
 

 

 
 

MEASURES OH BANACH SPACES '

 
 

lNVERSlON- FORMULAE FOR HE PROBABILITY

Thesis for the Degree of Ph. D‘

MIC'iGAN STATE UNIVEHSWY

GH‘OLAMHOSSEIN GHARAGOZ HAMED‘ANE

 
 
 

   

3
"
“

WO
)

H

I

4-
fi
r
m
-
m
s
:

:<:::;;',\j
a
m
e
g
z
w

'
 



 

J I. IB
P A I? Y

Mi’i
ligm {State

Umve
rsxt

y

|' -.

.7
u

.

C
n
-

  

    

   

Int”'

This is to certify that the

thesis entitled

INVERSION FORMUIAE FOR THE PROBABILITY

MEASURES ON BANACH SPACES

presented by

Gholamhosse in Gharagoz Hamedani

has been accepted towards fulfillment

of the requirements for

Ph.D. Statistics and

Probability

Major professor

degree in  

Date May 72 1971 

0-7639





é70$/5



 

   

the

fun

0n

Nil

inv.

WOr'

Mai]

18}

whh



ABSTRACT

INVERSION FORMULAE FOR THE PROBABILITY

MEASURES ON BANACH SPACES

By

Gholamhossein Gharagoz Hamedani

Let B be a real separable Banach space, and let u be

a probability measure on .BKB), the Borel sets of B. The char-

acteristic functional (Fourier transform) m of u defined by

My) = j‘Bexp{i(y.x)ldu(x) for y e 13* (the topological dual of

B) uniquely determines p.

In order to determine p, on 6(3), it suffices to obtain

the value of IBG(s)du(s) for every rea1.valued bounded continuous

function G on B. Hence an inversion formula for u in terms

of ¢ is obtained if one can uniquely determine the value of

IBG(s)dp(s) for all real valued bounded continuous functions G

on B in terms of m and G. The main efforts of this thesis

will be to prove such inversion formulae of various types.

For the Orlicz space Ea of real sequences we establish

inversion formulae (Main Theorem II) which properly generalize the

work of L. Gross and derive as a Corollary the extension of the

Main Theorem of L. Gross to Ed Spaces (Corollary 2.2.12).

In Chapter One we prove a Theorem (Main Theorem I) which

is Banach space generalization of the Main Theorem of L. Gross

which differs from the Main Theorem 11 in the sense that the class
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of probability measures for which inversion formulae hold is

smaller than that of the Main Theorem II.

Finally in Chapter Three we assume our Banach space to

have a shrinking Schander basis to prove inversion formulae (Main

Theorem III) which express the measure directly in terms of m

and G without the use of extension of m as required in the

Main Theorems I and II. Furthermore this is achieved without

using Lévy Continuity Theorem and hope that one can use this

Theorem to obtain a direct proof for the Iévy Continuity Theorem.
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0. INTRODUCTION

Let (3,“ouB) be a real Banach space with Schauder basis

{bn}° Let 6(B) denote the Borel sets of B, that is, the a-field

generated by the open sets. The characteristic functional (Fourier

transform) q) of a probability measure u on 8(3) defined by

(p0!) = j‘Bexp {i(y,x)}dp.(x) for y e 3* (the topological dual

Space of B) uniquely determines p.

In order to determine u on 18(B), it suffices to obtain

the value of IBG(s)du(s) for every real valued bounded continuous

function G on B. Hence an inversion formula for u in terms

of m is obtained if one can uniquely determine the value of

IBG(s)dp(s) for all real valued bounded continuous functions G

on B in terms of m and G. The main effort of this Thesis will

be to prove such inversion formulae of various type for different

Banach spaces B. The Main Theorems 1, II, III give inversion

formulae which express JBG(s)dp(s) in terms of m and G.

In order to motivate these formulae let us consider first

a finite dimensional space Rk’ a probability measure u on RR

and a real valued bounded continuous function G on Rk. If G

were not only bounded but also in L](Rk,dx) and if u were

absolutely continuous with respect to Lebesgue measure with an

L2 derivative then putting
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(0.1) as) -- (211)-k/2 ijc<x>exp[-i<x.y)]dx

the Plancherel Theorem asserts that

(0.2) kac<s>du<s> = (2n>""2 kacpcymowy .

In the absence of the validity of the two assumptions made above

neither of the two right hand integrals in (0.1) and (0.2) need

exist. However, upon inserting the convergence factors

exp[-“xH2/2a2] and exp[-“yH2/2t2] in these two integrals one may

obtain an inversion formula in the following well known manner.

Assuming merely that G is real valued, bounded, continuous we

put

Ga(y) = (211)”k/2 IR G(x)exp[-“xH2/Zaz]exp[-i(x,y)]dx .

k

Then it can easily be shown that for any probability measure p

-k/2 a 2 2

In G(8)du(8) = 1m (Zn) in cp(y)G (y)exP[-\\yH /2t jdy -
a

k cut-coo k

Upon rewriting these equations in terms of the canonical normal

distribution (cf., Remark 1.1.8) on Rk (with variance parameter

one) we obtain by a change of variables

k k

IR G<8)dp(8) = lim. 0 t EyEx{¢(ty)G(ax)exp[-ita(x,y)]}

k a,t-co

where Ex and By denote expectation in the indicated variable

with respect to the canonical normal distribution. Before extend-

ing this formula to a real separable Hilbert space H three

difficulties must be overcome in its formulation. First of all

in the limit as k a m, (at)k approaches either zero, one or m.
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Secondly the expectation with respect to the canonical normal dis-

tribution on H will not make sense for a general bounded continuous

function G ([8], Theorem 1) and thirdly even if C were, for

example, uniformly T-continuous (cf., Definition 1.1.11) so that

EX{G(ax)exp[ita(x,y)]} makes sense the resulting function of y

need not define a measurable function with respect to the canonical

normal distribution so that Ey{...} will not be defined. These

problems were first pointed out and handled by L. Cross in [7] by

modifying the finite dimensional formula as follows. Instead of

using the convergence factor exp[-Hx“2/2a2] one uses

exp[-“A-1x“2/2a2] where A is an invertible operator on Rk'

Furthermore, let us observe that (ta)k‘det Al is asymptotically

equal to [det (I + (ta)2AAI)]% in the sense that their ratio

approaches one as t and a 4.”. After an obvious change of

variables one can then obtain the following correct inversion

formula in RR

(0.3) kac(s)du(s) = lim [det(I + (ta)2AA*)]§£EyEx{cp(ty)G(an)

t,”

expE-ita(AX.y)]}-

In formulating this equation in a Hilbert space one notes

that the determinant factor makes sense provided AA* is trace

class operator, that is, provided A is a Hilbert-Schmidt Operator.

Furthermore, if A is a Hilbert-Schmidt operator then it may be

seen in view of Theorem 1 and Corollary 3.2 of [7] that the second

and third difficulties mentioned above also vanish, since

EX{G(an)exp[-ita(Ax,y)} may also be written as
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IH exp[-ita(x,y)]-G(ogA)dnoAm1 where n is the canonical normal

distribution on H. Since noA-1 is a measure on H ([7],

Corollary 3.2) the last integral not only makes sense for an

arbitrary bounded continuous function G but also defines a

uniformly T-continuous function of y ([7], Theorem 1).

A fourth difficulty now arises. An estimate of the dif-

ference between the left hand side of (0.3) and the expression

under the limit sign in (0.3) shows that although this difference

goes to zero for each dimension k as t and a go to 9

independently, the rate at which the difference goes to zero de-

pends more and more critically as the dimension k gets larger on

the relative manner in which a and t go to a. In the limiting

case of a Hilbert space it results that the relative growth rates

of a and t must be restricted. In the Theorem below which

is a restatement of Theorem 4 of [7], this is effected by putting

a = f(t) as is done in [7] following earlier work of Cameron and

Donsker mentioned there.

0.4. Theorem. Let A be a Hilbert-Schmidt operator with

dense range on a real separable Hilbert space H. Let p be a

probability measure on H and f(t) a positive admissible function

(cf., Definition 1.4.2) on (0,m). let h(t) be a positive function

on (0,») and denote by v the measure noA"1 where n is the

canonical normal distribution on H. Let m be the characteristic

function of p and denote by Ct the positive square root of

I +-t2f(t)2AA*. Let En denote expectation with respect to the

canonical normal distribution. In order for the inversion formula



(0.5) AH G(s)dp(s) = :im‘h(t)(det Ct)En{m(ty)"(IHG(f(t)x)

—cco

exp[-1tf(t) (x .mdv (x) )“l

to hold for all real valued bounded continuous functions G the

following two conditions are necessary and sufficient

(0.6) f(t)2 trace (c;2 AA*) —. o as c -. an

(0.7) The measures h(t)exp[-t2ucglsH2/2]dp(s) converge weakly

to p. as t-0m.

Furthermore if (0.6) and (0.7) hold then (0.3) also holds for any

bounded measurable function G which is strongly continuous almost

everywhere with respect to p.

The condition (0.6) of L. Gross although valid for Hilbert

space seems to depend heavily on the symmetry structure of the

space. We re-interpret this condition for a general Banach space

in terms of convergence of certain Gaussian measures (cf., Lemma

2.3.4). In terms of this re-interpretation the Theorem can then

be extended to a Banach space with Schauder basis as follows.

Using the fact that B has a Schauder basis, we can, following

ideas of J. Kuelbs [12], imbed B measurably in a real separable

Hilbert space HA, whose norm is weaker than the Banach norm H “B.

We then treat the probability measure u on B as a probability

measure on H . This enables us to get the necessary and sufficient

A

conditions for the inversion of u regarded as a measure on H

A

using essentially ideas of 1" Gross [7]. However this method

allows one to obtain such a formula only for G bounded and con-

tinuous on HA’ which is a proper subclass of the G's required.
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To circumvent the problem we have to use essentially the notion

of x-family introduced by J. Kuelbs and V. Mandrekar [13], which

exhibits the detailed structure of the probability measure H on

HA which is actually supported on B. In Chapter I, such an

inversion formula is obtained for any Banach Space with Schatder

basis.

Our initial objective in Chapter II is to prove a Theorem

(Main Theorem II) which generalizes Theorem 4 of L. Cross [7] in

his form. For this purpose we will need to restrict ourselves to

Orlicz Space Ea of real sequences since in this case the form

of characteristic functional of a Gaussian measure is known (See,

[13]). The Main Theorem II is stronger than the Main Theorem I,

in the sense that, in case of Ba Spaces, the class of measures

for which the inversion formulae can be obtained from the Main

Theorem II is larger than that of the Main Theorem I. We further

assume that the function a(o) associated with Ea possesses a

particular prOperty relative to one-dimensional Gaussian measures

to get Corollary 2.2.12 which gives us analytic condition for the

inversion formulae and also gives precise generalization of the
 

main inversion formulae of L. Gross ([7], Theorem 4) to Orlicz

Spaces of real sequences.

Finally in the third Chapter we let (B,H-HB) be a real

Banach space with shrinking Schauder basis {bu}. Since {bn}
 

is shrinking, the coordinate functionals on B form a basis for

* *

B , and hence we may consider B as a Borel measurable subset

of L, the vector Space of all sequences of real numbers with

topology of coordinatewise convergence. Also we Shall let n



be the canonical normal distribution on HA so that for each

x 6 HA’ n(x) is a random variable on B*, and let Pk be the

countably additive (will be shown) cylinder set measure on 3*

induced by the above family. Then we shall prove a Theorem (Main

Theorem III) which gives a class of inversion formulae different

from that of the Main Theorem I. In the Main Theorem I we have

extension of characteristic functional to L whereas in the Main

Theorem III we have extension of characteristic functional to B*.

Hence (3.2.2)(a)t is stronger than (1.4.4)(a) Since for A 6 L1;

PA is countably additive on B*. Furthermore since {bn} is

shrinking we are able to give a proof for the Theorem without using

levy Continuity Theorem and hope that one might be able to use

this Theorem to obtain a proof for the Lévy Continuity Theorem.



CI‘IAPI‘ERI.

INVERSION FORMULAE OF THE CHARACTERISTIC FUNCTIONAL OF A

PROBABILITY MEASURE ON BANACH SPACES WITH A SCHAUDER BASIS

§l.0. Introduction.
 

Let (B’H’HB) be a real Banach Space with a Schauder basis

denoted by {bu}. Let B(B) be the a-field generated by the open

subsets of B. Every element of 6(3) will be called a Borel set.

In order to determine a probability measure .3 on B(B), it suffices

to obtain the value of IBG(s)dp,(s) for every real valued bounded

continuous function G on B. Hence an inversion formula for p.

in terms of its characteristic functional, (p is obtained if one

can determine uniquely the value of IBG(s)dp.(s) for all real valued

bounded continuous functions G on B in terms of q) and G.

The main effort of this Chapter will be to prove such inversion

formlae for p. on 6(B).

Following [12], we shall first define a particular inner

product on B which generates a norm weaker than the Banach norm

““3. Upon completing B with respect to this norm we will obtain

a real separable Hilbert Space H with the prescribed inner product.

A

Since “xHB is measurable with respect to the norm “.“l on H)‘,

it follows that 6(B) is contained in the Borel subsets of H)‘

which we denote by 6(Hx). Thus any probability measure p. on

(B,B(B)) induces a probability measure on (HX,B(H>‘)) by defining

subsets of HA4; to be of u-measure zero.



Now if p. is a probability measure on (B,/3(B)) with

characteristic functional, m, then u can be defined to be a

probability treasure on (3)35me with characteristic functional,

¢('). Note that ¢(°) is actually the restriction of m to H:.

1" Gross describes various inversion formulae for t(-) ([7], §4).

We will use Gross' result ([7], Theorem 4), the notion of "x-family"

and the idea of "stodhastic linear functional" first occurring in

[13] and [14], to prove a class of inversion formulae for m.

We start by introducing some preliminaries required in the

remainder of this Chapter.

§l.1. Basic Definitions.
 

In this Section we present for the sake of completeness

some Standard concepts and definitions. For further details the

reader is referred to [1] and [16].

1.1.1. Definition (a). Let S be a complete separable
 

metric Space and let. W2 be the Space of positive finite measures

defined on the a-field generated by the open subsets of S. A

sequence pn of measures in. W; is said to converge weakly to a

measure u in. WI if Isfdun a Isfd“ for every bounded continuous

function f on S. We will denote this convergence by “'n g u.

If {pt : t E (0,m)] is a family of measures in, ”b then we say

pt 2.“ as t a.m, if for any sequence {tn} approaching infinity,

1
1
8

(b) A sequence pn of measures in.'Wz is said to be conditionally

compact (tight), if for every 6 > 0 there exists a compact set

6

K in S such that pn(Ke) > 1 - e for all n.
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1.1.2. Definition. Let (0,33) beaprobability Space
 

and let x be a random variable on 0 taking values in S. Then

x is said to be distributed as v if v = Pox-1. A family of

S-valued random variables {Xt : t 6 (0,ao)] is said to converge

in distribution to an S-valued random variable X as t‘n a if

Poxgl 3 Fox.1 as t .-. on. We will denote this convergence by

Xt ‘90 X as t _. an. The following definitions are due to I. Segal

and are taken here from [7].

1.1.3. Definition. A weak distribution on a topological

linear Space L is an equivalence class of linear mappings F

from the (topological) dual space L? to real-valued random variables

on a probability space (depending on P) where two such mappings

F1 and F2 are equivalent if for every finite set of vectors

yl,...,yk in L? the sets {Fi(y1),...,F1(yk)} have the same

distribution in k Space for i B l or 2.

Here L* denotes the Space of continuous linear functionals

on L.

In a finite dimensional Space a weak distribution coincides

with the notion of a measure, that is, if L is finite dimensional

then for any given weak distribution there exists a unique Borel

probability measure on L such that the identity map on If is

a representative of the given weak distribution ([9], p. 372).

1.1.4. Definition (a). A weak distribution m on a Banach

Space B is said to be continuous if for any sequence {yk} : B*,

l

“yku l'* 0 implies m(yk) converges to zero in probability.

B

 

1) For y e 3*, My“ * - Sup \y(x)| (See, e.g. [18], p. 160).

B “x“BSl
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(b) A weak distribution m on a topological linear space L is

a measure if there exists a probability measure p defined on the

o-field S generated by weakly open Subsets of L such that the

identity map on L? is a representative of m.

1.1.5. Definition. If m is a weak distribution on a
 

locally convex topological linear space L and A is a continuous

linear operator on L with adjoint A*, then the weak distribution

y a m(A*y) will be denoted by moA-l.

1.1.6. Definition. A measure u on a locally convex

topological linear Space L is defined to be Gaussian if, for every

continuous linear functional T on I” T(x) has a Gaussian dis-

tribution. u is called Gaussian with mean zero if, in addition

T(x) has mean zero for every T.

1.1.7. Definition. The characteristic functional (Fourier
 

transform) of a probability measure H on the Borel subsets of a

*

linear topological Space L is the function m(-) on L (the

topological dual of L) given by

(P0!) = jL €XP{i(y,X)}du-(X). for each y e L* .

1.1.8. Remark. One Special example of a weak distribution

on a real separable Hilbert Space H is the canonical normal dis-

tribution (with variance parameter one). This weak distribution

is that unique weak distribution which assigns to each vector y

in H* a normally distributed random‘variable with mean zero and

variance Hynz. It follows from the preceding property that the

canonical normal distribution carries orthogonal vectors into in-

dependent random variables ([7], p. 4). It is known that some of
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the theory of integration with reSpect to a measure can also be

carried out with reSpect to a weak distribution. For details we

refer the reader to [9] and the bibliography given there. We shall

also need the following definition from ([20], p. 190).

1.1.9. Definition. An operator from a real separable

Hilbert space H into H, which is, linear, symmetric, nonnegative,

compact, and having finite trace is called an S-operator.

If T is an S-Operator on H, then it is well known that

T has the representation

a

(1.1.10) T): = nil >.n(x.¢=:n)en

where {en} is some orthonormal Subset of H, An 2 0, and

Q

E A < ”-

n=1 n

The S-operator T on {,2 has a representation as an infinite

symmetric, nonnegative-definite matrix T - {tij} where by non-

negative-definite it is meant that 2 t x x

i,k=1 ik i k

integer n and any (x1,...,xn) E Rn' Furthermore, tik = (Tfi’fk)

2 0 for any

where f is the vector in L2 of all zeros except one in the

th 1 on ..

1 position and hence z t = 2 l .< a where 1 's are as in

(1.1.10). From the representation in (1.1.10) it is easy to verify

that ('I'cx,cx))5 - |c‘(Tx,x)% for any real number c and

55 is 3!
(T(x+y),x+y) s (TX,x) + (Ty,y) . Thus (Tx,x)% is a semi-norm

on L2. Let 2 be the class of all S-operators.

1.1.11. Definition of T-topology, The r-topology on L2

is the smallest locally convex tepology generated by the family of

semi-norms pT(x) B (Tx,x)!5 on L2 as T varies through E

([18], p. 172).
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1.1.12. Definition. Let H , H be Hilbert spaces with
l 2

orthonormal Systems {en}, {fn} reSpectively. Then a continuous

linear operator A from H1 into H is called Hilbert-Schmidt
2

operator if there exists an orthonormal system {gn} in. H1 such

that E1HAgnHIiz is finite ([5], p. 34).

n 1.1.13. Remarks. (a) Let H be a real separable Hilbert

space, then H is isomorphic to' L2. If T is an S-operator on

H then T possesses a unique nonnegative, symmetric square root,

which we denote by T35 ([17], Theorem, p. 265). Now using the

fact (See; [5], Theorem4, p. 39) that the square roots of S-

operators are Hilbert-Schmidt operators one can easily Show that

the topology 7 on H is the weakest topology on H for which

all Hilbert-Schmidt Operators are continuous from T to strong

topology on H. Thus a basic open neighborhood of x is
0

{x : “A(x-xo)“ < 6} whenever A is a‘Hilbert-Schmidt operator on

H. Therefore our definition of T-topology coincides with that of

L. Cross ([7], p. 5).

(b) By Corollary 3.2 of [7], if m is a continuous weak distribu-

tion on a real separable Hilbert Space H and A is a Hilbert-

Schmidt operator, then moA-1 is a measure on H. Hence noA-

is a measure on H if n is the canonical normal distribution

on H, since in this case n is clearly a continuous weak dis-

tribution on H. We will use the same notation, namely, noA-1

for the weak distribution noA"1 and its correSponding probability

measure u (See; Definition 1.1.4).

1.1.14. Definition. A tame function on a real Hilbert

Space H is a function of the form fo) = §(Px) where P is a





l4

finite dimensional projection on H and Q is a Baire function

on the finite dimensional space PH.

For such a function we have [f(x) 8 ¢((x,x1),...,(x,xk))

where x1,...,xk is a basis of PH and V is a Baire function

of k real variables. If F is a representative of a weak dis-

tribution then the random variable f~ = ¢(F(x1),...,F(xk)) depends

only on the function f and the mapping F while integration pro-

perties of f~ such as the integral of f", the distribution of

f",-convergence in probability of sequences f;, etc. depend only

on f and the fn's and on the weak distribution of which F is

a representative. Let us denote by 3 the directed set of finite

dimensional projections on H directed under inclusion of the

ranges. For a given continuous function f on H and a given

weak distribution one may consider whether the net (foP)~ of the

random variables where P ranges over directed set 3, converges

in probability as P approaches the identity through 3. If so

then the limit which we Shall denote by f~ is a random variable

whose integration properties are completely determined by the

function f and the weak distribution. In [8] and [9] classes

of continuous functions are described for which the limit defining

the random variable f~ exists when the weak distribution in

question is the canonical normal distribution, and some explicit

evaluations are also given. The part of this integration required

for our purpose is given below and is directly taken from ([9],

p. 374).

It is clear that a function f on H is a tame function

if and only if there is a finite dimensional projection P on H



n1

f1

t<

§1

We

St;



15

such that f(x) = f(Px) for all x and such that f restricted

to the finite dimensional Space PH is a Baire function. Then f

is said to be based on PH. If f is based on PH then it is

clearly also based on. QH whenever Q 2 P and Q is a projection.

If f is based on the finite dimensional subSpace PH then we

note that its expectation with reSpect to the canonical normal dis—

tribution (with variance parameter one) is given by

E(f ) = (2n) Im£(x)exp[-\\x\\ /2]dx

when the integral exists where k is the dimension of PH and dx

is Lebesgue measure on PH.

1.1.15. Remark. Let H be a real separable Hilbert Space,

and let {P1} be any sequence of finite dimensional projections

converging strongly to the identity operator. If a complexdvalued

function f on H is uniformly continuous in the tapology T

then 1im in prob. (foP

J
340

normal distribution and equals f~ ([7], Theorem, p. 5). Now if

)" exists with reSpect to the canonical

for each j, E[(fon)”] exists and if 1im E[(fon)"] exists then

following L. Cross [8], we say that f lSmintegrable with respect

to the canonical normal distribution. That is, for a uniformly

T-continuous function f on H which is integrable we denote by

En(f") = ]i: E[(fon)"] .

§1.2. Measures onéganach Spaces with a Schauder basis.

We shall study here Banach Spaces with Schauder basis.

We need some preliminary results for measures on such Spaces. We

start with the following definition from ([3], p. 67).
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1.2.1. Definition. Let B be a Banach Space. A Schauder

basis {b1} in B is a sequence of elements of B such that for

each x in B there is a unique sequence of real numbers {a1},

depending on x, such that

n

le Hx - 2 a b,“ = 0 ;
i=1 i 1 B

n—aoo

(D

the series 2 aib1 is called the expansion of x in the basis

i=1

{bi}, and the coefficient ai = ei(x) is the 1th coordinate of x

in the basis {b.}.
1

Throughout this Chapter B will denote a real Banach space

with Sdhauder basis {bu} such that without loss of generality

“anB = l ([3], p. 68). We will write the expansion of x as

Q

2 Bn(x)b‘n and this emphasizes that the coefficients generate

n-l

coordinate functionals on B. It is clear that these coordinate

functionals are linear and it is well known that they are continuous

as well ([3], p. 68). Further it is possible to assume without loss

of generality ([3], Theorem 1, p. 67) that

k

(1.2.2) “an = Sup H z an(x)anB .

k n=1

Following ideas in [12], we introduce a Hilbert Space

associated with B.

For A 6 L1, and x,y E B define

a

(1.2.3) (x,y) = 2 ann(x)Sn(Y) (convergence follows from

n=l page 17, line 2)

where Bn's are coordinate functionals. Then (,) is an inner

product on B and B is a pre-Hilbert space with the norm

M, = (mi and
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2 2 2

\lek S HAHI 5:? lenool = Cl 8:? lanml .

We know ([3], p. 68) that Sup ‘B:(x)‘ s Czuxug, and hence

n

unisqgnufi=chfi-

This implies that the tepology on B induced by “.“A is weaker

than the norm topology on B.

Let HA denote the completion of B under H “A. Then

clearly B C HA. Upon replacing y by bk

(x,bk) = xk5k(x). Since xk > 0, Bk(x) is uniformly continuous

in (1.2.3) we get

in x in “'Hk-topology on B, and since B is dense in HA’ Bk(°)

can be extended uniquely to a continuous linear functional §k(-)

on HA. Furthermore it can easily be seen that for x,y E H ,

A

(1.2.4) (x,y) = 21 An ans) Sum .
n:

From (1.2.2) and the fact that an is a “-“x-continuous

function on B, it follows that “XHB is a measurable function in

“-“x-topology, and hence B is a “on-measurable Subset of HA.

Therefore if u is a measure on B, it can be regarded as a measure

on HA via p,(A) 8 “(A n B) for all A 6 5(3)).

Let v be a Gaussian measure with mean zero on (BgBCB)).

Then by argument similar to Lemma 2.2.of [12], v is a Gaussian

measure on H , and therefore there exists a nonnegative, symmetric

A

trace class operator (that is, an S-operator) Tv on HA such that

(whenA = fo<y.x>2dv(y)

for x 6 HA’ and that v is uniquely determined on H by the

A

operator Tv’ These results are well known and appear, for example,
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in [20]. Furthermore, Tv has the representation (1.1.10), that is,

a

(1.2.5) Tv(°) = 1.21 1115381931,

on HA where {8k} is an orthonormal sequence in H and

A

le 2 o, E “k < a.

1.2.6. Remarks. (a) Since B is separable, 5(B) is

the Same as o-field generated by the weakly open sets and the latter

one is the same as o-field generated by the field of the cylinder

sets .

is
v is a Hilbert-Schmidt operator(b) Since Tv is an S-operator, T

35
on HA, and hence noT; is a measure on H . But Tv uniquely

A

determines v, so by definition 1.1.4, v is the probability measure

’5
on HA corresponding to the weak distribution noT; .

(c) Since cylinder sets in HA and B are the same, from (a)

is
and (b) above, it follows that noT; is countably additive on

(B ,B(B)) and noTj’

(d) We note that (c) could also be obtained from the fact that

(B) - 1.

the Borel subsets of B are also Borel subsets of HA (because

“XHB is “-“x-measurable) and therefore every countably additive

measure on HA is countably additive on B.

Following ideas are motivated by [13].

1.2.7. Definition. If A 6.Lm and [pt : t E A] is a

family of probability measures on B such that

2

ut{x E B : “E1 Aan(x) < a] a l

for each t G A we say A is sufficient for the family [pt : t E A].



19

Now for each x 6 B we have Sup ‘Bn(x)‘ < a, thus it

follows that any A 6 L1. is sufficientnfor any family of proba-

bility measure on B.

1.2.8. Definition. A family of probability measures

{pt : t E A} on B is a x-family for some A 6 g:' if A is

sufficient for {ut : t E A] and for every 6,6 > 0 there is a

sequence {6N} such that

a)

(1th: 6 B : E Anfiibc) < 6} > l-e

n=N+1

implies

ut{x e B : “n=§+15n(x)bn“n < k(6)} > 1-(e+,N) for all t

where lim 6N = 0 and k is a strictly increasing continuous

functionyon [0,m) with k(0) = 0.

A family of probability measures {pt : t E (0,m)] on B is said

to be a x-family as t a m, if for any sequence {tn} approaching

infinity the family {pt : n = 1,2,...] .is a x-family.

It is quite Clea: that any family of probability measures

on a real separable Hilbert Space is a x-family with A = (1,1,...)

and k(6) - 5%.

For x E B, N = 1,2,... we define

N

P x . 2 B (x)b

N k=1 k k

Qx= z s(x)b

N k=N+1k 1‘

*

and for y E B , N = 1,2,... we define



20

N

PNY(°) B 8 Bk(°)Y(bk)°

k=l

1.2.9. Definition. If {pt : t E A} is a family of

probability measures on B and x E 1,: then we say the family

*

of c.f.'s {(pp‘ (.); t E A} is x-continuous at zero in B if:

t

(i) for every integer N the family [qu (-): t E A} are equi-

t
*

continuous at zero in PN (B ), and

(ii) lim Sup 1im J [1 - Re (p (-)] = 0 where

N t k “’1‘ “'t

JN,k[...] = f(PN-l-k-PNm" [...]§x(N,k.dy)

*

(Pu-H: ' Pu)B

with each coordinate y(bi), N+l s i S N+k, Gaussian with mean

and §X(N,k,-) is the Gaussian product measure on

zero and variance xi'

1.2.10. m. Let

(1) x e L: .

(ii) {pt : t 6 (0,00) be a x-family as t -+ an of probability

measures on B ,

(iii) pt 3 p. on HA as t -+ on where p. is a probability measure

on B.

Then ptgp, on B as t—oao.

M. let {tn} be a sequence in (0,012) such that

tn .. an as n .. on. Then (iii) implies that pt 3 p. on HA, that

is, {utn: n - 1,2,...} is compact on HA. SinZe {pt : n - 1,2,...}

is compact on HA and Ph is continuous it follows tfiat

{pt oPg1 : n = 1,2,...} is compact on HA for all N 8 1,2,...,

which is equivalent to saying {pt OBI;1 : n - 1,2,...} is compact

n

on B for all N = 1,2,... . Thus the c.f.'s {:p 0P-1(-):n = 1,2,...}

”tn N
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*

are equicontinuous at zero on Ph(B ) ([15], Corollary 2, p. 193)

and since

cp 0P_1(X) = (PH: (PNx)

”’t n n
n

*

the equicontinuity at zero on Pk(B ) of [mh (.) : n = 1,2,...}

tn

follows. Hence condition (1) in Definition 1.2.9 is satisfied.

Let A 6 LI. and let S >»0 be given and choose a compact set R6

in HA such that “t (Re) > 1 - e/2 for n = 1,2,... . Since

n

m (-) is c.f. of pt and §x(N,k,-) is symmetric about zero

I"‘t n
n

it follows that

N+k
2

1 - = 1 - -
O

t

n

Since pt (B) = 1 and Bi = B1 on B, it follows that

n

N+k .2

J [1 - Re <9 (3')] [1 - exe{-’5 2‘. A B (x)}]dp. (X)-

N’k “'tn In), i-N+1 i 1 ‘:n

Since 1 - eC s l for g 2 0 we have

N+k
.2

S [1 - exp -’5 z x a (x) d0 (x) + e/2.

Ike { i=N+1 1 1 l] tn

We note that Sup Sup |§1(x)‘ < M Since Sup |§1(x)\ s Cux“

e i i A
x€K

([3], p. 68) and “x“x is a continuous function. Hence

2 m
M

JN,k[1 - Re a; (-)] s 1 - exp{- 5" 2 A1} + 6/2

t i¢N+l
n

for all n = 1,2,..., and letting N approach infinity and using

the fact that A 6 LI. we have the right hand term dominated by

6/2. Thus condition (ii) of Definition 1.2.9 is Satisfied, and
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hence {H1 (-); n = 1,2,...] is A-continuous for A E L+' This1.

together wlgh the assumption that [pt : t E (0,m)} is a x-family

as t a m imply ([13], Lemma 3.2, p. 11) that [pt : n = 1,2,...}

is conditionally compact on B. Hence pt g u on B Since

[ut : n = 1,2,...} is conditionally compagt on B and

“-1w -1
pt oPfi = “DEN for all N = 1,2,... ([1], p. 35). Since this

is true for any sequence [tn] with tn a m as n a a we get

ut g H on B as t S,m,

1.2.11. Remark. We remark that from the proof of Lemma

1.2.10 one can derive the stronger statement: Let [pt : t E A}

be a x-family of probability measures on B. Then ut conditionally

compact on HA implies that [mt : t E A} is conditionally compact

on B. However, since we shall be needing only the statement in

Lemma 1.2.10 for further easy reference we have not stated the

Lemma in all its generality.

§1.3. Extensions of characteristic functional.
 

Suppose L is the space of all real sequences with the

topology of coordinatewise convergence and PA(.) is the product

probability measure on L Such that the ith coordinate is Gaussian

with mean zero and variance *1 where A = [xi] 6 L: . If u is

a probability measure on B then A 6 L1. is sufficient for p

and for y 6 L we define the "stochastic linear functional" on B

in the following manner:

~ N . N

<y.x>“= lim 2 ei<x>yi = 11m x 610‘”.-
N i=l N i=1

The following Lemma is proved in [13], page 22.
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1.3.1. Lemma. The stochastic linear functional

N N A

(1-3-2) (y.X)" = 11m )2: 81(103'll

N 1-1

is Borel measurable on L x B and if

F = [(y,x) : (y,x)z exists and is finite],

1.3.3. Definition. If p is a probability measure on
 

the Borel subsets of B with the c.f. m, we define the extended

characteristic functional $z(.) on L as follows

f(y) = f}, exp{1(y,x)~}d,(x) (y e z.)

([13], p. 23).

Then $§(-) is a Borel measurable function on L which is defined

almost everywhere with respect to the measure P Furthermore,A.

since each y E B* generates the unique sequence of real numbers

{a = [y(b1),...,y(bk),...} we may consider B* as a linear subset

of L under J. Kampe de Fériet map ([11], pp. 123-127), and hence

the terminology extended c.f. Since for y E B* and x E B,

(y,x)” .- (y,x) which implies that cp(y) = (f(yz).

1.3.4. 539355. Let u be a probability measure on B

with c.f. m, then as was shown earlier, u can be regarded as a

probability measure on H . Let t be the c.f. of H when u

A

is regarded as a measure on HA, then

* *

My) = In exp{i(y.x)}du(x) v y 6 H)\ c B c L .

A

'1:

By Theorem 1 of ([7], p. 7), V is uniformly T-continuous on HA’
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and hence by Theorem of ([7], p. 5), the random variable t"

(that is, the Gross extension of V) is well-defined with respect

to the canonical normal distribution n on H1. Finally from

(1.3.2), the fact that p.(B) '- 1, and lemma 4.3 of [14], it follows

that ¢(y)" - cp~(y) almost everywhere with respect to P1.

§1.4. General inversion formlae.

Let v be a Gaussian measure on (B,B(B)) with mean zero.

Then v(A) - v(A n B), A 6 501)) is a Gaussian measure on

(111360113), and there exists a nonnegative, symmetric trace class

operator Tv on H1 corresponding to v. Let f(t) be a real

valued function defined on (0,00) and denote by Ct the positive

square root of I + t2f(t)2Tv on H). (See; 1.1.13 (a)). Let p,

be a probability measure on (B ,B(B)), and define

1 2 -1 2
ptm) -= 3- IA h(t)exp[-t “C: IBM/21‘1”“) A 6 6(3)

t

where h(t) is a positive function on (O,co), and

2 ‘1 2
(1.4.1) at = $3 h(t)exp[-t “Ct s\\x/2]dp,(s) .

1.4.2. Definition. A real valued function f(t) defined

on (0,eo) will be called admissible if t f(t) _. so as t _. on.

We are now ready to state and prove the Main Theorem 1.

1.4.3. Main Theorem I. let

(i) B be a Banach space with Schauder basis {bi}’

(ii) p be a probability measure on (B,B(B)) with the c.f. (p,

(iii) f(t) be a positive admissible function on (O,oo), and

h(t) be a positive function on (0,»),
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(iv) X be a B-valued random variable distributed as v where

v is a Gaussian measure on CByB(B)) with mean zero and

the property that Tv is positive-definite,

(v) Yt and Y be B-valued randomrvariables distributed as

pt and p respectively,

(vi) EP denote the integral with respect to PX on L.

1

Then for all real valued, bounded, “'uB-continuous functions G

on B the following are equivalent:

r(a) ch<s>du<s> = :3: h<t>(dec ct)EPx{cp”<ty)ch(f(c)x)

 

expi-itm) (y .xfldvsm

(1.4.4) 4

K(b) {pt : t E (O,m)} is a x-family as t a a

(a) f(t)C;1X :2 0 as t —o a

(1.4.5)

(b) Y 3 Y as t _. m .
t

Proof. We shall first show (1.4.4) implies (1.4.5). Let

G be a real valued, bounded, “-HB-continuous function on B, and

observe that

EP {fang}, c<f<t>x)exp[-itf<t> (y,x)“Jdvmn

l

R“; m

= h(J‘B eit(y’3) du.(s))(jB c(f(t)x)e'itf(t>(y’x) dv(x))}dPx(y).

. as a:

We note that elt(y’8) e-itf(t)(y,x) G(f(t)x) is jointly measurable

since it is a product of a jointly measurable function of s, x and

y with a “-“B-continuous function of x namely G(f(t)x). Since

it is bounded and all the measures are probability measures by

Fubini's Theorem ([19], p. 140) we have
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EP {¢~(ty) qB c<£<t>x>expL-1tf<t) (y,x)fidvam

x

= IBIB G(f(t)x) (Jill eit (Y’s-f(t)}i) dP)‘(}'))dV(X)dp(8)

N

it lim 2 Bios-fun)?i

= Isis c(f(t)x)(fL e N3” 1'1 dPx(y))dv(x)dp(s).

By Dominated Convergence Theorem we get

N

it 2 31(s-f(t)x)yi

= IBIB G(f(t)x)(b]]-_12 IL e i=1 dPx(y))dv(x)dp(s)

2 N

=.IB§B G(f(t)x)(§:: exp{- %—-i§1 xiBi(s-f(t)x)})dv(x)dp(s)

2 m

"' MB G<f(t)X>expi- %' 12:1 K13:(3'f(t)X)}dv(x)du(s)

a IBIB c(f(t)x)exp[-t2ns-f(t)x":/2]dv(x)du(8)o

Now from 1.2.6 (c) and the fact that ”(B) = 1, it follows that

2 2 -5
= IH.IH. G(f(t)x)exp[-t Hs-f(t)xux/2]dnoTv (x)du(s).

x x

We note that G is H°Hx-measurable (that is, measurable in the

“-“x-topology) since the norm “x“B is “-“x-measurable and G is

5
“-“B-continuous; and T is a Hilbert-Schmidt operator on Hl'

Hence by Lemma 4.1 of [7] we have

1 -1 -2 - 2 -1 2
I'-' WEEK-[11x G(f(t)Ct X + 8--Ct s)dnoTvk(x)h(t)exp[-t “Ct 3ux/21dH-(8)°

Again from 1.2.6 (c) and the fact that ”(B) = 1 we get

= Eg—C—t). Mn c(£(t>c;1x + s-c;Zs)dv(x)h<t>expt-t2\\0;18\\:/21du<s>.
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We may now start with the assumption that for all real valued,

bounded, “'“B-continuous functions G on B we have

r(a) IBG(s)dp.(s) = if: IB[IBG(f(t)C;1x + s-C;28)dv(x)]h(t)

4 exp[-t2HC£18“:/2]du(s)

(1.4.6)

 (b) {pt : t E (O,m)} is a x-family as t a'm .

L

Putting G E 1 in (1.4.6)(a) We get

1 = lim In h(t)exp[-t2“C;13H:/2]dp(s).

t-cco

From (1.4.1), it follows that

(1.4.7) 1 = lim a

t-ccn

t 0

Using (1.4.7) we obtain

(1.4.8) In G(8)du(8) = 1m MB c<f<c>cglx + (I-c;2>s)dv<x>dut(s)
t-m

for all real valued, bounded, H-uB-continuous functions G on B.

From-(1.4.8), it follows that

(1.4.9) vo(£(c)c;1)'1 * ”tea - of)“: u on B as c 4.. .

Since G is bounded on B and v is a probability measure,

the measure G(f(t)x)dv(x) is a measure of bounded variation on

B, and hence a measure of bounded variation on H . Therefore by

1

Theorem 1 of ([7], p. 7) the Fourier transform of G(f(t)x)dv(x)

is uniformly T-continuous, and hence the Gross extension of its

Fourier transform is well-defined ([7], Theorem, p. 5). Similarly

the Gross extension of the Fourier transform (c.f.) ¢(-) of p
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when regarding p as a measure on (HX“B(H1)) is well-defined.

Now from Remarks 1.3.4 and 1.2.6 (c), it follows that

(1.4.10) EP {$“(ty><j3 c<f<c>x>exp[-1tf<t)<y.xf”]dv<x>>}

1

k
= priw(tY)"(IHk0(f(t)x)eXP[-itf(t)(Y,X)]dnoT; <x>>"} -

let {Pj} be a sequence of finite dimensional projectiom on H}.

converging strongly (that is, in H-“x-topology) to the identity

operator. Then using the fact that P 's are continuous together

1

with Lebesgue Dominated Convergence Theoremnwe obtain

% e
E (2‘)) }

PX

= 31:: 11wa(tPij'(IHXG(f(t)X)exp[-itf(t)(Pjy .X)]dnoT;%(X))"] -

{w (ty)"'(J‘H G<f(t)x)exp[-itf(t) (y,x)]dnoT;

>.

Now using the fact that the integral of a tame function with respect

to the product measure P1 is the same as its integral with respect

to the canonical normal distribution n on H1, we get

%
prw(ty)"(j’HxG(f(t)x)exp[-itf(t)(y,xndno'r; (20)")

k
= f: EnH<tPjy)"(jH G(f(t)x)exp[-1tf(t)(PjyatndnoT; 00)")

J 1

where by En. we mean integral with reSpect to the canonical normal

distribution n on H1.

From Remark 1.1.15, it follows that

%
}::.En{¢(trjy)"(ju G(f(t)X)exp[-itf(t)(Pjy.x)]dnor; (X))"}

h

a En[t(ty)~(IHxG(f(t)x)exp[-itf(t)(y,x)]dnoT;%(x))"}
.

Hence from (1.4.10) we get
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E, Way) (j, c<£(t>x)expt-1tf<c) <y.x>“]dv(x>>}

1

= EDHOJYYQ‘H)‘ G<f<c)x)exp[-itf(t)(y,x)]dnotrfcxn") .

Now from (1.4.4) (a) and the fact that \\'H>‘-t0pology is weaker than

H'HB-topolosy on B we obtain

foo(s)du(s) a :4: h(t)(det Ct)En{¢(ty)"(IHxé(f(t)x)

.% ~

exp[-itf(t)(y,x)]dnoTV (x)) }

for all real valued, bounded, u-uA-continuous functions G on BX.

Therefore by Theorem 4 of [7] we have

r f '2(a) f(t trace (Ct Tv) -0 0 8.8 t -+ on

(1.4.11) <

(b) The measures h(t)exp[-t2“0;18“:/2]du(s) converge

 
K weakly to p. on H)‘ as t-ocn .

Now (1.4.11) (a) implies ([7], Corollary 3.4) that

(1-4-12) f(t)C;1X'-q 0 on H}. as t .4 co ,

and (1.4.11) (b) together with (1.4.7) imply (Definition 1.1.2 (b))

that

(1-4-13) Yt £1? on H)\ as t —. co .

By the assumption {pt : t E (0,a)} is a x-family as t a«a. This

together with (1.4.13) satisfy the hypotheses of Lemma 1.2.10,

and hence the conclusion of the Ienma which is Y ‘3 Y on B as
t

t -+ on gives us (1.4.5) (b)°
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To get (1.4.5)(a) we note that, it is easy to verify using

the fact that Tv is positive-definite (and therefore Tv has

positive eigenvalues) and tf(t) «'m as t «(a that 0:2 con-

verges strongly to zero operator as t 4.”, One needs only express

“CEZXH: in terms of an orthonormal basis in H1 which diagonalizes

Tv' Hence I - 0:2 converges strongly to I, and clearly

-2
(1.4.14) “{x E B . (I - Ct )xn’A>x when xn « x] 0 .

From (1.4.14) and (1.4.5)(b), it follows ([1], Theorem 5.5, p. 34)

that

(1.4.15) (I - C;2)Yt QY on B as t -v as .

Let f(t)C;]X be distributed as Vt' then (1.4.9) and (1.4.15)

imply ([16], Theorem 2.1, p. 58) that for any sequence tn approach-

ing infinity, [vt : n 8 1,2,...} is conditionally compact on B.

Now by lemma 3.1 2f [13], {Vt } is a x-family for any 1 €.q:

which is sufficient for {Vt n: n 8 1,2,...}. But by assumption

1 6 LI“ which is sufficient for any family of probability measures

on B, and hence {Vt } is a x-family on B. Since this is true

for any sequence [tn] approaching infinity we conclude that

{Vt : t E (0,m)] is a x-family as t «»m of probability measures

on CBJB(B)). From this and (1.4.12) it follows (Lemma 1.2.10)

that

f(t)C;]X'-QO on B as t-°°°s

which is (1.4.5) (a)'
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We now proceed to the proof of that (1.4.5) implies (1.4.4).

(1.4.5)(b) flmplies (Definition 1.1.2) that for any sequence tn'd a,

{at : n 8 1,2,...} is compact, and hence it is a x-family for

anyn X 6 LI, ([13], lemmm.3.1). Thus [pt : t E (0,o)} is a 1'

family as t «in, hence (1.4.4)(b) holds.

Furthermore, from (1.4.5)(b), it follows that

(1.4.16) lim at = 1 .

t-m

Let G be a real valued, bounded, “-“B-continuous function on B,

and let

at = h(t)<det ‘3th may)<j3c<f<t>x>epritf<t>(y,x)”jdwxm -

1

ch(s)du(s).

From (1.4.16) we get

at 1
11m Bt Balitn— 8 11m :- h(t) (det C1:13)];xmfip(ty) (IBG(f(t)x)

t-tco t-cco at; t-uco t

expE-icfm(y,x)“Jdvmn - ch(s)du<s).

By the argument used to obtain (1.4.8) we have

(1.4.17) 1im 5t = lim IBIBG<£<t>Ct1x + (I-c;2)s)ds(x)dp,t(s) -

t-«n t-eco

f3 G(s)du(s) .

We note that (1.4.15) and (1.4.5)(a) imply ([16], Lemma 1.1

and Theorem 1.1, p. 57)

v o (f(t)C;1)-1*u o (I - C22)1.W=u on B as t a a,

which can equivalently be written as
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(1.4.18) IBIBG(f(t)C;1x +-(I-C;2)s)dv(x)dpt(s) a ch(s)du(s) as ta~ m

for all real valued, bounded, “-HB-continuous functions G on B.

From (1.4.17) and (1.4.18) we get lim at . 0 which completes the

t—u

proof.

1.4.19. Corollary. Let

(i) B be a Banach space with Schauder basis {bi},

(ii) p be a finite positive measure on (BgB(B)) with Fourier

transform m,

(iii) f(t) be a positive admissible function on (0,o),

(iv) x be a B-valued random variable distributed as v where

v is a Gaussian measure on B with mean zero and the

property that Tv is positive-definite,

(v) pt be a probability measure on (ByBCB)) where

l

pt(A) B 2 2
IBexp[-t “Cglst/2]dp(s)

IAexp[-t2uCE18“:/2]du(3)

for all A 6 5(8),

(vi) EP denote the integral with reapect to P1 on L.

1

Then for all real valued, bounded, “-HB-continuous functions G

on B the following are equivalent:

(”(a) ch<s>ds<s) - a: (det Ct)EPx{cpz(ty)(J‘BG(f(t)x)

expE-itfm (y.x)”]dv(x>>}

(1.4.20)

 Eb) [pt : t E (0,m)] is a x-family as t a m

(a) f(t)C;lX'-D;0 as t—bm

(1.4.21) 2 _2

(b) t (Ct s,s) w 0 in measure with respect to u

88 tfimo
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2:22;, Theorem 1.4.3 is clearly true for a finite positive

measure u. Putting h(t) - l in Theorem 1.4.3 we see that

(1.4.5)(b) implies IB(1 - exp[-t2(C;Zs,s)/2]dp(s) a 0 as t‘~ a,

that is, exp[-t2(C;28,s)/2] converges to one in L1(B,u) and in

fact this is clearly equivalent to (1.4.5) (b) when h(t) - 1. It

is also equivalent to (1.4.21)(b). (1.4.20) and (1.4.2l)(a) are

restatement of (1.4.4) and (1.4.5)(a) respectively.



CHAPTER II

OIERATOR THEORETIC CONDITIONS FOR THE INVERSION FORMULAE ON

F-SPACES POSSESSING A SCHAUDER BASIS AND A

QUASI-NORM WHICH IS ACCESSIBLE IN BOTH DIRECTst

§2.0. Igtroduction.

Let E be an F-space with Schauder basis {bu} and a

quasi-norm “on which is accessible in both directions ([13],

p. 39). In Section 2.1, we will observe that, if the function

a(-) given in the definition of accessible quasi-norm “o“

possesses a particular property, then E and the Orlicz space

Ea of real sequences are homeomorphic and isomorphic ([13],

Theorem 6.3). In Section 2.3 we reduce for the case of Orlicz

space Ea condition (1.4.5)(a) in the form similar to that of

L. Gross ([7], (10), p. 36). This restriction on the space is

needed since in this case the form of characteristic functional

of a Gaussian measure is known (See; [13]).

We shall first give a Theorem (Main Theorem II) which is

Orlicz space generalization of Theorem 4 of Gross [7] and is

stronger than the Main Theorem I, in the sense that, in case of

Orlicz spaces, the Theorem holds for 1 belonging to a set con-

taining L11 Then we assume that the function a(-) possesses

another particular property to be able to get Corollary 2.3.12

which is our main objective. From Corollary 2.3.12 we get in-

version formulae for (LP, p > 2) spaces. Finally as a special

34
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case when Ea = L2, we take 1 = (1,1,...), then H = L2, and

1

Theorem 4 of [7] follows from Corollary 2.3.12.

§2.1. Preliminaries and Definitions.
 

Let a(s) be a convex function on [0,m) such that

a(0) = 0, a(s) > 0 for s > 0. Further, assume

(2.1.1) 0(23) S M a(s)

for all s 2 O and some M < m.

Now we define Ea as the Space of all sequences satisfying

.;1 a(x:) < m. Since a(°) is convex, it follows that Ea is

a vector Space over the reals ([13], p. 49).

Let T(s) = 0(32), then F(-) has the same properties as

a(°) and, it follows that

Ms) = j: p<x>dx

where p(0) = 0 and p(s) is nondecreasing on [0,m). We assume,

without loss of generality, that p(s) is left continuous.

2.1.2. Definition. By u = §(v) the inverse function of

p(u) is defined, on the understanding that if p(u) makes a

jump at u = a, then §(v) = a for p(a-) < v s p(a+), while,

if p(u) = c for a < u s b, but p(u) < c for u < a, then

§(c) = a. Furthermore §(0) = 0, and, if 1im p(u) = L is finite,

then Q(v) = +w for v >.L. With these co:::ntions u = @(v)

is evidently nondecreasing for v 2 0, and left continuous for those

values of v at which §(v) is finite. It follows that 6(v)

is also Borel measurable on [0,m).
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We now define

s

A(s) = $0 Q(x)dx .

Then F and A are complementary in the sense of Young ([21],

it

p. 77), and by 6T we mean all real sequences {xi} such that

(2.1.3) 2: F(‘xi\) = z

1 i=

2

. 01(xi) < °° -

1: 1

*

Similarly, 6A is all sequences such that

A(‘xi‘) < w .

u
'
t
3
8

1l

*

From (2.1.3), it follows that 6? contains the same sequences

If x = {xi} is a sequence we define

nxu, =Sup {3 \xim = 33 MM!) s 13
y i=1 i=1

and

HA = 511M; lxiyj.L : i: r(\yi\) s 1} .

y i=1 i=1

2.1.4. Definition. The Orlicz space 6F (5 ) is the

A

collection of all real sequences such that “X“? (“x“A) is finite.

2.1.5. Remarks. (a) Since a(s) satisfies (2.1.1),

it follows that

r(2s) = a(4s2) s M a(282) s Mza(sz) = M21“(s),

*

and hence we know ([21], Corollary, p. 81) that 6F (and, therefore

Ea) contains the same sequences as or. Further, it is known that

6P is a real separable Banach Space in the norm “x“? and since
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I"(23) s M2r(s) for s 2 0 we also have ([20], Lemma 0,, p. 33)

that {pn} : 6F converges to p E 6F in norm provided

m G

2
lim 2 F(|x, - x,‘) = lim 2 a[(x. - x.) ] = O

n i=1 1,n 1 n i=1 1,n 1

where by xi n’ xi we mean the ith elements of pn, p respectively.

9

(b) By Theorem 6.2 of [13], (Ea’ H'Hr) is a Banach space with a

Schauder basis {bu} where bn is the vector with one as the nth

coordinate and other coordinates zero.

Following [13], we now introduce the notion of F-Space

with a Schauder basis and an accessible quasi-norm in both directions.

Let E be an F-space with quasi-norm “-H (See; [13],

p. 2) and Schauder basis {bu}. We assume further that the following

assumptions (A) are satisfied:

(A.1) the basis elements {bu} can be adjusted so that “bu“ s 1

(this is always possible),

(A.2) if K is any compact subset of E then Sup \Bn(x)‘ < w

n,xE K

where Bn's are the coordinate functionals on E,

(A.3) the a-field generated by the weakly open subsets of E is

identical with the Borel subsets of E.

It can easily be seen that in case “-H is actually a norm and

E is then a Banach space assumptions (A) are always satisfied.

Let a(-) be a convex function on [0,m) such that

o(0) = 0 and a(s) > 0 if s > 0. Further, assume for every

compact subset K of E there exists an r > 0 such that x 6 K

Q

hnplies A(x) = Z a[6i(x)] < r, and for every r > 0 there

i=1

exists an M > 0 such that A(x) < r implies
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331 swim] a M wuxu)

where y(-) iS a.continuous function on [0,m) such that

v(0) = 0.

2.1.6. Definition. If the quasi-norm H’“ on E admits
 

the existance of functions a(°) and y(-) having the above pro-

perties we will say that it is accessible.

We also note that if a(°) and y(-) satisfy the conditions

indicated then a(') is continuous and strictly increasing on

[0,m), y(s) > O for s > O, and that y(o) can be taken to be

increasing on [0,m).

2.1.7. Definition. The quasi-norm “-H on E is said
 

to be accessible in both directions if there exist functions
 

a, Y1’ Y2 such that H.“ is accessible with reSpect to o and

Y2 , and for every x E E

°° 2
Y1(“XH) 5 .21 34:51:00] 0

1:

Here y1(-) is an increasing continuous function on [0,m) such

that y1(0) = O, y1(s) > 0 for s > 0, and a, v2 satiSfy the

conditions required in the Definition 2.1.6.

In this Section we shall be concerned with an F-Space E

with Schauder basis satisfying assumptions (A) for which the quasi-

norm “-H is accessible in both directions and the associated

a(-) satisfies (2.1.1)

We now recall the following Theorem from ([13], p. 57).

Theorem. If E has a quasi-norm which is accessible in

both directions with reSpect to the functions 0, Y1’ Y2 and

a(-) satisfies condition (2.1.1) then E and the Orlicz Space
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Ed are homeomorphie and isomorphic.

2.1.8. Remark. In view of the above Theorem we can (and

will) identify the F-Space E with Ea and restrict ourselves to

sequence Space Ea'

§2.2. Associated Hilbert Space.

Following [13], we Shall denote by Ed the Hilbert space

L2 or an Ea Space where o(°) satisfies (2.1.1). We assuue

that ac(-), the complementary function of a(-) in the sense of

Young ([21], p. 77),satisfy (2.1.1). Notice that if Ea = L2

then a natural choice for the function a is a(s) E 5. Hence

ac(s) = O on [0,1] but qc(s) = o for s > 1. Thus qc(-)

does not satisfy (2.1.1) when Ea = L2 and this is a Special case

which is easily handled.

In terms of the notations we have used in Section 2.1,

Ed is equivalent (isometrically isomorphic) to the Orlicz Space

or where F(s) = a(32). We will let Sq, Sa -denote the Orlicz

c

Spaces given by a(-) and ac(-), reSpectively. Then the dual

space of SQ can be identified as Sq and Since aC(-) also

c

satisfies (2.1.1), except when Ea = L2, it follows that the dual

of Sac is 30 ([21], p. 150).

For each vector 1 = (x1,x2,...) in the positive cone of

$0 , we define the Space H1 as all sequences x = (x1,x2,...)

c m

such that 2 xix: < a. Then H1 is a Hilbert Space with

a i=1

“x“ = ( 2 )\.x2)!5 and the inner product
x i=1 1 i

a
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In the Special case Ea = L2 we have 80 = LOD and for simplicity

c

we take x = (1,1,...). Then H = L and we Shall assume without
1 2

loss of generality that a(s) E S.

The following Lemma is proved in ([13], p. 62).

2.2.1. Lemma. Ed is a Borel Subset of H1 for each h

in the positive cone of Sa . Furthermore, every Borel subset of

c

Ed is a Borel subset of “1'.

We note that from Lemma 2.2.1, every probability measure u on

Ea can be regarded as a probability measure on H Furthermorex.

every countably additive measure on H is countablly additive

1

on Ea. Now having this observation in mind we shall prove the

following Lemma, which is similar to Lemma 1.2.10.

2.2.2. Lemma. Let

. +

(1) 168 s

0[c

(ii) {pt : t 6 (0,0)} be a x-family as t a m of probability

measures on Ea’

(111) ”t :1” on “X as t a m where u is a probability

measure on Ea-

Then ptgp. on Ea as taco.

Proof. Let {tn} be a sequence in (0,m) such that

. W

tn a»m as n a m. Then (iii) implies that utn = p on HA’

that is, {pt :n.= 1,2,...} is compact on H1. Using exactly

n

the same argument given in Lemma 1.2.10 the equicontinuity at

*

zero on FN(Ea) of {¢Lt (°) : n = 1,2,...} follows. Hence con-

dition (i) in Definition n1.2.9 is satisfied.

+ .

Let A 6 Sa . Since ¢h (.) ls c.f. of “t and §1(N’k’.)

C t n

n

is symmetric about zero it follows that
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N+k
2

JNk[1 - Re T] (Y)]= [E011 ' eXP{''% Z xixi}]dut (x).

ni=N+l
tn

By Young inequality ([21], p. 77)

2 2

xixi s ac(xi) +-a(xi) for each i .

Hence

[ N+k N+k

1 - Re mu (y)] s [1 - exp{--% 2 ac (l)--% 2 0(x2)} du (X)
N,k IE0 i=N+1 i=N+1 ] tn

tn

5 1 - exp{-35z o(1.1%”Eexp{-J: z o(x.2nd,).tn (x)-

+1c i=N++1

We note that as N 4.x, 2 “C(xi) a 0 Since 1 E S , and hence

i=N+1 ac

exp[-% 2:iac(:i)} a 1. Also for x 6 Ed we have {xi} E Sa,

1%

that is E a(x2) < m. From this it follows that the functions

i=1

f (x) = exp[--% Z a(x.)] converge pointwise to one. Further-

N i=N+l 1

more fN'S are nondecreasing, so by Monotone Convergence Theorem

we get

a:

[E exv{-% 2 04X?))ldu-t (JO-+1 as N-°°° .

a i=N+1tn

Therefore

J l - Re a 0 as N A.” for n = 1 2 ... .
N,k[ qht (Y)] a a

n

Thus condition (ii) of Definition 1.2.9 is also satisfied, and

hence {m (°) : n = 1,2,...} is x-continuous for A 6 8+ .

”t 0’c
n .

This together with the assumption that [pt : t E (0,m)} is a

x-family as t a m imply ([13], Lemma 3.2, p. 11) that

{pt : =1 ,2,...} is conditionally compact on E1.

Hence ”tn a p on Ea since {pt : n = 1,2,...} is conditionally

n
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9&1 g u o pgl for all ‘N = 1,2,...compact on Ea and pt 0

([1], p. 35). Since thgs is true for any sequence {tn} approach-

ing infinity we get pt 3 p on Ea as t a m.

We use the fact that every linear operator on E: into

Ea can be represented as an infinite dimensional matrix to give

the following definition.

2.2.3. Definition. A linear operator from E: into Ea

is an a-Operator if the matrix of the operator, {tij} is symmetric,

nonnegative definite with .;1 a<tii) < a.

2.2.4. Lemma. Letl-T be an infinite dimensional matrix

{tij} such that T is Symmetric, nonnegative-definite and

.2 a(tii) < m. Then T is an a-operator on E: into Ea'

i=1 *

Proof. Let y E Eo’ and define

"
(
‘
1
8

n ‘
<

@(Ty). = ..

1 j 1 1.] j

where {bu} is the basis for Ed given in 2.1.5 (b). Clearly

T is linear, and the proof will be completed as soon as we show

*

T is well-defined, that is, Ty E Ea for each y E Ea. Since T

is symmetric, nonnegative-definite, it follows that

°° °° a a _ a °° 1:
‘(Ty)i\ s jglltijuflbj)‘ s jgl tii tjj\y(bj)\ — tii 121 tjj \y(bj)|.

By assumption 21 a[(t?j)2] = 2 a(tjj) iS finite, hence

J= i=1

{tij} E Ea. But y E EZ, {tij} E Ea imply ([21], Theorem 3,

p. 82) that

(D

a = m
jgl tjj ‘y(bj)‘ A < ,
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a
hence ‘(Ty)i\ s A tii .

Since a(o) is increasing we get

2 2

a(\(Ty)i\ ) s o (A tn) .

NOW USIIIg the fact that CY(°) satisfies (2.1.1), for some k

2 k

Therefore

2 a(|(Ty)i|2) SMk z a(t.i) < w 3

i=1 i=1 1

which implies that Ty E Ea’ and hence the proof is completed.

We know (Lemma 2.2.1) that Ea is a Borel subset of H1 and

the u-HF-topology is Stronger than “'Hx-tOpology 0n Ea. Hence

** *

it follows that H1 is a subset of Ea' We now identify HA

by H1 and prove the following Lemma.

*

2.2.5. Lemma. Every a-operator T on Ed is a trace

class operator on H .

X

*

Proof. Since T is an a-operator on Ea we get

a

iEloaii) < m which implies {tii} E Sa’ aid Since 1 = {xi} E SO!c

it follows ([21], Theorem 3, p. 82) that z Kitii is finite.

i=1

Observe that

m

tracerT = 1:1 Kitii :

which is finite, hence T is a trace class operator on HA.

2.2.6. Remark. It is known (See; Remark 1.1.13) that,

if T is a nonnegative, symmetric trace class operator (that is

s
an S-Operator) on H then TA is a Hilbert-Schmidt operator on
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a
H1. Hence by 1.1.13 (b), v = noT- is a probability measure on

HA where n is the canonical normal distribution on HA. Since

’5
T actually takes its values in Ed the measure v = noT- has

its support in Ea’ and Since every Borel subset of Ed is a Borel

5i
Subset of HA’ the probability measure noT- is countably additive

on (anG(Ea)) (See also Remakr 1.1.13).

§2.3. Inversion formulae for Orlicz Space of real sequences.

In this Section we prove a Theorem.(Main Theorem II) which

gives a class of inversion formulae for a probability measure on

the Space Ea. It differs from the Main Theorem I in the sense

that, in case of Ed Spaces, (2'3'2)(b) is Stronger than (1.4.4)(b).

This can easily be seen Since L1 is a subset of S .

Let P1(.) be the product probability measur: on L Such

that the 1th coordinate is Gaussian with mean zero and variance

xi where A = {xi} E Sq . If p is a probability measure on Ea

then 1 E Sq is Sufficient for p and as before for y E L

c

we define the "Stochastic linear functional" on Ea in the follow-

ing manner:

N

(ysX)~ = lim 2 xiyi .

N i=1

A’ N

The stochastic linear functional (y,x)~'= lim 2 x,yi is Borel

N i=1

measurable on L X Ea and Pk X u{(y,x) : (y,x)R‘ exists and is

finite} = 1 (See; [13], p. 22). If p is a probability measure

on the Borel subsets of Ed with c.f. m, then we define the

extended c.f. mg(-) as in Definition 1.3.3. We also note that

we can repeat Remark 1.3.4 to get ¢(y)” = 63(y) a.e. P1 Where
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W is c.f. of p, when p. is regarded as a measure on (HY/3011)).

Now let T be an a-operator on E2, then by lemma 2.2.5,

T is a trace class operator on HA. Denote by Ct the positive

square root of I + t2f(t)2T on H1 where f(t) is a positive

admissible function on (0,m) ([17], Theorem, p. 265). As in

Section 1.4 let p, be a probability measure on (Ea,B(Ea)),

and define

l 2 -l 2
pt (A) = ;t— IAh(t)exp[-t “Ct s\\x/2]dp,(s) A e 6(Ea)

where h(t) is a positive function on (O,m), and

2 -1 2

at = IEah(t)exp[-t “Ct snx/2]du(s) .

2.3.1. Main Theorem II. Let

(1) Ed be as in 2.1.5 (b),

(ii) p be.a probability measure on (an6(Ea)) with c.f. m,

(iii) f(t) be a positive admissible function on (0,m), and

h(t) be a positive function on (0,m),

*

(iv) T be a positive-definite a-operator on Ea’

(v) X be an Ea-valued random variable distributed as v = noT-35

where n is the canonical normal distribution on Hl’

(vi) Yt and Y be Ea-valued random variables distributed as

”t and u reSpectively,

(vii) EP denote the integral with reSpect to PA on L.

A

Then for all real valued, bounded, “-“r-continuous functions G

on Ed the following are equivalent
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Qa) IE G(s)dp.(s) = lim h(t)(det ct)H EP {cp“(ty)(_fE G(f(t)x)

a l 1 at-Ico

(2.3.2) < exp[-itf(t)(y,x)zjdv(x))}

 L(b) {mt : t E (O,m)] is a x-family as t a m

(a) mm? 9.0 as t4...

(2.3.3)

(b) YteYaSt—rm.

22222, The necessary Lemmas (Lemma 2.2.2, lemma 2.2.5)

and Remark (Remark 2.2.6) are given in Section 2.2 and the proof

can be carried out in exactly the same way as in the Main Theorem

I with no difficulties.

We now put another condition on a, and prove the following Lemma

to reduce (2.3.3)(a) in the form similar to that of L. Gross

([7], (10), p. 36).

2.3.4. lfiflflir Let

(i) Ea be as in 2.1.5 (b),

*

(ii) T be a positive a-operator on Ea,

a
(iii) X be distributed as v = noT- where n is the canonical

normal distribution on HA,

(iv) assume further that there exists a constant C such that

.+D 2 -+» 2

(2.3.5) i... a(u )dp,(u) s c “[1... u dp,(u)]

for all Gaussian measure p on («apt») with mean zero. Then

the following are equivalent:

(2.3.6) f(t)C;1X e O as t —o co
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CD 2 -2

(2.3.7) 2 a(f(t) (Ct T>ii) a O as t a w

i=1

-2 -2
h

=
o

w ere (Ct T)ii (Ct T bi’bi)Hx

Proof. We shall first prove that (2.3.6) implies (2.3.7).

let {tn} be a sequence in (0,m) such that tn e m as n a a.

Let f(tn)Ct:X be distributed as vt ,,then Vt 13 define] on (EagB(Ea))

n n

and by (2.3.6), [Vt : n = 1,2,...} converges weakly on Ea to

n

50. Since Ea is a Borel subset of HA’ {vtn : n = 1,2,...} can

be regarded as probability measures on HA, and Since topology of

H1 is weaker than that of Eo’ vt converges weakly on HA to

n

60. The c.f. of Vt when regarded as a probability measure on

n

. 2 -2
HA is exp{-%(f(tn) CtnT -,-)H }. Hence vtn g 50 on HA as

n a m implies ([7], Theorem 2, p. 8) that

°° 2 -2 2 -2
z x.(f(t ) (C T)..) = trace (f(t ) C T) a 0 as n a w.
,_ i n t 11 H n t

1—1 n A n

From this, it follows that

(f(t )2(C-2T) ) a O as n a a £0 all i

4i n tn ii r '

Since xi > 0. we get

‘ 2 -2 ,

f(tn) (CtnT)ii a O as n a m for each 1,

Hence, for every N

N 2 -2
(2.3.8) 121 a(f(tn) (CtnT)11) --9 O as n —o m .
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Under condition (2.3.5) and the fact that {Vt } is compact on

n

Ea we get ([13], Theorem 9.1) that for each s > 0 there exists

an N0 such that

on

(2.3.9) 2 a(f(t )2(C-2T),,) < e for all t

. n t 11 n

1=N n

0

Therefore (2.3.8) and (2.3.9) imply that

m 2 -2
11:1 Q<f(tn) (CtnT)1i) -—2 O as n —. co .

Thus (2.3.7) holds.

For the converse, let {tn} be a sequence in (0,m) such

that t a m as n a m. Then (2.3.7) implies that, for sufficiently

n

large n, say no,

; f 2 -2T

. a( (tn) (Ct )ii) < m n 2 n .

i=1 n

H f f t 2 ‘2T 3ence or n 2 no, [ ( n) (Ctn )ii} 6 a.

Now using the fact that 1 = {xi} E S+ , for n 2 no we get ([21],

a
c

Theorem 3, p. 82) that

I
f
b
l
B

xi{f(tn>2<0;2T)ii} s Hind Hff(tn)2(0;2T)ii}Ha .
C n1 l n

From (2.3.7) and Lemma 0 of ([21], p. 83), it follows that

2 -2

“{f(tn) (CtnT)ii}Ha "" O as n —+ a) .

Hence,

2 -2

11(f(tn) (ct T)ii) 4 o as n 4 m .

2 -2

traceH (f(tn) Ct T) —

l n1 n i

"
M
B

Therefore, by Corollary 3.4 of [7] we have

(2.3.10) v
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In order to complete the proof it suffices to Show that

[Vt : n = 1,2,...] is a x-family for 1 E 8:». First observe

n + c

that 1 E S is sufficient for {vt : n = 1,2,...] Since

ac n

°° 2
2 xi a(xi) < a for x E E .

i=1 a

Let 3,6 > 0, and let Y1 be any continuous Strictly increasing

function on [0,m) satisfying (6.6) of ([13], p. 50). Then from

([13]; (6.6), (b.7), p. 51) it follows that

thix 9 HQNXHF > 5} = thix ’ YIKHQNXHF) > Y1(5)}

°° 2
S vtn[x : i=§+ia[Bi(x)] > v1(5)}

where Bi(x) = x1 is the ith coordinate functional on Ea.

Using (2.3.5) we get

m
2

2 of B (X)dv (X)

i=N+1 an l tn 1

C

y1(6)

 

S

c

y1(6)

 

°° 2 -2

2“ a(f(tn) (Ct T)ii).

i=N+l n

From (2.3.7), it follows that, for each s > 0 there exists an

No such that for all n = 1,2,...

 

m f 2 -2 Y1(6)

13s s( “.9 (ctn'r)fi> < C e .

0

Therefore, for all n = 1,2,..., and all N 2 NO

(2.3.11) vtn{x : HQNXHF > 6} < e .

Hence, [vt : n = 1,2,...} is a x-family for any 1 E sg'. Since

n c

(2.3.10) and (2.3.11) hold for any sequence {tn} approaching



1
.
5
5
;
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infinity, it follows (Lemma 2.2.2) that

5 on E as t a m,

which is (2.3.6), and hence the proof is completed.

2.3.12. Corollary. If, in addition to (i) - (vii) of

Theorem 2.3.1, the function a(-) satisfies (2.3.5), then the

following are equivalent:

Ra) jE C(s>ds<s) = 1m h<t>(det ct)H EP {¢z(ty)(j‘E mom

or t-m 1 1 oz

(2.3.13) é exp[-itf(t)(y,x)z]dv(x))}

 (b) {H : t E (0333)} IS a x-family aS t -+ G)

K t

[0a)

1

(2.3.14)

L(b) Y Q Y 33 t -—v 0.3.

t

I
I
P
1
8

oz<f<t>2(c'21)..) .. o as t .. a
1 t 11.

Proof. By Lemma 2.3.4, condition (2.3.14) is equi-

(a)

valent to (2'3‘3)(a)’ hence the proof follows from Theorem 2.3.1.

2.3.15. Remark. In case the matrix {tij} of the a-

operator T is diagonal, condition (2.3.14)(a) would be replaced by

2

f(t) tii

 (2.3.16) 2 (y( 2 2 ) —.o as t:—~m .

i=1 1+t f(t) tii

2.3.17. Definition. If 2 s p < m

l l

T from —'+ —

Lq(P q

then a linear operator

1) into LP is an Sp-Operator if T can be

represented as an infinite Symmetric, nonnegative definite matrix

as

{tij} such that 2 (tii)p/2 is finite. Here, by nonnegative

i=1 n

definite, we mean that Z t .x,x, 2 O for all, (x,x ,...,X)ER

i,j=1 1] i J l 2 n n
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and all integer n. Thus for p = 2, S -operator is S-operator.

2

For p > 2, LP is an Ea Space (Orlicz Space) with

a(S) = 813/2 ([21], p. 78). Furthermore, for this d(.), con-

* *

dition (2.3.5) is satisfied. The a-operators on Ea = Lp are

+- * +

the same as S -0perators, and S = (L ) . Now Corollary

P ac p/2

2.3.12 gives us a proof for the following Corollary.

2.3.18. Corollary. Let p > 2, and let

*

(i) T be a positive-definite Sp-Operator on Lp,

(ii) p. be a probability measure on (LP,B(LP)) with c.f., cp.

(iii) f(t) be a positive admissible function on (0,m), and

h(t) be a positive function on (0,m),

(iv) v = noT-% where n is the canonical normal distribution

on H,

1

(v) EP denote the integral with reSpect to PA on L.

A

Then for all real valued, bounded, LP-continuous (that is, con-

tinuous in Lp norm) functions G on Lp the following are

equivalent:

as) h G(s)dp.(s) = lim h(t)(det ct)H EP {tf(tyuh G(f(t)x)

p t-m i i p

(2.3.19) + exp[-itf(t)(y,x)%]dv(x))}

(b) {pt : t E (0,m)] is a x-family as t a m 
a -2

Re) 2: [f(t)]"icct ThilP/z —'
i=1

0 as t a m

(2.3.20) <

(b) The measures {pt : t E (O,m)] converge weakly

 
K tomon LP as t—oco.
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2.3.21. Remark. (a) If the matrix {tij} of the Sp-

operator T is diagonal, then (2'3'20)(a) would be replaced by

tii )p/2

(2.3.22) O as t -" Q o

I
I
M
8

[f(t)]p (

l

2 2

1 1+t f(t) tii

(b) It can easily be Shown that in Theorem 4 of L. Cross [7]

one can, without loss of generality, assume that the Hilbert-

Schmidt operators in (10) and (11) of ([7], p. 36) to be diagonal.

(c) In the spacial case Ea = L2 we have 30 = LOD and for

simplicity we take 1 = (1,1,...), then H1 = :2. Now using

Lemma 4.3 of [14], and the fact that TJ5 is a Hilbert-Schmidt

operator on L2 whenever T is an Sz-operator on L2 we get

Theorem 4 of [7].

(d) From (b), it follows that in case of Hilbert Space condition

(2.3.22) is restatement of condition (10) of ([7], p. 36).



CHAPTER III

INVERSION FORMULAE OF THE CHARACTERISTIC FUNCTIONAL

OF A PROBABILITY MEASURE ON BANACH SPACES WITH A

SHRINKING SCHAUDER BASIS

§3.0. Introduction.
 

In the first Chapter B was taken to be a Banach Space

with Schauder basis {bn}. In this Chapter we assume that the

Schauder basis {bu} is also shrinking. Since {bu} is shrink-

*

ing, the coordinate functionals Bn's form a basis for B and9

hence we can use results of J. Kampe de Feriét [11] to identify

B* with a Borel subset of L. Thus any probability measure on

B* can be defined to be a probability measure on L through

this identification.

We shall let n be the canonical normal distribution on

HA so that for each x E HA, n(x) is a random variable on B*,

and let Pl be the cylinder set measure on B* induced by the

above family. Then we Shall Show P1 is countably additive on

the o-field of tame sets of 8*. Finally we prove a Theorem

(Main Theorem III) which gives a class of inversion formulae

different from that of the Main Theorem I. In the Main Theorem

I we have extension of characteristic functional to L whereas

in the Main Theorem III we have extension of characteristic

*

functional to B . Hence (3.2.2) is Stronger than (1.4.4)

(8) (a)

*

since for A E LT, P1 is countably additive on B . Furthermore

53
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*

since [bu] is shrinking (and, therefore B has a basis) we

are able to give a proof for the Theorem without using Lévy

Continuity Theorem and hope that one might be able to use this

Theorem to obtain a proof for the Lévy Continuity Theorem.

§3.1. Preliminaries and Definitions.
 

A tame (cylinder) set in a real separable Hilbert Space

H can be described as a set of the form C = P-1(E) where P

is a finite dimensional orthogonal projection on H with range

£3 say, and E is a Borel set in Eh The cylinder set measure

v (See; [6], p.32) associated with the canonical normal dis-

tribution is called Gauss measure on H, and for the above tame

set C we have

-k/2 -“xH2/2

v(C) = (211) j‘E e dx

where k is the dimension of fi’ and dx is Lebesgue measure

on Rk'

3.1.1. Definition. A semi-norm qul on H is called a
 

measurable semi-norm if for every real number s > 0 there exists

a finite dimensional projection Po such that for every finite

dimensional projection P orthogonal to P6 we have

(3.1.2) Prob(\\qu'i > e) < a

where “Bx“; denotes the random variable on the probability Space

(O,m) corresponding to the tame function “Ple and Prob. refers

to the probability of the indicated event with reSpect to the

probability measure m associated with the canonical normal dis-

tribution.
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Observe that the condition (3.1.2) can also be written

v({x : HPle > e}) < e

where v is Gauss measure on H (See; [6], p. 33).

We note that a measurable norm is a measurable semi-norm which is

a norm.

 

3.1.3. Definition ([3], p. 69). A Schauder basis [bi]

in a Banach Space B is called Shrinking basis for B if for each

*

B in B , 1im pn(B) = 0 where pm(B) = norm of B restricted

n-ioo m

to the range of x - 2 Bi(x)bi; that is,

mi=1

Pm<6> = SUP{B<X> = iglei<x>ba = 0 and HXHB s 11.

Throughout this Chapter B will denote a real Banach Space

with a shrinking Schauder basis {b } such that Hb u = 1. As

11 m n B

before we will write the expansion of x as E Bn(x)bn, and

k “=1

. +' .
HXHB — 11m H E Bn(x)anB. For 1 E L1, H1 denotes the completion

k—uoo n—l

of B under the inner product (1.2.3).

*

Let n be the canonical normal distribution on HA into

*

the set of all random variables defined on B , that is, for each

* *

x E H1, n(x) is a random variable on B which is distributed

normally with mean zero and variance HxH:*.

*

We identify HA by H1, hence for each x E H1, n(x) is a random

*

variable on B distributed normally with mean zero and variance

2

x On u,

The basis elements bi's can be considered as coordinate

*

functionals on B ([3], Lemma 1, p. 70). Then “(bi) = (bi,°)

*

is a random variable defined on B which is distributed normally

0 . 2 — —

With mean zero and variance ubin - (bi’bi) — xi.
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Let PA be the cylinder set measure on the field c, generated

*

by tame sets of B induced by the above canonical normal dis-

tribution on H .

1

3.1.4. lemma. P1 is countably additive on Ca

Proof. Without loss of generality we assume “Bi“ * = l.

*

By lemma 1 of ([3], p. 70) {Bi} is a basis for B , hence we

uyn.=nmu,§bs<y>e.u- a. Hyun=u§bsmeaua
B new i=1 B i=1 B

and observe that

Pxfy = HYHBa < e} = Pxiy = ii: Hyun < e}

n

> Px{y : 11m 2 lbi<y>1 < e} -

Ham i=1

n
*

lim 2 ‘bi(y)‘, then X is a random variable on BLet X(y) =

n “A“ 1:12 n m

since E{ 2 [b.(y)] } = 2 A. < 2 x < m, and the series is a
1 _ i , i

1'1 1-1 i=1

series of independent random variabled ([15], p. 234; and [2],

Theorem 9.5.5). In view of the property of Laplace transform,

Theorem 6.6.2 of [2], we observe that the distribution of x is

Q

absolute normal with mean 2 E[‘bi(y)‘] and variance 2 xi.

i=1
i=1

Hence the distribution of X puts mass around zero, and therefore

(3.1.5) Px{y : Hy“ * < e} > PA{X < e} > 0 .

B

From the definition of HA we see that H1 is a dense subset of

B*, and hence B* is the completion of H1 in the Banach norm

H “B* on 3*. Furthermore, “y“n is a tame function on HA and

hence it is a measurable norm (See; Definition 3.1.1).

From (3.1.5) and the fact that “y“n is a nondecreasing

8eQuence of measurable norms on HA, it follows that “y“ * is
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a measurable norm on HA ([9], Corollary 4.4).

So far we have shown that “y“ * is a measurable norm on H1

and 8* is the completion of BHx in this norm. Hence by Theorem

1 of [6], P1 is countably additive on CL

Let x E B, y E 3*, then

a

z ei<x)y(bi>
i=1

(y.X) = y(X) = y( 2161(X)bi)
i:

2 51(X)bi(y)

i=1

m

It follows that (',x) = 2 51(x)bi(-) is a random variable de-

fined on B which is distributed normally with mean zero and

. °° 2
variance 2 1-5 (x) under P .

i=1 1 i A
*

Now let x E H1, y E B and define the "stochastic linear func-

a.

tional" (y,x)A' as follows

a N .

(3-1~6) (y.X) = 11m 2 81(x)b.(y)
1

N-cas 1"].

where as before Bi is extension of Bi to H1.

2. *

From (3.1.6) we have (y,x)~'= y(x) for x E B, y E B .

3.1.7. Lemma. The stochastic linear functional

a N A

N—Ioo i=1

*

is Borel measurable on B X H1 and if

F = {(y,x) : (y,x)R‘ exists and is finite],

then P1 X n(F) = l where n is a probability measure on HA.

Proof. That (y,x)R‘ is jointly Borel measurable follows

easily since it is the limit of jointly Borel measurable functions.
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Fix x and consider Fx (that is, the x-section of F; See [10]).

For this fixed x, (y,x)é‘ is the limit of sums of independent

random variables, and the variance of the Sum ; 1is: (x) is

finite. This implies ([15], p. 234; and [2], T6e6rem19.5.5) that

(y,x)fig is finite almost everywhere with reSpect to P1' Thus

Px(Fx) = 1 for each fixed x E H1. Hence

Pk X n(F)= [H1PA(Fx)duu(X) = In 1 (11100 =

A

Let H be a probability measure on B, then u can be

regarded as a probability measure on HA. Let W be the c.f. of

H when p is regarded as a probability measure on H , then

V(Y) = Ink ei(y’x)dp(x) for all y E H: .

* *

Now I is a function defined on H1 9 B , and we would like to

*

extend W to be defined on B .

*

For each x E H,(y,x)& is defined on B a.e. P , and is

1

*

equal to y(x) with H measure one for each y E H1. We call

In ei(y’x)~du(X) (y 6 3*)

the extension of W to 8*.

Clearly on 11* we have I ei(y’x)~du(X) =J‘ ei(y’x)du(X) = M )
1 H H y '

Since H is actually defined on B we have

J“ ei(y’x)~d (x) =J" ei(y’x)£’dp(x) a.e. P .
Hx 1" B 1

e *

But (y,x)~'= (y,x) for all x E B, y E B , hence

(3.1.8) IH ei(y,x) dp(x) = $3 ei(y’x)dp(x) = ¢(y) a.e. P1

1
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where ¢ is the c.f. of u when u is regarded as a probability

measure on B. Thus c.f. of a probability measure p on B when

considered as a random.variable on B* is equal almost everywhere

P1 to the extension of the c.f. of p when p is regarded as

a probability measure on Hx.

3.1.9. Remarks. (a) Let L be as before. Since {bu}

is a shrinking basis for B, the coordinate functional Bn's form

a basis for B* ([3], Lemma 1, p. 70). Hence there exists an

isomorphism U* from 8* to a Borel measurable subset of L,

say 0* ([11], Section 2, pp. 123-127). Therefore 8* can be

identified with a Borel measurable subset of L, and hence Pk

can be regarded as a countably additive cylinder set measure on

L through this identification.

(b) By (a), Leanna 4.3 of [14] and the fact that P). sits

actually on B* we get $(y)~ = ¢(y) a.e. P1 where ¢(-)~

is Gross extension of the uniformly T-continuous function ¢(-)

with respect to the canonical normal distribution n on H1.

We will close this section by proving the following Lemma.

The hypotheses of this Lemma are the same as of Lemma 1.2.10,

however the proof is completely different. In the proof of Lemma

1.2.10 we used Le'vy Continuity Theorem which we will not use

in the proof of the following Leanna. Instead we use the fact

that {bu} is shrinking and the ideas of [4].

3.1.10. m. Let

(1) x be in 61‘.

(ii) {pt : t E (O,m)} be a x-family as t a m of probability

measures on B,
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(iii) p be a probability measure on B,

(iv) {pt : t E (0,m)} converges weakly to p on H1 as

t-aao.

Then {pt : t E (0,m)} converges weakly to u on B as t-oao.

Proof. Let {tn} be a sequence in (O,o) such that

tn « m as n d’m. Then (iv) implies that {pt : n = 1,2,...}

n

is tight on H1 ([1], Theorem 6.2, p. 37). Hence, for each

s > 0 there exists a compact subset of H1, 88y K6 such that

pt (K6) > 1 - e for all n.

n

K6 is compact implies that K6 is bounded, that is, for each

Q

.2

5 > 0 there exists an N such that 2 X B (x) < 6 uniformly

. i i
a 1fN+1

in x e K6. Thus pt {x e Hx : z x18§(x) < 5} > 1 - e for

n i=N+1

all n. Since 11's are positive, for all N' 2 N

.2 w .2
{x 6 H : Z 1.8.(x) < 6} lex E H : 2 l B (x) < 6}.

X 1=N+1 1 1 )1 1=N '+1 1 1

Hence, for all n and all N' 2 N

m .2

z X18100} > 1 ' e 0p. {xEHz

tn 1 i=N'+l

But for each n, pt is defined on (Bg6(x)), so we get

n

Q

(3.1.11) pt {x e B : z xiB:(x) < a} > 1 - e for all n

n i=N'+l

and all N' 2 N.

Since {pt : n = 1,2,...} is a x-family, it follows that there

n

exists {6N} such that

ptn{x e B : “i=§+191(x)bius < k(6)} > 1 - (e + 3N).
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Now using (3.1.11) we have, for all n and all N' 2 N

z 191(x)b1“3 < k(5)} > 1 - (e + eN)~

'+

ptn{x E B : “1:“

Let NO be sufficiently large so that, for all n

thfx E B 3 “i=N2+lei(X)bi
“B < k(5)} 2 1 _ e .

We now let S be the subSpace of B generated by {b1,...,bN },

km °
and let 8 = {x : inf{“x - zHB : z E S} S k(6)}- For X E B

N
0

we have P x = Z B.(x)b. E S, hence

No i-l 1 1

3k“) 3 {x e B : H z 81(x)biHB < k(5)} .

i=N +1

Thus pt (Sk(6))2 1 - e for all n.

n *

Let T be the Subspace of B generated by {51,...,BN }.

o
*

Then SJ'C>T = B since Bi's are coordinate functionals and

*

form a basis for B (See; Remark 3.1.9 (a)).

We now show there exists an r > 0 such that for all n

pt {x e B : ‘Bi(x)| < r, 1 = 1,2,...,NO} 2 1 - e .

n

Let r1 = sup ‘§i(x)|, then r1 is finite since K6 is a compact

1,K' .

subset of HR, and Sup ‘ai(x)‘ S MHXHx ([3], p. 68). Now let

i

r > r1, then

“tn” 6 B : ‘Bi(x)‘ < r, 1 = 1,2,...,N0}

= utn{x E B : ‘§i(x)‘ < r, i = 1,2,...,No}

2 pt {x E B : Sup ‘§i(x)‘ < r, i = 1,2,...,No}

n 1

2 ”t (Kg)

n

2 1 - e for all n.
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Therefore by Theorem 2.1 of ([4], p. 11), {pt : n = 1,2,...}

n

is conditionally compact on B.

Since {pt : n = 1,2,...} is compact on H1 and RN

n

is continuous, it follows that {pt 0 Ekl : n = 1,2,...} is

n

compact on H1 for all N = 1,2,... . Hence

[pt 0 Pgl : n = 1,2,...} is compact on B for all N = 1,2,...

n

and pt 0 Phl'g>p o Phl. This together with the fact that

n

[utn : n = 1,2,...} is conditionally compact on B imply that

pt ‘E’p on B ([1], p. 35). Since this is true for any sequence

n

{tn} approaching infinity we have pt 3.” on B as t a a.

§3.2. Main Theorem Til.

The following Theorem (Main Theorem III) gives inversion

formulae for a probability measure on a Banach space B with a

shrinking Schauder basis. It differs from the Main Theorem I in

the sense that (3°2'2)(a) is stronger than (1.4.4)(a). This can

easily be seen since P1(B*) = l for 1 E LI. Furthermore, we

will not use Lévy Countinuity Theorem in the proof, and hope that

one might be able to use this Theorem to get a proof for the Levy

Countinuity Theorem.

and a be as in Section 1.4.Lat V, TV, Ct, “gt t

3.2.1. Main Theorem III. Let

(i) B be a Banach Space with shrinking Schauder basis {bi},

(ii) '- (v) be as in Theorem 1.4.3,

*

denote the integral with reSpect to P on B (See;(vi) E 1

p

Lama 3.1.4).

Then for all real valued, bounded, “-HB-continuous functions G
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on B the following are equivalent:

r2a) jBG(s)du(s) = lim h(t)(det Ct)EP {e(ty)(ch(£(t)x)

1t—m

(3.2.2) 4 exp[-itf(t)(y,x)]dv(x))]

 (b) [pt : t E (O,m)] is x-family as t a m

K

[(3) f(t)C;]X '2 0 as t -o on

(3.2.3)

[(b) Yt‘QY as 12—91:).

We note that the proof is similar to the proof of Theorem 1.4.3.

Proof. Suppose (3.2.2) holds, and let G be a real valued,

bounded, H-HB-continuous function on B. Then

EP wry)(jBG(f(t)x>exp[-itf<t)(y.x>]dv<x>>}

l

= I *{cp(ty)(IBG(f(t)x)exp[-itf(t)(y,x)]dvb‘nydPXQ’L

B

Using the fact that G(f(t)x)dnoT;%(x) is a measure of bounded

variation together with Remark 1.2.6 (c) and (3.1.8) we get

_ n(mfi -itf<t)<y.x>"“ -.5
- [Signx e du(s))qnxc<f(t>x)e dnoTv (x))dP>\(y).

A

~

The function e1t(y,s) e-ltf(t)(y’x) G(f(t)x) is jointly measur-

able and all the measures are probability measures so we may use

Fubini's Theorem ([19], p. 140) to interchange some integrals

to obtain
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A
A

't . “’ -'t£(t)< . r“ J:
IBe<ijel (y x) du(8))(ffl1§(f(t)X)e 1 Y x dnoTv (x))dPx(y)

= IH IH G(£(t)X)(I *elt(Y)x‘f(t)x) dPx(Y))dn0T;%(X)dp(S)

X X B

.2 xitéi<s-f<t)x>32/2}dnor;%(x>de<s>
i=1

‘13-‘11 c(£(c)x)exp{-t2

1 1

= G(f(t)x)exp[-t2Hs-f(t)XH2/2]anT-%(x)dU(S)-
H H 1 v
1 k

%
Since G is “-Hx-measurable and T is a Hilbert-Schmidt operator

on H1, it follows ([7], Lemma 4.1) that

—.___L____ -1 -2 -g

- (det Ct) IHAJHX§(f(t)Ct x + s-Ct s)dnoTv (x)b(t)

exp[-tzuc;ls“:/2]dp(s)

-—————-— ‘ ' - 2

(de: G ) IBIBG(f(t)Ct1x +’S'Ct28)dv(x)h(t)exp[
-t2uct18Hx/2]du(s)

t

where we have used Remark 1.2.6 (c) and the fact that n(B) = 1.

Hence we may start with the assumption that for all real-valued,

bounded, “-HB-continuous functions G on B we have

- -2

((a) IBG(s)du(s) = 2::1IB[IBG(f(t)Ct1x + s-Ct s)dv(x)]h(t)

(3.2.4) 4 exp[-tzncgls“:/2]du(s)

 K(b) {Ht : t E (O,m)] is a x-family as t a m .

Putting G E l in (3.2.4)(a) and using the same argument given

in the proof of Theorem 1.4.3, condition (3.2.4)(a) can be written

as follows

-1 -2
(3.2.5) J‘Bc(s)du(s) = t1}: fBj‘Bcuumt x + (I-ct )s)dv(x)dut(s)

for all real valued, bounded, H°“B-continuous functions G on B.
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From (3.2.5), it follows that

(3.2.6) v o (f(c)c't'1)'1 * pt 0 (I-ng) E u on B as t s»«.

Since G(f(t)x)dv(x) is a measure of bounded variation

on H1, the Fourier transform of G(f(t)x)dv(x) is uniformly

T-continuous ([7], p. 7). Hence the Gross extension of its

Fourier transform is well-defined ([7], Theorem, p. 5). Similarly

the Gross extension of the Fourier transform (c.f.) V(-) of u

when regarding p as a probability measure on (H1“B(H1)) is

well-defined.

Now from Remarks 3.1.9 (b) and 1.2.6 (c), it follows that

(3.2.7) EP may)(J‘Bc(f<t>x>exp[-itf<t>(y,xndvmn

1

k
= EPX{$(tY)~(fH G(f(t)x)exp[-itf(t)(y,x)]dnoT; (x))"].

1

Let {P1} be a sequence of finite dimensional projections on

H1 converging strongly to the identity operator. Then it is easy

to see using lemma 3.1.5, Lebesgue Dominated Convergence Theorem

and the fact that P 's are continuous that

J

%
prfw(ty)~(IHxS(f(t)x)9XP['itf(t)(y,x)]anT; (x))"}

% s

(X)) }~

J- P1

= lim E H(tPjy)"(IHXG(f(t)x)exp[-itf(t)(Pjy,x)]dno'l‘v

Now as before, using the fact that the integral of a tame function

with respect to the probability measure P1 is the same as its

integral with reSpect to the canonical normal distribution n on

H1, we get
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%
EPX{¢(ty)"(IHxa(f(t)X)exp[-itf(t)(y.X)]dn0T; (X))"}

k= lim En[¢(tPjy)"(IHxC(f(t)x)exp[-itf(t)(Pjy,x)]dnoT; (x))"}

j—tco

where En is the integral with reSpect to n on HA.

From Remark 1.1.15, it follows that

lim En{¢(tpjy)”(fH G(f(t)x)exp[-itf(t)(P y.x)]dnoT;%
(x>)"}

jam 1 j

e
= En{¢(ty)"(foC(f(t)x)exp[-itf(t)(Yax)]dndT; (x)>"} .

Hence from (3.2.7), we have

EP {e(ty)(fBG(f(t)x)exp[-itf(t)(y.x)]dv(x))}

1

k= En{¢(ty)"(foC(f(t)x)exp[-itf(t)(y,x)]dnoT; (x))”} -

Now from (3°2'2)(a) and the fact that “-“B-topology is stronger

than “-“x-topology on B we obtain

IH)é(S)dp(S) = 2:: h(t)(det Ct)En[¢(ty)"(foé(f(t)x)

%
exp[-itf(t)(x,y)]dndT; (x))"}

for all real valued, bounded, H-Hx-continuous functions G on H .

1

Therefore by Theorem 4 of [7] we have

’(a) f(t)2 trace (cgzrp -. o as t .. ..

(3.2.8) 4 2 _1 2

(b) The measures h(t)exp[-t “Ct sux/2]du(s) converge

 
L weakly to p on H1 as t d a .

Now (3'2'8)(a) implies ([7], Corollary 3.4) that
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(3.2.9) f(t)C;1X'-€0 on H). 38 t-*°° 3

and (3.2.8)(b) implies (Definition 1.1.2) that

.3
(3.2.10) Yt a Y on H1 as t ~>w .

From (3.2.2)(b) and (3.2.10), it follows (Lemma 3.1.10) that

Yt‘QTY (H! B as t aim .

Thus condition (3.2.3)(b) holds.

To get (3'2'3)(a) we note that

(3.2.11) u{x E B : (I-C;2)xan'x when xn a x] = 0 .

From (3.2.11) and (3.2.3)(b), it follows ([1], Theorem 5.5, p. 34)

that

(3.2.12) (I-C;2)Yt£Y on B as taco .

Let f(t)C;1X be distributed as Vt’ then (3.2.6) and (3.2.12)

imply ([16], Theorem 2.1, p. 58) that for any sequence [tn]

approaching infinity, {vt : n = 1,2,...] is conditionally compact

on B. Now by Lemma 3.1 :f [13], [vt } is a x-family for any

1 E L:' which is sufficient for [vt n: n = 1,2,...]. Since

1 E L13 it follows that {Vt : n = 1,2,...] is a x-family, and

since this is true for any szquence {tn} with tn 4 m as n a m

we conclude that {Vt : t E (0,m)] is a x-family as t a a of

probability measures on (B,B(B)). From this and (3.2.9) it follows

(Lemma 3.1.10) that

f(t)C;]X'-QO on B as t-oao.
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Hence condition (3'2'3)(a) holds.

We now prove the converse. From (3°2°3)(b)’ it follows

that for any sequence {tn} approaching infinity,

{pt : n = 1,2,...] is compact. Hence it is a x-family for any

x EnL: ([13], Lemma 3.1). Thus {pt : t E (O,m)] is a x-family

as t34 m, and hence condition (3.2.2)(b) is satisfied. Further-

more, from (3.2.3)(b) we get

(3.2.13) 1im at = 1 .

t-m

Let G be a real valued, bounded, H-HB-continuous function

on B, and let

at = h(t)(det Ct)EPx[m(ty)(IBG(f(t)x)exp]-itf(t)(y,x)]dv(x))] -

IBG(x)dp(S).

Then from (3.2.13), it follows that

li = li '52 a l‘ l—-h(t)(det C E (t )( G(f(t)
m8t ma 1ma 91,993,113 ’0

t—aoo 12-03 t t—m t X

expi-itf<t>(y.x>3dv(x>>} - [Bc<s)du(s).

By the argument used to obtain (3.2.5) we have

(3.2.14) lim at = lim IBIBG(f(t)C;1x + (I-CE2)s)dv(x)dp,t(s) -

t-mt—m

[36(s)de(s).

From (3.2.12) and (3.2.3)(a), it follows ([16], Lemma 1.1

and Theorem 1.1, p. 57) that

v o (f(t)C;1)-1 * ”t o (I--C;2)-1 g p as t a.m on B.
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Hence

(3.2.15) [BIBuuocglx + (I-C;2)s)dv(x)dut(8) _. jBG(s)de(s)

as t a m

for all real valued, bounded, “-“B-continuous functions G on B.

From (3.2.14) and (3.2.15) we get 1im at = 0, and therefore the

t-ooo

proof is completed.
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