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ABSTRACT

INVERSION FORMULAE FOR THE PROBABILITY
MEASURES ON BANACH SPACES

By

Gholamhossein Gharagoz Hamedani

Let B be a real separable Banach space, and let . be
a probability measure on [S(B), the Borel sets of B. The char-
acteristic functional (Fourier transform) ¢ of yu defined by
oy) = IBexP{i(Y:x)}du(x) for y € B* (the topological dual of
B) uniquely determines .

In order to determine p on B(B), it suffices to obtain
the value of IBG(s)dp(s) for every real valued bounded continuous
function G on B. Hence an inversion formula for p in terms
of ¢ 1is obtained if one can uniquely determine the value of
IBG(S)du(S) for all real valued bounded continuous functions G
on B in terms of ¢ and G. The main efforts of this thesis
will be to prove such inversion formulae of various types.

For the Orlicz space Ea of real sequences we establish
inversion formulae (Main Theorem II) which properly generalize the
work of L. Gross and derive as a Corollary the extension of the
Main Theorem of L. Gross to Ea spaces (Corollary 2.2.12).

In Chapter One we prove a Theorem (Main Theorem I) which
is Banach space generalization of the Main Theorem of L. Gross

which differs from the Main Theorem II in the sense that the class
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of probability measures for which inversion formulae hold is
smaller than that of the Main Theorem II.

Finally in Chapter Three we assume our Banach space to
have a shrinking Schander basis to prove inversion formulae (Main
Theorem III) which express the measure directly in terms of ¢
and G without the use of extension of ¢ as required in the
Main Theorems I and II. Furthermore this is achieved without
using 1Lévy Continuity Theorem and hope that one can use this

Theorem to obtain a direct proof for the Lévy Continuity Theorem.
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0. INTRODUCTION

Let (B,u-“B) be a real Banach space with Schauder basis
{bn}. Let B(B) denote the Borel sets of B, that is, the g-field
generated by the open sets. The characteristic functional (Fourier
transform) ¢ of a probability measure p on S(B) defined by
oy) = IBexp {i(y,x)}du(x) for y € B* (the topological dual
space of B) uniquely determines .

In order to determine  on [S(B), it suffices to obtain
the value of XBG(s)dp(s) for every real valued bounded continuous
function G on B. Hence an inversion formula for u in terms
of ¢ 1is obtained if one can uniquely determine the value of
IBG(s)dp(s) for all real valued bounded continuous functions G
on B in terms of ¢ and G. The main effort of this Thesis will
be to prove such inversion formulae of various type for different
Banach spaces B. The Main Theorems I, II, III give inversion
formulae which express IBG(B)dp(S) in terms of ¢ and G.

In order to motivate these formulae let us consider first
a finite dimensional space Rk’ a probability measure pu on Rk
and a real valued bounded continuous function G on Rk. If G
were not only bounded but also in LIIRk,dx) and if u were
absolutely continuous with respect to Lebesgue measure with an

L2 derivative then putting
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A "k/Z
(0.1) 80 = @m " [ Geoexpl-16e,y))dx
the Plancherel Theorem asserts that

-k/2
)

©.2) ICIOLNORRCY R POIEMy .

In the absence of the validity of the two assumptions made above
neither of the two right hand integrals in (0.1) and (0.2) need
exist. However, upon inserting the convergence factors
exp[-“x“z/Zaz] and exp[-“y“2/2t2] in these two integrals one may
obtain an inversion formula in the following well known manner.
Assuming merely that G is real valued, bounded, continuous we

put
~ - 2
& o = am™? [ S expl ||/ 22 Jexpl -1 e,y Yo

Then it can easily be shown that for any probability measure
-k/2 a 2,,.2
[ 6(e)du(s) = 1lim (2n) g @ONE_Gexpl-||y||"/2t"]dy .
k t+o k @
oy
Upon rewriting these equations in terms of the canonical normal
distribution (cf., Remark 1.1.8) on Rk (with variance parameter
one) we obtain by a change of variables
k k
[g 6(8)du(s) = lim o't EE {o(ty)G(ax)exp[-1ta(x,y)]}
k oy t— y
where Ex and Ey denote expectation in the indicated variable
with respect to the canonical normal distribution. Before extend-
ing this formula to a real separable Hilbert space H three
difficulties must be overcome in its formulation. First of all

in the limit as k - o, (at)k approaches either zero, one or .
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Secondly the expectation with respect to the canonical normal dis-
tribution on H will not make sense for a general bounded continuous
function G ([8], Theorem 1) and thirdly even if G were, for
example, uniformly T-continuous (cf., Definition 1.1.11) so that
EX{G(ax)exp[ita(x,y)]} makes sense the resulting function of y
need not define a measurable function with respect to the canonical
normal distribution so that Ey{...} will not be defined. These
problems were first pointed out and handled by L. Gross in [7] by
modifying the finite dimensional formula as follows. Instead of
using the convergence factor exp[-“x“zlzaz] one uses
exp[-“A-lxnzlzaz] where A is aninvertible operator on R,.
Furthermore, let us observe that (ta)k|det A| 1is asymptotically
equal to [det (I + (ta)ZAAf)j% in the sense that their ratio
approaches one a8 t and g - ». After an obvious change of
variables one can then obtain the following correct inversion

formula in Rk

(0.3) IRkF(s)du(s) = lim [det(I + (ta)ZAA?)]%EyEx{¢(ty)G(an)

t,o>
expl -ita (Ax,y)]}.

In formulating this equation in a Hilbert space one notes
that the determinant factor makes sense provided AA* is trace
class operator, that is, provided A 1is a Hilbert-Schmidt operator.
Furthermore, if A 1is a Hilbert-Schmidt operator then it may be
seen in view of Theorem 1 and Corollary 3.2 of [7] that the second
and third difficulties mentioned above also vanish, since

Ex{G(an)exp[-ita(Ax,y)] may also be written as
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IH exp[-ita(x,y)]-GQaA)dnoA-l where n is the canonical normal
distribution on H. Since noA-1 is a measure on H ([7],
Corollary 3.2) the last integral not only makes sense for an
arbitrary bounded continuous function G but also defines a
uniformly T-continuous function of y ([7], Theorem 1).

A fourth difficulty now arises. An estimate of the dif-
ference between the left hand side of (0.3) and the expression
under the limit sign in (0.3) shows that although this difference
goes to zero for each dimension k as t and o go to o
independently, the rate at which the difference goes to zero de-
pends more and more critically as the dimension k gets larger on
the relative manner in which ¢ and t go to «. In the limiting
case of a Hilbert space it results that the relative growth rates
of ¢ and t must be restricted. In the Theorem below which
is & restatement of Theorem 4 of [7], this is effected by putting
a = f(t) as is done in [7] following earlier work of Cameron and
Donsker mentioned there.

0.4. Theorem. Let A be a Hilbert-Schmidt operator with
dense range on a real separable Hilbert space H. Let ,, be a
probability measure on H and f(t) a positive admissible function
(cf., Definition 1.4.2) on (0,»). Let h(t) be a positive function
on (0,») and denote by v the measure noA-1 where n is the
canonical normal distribution on H. Let ¢ be the characteristic
function of | and denote by C, the positive square root of
I+ tzf(t)zAA*. Let En denote expectation with respect to the

canonical normal distribution. In order for the inversion formula



©:5) [y 6()du(e) = i h(t) (det Ce B {(ty)™ ([ G (£ (£)x)

exp[ -1t f(t) (x,y)]dv(x))"}

to hold for all real valued bounded continuous functions G the

following two conditions are necessary and sufficient
(0.6) £(t)2 trace (c;2 A*) 20 as t oo

(0.7) The measures h(t)exp[-tznc;ISHZIZ]dp(s) converge weakly

to u as t - o=,

Furthermore if (0.6) and (0.7) hold then (0.3) also holds for any
bounded measurable function G which is strongly continuous almost
everywhere with respect to .

The condition (0.6) of L. Gross although valid for Hilbert
space seems to depend heavily on the symmetry structure of the
space. We re-interpret this condition for a general Banach space
in terms of convergence of certain Gaussian measures (cf., Lemma
2.3.4). 1In terms of this re-interpretation the Theorem can then
be extended to a Banach space with Schauder basis as follows.

Using the fact that B has a Schauder basis, we can, following
ideas of J. Kuelbs [127, imbed B measurably in a real separable
Hilbert space H,, whose norm is weaker than the Banach norm “.“B'
We then treat the probability measure |, on B as a probability
measure on H,. This enables us to get the necessary and sufficient

A
conditions for the inversion of | regarded as a measure on H

A
using essentially ideas of L. Gross [7]. However this method

allows one to obtain such a formula only for G bounded and con-

tinuous on Hk’ which is a proper subclass of the G's required.
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To circumvent the problem we have to use essentially the notion
of \-family introduced by J. Kuelbs and V. Mandrekar [13], which
exhibits the detailed structure of the probability measure y on
HX which is actually supported on B. In Chapter I, such an
inversion formula is obtained for any Banach space with Schauler
basis.

Our initial objective in Chapter II is to prove a Theorem
(Main Theorem II) which generalizes Theorem 4 of L. Gross {7] in
his form. For this purpose we will need to restrict ourselves to
Orlicz space Ea of real sequences since in this case the form
of characteristic functional of a Gaussian measure is known (See,
(13]). The Main Theorem II is stronger than the Main Theorem I,
in the sense that, in case of E, spaces, the class of measures
for which the inversion formulae can be obtained from the Main
Theorem II is larger than that of the Main Theorem I. We further
assume that the function «(:) associated with Ea possesses a
particular property relative to one-dimensional Gaussian measures
to get Corollary 2.2.12 which gives us analytic condition for the

inversion formulae and also gives precise generalization of the

main inversion formulae of L. Gross ([7], Theorem 4) to Orlicz
spaces of real sequences.
Finally in the third Chapter we let (B,H-HB) be a real

Banach space with shrinking Schauder basis {bn}. Since {bn}

is shrinking, the coordinate functionals on B form a basis for
* *

B , and hence we may consider B as a Borel measurable subset
of {4, the vector space of all sequences of real numbers with

topology of coordinatewise convergence. Also we shall let n



be the canonical normal distribution on Hl so that for each

x € Hk’ n(x) is a random variable on B*, and let Pk be the
countably additive (will be shown) cylinder set measure on B*
induced by the above family. Then we shall prove a Theorem (Main
Theorem III) which gives a class of inversion formulae different
from that of the Main Theorem I. In the Main Theorem I we have
extension of characteristic functional to { whereas in the Main
Theorem III we have extension of characteristic functional to B*.
Hence (3.2.2)(a)= is sfronger than (1.4.4)(8) since for ) € LI,
Pk is countably additive on B*. Furthermore since {bn} is
shrinking we are able to give a proof for the Theorem without using

1évy Continuity Theorem and hope that one might be able to use

this Theorem to obtain a proof for the Lévy Continuity Theorem.



CHAPTER I

INVERSION FORMULAE OF THE CHARACTERISTIC FUNCTIONAL OF A
PROBABILITY MEASURE ON BANACH SPACES WITH A SCHAUDER BASIS

§1.0. Introduction.

Let (B,\\-\\B) be a real Banach space with a Schauder basis
denoted by {bn}. Let B(B) be the g-field generated by the open
subsets of B. Every element of /S(B) will be called a Borel set.
In order to determine a probability measure . on B(B), it suffices
to obtain the value of J'BG(s)dp.(s) for every real valued bounded
continuous function G on B. Hence an inversion formula for
in terms of its characteristic functional, ¢ 1is obtained if one
can determine uniquely the value of j'BG(s)dp(s) for all real valued
bounded continuous functions G on B in terms of ¢ and G.

The main effort of this Chapter will be to prove such inversion
formulae for . on B(B).

Following [12], we shall first define a particular inner
product on B which generates a norm weaker than the Banach norm
"“B Upon completing B with respect to this norm we will obtain

a real separable Hilbert space H, with the prescribed inner product.

A

Since Hx“B is measurable with respect to the norm ““k on HX’

it follows that B(B) is contained in the Borel subsets of H)\

which we denote by B(H)\). Thus any probability measure p on
(B,5(B)) induces a probability measure on (HX’B(HX)) by defining

subsets of H)\-B to be of ,-measure zero.



Now if | 1is a probability measure on (B,8(B)) with
characteristic functional, ¢, then p can be defined to be a
probability measure on (HX”B(HX)) with characteristic functional,
¥(-). Note that ¢ (¢) is actually the restriction of ¢ to H:.
L. Gross describes various inversion formulae for y(-) ([7], §4).
We will use Gross' result ([7], Theorem 4), the notion of ")\-family"
and the idea of '"stochastic linear functional" first occurring in
[13] and [14], to prove a class of inversion formulae for .

We start by introducing some preliminaries required in the

remainder of this Chapter.

§1.1. Basic Definitions.

In this Section we present for the sake of completeness
some standard concepts and definitions. For further details the
reader is referred to [1] and [16].

1.1.1. Definition (a). Let S be a complete separable
metric space and let I be the space of positive finite measures
defined on the g-field generated by the open subsets of S. A
sequence = of measures in 7 is said to converge weakly to a
measure p in M if Isfdpn - Isfdp for every bounded continuous
function f on S. We will denote this convergence by T Lt oo
1f {ut :t € (0O,0)} is a family of measures in 7, then we say

T g » as t - o, if for any sequence {tn} approaching infinity,

¥
e
n
(b) A sequence T of measures in 9 1is said to be conditionally

(V)

compact (tight), if for every ¢ > 0 there exists a compact set

€

K in S such that pn(Ke) >1 - ¢ for all n.
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1.1.2. Definition. Let (Q,%,P) be a probability space
and let X be a random variable on () taking values in S. Then
X 1is said to be distributed as v if v = Pox-l. A family of
S-valued random variables {xt :t € (0,0)} 1is said to converge
in distribution to an S-valued random variable X as t -+ o if

Pole'g Pox-1 as t - o. We will denote this convergence by

X A X as t - ». The following definitions are due to I. Segal

t
and are taken here from [77.

1.1.3. Definition. A weak distribution on a topological
linear space L 1is an equivalence class of linear mappings F
from the (topological) dual space L* to real-valued random variables
on a probability space (depending on F) where two such mappings
F1 and F2 are equivalent if for every finite set of vectors
YyreresYy in L? the sets {Fi(yl)’°"’F1(yk)} have the same
distribution in k s8pace for i =1 or 2.

Here L* denotes the space of continuous linear functionals
on L.

In a finite dimensional space a weak distribution coincides
with the notion of a measure, that is, if L is finite dimensional
then for any given weak distribution there exists a unique Borel
probability measure on L such that the identity map on L* is
a representative of the given weak distribution ([9], p. 372).

1.1.4. Definition (a). A weak distribution m on a Banach
space B 1is said to be continuous if for any sequence {yk] c B*,

1
“yk“Bl - 0 implies m(yk) converges to zero in probability.

1) For y € BY, ||yl , = Sup |y(x)| (See, e.g. [18], p. 160).
|Ix||p=1
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(b) A weak distribution m on a topological linear space L is

a measure if there exists a probability measure | defined on the
o-field S generated by weakly open subsets of L such that the

identity map on Lf is a representative of m.

1.1.5. Definition. If m is a weak distribution on a
locally convex topological linear space L and A 1is a continuous
linear operator on L with adjoint A*, then the weak distribution
y - m(A*y) will be denoted by moA-l.

1.1.6. Definition. A measure  on a locally convex
topological linear space L 1is defined to be Gaussian if, for every
continuous linear functional T on L, T(x) has a Gaussian dis-
tribution. pu 1is called Gaussian with mean zero if, in addition
T(x) has mean zero for every T.

1.1.7. Definition. The characteristic functional (Fourier
transform) of a probability measure u on the Borel subsets of a
linear topological space L 1is the function ¢(:) on L* (the

topological dual of L) given by

o) = [ exp{i(r,0)}du(x), for each y € L .

1.1.8. Remark. One special example of a weak distribution
on a real separable Hilbert space H 1is the canonical normal dis-
tribution (with variance parameter one). This weak distribution
is that unique weak distribution which assigns to each vector y
in H* a normally distributed random variable with mean zero and
variance Hynz. It follows from the preceding property that the
canonical normal distribution carries orthogonal vectors into in-

dependent random variables ([7], p. 4). It is known that some of
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the theory of integration with respect to a measure can also be
carried out with respect to a weak distribution. For details we
refer the reader to [9] and the bibliography given there. We shall
alao need the following definition from ([20], p. 190).

1.,1.9. Definition. An operator from a real separable
Hilbert space H into H, which is, linear, symmetric, nonnegative,
compact, and having finite trace is called an S-operator.

If T 1is an S-operator on H, then it is well known that

T has the representation

(-}
(1.1.10) Tx = nEI A, (xse e

where {e } is some orthonormal subset of H, A = 0, and
@©
L A <o
n=1 "
The S-operator T onl,2 has a representation as an infinite

symmetric, nonnegative-definite matrix T = {tij} where by non-
n

negative-definite it is meant that I ot XX, 2 0 for any
k=1 K 1K

integer n and any (xl,...,xn) € Rn' Furthermore, tik = (Tfi’fk)
where fj is the vector in 1, of all zeros except one in the

(- -} -]
jth position and hence T t,, = L )\, < ®» where ),6's are as in
(1.1.10). From the representation in (1.1.10) it is easy to verify
that Crcx,cx)% = |c‘(‘1‘x,x)’5 for any real number c¢ and
('1‘(x--l--y),x-f-y);5 < (Tx,x)% + (Ty,y)k. Thus (’l.‘x,x)’5 is a semi-norm

on 42. let ¥ be the class of all S-operators.

1.1.11. Definition of T-topology. The T-topology on ¢,

is the smallest locally convex topology generated by the family of

%

semi-norms pT(x) = (Tx,x)° on LZ as T varies through §

([18], p. 172).



wt
fa
of
th

al

tior
Schy
is a
on l
tripy,

for

Spac



13

1.1.12, Definition. Let H,, H, be Hilbert spaces with

1’ 72
orthonormal systems {en}, {fn] respectively. Then a continuous
linear operator A from H, into H, is called Hilbert-Schmidt
operator if there exists an orthonormal system {gn} in H, such

[--}
that £ ||Ag “2 is finite ([5], p. 34).

n=1 HZ

1.1.13. Remarks. (a) lLet H be a real separable Hilbert

space, then H 1is isomorphic to L,e If T is an S-operator on
H then T possesses a unique nonnegative, symmetric square root,

which we denote by T35

([17], Theorem, p. 265). Now using the
fact (See; [5], Theorem 4, p. 39) that the square roots of S-

operators are Hilbert-Schmidt operators one can easily show that
the topology T on H 1s the weakest topology on H for which

all Hilbert-Schmidt operators are continuous from T to strong
topology on H. Thus a basic open neighborhood of X is

{x : “A(x-xo)n < ¢} whenever A 1is a Hilbert-Schmidt operator on

H. Therefore our definition of t-topology coincides with that of

L. Gross ([7], p. 5).
(b) By Corollary 3.2 of [7], if m is a continuous weak distribu-
tion on a real separable Hilbert space H and A 1is a Hilbert-
Schmidt operator, then moA-1 is a measure on H. Hence noA.1
is a measure on H if n 1is the canonical normal distribution
on H, since in this case n 1is clearly a continuous weak dis-
tribution on H. We will use the same notation, namely, noA-1
for the weak distribution noA-1 and its corresponding probability
measure pu (See; Definition 1.1.4).

1.1.14, Definition. A tame function on a real Hilbert

space H 1s a function of the form £f(x) = §(Px) where P 1is a
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finite dimensional projection on H and ¢ 1is a Baire function
on the finite dimensional space PH.

For such a function we have f(x) = W((x,xl),...,(x,xk))
where XpseoesXy is a basis of PH and y 1is a Baire function
of k real variables., If F is a representative of a weak dis-
tribution then the random variable £~ = t(F(xl),...,F(xk)) depends
only on the function f and the mapping F while integration pro-
perties of f~ such as the integral of f~, the distribution of
f~, convergence in probability of sequences f;, etc. depend only
on f and the fn's and on the weak distribution of which F is
a representative. Let us denote by ¥ the directed set of finite
dimensional projections on H directed under inclusion of the
ranges. For a given continuous function £ on H and a given
weak distribution one may consider whether the net (foP)” of the
random variables where P ranges over directed set ¥, converges
in probability as P approaches the identity through %. If so
then the limit which we shall denote by £~ 1is a random variable
whose integration properties are completely determined by the
function f and the weak distribution. In [8] and [9] classes
of continuous functions are described for which the limit defining
the random variable f~ exists when the weak distribution in
question is the canonical normal distribution, and some explicit
evaluations are also given. The part of this integration required
for our purpose is given below and is directly taken from ([9],

p. 374).
It is clear that a function £ on H 1is a tame function

if and only if there is a finite dimensional projection P on H
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such that f(x) = f£(Px) for all x and such that f restricted
to the finite dimensional space PH 1is a Baire function. Then £
is said to be based on PH. If f 1is based on PH then it is
clearly also based on QH whenever Q 2 P and Q 1is a projection.
If f 1is based on the finite dimensional subspace PH then we
note that its expectation with respect to the canonical normal dis-

tribution (with variance parameter one) is given by
- -k/2 2
E(f7) = (2n) IPHf(x)exp[-nxn /27dx

when the integral exists where k is the dimension of PH and dx
is Lebesgue measure on PH.

1.1.15. Remark. Let H be a real separable Hilbert space,
and let {Pj} be any sequence of finite dimensional projections
converging strongly to the identity operator. If a complex-valued
function f on H 1is uniformly continuous in the topology =~
then 1lim in prob. (fon)" exists with respect to the canonical
normal distii;;:ion and equals f~ ([7], Theorem, p. 5). Now if
for each j§, E[(fon)"] exists and if lim E[(fon)”] exists then
following L. Gross [8], we say that f i:wintegrable with respect
to the canonical normal distribution. That is, for a uniformly
t-continuous function f on H which is integrable we denote by

En(f") = lim E[(fon)~] .

Joe

§1.2. Measures on Banach spaces with a Schauder basis.

We shall study here Banach spaces with Schauder basis.
We need some preliminary results for measures on such spaces. We

start with the following definition from ([3], p. 67).
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1.2.1. Definition. Iet B be a Banach space. A Schauder
basis [bi] in B 1is a sequence of elements of B such that for
each x in B there is a unique sequence of real numbers {ai],

depending on x, such that

n
lim ||x - T ab.|. =0 ;
2271l

N—o
o
the series T aibi is called the expansion of x 1in the basis
i=1

h coordinate of x

{b,), and the coefficient a =g (x) 1s the it
in the basis {b,}.

Throughout this Chapter B will denote a real Banach space
with Schauder basis [bn} such that without loss of generality
“anB =1 ([3], p. 68). We will write the expansion of x as

; an(x)lsn and this emphasizes that the coefficients generate
ZZ;rdinate functionals on B. It is clear that these coordinate
functionals are linear and it is well known that they are continuous
as well ([3], p. 68). Further it is possible to assume without loss
of generality ([3], Theorem 1, p. 67) that

k
(1.2.2) lIxllg = sup | £ B COB |I5 -
k n=1
Following ideas in [12], we introduce a Hilbert space

associated with B.

For ) € L{ and x,y € B define

(-]
(1.2.3) (x,y) = T \B (X)B,(¥) (convergence follows from
n=1 page 17, line 2)

where en's are coordinate functionals. Then (,) 1is an inner
product on B and B 1is a pre-Hilbert space with the norm

el = )

and
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Il = Il Su I8, 001 = ¢y sup |87e0] -
We know ((3], p. 68) that sup 82600 = C,[lx||2, and hence
3 s ¢,¢, xlly = ¢ el -

This implies that the topology on B induced by “.“k is weaker
than the norm topology on B.

Let H, denote the completion of B under “-Hx. Then

clearly B < Hk' Upon replacing y by bk in (1.2.3) we get
(x,bk) = xksk(x). Since A > 0, Bk(x) is uniformly continuous
in x in “'nk-topology on B, and since B is dense in Hk’ Bk(')

can be extended uniquely to a continuous linear functional Ek(-)

on HX. Furthermore it can easily be seen that for x,y € Hk’

(1.2.4) &) = £ B ) B () -
n=

From (1.2.2) and the fact that B, isa n-nx-continuous
function on B, it follows that uan is a measurable function in

“'“k't°P°108Y: and hence B is a Houk-measurable subset of H,.

Therefore if | is a measure on B, it can be regarded as a measure

on Hk via p(A) =p(ANB) for all A€ B(Hk)'

let v be a Gaussian measure with mean zero on (B,8(B)).
Then by argument similar to Lemma 2.2.0f [12], v is a Gaussian

measure on H,, and therefore there exists a nonnegative, symmetric

x’

trace class operator (that is, an S-operator) Tv on Hx such that

R J‘Hx@,x)zdv(y)

for x € Hl’ and that v 1is uniquely determined on Hk by the

operator Tv’ These results are well known and appear, for example,
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in [20]. Furthermore, Tv has the representation (1.1.10), that is,

(-]
(1.2.5) T () =L 7,(,8)8g
v k=1 & KTk
on HX where {gk} is an orthonormal sequence in Hk and
nk209lz(“k<w-

1.2.6. Remarks. (a) Since B is separable, B(B) is
the same as g-field generated by the weakly open sets and the latter
one is the same as g-field generated by the field of the cylinder

sets.

%

(b) Since Tv is an S-~-operator, Tv

%

is a Hilbert-Schmidt operator

on Hk’ and hence noT; is a measure on H,. But Tv uniquely

A
determines v, 8o by definition 1.1.4, v 1is the probability measure

%

on Hk corresponding to the weak distribution noT; .

(c) Since cylinder sets in Hk and B are the same, from (a)

%

and (b) above, it follows that noT;

%

is countably additive on
(8,8(8)) and nof *(8) = 1.
(d) We note that (c) could also be obtained from the fact that
the Borel subsets of B are also Borel subsets of Hk (because
“x“B is "-nl-measurable) and therefore every countably additive
measure on Hk is countably additive on B.
Following ideas are motivated by [13].

1.2.7. Definition. If A €4_ and {pt :t €A} is a

family of probability measures on B such that

2
pt{x €B : n§1 kan(x) <o} =1

for each t € A we say ) is sufficient for the family {ut : t € A},
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Now for each x € B we have Sup ‘Bn(x)| < w», thus it
follows that any ) € L: is sufficientnfor any family of proba-
bility measure on B.

1.2.8. Definition. A family of probability measures
{ut :t €A} on B 1is a )\-family for some ) € L: if )\ is
sufficient for {u :t € A} and for every ¢,5 >0 there is a
sequence [eN} such that

- 2
w {x €B : n=§+1 AP, () < 8} > 1-¢

implies

w{x €B : Hn=§+18“(x)b“n3 < k(8)} > 1-(etey) for all t

where 1lim ey = 0 and k 1is a strictly increasing continuous
function#on [0,0) with k(0) = 0.
A family of probability measures {pt :t€ (0,0)} on B 1is said
to be a \-family as t - =, if for any sequence {tn} approaching
infinity the family {pt :n=1,2,...} ‘1s a )\-family.

It is quite clea: that any family of probability measures
on a real separable Hilbert space is a )\-family with ) = (1,1,...)
and k(§) = 6%.

For x € B, N=1,2,... we define

N
Px= g g, (x)b
N k=1 k k

Qx = I B, (x)b
N' 4l Kk

*
and for y € B , N =1,2,... we define



20
N
By() = T B ()y(by.
k=1
1.2.9. Definition. If {u :t € A} 1is a family of
probability measures on B and ) € {,: then we say the family
*
of c.f.'s {(PP' (+); t € A} is )\-continuous at zero in B  if:
t
(i) for every integer N the family {(Pu- (+): t € A} are equi-
t

*
continuous at zero in PN (B ), and

(i1) lim Sup lim J_ .[1 - Re ¢ (:)] = 0 where
N t k N P

Iy, kloee1 = I(pM-PN)B* [...08, O%,k,dy)

*
and gk(N,k,-) is the Gaussian product measure on (PN-H( - PN)B
with each coordinate y(bi), N+1 € i < N+k, Gaussian with mean
zero and variance ’\1‘
1.2.10. Iema. Iet
+
ORI A
(i1) {“'t :t € (0O,0)} be a \-family as t —» » of probability
measures on B ,
(1i1) e ¥ B on H)‘ as t - o where yu 1is a probability measure
on B.
Then ¥ on B as t - e
Be = .
Proof. Let {tn} be a sequence in (0,») such that

tn -+ o as n - o, Then (iii) implies that e ¥ b on H)‘, that

is, {p.tn: n=1,2,...} is compact on Hk. Sin:e {p.tn: n=1,2,...}
is compact on H)\ and PN is continuous it follows that
{p,t OPt;l :n=12,...}] 1is compact on H)‘ for all N =1,2,...,
whi::h is equivalent to saying {u.t oPt;l :n=1,2,...} is compact

n

on B for all N =1,2,... . Thus the c.f.'s {¢ oP-1(-):n =1,2,...}
e %N

n
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*
are equicontinuous at zero on Fh(B ) ([15], corollary 2, p. 193)

and since

¢ 1) =9, (BX
ke OFy ptn
n

*
the equicontinuity at zero on Pﬁ(B ) of {¢h () :n=1,2,...}
tn
follows. Hence condition (i) in Definition 1.2.9 is satisfied.

Let )\ € L: and let ¢ > 0 be given and choose a compact set K€

in Hk such that My K% >1-¢/2 for n=1,2,... . Since
n
@ () is c.f. of T and §k(N,k,~) is symmetric about zero

“t n
n

it follows that

N+k

2
Iyt ~Re @ ] = [GlL - exp{-% o xiai(x)}]dutn(x)-

t
n

Since by (B) =1 and By = éi on B, it follows that

n
N+k a2
J. [l -Regp (y)]= (1 -exp{-%¥ = AB,(x)}]dp_ ().
N,k “’t:n qu j+l b1 th
Since 1 - e® <1 for ¢ 20 we have
N+k

]
< [1 -exp{-5 = \,B,(x)}]dn, (x) + €/2.
‘rxe { fay4y 1 1] t

We note that Sup Sup |§i(x)\ < M since Sup |§i(x)\ < C“x“x
x€K® i i
({3]), p. 68) and “x“k is a continuous function. Hence

2 o

M
JN,k[l - Re qh ()] <1 - exp{- 7~ I ki} + €/2

tn i=N+1

for all n =1,2,..., and letting N approach infinity and using
the fact that ) € L: we have the right hand term dominated by

€/2, Thus condition (ii) of Definition 1.2.9 is satisfied, and
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hence {¢ (+); n =1,2,...} is \-continuous for )\ € LI. This
e
t
together wilh the assumption that {pt :t € (0,0)} is a \-family
as t - o imply ([13], Lemma 3.2, p. 1ll) that {pt :n=1,2,...}

is conditionally compact on B. Hence p. L w on B since

n
{pt :n=1,2,...] is conditionally compact on B and
n
by oPﬁ g u°ﬂ;1 for all N =1,2,... ({13, p. 35). Since this
n

is true for any sequence {tn} with t, - ® a n- e we get
B L b on B as t - .

1.2.11., Remark. We remark that from the proof of Lemma
1.2.10 one can derive the stronger statement: let f{u : t¢€ A}
be a )\-family of probability measures on B. Then My conditionally
compact on HX implies that {ut : t € A} is conditionally compact
on B. However, since we shall be needing only the statement in
Lemma 1.2.10 for further easy reference we have not stated the

Lemma in all its generality.

§1.3. Extensions of characteristic functional.

Suppose { 1is the space of all real sequences with the
topology of coordinatewise convergence and Pk(.) is the product
probability measure on { such that the ith coordinate is Gaussian
with mean zero and variance ki where ) = {xi} € L: . If u is
a probability measure on B then ) € LI is sufficient for
and for y € £ we define the '"stochastic linear functional" on B

in the following manner:

N N
(y,x)~ = lim ¢ B;(¥)y; = lim £ B, (x)y,.
N i=1 N i=1

The following Lemma is proved in [13], page 22.
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1.3.1. Llemma. The stochastic linear functional

- N
(1.3.2) (Yox)" = lim & Bi(x)yi
N i=1

is Borel measurable on { X B and if
F = {(y,x) : (y,x): exists and is finite],

1.3.3. Definition. If . 1is a probability measure on
the Borel subsets of B with the c.f. ¢, we define the extended

characteristic functional (pz(.) on 4t as follows

¢ (v) =[5 exp{1(y,%) }du (x) (v €4)

({133, p. 23).
Then ¢~(-) is a Borel measurable function on { which is defined
almost everywhere with respect to the measure PX' Furthermore,
since each y € B* generates the unique sequence of real numbers
yN = {y(bl),...,y(bk),...} we may consider B* as a linear subset
of 1 under J. Kampe de Fériet map ([11], pp. 123-127), and hence
the terminology extended c.f. since for y € B* and x € B,
(y,x)N = (y,x) which implies that ¢(y) = cp“(f’).

1.3.4. Remark. Let yu be a probability measure on B
with c.f. ¢, then as was shown earlier, p can be regarded as a
probability measure on Hk' let y be the c.f. of u when

is regarded as a measure on H_, then

A

Yo = j‘erxp{i(y.x) Mu)  VyeH SB sy

*
By Theorem 1 of ([7], p. 7), ¥ 1is uniformly T-continuous on H)\,
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and hence by Theorem of ([7], p. 5), the random variable §~

(that is, the Gross extension of §) 1s well-defined with respect
to the canonical normal distribution n on H)\. Finally from
(1.3.2), the fact that p(B) = 1, and Lemma 4.3 of [14], it follows

that y(y)™ = (pz(y) almost everywhere with respect to P)\.

§1.4. General inversion formulae.

Let v be a Gaussian measure on (B,5(B)) with mean zero.
Then v(A) = v(ANB), Ac B(H)\) is a Gaussian measure on
(HX’B(HX))’ and there exists a nonnegative, symmetric trace class
operator Tv on H)‘ corresponding to v. Let f£f(t) be a real
valued function defined on (0,») and denote by Ct the positive
square root of I +t2f(t)2Tv on H)\ (See; 1.1.13 (a)). Let

be a probability measure on (B,5(B)), and define
1 2, -1 .2
be (&) = = [, h(e)expl-t7||c_ 8“)‘/2]dp,(s) A € B(B)
t
where h(t) 1is a positive function on (0,»), and
2, -1 2
1.4.1) a_ = -I\B h(t)exp[ -t “Ct 8“)\/2](1;],(8) .

1.4.2, Definition. A real valued function £(t) defined
on (0,») will be called admissible if t f(t) - o as t - o,
We are now ready to state and prove the Main Theorem I.

1.4.3. Main Theorem I. Let

(i) B be a Banach space with Schauder basis {bi}’
(i1i) u be a probability measure on (B,8(B)) with the c.f. o,
(iii) £(t) be a positive admissible function on (0,»), and

h(t) be a positive function on (0,®),
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(iv) X be a B-valued random variable distributed as v where

v 1s a Gaussian measure on (B,5(B)) with mean zero and
the property that Tv is positive-definite,

W) Y, and Y be B-valued random variables distributed as
e and  respectively,

(vi) EP denote the integral with respect to Pk on 4.
A

Then for all real valued, bounded, “’“B-continuous functions G

on B the following are equivalent:

((8) [p6(s)du(s) = :_12 h(t) (det Ct)EP)\{cpe(ty) (g6 (£(t)x)

< exp[ -1t £(t) (y,x) " Jdv(x))}
(1.4.4)

(b) {ut :t € (0,0)} is a )\~family as t » o

r(a) f(c)c't'lx $0 as tow
(1.4.5) ¢

(b) Y 2
-

as ¢t .
. Y -

Proof. We shall first show (l1.4.4) implies (1.4.5). Let

G be a real valued, bounded, “-“B-continuous function on B, and

observe that

Ep {9 () (5 G(E(E)x)exp(-itf(t) (v,%) ]dv(x)))
A

(=] [
= [ ¢ 0 an(e) ([ c(E@me O O g6y 1ap ().

(5] ~
We note that eit(y’s) e'itf(t)(y’x) G(f(t)x) 1is jointly measurable

since it is a product of a jointly measurable function of s, x and
y with a n-“B-continuous function of x namely G(f(t)x). Since
it is bounded and all the measures are probability measures by

Fubini's Theorem ([19], p. 140) we have
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pricp“(ty) (5 SUE®x)expl-1tE (t) (7,%)¥)dv(x)) }

= [pfp @ ([, & OoEE dp A
N

it lim £ B, (s-£(t)x)y,

= [glp CE@nN ([, e NI Ip OB

By Dominated Convergence Theorem we get

N
it ¢ si(s-f(t)x)yi

= [plp G(E(t)x) (}}_i: o e i=1 dpk(y))dv(x)dp.(s)

2 N
- IBIB G(f(t)x)(;i: exp{ - %— 121 xiai(s-f(t)x)})dv(x)dp(s)

2 o
= [alp SCE@exe(- 3= = A2 (8-£(£)%) Jv(x) du (8)
i=

= Jallp CCE@m expl -t~ (e /210w Vs (o)

Now from 1.2.6 (c) and the fact that ,(B) = 1, it follows that
2 2 -k
= [y fu. GCE@x)expl-t ||s-£(t)x]|,/2]dnoT *(x)du(s) .
A

We note that G is H-nk-measurable (that is, measurable in the

“'“k-topology) since the norm “x“B is “-“x-measurable and G is
%

“'“B-continuous; and T° is a Hilbert-Schmidt operator on Hk'

Hence by Lemma 4.1 of [7] we have

1 -1 -2 - 2, =1 ,2
= zazzf?zs'fﬂkiﬂk G(f(t)ct x + 8-C, s)dnoTv%(x)h(t)exp[-t “Ct suk/Z]du(s).

Again from 1.2.6 (c) and the fact that u(B) = 1 we get

- ———(dei o [als SE@®Cx + 8-ngs)dv(x)h(t)exp[-tz\\c;'ls“i/Z]du(s).
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We may now start with the assumption that for all real valued,

bounded, “'“B-continuous functions G on B we have

((8) [pG(s)du(s) = Ei: jB[ch(f(c)c;Ix + s-c;Zs)dv(x)]h(c)

{ exp[-tznczls“:/Z]du(s)
(1.4.6)

(b) {p‘t I S (O’Q)} is a )\-family as t - o ,
.
Putting G =1 in (L.4.6) , We get

1= lim [ h(t)exp[-tznczlsni/Z]dp(s).

t—o
From (1.4.1), it follows that
(1.4.7) l=1lima, .
t
t—oo

Using (1.4.7) we obtain

(1.4.8) [} 6(8)du(s) = Lim [ [ G(E(E)C % + (1-C,*)8) dv(x) dy (5)
t—

for all real valued, bounded, n-“B-continuous functions G on B.

From‘(1.4.8), it follows that

(1.4.9) vo(f(t)cgl)-l #po@-cHEL on B oas t-w.

Since G 1is bounded on B and v is a probability measure,
the measure G(f(t)x)dv(x) 1is a measure of bounded variation on

B, and hence a measure of bounded variation on H Therefore by

X.
Theorem 1 of ([7], p. 7) the Fourier transform of G(f(t)x)dv(x)
is uniformly t-continuous, and hence the Gross extension of its

Fourier transform is well-defined ([7], Theorem, p. 5). Similarly

the Gross extension of the Fourier tramsform (c.f.) ¢(*) of .
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when regarding . as a measure on (HXJB(HX)) is well-defined.

Now from Remarks 1.3.4 and 1.2.6 (c), it follows that

(1.4.10)  E, {¢7(ty) ([ G(E(E)x)exp[-1tE(t) (v,x) Jdv(x))}
A

%

- EPKH(ty)"(‘ru)\c(f(t)x)exp[-itf(t)(y,x)'_]dndl‘; Ny .

Let {Pj} be a sequence of finite dimensional projectionson Hk

converging strongly (that is, in H-“x-topology) to the identity

operator. Then using the fact that P,'s are continuous together

3

with Lebesgue Dominated Convergence Theorem we obtain

Ep %(X))"}

(¥ (e ([ G(E(t)x)exp[-1tf(t) (v,x)]dnoT
A A

- ;i: Epk{w(tPJy)"QfHXG(f(t)x)exp[-itf(t)(Pjy,x)]dnoT;k

x))~}.

Now using the fact that the integral of a tame function with respect
to the product measure Pk is the same as its integral with respect

to the canonical normal distribution n on Hk’ we get

%

Ep [V (07 G0 expl-Le£(0) (7530 JonoT F(x)))

A

%

= i: En{v(tPjy)"(fuxc(f(t)x)exp[-itf(t)(Pjy,x)]dndT; (x))~}

3
where by En we mean integral with respect to the canonical normal

distribution n on Hk.

From Remark 1.1.15, it follows that

%

lim En[t(tPjy)"(IHxG(f(t)x)exp[-itf(t)(Pjy,x)]dnoT; x))~)

J-o

- En{v(ty)"(IHkG(f(t)x)exp[-itf(t)(y,x)]dndT;%(x))"} :

Hence from (1.4.10) we get
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Ep {6 (ty) (5 GUE(E)X)expl-1t£(E) (7,%)~]dv(x)) )
A
- En{*"‘””(fux G (£ () expl -1LE (£) (7,%) JdnoT (1))} .

Now from (l.4.4) (a) and the fact that “-“k-topology is weaker than
“-“B-topology on B we obtain

Jn, 528> = im h(e) (et €[4 (e9)7(fy GCEO)

exp[-itf(t)(y,x)]dnoT;k(x))~}

for all real valued, bounded, n-\l)\-cont:inuous functions G on H, .
Therefore by Theorem 4 of [7] we have
-2
(@) £(t¥ trace €’r) =0 a8 t-a
(1.4.11)
(b) The measures h(t)exp[-tz\\czlsni/Z]dp.'(s) converge

weakly to u on H)\ as t oo .

Now (1.4.11) implies ([7], Corollary 3.4) that
(a)

(1.4.12) f(t)C;lx 'po 0 on H)\ as t -+,

and (1.4.11) ®) together with (1.4.7) imply (Definition 1.1.2 (b))

that

(1.4.13) Y, 'P'Y on Hk as t - o,

By the assumption {pt :t € (0O,0)} is a )\-family as t - w. This
together with (1.4.13) satisfy the hypotheses of Lemma 1.2.10,

and hence the conclusion of the lLemma which is Yt ‘.?. Y on B as

t - o gives us (1.4.5) ®)
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To get (1.4.5)(a) we note that, it is easy to verify using
the fact that Tv is positive-definite (and therefore Tv has
positive eigenvalues) and tf(t) o as t - @ that c;z con-
verges strongly to zero operator as t - . One needs only express
“ngxui in terms of an orthonormal basis in Hk which diagonalizes

Tv' Hence I - C;2 converges strongly to I, and clearly
-2
(1.4.14) p{x €B : (1 - C, )%, b x when x - x}=0.

From (1.4.14) and (1.4.5)(b), it follows ([1], Theorem 5.5, p. 34)

that
(1.4.15) (1 - C;Z)Yt '?'Y on B as t e,

Let f(t)Cglx be distributed as Ve s then (1.4.9) and (1.4.15)

imply ([16], Theorem 2.1, p. 58) that for any sequence t, approach-
ing infinity, {vt :n=1,2,...] 1is conditionally compact on B.
Now by Lemma 3.1 2f 13, {vt } is a )\-family for any )\ € {,:

which is sufficient for {vt n: n=1,2,...}. But by assumption

A\ € L: which is sufficient 2or any family of probability measures

on B, and hence {vt } 1s a )\-family on B. Since this is true

for any sequence {tn; approaching infinity we conclude that

{vt :t € (0,0)}] 1is a \-family as t - » of probability measures

on (B,8(B)). From this and (1.4.12) it follows (Lemma 1.2.10)

that
f(t)C;]X'-D*O on B as t oo,

which 1s (1.4.5) o -
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We now proceed to the proof of that (1.4.5) implies (l.4.4).
(1.4.5)(b) implies (Definition 1.1.2) that for any sequence t, =
{pt :n=1,2,...} 1is compact, and hence it is a )\-family for
anyn \ € LI ({13], Lemma 3.1). Thus {pt :t € (0O,0)} is a )\~
family as t - =, hence (1.4.4)(b) holds.

Furthermore, from (1.4.5)(b), it follows that

(1.4.16) lima_=1.

t—o
let G be a real valued, bounded, “-“B-continuous function on B,

and let

B, = h(t) (et COE, (¢ (ty) ([5G (E(t)x)expl-1tf(t) (y,x) Jdv(x))} -
A

JaE(®)du(s).
From (1.4.16) we get
Be
lim 8, = lim — = 1im -5- h(t) (det C )E {cp (ty) (j‘Bc(f(t)x)
t—o 0 t t= t

exp[-itf(t)(y,x>“jdv<x))} - [g6(8)du(s).
By the argument used to obtain (1.4.8) we have

(1.4.17) lim p, = Lim [ [ G(E(E)C, % + (I-C[2)s)dv(x)dp, (8) -
t—e t—o

[ 6(®au(s) .

We note that (1.4.15) and (1.4.5)(8) imply ([16], Lemma 1.1

and Theorem 1.1, p. 57)

v o (f(t:)cz]')-1 o(I-C 2) -1 W on B as t — o,

which can equivalently be written as
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(1.4.18) foBc(f(t)c;Ix + (I-ng)s)dv(x)dpt(s) ~ [p6(8)du(s) as t ~

for all real valued, bounded, \\-\\B-continuous functions G on B.
From (1.4.17) and (1.4.18) we get 1lim B = 0 which completes the
t-e
proof.
1.4.19. corollary. Let

1) B be a Banach space with Schauder basis {bi}’

(ii) w be a finite positive measure on (B,5(B)) with Fourier
transform ¢,

(iii) £(t) be a positive admissible function on (0,=),

(iv) X be a B-valued random variable distributed as v where
v 1s a Gaussian measure on B with mean zero and the

property that Tv is positive-definite,

) ™ be a probability measure on (B,8(B)) where

1

IBexp[-tzncgls"i/Z]dp(s)

2, -1 .2
b, (4) = Jaexpl-t7|c, snk/Z]dp(s)
for all A € B(B),
(vi) EP denote the integral with respect to P)\ on 4.
N
Then for all real valued, bounded, “'\\B-continuous functions G

on B the following are equivalent:

(@ [goee)ue = Un (et 6, [¢7() (fyO(E)0)

exp[ -1tf(t) (y,x)"Jdv(x))}
(1.4.20)

éb) {p,t :t € (0,0)} 1is a )\-family as t -

(a) f(t)c;1x£0 as t -

(1.4.21) 2 -2
() ¢t (Ct 8,8) » 0 in measure with respect to u

as t >,
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Proof. Theorem 1.4.3 is clearly true for a finite positive
measure . Putting h(t) = 1 in Theorem 1.4.3 we see that
(1.4.5) 4y implies Jg - exp[-tz(szs,s)/Z]dp,(s) -0 as t - o,
that is, exp[-tz(c::zs,s)/Z] converges to one in Ll(B,p.) and in
fact this is clearly equivalent to (1.4.5) o) when h(t) = 1. It
is also equivalent to (1.4.21) ) (1.4.20) and (1.4.21)(a) are

restatement of (1.4.4) and (1.4.5) (a) respectively.



CHAPTER II1
OPERATOR THEORETIC CONDITIONS FOR THE INVERSION FORMULAE ON

F-SPACES POSSESSING A SCHAUDER BASIS AND A
QUASI-NORM WHICH IS ACCESSIBLE IN BOTH DIRECTIONS

§2.0. Introduction.

Let E be an F-space with Schauder basis {bn} and a
quasi-norm ||| which is accessible in both directions ([13],
p. 39). 1In Section 2.1, we will observe that, if the function
a(-) given in the definition of accessible quasi-norm ||-||
possesses a particular property, then E and the Orlicz space
Ea of real sequences are homeomorphic and isomorphic ([13],
Theorem 6.3). 1In Section 2.3 we reduce for the case of Orlicz
space Ea condition (1.4.5)(a) in the form similar to that of
L. Gross ([7], (10), p. 36). This restriction on the space is
needed since in this case the form of characteristic functional
of a Gaussian measure is known (See; [13]).

We shall first give a Theorem (Main Theorem II) which is
Orlicz space generalization of Theorem 4 of Gross [7] and is
stronger than the Main Theorem I, in the sense that, in case of
Orlicz spaces, the Theorem holds for ) belonging to a set con-
taining LI. Then we assume that the function g(.) possesses
another particular property to be able to get Corollary 2.3.12
which is our main objective. From Corollary 2.3.12 we get in-

version formulae for (LP, p > 2) spaces. Finally as a special

34
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case when Ea = LZ’ we take )\ = (1,1,...), then HX = LZ’ and

Theorem 4 of [7] follows from Corollary 2.3.12.

§2.1. Preliminaries and Definitions.

Let «(s) be a convex function on [0O,») such that

a(0) =0, o(s) >0 for s > 0. Further, assume
(2.1.1) a(2s) s M a(s)

for all s 2 0 and some M < =.
Now we define Ea as the space of all sequences satisfying
.;1 a(xi) < o, Since g(+) 1is convex, it follows that Ea is
; vector space over the reals ([13], p. 49).
Llet TI'(s) = a(sz), then T'(-) has the same properties as

a(+) and, it follows that

r(s) = [, pG)dx

where p(0) = 0 and p(s) 1is nondecreasing on [0O,»). We assume,
without loss of generality, that p(s) is left continuous.

2.1.2. Definition. By u = $(v) the inverse function of
p(u) is defined, on the understanding that if p(u) makes a
jump at u = a, then §(v) = a for p(a-) <v < p(at), while,
if p(u) =c for a<u<b, but p(u) < c for u < a, then
$(c) = a. Furthermore §(0) =0, and, if 1lim p(u) =4 1is finite,
then $(v) = 4o for v >{. With these coz;:ntions u = §(v)
is evidently nondecreasing for v 2 0, and left continuous for those

values of v at which ¢&(v) is finite. It follows that &(v)

is also Borel measurable on [0,x).
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We now define

S
A(S) = jo p(x)dx .

Then T and A\ are complementary in the sense of Young ([21],

*

p. 77), and by 6F

we mean all real sequences {xi} such that

(2.1.3) T Idx;h =z a(xi) <™.
1 i=

i=

1

*
Similarly, 6A is all sequences such that

08

.’ A(\xi‘) < ® ,
i=1
From (2.1.3), it follows that 6; contains the same sequences
as E .
o

If x = {xi} is a sequence we define
@ (-]
anr =Sup { L |xiyil > A(\yil) < 1}
y i=1 i=1
and

\\X\\A = S;p {i};‘:1 |"iy1‘ : 121 r(|yil) <1} .

2.1.4. Definition. The Orlicz space 6F (GA) is the
collection of all real sequences such that “x“r (Hx“A) is finite.
2.1.5. Remarks. (a) Since (s) satisfies (2.1.1),

it follows that
F(2s) = a(4s?) s M a(2s?) < Ma(s?) = MT(s),

*
and hence we know ([21], Corollary, p. 81) that 6? (and, therefore

Ea) contains the same sequences as § Further, it is known that

r-

p 1is a real separable Banach space in the norm “xHF and since
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T(2s) < Mzr(s) for s 2 0 we also have ([20], Lemma o, p. 83)

that {pn} c 6? converges to p € §_. in norm provided

r

@® @ 2
1i . -x.|) = 1i . - X, =0
o E Tl o xl) = e g el o)

where by X, 0 Xy we mean the ith

elements of P, P respectively.
I

(b) By Theorem 6.2 of [13], (Ea’ H-Hr) is a Banach space with a
Schauder basis {bn} where bn is the vector with one as the nth
coordinate and other coordinates zero.

Following [13], we now introduce the notion of F-space
with a Schauder basis and an accessible quasi-norm in both directions.

let E be an F-space with quasi-norm ||-|| (See; [13],
P. 2) and Schauder basis {bn}. We assume further that the following
assumptions (A) are satisfied:
(A.1) the basis elements {bn} can be adjusted so that “bnn <1
(this is always possible),
(A.2) if K 1is any compact subset of E then  Sup ‘an(x)‘ <

n,xc K

where an's are the coordinate functionals on E,
(A.3) the og-field generated by the weakly open subsets of E is
identical with the Borel subsets of E.
It can easily be seen that in case “.“ is actually a norm and
E 1is then a Banach space assumptions (A) are always satisfied.

Llet o(-) be a convex function on [0,®) such that
2(0) =0 and o(s) >0 if s > 0. Further, assume for every
compact subset K of E there exists an r > 0 such that x € K
implies A(x) = ;1 a[Bi(x)] <r, and for every r > 0 there

i=

exigts an M > 0 such that A(x) < r 1implies
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> 2
Z ol )] < M v(||x|D
i=

where v(:) 1is a continuous function on [O0,») such that
v(0) = 0.

2.1.6. Definition. If the quasi-norm ||-|| on E admits

the existance of functions «(-) and +v(-) having the above pro-
perties we will say that it is accessible.
We also note that if o(-) and +v(.) satisfy the conditions
indicated then (+) 1is continuous and strictly increasing on
[0,0), y(s) >0 for s > 0, and that vy(-) can be taken to be
increasing on [0,»).

2.1.7. Definition. The quasi-norm ||| on E is said

to be accessible in both directions if there exist functions

@, Yy» Y, such that l|-| is accessible with respect to o and

Yo and for every x € E

v < = A7 -

Here yl(-) is an increasing continuous function on [0,®) such
that yl(O) = 0, Yl(s) >0 for s >0, and ¢, Yo satisfy the
conditions required in the Definition 2.l.6.

In this Section we shall be concerned with an F-space E
with Schauder basis satisfying assumptions (A) for which the quasi-
norm ||+|| is accessible in both directions and the associated
a(+) satisfies (2.1.1)

We now recall the following Theorem from ([13], p. 57).

Theorem. If E has a quasi-norm which is accessible in

both directions with respect to the functions ¢, Y12 Yo and

a(-) satisfies condition (2.1.1) then E and the Orlicz space
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Ea are homeomorphie and isomorphic.
2.1.8. Remark. 1In view of the above Theorem we can (and
will) identify the F-space E with Ea and restrict ourselves to

sequence space Ea'

§2.2. Associated Hilbert space.

Following [13], we shall denote by Ea the Hilbert space
{2 or an Ea space where ¢(-) satisfies (2.1.1). We assume
that ac(-), the complementary function of @(-) in the sense of
Young ([21], p. 77),satisfy (2.1.1). Notice that if Ea =41,
then a natural choice for the function o 1is o(s) = s. Hence
ac(s) =0 on [0,1] but ac(s) =wo for s > 1. Thus qc(-)
does not satisfy (2.1.1) when Ea =1, and this is a special case
which is easily handled.

In terms of the notations we have used in Section 2.1,

Ea is equivalent (isometrically isomorphic) to the Orlicz space

6? where T['(s) = a(sz). We will 1let Sa, Sa -denote the Orlicz
c
spaces given by «(-) and ac(-), respectively. Then the dual

space of Sa can be identified as Sa and since ac(-) also
c
satisfies (2.1.1), except when Ea =1,, it follows that the dual

of Sac is Sa ([21], p. 150).

For each vector ) = (xl,kz,...) in the positive cone of

S , we define the space H,Z as all sequences X = (Xq1,X,5.0.)
@, ® A 1’72

such that b) xixi < ®, Then H is a Hilbert space with

@ i=1 , % h
Hxnk = ( 21 kixi) and the inner product
i=
-]
(x,y) = DR VLI SR

i=1
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In the special case Ea =4, we have Sa =1, and for simplicity
c

we take ) = (1,1,...). Then HX =1, and we shall assume without

loss of generality that o(s) = s.
The following Lemma is proved in ([13], p. 62).
2.2.1. Lemma. Ea is a Borel subset of Hk for each )

in the positive cone of Sa . Furthermore, every Borel subset of
Cc

Ea is a Borel subset of Hx.'

We note that from Lemma 2.2.l1, every probability measure yu on

Ed can be regarded as a probability measure on H Furthermore

x.

every countably additive measure on H, 1is countablly additive

A

on Ea. Now having this observation in mind we shall prove the
following Lemma, which is similar to Lemma 1.2.10.
2.2.2. Lemma. Let

. +
(1) ANES |,
e
(ii) {ut :t € (O,0w)} be a \-family as t - o of probability

measures on Ea’

(iii) T g B on HK as t - o where y 1is a probability

measure on E .
o4
Then M ¥ p on E, as t - =,
Proof. Let {tn} be a sequence in (0,») such that

. W
tn - as n - o, Then (iii) implies that ptn >4 on Hxa
that is, {pt :n=1,2,...] 1is compact on HX' Using exactly
n

the same argument given in Lemma 1.2.10 the equicontinuity at

*
zeroon P (E ) of {¢ () :n=1,2,...] follows. Hence con-
N o Wy
dition (i) in Definition "1.2.9 is satisfied.

+
Let )\ € Sa . Since ¢h () 1is c.f. of e and gx(N,k,-)

Cc t n
n

is symmetric about zero it follows that
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N+k 2
J. [l -Reo (V] = (1 -exp{-% £ Ax/}ldu_(x).
ok e J‘Ea TS B

By Young inequality ([21], p. 77)

2 2
\X; S ac(ki) + a(xi) for each 1i .

Hence
‘ N+k N+k
Joll -Reo (] <[ (1 -exp{-5 2 o, (A)-% & (x> D hde, )
N,k e ! IE t- 1=N+1 i=N+1 ] th

n

[ ) @© 2
1 - -5 T A )Y exp{-% I (x).
=l el e }J‘Eo, el 1=N+la(xi)}dutn

We note that as N - o, 8 o ¢ ) -+ 0 since )\ €8S , and hence
i=N+1 © e

@®
exp{-% z ac(xi)} - 1. Also for x € Ea we have {xi} € Sa’
i=N

that is Z a(x, ) < o». From this it follows that the functions
i=1
2
£ (x) = exp{-% Z a(x;)} converge pointwise to one. Further-
N i
i=N+1
]

more fN s are nondecreasing, so by Monotone Convergence Theorem

we get
- -]
fE exp{-%¥ I a(x, )}dp x) -1 as N - = .
o i=N+1 n
Therefore

Iyall “Re@ (N]-0 as N-w for n=12,....
? t
n

Thus condition (ii) of Definition 1.2.9 is also satisfied, and

hence {¢ (') :n=1,2,...} 1is )\-continuous for ) € S+ .
Mt e
n
This together with the assumption that {pt :t€ (0,0)} is a

A\-family as t -+ «» imply ([13], Lemma 3.2, p. 11) that

{pt :n=12,,..} is conditionally compact on E -
n
Hence ut = on Ea since {ut :n=1,2,...] is conditionally
n

b >
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-1W -1
compact on Ea and utn © Py =W O By for all N =1,2,...

(1], p. 35). Since this is true for any sequence {tn} approach-
ing infinity we get Be g W on Ea as t - o,

We use the fact that every linear operator on E: into
Ea can be represented as an infinite dimensional matrix to give
the following definition.

2.2.3. Definition. A linear operator from E: into Ea
is an g-operator if the matrix of the operator, {tij} is symmetric,
nonnegative definite with .81 a(tii) < ®,

2.2.4. Lemma. Letl—T be an infinite dimensional matrix
{tij} such that T is symmetric, nonnegative-definite and
.E a(tii) < o, Then T 1is an g-operator on E: into Ea'

i=1 *
Proof. let vy € Ea’ and define

nM s
(ag
«
Ca
.
o’

), =

where {bn} is the basis for Ea given in 2.1.5 (b). Clearly

T 1is linear, and the proof will be completed as soon as we show
*

T is well-defined, that is, Ty € Ea for each y € Ea° Since T

is symmetric, nonnegative-definite, it follows that

> ¥ % 5 20
| @yl = j§1|ti ii "jj‘y“’j)\ =t 321 3T |Y(bj)‘-

yb)| < T ¢t
j“ j ‘ j=1

By assumption I af(t j) 1= & a(,,) is finite, hence

j=1 3 j=1 33
{t?j} € Ea. But y € E:, {t?j} € Ea imply ([21], Theorem 3,
p. 82) that

(-]

% - -
jzltjj |y(bj)| A<o,
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%

hence |cry)i| sAtf .

Since g(+) 1is increasing we get

2 2
Now using the fact that «(-) satisfies (2.1.1), for some k

2 k
(A tii) <M cv(tii) .

Therefore

©
E a(tii) < ® ,

L a(\(Ty)ilz) < M®
i=1 i=1

which implies that Ty € Ea’ and hence the proof is completed.
We know (Lemma 2.2.l1) that Eor is a Borel subset of HX and

the H-nr-topology is stronger than H-“X-topology on E . Hence

*

* *
it follows that Hk is a subset of Ea' We now identify Hk

by Hk and prove the following Lemma.

*
2,2,5. lemma. Every g-operator T on Ea is a trace

class operator on H..

A

*
Proof. Since T 1is an g-operator on Ea we get

@®
iElcx(tii) < © which implies {tii} € Sa’ a:é Since ) = {xi} € Sdc
it follows ({21], Theorem 3, p. 82) that g Aitii is finite.

i=1

Observe that

[- -]
trace T = T \.t.. ,
HX i=1 iii

which is finite, hence T 1is a trace class operator on Hk°
2.2.6. Remark. It is known (See; Remark 1.1.13) that,

if T 1is a nonnegative, symmetric trace class operator (that is

%

an S-operator) on H, then T

X is a Hilbert-Schmidt operator on
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%

HA' Hence by 1.1.13 (b), v = noT is a probability measure on

Hl where n is the canonical normal distribution on Hl' Since
%

T actually takes its values in Ea the measure v = noT ° has

its support in Ea’ and since every Borel subset of Ed is a Borel

%

subset of Hk’ the probability measure noT is countably additive

on (EQ,B(EQ)) (See also Remakr 1.1.13).

§2.3. Inversion formulae for Orlicz space of real sequences.

In this Section we prove a Theorem (Main Theorem II) which
gives a class of inversion formulae for a probability measure on

the space Ea. It differs from the Main Theorem I in the sense

that, in case of Ea spaces, (2'3'2)(b) is stronger than (1.4.4)(b).

This can easily be seen since Ll is a subset of S _ .

Cc
Let Pk(.) be the product probability measure on { such

.th . . ,
that the i coordinate is Gaussian with mean zero and variance

xi where ) = {ki} € Sa . If . is a probability measure on Ea
c
then ) € Sa is sufficient for , and as before for y € ¢
C
we define the '"stochastic linear functional" on Ea in the follow-

ing manner:

N
(y,x) = lim g X.ys -
N i=l
5 N
The stochastic linear functional (y,x)” = lim g% Xy, is Borel
N i=1

measurable on {4 X Ea and PX X p{(y,x) : (y,x)N exists and is
finite} = 1 (See; [13], p. 22). If yu 1is a probability measure
on the Borel subsets of Ea with c.f. ¢, then we define the
extended c.f. @z(-) as in Definition 1.3.3. We also note that

we can repeat Remark 1.3.4 to get ¢(y)~ = q?(y) a.e. Pk where
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y is c.f. of p when p is regarded as a measure on (HXfB(Hk))°
Now let T be an g-operator on E:, then by Lemma 2.2.5,
T is a trace class operator on Hh. Denote by Ct the positive
square root of I + t2f(t)2T on HX where f(t) 1is a positive
admissible function on (0,») ([17], Theorem, p. 265). As in
Section 1.4 let |, be a probability measure on (EQ,B(EQ)),

and define
™ A) = %— J‘Ah(t:)exp[-tz\\cglsni/Z]dp,(s) A€ B(Ed)
t
where h(t) 1is a positive function on (0,»), and
a_ = fE h(t)exp[-tzncglsui/Z]du(s) .
o

2.3.1. Main Theorem II. Let

(i) Ea be as in 2.1.5 (b),

(ii) w be. a probability measure on (Ea’B(Ea)) with c.f. o,

(iii) £(t) be a positive admissible function on (0,»), and
h(t) be a positive function on (0,®),

*
(iv) T be a positive-definite y-operator on Ea’

) X be an Ea-valued random variable distributed as v = noTJ5
where n is the canonical normal distribution on Hk’
(vi) Yt and Y be Ea-valued random variables distributed as

By and |, respectively,
(vii) EP denote the integral with respect to Pk on 4.
A

Then for all real valued, bounded, “-“r-continuous functions G

on Ea the following are equivalent
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(@ [ G()du(s) = Lim h(e) (det C)y E, {¢7(Ey) ([ GCECEIN)
o A A o

t—o
2.3.2) ¢ expl-1t£ () (y,%)~]dv(x)) )

(b) {ut 1t € (0,0)) is a )-family as t - »
.

(@ fecx20 as c-w
(2.3.3)
(b) YthaS t o> .

Proof. The necessary Lemmas (Lemma 2.2.2, Lemma 2.2.5)
and Remark (Remark 2.2.6) are given in Section 2.2 and the proof
can be carried out in exactly the same way as in the Main Theorem
I with no difficulties.

We now put another condition on «, and prove the following Lemma
to reduce (2.3.3)(3) in the form similar to that of L. Gross
(73, (10), p. 36).

2.3.4. lemma. Let

(1) Ea be as in 2.1.5 (b),

*
(ii) T be a positive g-operator on Ea’

%

(iii) X be distributed as v = noT ° where n is the canonical

normal distribution on HK’

(iv) assume further that there exists a constant C such that

(2.3.5) Ij: a(uz)dp(u) <C a[It: uzdp(u)]

for all Gaussian measure y on (-®,+w) with mean zero. Then

the following are equivalent:

(2.3.6) f(t)Cglx P20 as tow
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@ 2 -
(2.3.7) L a(£() (C,°T) ) 0 as t -
i=1

-2 a2
where (Ct TV ; = (Ct T bi’bi)Hx'
Proof. We shall first prove that (2.3.6) implies (2.3.7).

Let {tn} be a sequence in (0,») such that t - as n - =,

Let f(tn)Ctix be distributed as Ve then Ve is definel on (EagS(Ea))

n n
and by (2.3.6), {vt :n=12,...}1 converges weakly on Ea to
n
5, Since Ea is a Borel subset of Hk’ {vtn :n=12,...} can
be regarded as probability measures on HX’ and since topology of
Hk is weaker than that of Ea’ Ve converges weakly on Hk to
n
60. The c.f. of Ve when regarded as a probability measure on
n
. 2 -2
HX is exp{-%(f(tn) CtnT -,-)H }. Hence vtn ¥ 50 on HX as

n - o implies ([7], Theorem 2, p. 8) that
T A (E(t )Z(C'ZT),.) = trace _ (f(t )2C-2T) -0 as n - .
. i n t il H n t
i=1 n A n
From this, it follows that
(f(t )Z(C-zT) ) 20 as n-o o for all i
MOER) G Dy r i
Since ki > 0, we get

2, =2 .
f(tn) (CtnT)ii -0 as n-eo for each i,

n

Hence, for every N

N 2 -2
(2.3.8) £ a(EE)(C%T)..) -0 as n-w .
i=1 n tn i1
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Under condition (2.3.5) and the fact that {vt } is compact on
Ea we get ([13], Theorem 9.1) that for each 2 > 0 there exists
an N such that

©

2 -2
(2.3.9) L a(E(t) (CtnT)ii) < ¢ for all t

. n °
i=N
o

Therefore (2.3.8) and (2.3.9) imply that
® 2 -2
L a(f(t ) (¢, T)..) -0 as n-o.
. n t ii
i=1 n
Thus (2.3.7) holds.
For the converse, let {tn} be a sequence in (0,o) such
that t - ® as n - o. Then (2.3.7) implies that, for sufficiently
n
large n, say n_s
5 acice) el
Lo oa(f(t) (€. T),,) <e nzn .
i=1 n
H £ £e )22 S
ence for n zn_, {f( n) (Ctn )ii} € o
Now using the fact that ) = {xi} € S; , for n 2 n  we get ([21],

c
Theorem 3, p. 82) that

o8

2 .02 2, -2
RN O CH PR L L L CR RN CN TP [ W

From (2.3.7) and Lemma ¢ of ([217, p. 83), it follows that
2, -2
n{f(tn) (CtnT)ii}“a -0 as n - o .
Hence,

2 -2
traceH (f(tn) Ct T) = '
A n i

Mg

2, -2
. A (ECE) (CtnT)ii) +0 as n-w.

Therefore, by Corollary 3.4 of [7] we have

(2.3.10) v § on H, a n - o .
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In order to complete the proof it suffices to show that
[vt :n=1,2,...}] is a \-family for A\ € S . First observe
c

»2,...} since

- R 4+

n
that ) € S+ is sufficient for [vt :n =
X n

[« <]

2
£ A, o(x,) <o for x €E .
. 1 1 o
i=1
Let ¢,5 > 0, and let Yy be any continuous strictly increasing
function on [0,») satisfying (6.6) of ({137, p. 50). Then from

([13); (6.6), (b.7), p. 51) it follows that
vtn{x v “QNx“F > 56} = vtn{x ? YI(HQNXHF) > yl(a)}
2 2
<v_ {x: r ofBp;(x)] > v.(8)}

a i=N+1l 17
where 3i(x) = x; is the ith coordinate functional on Ea.
Using (2.3.5) we get

@

C 2
Y1(6) i=N+1 IEa t a J

£ a(f(e ) (CT) )
n

C
Y1) N1

From (2.3.7), it follows that, for each ¢ > 0 there exists an

No such that for all n =1,2,...

@ 2, -2 10
RIECCRCHO TR
(o]

Therefore, for all n=1,2,..., and all N 2 N0

(2.3.11) vtn{x : "QNXHF >8}< e .

Hence, {vt :n=1,2,...}] is a \-family for any ) € S: . Since
n c
(2.3.10) and (2.3.11) hold for any sequence {tn} approaching
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infinity, it follows (Lemma 2.2.2) that
) on E as t - o,

which is (2.3.6), and hence the proof is completed.
2.3.12. corollary. 1If, in addition to (i) - (vii) of

Theorem 2.3.1, the function () satisfies (2.3.5), then the

following are equivalent:

t°'H P

((a) [ 6(s)du(s) = lim h(t) (det C,), E (¢ (ty) ([ G(E(E)x)
o t—o NN o

(2.3.13) < exp[ -itf(t) (y,x) Jdv(x))}

(b) {pt 1t € (0,0)} is a \-family as t - =
.

(@) £ oM C'D),) 0 as t ~w
i=1
2.3.14) ¢
b
K(b) Yt - Y as t - ».

Proof. By Lemma 2.3.4, condition (2.3.14) is equi-

a)
valent to (2‘3'3)(a)’ hence the proof follows from Theorem 2.3.1.

2.3.15. Remark. 1In case the matrix {tij} of the -

operator T 1is diagonal, condition (2.3.14) would be replaced by

(a)

2
f(t) ti

(2.3.16) Tz o ) -0 as t - o .

) 2 2
i=1 14t f(t) tiy

2.3.17. Definition. If 2 < p < o then a linear operator

1 1
T from i
Lq(P q

represented as an infinite symmetric, nonnegative definite matrix

{t.,} such that g (t..)p
ij . ii
i=1 n
definite, we mean that . §=1 tijxixj 2 0 for all (xl,xz,...,xn) € R
b

1) into Lp is an Sp-operator if T can be

is finite. Here, by nonnegative



51

and all integer n. Thus for p = 2, S _-operator is S-operator.

2
For p > 2, Lp is an Ea space (Orlicz space) with
a(s) = sp/2 ({21}, p. 78). Furthermore, for this ¢(.), con-

* *
dition (2.3.5) is satisfied. The g-operators on Ea = Lp are
*
the same as S_-operators, and S+ = (1 )+. Now Corollary
P o, p/2
2.3.12 gives us a proof for the following Corollary.
2.3.18. corollary. Let p > 2, and let
*
(i) T be a positive-definite Sp-operator on LP’
(ii) 4 be a probability measure on (LP,B(LP)) with c.f., o,

(iii) f(t) be a positive admissible function on (0,»), and

h(t) be a positive function on (0,x),

(iv) v = noT-% where n 1is the canonical normal distribution
on H
X’
) EP denote the integral with respect to Pk on 4.
A

Then for all real valued, bounded, Lp-continuous (that is, con-

tinuous in Lp norm) functions G on Lp the following are

equivalent:

((a) L, G(s)du(s) = lim h(t)(det C) E, (¢ (ty) (-FL G(f(t)x)
p t—e A |

(2.3.19) ﬁ exp[ -1itf(t) (y,x)]dv(x))}

(b) {“t :t € (0O,0)] is a \-family as t - =

p/2 -0 as t - o

((2) izltf(m"t(c;zr)ﬁ]

(2.3.20) <
(b) The measures {ut : t € (0,0)] converge weakly

- to p oon f, as tow.



52

2.3.21. Remark. (a) If the matrix {tij} of the Sp-

operator T 1is diagonal, then (2'3'20)(a) would be replaced by

tii )p/2 .

(2.3.22) T [£(0)1P ¢ 0 as t » o .
i=

2 2
1 14+t f(t) tis

(b) 1t can easily be shown that in Theorem 4 of L. Gross [7]
one can, without loss of generality, assume that the Hilbert-
Schmidt operators in (10) and (11) of ([7], p. 36) to be diagonal.
(¢) 1In the spacial case Ea = LZ we have Sa =4, and for

c
simplicity we take ) = (1,1,...), then Hk = LZ' Now using

%

Lemma 4.3 of [14], and the fact that T® is a Hilbert-Schmidt
operator on {, whenever T 1is an Sz-operator on {, we get
Theorem 4 of [7].

(d) From (b), it follows that in case of Hilbert space condition

(2.3.22) is restatement of condition (10) of ([7], p. 36).



CHAPTER III
INVERSION FORMULAE OF THE CHARACTERISTIC FUNCTIONAL

OF A PROBABILITY MEASURE ON BANACH SPACES WITH A
SHRINKING SCHAUDER BASIS

§3.0. Introduction.

In the first Chapter B was taken to be a Banach space
with Schauder basis {bn}. In this Chapter we assume that the
Schauder basis {bn} is also shrinking. Since {bn} is shrink-
ing, the coordinate functionals Bn's form a basis for B*, and
hence we can use results of J. Kampe de Feriét [11] to identify
B* with a Borel subset of 4. Thus any probability measure on
B* can be defined to be a probability measure on 4 through
this identification.

We shall let n be the canonical normal distribution on
HX so that for each x € Hk’ n(x) is a random variable on B*,
and let PX be the cylinder set measure on B* induced by the
above family. Then we shall show PX is countably additive on
the g-field of tame sets of B*. Finally we prove a Theorem
(Main Theorem III) which gives a class of inversion formulae
different from that of the Main Theorem I. 1In the Main Theorem
I we have extension of characteristic functional to { whereas
in the Main Theorem III we have extension of characteristic
functional to B*. Hence (3'2'2)(3) is stronger than (1.4.4)(8)

since for ) € L;, PX is countably additive on B*. Furthermore

53
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*
since {b_ } is shrinking (and, therefore B has a basis) we
are able to give a proof for the Theorem without using Lévy

Continuity Theorem and hope that one might be able to use this

Theorem to obtain a proof for the Iévy Continuity Theorem.

§3.1. Preliminaries and Definitions.

A tame (cylinder) set in a real separable Hilbert space
H can be described as a set of the form C = P-I(E) where P
is a finite dimensional orthogonal projection on H with range
R, say, and E is a Borel set in R. The cylinder set measure
v (See; [6], p.32) associated with the canonical normal dis-
tribution is called Gauss measure on H, and for the above tame

set C we have
2
o (C) = (Zn)-k/Z IE e-“x“ /2 dx

where k 1is the dimension of R and dx 1is Lebesgue measure
on Rk'

3.1.1. Definition. A semi-norm “xnl on H 1is called a
measurable semi-norm if for every real number ¢ > O there exists
a finite dimensional projection Py such that for every finite

dimensional projection P orthogonal to PB we have
(3.1.2) Prob(“PxHI >e) < e

where HP&H; denotes the random variable on the probability space
(),m) corresponding to the tame function “Pxnl and Prob. refers
to the probability of the indicated event with respect to the
probability measure m associated with the canonical normal dis-

tribution.
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Observe that the condition (3.1.2) can also be written

w(ix ¢ |[xl; > e} < ¢

where v is Gauss measure on H (See; [6], p. 33).
We note that a measurable norm is a measurable semi-norm which is
a norm.
3.1.3. Dpefinition ({3], p. 69). A Schauder basis {bi]
in a Banach space B 1is cadlled shrinking basis for B if for each

B in B*, lim pn(B) = 0 where pm(e) = norm of B restricted
N—co m

to the range of x - g

m1=1 ~

p (B) = Sup{B(x) : iElsi(x)bi =0 and ”x“B < 13.

Bi(x)bi; that is,

Throughout this Chapter B will denote a real Banach space

with a shrinking Schauder basis {b_} such that |b | = 1. As
n - n''B
before we will write the expansion of x as g an(x)bn, and
k n=1

. + .

HXHB = lim || E Bn(x)anB. For )\ € L1s Hk denotes the completion
k- n=1

of B under the inner product (1.2.3).

Let n be the canonical normal distribution on Hi into
the set of all random variables defined on B*, that is, for each
x € H:, n(x) 1is a random variable on B* which is distributed
normally with mean zero and variance HXHEK.

We identify H: by Hk’ hence for each x € Hk’ n(x) 1is a random
variable on B* distributed normally with mean zero and variance

2
x .
2
The basis elements bi's can be considered as coordinate
*
functionals on B ({37, Lemma 1, p. 70). Then n(bi) = (bi,°)
is a random variable defined on B* which is distributed normally

. 2 — -—
with mean zero and variance “bi“x = (bi’bi) = ;-
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Let Pk be the cylinder set measure on the field (C generated

*
by tame sets of B induced by the above canonical normal dis-

tribution on Hk'

3.1.4. Lemma. Px is countably additive on (.

Proof. Without loss of generality we assume “Bin « = L
By Lemma 1 of ([3], p. 70) {Bi} is a basis for B*, hence we

n n

have |ly|| 4 = lim || £ b, (0Bl - Let |yl = || £ b; 8,1l &

B n—so i=1 B i=1 B
and observe that

By bl < e = B0 ¢ lim ], < o)

n
> Px{y : lim ¥ ‘bi(Y)‘ < e} .
i=1

N—00

n
*
lim g ]bi(y)l, then X is a random variable on B
Nn—o i=1

Let X(y)
n 2 n [}
since E{ £ [b.(¥y)]"} = Z X\, < E \, < =, and the series is a
i 41 . i
i=1 i=1 i=1
series of independent random variabled ([15], p. 234; and [2],
Theorem 9.5.5). In view of the property of laplace transform,

Theorem 6.6.2 of [2], we observe that the distribution of X is

(-]

absolute normal with mean § E[\bi(y)\] and variance § A e
i=1 i=1

Hence the distribution of X puts mass around zero, and therefore

(3.1.5) Px{y d vl & < €} > PK{X <e}>0.
B

From the definition of HX we see that Hk is a dense subset of
B*, and hence B* is the completion of Hk in the Banach norm
“.“B* on B, Furthermore, “ynn is a tame function on Hy and
hence it is a measurable norm (See; Definition 3.1.1).

From (3.1.5) and the fact that “ynn is a nondecreasing

sequence of measurable norms on Hk’ it follows that |ly|| , 1is
B
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a measurable norm on HX ({9], Corollary 4.4).

So far we have shown that |ly|| , is a measurable norm on Hk
B

and B* is the completion of Hk in this norm. Hence by Theorem

1 of [6], PX is countably additive on (.

*
Let x € B, y € B , then
[--} [- -]

(v,%) = y@) =y(Z B, (x)b)) = £ B, Xy,

i=1 i=1
i=1

(-]
It followa that (°,x) = % Bi(x)bi(-) is a random variable de-
i=1
*
fined on B which is distributed normally with mean zero and

. . .2
variance z xiai(x) under P_.
i=1 A

*
Now let x € Hk’ y €B and define the '"stochastic linear func-

2
tional" (y,x) as follows
2 N
(3.1.6) (y,x)" = 1lim £ Bi(x)bi(Y)
N-= i=l

where as before B, is extension of B, to H.

A
2 *
From (3.1.6) we have (y,x)z = y(x) for x €B, y €EB .
3.1.7. Lemma. The stochastic linear functional
a N
>0~ = lim T 8, 6Ob, ()

N-w i=1

*
is Borel measurable on B X Hk and if
F = [{(y,x) : (v,x)© exists and is finite},

then Pk X w() =1 where . 1is a probability measure on Hk'

Proof. That (y,x)z is jointly Borel measurable follows

easily since it is the limit of jointly Borel measurable functions.



58

Fix x and consider F_ (that is, the x-section of F; See [10]).
For this fixed x, (y,x)& is the limit of sums of independent
random variables, and the variance of the sum 2 \ia (x) is
finite. This implies ([15], p. 234; and [2], T;e;rem 9.5.5) that
(y,x)& is finite almost everywhere with respect to PK' Thus

P (F ) =1 for each fixed x ¢ HX' Hence

B, X w(F) = IH P (Fx)du(x) = IH 1 du(x) =
A

Let u be a probability measure on B, then p can be
regarded as a probability measure on HX' Let § be the c.f. of

w when p 1is regarded as a probability measure on H,_, then

y@&) = IHA ei(y’x)du.(x) for all y ¢ H:

* *
Now ¢ is a function defined on Hk S B , and we would like to
*
extend § to be defined on B .
2 *
For each x € HX’ (y,x)~ 1is defined on B a.e. Pk’ and is

*
equal to y(x) with | measure one for each y € Hk' We call

: &
[ e aw (v €B)
A

*
the extension of § to B .

Clearly on H: we have IH ei(y’x) dp(x) = IH ei(y’x)du(x) =y(@).

A
Since  1is actually defined on B we have

J‘ ei(}’:x)&d (X) =j‘ ei(y’x)&dp.(x) a.e. P .
Hk B B A

2 *
But (y,x)~ = (y,x) for all x € B, y € B , hence

(3.1.8) [y el O%) g, ) = Is el0® g, x) = pty) a.e. P
)\
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where ¢ is the c.f. of u when u is regarded as a probability
measure on B. Thus c.f. of a probability measure y on B when
considered as a random variable on B* is equal almost everywhere
PX to the extension of the c.f. of u when | 1is regarded as
a probability measure on Hk'
3.1.9. Remarks. (a) let ¢ be as before. Since {bn}
is a shrinking basis for B, the coordinate functional Bn's form
a basis for B* ([3], Lemma 1, p. 70). Hence there exists an
isomorphism U* from B* to a Borel measurable subset of 4,
say Q* ({11], Section 2, pp. 123-127). Therefore B* can be
identified with a Borel measurable subset of {, and hence PX
can be regarded as a countably additive cylinder set measure on
{4 through this identification.
(b) By (a), lemma 4.3 of [14] and the fact that P)\ sits
actually on B* we get y(y)~ = o(y) a.e. Px where § ()~
is Gross extension of the uniformly T-continuous function §(-)
with respect to the canonical normal distribution n on Hk'
We will close this section by proving the following Lemma.
The hypotheses of this Lemma are the same as of Lemma 1.2.10,
however the proof is completely different. 1In the proof of Lemma
1.2.10 we used 1évy Continuity Theorem which we will not use
in the proof of the following Lemma. Instead we use the fact
that {bn} is shrinking and the ideas of [4].
3.1.10. Lemma. Let
() A bein ¢,
(ii) {pt :t € (0,0)} be a )\-family as t —» » of probability

measures on B,
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(iii) w be a probability measure on B,

(iv) {“t :t € (0,0)} converges weakly to p on HX as

t-’mo
Then {ut : t € (0,0)} converges weakly to w on B as t - .
Proof. Llet {tn} be a sequence in (0,») such that

t, ~® a n-o. Then (iv) implies that {u : n = 1,2,...}
n

is tight on H, ([1], Theorem 6.2, p. 37). Hence, for each

A

¢ > 0 there exists a compact subset of Hk’ say K® such that

™ (K€ >1 - ¢ for all n.
n

K® is compact implies that K€ is bounded, that is, for each

(- -]
§ > 0 there exists an N such that z xiéi(x) < & wuniformly
c ® ift§+1
in x € K°. Thus by {x € Hk . xiai(x) <6}>1-¢ for
n i=N+1

all n. Since xi's are positive, for all N' 2N
[--]

a2 ® A
T kiBi(x) <s}c{x€cH z kiBi(x) < 68},

{x €H \
i=N+1 i=N"+1

)
Hence, for all n and all N' 2N
@ ~2
p, (X €H : T AB,X)}I>1-¢.
ta Moyt B L

But for each n, e is defined on (B,B(x)), so we get
n

[--]
(3.1.11) u {(x€B: I AB(x)<s}>1-¢ forall n
n '+1

i=N
and all N' 2 N.

Since {pt :n=1,2,...} is a )\-family, it follows that there
n

exists {eN} such that

utn{x €B : \\i=§+13i(x)biHB <k(®)}>1 - (e+ g
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Now using (3.1.11) we have, for all n and all N' 2N
®
utn{x €B : “1=§‘+1Bi(x>bi“3 <k@®}>1-(e+e)-
Let N be sufficiently large so that, for all n

utn{x €B : n1=uz+1ai(x)bi“3 <k()}=21-¢.

We now let S be the subspace of B generated by {bl,...,bN IR

Kk(5) °

and let § = {x : inf{||x - z“B :z €8} <k()}. For x €B
N

o
we have P_x = g B.(x)b, € S, hence
N i i

o =]

gk(®) {xeB:| £ BB, <k(®)] .
+1

i=N
(o]

Thus e (Sk(é))z 1 - ¢ for all n.

n *
Let T be the subspace of B generated by {Bl""’BN }.

o
*

Then S*®T =B since ai's are coordinate functionals and

*
form a basis for B (See; Remark 3.1.9 (a)).

We now show there exists an r > 0 such that for all n
w {x €B: |, )| <r, i=1,2,..0,N 321 -¢.
n

Let r, = sup ‘Ei(x)|, then ry is finite since K® 1is a compact

i,K® X
subset of H,, and Sup ‘Bi(x)‘ < Mnxnh ([3], p. 68). Now let
i

r > Ty then
utn{x €B : \ai(x)l <r, 1= 1,2,...,N°]
= utn{x €B : |§i(x)| <r, 1= 1,2,...,N°}
2 e {x € B : Sup ‘ﬁi(x)| <r, i= 1,2,...,N°}
n i
> e (Ke)
n

21 - ¢ for all n.
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Therefore by Theorem 2.1 of ([4], p. 11), {ut :n=1,2,...}
n
is conditionally compact on B.

Since {pt :n=1,2,...] 1is compact on HK and Ik
n
is continuous, it follows that {ut o Phl :n=1,2,...} is
n

compact on Hx for all N =1,2,... . Hence
-1
{pt o Pﬁ :n=1,2,...}] is compact on B for all N =1,2,...
n -1W -1
and by O Ph 3 Wwo Ih . This together with the fact that
n
{utn :n=1,2,...} 1is conditionally compact on B imply that

By ¥ pw on B (1], p. 35). Since this is true for any sequence
n
{tn} approaching infinity we have u ¥ W on B as t - w.

§3.2. Main Theorem III.

The following Theorem (Main Theorem III) gives inversion
formulae for a probability measure on a Banach space B with a
shrinking Schauder basis. It differs from the Main Theorem I in
the sense that (3.2.2)(a) is stronger than (1.4.4)(8). This can
easily be seen since PR(B*) =1 for ) € LI. Furthermore, we
will not use Lévy Countinuity Theorem in the proof, and hope that
one might be able to use this Theorem to get a proof for the Lévy
Countinuity Theorem.

and a be as in Section 1l.4.

Ioet Vs T\)’ Ct’ “.t t

3.2.1. Main Theorem III. Let

(i) B be a Banach space with shrinking Schauder basis {bi}’

(ii) - (v) be as in Theorem 1.4.3,

(vi) EP denote the integral with respect to Px on B* (See;
Le;ma 3.1.4).

Then for all real valued, bounded, “-HB-continuous functions G
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on B the following are equivalent:

t—o

() [56(s)du(s) = lim h(t)(det CIE, {@(ty) ([HG(£(t)x)
A

(3.2.2) < exp[ -itf(t) (y,x)]dv(x))}

(® (b 1t € (0,@)]} is A-family as t ~w

J’(a) f(c)c;]x:’lo as t -
(3.2.3)

L(b) YtQY a t -+ o .

We note that the proof is similar to the proof of Theorem 1l.4.3.
Proof. Suppose (3.2.2) holds, and let G be a real valued,

bounded, H-“B-continuous function on B. Then
Ep [¢(ty)(fBG(f(t)x)exp[-itf(t)(y,x)]dv(x))]
A
= f *{w(ty)QYBG(f(t)x)exp[-itf(t)(y,x)]dv(x))}de(y).
B

Using the fact that G(f(t)x)dnoT;%(x) is a measure of bounded

variation together with Remark 1.2.6 (c) and (3.1.8) we get
=T wCy e o))y cE@me O O anor=¥yyar, ).
B 1 A

The function eit(y,s) e-itf(t)(y,x) G(f(t)x) 1is jointly measur-
able and all the measures are probability measures so we may use

Fubini's Theorem ([19], p. 140) to interchange some integrals

to obtain
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-itf(t)(y,x)& 1

&
it(y, -
[ e ) (6)) (J GEOe dnoT_ ¥ (x))dE, (¥)

= Ju Ju SCE@0 ([ e O * O 4 (53yanor; Fexydu(s)
oA B

%

= IH jﬂ G(f(t)x)exp{-tz izlxi[éi(s-f(t)x)]Z/Z}dnoT; (x)du(s)
A =

= Jutu G(f(t)x)exP['tzus'f(t)x“ilzldnoT;%(x)du(S).
AN

%

Since G is n-nx-mea8urab1e and T* is a Hilbert-Schmidt operator

on HX’ it follows ([7], Lemma 4.1) that

-%

G(f(t)CElx + s—ngs)dnoTv (x)h(t)
A

1
(det Ct) IHXIH

exp[-tznczls“i/Z]dp(s)

?EZ%'E:Y ijBc(f(t)c;Ix + s-ngs)dv(x)h(t)exp[-tzucglsni/Z]dp(s)

where we have used Remark 1.2.6 (c) and the fact that pu(B) = 1.
Hence we may start with the assumption that for all real-valued,
bounded, “-HB-continuous functions G on B we have
a G(s)du(s) = lim [_[[.G(f eyc L + ¢ 2syd h
(@ [EEd4 ) = lin [I[O(EEC x + 8-C"8)dve) Jn ()
2y -1 2
(3.2.4) exp[ -t uct s“x/Z]dp(s)
) {u, :tc€ (0,0)} is a )\-family as t - o .
Putting G =1 1in (3.2.4)(8) and using the same argument given

in the proof of Theorem 1.4.3, condition (3.2.4)(a) can be written

as follows

-1 -2
(3.2.5) IBG(s)dp(s) = ::: jBch(f(t)ct x + (I-C_ )s)dv(x)dpt(s)

for all real valued, bounded, H°“B-continuous functions G on B.
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From (3.2.5), it follows that
(3.2.6) v o (f(t)cgl)-l *pu o (I-C;Z) ¥ W on B as t -,

Since G(f(t)x)dv(x) 1is a measure of bounded variation

on H_, the Fourier transform of G(f(t)x)dv(x) is uniformly

A

T-continuous ([7], p. 7). Hence the Gross extension of its
Fourier transform is well-defined ([7], Theorem, p. 5). Similarly
the Gross extension of the Fourier transform (c.f.) ¢(:) of
when regarding y as a probability measure on (foB(Hk)) is
well-defined.

Now from Remarks 3.1.9 (b) and 1.2.6 (c), it follows that

(3.2.7) E, {(ty) ([5G (£(E)x)exp[ -1t£(t) (7,x) 1dv(x)) )
A

%

= E, {¥(t)7([ G(f(t)x)exP['itf(t)(st)]dnoT; x))"1.

A A
Let {Pj} be a sequence of finite dimensional projections on
Hk converging strongly to the identity operator. Then it is easy
to see using Lemma 3.1.5, Lebesgue Dominated Convergence Theorem

and the fact that P,'s are continuous that

]

%

E, {'b(ty)"(‘]'H)‘G(f(t)X)eXP[-itf(t)(y,x)]dndr; &))"}

A

%

= lim E, {v(tPjy)"'(IH)\G(f(t)x)exp[-itf(t)(Pjy,x)]dnoT; (x))~}.

B §
Now as before, using the fact that the integral of a tame function
with respect to the probability measure Pk is the same as its
integral with respect to the canonical normal distribution n on

Hk’ we get
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E, £x))™)

{V(ty)"(IH G(f(t)x)exp[-itf(t)(y,x)]dnoT;
A A

%

= lim En{¢(tPjy)"(fHké(f(t)x)exp[-itf(t)(PBy,x)]dnoT; )~}

joe

where En is the integral with respect to n on Hk'

From Remark 1.1.15, it follows that

lim En{w(tpjy)"(fﬂ G(f(t)x)exp[ -itf(t) (P y,x)]dno'r\'fj

=)™}
joeo A ]

%

= En{¢(ty)“QfoF(f(t)X)exp[-itf(t)(y.X)]dnoT; =)"} .

Hence from (3.2.7), we have

Ep {9(ty) ([ge(E(t)x)exp[-itf(t) (y,x)]dv(x))}
1\

%

= En{v(ty)"(IHxG(f(t)x)exp[-itf(t)(y,x)]dnoT; =)~ .

Now from (3.2.2)(3) and the fact that “-“B-topology is stronger

than “-“k-topology on B we obtain

Iﬂlé(s)dp(s) = g:: h(t) (det Ct)En{w(ty)"(IHxF(f(t)x)

%

exp(-itf(t)(x,y)]dnor; x))~}

for all real valued, bounded, “-Hx-continuous functions G on H_.

A
Therefore by Theorem 4 of [7] we have

(a) f(t)2 trace (C;2Tv) -0 as t-o

(3.2.8) 2 1.2
(b) The measures h(t)exp[-t “Ct s“k/Z]dp(s) converge

weakly to u on Hk as t -,

Now (3.2.8)(a) implies ([7], Corollary 3.4) that
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2,

(3.2.9) £(e)C; X on H. a8 t -w ,

A

and (3.2.8)(b) implies (Definition 1.1.2) that

(3.2.10) Yt'i’oy on H, & t-w.

From (3'2'2)(b) and (3.2.10), it follows (lLemma 3.1.10) that

Yt'g Y on B as t —» o ,

Thus condition (3.2.3)(b) holds.

To get (3'2'3)(a) we note that
(3.2.11) p{x € B : (I-C;Z)xn A x when X - x} =0.

From (3.2.11) and (3'2'3)(b)’ it follows ([1], Theorem 5.5, p. 34)

that
(3.2.12) (1-c;2)yt 2y on B as t-w.

Let f(t)cglx be distributed as Vs then (3.2.6) and (3.2.12)
imply ([16], Theorem 2.1, p. 58) that for any sequence {tn]
approaching infinity, {vt :n=1,2,...]1 1is conditionally compact
on B. Now by Lemma 3.1 gf (133, {ve } is a \-family for any

\ € L: which is sufficient for [vt n: n=12,...]. Since

\ € LI, it follows that {vt fn= 2,2,...} is a )\-family, and
since this is true for any quuence [tn} with t - o a5 n-ow
we conclude that {vt :t € (0,0)} is a )\-family as t - » of
probability measures on (B,5(B)). From this and (3.2.9) it follows

(Lemma 3.1.10) that

f(t)C;IX'-QO on B as t -,
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Hence condition (3.2.3)(3) holds.

We now prove the converse. From (3.2.3)(b), it follows
that for any sequence {tn} approaching infinity,
{ut :n=1,2,,..] is compact. Hence it is a \-family for any
A enL; ([13], Lemma 3.1). Thus {pt :t € (0,0)} is a \-family

as t - o, and hence condition (3.2.2)(b) is satisfied. Further-

more, from (3.2.3)(b) we get

(3.2.13) lim a = 1.
t—e0

let G be a real valued, bounded, H~HB-continuous function

on B, and let

B, = h(t)(det Ct)EPk{cp(tY) (e (£ (t)x)exp}-itf(t) (y,x)Jdv(x))} -

IBG(x)dp(s).

Then from (3.2.13), it follows that

B
lin g, = lim £ = lim L he) det COE, {9(ty) (]G (E(E)x)
A

t—xo t—o ¢ t-o ¢t

exp[-1t£(t) (y,%) Jdv(x))} - [RG(s)du(s).
By the argument used to obtain (3.2.5) we have

(3.2.14) lim g_ = lim J'BIBG(f(t)C;Ix + (I-C;Z)s)dv(x)dp.t(s) -
t—

t—oo
[RIOENOP
From (3.2.12) and (3.2.3) ., it follows ([16], Lemna 1.1
and Theorem 1.1, p. 57) that

v 0 (f(t:)C;]')-1 * My o (I-C;Z)-1 ! W as t - o on B.
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Hence

(3.2.15) J‘BJ‘BG(f(t)C;Ix + (I-C;z)s)dv(x)dp.t(s) - [46(5)du(s)

as t - o>

for all real valued, bounded, “-“B-continuous functions G on B.

From (3.2.14) and (3.2.15) we get 1lim Bt = 0, and therefore the

t—o
proof is completed.
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