

of equations for the binary system [13]. Otherwilse,
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assumptions can be made about the values of these
parameters, or their relation to those parameters for

the monomers. Equations (15) will then be a one-parameter
set of equations for the activity coefficients in the
binary system. The latter method will be used later

for fitting activity data in both binary and ternary

associated systems.



THEORY

Solution Thermodynamics--
Nonassociated Solutions

The Gibbs free energy of a system of N components

is given by

o
i

free energy of pure component i, Xi the mole fraction

where ny is the number of moles of 1, G is the molar
of 1, and AG represents the difference in free energy
between one mole of real solution and one mole of an
ideal solution with the same composition.

The partial molar free energy of compornent 1, the
chemical potential of 1, is glven by

G _ o
o = py° + RT Ln vy X4 (17)

Q

Hy 7

(¢34

where uio is a function of T and P only. Carrying out
the indicated differentiation on equation (16), and

equating to equation (17) gives

N
- L
Ln Yy = 7 3o L4G L ngJ (18)



15

If a power series expanslon is written for AG,
and the coefficlents constrained by the Glibbs-Duhem
equation, after dropping terms of higher order than X3

there results

AG -
RT - X1X2 312 + X1X3 2a13 + X2X3 2&23
2 2 2

+ XXy 3279, + X XU 3215, + X 7Xg 32,5 (19)

2 2 2
* Xy Xy 33,553 + XXgT 33,534

This is the three-suffix Margules Equation for a ternary
system [35]. Binary systems may be treated as special
cases, and the corresponding Margules Equation obtained
from equation (19) by simply setting X3 equal to zero.
Carrying out the differentiations in equation (18) gives

the activity coefficients:

) 2
Ln vy = 2XX; [Ayy = XjAy = XA 50 + X7 A,
] ) ) ] 2
+ 2xlx3 LA31 XlA3l X3A13J + x3 A13 (20)

+

(XZX3 - 2X1X2X3) [A21 + A + A - CJ
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0 - r - -
noy, = 25Xy [Aj, = XA o = XjAy 1 + X070 Ay,
2
+ ~ - -
2Mpky [Agy = Xphgp = X3hogl + X3° A (21)
+ (X1X3 - 2X1X2X3) [A21 + A13 + A32 - C]
Ln = OX.X. [Auo = XhAoo = X Au] + x.° &
Y3 371 “h13 3713 1731 1 31
>
+2X,X, [Ajg - Xghpg - XpAg ]+ X% Ag (22)
+ (xlx2 - 2xlx2x3) (A, + Al3 + A32 - CJ
where the constants are defined by
cay, * 3aj,, = A5
cay, * 38395 = Ay
2aj3 + 32133 = A3 (23)
2a13 + 3a113 = A3l
2a23 + 3a233 = A23
2a23 + 3a223 = A32
3a11p * 33733 * 335,53 - 6ay55 =
The binary analogues to equations (20), (21) and
(22) are
Ln y, = 2X,X,[Ay = XjAy = X A 5] + x22 AL, (24)
2
Ln vy = 2X,X)[A 5 = XA 5 = XjA ] + X7 Ay (25)
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Wonl [35] gives detailed derivations of equations
formally similar, and algebraically identical to
equations (20) throcugh (25).

If isotnhermal ternary activity data are aveilable
equations (20), (21) and (22) can be fit to the data by
2 least-squares technigque, with seven adjustable
sarameters. This is an unreasonably large number, but
some may be specified by otner means. If the ternary
data are available, then binary data for each of the
three pairs of components are almost sure to be avallable.
The binary data may be fit by a least-squares technique,
thus fixing six of the seven constants in equations (20)
through (23). The constant C may then be determined fron
the ternary data.

In most cases of inferest, ternary isotrermal data
is not available, ctut tnese eguations are still useful.
Wohl interprets the various constants in equation (19) in
terms of physical interactions between molecules. Thus
1o represents the energy of interaction of molecules 1
ana 2, a113 the interaction between two molecules of type
1 and one of type 3, etc. From equation (23) we see that
under this interpretation C is a ternary interaction
parameter. Since in non-electrolyte solutions three-
molecule interactions are not so strong as two-molecule
interactions, C can provably be taken as zero. As long

as this holds, ternary activity data can be predicted
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from data for the subsidiary binaries. Thls has been
done for the system acetone-benzene-chloroform. Data
for the system acetone-chloroform have been taken from
Hildebrand and Scott [21., for btenzene-chloroform and
acetone-benzene from Timmermans [30]. These data, and
their approximations by equations (24) and (25), as well
A

as the least-sguares parameters A 01see are given

12?2
in Tables F-1 through F-4 of Appendix F.

Solution Thermodynamics-——
Assoclated Solutions

As discussed previously, an assoclated solution may
be thought of as a regular solution of the true specles
present. By making approximations as to the values of V
and 8§ four the associated complexes, the equilibrium
constants may be treated as adjustable parameters in
fitting the activity data. Tnhis will be done here for
a specific case, a binary system of components A and B,

wnere the association reaction
A + 3B «»> AB

occurs. To avoid later confusion, let us refer to the
stoichiometric components by letters A and B, and the
true species present by numbers 1, 2, and 12, where 1
refers to the monomer of component A, 2 to the monomer of

B and 12 tb the dimer. The true equilibrium constant
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for this reaction is given by Ka’ the ratio of

activities of species:

a
Ka ) éE
172
Defining K and KY by
K:._X.].‘..z_
X%
Y
x{:-.i‘_?_
Y Y1Y2
we see that
Ka = KK

Nikol'skii [27_ has shown that the chemical
potential of a component in solution is equal to the

chemical potential of 1ts monomer:

X = X

AYA 1Y1

Hence, the activity coefficient of component A is

given by

The activity coefficient Ya is a directly measurable

quantity, but Yq is not.

(27)

(28)

(29)

(30)

(31)

(32)
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For a regular solution, equation (15) holds:

v .
Ln y, = = (8, -5)° (15)
RT -
where §, and § are defined by
N -k
El"
(Si = - (33)
Vi
; (34)
T = 3z b: 64 3
{=1 't 4
6, = p——id = (35)
i lel + X2V2 + X12Vl2

Similar equations gilve the values of Lny2 and LnYl2‘

Now, for a given X, and XB’ the mole fractions of

A
the true species depend only upon the value of K, and can
be determined from eguations (238) and the stoichiometric

relationships

(36)

Let us make the following approximations:
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a) 712 =V, + 7, (37)
D) E¥2 = EX + EZ (38)

Assumption a) is required for consistency of constant
molar volumes which will be assumed later, and which

Kett [23] determined to be a good assumption for the
assoclated system ether-chloroform-carbon tetrachloride.
Assumption b) is reasonable if the energy of the dimer-
ization bond 1s approximately the same 1n the vapor state
as'in the liquid state, that is, if AE for the equilibrium
reaction 1s the same in both states. Note that AH will
probably be different, as there is a change in PV in the
vapor state.

Now equations (15) and (32) through (39) can be
combined to give 1n Yp in terms of measurable quantities
(Vrs, EV's, stoichiometric mole fractions, temperature)
and one adjustable parameter K.

It is now possible to determine the value of K from
experimental isothermal activity data, by a least-squares
technique. This has been done for the system ether-
chloroform from total-pressure data at 25°C from Kohnstamm
and van Dalfson [24]. The results agree reasonably well
with the data of Guglielmo [30] at an apparently higher

unreported temperature for the vapor-liquid equilibrium.
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This procecdure can be easlly extended to a ternary
system of A, B, and C where A and B dimerlze as before,
and C is inert. The value of K found for the binary
dimerization equilibrium should not change in the ternary
solution, provided the solvent C does not change the
mechanism of the reaction but merely dilutes the reactive
components. By making this reasonable assumption, 1t is
possible to predict tne ternary activity data for such an
associating system from physical properties and activity
data for tne associating binary pair of components.

These principles are easily carried over to other
forms of association.

Tracer Diffusivities--
Norassociated Systems

The tracer diffusivity 1s defined by a modified

version of Fick's Law:

(39)

where the superscript ¥ designates the tagged molecules.
Since the tagged molecules are considered to be
identical to the untagged molecules physically and
chemically, i1f there are no external pressure gradients
there will be no bulk flow. For every molecule diffusing
in one direction, there will be another molecule diffusing

back in the other direction. Since these molecules have
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the same volume, there will be no hydrostatic pressure
gradients, and therefore no bulk flow. In thls case, the
velocity of the medium-fixed coordinate system and the
volume-fixed coordinate system will be zero (relative to
laboratory-fixed coordinates).

This means that for tracer diffusion equation (11)

becomes

c,” au,’
; du
JiV* =3, ™ = - = — (40)

’..l

For tracer diffusion equation (17) becomes

L O% 4 RD L # X * (41)
e % Mg LAYy Ay
*
Applying the chain rule gives the derivative of My
* % * y * * *
du du. dC, d Ln ', d Ln X d C
i - i i _ RT i . i ] i (42)
dz .~ * dz - ¥ ® 4 dz
QCi dCi dCi

Since the solution is chemically uniform, it can be shown
that

*
d Ln Yy

—_— =0
dCi

(43)
*
d Ln Xi

- ¥
d Ln Ci
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Combining equations (40), (42) and (43) gives
*
dcC

Vi RT 1 (44)
i g.n dz

Dy T 57 , (45)

Carman [5] suggested that the combination of physical
properties on the rignt nand silcde of tnhis equation be
termed the 'intrinsic mcbility' of species i. This
designation will be adopted here. The important result
is that the tracer diffusivity of a non-associated com-
ponent 1s equal to the intrinsic mobility of that

component.

Tracer Diffusion--Associated
Systems
The most easily analyzed case of tracer diffusion

in an associlated system is the binary system of A and B
where there 1s an association to form an AB dimer.
Denoting the species present as 1, 2 and 12, the total

concentration of tagged component A is gilven Dby

C = C + C (u6)

The flux of A molecules 1n tracer diffusion is
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Ve _ # 40y oy, Vy
AT =Py gz 91Tt (47)

* *

Vy re 1% 1 %2 L8
A n "o, az o az (48)
1 12

oC * oC ¥
1 °%12

e L2 - (49)
A 0 CA

Substituting into eguation (48) gives

* *
acC ac
AV* - T ORE [1 - —25] di - oRT ¥4
1 5C, 12" 3C,

J (50)

If the physical and chemical properties of the
tagged molecules are the same as the untagged molecules,
we may assume that the distribution of tagged molecules

is the same in the two species as in the component:

C
= = (51)
C N C

This ratio is a constant, since it depends only upon the
*
proportion of CA and CA when the solution was made up.

Therefore,
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aC

(@]

12 _ 12 (52)

(@

oC

Now for convenience, define the pseudo-mole fraction of

component 12 by

X127 o ox (53)

Combining this witnh equation (52) and substituting into

equation (50) gives, after rearrangement of terms

%
X..° ac
V' RT - 1 1 1 12 A .
J, % = o o[ = 4 ( — - =— ] (54)
A n cl 012 ol XA 0Z

Comparing this with the defining equation, Fick's Law,
leads to the desired result:
o
% X

_RT . 1 11, M2
T [ ot ] ) X ]

(55)
2 %12 1 A

Da

The derlvation for component B only requires renumbering
the species and components in the previous eguation, so
that A becomes B, 1 becomes 2, and vice versa. Equation

(55) then becomes

X (o]
#*
Dy = BT Ei + (El_ - EL .%2_] (56)
n 2 12 2 B
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Wirth [34] derived equivalent equations, and
carried the derivations out for two other simple systems,
a blnary system where one component 1s inert and the other
forms a self-dimer, and a ternary system where two
components form a cross-dimer and the third component is
inert. These equations, along with those to be derived
in this work are given in Table 1, on page .

Theoretically, equations corresponding to (54) and
(55) can be developed for any associating system, provided
an equation can be written for each association
equilibrium. Practically, such equations become very
difficult to handle if there are more than 2 or 3 such
equilibria. Furthermore, since a considerable part of
the value of these equations lies in their ability to
model the measured tracer diffusivity data, the number
of assoclations must be small, or there will be a large
number of adjustable parameters avallable to fit the data.
Also, whenever the equations become too complex, they
lose much of their physical meaning in the algebra.

We will now consider another simple system, and
develop equatlons predicting the tracer diffusivities.

Let components A, B and C be ternary system in which

there are two competing equilibria
A + B «+ AB

A + C <+ AC
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Let the true species present be designated 1, 2, 3, 12 and
13 representing A, B, C monomers, AB and AC dimers
respectively. The relative concentrations at any compo-
sition can be determined from the equilibrium constants

Kl and K2. The fluxes "and concentrations are given by

the following:

50
Ve = A L g Vs Vg Vi
Jp#= =Dy — = I 4 I, F T (57)
*OT‘
Jév* = - Dy —— = sz* * lev* (58)
3C
v % v v
o ¥ =Dy =gt Iyt (59)
* * %* *
Cy = Cy * Gy Cpg (60)
* * * .
C, =C, +Cyp (61)
* * *
CC = c3 + 013 (62)

Equations (58), (59), (61), and (62) are equivalent
to tnose for the binary system just considered. The
tracer diffusivities are analogous to those in eguations

(54) and (55):

(o]
12 (63)




1 1 13 ] (64)

03 XC

|
|

* RT 1
D = — [—
n 03

The equatilons for component A are slightly more

complex. From eguation (57):

* * #*
v, ry 9C1 rr 9C12 ar 9C13 .
JA * - [o n oz t s n oz tS n 2% ] (65)
1 12 13

*
Differentiating equation (60) with respect to CA and

substituting into equation (65) gives

* * * %
Ve _ RT. 1, %C%1p %33 0 g1 30, g 9635 Cy
% = B a1 ¥)*5 5 ¥1—5— (66)
1 BCA oC, 12 aC, 13 aC,
* *
9Cq 5 3C13
As before, the derivatives ——5 and —=§— can be written
oC aC
A A
. . e . e C1o .
in terms of pseudo-mole fractions X,," = S, ¥ ¢y F Cg an
o Ci3
X = to give
13 Cy + Cg + Cg
o o .. %
V, _ RT . 1 1 1, %12 1 1, %13 . °Cy
rr-Flagr g -3 Y Gz -5 v =
1 12 1 A 13 1 A

(67)
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From this it can easily be seen that

x. © x. . ©
* RT - ,

- S (=T A S G 21 (68)
1 A 13 71 A
which is the desired result. The generalization to a
larger numoer of competing egquiiibria is obvious. If

component A dimerizes witn N other components, the

tracer diffusivity of A will be given by

. o
D, ==+ (- ) ] (69)
1 i=2 1i 1 A

This equation is general, and though it provides
physical insight into the effect of several association
reactions on tracer diffusion, it 1s probably not too
useful in fitting experimental cata, since it allows N
adjustable parameters (the friction factors Oli) if the
equilibrium constants can be determined independently,
or N2 if they are zlso considered free. The physical
meaning of this equation 1s that the tracer diffusivity
of an associating component is equal to the intrinsic
mobility of that species, decreased by the difference
between the mobilities of the monomer and the assoclated
complex (corrected for the amount of association) for each

of the association reactions.
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This same type of result can be obtained for the
slightly more complicated case in wnich one component
associates with itself. Consicer the binary system in

which component A reacts to form a dimer, according to

*
and component B 1s inert. In this case, the flux of A

is given by

*
7 Ve o _ [ET €1, mr n
A gyn 0z G,,n 92 G,4M 9z -

where the dimer can carry either one or two tags, as

denoted by the number of asterisks. Stoichliometry shows

#* * * * %

= +
Ca ¢, +Cyp *2Cy, (71)

Proceeding as before, we write

3. 5. sc. . ** ac.
T |9 m
A nol 4o UCEERYe 3C 9z
YA A A

Differentiating (71) gives

ac, 3C. 5Co

[+
1., o2 o, (73)
3C, 3C, 3C,



36

which, when substituted into (72) yields, after

rearrangement,

* *
* %
v RT, 1 1 1, 9Cq- 1 1)9C11 7" 9C,
A -FE G- T 2T - g
n-9; 11 1 acC 11 1 3C °
A A
(74)
Equation (74) can be written
oC * aC ¥
A oo
1 11 1 SCA 8CA

The derivatives agailn depend only upon the equilibrium
constant K, althougnh calculation of their values 1s some-

what involved. The tracer diffusivity, from equation (77)

is then
oC * aC *
*
D, = B+ (7= -2 (—f+2 —1)1  (76)
1 11 1 BCA BCA

Wirth [34] gives a slightly different derivation,

which leads to a formula which is less difficult to

evaluate:
XO
*
D, =T+ G- (77
11 1 11 A
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Tne form given by Wirth is more useful for trying to fit
data for which there is only one dimerization equilibrium.
It is diffucult to generalize, however, while the
derivation of generalized forms of equation (78) is
rather simple.

Consider the system wnere there are two components,

one of which undergces two self-polymerization reactions,

A + A*—--'A2

A2 + A<-->A3

and the second component B is inert. The flux of tagged

A molecules is

* C * %
v Ry - 1 °C1 1 .9C3 LR

Jp ¥ = - note. 5z Yo [z— + 2 —57—]
1 11

5c * 5C * % 3" * %%

- o] V)
$e (22 243 ML) (78)
111 0Z Z

* % %
v e, (79)

By the same process as before, this time leaving out the

intermediate steps,



5C..0 A
#* T 1 o
B b (g
1 11 1 BCA 3CA
5C * 5C * % 52 * ¥ *
111 1 BCA BCA BCA

The generalization of tnis eguation by this method to a
system where one molecule undergoes repeated simple self-
polymerization reactions 1is stralght-forward, but
notationally very difficult.

The effect of repeated polymerization on tracer
diffusivity is easily seen from equation (80), however.
The tracer diffusivity in this case is given by the
intrinsic mobility of the monomer, decreased by a
correction factor for each polymer. These correction
factors involve the intrinsic mcbllities of each polymer,
the number of tags carried by each polymer, and the
amount of each polymer present (determined by the equilibrium
constants).

Once again this model is not too useful in fltting
tracer diffusion data unless the number of polymerizations
is small, and there is some information indicating that
there 1is no further polymerization beyond a certain point.
Of course, assumptions could be made to reduce the number
of adjustable parameters. For instance, 1t would seem

reasonable that for hydrogen bondlng molecules, after the
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TABLE 1.--Summary of Hydrodynamic Theory Predictions of Tracer Diffusivities.

System and

.‘ys Predicted Tracer Diffusivitiles
Assoclation

A, B, C,....H o .
no association by = noy 1 =4, B, Cyee.. N
[e]
p, "t = B Ly (2 1y G ]
A = S \ - -y -
A, B AN T9 9 97 4y
A+ B «-AB
X C
* kT 1 .1 1. “12
= — —— —_— - — -’
Uy = [c, + kol‘ 0)) 7]
“ O o
* o ).,) X
A, B, C T T el I S e SR R =
" 1 12 1t 13 %1 %4
A+ B «AB
\ S e o
A+ C e % - bl 1 + N _l) 12 ]
b.‘: n "o, ol” Ol ._,
. [e]
* 1 1 1 Xl
SRS A e S DD B
- nTe3 913 97 4
3
Ay By Cyp el BL I TP R S N SO
A+ Besl " °1 1=2 %1 %1 %
A+ N e AL ‘ *

cther components as in D5 atove

i B 3 * c * %
7 D*=P_r;~£_l+(_1___l);ﬁllj‘+3(_l_l)all*]
At A e i i nooy %1 %1 5z, % %1 ac
A A
B inert
* T
p.* . AT
=] 1'10)
A, B P *%
p* o RD 1, 1 1y a6
A+ A+ A2 A n Ol oll 01 3¢ * ac *
A A
At Ay« g
* * % * kN
aC c ac
A1 111 111 111
B inert t (-5 *2 . =mp v 3222 )]
111 "1 ac 3ac ac
A A A
*
p. ¥ = BT
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first one or two polymerizations, all the equilibrium
constants might be assumed equal. It might also
reasonably be assumed that no polymer carries more than
a certain number of tags, say three or four at most.
This would make computation much easier. The physical
insight of equations of tnis type is considerable, as
will be seen in later discussion.

Binary Mutual Diffuslon--
Nonassociated Systems

For a binary nonassociated system with components

A and B, equation (11) gives the flux of component A:

A\ Cp BHy Cp CAVA duy CBVB dug
Iy =-go 32+t 5[ + =—=]

(81)
A cAn 0Z OA 92

)

Substituting the definition of chemical potential gives

5 v _RT - Eﬁ 9 Ln a, . c (CAVA 3 Ln a, N
A n OA 02 A oA 02
C.V_ 3 Ln a

+ 22— 5] (82)

B
By the chain rule

9 Ln a, _ 1 9 Ln a, d CA (83)
02 CA 9 Ln CA 92z

3 Ln apg ) _&_a Ln ap 0 CB (84
92 C. 9 Ln C 9z
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Substituting (85) and (86) into (84) gives

S v D aCA _RT . 1 9 Ln a, N CAVA 9 Ln ag
A AB oz n °A 9 Ln C, Og 9 Ln Cx
. Sava 'S (85)
O nty

From the definition of mole fraction and partial molar

volume the following nold:

9 Ln X X
T < o (86)
a  C8's
;‘éi'gé = Cié‘ (87)
n B A A

Substituting (86) and (87) into egquation (85) and making

use of the fact that CAVA + CBVE = 1 one obtains the well

known Hartley-Crank Equation [20]:

X X 9 ILn a

RT -“B A A
Dy = = [=— + =] —3™ (88)
AB n °A °B 9 Ln XA

This equation has been used with some success in
predicting mutual diffusivities in non-associating
solutions, It was origlnally derived under the assumption
that the molar volumes were constant, but this is not a

necessary condition.
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Taking the limits as XA + 0 and as XB + 0, and

comparing to equation (45) we see that

Lim RT *
D, = =—=1D (89)
X,~0 “az T 7o, - Pa
Lim _ RT _ %
X~0 Dp = oL D3 (9C)

Binary Mutual Diffusion--
Associated Systems

Consider a system of two components A and B, in

which component A undergoes tne simple dimerization

A+ A A2

and the second component B is inert. The flux of A is

s Voo S C B (Clvi Suy
A oln 92z clln 9Z A °l 92
Cp1Vyg duyp  CoV5 3
+ o] 9Z + o az) (91)
11 2

where the true specles have been numbered as previously.
Proceeding as in the derivation of the Hartley-Crank
Equation, using the definition of the chemical potential,
the chain rule, the relation CAVA + CBVé = 1, and the

assumption V1l = 2VA’ the mutual diffusivity is found

to be
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X X X,,0
RT A 1 1 11 1 9 Ln a
D --—[—+X,-(——-———+ )] (92)
AB n "o, B XA °1 XA 911 9 Ln X

Detailled derivation of this result is given by Anderson,

r Wirth [34], and will not be reproduced here.

Consider a system of two components A and B, in

wnich the dimerization reaction

A + B «» AB
occurs. The flux of A is given here by
v _ Gy 8uy Cyp dupp C,Vy 3y
JA"'cn az"onaz+CA(c 02
1 12 1
CioVip 2uip  CpVp 3M,
* o} 9z * o] az) (93)
12 2

By the same process, with the assumption that

V, + V_ this leads to the diffusivity:

Vio =V, + V3
o] o]
X X
RT - 1 %1 1 %0 x
p =52 L L x 4 L 2 X
AB n °l XA B 02 B
o 2
, 1 X100 (X4 = Xg)" 3 1n a (91)
o X. X 9 Ln X

12 A"B

Detaijed derivation is again given by Anderson [1] or

Wirth [34].
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Note that eguations (92) and (94) differ from the
Hartley-Crank equation only in the addition of an extra
term. In the case of self-association, this term is
positive, and predicts that the mutual diffusivity is
more than that predicted by the Hartley-Crank equation.
In the case of cross-associlation, this term predicts a
smaller diffusivity.

It 1s generally true that the activity term in the
Hartley-Crank Equation over-corrects. That 1s, when the
system shows positive deviations from Raoult's Law, the
thermodynamic correction predicts the diffusivity to be
less than it would be if the solution were 1deal. 1In
many of these cases, the experimentally measured diffusi-
vities are greaterrthan those predicted by the Hartley-
Crank Equation, though still less than for an ideal
solutlon. When the system shows negative deviations
from Raoult's Law, the thermodynamic correction predicts
diffusivities higher than for an ideal solution. 1In
these cases, the measured mutual diffusivities are found
to be less than those predicped by the Hartley-Crank
Equation, but still larger than for an ideal solution.

Equations (94) and (96) reduce the magnitude of the
deviation of the Haftley-Crank Equation from ideality.

In a system where association takes place, they should be
better predictors of diffusivity than the Hartley-Crank

Equation. This has been found to be so for several
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systems. However, in some cases there 1s strong evidence
that the components do not associate significantly, and
the Hartley-Cranx tquation still tends to over-correct,
Two such systems will bte presented here. Some
theoretical explanation must still be found for this
discrepancy.

Ternary Mutual Diffusivities--
Nonassociated Systems

There have been two major approaches to multi-
component diffusion. Onsager [28] proposed a set of
equations for an N-component system relating the flux
of each component to the concentration gradients of all

the components, thereby defining N2 diffusion coefficients:

3C
Diy i i=1,2,....N (95)

9z
Then, based upon tne theories of irreversible thermo-
dynamics, he showed that only (N - l)2 of these diffusion
coefficients were independent. These diffusion
coefficients, however, are not easily measured.

Baldwin, Dunlop and Gosting [3] therefore proposed
a different description, involving only N - 1 independent
fluxes, and (N - 1)° diffusivities:

N
v 3C
J =1 D =
1 %5 P —§% 1 =1, 2,....N =1 (96)



46

These diffusivities are not the same as the Onsager

diffusivities, but are related by the expressions

i, 3 =1, 2,....N =1 (97)

@)
o
[
]
o
[
C
[}
<
zﬂ..‘. I
L]

iN

Since then, Gosting and coworkers have presented

several methods for experimentally determining the Dij's

[13, 14]. It is preferred, therefore, to relate hydro-

dynamic theory to the Gosting diffusivities., This will

be done for a nonasscclated ternary system to demonstrate
the method. It is also useful to develop equations
Predicting the phenomenological coefficients of the

Onsager theory, to show that hydrodynamic theory predicts
the validity of the Onsager Reciprocal Relations.

From equation (11l), the fluxes are

C, 3u C,Vy duy GV, du, . CoVy Busg

[

\Y
I,V = - ==+ C(
1 oln 9z 1 o, 02 o, 9z 03 92Z
(98)
' C2 Bul ClVl aul CZV2 8u2 C3V3 3u3
Jo = -3 n sz T C2( o 5z T o 5z T o 0z
2 1 2 3
(99).
From the Gibbs-Duhem relationship,
e G Ut W Bl (100)
9z C3 9z C3 32z
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Combining equations (98), (99) &and (100) to eliminate the

gradient of chemical potential of component 3 gives

3 v - E; E(l-vlbl) + V3°lj af _ ClC?{Yﬁ - X%j iﬂg (101)
1 n o] o3 * oz no%3 9 °F

VoSl hy i e (2ffe | U5, e o,
2 n -o 01 P4 n 02 03 9z

Mathematically, the total derivative of the chemical
potential can be given in terms of the partilals of all
the 1ndependent variables. For a ternary system at
constant temperature and pressure, there are only two
independent varlavles, whicn may be taken as Cl and C,.

2
Therefore,

oM ou, oC ou, oC
1 _ 1 1 + h1 2 (103)
9z BCl 3z aC, 9z

8u2
oz sC 3z 5C

[+%)
h =4
no
Q
@]
-
Q
h e
no
Q
(@]

N

(104)

no
Q

' C1 (L-ClVl) ClV31 aul V3 V2 ClC2 apz Cl
Jl = - { [ + 4 ~ + (‘— - _') }
n o4 03 aul 33 82 n acl 92
C -C.V v 1 v 9C
) {_£ [(l ClV1 N C1V3] 341 N Clc2 (V3 _ 23 8u2} S5
n o4 03 302 n 03 o5 302 z

(105)



v ¢, C, v3 v, 3“1 o (1-0272) 0273 du, 3Cy
I =5 (FE -t v t =gt 53
3 1 %1 n 2 3 1
_{clca (E _ V_l)aul c_2[(1-c2V2) . 02V3]Bu2} aC,
n 03 CH 35; n a5 03 602 o9z
(106)

From the definition of chemical potential, these can be

written
SV BT (2-Cy 7y, . clv3] 3 Ln a;
1 n 1 01 03 acl
+ €16, (";—3 - ;’g) : Iz-s‘lc’:1 2) azi
3 2 1
) 00— + <51 —5¢
1 3 1
v V, 3 Ln a aC
3 2 2 2
+ C,C, (= - — } (107)
172 03 o5 3C2 9z
v V, 3 Llna
J2V=’%Tl{clcz (0—3"32‘ 5C >+
3 2 1
. c [(l-CZVé) s 02‘7'2:l BCl 9 Ln a2 801
2 P 03 9z acl 9z
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' V., 3 Ln a

RT 3 1 1
- —{c.Cc, (= - —
n "172 03 ol BCl
1-C.V C,V, 3 Ln a oC
( 2°2) 2'3 2 2
+ 02[ ———E;— + 7 ] 8C2 } s (108)

Comparing these to the defining equations (96) gives the

diffusivities predicted by hydrodynamic theory:

11 AA n "1 EH as . aCy
v v 9 Ln a
3 2 2
+ C,C, (== = —) —7—} (109)
172 03 02 acl
U r(1-clvl) . clv3] 9 Ln a;
12 AB n 1t ] o oC
1 2
v \j d Ln a
3 2 2 -
+ C.C —_— — — } (l.LO)
172 03 02 3Cl
Doy = Dga = 5% {c,¢, (gi - ;i) i 22 1
3 1 1
1-C.V c,V, 5 Ln a
+c, ((_22) , 234 — (111)
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v Vl 3 Ln a;

_ = RT 3 _ 1
Dy, = Dgg = = {61€, (03 cl) 5,
1-C.V c.V 9 Ln a
v e, - ( 2 2) . i 33 — 2) (112)
2 3 2

Kett [23] derived these equations, and generalized them

to a system of N components, obtaining

Dij - L'—5 Aot Yo
i N j
N-1 Cick VN Vk Buk
+ 2 [3— - E—] T (113)
k=1 n N k B
k#i

The theory cof irreversible thermodynamics states
that the rate of entropy production in the ternary

diffusing system is

However, equation (1C0) can be used to eliminate Hys amd

the constant volume relationship lel + J272 + J3V 0

3=
can be used to eliminate J3:

T=J9 0 5 Y, (114)
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=

2 : s
= i1
Y=o I gyt o)
j=1 3'3 5

_{0 3
15 T4 3=1

Irreversible thermodynamics alsc states that

Substituting the expressions for Yi

from (115) into

equations (116) and (117) and rearranging yields

\'

Iy

= -(aLl + yL

1 12)

V_ "
Jo o = =(alyy + yLy,)

where a, B, v, and § are

Equating coefficients between (118), (119) and (101),

(102) yields four independent equations for the Lij‘s:

m,
3;% - (Bl
defined by
B8
8

1T 8o) 53

1t 8Loy) 53

(115)

(116)

(117)

(118)

(119)




1 - ( 1) 1
Llla + ley - L 5 + = ] (120)
3
c.c, ¥V 7
- 1273 _ _2-
L1af * Lyp8 = [03 .- (121)
c.c, V v
232
Fa1% * R T TR T ] (122)
C 1-v.C V,C
_ 22 (T "272) 372
L,,B + L226 = 5 ( 5 + =3 ] (123)
2 3
The Onsager Reciprocal Relation states that le = L2l'
To test this, solve equations (120) through (123) to
obtain
ClCZ V3 V2 Cl (l-VlCl) V3Cl
——ﬁ—'[g- -5l -5 Ll—5 + ——=18
L, = 3 2 L 3 (124)
12 ad - By
0102 Xi Vl 02 (l-V2C2) V302
2 -518 -7 [1'— + =1y
L,, = 3 1 2 3 (125)
21 ao - By

Using the relation CIV1 + C2V2+ C3V3= 1, and the defining

expressions for a, B, Y, and § we may obtain from

equations (124) and (125) the desired result:



- - +
21 cln 02n 3

Therefore, hydrodynamic theory states that Onsager's
Reciprocal Relation is valid for ternary 1isothermal dif-
fusion in a nonassociating system. The only required
assumptlon is that of constant molar volume, used in
obtaining equations (101) and (102).

Miller [26] has developed equations which allow

Onsager's Reciprocal Relation to be tested experimentally:

a D - c¢c D
_ 12 11
T Y. WY (127)
d D,, = b D
_ 21 22
L1 = =23 == (128)
where
) ¢,V 8wy C,7, au,
a= Q+gv) g Yoy, ae, (129)
3'3 1 3'3 1
. 02V2 du, C,V, CREY
3°3 1 3'3 1
c.V. ou c, V. su
171 1 21 °H2
c = (1 + ) =—= + —= (131)
0373 aC, 0373 aC,
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2V2, du, N C1Vo 3y
oV’ 5T, T e, 5,

C V

d = (1 +

Ternary Mutual Diffusion--
Associated Systems

(132)

Kett [23] has developed eguations for the ternary

diffusivities in a ternary system of components A, B and

C subject to the dimerizaticn equilibrium
A + B «» AB

where component C is inert.

I

Kett's equations are given here without derivation:

C C- oM
1 J12 3 A 1
D = [——(1-V ) + (1-V ) + =]
AA cl l 012 12 3n ac
- Vool . Cio (1-F,,0,) + V3§ACB] 222
gon 0107 3N A
c, c .c.% o5y
_ 12 3Ca 1
Dpp = [o T (1-V,C4) + 5==5 (1-V ) + =1 55
. 12 3 B
. [- Vgcch N 0012 A7 ,c,) + V3§ACBJ 222
2" 12" 3N B

(133)

(134)



Pga = [- Vl:lCB * cCl2 (1-VypC5) + N 221
1" 12" o3n A
Cs Cio véCBz du;
+[——<1V 5) * (1-V,,C.) + ] == (135)
2n cl2n 12°B 03n BCA
D = Vi€i% |, e (1T .c.) + V3CACBJ ! 11
J
BB A G 128 g3n BC
= .2
c cy Ve o,

By making the assumption that VEZ = VA + VB he obtained

c.c.V c,C,V
Lpy = Lyp = - ot (1-7,c,) - 2A2
ag.n 02

BA = LaB N (1-V,Cp)

+ EA_E_Q(I_V c, ) + ! —1201.¥ ) (1-V. ) (137)
o3n 2 B 012 V120, 12°8

thus verifying Onsager's Reciprocal Relation for this
simple associated system. The assumption of constant
molar volume leads to the assumption made above, so this
verification is exactly as reliable as the previous
case. Kett [23] also developed similar equations and
verified the Onsager Reciprocal Relation for the self-
dimerization system of A, B and C, where A 1s subject to

the equilibrium
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A+ A « A

and B and C are inert.

Equations of tnis type now will be derived for a
slightly more complex type of associated system. Con-
sider the ternary system with competing equilibria pre-
viously discussed under Tracer Diffusion. Using the

same nomenclature, the fluxes in ternary diffusion are

given by
svo . Sadm o %o dma o Ci3 33
A ojn 92 O1pn 982 013N 92
A R s P PR PRI L L Rt
n o 9z 95 9z 013 0z
c,V, au c.V, 3u
4 22 2 33 3] (138)
02 0z o] 9z
s v Sa M Cip dup,
B o,n 9z °12” d9z
c, C.V c, .7 v
B B W P E RS PR E A K Rl &
n gy 32 01> 9z 013 oz

c.,V, du c. V., au
2+ 33 3, (139)

o5 0z 03



For thils system

57

ou ou oH
%2 = a; + ai (140)
oM ou oMU
13 _ 1 3
5z~ sz T Tz (141)
Therefore, equations (138) and (139) become
C C C 0
v 1 — 12 - 13 - |
g, = -[=—(1-C,V,) + —(1-C,V,,) + —=(1-C,V.,)]—=
A °l Al 9.5 A 1l2 013 A 13 92
_[—212(1-%\712) - CAzzvzlagi 'ESE(I‘CAV13)‘ CAC3V3]——-3“2
12 2 13 93
(142)
B S C VPO RN - e M- KA K Pk
B 012 B 12 °1 013 9z
c c ou -C,C. .V
12 = 12 = 2 BY13"13
-[—==(1-C_V,) + (1-C.V.,)] -(
012 B 2 012 B 12 32 013
c.c.V., au
- 233 3 (143)

By

combining the stoichiometric relationships



Cy =C, +Cypp (144)
Cc = C3 + C13
with the Gibbs-Dunem eguation, we obtain
e RN Sde W Sl (145)
2 CC 9z CC oz

Since the chemical potentials are functions of CA and CB

only, the expression for the total derivatlive gives

Bul aul SCA Bul BCB

= + (146)
32 3C, "oz oC; oz
3p2 ) 3u2 BCA 8u2 BCB (147
02z 8C, 3z 3C, oz +

Substituting (145), (1l46) and (147) into equations (142)
and (143) ylelds, after considerable algebraic manipula-

tion



du. C C C C
1,71 12, A = 713
nJA [ac { (1 cA l) t 5 —(1-C V ) + (1-0—)(1-CAV3)0——
A 12 C 3
clc. ¥ su. C c. C
oo tae e,V ) - g ==(1-C, vy 5)
c’3 A "12 c 13
(% S%5Ts T My g 1
02 CC°3 oz BCB ol Al
C C 20373 -+
+ (lCV)+(l )(lCV) }
012 A'12 C A3 013 CC 3
+ ?5-2 {""212(1‘%"12) 2 _2__1 (1-C,Vg) CA§2V2
B ‘12 Yc Y13 2
C,C.C.V 5C
A"B"3'3, B "
+ C.o b z (148)
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3u C V.,C C
1 12, T 171 13713
Ny = = [==— {—=(1-C_V.,,) - C_( )
B TN 95 B'12 B*og 913
CpCg C13V15 €375 Buy O Co
+ . ( S + S )+ =7 {0' (1 C 12) + 02(1 C
C 13 3 VA 12
C 2 v \ 3C o C
. 2B (113713 3511 o2 = [gpe {z22(1-0.T, )
CC 0-13 0'3 ¥4 A 012 B 12
. (Vlcl . Vl3cl3) . CACB( 1313 3 3)}
CHU €5
+ {—=(1-C, v, ,) + z=(1-C,V,)
3Cy 912
c.? T 7 3C
B ,°13"13 3, 1+ B
+ - ( S ) 0z
C 13

Comparing this to the defining equations for the

diffusivities gives the desired results:

v,)

(149)



C C c. ¢
1 1y o7 12 = A, “13 -
Dyp = 7 [=(1-C,V.) + (1-C,V.,) + (1-== (1-c,7..)
AA n Ol Al 012 AT12 Co 013 A 13
cA2c3\73 su, 1 Cy, CCy -
+ =+ = [ (1-c,V,,) = =—==(1-C,V,.)
.o T, T W o, AV12 Cco13 A'13
AR , ACBC3V3] I so)
T T o —T.o 5C 5
2 c73 A
V.cC. V..C
! 1v1 13713
Dog = F [ 2(1 CBV 5) = Cgl H + 2 )
CpCy Ci5Vy5 GV 8wy | Cpy _
= 5 ) e [ (1-C5V )
C 13 3 B 12
c, _ cB2 C13713 7,y 3u2
72 c %13 3

The cross-coefficlents are given by the same expressions,
except that tne differentiation of tnhe chemical potentilal
is with respect to the other component.

The validity of the Onsager Reciprocal Relation will
now be demonstrated fcr this system. As before, the rate

of entropy production 1s given by



. as _ J apl o 8u2 e 3u3 _ O 5 . 8u13
dt 176z ~ Y275z T Y39z 12 5z 13" oz
Applying ecuations (141) and (142) gives
du oM
as _ 1 2
Tagg=-Wp + 1 ¥ d3)—y - Uy * )5
oM~
- 3
- Wy *Jd3)7
8u3
Equation (146) allows T to pe eliminated:
C C ou
mdS_ r T __ﬁ" b A l
B-CHRR S UG R ol B (*'cc) I13152
i Ca U7
"Wt Tt (B3 +Jd13)]) =3
Tne assumption of constant volune
JlVl + J2V2 + U3V3 + J12V12 + J13V13 =0

allows J3 to be eliminated from equation (154):

where the expressions P, @, R, W are defined by

(152)

(153)

(154)



ou ou OM~ o ou
1 _ ’) ) 13 .
5 373z ~ J125z ~ J137 5z (152)

Applying ecguations {(141) and (142) gives

7 &3 (J, + J + J )apl J. + J )—3112
Tgg = -y v dpp I35 - Uy v J5)—;
8u3
- (u3 + u13) 52 (153)
8143
Equation (146) allows 57 to be eliminated:
C C ou
as _ . VA - - CA 1
Lgp = -y v - Iyt (L) Jy3)—3
C C
C, 8u2
- r - = T L \
LJ2 + J12 CC (u3 + Jl3)J = (154)

A NS U3V3 IV, * J13V13 = 0 (155)

allows J3 to be eliminated from equation (154):

[
(2}
O\
~

as _ _ g5 J R J
Tgg=-F - Q) -RI;, - Wyg (

where the expressions P, Q, R, W are defined ty



_ aVy oM B'1
P= =zt AT + c.¥, 5z
3u C_V. su C.V. ou
Q= ai + csv2 z * CAV2 ai
c'3 ° c'3
. ouy M CpVip 3Hg N Cp¥in M5
- 0z 9z CCV3 52 CCVé 32
v e oy 3¥ . CaVi2®ty | L CA)a“l N CpVy3 8M;
- 22 oz CCV3 z CC Y CCV'3 22z
Cc YA

Now substituting the stoichiometric relations

A 1 12 13
Jg = J, + g,
yields
09 2 5P -J3.Q-J., (RP-Q) - J,, (W-P) (157)
* dt A B 12 13
Now if we assume that V12 = Vl + V2 and V13 = Vl + V3,
leaving
p8S .y A, YTy du CpTy 3
dt A 3z CCV3 92 CCV3 YA
5w, CaV2 3y CB7o PHz (158)
- B( 9z C.V, 3z C.V., 3z 5

c'3
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Irreversible thermodynamlcs also states that the fluxes

are related to the phenomenological coefficients:

V., (3“1 , Saly B . Cg¥y 9,
A AAY oz cV 0Z cV 0z
C'3 C'3
- (3u2 . CAV2 N N CBV2 3p2 (159)
AB' &z c.V 02 CV 0Z
cC' 3 C'3
SV (3“1 , Sa¥y B Cg¥y 3,
B BA' 02z C.V 0Z CV 9Z
c'3 Cc'3
L (8u2 . CAV2 aul N CBV2 8u2 (160
BB o9z CCV3 oz CCV3 0Z

Carrying out the multiplications in equations (159)
and (160), equating coefficients to ecuations (142) and

(143) and solving for L and L gives

AB 3A

= = —_ = £ = c(1-V.C
AB BA oln 17A 02n 2°B

C.)

+ ————(l-Vl2CA)(l-V12 3

O1oM

+ iii—(l T..C.)(1-V..C.)
“Y13%A’ " T7137B

(161)
0q3M
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Thus, hydrodynamic tneory predicts tne validity of the
Onsager Reciprocal Relation for this associated system,
under tne assumptions of constant volume and that the

volume of the dimer i1s egual to the sum of the volumes

of the component monomers.



EXPERIMENTAL

Tracer Diffusivities

Tracer diffusivities for this work were measured by
means of the capillary tecnnique, as modified by Wirth
[8]. 1In the baslc capillary technigue, a capillary of
known length, with one end closed, 1s filled with a
solution containing tagged molecules of one component.
This capillary is then immersed in a relatively large
volume of a solution with the same chemical composition,
but containing no tagged molecules. Diffuslon 1is then
allowed to proceed for a period of time, after which the
capillary is removed from the bulk solution and emptied.
The relative amounts of tagged materlal before and after
the experiment are determined. The boundary value problem
for diffusive transfer from the capillary is then solved
to give the change in the concentration of tagged
molecules as a function of time, capillary dimensions and
tracer diffusivity. Since the time and capillary dimensilons
are known, the tracer diffusivity can then be found from
the change in concentration of tagged material.

Ordinarily, the molecules are tagged with a radio-

active 1sotope. 1In this case it 1s easiest to measure

66 -
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the total amount of raaicactivity present ratner than the
concentration. This presents no difficulty, however.

Tnere are four main sources of error in this basic
technique:

a. Inaccuracies in determining precisely the
amount of radiocactivity before and after diffusion. This
is particularliy important in determining the initial
count rate.

b. Proper ma‘ntainance of the conditions of the
boundary value problem during the experiment. This means
that there must be no convective mixing within the
capillary during tne experiment, and no material may be
transferred by any means other than diffusion.

¢. Immersion effects. Material must not be washed
out the end of tne capillary by the turbulence created in
the bulk solution wnhen immersing the capillary or removing
it at the end of tne experiment.

d. Convective transfer during the experiment.
Convection near tne end of the caplllary must be strong
enough to maintain the boundary condition of zero con-
centration at the end of the capillary. Yet 1t must not
be so strong that it washes material from a segment of the
capillary, thus effectively shortening the length of the
capillary during the experiment.

The two latter problems are due to the open end of

the capillary, and are difficult to correct as long as the
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end 1s open. The other two proolems are generally less
serious.

To correct for (c¢) and (d), Wirth covered the open
end of the capillary with a very thin (0.007 in.) porous
glass disc. This changed the boundary value problem,
introducing a resistance term at the end instead of a
constant concentration. Since material could diffuse
through the disc, but could not flow through, this pro-
cedure effectively eliminated convection from the
capillary. However, since the resistance of the frit had
to be calibrated by measuring a known diffusivity, a new
possible source of error was introduced.

The error due to (b) can be largely eliminated by
making the bulk solution slightly less dense than that
in the capillary. Then, as diffusion proceeds, a density
gradient 1s established, which tends to eliminate convec-
tlon within the capillary. This unfortunately introduces
the possibility of some mutual diffusion occurring along
with the tracer diffusion. It haé been shown by Van Geet
and Adamson [31] that if the concentration difference
between bulk and capillary solutions 1s greater for tracer
diffusion than for ordinary diffusion, the tracer flux will
be much greater than the ordinary diffusive flux. Since
the difference in the concentration gradients was quite

large in these experiments, the author feels that any error
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introduced from simultaneous mutual diffusion will be
covered by the calioration of the resistance of the glass
frit.

Inaccuracies introduced by (a) can be decreased
only by careful experimental technigue. Wirtn's [34]
original technique was modified in this study only
slightly to improve the accuracy of the initial count.

The procedure for an experimental run 1s given in

some detail in Appendix A.

Calculation of Tracer Diffusivities

Let the closed end of the capillary be designated
z = 0, and the open end be designated z = L, the lengtn
of the capilillary. If transfer of material within the
capillary is only due to diffusion, the well-known
diffusion equation holds. The initial concentration is
constant througnout the capiilary. At the closed end, a
material balance will show that the concentration
gradient must be zero. If, at the open end tnere is a
constant resistance to flow, the following boundary

value problem holds:

1 (162)




L
oC.,
B.C. 1: —— =0 for z = C, ¢ >0
ol
. *
- > 5 * 5C 5
D.\:. . - 1 _.-L'wx:u\ 5 = /-
l aZ_.?{bl ;uf"."u,tlo \ -
- ~ ~ * # -
I.C. c. = C. fecr ¢t = 0, o £z £ 1L
i 1,0

#
where C, 15 the concentration ol tagged component 1,
s

. ‘ .. L ¥

T is tne time, z 1s tae Clstance coordirate, i g is the
+s
*

initial value of C, and R is tre constant resistarnce to

transfer from the open end of the capillary.

Tnis coundaary va.ue proclem can be easiiy solved

oy separation of variszo.es, to give the concentretion as

a function of time &na Glstance:
* -
C. © 5in A
5— = 2L [+ — = — exp(-A_°D, t)cos Azl
_-"A_L 4+ sin A_L cos A_L 1 n--
C. n=1 "n n n
i,o
(1064)
wnere Ar is given ty tne solutiocn of
4
XL =2, " A
cot (A_L) = ZZ.
v n”’ bl n

A detailed solution c¢f tne boundary-value proclem is

given 1n Appendix III of reference (34

Yy

If eguation (1064) is intezrated over the length o
'y = o

the capiliary, a very useful ratio results:
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* 2 #
C ® sin Bn D, t

i,av > Dy
——*__5 = 22 : -8 16
s o n=l[6n(6n +sin B_ cos Bn)exP( n ‘:5—)] (165)

a—d

where Bn is given by the soluticn of

*

RDi

n L

cot Bn = B

1s the average concentration in the

*
caplllary, as defined by the expression IZ Ci av =

*
where Ci,ave

*
Ci V. This ratio is the ratio of the final count to
,ave
the initial count measured for the capillary in the
experiment.
Since transfer tnrougn the frit is diffusive, as
soon as the process reacnes steady-state the resistance of

the frit becomes inversely prcportional to the dif-

fusivity:

R:._E.x.
Py

The constant of proportionality o depends only upon*the
RD
i

T is

pore geometry of the frit. Therefore the group
dependent only upon geometry of the experimental
apparatus, and can be determined by some calibration

technique.
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From equation (165) a plot can be made of

C* D *t RD *
—l¢3l5 Vs i2 for several values of Ll . Then
i,o L

from an experiment with a chemical whose self-diffusivity

is known, the value of R may be determined. Wirth did *
RD
this, using carbon tetracnloride. He determired that —fi—

had a value of C.012, with a variation from capillary to e
capillary wnich would lead to a .7% maximum variation in
measured tracer diffusivity. Consequently, the value of

*
RD

L

was taken as 0.012.

*
t

*
C, D, t RD
Using a plot of — ave ys 12 for T = .012,
L

the tracer diffusivity is determined from the count rates

resulting from eacn experiment. The ratlio of final count

*
C
rate to initial count rate is equal to —3*215. The value
C
i,0
* >

*
Ci av D, ¢
of —22Y& fixes tne value of =—. Since t and L are
C L
i,o

L]

*
known, the diffusivity Di is easily calculated.

Mutual Diffusivities

Mutual diffusivities were measured in this labora-
tory by means of a Mach-Zehnder [4,5] interferometer.

This instrument is shown schematically in Figure B-l of
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Appendix B. A collimated monocrromatic light beam 1s

split into two beams by & half-silvered mirror. One

3

beam 1is passed th n a solution in wnich cdiffusion is

3
O
=i
[0}

occurring. The otner beam 1s passed througn a reference
solution in wnich tnhere is no concentration gradient.
When the two beams are recombined, 1f the optical path
lengtns are only sliigntly dif

ferent, interference pro-

duces fringe pattern.

)

Since tnrne optical patn lergih 1s dependent upon the
refractive incdex of trne medium, it can be shown that the
fringe pattern formed by the recombination of tne beams
represents a plot of refractive index vs position in the
diffusing system. The refractive index is in turn related

to the composition of tne system. By photographically

<

recording the changes in the fringe pattern witn time,
the changes in composition (and rnence tne diffusivities)
can be determinea.

Tne diffusion cell was constructed so trhat a step-
cnhange initlal condition cculd te approximated, and so
that diffusion woula be one-cdimensional along the vertical
axis. Tne cell was filled from the bottom witn the
denser of two solutions varying sligntly in composition.
The less dense solution was slowly introauced down tne
wall of the cell, forming a layer atove tne denser
solution. When tre cell was full, and had reacned

equiliobrium temperature in trne Interferometer thermostat,
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solution was removed slowly through slits on opposite
sides of the cell, and replaced in the cell from top and
bottom.. After some time, a steady state was reached, in
which the solution above the slit was of one composition,
and that below the slit of another. The thicxness of the
boundary determined how closely the step-change approxi-
mation was obeyed. In practice, the boundary could be
made small enough that it closely approximated the con-
centration distribution after a few seconds of diffusion
from a true step-change initial condition.

The flow into and out of the cell was stopped, and
free diffusion from this initial condition occurred,
which was followed photographically. Detalls of an
experimental run are given in Appendix B.

Analysis of Results of Binary Mutual
Diffusion Experiment

The problem of one-dimensional free diffusion in
an infinite medium 1s an o0ld one. It was solved by
Wiener [33] in 1893. If the initial position of the
boundary is designated as z = 0, and the initial distribu-
tion of concentration gradients 1s Gausslan, the solution

for the gradient in terms of position and time is given

by
AC
dc 0 2
dz 2/ AB

AB
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provided the diffusivity is constant. If the initial
concentration difference 1is small enough, both these
conditions will be met. Furthermore, the refractive
index difference may De considered a linear function of
the concentration difference for small AC. Tnis solution

may then be written

g% = ——JEL——-exp (-zz/u DABt) (167)
2/nDABt

This may be integrated to give the refractilve

index difference between the points z = C and z = z.
22 = L ers (2/ /ID, ;% ) (168)

Solving thils for z gives

n_=-n
=1

z = /ED, v erf " (2-2—=5) (169)

The photograpnic image can be considered a plot of
refractive index vs position in the cell. The total
refractive index aifference between any two points is
proportional to the number of fringes crossed by a
vertical line between the two points. The fringe number
can then be used as a measure of refractive index. Call
the fringe number of a reference point in the straight

line portion of tne photograph fringe number zero. The
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number

fringe
0




7

total number of fringes crossed by the vertical line is
J. The fringe numcer of the point z = 0 is J/2, from the
choice of coordinates in the boundary value problem.

The difference between the refractive indexes of the
point z = z'j and z = 0 is given by

n, - n J - L J
e (170)

The distance between any two fringes numbered jJ and k is

nk B nO)ﬂ

Zs = An .

n. - n
= /ID T Terf t(p—i 0y _ -1
3 z, = DABt Terf (2 i ) erf ~(2

(171)

The actual distance in the cell is not tne same as that
measured on the photograph, but differs by the magnifica-

tion factor of the camera:

z; = sz (172)

]
wnere a is the measured distance, zJ the true distance

J
and M the magnification factor of the camera. Com-

bining equations (170), (171) and (172) leads to the

desired result:

2 - 2
I T % ]

J (173)
erf-l(giZQ) - erf-l(g§:£)

LMD, t =
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The true time of diffusion is not the measured time,

since the 1nitial boundary was not a perfect step-change:

where tm is the measured time, t 1s the true time, and
to the true initial time. If the right side of equation
(173) 1s plotted vs t_, the slope of the line will give

the diffusivity, and the intercept the true initial time:

4M° D

slope AB

(174)

- UM D, t

intercept

AB "0

Calculation of Binary Mutual
Diffusivities

The photographic plate was measured by a microscope
with a traveling eyeplece, capable of measuring down to
0.0001 cm. The total number of fringes was counted and
recorded. Then a set of ten fringe numbers was chosen,
five of which were higher than J/2 and five of which were
lower. TheSe were chosen so as not to extend into the
region of curved fringes near the edge of the diffusion
boundary. These were paired, and the right side of
equation (173) calculated for each pair.

For each exposure, zJ' and Zk' were measured for
each pair of fringes. From the measurements and the

previous calculations, flve values of the right side of

equation (173) were calculated and averaged. The average
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values were tnen plotted against tm as described above.
A straight line was fit to these points by the method

of least-squares. 1If the correlation coefficient was
less than .995, the run was rejected (althougn generally
it was above .959). Otherwise, the value of DAB was
calculated from the least-sguares slope and intercept.

Analysis of Results of Ternary
Mutual Diffusion Experiment

Fujita and Gosting [13] have shown that the ternary
diffusivities defined by equations (98) can be determined
experimentally from knowledge oI the behavior of the
refractive index gradient curves as diffusion proceeds.
Thelr method involves measuring the second moment and
the height-area ratio of graphs of %% vs 2 at several
times during the experiment, and from these determining
the reduced second moment and the reduced height-area
ratio. This is done for several different initial
composition differences, and the graphs of reduced
second moment and reduced height-area ratio vs refractive
index fraction are then used to calculate the diffusivities.

A typical plot of refractive inaex gradient vs
position 1s shown on the following page. Here Z, is the
centroid of the curve, and dn is the maximum value of

dz
max

%%, which 1is at the centrold for Gaussian curves.
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The centrold 1s defined by

o an
I . Z(EE) dz

zZ = —— - (175)
c % dn
S o (5z) dz

It can easily be seen that tne denomilnator 1s equal to
the total refractive index change across the boundary,
which 1s proportional to the number of fringes J.

Therefore
z = L s z(ga) dz (176)
A cz

where XA 1s the proportionality constant.

The second moment is defined by

®© 2 ,dn
J_o (2-2,)" (37) dz 1

m. = . =
2 o dn Ad
/o (a;) dz

© 2 ,dn
/_o (2-2,)" (37) dz

(177)
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and the total area under the curve is

area = An = ffw (%%) dz =XJ (178)

The refractive index gradient can be determined
from the photographic plate as follows. Near the center

of the boundary, where the fringes are almost straight,

%% can be approximated from the distance between two

fringes:

oan
('8—2— A

. - Z4+1 + ZI = Zj+l - J (179)

m 2

In the curved portions of the pattern near the edges of
the boundary, tnis approximation does not hold, and the

value of %%— must be determined by measuring the tangent
m
to the curve:

dn__ dn dy _ dn
aE;- dy dzm = dy tan © (180)

The value of %% can be determined by measuring the

distance between two fringes 1in the y direction:

n -n A3+l - 3) A
dn = Jj"'l j = = (181)

Ey y,j+l-yj yj"’l-yj y,j+l-yj

Equation (180) can now be written
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dn = A tan 6 =

tan 6 (182)
dzm yj+l -

<
.
<>

where A and V¥ are proportionality constants representing
the change 1n refractive index per fringe in the z
direction, and the distance between fringes in the y
direction respectively.

The distances measured on the photograph are not
true distances, so equations (176) and (177) must be

corrected for the magnificatlion factor of the camera:

= L, 1 ~
Zo.m = T e Zp (Zj+1 — zj) dz (183)
z
m
1 e 2 1 .
Mo = M2 o (2 - Zc,m) (ZJ+1 - zj) dz;, (184)
z
m

Note that in substituting for %%— the constant A cancels.
m

The reduced second moment 1s defined by

8
N

D2m = 5t (185)

and the reduced helght-area ratio is defined by

: 2 2
(An) (AJ)
D = = (186)
A ype [—gi 12 ypeml . N 1€
max J+l J

max
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The measured time is not the true time, but t = tm + to

so these can be written

My
— = D2m tm + D2m to (187)
J2
=D, t_ + D, t (188)
4wM2 [ 1 — ]2 A "m A 70
J+l J

m
D2m and DA can be calculated by plotting 53 and
the left side of equation (188) vs t - The slopes will be
D2m and DA respectively, and the intercepts will give the

true initial time. The left side of equation (188) and
T% can be calculated from measurements of the photographic
plate. This would ordinarily be rather difficult, but a
computer program has been written for this. This

program, the data deck structure, and the procedure for
measuring the plate are given in Appendix C. Sample
refractive index gradient curves and plots of E% vs tm

are glven in Appendix D, with the experimental results.

In a ternary system, the refractive index can be
expressed as a function of the concentrations of any two
components, for example n = n(CA’CB)‘ This in turn
can be expressed as a Taylor series expansion in terms
of CA and CB. For small enough concentration differences,
the higher order terms of the expansion can bé dropped,

and
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An = RAACA + RBACB

Defining the refractive index fraction of component A by

RAACA

a, = (189)
A~ R AC, + RgACg

we see that

a, + a, =1 (190)

The values of R, and R, can be determined from

A B
measurements of An at several different AC's by a least-
squares technique. Since accurate direct measurements
of An require relatively large concentration differences,
the preferred method is to determine the values of RA‘
and RB' defined by the equation

| t
Jd = RA ACA + RB ACB (191)

] ]
where RA = ARA and RB = ARB.

This will allow smaller composition differences to be

used, since J can be measured more precisely than An.
-AC
By equation (191), we see that if ——= 1s plotted vs.

AC, ’
7Tg » the result should be a straight line, with slope
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Rl
:} and intercept —%—. As can be seen in figure D-10
R! R ’

A A
this 1s true for the ternary system chloroform acetone-
benzene which will be investigated in this work. Note
' R

R
that —Tﬁ = ﬁﬁ and that only this ratio is needed in

R g B
defining the refractive index fraction.

Fujita and Gosting [13] have shown that plots of
reduced second moments and the reciprocal of the square-
root of the reduced height-area ratio vs. refractive index

fraction of one component should be straight lines:

Dy = S, &, + I, (192)
l —
ol Sy op t I (193)

where S2m and SA are the slopes and I2m and IA are the
intercepts at a, = 0. Thelr proof 1is based on the same
assumptions which have been made here, and which hold
whenever the concentration differences are small.

For convenience 1in notation, define the intercepts

at a, = 1l by the expressions

L2m = I2m + S2m (194)

-
"
H
+
W

A (195)
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Thelr expressions for the diffusivities are

| . y Lom Som 1a
D, + L I D l + S
Dyp = - - 171 2m Sij A (156)
2m
1 I2m SEm LA
_ Dij + 12m Dij + SA
D = - < (157)
2m
R2
Ppg = R, (I,, = Dgp’ (198)
Ry
Dap R (Lop = Dap) (199)
where |Di‘j|;i is the root of the cubic eqguation
D, . |13/% + (1, -1, 2% |p,.]| - (-S‘?—m)2 =0  (200)
13 am ~ 4 75,7 11 5,

A detailed derivation of these equations 1s given by

Fujita and Gosting, or may be found in Appendix II of

reference [23].

A computer program which solves equation

(200) for IDiJI% and then calculates the four ternary

diffusivities 1s given in Appendix C.

The linearity of

the plots of equations (192) and (193) for the system

studied in this work may be seen in Appendix D.



RESULTS AND DISCUSSION

The following systems were studied experimentally

in this work:

a.

Tracer diffusivity of 2-butanone 1in the
system 2-butanone - carbon tetrachloride
Tracer diffusivity of p-benzoquinone in the
system p-benzoquinone - benzene

Mutual diffusivity in the system
p-benzoguinone - benzene

Tracer diffusivity of diethyl ehter in the
system ether - carbon tetrachloride

Mutual diffusivity in the system diethyl
ether - carbon tetrachloride

Mutual diffusivity in the system carbon
tetrachloride - chloroform

Mutual diffusivity in the system benzene -
chloroform

Ternary mutual diffusion at equimolar composition

in the system acetone - benzene - chloroform

Experimental results, and intermediate determinations for

the ternary system, are given in Appendlxes D through F.

The discussion of results will be organized by type

of diffusivity studled, rather than by composltion of the

systems studied.

87
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Tracer Diffusivities

Equation (82) predicts that for a self-associating
component in a binary system, the product of the tracer
diffusivity and the viscosity should have its highest
value when that component 1s very dilute. As the con-
centration increases, the ratio of polymers to monomers
present in the system will increase, and the tracer
diffusivity will decrease.

In binary system with cross-association the situa-
tion is slightly different. As can be seen from the

equilibrium constant expression,

the ratio of dimers to monomers of component A is pro-
portional to the mole fraction of component B. Hence
the percentage of A molecules which are tied up in the
dimers 1is highest when component A i1s very dilute, i.e.
when Xg * 1. Therefore, the tracer diffusivity-
Viscosity product of a component is lowest when that
Component 1s extremely dilute, and increases as the
Concentration increases.

*
Figure 1 shows the variation of the DAn product

for associating components in three systems. In the

Systems ethanol - carbon tetrachloride and acetic acid

carbon tetrachloride hydrogen bonding 1s quilte strong
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—@— Diethyl Ether (A)

—8— Chloroform (B)

- —e - Ethanol (A) - CcCl, (B)

- —0- - Acetic Acid (A) -'CCl, (B)
0

0 .2 A .6 .8
Mole Fraction Component A

*
Flgure 1.--Din vs Mole Fraction for Associating

Components.

l.

0
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between ethanol molecules and acetic acid molecules.
Carbon tetrachloride, on the other hand, is probably
quite inert. The curves for these two systems have
exactly the shape predicted by equation (80). The D:n
product 1s highest when Xp > 0, and decreases as
X, * 1.

In the system ether - chloroform, spectroscopic
evidence [15] suggests that hydrogen bonding occurs

between ether and chloroform to form dimers with the

form

Presumably, steric hindrance prevents the formation of
larger ploymers in thils system. Ether-chloroform 1s
therefore a cross-associating system. The curves in
Figure 1 agree with the predictions of equation (55).
The DIn product for each component is lowest when that
component is extremely dllute, and increases as the
concentration increases.

Equation (45) predicts that for a system where
neither component assoclates appreciably, the tracer
diffusivity - viscosity product will be a constant
independent of composition. Figure 2 shows the tracer

diffusivity - viscosity product for several systems in
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which there is good reason to believe that there is no
assocliation. The normal iodides for instance are
essentlally non-polar, saturated, and contain no groups
active enough to form hydrogen bonds. Carbon
tetrachloride 1s also non-polar, and the electron
clouds of the chlorines are gquite inert to hydrogen
bonding, even in an electron-donor capacity.

As predicted by equation (45) the DIn products for
these systems are straight lines. Furthermore, the D:n
product for CClu is the same for all the systems given
here. Thils can be taken as supporting evlidence for the
assumption that diffusing specles behave like particles
flowing through a continuous medium. The diffusion
process 1s influenced by the viscosity of the medium,
but not by the character of the molecules which comprise
the medium.

Spectroscopic studles have suggested that ketones,
being polar molecules, undergo some dipole-dipole inter-
actions which lead to the formation of self-polymers in
solution. Anderson [1l] successfully applied the self-
dimerization model to explain the positive deviation
f'rom Raoult's Law iIn the system 2-butanone - carbon
tetrachloride. He then used equation (92) to fit
experimentally measured mutual diffusivity data with

excellent results. Wirth [34] later measured the tracer
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diffusivities of carbon tetrachloride 1n this system,
confirming the fact that carbon tetrachloride did not
assoclate.

In this work, the tracer diffusivities of 2-butanone
were measured, hoping to verify the self-association
model. ‘Experimental results for thls system are given
in Appendix E, and shown in Figure 3.

The tracer diffusivity - viscosity products for
*

1n
products are constant throughout the entire concentra-

this system are shown in Figure 4. Since the D

tion range, it must be concluded that there 1s no assocla-
tion in this system, at least with respect to diffusion.
The dipole-dipole interactions observed spectroscopically
apparently are not strong enough to hold the dimers
together against tne shear forces they presumably undergo
while diffusing. Trnis would indicate that the inability
of equation (88) to predict mutual diffusivities in this
system 1is not due to the formation of polymers. A
possible cause would be inaccuracies in the vapor-liquild
data in the literature. The system clearly warrants
further study.

Spectroscoplic studies have shown that highly con-
Jugated molecules with electron withdrawing groups

adjacent to the conjugation, such as

—ul
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1

g D,gs experimental

— ——-— Hartley-Crank Equation

*
O DA 2-butanone
%
o Dy carbon tetrachloride [34]
0 : : : ‘ =
0 0.2 0.4 0.6 0.8 1.0

Mole Fraction 2-Butanone

Filgure 3.--Mutual and Tracer Diffusivities for the System

2-Butanone - Carbon Tetrachloride at 25°C.
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0
x/ | o~
i ] 1,3,5-trinitro
pad benzene
0

can undergo charge-transfer interactions with donor

molecules, usually aromatics, which stabilize the

structure J—
0=" =0 E

It has been established that p-benzoquinone will
associate to form dimers in solution with aromatics
[2, 11] and equilictrium constants have been measured for
several of these systems.

In an effort to experimentally verify equations
(150) through (151) for a ternary system with competing
equilibria, it was declded to study the systen
p~-benzoquinone - tenzene - p-xylene. It was expected
that the quinone would form dimers with benzene and xylene,
and that no other associations would occur.

Mutual and tracer diffusivities were studied for
the component binary system quinone-benzene. Since
quinone is only slightly soluble in benzene at 25°C, the
results cover only the solubility range. Experimental

results are given in Appendix E and shown in Figure 5.
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The tracer diffusivity-viscosity product for
quinone 1is also given in Figure 5. The variation of
this DZn product snhould be that predicted by equation
(55), since this system is considered to have only cross-
association. That is, the DZn product should increase
as the concentration of quinone increases. As can be
seen in the figure, 1t does not increase, but decreases
instead. Thils was interpreted as some sort of interaction
leading to self-association of gquinone which masked the
effect of the crqss—association.

The change in the D:n product for a small change
in concentration is much greater for self-association
than for cross-association. It 1s possible that 1f the
concentration of quinone could be increased, the cross-
assoclation effect would again become predominant. In
any event, the associations present are too complex to
be treated by the equations developed here, and work 1n
the ternary system was not carried further.

Tracer diffusivities were measured for ether 1in the
system diethyl ether - carbon tetrachloride across the
entire composition rangé, and for carbon tetrachlorilde
at the two endpoints. Results for this system are glven
in Appendix E, and shown in Figure 6. There were con-
siderable experimental diffiéulties in working with this
system, due to the high volatility, the low viscosity,

and the surface-wetting characteristics of solutions with

IR
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high ether content. As a result, the uncertainty of
this data 1s higher than for the other systems studied,
as indicated by the bars on Figure 6.

It was assumed that the ether - carbon tetra-
chlorlde system would be a simple nonassoclated system,
and tracer diffusivities would be as predicted by
equation (45). In fact, the shape of the D:n product
curve for ether is more 1llke what one would expect for
a cross-associated system. Since the carbon tetra-
chloride is non-polar, and its chlorines do not form
hydrogen bonds, thls phenomenon is rather difficulf to
explain.

Being somewnat unfamiliar with the mechanics of
charge-transfer complexing, the author hesitates to
eliminate thils possibility, but it does seem unlikely.
Furthermore, over a period of time the bulk solution
discolored, indicating a reaction of some sort pro-
ceeding. It is possible that the reaction (though not
extensive and rather slow) indicates that some inter-
molecular interactions were occuring beyond the usual
attractive and repulsive forces. Another alternative is
that the assumptlon of a continuous medium breaks down
here. This 1s supported by the fact that the D;n
product of CCll4 changes only about 10% over the concen-
tration range, while that for ether changes about 30%.

Again, thls system warrants further study. Investigation
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of other properties besides diffusion might also provide

some insight.

Mutual Diffusivities

As part of a study of the ternary system ether -
chloroform - carbon tetrachloride, Wirth [34] measured
tracer diffusivities for botn chloroform and carbon
tetrachloride in the component bilnary chloroform - carbon
tetrachloride. These measurements showed that, as expected,
both chloroform and carbon tetrachloride are nonassociated
in this system.

The Hartley-Crank Equation, equation (88), should
describe mutual diffusion in this system. Wirth [34]
measured mutual diffusivities in this system to
experimentally verify this equation. He encountered some
experimental difficulties, and scatter of data cast some
doubt on his results. The best data he could obtain from
his results, however, showed that the Hartley-Crank
Equation 1s inadeguate to describe this system. The
shape of the Hartley-Crank curée is wrong when compared
to Wirth's data. It was of interest then to attempt to
duplicate Wirth's data, to determine whether the:
discrepency 1s truly in the equation, or whether 1t might
be 1n the experimental results.

The author encountered less experimental difficulty
in measuring this system. Experimental results are

given in Appendix E, and shown (along with Wirth's
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results) in Figure 7. As can be seen, the author's
results agree quite well with the best results obtained
by Wirth. The Hartley-Crank Equation 1s definitely
lnadequate for describing this system.

The discrepancy in this case 1s very hard to
explain. The assumption of a continuous medium 1is
probably a good one, since otherwise the effects would
have shown up in the tracer diffusivities as well. The
activity data reported in the literature used in calcu-
lating the thermodynamlc correction factor appear to be
quite good. The system 1s only slightly non-ideal, so
the correction factor is not too large 1n any case.
There 1s definitely no association, as can be seen from
the D;n products. This phenomenon 1s puzzling, and will
probably requlre further investigation to provide an
explanation.

The Hartley-Crank Equation also fails in another
nonassociated system, 2-butanone - carbon tetrachloride.
In this case, however, the predicted mutual diffusivity
curve has the correct shape, differing only in the
magnitude of the correction from ideality (see Figure 3).
The author suggests that this may be due to a slight
error in the activity data, from the experimental vapor-
liquid equilibrium measurements of Fowler and Norris

[12].
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The author measured mutual diffusivities in the
system benzene - chloroform, to further test the Hartley-
Crank Equation. Experimental results are glven in
Appendix E, and shown in Figure 8. It was expected that
this would be a simple nonassociated system. Although
tracer diffusivities were not measured in this system,
the self-diffusivities of both components are avallable.
When the DI” product of the pure component 1s compared
to the DAB” product when that component 1s extremely
dilute, the results indicate that both components are
nonassoclated.

As can be seen in Figure 8, the Hartley-Crank
Equation again fails for thils system. The shape of the
curve 1is qualitatively correct, but the correction is
again too much. The error in this case 1s probably too
large to attribute to inaccurate actlivity data.

Further investigation in this system 1s warranted,
particularly measurement of the tracer diffusivities
over the entire concentration range, to make certain
there 1s no association.

The author has also measured mutual diffusivities
in the system diethyl ether - carbon tetrachloride.
Activity data are not available for thils system, there-
fore 1t cannot be used to test the Hartley-Crank
Equation. Furthermore, experimental difficulties

(previously described under Tracer Diffusivities) caused
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conslderable scatter in the data, especlally near the
center of the concentration range. Experimental
results are given in Appendix E, and shown in Figure 6.
As a measure of the uncertainty, the standard deviation
of the data are listed in Table E-3, and are indicated
by bars on Figure 6.

Mutual diffusivities were also measured for the
system p-benzoquinone - benzene, up to the solubility
limit. Results are given in Appendix E, and shown in
Figure 5. Again, no activity data are avallable. The
complex associations present in this system precluded
testing the hydrodynamic equations in any case.

Error Analysis--Mutual and
Tracer Diffusion

Bidlack [27] and Kett [16] found that for the
instrument used in this study, the experimental precision
was %1% for volatile liquids such as used here. This
was based upon several runs on aquaeous solutions of
sucrose. These runs were compared to determinations
made by Gosting [17] on the sucrose - water system, with
agreement within 20.5%. They therefore conservatively
estimated the precision of the method using this inter-
ferometer as *1%.

This author accepts the figure of 1% for the
precision of the method and the instrument. Since the

experimental procedure was not changed from earlier
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procedures, the only remaining source of error would be
that introduced by the experimenter. The author takes the
agreement between his data and that collected by Wirth for
the system chloroform - carbon tetrachloride as evidence
that no systematic error has been introduced which would
give consistently high or low experimental diffusivities.

At several compositions in the systems chloroform -
carbon tetrachloride and benzene - chloroform mutual
diffusivities were measured two or more times. At all
these compositions,vthe values obtained agreed within
$2%, and in most cases within #1%. The author takes this
as evidence that random error introduced by the experi-
menter is within fhe precision specified for the method
by Bidlack and Kett. The experimental précision for the
studies in this work will therefore be taken as *1%.

This figure does not apply to the system ether -
carbon tetrachloride, because of experimental diffi-
culties felt to be inherent in this system, which have
been discussed previously. In this system four or more,
determinations were made at each composition, and
averaged. The averages are reported, along with the
standard deviation of the data, in Appendix E.

Wirth [34] has shown that the modified capillary
technique used in thils study has an experimental pre-
cision of *2%. This was shown by comparing tracer
diffusivities at extreme dilution with mutual diffusivi-

ties extrapolated to zero concentration (which must be
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identical according to equations (91) and (92)), and by
repeated runs for tne same composition and comparing the
reproducibility.

The autnor accepts this as the experimental precision
of the method using this experimental apparatus. To
determine the amount of error introduced by changing the
experimenter, the author reproduced the self diffusivity of
carbon tetrachloride (which Wirth used for calibrating the
cells), with a deviation of about #1%. Further evidence
is the comparison between mutual and tracer experimental
diffusivities at extreme cdilution in the systems
2-butanone - carbon tetrachloride, and p-benzoquinone -
benzene. The author concludes that the experimental
error introduced into the method by cnanging the experi-
menter is within the experimental precision reported by
Wirth., Tracer diffusivities reported here are therefore
assumed to be accurate to within *2%.

Again, this does not apply to the system ether -
carbon tetrachloride. Experimental difficulties here make
the results somewhat more uncertain. Determination of
precision 1s rather difficult. The values at extreme
dilution are within #5% of mutual diffusivities (which
are themselves uncertain). The author estimates tracer
diffusivities in this system are accurate within 5%,

and are so reported in Appendix E.

L
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Ternary Diffusivities

Ternary diffusivities were measured in the system
acetone - benzene - chloroform, at an average composition
of Xp = Xg = Xp = .333. Typilcal curves showing the
change of the refractive index gradient throughout the

run are given in Figure D-1. Values of D and DA and .

2m
the time correction factors are given in Appendix D.

The linearity of equations (187) and (188), which are
used to evaluate the reduced quantities, can be seen in

Figures D-2 and D-3.

Plots of D2m and Vv DA vs refractive index

fractions for all three independent choices of components
are given in Figures D-4 through D-9. (Ternary Dif-
fusivities can be expressed in three different ways,
depending on which components are considered, i.e.,

D D D D or D D D D or D D

AA®* TAB? TBA® "BB AA> TAC?> TCA? “CC BB? “BC?

D D As will be pointed out later one set of

cB® “cc*
diffusivities may bve more advantageous in testing the
hydrodynamic model and Onsager's Reciprocal Relation

than the other two sets.) The slopes and intercepts of
these lines were determined by a least-squares analysis,
and are given in Appendix D. These slopes and intercepts
were then used with the computer program given 1n
Appendix C to determine the diffusivities, which are

given in Table 2 for the optimal cholce of components

for this system.
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TABLE 2.--Predicted and zZxrerimental Ternary 2iffusivities
in the System Cnloroform (C) - Acetore (A) - 3enzene (B)
at 25°cC.
Predicted Experimental 9% Confidence
o [} . r

Y DCC 3.674 3.70 £1.62

a3

o

> DA - .54k 1. 7.

2 ch 5+ 1.55 7.15

n o ~

2 . Dye - .942 - .80 + .815

—w

— O - - §
22 »,, 2.515 1.74 $1.52

P nAn

—

o

own

e L12 *
oo —= -3.531 2.337 £5.88

—~ o fa e

oo

£ 0

Q ,

£ 21 —

o = -3.5381 -2.915 £1.40

olle) Al

L O

o

~

From the tracer diffusivities available for this
system it was Cifficult to cetermine the association
characteristics. As can te seen in Figure 9 and Figure
10, the scatter In the data is large enougn 7o mask any
curvature cue to associetion. It 1s provavie tnat tnere
may oe some cross-association in the btinary acetone -
cnhloroform, but tre other two tinaries are felt to be
nonassociated.

In any event, the curvature due to asscciation
is not likely to be extreme, since the end pcints vary
by only 25% in tne binary systems. It was trerefcore

assumed that the ternary system could be consicdered a
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non-associated system, at least as an approximation.
Equations (111) through (114) can then be used to predict
the ternary diffusivities. These equations depend on

the assumption that the molar volumes are constant.

Since the composition differences within the diffusion
cell were kept very small, the author feels that this
assumption has been met experimentally.

Activity data for the three binarles were fit to
Margules equations and then combined to give ternary
isothermal activity data (as discussed on pages 18-21).
The frictlon factors were taken to be the weighted
averages of the friction factors at the end-points in
the various binaries. Viscosity was measured with a
Canon-Fenske viscometer. These quantities were then
used with the computer program in Appendix C to predict
the ternary diffusivities, which are given in Table 2
along with the experimentally measured values.

The 95% confidence levels of the measured data,
which will be determined in the next sectlon are also
listed with the experimental data. It can be seen
that the predicted values of the diffusivities fall well
within the 95% confidence limits. The author therefore
feels that the experimental determinations support
hydrodynamic theofy. The predicted values of the
are also

phenomenological coefficients L and L

12 21
within the 95% confidence limits of the measured values.

e A A
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Within experimental precision, this can be taken as
empirical verification of tne Cnsager Recilprocal
Relations.

The 95% confidence levels are guite large for this
set of experimental data. This will be discussed in the
next section in detail., It will be shown that the
values of tne cross-ccoefficients are extreme.y sensitive
to the experimentally measured intercepts, and that a
very silight error iIn determining the intercepts can
lead to an extreme error in the cross-coefficients,
as well as a significant error in 'the main coefficient.

From this sensitivity analysis, and a consideration
of the experimental cdata, suggestions Qill be made for
modifying this procedure. The author belileves that
througn a thorough investigation df certain Tfactors
leading to experimental uncertainties in the present
method, techniqﬁes can te developed which wiil allow this
method to give 95% confidence levels within 20% or so
for the cross-coefficients. Tris would then give a
rigorous test of the hydrodynamic model and the Onsager

Reciprocal Relation.

Error Arnalysis--Terrary Diffusion

Since ternary diffusion has been studied in so few
systems, and since the time involved in making a complete
determination at any one composition is so long,

determination of experimental precision by comparison to
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published data is virtually impossible. The number of
reference systems 1is also quite small. In the past, the
usual procedure was simply to determine the experimental
uncertalnties in the measurement of the various slopes
and intercepts used in calculating the experimental
ternary diffusivities.

Kett [23], for instance, reported 95% confidence
levels of a percent or so, and concluded (implicitly)
that his experimental diffusivities were of the same
order of precision, a percent or so. In fact, this
confidence level would lead to a much larger confidence
level for the cross-diffusivities than he implied. Later
evaluation of his data showed that the confidence levels
were actually somewhat larger than he reported, which
would lead to even more error in the diffusivitiles.

The errors in the cross-coefficient resulting from
a 1% error in the value of the intercepts can be as
large as 200%. This 1s because the calculation of the
cross-diffusivities involves subtraction of two rather
large numbers to obtain a small one, so that uncertainties
in the larger numbers are greatly magnified. Furthermore,
errors in the main coefficients as large as 20% can result
from a 1% error in the intercepts. It would seem quite
worthwhile then to look at the sensitivity coefficients
of the ternary diffusivities, wnhnich relate the change in
a calculated diffusivity to a change in a measured

parameter.
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If a dependent variable is a function of several
independent variables, the functional form usually
involves several arbitrary parameters. The values of
the parameters for a given physical system are usually
determined by measuring the dependent variable at
several values of the independent variables. The
experimental "best" values of the parameters are then
assumed to be those which give the least-square error
when fltted to the data of‘the experimental measurements.

If the equation is of the form

y = f(al as «.. a X (201)

n X1 X5 ...xm)

where the ai's are the parameters and the xi's are the
independent variables, then the sensitivity coefficients

are defined by

1, 2, ... n

1,
of k=1, 2, ... m (202
1

) K
J

1 ay aj, Xy

V]
%)

Nnou

The sensitivity coefficients measure the change in the

dependent variable with a change in the parameters, and

are themselves functions of the independent variables.
Ternary diffusivities can be treated as dependent

variables whose values depend upon independent variables

(component mole fractions, temperature and pressure)

and the parameter IA’ Ioms SA’ and SZm‘ The functional

form of this dependence 1s given by equations (196)
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through (200). <Since the functional form 1s rather
complex, analytical evaluation of tne sensitivity

fricult, Thney can easily be

(&

coefficients 1s rather ¢
determined numerically witnh the aid of a computer,
however. A small cnange is mace in the value of one

f the slopes or intercepts, Keeping the others constant,
and the change in tne Giffusivities is noted. This has
been done for the system measurea in this study.

If the sensitivity coefficient 1s multiplied by
the value of trne artitrary parameter, a reduced sensi-

tivity coefficient may be defired

of, (203)

Sy
a . i ‘o0&,
i i °“1{ g X

1
o
<
)

1]
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This gives'the crnange in the cdiffusivities for & one-
percent cnange in tne parameter. This 1s useful, since
if the percentage uncertainty In experimentelly
measured parameters 1s known, the uncertainty in the
diffusivities can be determined. These same arguments
also hold for tre pnrencmenological coefficients used to
test the Onsager Xeciprocal Relations.

If the experimental cata are to be used to test a
proposed model, 1t would be best 1if the sensitivity
coefficients with respect to the measured parameters
were as smail as possible. In the case of ternary aif-

fusivities, three indepercdent choices of components may



be made. The sensitivity of trne main and cross-

Giffusivities will not necessarily be tne same for each
crnoice. It would te best tnen to choose those components
for which the sensitivities are icwest. It can be seen
from Table 3 tnat in tre system acetone (A) - benzene -

(B) = chloroform (C), the sensitivity coefficients are

generally lower wnen tnhe set of diffusivities DCC’ DCA’
DAC and DAA is cnosen to cescrite diffusion. This is the

basis for the choice made in preparing Table 2.

If tne S5% conficence levels for the parameters
are Known, then the 95% confidence levels for the dif-
fusivities can be approximated from the sensitivity
coefficients. 3By assuming that the sensitivity
coefficients are constant for aifferent values of the
parameters, upper and lower 1imits for the diffusivities

may be calculeated by

g e - 204
95% limits of D_ , = :z/z y2 Sz(a:) (20%)
a3 ; Ya. Te
i i
la) oL ~ < it.. n Y > am - » . :
Confidence limits on tne parameters IA’ I2m’ SA ard S2m

may be determined Ifrom the variances of the parameter
(which are determined during the least-squares analyses)

by means of a statistical t-test:

Va2 (205)
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TABLE 3.--Reduced Sensitivity Coefficients, Sgi in the

System Acetone (A) - Benzene (B) - Chloroform (C) for
all Choiced of Coordinates.

a
i Iom Ia Som Sp
y
DAA +.12 +.18 +.03 -.01
DAB -.09 -.10 +.03 +,03 s
x10
DBA +.12 +.24 0.0 0.0
DBB -.09 -.13. +.03 +.04
DAA -.19 +.34 0.0 +.01
D -.08 +.12 -.02 +.02
AC x10'5
DCA +.38 -.78 0.0 -.02
DCC +.16 -.27 +.03 -.05
DBB -.21 ~-.36 +.,03 -.04
D -.11 -.23 0.0 0.0
BC xlo-5
DCB +.42 +.65 -.08 +.07
DCC +.24 +.42 0.0 0.0

where t stands for the statistical parameter from the
t-test, and Sg(ai) is the statistical estimate of
variance of the parameter a,, as determined from the

least-squares analysis. The 95% confidence limits on
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the diffusivities were determined by these formulae,
and are given with the values of the diffusivitiles in
Table 2.

To provide a rigorous test of hydrodynamic theory
and of the Onsager Reclprocal Relations, it would be
necessary to reduce the 95% confidence levels on the
main coefficlents to about 10% or so of the values of
those coefficients, and the 95% confidence levels on
the cross-coefficients to at least 50% or so of the
values of the cross-coefficients. Since the sensitivity
coefficients for the intercepts are so high, it would
be necessary to reduce the variances of those intercepts
to within a few tenths of a percent. It would also be
necessary to reduce the value of t from the t-test.
Since t decreases with the number of degrees of freedom
(i.e. experimental measurements made) at a given con-
fidence level, a staﬁistically large number cf measure-
ments should be made for every set of diffusivities
desired.

Since t approaches a constant value as the number
of measurements 1lncreases, 1t becomes apparent that the
sample variance must also be reduced. Concisely, this
means that more precise measﬁrements must be made, as
well as more of them.

This means that the spread in the data seen in

1

the plots of D and JDA vs a must be reduced. The

2m
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reasons [or tre spread in tne cata are difficult to
determine. One provably important cause of tnals spread
is the guality of the initial tounaary. It can be seen

from Table 4 that the true initial time determined from

eguation (187) and the 2 S tr curves 1s not the same
as that determined from eguatiocn {(188) and t=-
1 _ .

Vs tm durves. I tre initial boundary nad been

Dy
a true step crarige, and the timer started the instant
that flow from the cell was stopped, the true initial
time would have been tm = 0. It was assumed that the
initial boundary 1s such as would have been fbrmed by
diffusion from a step-crnange for a short period of time.

This would have resulted in a true initisl boundary in

[

which the refractive index gr a"*ent curve was Gaussian,
and the true initial time WOuld rnave been the sameiwnether
determined from ecuation (187) or (188).

It can be seen that the measured refractive index
gradient curves in some runs are ooviously nct Gaussian.
Tne curves are sligntly skewed to one side or the other.
Ternary diffusion from a step change ovoundary aiways
gives sxkew curves, except at two times during the run
wnen they are true Gaussian curves. However, in order
for eguations (187) and (188) to apply, the true initial
distributions must be Gaussian. (Note that this is the

true initial distribution, not the experimental boundary.)

The autnhor believes that tne error introduced by a
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TABLE 4.--True Initial Times for Ternary Runs, as
Predicted by Equations (187) and (1885.

t,s sec. t,s sec.

Run Number eq. (187) eq. (188)
60 -20 -43.8
62 -23 -37.1
63 -90 -55.2
65 -56 -49.2
66 -13 - 7.8
68 -52 -65.7
69 -74 -72.8
70 -58 -47.9

non-step-change boundary can be related mathematically
to the difference in the initial times determined from
the two cufves, and possibly one measurement of the
refractive index gradlent during the run. He was not
able to derive such a relation, however.

It certailnly seems reasonable, however, to use the
difference between the time corrections for the two
curves as a criterion for rejecting a run. If the two
initial times varied by more than a certain amount, the
run would be rejected. Determination of what difference
should lead to rejection will probably take considerable

study and experimentation.
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SUMMARY

Hydrodynamic theory has bteen used to derive equa-
tions describing the effects of composition on mutual
and tracer diffusion in certain associated and non-
associated liquid systems. These equations have been
tested by experimental measurements of binary mutual,
ternary mutual and tracer diffusivities.

Tracer diffusivities have generally verified the
predictions of hydrodynamic theory quite well (ether -
carbon tetrachloride being an exception). As the per-
centage of a component which 1is assoclated into
complexes increases, the tracer diffusivity - viscosity
product decreases, and vice-versa.

Although many systems have been found for which
nydrodynamic theory does apply quite well, three non-
assoclated systems are presented here which seem to be
exceptions. In non-associated systems, the Hartley-
Crank equatlion should describe mutual diffusion. 1In
benzene - chloroform and 2-butanone - carbon tetrachloride,
the Hartley-Crank equation qualtitatively predicts the
shape of the mutual diffusivity curve, but fails
quantitatively. In chloroform - carbon tetrachloride,

it falls qualitatively as well. These fallures may well
124
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be due to inaccurate vapor - liguid equilibrium data,
however. In the ternary system acetone - benzene -
chloroform (which is here considered to be non-

associated) hydrodynamic theory predicts the ternary
diffusivities, within experimental precision. Unfor-
tunately, experimental uncertainty is rather large, and
this may not be considered a rigorous test of the

theory. Wlthin experimental preclsion, hydrodynamic

theory also predicts the validity of the Onsager Reclprocal
Relation.

The author feels that thls experimental uncertainty
is due primarily to the difficulty of forming a good
boundary within trne diffusion cell, which 1s critical in
measuring ternary diffusivities. Suggestions are given
for future investigations to reduce the experimental error

and provide a more rigorous test of hydrodyrnamic theory.



The autnor suggests tnat future work in liquid
non-electrolyte diffusion is needed in four particular
areas: (a) irmprovement of experimental methods and
tecnnigues, so thzat diffusivities may be measured more
precisely, reliably, and horefully more easily than 1is
now possible; (b) more systems need to be studiled to
support conclusions wnich have been previously arrived
at on the basis of a small number of studies; (c) those
systems wnich seem to offer contradictions to hydro-
dynamic theory neea to be studied more carefaliy;

(d) furtner tneoretical work needs to te done, possitly
extending tne principles used here to contirucus associa-~
tion, or simultaneous self-association.ahd.cross—
assocliation for example.

Experimental proolems which lead to low precision
in measurements were discuséed consideranly under the
Ternary Diffusion error anaiysis. The authcor feels that
a thorougn study of the effects of different boundary
conditions, different metnods of forming the initial
boundary, ana possibly a new mathematical treatment for
obtaining diffusivities from refractive index gradient
curves would be a self-contained and quite worthwhile

research program.
126
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Besides this worx on ternary diffusivities,
however, the author feels that much improvement could
stlll be made in the techniques used for measuring
binary mutual and tracer diffusivities. For example, a
technique which would totally eliminate convection in the
caplllary, perhaps by using a porous caplllary instead
of an open one, would be well worth developing. Or an
interferometer which used a laser light source and a
better set of lenses, or for which a better boundary
could be established, would be worth investigating.

Although the systems so far studied have generally
supported hydrodynamic theory, there is not enough
evidence to conclusively say that it 1s correct. This
is a general problem in liquid diffusion--there simply
has not been enough raw data generated in the past to
thoroughly test any new theory proposed except for a
comparatively small number of cases. For instance, to
the author's knowledge, there has never been published a
complete study of any ternary system (mutual and tracer
isotherms of all three component binaries, ternary mutual
diffusion isotherms, and ternary tracer diffusion, to say
nothing of the effect of temperature on all of these).

Systems such as 2-butanone - carbon tetrachloride,
and chloroform - carbon tetrachloride, which appear to
contradict hydrodynamic theory (or at least present

ambigulities to be resolved) shculd be studied more
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carefully. It is quite possible that studies of
phenomena ctner than diffusion would be very uselful
here. It has been recently proposed that the chlorine
atoms of carbon tetracnioride engage in a limited form
of hydrogen bonding with alcohols, and therefore they
might cause some very weak pbonding effects in these
systems whicn lead to the breakdown of the Hartley-
Crank equation. This seems unilkely, but perhaps
spectroscopic studies directed at this particular
phenomenon mignt provide some useful information.

Theoretical work based upon hydrodynamic taeory

3
’_JQ

could be directed at finding a simplification of eguation

03

(80) and its generzlization wnich could be applied to

b]

tracer diffusivity in a system with extensive association,

4]

-

such as ethanol - hexane, or aniline - benzene. Or
eguations could be developed for application to systems
like aniline - tciuol wnere there 1s both se_f-
association and cross-association. Eguations for con-

tinuous selif-association as appliied to tracer diffusion

T

could be relatec to similar equations for mutual

4y

diffusion. This field is agein open for much investigation.
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rigure A-1 15 & scnemetic diagram of tae diffusion
capilliary. Specific deteils regarding dimensions,
materials, etc. are given by Wirth (347.

Tracer solutions of tne aesired compositions were
prepared gravimetrically to within #.001 mole fraction,
by means of a Cnristian ana Becker Torbal torsicn
balance. 3Bulk soiutions were prepared to within =,.005
moie fraction on a large analytical balance. The tracer
solutions were degassed just before an exper_ment for 15
minutes at about LJ°C to remove air from the solution.*
Six capillaries were filled by tne following ovrccedure:
b
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0.001 inches tnick, was rolled flat to insure
a good seal to the teflion capillary, and placed

in the screw cap. The capillary was inserted

*Air bubbles coming out of solutlon during the run
and drifting up to the glass disc were one of the principle
experimental difficulties. They would mix tne contents of
the capillary as they drifted upwards, and probably
changed the reslistance constant in the boundary
condition at the capillary end.
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‘_"-—*“" FRIT HOLDER

-—= —— GLASS FRIT

. CAPILLARY

FOIL DISC

SCREW CAP

Figure A-l.--Schematic Diagram of the Modified
Capillary Cell.
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into the screw cap, and tigntened witn a pair

of piliers to insure a good seal to the foil
disc.
The capililary was immersed to within one half

incn In the bulk solution, and the bulk con-
tainer was piaced in a thermostat to
equiliborate at 25°C for one hour.

Tne capillaries were then filled with degassed
tracer solution oy a .50 cc tubercuiin syringe,

a needle cut to tne same lengtnh as

=
’_l
ct
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the capilllary. Great care was taken to avoild
rapping &ir outbles in the capillery. The
syringe was emptied of air bubbles by inverting
and ejecting some of the solution. The syringe
was tnen inserted In the capilllary, and with-
arawn slowly, caiscnarging solution as 1t was
removed. A puddle of tracer solution was left
covering tne top of the capillary.
The gliass frit was then filled by dipping it

n the obulk solution, and allowing the excess to

e

crain away. The frit was then carefully pléced
on top of tne capillary, in sucn a way that no
alr bucobles were trapped, and with the puddle of
tracer solution covering the frit.

The frit holder was then placed over the end of
the capillary. By this time the excess tracer

mentioned above had generally evaporated. To
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prevent tne Ifrit from drying out ard trapping
alr, the cdepressiocn in the frit holider was
filled witn tracer solution. The entlre
assembly was tnen placed in the bulk solution,
wasning aweay the excess tracer solution in

the process.

After all six capillaries had been filled, the top
was placed on the btulk conteiner, leaving the vent open

untlil the vapor pressure could drive out the excess
air. The bulk ccntaliner was then placéd in the thermostact,
and the time recorded. The filling process took about
half an hour for all six capillaries.

After three to five cays, depending upon the
diffusivity, the bulk solution was removed from the
thermostat. The six capillaries were emptiecd into nylon
counting vials as foliows:

1. 5 cc of scintillation fluid was placed in the
bottom of the counting vial, and a syringe was
filled with 10 cc of scintillation fluid for
step number (L) telow.

2. The capilliary was removed from the dulk
solution, and the frit holder carefully removed
without disturbing the frit. The excess
solution on the frit was allowed to evaporate.

3. The caplllary was inverted 1nto the counting

vial, wnich washed the frit from the end. The



end ol tne capillary was xept beneath the
surface to avoic flash evaporation of tracer

solution.

L, Tne conical depression in the screw cap was
filled with T1luid from tne syringe mentionead

in step (1). The folil disc was then punctured
oy the syringe needle, and tracer solution
flushea from the capillary with scintillation
filuia. Wnen 2 or 3 cc remained in the syringe,
tne capillary was removed from the vial, and
washea off witn the remaining scintillation
fluid, so trat a1l the tracer solution was in
the vial.

5. The counting vial was capped, and idehfified
by the capillary number. It was snaxken gently
to thorocugnly mix tne contents, ana the glass
frit was removed. Tne glass frit was wasned
in acetcne to remove scintillation material in
preparation for tnhe next experimenc.

Tnis procedure was repeated for all six capillaries,
and the time recorced. The emptying process took about
20 minutes.

The caplllaries and screw caps were then cleaned
with acetone, dried, and prepared as before. Inltial

counts were then prepared &s follows:
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as in step (3) of tne filling procedure, except
tnat tne puddle was xept as small as possible,

ideally covering only the opening of thne

3. The excess tracer solution was allowed to
evaporate until level with the surface of the

capillary. The capillary was then quickly

ct
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inverted 1into ting vial, and flushed as
in the previous emptying procedure. The viali was
then identified by the capilliary number as an

initial count.

*This procecdure nad to be mocdified slightly for
solutions containing a nign concentration of ether, since
these wetted the surface of the caplllary extensively.
The solutions would not evaporete level with the surface,
out would form a cCepression into the capillary before all
the solution had evaporated from the surface.

The capillaries were filled with a soluticn for
which wetting was not a provlen, and emptied 1n tre usual
manner. They were tnen refilled with the same solution,
and allowed to evaporate to the same estimated depth as
tne probiem solutions. Emptying these and comparing the
count rates from the two sets gives an estimate of the
ratio of the true Initial count to the measured counts
for the problem solutions.

Since the depth of the depression could only be
estimated by eye, tzais procedure introduces some error,
but it is at least a random error, due to the estimation,
rather than a systematic error due to incorrect initial
counts. The diffusivities for these solutions are
reported with an uncertainty of *5%, instead of the
usual *2%.
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Trhe eguipment was trnen cleaned and prenared for

Tne initial and fiInal counts were then counted
using a Pacxard Tri-Carb scintilletion counter. Since
some of the chnemicals used, notarcly carbon tetrachloride
and p-benzoguinone, actecd as cuenching agents, the gain
of the scintillation counter was reset before every
counting session to give optimum count rates.

Wnen the cata from the count rates had been
analyzed, if thne spread of tne filve closest values of the
tracer diffusivity {(as calculated for the sik capillaries)
was greater than 5%, i.e. #2.5% from the mean value, the

experiment was discarced. Tnis was to elimirnate thnose

w

runs in which tnere meay nave been convective mixing
within the capilliaries. Since the magnitude of such
effects depends upon wren auring the experiment they
occurred, convection would caucse a spread 1n tne values:
of tne diffusivity as well as an increase 1n the apparent
value. It was felt that this screening vrocedure would

eliminate those runs in which convection occurred.
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APPENDIX B
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Figure B-1 is a scnematic diagram of tne Mach-
Zennder interfercometer used {or measuring the binary
ana ternary mutual diffusivities. Figure B-2 1s a
diagram of the diffusion cell. Specific details of
construction are given by Bidlack [4], as are instruc-
tions for alignment and adjustment of mirrors to produce
the proper fringe pattern.

Two solutions with slightly different compositions
were prepared gravimetrically using a Christian and Becker
Torbal torsion talance. The difference in composition
of the two solutions was generally .Cl mole fraction for
binary systems, but could be varied to give tne proper
number of fringes, depencing upon the refractive 1indexes
of the two components. The cell was filled according to
the following procedure:

1. The plunger was placed in the filling syringe,

and all valves were closed, except valve 2.
2. Approximately L0 cc of the denser solution were

placed in reservoir B, and the top of the
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glass solution reservoirs
made from 50 cc syringes

) filling ‘L| A r‘“ B r“
-

syringe

valve 2 valve 1
\\\\ cell
cell body
window —
+
valve U4
ﬁjjz valve 3
boundary /
sharpening
slits
L A{E@ Y,
siphon valve 5

Figure B-2.--Diagram of Diffusion Cell.



[
N

reservoir was covered with aluminum foil to
retard evapocration.

Valve 5 wes opened, and solution aZlowed to
111 the cell to Just below the level of the
siit. Trne filling syringe was then used to
draw fluid tack and forth through valve 5 to
remove air bubblés trapped near the valve
stem. Solution was then allowed to fill the
cell to about one half iIncn above the slit.
Valve 5 was then cliosed.

Valve 4 was then opened. Solution was forced
through valve 4 by the filling syringe, until
the solution level ir. the cell was just above
the slit. Care was taxen not po force any
air from the cell into tne siphon l1ine. Valve
was thrhen cicsed, and valve 5 opened. Solution
was allowed to Tiow into the cell until the
level wes again one half inch above the slit.
Step (L) was repeated until fluid flowed from
the sigheon line, to insure that the line wes
completely fiiled up to the tee in the line.
The process of steps (4) and (5) was then
repeated for valive 3, to fill the other side

of the siphon line.
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Valve 1 was opened, and the plunger removed
from tne filling syringe. At this polnt, the
siprhon was checked by slightly opening valves

3 and 4 consecutively to make sure fluid would
flow freely from the cell. Valves 3 and 4

were left closed after checking the siphon.
Valve 2 was closed, and the filling syringe
filled with the less dense solution. The
plunger was then rep.aced.

Valve 2 was then opened very slightly, and
solution was allowed to flow very slowly down
the wall of the cell. The flow rate was kept
very slow until the level was an inch or so
above tne slit, to avoid turbulence and mixing
at the boundary. After this time, valve 2 was
opened a little to allow soclutlon to flow in
more freely. To stabilize the boundary, valves
3 and 4 were opened so that solution flowed
through tne siphon at a rate of one drop every
two or tnree seconds.

When solution began to appear 1n reservoir A,
valves 3 and 4 were again closed. Solution was
forced back and forth through valve 1 to remove
any alr bubbles from the valve stem. With
liquid above the bottom of reservoir A, valve

2 was then closed.
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Tne less cense solution was then acded to

(=]
[

reservoir A until the level was even witn that

in re

ervoir 3. Reservoir A was tnen covered

w

with aluminum foil to retard evaporation.
The diffusion cell was now ready to be placed in the
water path for tne experiment.

Before tne cell was placed in the water bath, tre
fringe pattern was checxed to maxe sure the fringes were
straight, vertical and in focus. It was usuzlly found
that they hacd arifted slightly away from the verﬁical
since the lest experiment. This could almost always be
corrected by maxing a fine adjustment of mirror 3.

Tne cell was then placed in the water bath. Valves
1l and 5 were openec several turns each. Valve three was
then opened until the flow rate from the siphon was
approximately one drop every six seconds. Valve L4 was
then opened until the flow rate was one drop every three

that the flow rate be the same

ct

seconcds. It was importan

ntain a flat boundary. It

e

[
(-

from eacn side ol the cell ma

’y

was also important that the flow rate into the top and
bottom of the cell be tne same so that the initial
distribution of concentration gradients would be
symmetric about the boundary.

It wusually toox about 20 to 30 minutes for the
cell to reach the egquilibrium tTemperature, &nd for a gooa

T

toundary to form. Wwhen tre toundary rad formed, valves
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were again opened, anoiher toundary formed, and a second
set of pictures taxken.
Tre photograpnic plate, a Kodak Type M plate, was
cevelored ty tne rollowing procedure:
1. The plate wzs develogzed for 5 minutes in
Kodax --19 nign Contrast Developef, witn

-
.

O

-
.

\ 4+ K - - - 2 -2
intermittent agzitati

water.
3. The image was trnen fixed by a 5-minute soax,

witn intermittent agitation, in Xodak Rapidfix.

wasnea for about cne minute under runnin
water, and then alliowea to ary for at least

2 hours cefore rmeasurement.

Tne phnotographic plates were extremely sensitive to lignt,
and nad to be nandled in absolute darkness (a0 safe
light) througnhout the entire procedure, until tne fixing
step rhad been completed.

A new plate was then inserted into the film holder,
making sure that tne emulsion side of the plate faced

se the thickness ol tne

[

outward. Thnils was important cecal

(@)
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plate was enougnh to throw the image out of Tocus, and
perhaps change tne magnification factor of tae camera.
The developer ana Iixer were replaced after every ten

runs, in order to maintain a consistently high image

04,

quality in develorment.
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ATA ANALYSIS
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The foilowing cormputer grozram uses measured
values of the slopes and intercepts to calculate experi-
mental values of tne ternary ciffusivities. The progran
language i1s FORTRAN IV, with specific deck structure

o > Py

forl the IBM 18C0 computer of the College o

Michigan State University. One constant, R /Rl, must
be specified within the program at the designated point
Other data (tne slopes and intercepts) 1s read by the

computer.

// 323

// FZR TDIFF
#TPCS (CARD, 1k
#EXTENDED DRACI
*NZNPRZCZISS PRZG:
®ZNZ WZRD INTEG
¥[IST SZURCE PRYZ

REAL I2M, IA, L2¥, LA

CZMMZN X

i READ (2, 10) I2M, IA, S2M, SA
10 FZRMAT (4 E 10.5)
LA = IA + SA
L2M = I2M + S2M
IF (I2M) 3, &4, 3
3 WRITE (3, 20) I2M, IA, S2M, SA, L2M, LA
20 FPRMAT (1Hl, © = 1; 5)
c
c THEE VALUZ 27 R = R2/R1 MUST BE SPECIFIED
C AT THIS PPINT
c
e.g. R = .L2599
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CALL PRTS (I2M, IA, 32M¥, SA)
11 = —{(X¥#%2 + 12v # X + (L2X * IA ¥ 32M/SA))/S2M
D22 = (X*%¥2 + I214 * X 4 (IzM ¥ LA ¥ S2M/SA))/S2M
D12 = {I2¥ - 22, ¥ %
D21 = (L2M - Di1) / R
WRITE (3,43) Dil
WRITE (3, L1) Di2
WRITE (3, L2) D21
WRITEZ (3, &3) D22
40 FPRMAT (83 Dai =, E15.5)
41 FZRMAT (EH AR =, Z15.53)
L2 FZEMAT (8F C3A , 225.3)
43 FZRMAT (8H °B3 = , E15.3)
G8 TS 1
L 4 Zf\‘;. o
CALL EXIT
END
// TPR PRTS
*ZXTENDED PRECISIZN
®ZNE WORD INTEGZZS
¥NONPROCZSS PXLGRAM
¥7,187T SOURCE PRLGRAM
SUBRZUTINZ PRTS (CT2M, CTA, S2M, SA)
DIMENSIZN A{4), B(L), C{L)

COMMEN X

|
LA)

[

N

]
no
"
=
|

CTA * S2M/SA

|
YO+

B e X 2
N AN AN AN

ES NI A
(N RN RN RN ||
[l

-(S2M/SA)**2

RZZ ZF PZLYNZMIAL
NBMIAL EVALUATED AT X
RIVATIVE ZVALUATED AT X

OO0
Q=
"

o
o wn
Oy

U o
e
n
<
2,
U O

woetu

XPRE - 2/D?

H << Qo

53]
~~
[
o
T
|
—
-
X
U
2
~~
>
o)
rJ
11
4
N~
~~
[
C)
[
(]
-
—
|_J

11 CZNTINUE
RETURN
END
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// FPR SYND

*TYXTENDED PRECISIZN
oYy TNMT AT
*Z( o wZ“.J LivaeuXD
M = ~nTSQ ST A NN AN,
ENJNPXOCESS PRZCRAM
T - ™ — - ~NT oA
*;-SL SZURCE PRAGRAM

SUBRZUTINZ SYND (4, 2, C, X, P, DP, N, N1)
DIMENSIZN a(4), B(a), C{4)

2(1) = A{(1)

5Z 1 I =2, N1

B(I) = A(I) + X % 3 (I-1)

c{1) = 3{1)

D 2 I =2, N

C{(I) = B{I) + X % C(I=-1}

P = B(XN1l)

3P = C{N)

XZTURN

END .

~
N
>
tr
O
+
]
-
by
"-‘J
T
|
is

Tr.e Tollowing progranm precicts ternary ciffusivities
in a non-associatec system Irom friction coefliclents,
molar volumes, viscosities and the Margules ccnstants of ‘
tnhe binary systems.
data. The program lianguage i1s rORTRAN IV, with specific

deck structure for tne ZEM 1800 computer of trne College

(¢}

o

of zZngineering, Micnlzan State University.
O, o

// SZ3

// FZR PRED
#I2CS (CARD, 1hL43 PRINTER)
¥_.7ST SZURCEZ PRZGRAM
¥NZNPROCESS PRZGRAM
¥EXTENDED PRECISION
¥ZNE WZRD INTEGERS

REAL LNG1, LNG2, LNA, LNB

READ (2, 200) Al2, 421, Al3, A31l, A23, A32, C
200 FZAMAT (77 10.5)

XEAD (2, 2C1) =7A
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[N

OO0

N

FZRMAT (F10.5)

I7 (ETA) 1, 2, 1

RZAD (2, 202,Vi, V2, V3

READ (2, 202) SIG1l, SIG2, SIGR

RIZAD (2, 202) XA, X3, XC

FZRMAT (3710.3)

SIGL REPRISINTS RT/(FRICTIZN CZEFF)

g7 COMPENENT 1 R A

VZLD = X2 % C1L + XB % V2 + XC % V3

CA = XA/VZLD »

C3 = g/vzq

cC = XC/vz;a

LNGLl = 2¥XA¥XS¥(A21-XA¥A21-XB¥A12) + XE¥XB¥A1?2
+ CHEXA¥XC¥(L37-Y.%¥A31-XC¥A13) + XC*¥XC*¥A13
+ (XE2*XC-2XXA *}«*Xp) ¥ (A21 + A13 4 A32 - C)

XAP = XA

3P = XB

XCP = XC

LNG2 = 2.%XB¥YA¥(A12-X5¥A12- XA*Azl) + XA¥XA*A21
+ 2.*XB¥XC¥ (A32-XB*A32-XC¥*¥A23) + XC*XC¥a23
+ (XA¥XC-2.¥XA*XR#¥XC)¥(A21 + A13 + A32 - C)

LNA = LNG1 + ALJZG (XA)

LN3 = LNG2 + ALPG (XB)

VCNZW = VOLD - (XA + .003) ¥ VI - X& * V2

CMZLS = VCNEW/V3

TMZLS = XA + XB + .003 + CMOLS

XA = (XA + .003)/7TMJLS

XB = X3/TMZLS

XC = CMZLS/TMZLS

LNGL = 2.%XA¥X5¥ (A21-XA¥A21-XB¥A12) + XB¥X3%a12
+ 2.FXA*XC*¥(A31-XA¥A31-XC¥A13) 4+ XC*XC¥A13
+ (XB¥XC-2.%XA®XB¥XC) ¥ (A21 + Al3 + A32 - C)

LNG2 = 2.*XB*¥XA¥(A12-XB¥A12-XA¥A21) + XA*XA*A21
+ 2.¥XB¥XC*(A32-XB¥A32-XC¥A23) + XC¥XC¥A23
+ (XA¥XC - 2.%¥XA¥XB*XC) # (A21 + Al3 + A32 - C)

DADCA = (LNGl + ALOG(XA) - LNA) ¥ VOLD/.003

DBDCA = (LNG2 + ALOG(XB) - LNB) * VOLD/.003

VCNEW=VZLD - XA? ¥ V1 - (XBP + .003) ¥ V2

CMOLS = VCNEW/V3 '

TM@LS = XAP + XBP + CM@LS + .003

XA = XAP/TMﬁLS

SB = (X3P + 03)/T¥4LS

XC = CV¢US/Twzus




LNGl = 2.¥XA*X3#%(A21-XA¥A21-XB*A12) + XB¥XB¥A12
1 + 2 RYARYNCH (L3I -XA*¥A31-XC¥A13) + XC¥XC*¥Al3
2 + (XS*XC-2.%KA*XB¥XC) * (A21+A13+A32-C)
LNG2 = 2.¥XZ*XA%(A12-XZ¥212-XA+A21) + XA¥XA¥A21
1 + 2. EXIHEXCH (A32-XS¥S32-XC*423) + XC¥XC*A23
2 + (XA®XC-2 *Xa¥X2¥XC) * (A21%413+A32-C)
DADC3 = (LNG1 + ALZG(XL) - LNA) * VZLD/.CO3
DEDCRB = (LNG2 + ALZG(XB) - LNB) ¥ VOLD/.003
WRITE (3,1C00)
WXITE (3,101) DADCA, D3ZCA, DADC3, DBDCE
100 TORMAT (1 DACCA D32DCA DADCB . DBDC: ')
XA = XAP
XB + XBP
XC + XC?P
DAA = DADCA/ETAL¥CA®*(SIG1¥(1.-V1¥SIGl) + SIG3¥V3*CA)
1 + DBDCA/ETA#CAL¥CB#(V3#SIG3-V2%¥31IG2)
DAB = DADC3/IZTLA¥CA*#(SIG1#(1.-V1¥SIGl) + SIG3#V3*CA)
1 + DBDCB/ZTA¥CA¥CZ*(V3#SIG3-V2¥3IG2)
DBA = DADCA/ZTA¥CA¥CB#(V3#SIG3-V1*3IGLl)
1 + DEDCA/ZTA*CZ¥{(SIG2#*#(1.-V2#%¥CB) + SIG3I*V3#*CB)
D3B = DBDCB/ETA#CL¥CB#*(V3¥SIG3-V1*SIG1)
1 + D3DCB/ETA®CE*(SIG2%(1.-V2#%CB) + SIG3I*V3¥*CB)
WRITE (3,1C5)
WXITE (3,106) D&LA
WRITE (3,107) DAB
WRITE (3,100) D23A
WRITE (3,10G) D33
105 FORMAT (12 , // '"TEE PREDICTED DIFFUSIVITIES ARE ',/)
106 FORMAT (1H , 'DA4 = ' , F 15.5)
107 FORMAT (1H , '"DA3 = ' , 7 15.5)
108 FORMAT (1E , 'DBA = ' , F 15.5)
109 FORMAT (1K , 'D3B ="' , F 15.5)
GO TO 1
CALL E=XIT
END
// XEQ PRED
* CCEND
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APP=ZNDIX D

TEINARY INTZRMZDZIATE DATA
TABL: D-1.--Data &t eculmolar concentrations In the system
Chloroform(4) - Acetone(z) - Benzene(C)

CA = 4,097 moles/Lit.
Co = 4,087 moles/Lit.
CC = 4,097 roles/Lit.
VA = 0807 Lit/mole
V. = C7LGC Lit/mole
VC = L0654 Lit/mole

E2 = 1.260 x 1077 dynes
o]

A

=M s A=T

o = 1.453 x 10 dynes
c

B

U 1.307 x 1077 dynes
o

C

n = 487 co

a = L4317 RT

b = .0701 RT

c = .0978 RT

d = .3260 RT
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Figure D-1.--Typical Refractive Index Gradient Curves
(taken from run #65).
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APPENDIX E

EXPERIMENTAL RESULTS

Tab le E-l.--Experimental
System Chloroform(A) -

P —

Binary Mutual Diffusivities in the
Carbon Tetrachloride(B) at 25°cC.

X
>

D

AB

X 105, cmz/sec

0000000
VO~NNONN
N ENNOWW
NOrMEO N

N e
oW oUW
O~ oI
_ oW -3 0

TABLLE E-2.--Experimentai Binery Mutual Diffusivities in the

System Benzene(A) - Chloroform(B) at 25°C.

A D,p X 105, em®/sec
———

0.00¢5 2.345
g'gOS 2.353
<07 2.414
0.20 7 2. 4k3
8'3‘45 2.495
O'E“S 2.4193
O. S 4 2.396
NESE 2.343
0.785 2.344
0.99 5 2.265
_
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TABLE E-3.--Experimental Binary Mutual Diffusivities in the
System Ether(A) - Carbon Tetrachloride(B) at 25°C.

X, Dyp X 105, cm2/sec
0.005 1.50 = .05
O.200 1.95 = .06
0. 400 2.38 + .14
O0.600 2.99 = .20
O0.800 3.76 = .34
Q. 995 4,59 = ,07

TABI.E E-U.--Experimental Binary Mutual Diffusivities in the
System p-benzoquinone(A) - Benzene(B) at 25°C.

5 2

> A DAB x 107, ecm”/sec
0. OO 41 2.20
0. OO 57 2.16
0. 01 32 2.09
0. O2 39 1.98
0. 0315 1.96
0. 04 3y 1.94
TABILE E-5.--Experimental Tracer Diffusivities 1n the

System 2-Butanone(A) - Carbon Tetrachloride(B) at 25°C.

*

=a D: X 105, cm2/sec Dy x 105, cm2/sec
\
Q.OOO 1.320
8'&37 1.611
0‘618 2.260
o 7S 2.720
0-325 3.183

28 3.300
0.99 5 2.973

|
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TABLE E-6.--Experimental Tracer Diffusivities in the
System p-benzoguinone(A) - Benzene(B) at 25°C.

* ¥
XA DA X 105, cm2/sec DBx 105, cm2/sec
0.0000 2.137
<0.0010 2.32
0.01C3 2.11
O0.0L64 2.11

TABLE E-7.--Experimental Tracer Diffusivities in the
System Ether (A) - Carbon Tetrachloride(B) at 25°C.

* *
XA DA X 105, cm2/sec Dfsx 105, cm2/sec
0.000 1.32
0.024 1.629 £ .082
0.024 1.674 = .084
0.332 2.636 = ,132
0.530 3.766 + ,190
0.850 5.383 = .269
0.999 4,395 £ .220
1.000 7.91 % .396

TABLE E-8.--Experimental Density and Viscosity in the
System p-benzoquinone(A) - Benzene(B) at 25°C.

X, density, g/ml viscosity, cp
0.0011 0.8738 0.600
0.0103 0.8767 0.608
0.0283 0.8826 0.617
0.0387 0.8861 0.629
0.0464 0.8896 0.631
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TABLE E-9.--Experimental Density and Viscosity in the
System Ether(A) - Carton Tetrachloride(B) at 25°C.

Xy density, g/ml viscosity, cp
0.000 1.5856 0.913
0.1851 1.L177 0.677
0.3119 1.3047 0.445
0.4808 1.1536 0.583
1,000 0.7074 0.225

TABLE E-10.--Experimental Density and Viscosity in the
System Acetone(A) - Benzene(B) - Chloroform(C) at 25°C.

X X3 Xq density, g/ml viscosity, cp

0.328 0.339 C.333 1.0457 0.48€9
0.339 0.332 0.329 1.0427 0.4870
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APPENDIX F

THERMODYNAMIC DATA

TABLE F-l.--Activity Data for Acetone (1) - Benzene (2)
at 25°C (from Timmermans [30]).

, iny,, iny,, iny,, iny,,
B exp. eq. (24) exp. eq. (25)
0.1251 .5002 4827 .0011 .0060
0.2500 .3937 .3896 .0265 .0278
0.3652 .3122 .3022 .0662 .0669
0.5550 .1829 1672 .1802 .1835
0.7150 .0898 .0750 .3400 .3452
0.8249 .0659 .0300 L4846 L4966
0.8862 .0387 L0131 .5793 5971
0.9500 .0301 .0026 L7169 L7148

Margules constants: A;, = .8169

A

. = 5685

TABLE F-2.--Activity Data for Acetone (1) - Chloroform
(3) at 25°C (from Hildebrand and Scott [21]).

x3 lnY3a ll’lY3, lnYl, lnYl’

exp. eq. (24) exp. eq. (25)
L0600 -.6733 -.6771 -.0101 -.0019
.1840 -.5276 -.5502 -.0202 -.0198
.2630 -.4308 -. 4700 -.0513 -.0431
03610 "03711 "‘-3723 --09)43 -00873
L4240 -.3285 -.3126 -.1278 -.1259
.5080 -.2614 -.2379 -.1985 -.1913
.5810 -.1985 -.1788 -.2877 -.2621
.8020 -.0513 -.0441 -.5798 -.5682
.9180 -.0101 -.0079 -.7765 -.7917

Margules constants: Al3 = -.9791

A3l = -.7372
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TABLE F-3.--Activity Data for Eenzene (2) - Chloroform (3)
at 25°C (from Timmermans [30]).

X, 1nY2 lnY2 lny3 lny3
exp. eq. (24) exp. eq. (25)
0.1340 ~-.3433 -.2248 +.0119 -.0066
0.2600 -.2837 -.1548 +.0109 -.0237
0.3180 -.1767 -.1278 -.0131 -.0347
0.6400 -.0598 -.0269 -.0845 -.1225
0.7160 -.0284 -.0178 -.1301 -.1480
0.8660 -.0202 -.0036 -.1532 -,2012
Margules Constants: A23 = -,3180
A32 = -.,2500

TABLE F-4.--Constants for use in equations (20) through
(24) for the system Acetone (1) - Benzene (2) - Chloroform
(3) at 25°cC.

A, = .8169
A,y = .5685
A13 = -.9791
A31 = -.7372
Ay = -.3180
Ay, = -.2500
C = 0.0
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Capitals
A

C

2m

APPENDIX G

NOMENCLATURE

interaction perameter n]
concentration, interaction parameter

diffusivity

Onsager diffusivity ’ ‘
reduced second moment

reduced heignt-area ratio

energy of vaporization

force

Gibbs free energy

enthalpy of mixing

intercept of second-moment curve at o = 0.
intercept of height-area ratio curve at a = 0.
flux, fringe number

equilibrium constant

phenomenological coefflclient; length of capillary
intercept of second-moment curve at g = 1.0
intercept of height-area ratio curve at o = 1.0
magnification factor of camera

number of species 1in solution

simplifying constants
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R gas law constant; refractive index constant;
simplifying constant

S entropy

S2m slope of second-moment curve

SA slope of height-area ratio curve

s@ statistical variance

sy reduced sensitivity coefficient

T temperature

\' volume

W simplifying constant

Y thermodynamic parameter

Small

a actlvity; arbitrary parameter; Miller coefficient

b,c,d Miller coefficients

f arbitrary function

J fringe number

m moment

n number of moles; refractive index

t time; statistical t-test parameter

\'4 velocity

X mole fraction

z distance

Greek Capital

A difference

I summation



Greek small
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proportionality constant; refractive-index

: fraction; simplifying constant
8 simplifying constant
Bn eigen value
Y activity coefficient; simpiifying constant
8 solubllity parameter; Kroneker delta; Fi
simplifying constant
-
n viscosity
6 time
A proportionality constant J ‘1
An eigen value
u chemical potential
m constant 3.14159 ...
o] constant in friction coefficient
o volume fraction
Subscripts
a refers to activity-defined equllibrium constant
c refers to laboratory-flxed coordinates
m refers to medium-fixed coordinates
Y refers to activity-coefficient-defined equilibrium
constant
A,B,C refers to chemical components A, B, C
i,J refers to speciles i, J
1,2,3 refers to specles 1, 2, 3
d refers to driving force
r refers to resisting Torce
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S refers to sphere

\Y refers to volume-fixed coordinates
J refers to fringe number J

Z refers to distance z

o] refers to initial value

ave refers to average value

max refers to maximum value

Superscripts

m refers to medium-fixed reference plane
\' refers to volume-fixed reference plane
o) refers to standard-state

* refers to tagged species

! refers to related gquantity

- molar property



BIBLIOGRAPHY

179



10.

11.

12.

13.

14,

150

BIBLIOGRAPHY

Anderson, D. K., Pn.D. Thesls, University of
Washington (1958).

Andrews, L. J., and Keefer, R. M., J. Am. Chem. Soc.,
).

75, 37756 (1953

Baldwin, R. L., Duniop, P. J., and Gosting, L. J.,
J. Am. Chem. Soc., 77, 5235 (1955).

Bidlack, D. L
(19064).

Caldwell, C. S., Hall, J. R., and Babb, A. L., Rev.
Sci. Instr., 28 , 816 (1957).

Carman, P. C., J. Pnys. Chem., 72. 1707 (1968).

Carman, P, C., and Stein, L. H., Trans. Faraday Soc.,
52, 619 (19506).

Dole, M., J. Pnys. Chem., 25, 1082 (1956).
Dolezalex, F., Z. Pnysik. Chem., 64, 727 (1908).

Einstein, A., Ann. Physik. Chem., Series 4, 17,
549 (1905).

Foster, R. T., and ryfe, C. A., Trans. Faraday Soc.,
62, 1400 (l 66).

Fowler, R. T., and Norris, G. S., J. App. Chem., 5,
266 (1955).

Fujita, H., and Gosting, L. J., J. Am. Chem. Soc., 78,
1099 (1956).

Fujita, H., and Gosting, L. J., J Phys. Chem., 64,
1256 (1960).

Gerbier, M. M., and Gerbier, J., Compt. Rend., 248,
669 (1959).

180

., Pn.D. Thesis, Michigan State University,




170

18.

19.

20.

21.

22,

23.

24,

25.

eT.

28.
29.
30.

31.

32.
33.

1381

Glastone, S., Laidler, K. J., and Eyring, H., The
Theory of Rate Processes, McGraw-H1ll Book Company,
Inc., New York (1941).

Gosting, L. J., and Morris, M. S., J. Am. Chem. Soc.,

Hardt, A. P., Anderson, D. K., Rathbun, R., Mar, B. W.,
and Babb, A. L., J. Phys. Chem., 63, 2053 (1959).

Harris, H. G., and Prausnitz, J. M., I. and E. C.
Fundamentals, 8, 183 (1369).

Hartley, G.

S. and Crank, X., Trans. Faraday Soc., ’ﬁ}
52, 781 (1956) L

Hildebrand, J. H. and Scott, R. L., The Solubility
of Non-electroiytes, Reinnold Pub. Corp., New York

(1950). .

Johnson, P. A. and Babb, A. L., Chem. Rev., 56, 387 E’ |
(1956).

Kett, T. K., Pn.D. Thesis, Michigan State University
(1968).

Kohnstamm, P. and Van Dalfson, B. M., Proc. Akad.
Wetenschappen, Amsterdam, 4, 156 (1901).

McCall, D. W. and Douglass, D. C., J. Phys. Chem.,

Miller, D. G., J. Pnys. Chem., 63, 570 (1959).

Nikol'skii, S. S., Teoretisheskaya 1 Eksperimantal'naya
Khimiya, 2(3), 343 (1966).

Onsager, L., Phy. Rev., 37, 405 (1931).
Sutherland, W., Phil. Mar., 9, 784 (1905).
Timmermans, J., The Physico-Chemical Constants of

Binary Systems in Concentrated Solutions, Interscience
Pub., New York (1959).

Van Geet, A. L., and Adamson, A. W., J. Chem. Phys.,
L4 (4), 1725 (1966).

Van Laar, J ., Z. Physik. Chem., 72, 723 (1910).

Wiener, O., Ann. Physik., 49 105 (1893).



182

34, Wirth, G. B., Ph.D. Thesis, Michigan State
University (1968).

35. Wohl, K., Trans. A. I. Ch. E., 42, 215 (1946).




ssssssssssssssssssssssssssssssss

i




