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ABSTRACT

MINIMUM ENERGY SPACE RENDEZVOUS

by Eugene Harrison

The space rendezvous maneuver is defined as one

which is designed to move a space vehicle from one

location to another in order to match the position

and velocity of an object in orbit at the second loca-

tion. It is equivalent to a space transfer in Which

terminal conditions and time of transfer are specified.

An investigation to determine the minimum enerav re-

quired to achieve a space rendezvous is reported.

Two methods were used to investigate the rendezvous

enerev problem-—an analysis bv the calculus of vari-

ations, and a trajectorv perturbation procedure. For

each method it is assumed that the onlv forces acting

on the rendezvous vehicle are due to the inverse square

gravity field and applied thrusts. It is also assumed

that thrust levels are hiah so that velocity changes

are essentially impulsive.

The analysis by the calculus of variations is based

upon the use of linearized equations of relative motion

which are reasonably accurate if the distance separating

vehicle and target is in the order of 50 miles or less.

Using the relative equations, a set of Euler-Lagrange

equations were obtained; which, on examination, led to
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the follOWing conclusions:

(1) A minimum energy trajectory is comprised of seg-

ments flown with either zero or maximum thrust.

(2) A minimum energy rendezvous is accomplished using

either two or three impulses.

The perturbation method of energy analysis deter-

mines the effect of perturbing a vehicle which would

otherwise move along a nominal coasting trajectory join-

ing space terminals. The perturbing velocity is assumed

to be the residual from a partial nullification of the

initial velocity relative to the coasting trajectory

velocity. At an intermediate time an impulse is applied

to bring the vehicle back onto the nominal trajectory

at the destination point. The trajectory from the point

of application of the intermediate impulse to the desti-

nation point is selected so that the total transit time

on the perturbed path equals the transfer time along the

nominal trajectory. The velocity at arrival via the two

routes would, of course, be different, and the vector

difference is termed the resultant velocity. A third

impulse potential is defined in terms of the residual,

intermediate, and resultant velocities.

The results of a parametric study in which the third

impulse potential was used to examine the conditions under

which a third impulse could be utilized are reported. A

sample problem is presented in which the velocity required

to rendezvous is shown to be greatly reduced by using

three velocity impulses instead of two.
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CHAPTER I

INTRODUCTION

The purpose of the investigation described in this

thesis was to determine the minimum energy required to

transfer a spacecraft between two points in an inverse

square gravity field when the time to transfer and

terminal velocities are specified. With these specifi-

cations, the transfer is equivalent to ”space rendezvous"

-a maneuver generally described as one designed to move

a spaceCraft from one location to another in order to

match the position and velocity of some object in orbit

at the second location. Hereafter, the designations

"vehicle" and ”target" will be used.

The need for information concerning the rendezvous

problem is becoming increasingly important. A number

of complex satellites have already been placed into orbit

and many more are planned for the near future. Some of

these will be manned and may possibly range from craft

carrying a single operator to facilities that will serve

as launching platforms for lunar or interplanetary mis-.

sions. Rendezvous capability will be necessary in order

to transfer personnel and supplies to and from these

facilities and to provide emergency rescue capability.

Recent literature has been replete with articles

concerning rendezvous. One author lists a bibliography

containing fifty-nine references.1 For the most part,

these articles have dealt with the development of guidance

1





equations and various rendezvous techniques. The energies

required to rendezvous by the various techniques differ,

and in many cases by a significant amount. One of the

reasons for attempting to determine the minimum energy

required for rendezvous was to provide a comparison

energy so that an efficiency number, insofar as energy

or fuel expenditure is concerned, may be determined for

each technique.

The total operation from earth launch to contact

between vehicle and target may be described as consist-

ing of the following phases:

(1) Launch from earth for a direct approach or

into a parking orbit.

(2) Orbit transfer and/or injection into the target

orbit to get an approximate position and velocity

match.

(3) Rendezvous, which is usually described as be-

ginning between 10 to SO miles from the target

and extending to close proximity.

(4) Final approach and docking which begins within

a few feet of the target.

It was intended that the subject investigation would

be restricted to the rendezvous phase, however, in many

cases the results obtained could equally well apply to

the orbit transfer phase.



CHAPTER II

PROBLEM DEFINITION AND BACKGROUND

PROBLEMiSTATEMENT
 

In terms of the generalized coordinates q1 and q2,

the subject problem can be stated as that of transferr-

ing a spacecraft or rocket from condition (q},q§,q%,q3)

to (q:,q§,q:,§:) in time T with a minimum expenditure

of energy. The motion of a rocket in space can be des-

cribed by the vector equation

d5 +F= -(C/m) 93 A (2.1)

d? dt

where

‘F = rocket velocity

mass of rocket and fuel8

I

= rocket exhaust velocity

*
s
l

0
|

- gravity force per unit mass.

Energy expended is usually measured in terms of char-

acteristic velocity as determined by the integral of

either side of Eq. (2.1). Hence, the energy of transfer

(rendezvous) is determined either by the equation

"Wt

AV '- /-('é'/m) gm =- c log (mo/mp) (2.2)

dt

mo

or v1. 7

AV=/dF+/th. (2.3)

V0 0

The problem of minimizing energy can be considered as

one of minimizing the change in mass, (m0 - mT), or the





characteristic velocity as defined by Eq. (2.3).

RELATED STUDIES
 

Previous studies pertaining to the transfer of a

vehicle between space terminals more or less fell into

two general categories: (1) those in which time is

specified and are rendezvous equivalent, and (2) those

in which time is not specified. A number of the more

pertinent investigations and their relationship to the

subject investigation are briefly discussed in the fol-

lowing paragraphs.

Rendezvous Equivalent Transfer

In early investigations Lawden used the classical

variational calculus approach to analyze the space trans-

fer problem.3’4’5 On the basis of a Taylor series expan-

sion of the gravity potential in which terms greater than

second order were neglected, results were derived which

indicated that the minimum energy transfer trajectory

'would contain no segment flown with an intermediate thrust

level, 1.6. it would consist of arcs of maximum thrust

followed by coasting arcs. However, both Lawden and

Leitmann later showed that an intermediate thrust trajec-

tory cannot be ruled out when the complete gravity poten-

tial is present.“7 In reference (7) Leitmann treats

'the problem of thrust mode selection and shows it to

depend upon a switching function determined by the

Weierstrass E-function. However, this function does

not furnish apriori information for the above stated

case (a non-linear gravity function). A running account



must be kept of the switching function during the

numerical integration of the Euler-Lagrange equations.

Thus, one of the primary problems in determining an

optimal trajectory is the selection of the appropriate

thrust mode. However, even going under the premise that

a minimum energy trajectory in an inverse square gra-

vity field would contain no intermediate thrust segment,

there still remains a major problem. This problem is the

lack of criteria for determining the number of powered

arcs to achieve an optimum.

In many cases where the classical calculus of vari-

ations was used to analyze those Space transfer problems

which lend themselves to analysis, the procedure has

been to formulate criteria for solution without present-

ing a solution. The difficulty lies in solving the re-

sulting set of Euler-Lagrange equations. It is necessary

to know all of the initial conditions before the equations

can be numerically integrated. In most cases, terminal

conditions are specified in part as initial, and in part

as final conditions. Thus, an iterative scheme must be

employed to obtain a solution.

To avoid the difficulty associated with the use of

the methods of the calculus of variations, a number of

investigators have proposed the use of direct methods of

optimization. Among those that have been employed for

trajectory optimization are the gradient theory methods,

9,10,11

and a method analogous to the Rayleigh-Ritz methods.



 



Reference (12) is a survey of the problem of opti-

mizing aircraft and missile flight paths. Prior treat-

ments are described and the problems of Bolza, Mayer,

and Lagrange are developed. This reference contains an

excellent bibliography pertaining to trajectory opti-

mizing.

ngit.Transfer

The orbit transfer problems which specify terminal

conditions but not the transfer time are not equivalent ‘

to the rendezvous problem, although some insight may be

drawn from them. The difference may be seen in Fig. 2.1

which shows two coplanar orbits that are nearly identi-

cal in geometry but differ in orientation. Let it be

assumed that an optimal orbit transfer trajectory would

be similar to path Pl‘P2: where one impulse is applied

at P1 on orbit A to initiate the transfer trajectory and

a second is applied at P2 to enter orbit B. Now, it wouki

be coincidental if the vehicle and target were phased in

orbit such that this trajectory would result in an

intercept. Further, since the orbital periods would be

nearly equal, waiting until the proper phasing occurred

might not be feasible. However, if time is of no conse-

quence, the fuel required to rendezvous would, in the

limit, be equal to that required to transfer orbits.

Such a rendezvous would be carried out following the

orbit transfer by applying a small retro thrust at the

perigee (for minimum velocity impulse required/period

change) of the entered orbit in order to go into a wait-



 
FIG. 2.1-ORBITAL TRANSFER WITH TIME UNSPECIFIED

 
 

 
FIG. 2.2-—WAITING ORBIT DESIGNED TO CORRECT PHASING

PRIOR TO RENDEZVOUS



ing orbit with a slightly shorter period (Fig. 2.2).

The waiting orbit should be tailored so that the vehicle

and target would arrive at their coincidental perigee

points simultaneously after a number of revolutions.

One of the first works concerned with the minimiz-

ing of orbit transfer energy was the derivation by

Hohmann of the transfer ellipse named for him.13 The

method uses two impulses to transfer between circular

orbits. The first is applied at a point on the initial

orbit to establish an elliptical trajectory tangent to

the two orbits. Transfer is accomplished during 180°

of orbit travel, and another impulse is applied to enter

the second orbit at the point of trajectory tangency.

Transfer can be to an orbit of either smaller or larger

radius. The Hohmann transfer ellipse provides a minimum

energy transfer if the radius ratio between the two orbits

is not greater than 11.9.14

Other investigators have examined the more general

problem of transfer between non-circular orbits. It

has been shown that the optimum number of impulses to

transfer from one coplanar orbit to another is either

two or three, depending upon their orientation and ele-

Iment values.15:16

ANALYSIS METHODS USED _I_1_\I_ SUBJECT STUDY
 

 

Early in the program three avenues of investigation

were followed, more or less simultaneously. The three

consisted of a study of the applicability of the calcu-

lus of variations and two direct minimization methods.
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One of the direct methods, a traiectorv perturbation

technique, was the primary tool of subsequent investi-

gation. The other direct method of analvsis was based

upon a variation of delta quantities to establish a

gradient that would indicate the manner in which a non-

minimum trajectory should be varied to reduce transfer

energy. It was abandoned because of excessive computer

time requirements and lack of proof that the determined

trajectory was an extremum and not merelv one with a

stationary energy level.

Treatment of the rendezvous energv problem by the

methods of the calculus of variations and the traject-

ory perturbation technique are presented in Chapters

III and IV respectively.

GENERAL ASSUMPTIONS
 

The fOIIOWint assumptions were made in order to

facilitate the energy analysis and are not believed to

detract from the results obtained:

(1) The earth is spherical. The perturbations of

a satellite orbit caused by the earth's

oblateness may be neglected insofar as

rendezvous is concerned because the integrated

effect of the perturbations would be small

during the time interval of interest.2 Also,

since the distance between target and vehicle

during rendezvous is small compared to the

radius of the earth, the perturbation effects

would be approximatelv the same on each and



(2)

(3)

(4)

(5)

10

would cancel insofar as relative motion is

concerned. , .

Gravity is the only outside disturbing force.

The forces exerted by atmospheric drag, meteor-

ite collision, and sun pressure are neglected.

The target and vehicle are in coplanar orbits.

Motion in a direction normal to the target

orbit plane is, for all practical purposes,

independent of in-plane motion for the relatively

small separation distances being considered.

(See Eq. A.24.) Thus, it is possible to treat

the in-plane and out-of—plane motion independ-

ently and superimpose results.

The vehicle is a point mass. The problem of

attitude stablization and thrust vectoring was

not investigated.

Impulsive thrusts and instantaneous velocity

charges are allowed. The time required for a

vehicle to attain a desirable closing velocity

in the usual situation would be small compared

to the time to perform the terminal phase

rendezvous maneuver.



CHAPTER III

ANALYSIS BY THE CALCULUS OF VARIATIONS

The analysis by the calculus of variations pre-

sented here relies heavily upon work described in

references (5,7,12, and 17).‘ The problem of energy

minimization is analyzed using the linearized ren-

dezvous equations (A.22 and A.23). Within the lim-

itations of these equations, which are shown in

Appendix A to be reasonably accurate, it will be

shown that a minimum energy rendezvous trajectory

contains no arc flown with intermediate thrust. In

addition, it will be shown that if thrust is unbounded,

a minimum energy trajectory is achieved with either

two or three impulses.

If the angle between the thrust and velocity

vectors is denoted by q, Eqs. (A.22 and 11.23) can be

written as the following set of first order equations:

40! ' i ' u = 0 (3.1)

(Py'i-v-O
(75.2)

(on " {I - 2M7 - (ed/m) Cosot= O (5.3)

$7 " 9 + 2141 - Sway - (ob/m) Sin ou- o (3-4)

{om-fine- o . (2.5)

Assuming the rocket exhaust velocity, c, to be a

constant, as is nearly so in the case of a chemical

rocket, there are two control variables—«and 6.

ll
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Following Lietmann,7 a sixth equation is introduced

in order to limit the mass flow rate such that

3min 5 5 S‘Gmax .

The equation is

w; . (/3- fiminHGmax -6) -42 = o ' (3.6)

where

g-ém .

Equations (3.1-3.6) are six restricting conditions

to be imposed on the eight variables x, y, u, v, m,

Gt, 6, 4‘, leaving two degrees of freedom.

The problem at hand is to determinelq(t) and

48(t) such that the rocket will traverse a trajectory

between designated space terminals in time T that

minimizes (mo - mT). As a first requisite for a so-

lution, the Euler-Lagrange equations must be satisfied.

These equations are

g_f2§) -:2§_ - 0; q . x,y,u,v,myay6y€

dt49§ 8n_ .

where

F -XM¢Q; q = X:Y:u:v9m:€

and the kq are the Lagrange multipliers. When applied

to Eqs. (5.1-3.6), the resulting set of equations are

as follows:
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xx = o (3.7)

iy + 352w = o (3.8)

in - away + Xx - O (3.9)

iv + swap + Ky - O (3.10)

in - (ca/mszu Cosq + Xv Sinq) = O (3.11)

(c/m)(?»u Cos OL+ 7w Sin 04) - M (3.12)

+ 7mg“)? namin) - (enlax -/3)] = O

(ca/m)(7\.u Sin or - Xv Cos at) -= O (25.13)

xgg- o (3.14)

Solutions for Xx, Ky, Nu, and AN become immediately

available by first differentiating Eqs. (3.9 and

3.10) and substituting from Eqs. (3.7 and 3.8), where-

upon, the following equations are obtained:

in - 201v . o (3.15)

33v + 2&9111 " SIDZKV a 0 e (3016)

It is seen that with a substitution of Kn for x and

Xv for y, these equations become identical to the

linearized equations of motion (A.22 and A.23) with

Ax - Ay - O.

Leitmann proved in the case of an analogous problem,

i.e. when the ku-Kv equations can be uncoupled from the

remaining set of Euler-Lagrange equations, that no arc

flown with intermediate thrust can exist.7 Thus, an

optimum trajectory would be composed of arcs of maximum

and minimum thrust. In the present investigation ve-

locity impulses have been assumed, i.e. fimax +00.
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Thrust direction is determined from Eq. (3.13)

as

TanOC- Xv . (7.17)

XE’

' It is noted that the functions Xu and Xv remain

defined between impulses since 6min is allowed to

approach but not attain a zero value.

If an optimal trajectory is to be composed of

more than one coasting arc, the Erdmann-Weierstrass

corner conditions must be satisfied at each corner

(interior junction). These conditions are expressed

Gilli-E).

(H)
which define the equality of quantities immediately

as

prior to and after a corner. Applied to the present

problem they result in

M- = M. 3 q = X.Y.u,V.m (3.18)

c- = 0,,

where

C = Xxi +.ny + qu-+ va .

First,it is noted that Xu and Xv satisfy Eq. (3.18)

by the noted solutions (analogous to x and y which are

continuous on a coasting trajectory). Next, parameters
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Xx and Xy satisfy this corner condition because Xx is

a constant by Eq. (3.7), and from Eq. (3.8)

Xy = -3u§‘/{Xv dt (3.20)

and so is also continuous. In order for Eq. (3.14) to

hold, it is necessary that X; = 0, since €(t) 9‘ 0 by

definition. Hence, from Eq. (3.12)

M *3 (c/m)(Xu Cos c14- Xv Sin a) (3.21)

and, since c = 0 immediately before and after an

impulse, Xm..- Xmun Thus, all of the corner conditions

of Eq. (3.18) are shown to be satisfied.

The corner condition specified by Eq. (3.19)

furnishes one of a set of equations which can be solved

to determine a stationary three impulse rendezvous tra-

jectory. In total, twenty-seven equations can be written

relating thirty-six parameters. From.Eqs. (3.1-3.4)

with zero thrust and from Eqs. (3.15 and 3.16), explicit

solutions can be determined for the following twenty

parameters:

A x1, 3T Xui, XuT

Y1: VT Xvi, XvT

ii—’ iT— Xui

Ii-o IT— Xvi

‘31-: {114- M1

61” {71+ ~ Xyi .

(Six equations remain to be defined.
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At each application of impulsive thrust the

direction of the thrust vector must coincide with

the added velocity vector. Hence, Eq. (3.17) applied

at each impulse results in the three equations

Mk = 41x = YR: - 315.: k = 0.1.T - (3.22)

Kuk Mk Xx. - X1:- '

The three other equations, which have been shown to

be necessary conditions for an optimal trajectory,5 are

[(Kuk)z + (K”k)2]1/2 ' l; k = O,i,T . (3.23)

These equations state that Xu and Xv are not merely

proportionsl to the thrust components, but in fact,

are the direction cosines of the thrust vector.

The desired unknowns of impulse direction, mag-

nitude, and timing can be determined as functions of

the eight terminal conditions and total transfer time

by solving the set of twenty-seven equations described

above.

In order to see that no more than three impulses

can be utilized for optimum transfer it will be re-

called that Eqs. (3.19 and 3.22) must be satisfied at

points of impulse application by the parameters Xu and

Xv. Since these two parameters are described by second

order differential equations between t = O and t = T,

the four initial conditions Xuo, Xvo, Xuo, and Xvo are

just sufficient to satisfy the conditions specified by

these equations. Additional conditions that would be



f‘
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introduced by another corner could not, in general, be

satisfied.

In summarizing the application of the calculus

of variations to the problem of rendezvous fuel mini-

mization, the following items are noted:

(1)

(2)

Insofar as the linearized equations describe

the relative motion of a rendezvous vehicle

and target, it has been shown that-—

(a) No arc flown with thrust between the

maximum and minimum values can exist on

a minimum energy trajectory.

(b) The minimum energy transfer is via either

two or three impulses. No criteria was

developed to determine which of these two

modes would provide the minimum.

Since the linearized equations have been

shown to be reasonably accurate, it would

not be expected that there would be any sig-

nificant difference in the above results as

applied to the actual rendezvous maneuver.

It should be called to attention that the

linearized x-y equations are based upon an

axis system whose origin moves in a circular

orbit, but that the target need not. It is

necessary only that the target position be

predictable in the reference frame at time T.





CHAPTER IV

ENERGY ANALYSIS BY TRAJECTORY PERTURBATION

In many respects this chapter presents the most

important results obtained from the rendezvous energy

study. The methods of analysis which were developed

are described and a means for measuring the potential

of a third impulse is formulated. The results of a

parametric study to determine the conditions under

which a potential exists are also presented.

PERTURBATION METHOD
 

Description

The perturbation method, as aoolied to the rendez-

vous energy study, determines the effect of perturbing

a vehicle which would otherwise move along a nominal

trajectory joining two space terminals. Let it be

assumed that the origin of an axis system as shown in

Fig. 4.1 moves along a nominal trajectory between the

space terminals P1 and P2 as if it were attached to an

undisturbed mass. Further, let the position and velocity

of the origin be Pl"Vc1 at t = O, and P2, veg at t = T.

Then, if the absolute velocities of a vehicle immediately

prior to P1 and after P3 are denoted by?o and If, these

velocities relative to the coasting reference frame are

determined bv the vector differences

v0 = Vb ‘ V51

18
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(Upper case letters are used to denote absolute

velocities while relative velocities are denoted

by lower case letters.) If impulses were applied

according to the equations

'Vl ‘ ‘70

V2 " :61"

the vehicle would.follow the coasting trajectory

and remain at the origin of the reference frame.

On the other hand, suppose that the relative

velocity at P1 is not entirely cancelled, but that

a residual velocity, v is allowed to remain. In1.

this case the mass would drift away from the frame

origin. However, at an intermediate time, t = ti’

another velocity impulse,.4v1, could be applied that

would bring the mass back to the origin at the

moment P2 is reached. Relative trajectories similar

to those shown in Fig. 4.2 would result. The energy

expended would be the sum of the three impulses

according to the equation

Av = [‘61 - Fol +lAv1|+ IVr - Val.

Third Impulse Potential

In the case of a two-impulse rendezvous, the

required characteristic velocity is determined by

the equation

AV - '57:” + [1.6521 .. lVol + (V3).

Hence, if a three impulse transfer is to require less
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energy than would be required by the use of only two,

it is necessary that the energy denoted by Eq. (4.1)

be less than that denoted by Eq. (4.2). Hence, it is

necessary that

I51 ..';;0| + (5‘71) + fir ' "72I < “'0' + lvrl (4.3)

or

(4‘71) < ”0' ' W1 " Vol "’ Ivf' " I“If " 17—0)- (4.4)

Considering v0, v1, and (Vi - V0) as three sides of a

triangle, it may be seen that

(V1) > Iv.) - El -Vol (4.5)

and likewise

Ivzl > (Fr) " lVr - V2). (4.6)

Upon substituting inequalities (4.5) and (4.6) into

(4.4), it is found that

lAvil < IVll "' (‘72).

This expression is more convenient when written as the

equality

Xv = |v1| + |v2| - lav“,

The quantity Sv was used as a criterion for deter-

mining whether a third impulse is potentially useful

for reducing rendezvous energy. A positive value sig-

nifies that a potential exists. However, in order

to realize the full potentia1,'v1 and?!2 must be

parallel to'v'o and'vf respectively. At times, the





22

initial and final velocities may be such that the

sum of the impulses required at P1 and P2 is greater

than the potential corresponding to the selected

magnitude and direction of v1, i.e. the quantity

In this case a potential would exist that could not

be realized due to the directions and magnitudes of

the initial and final velocities.

Determination 9; Nominal Coasting Trajectory

The trajectory of an object coasting in space

follows a conical path which can be either an ellipse,

parabola, or hyperbola. However, the_subject invest-

igation was restricted to a consideration of motion

along an elliptical path. (Circular paths are included

in this category.) The term "transfer ellipse" is

used to designate the entire orbit of which the coast-

ing transfer trajectory is a part. Thus, a transfer

trajectory may be described by the ephemeris of the

transfer ellipse.

Unless some special orientation is assumed for

the transfer ellipse, the equations of Appendix A

alone are not sufficient to determine the ellipse

elements if the known information consists of only

R1, R2, up, and T. However, this information and the

direction of orbit rotation does specify a unique

trajectory. The orbit elements may be determined as

follows:18
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Let /

.. __(g11 2T

81 [2(R1R2)1/2TCos(Aw/2)]3fi?

' p1 = R1 + 3.2 - 1/2

4(R1R2)l/z Cos (AWZ)

where E1 and E2 are the values of the eccentric anomaly

at P1 and P2. Then, the parameter AE/2 can be deter-

mined from one of the following equations which are

derived in Appendix B:

t al 3 [b1 + Sing (AE/4)]l/2 (40 9)

- Sin AE) [b1 + Sin2 (AB/4H?)32/

Sin:5 (AF/2)

where the sign preceding a1 is taken as

+ for A¢< 180°, and - for A¢>1so°;

and, for the case in which Ago= 180°

(ml/3 th/(R + R2)]3/3- - SinAE . (4.10)
Sin3 (AB/2)

These equations can be solved by trial and error,

and with 4E known, other elements can be computed

by the following equations:

ZRle Sing (mo/2) (4.11)

R1 + R2 - 2011123)“z Cos (Aw/2) Cos (An/2)

 

a = 333 Sin2 (Aw/2) (4.12)

pain2 (An/2)

 

e - (a -p)1/2 (4.13)

a
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Terminal coasting velocities can be determined from

equations (A.l4 and A.17).

In subsequent references, the above described

method of solution and the computer routine which

was developed to solve the system of equations will

be referred to as the “coasting routine".

gglculationqgg_zhi§g.Impulse Potential

After having determined a nominal coasting tra-

jectory,"v1 and'yz can be computed for an arbitrarily

selected value of'VI. Two methods of solution were

developed. One makes use of the coasting routine

described in the previous section plus an integration

of the orbital equations of motion. In the second

method, the exact relative equations of motion are

integrated using an iterative procedure to determine

the sought variables. The majority of computations

were made using the coasting routine and orbital

equation technique because it required considerably

less computer time. For the average solution only

about one-tenth as much time was required. However,

the relative equation technique, which is described

in Appendix C, was found to give highly accurate

solutions and was used to check the accuracy of the

other method.

Following is a description of the coasting routine-

orbital equation method for determining the quantities

comprising 5v. After 52,1 and $02 are computed by the

coasting routine, a selected value of Vi is added to
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V01 to give a new absolute velocity at P1, which is

shown in Fig. 4.3 along with the other vectors of inter-

est. The next step in the solution is to determine the

radial and angular velocities at P1, which can be computed

from the equations

1321 = (Io). + '51) Sin r1 (4.14)

4’1 " E (Vol + 71) /R1] Cos r1 . (4.15)

With the initial conditions at P1 known, the equations

1% - W2 + (q/Rz) = o (4.15)

R<‘p‘ + add - o (4.17)

are integrated to determine the position R1 and velocity

[V1 at the intermediate time, ti. Following this step,

the coasting routine is used once again to determine

a coasting trajectory that will traverse the distance

between P1 and P2 in the time remaining. Inputs to the

routine this second time are denoted by primes and are

Ri . Ri

R; = R2

4?: OJ? - "pi - ([11]

T a T - ti .

The velocities V3 and V2 are determined at the ter-

minals of the new coasting trajectory, and the sought

parameters are given by the vector differences
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vi 3 ‘51+ "fiflrl

v2 ' ($2 -ECZI '

The total computer time required to determine a

single value of 8v, including use of the coasting

routine for arcs P1-P2 and Pi-Pz, and integration over

are Pl‘Pi. was slightly less than two seconds. The

accuracy obtained was limited by round-off errors in

the computer (an eight digit retention routine was used).

Ellipse elements p and a were determined with errors

less than 1 ft; and, although round-off velocity errors

as large as 3 ft/sec were possible, the usual noted

error was in the order of 0.2 to 0.5 ft/sec.

PARAMETRIC §E§2§

The perturbation procedure described in the previous

section was used to make a parametric study of the

third-impulse potential, 8v; The following parameters

were varied during the study:

Rg/Rl 8 ratio of final to initial radius

T ' transit time

A¢ 8 angle between R1 and R2

t1 = time of application of intermediate impulse

v1 = magnitude of the residual velocity relative

to coasting frame at P1

61 - direction of v1 (Fig. 4.2).

It was found that the parameters could be divided into

two groups-those having primary effect and those
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evidencing only slight or secondary effect.

Secondary Effect Parameters

Small variations of R2/R1 and T from nominal

values were found to have only a slight effect upon

the output parameters comprising 5v, i.e..ayi, v2 and

its directionqaé. In addition, it was found that the

ratios awi/vl and vz/vl are independent of the magnitude

of v1 as is the velocity direction 62.

Variations of RZ/Rl were made with respect to a

nominal R1 corresponding to an orbit altitude of 300

statute miles. This altitude was selected on the basis

that it is above the high atmospheric drag region

2:200 8 mi) and below the earth's radiation belt

2:400 s mi). No variations inR1 were made since

reasonable changes, from a rendezvous consideration,

would probably be less than 200 5 mi. This variation

would change the total radius by only a small percentage.

Orbital motion is, of course, affected by the total

radius rather than altitude.

The selection of data presented in Table I shows

the insignificant effect upon AWi/Vlv Vg/Vl, and.fih of

varying Rz/Rl and v1 over the noted range. With respect

to the nominal initial altitude of 300 3 mi, the ratios

1.005, 1.010, and 1.015 correspond to increases in

altitude of 21.3, 42.6, and 64 3 mi. Although these

variations are relatively small, the results obtained

do indicate the lack of sensitivity to Changes in RZZRI.
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TABLE I—RESULTS OBTAINED WITH VARIOUS RADIUS RATIOS

AND RESIDUAL VELOCITIES

ACp = 90°; 81 = 0°; ti/T = 1/4
 

 

 

 

         
 

 

 

 

        
 

 

 

 

 

(vz/vl) [62 Avi/v:L

H

v p% 1.005 1.010 1.015 1.005 1.010 1.015

100 .284 255° .287 254° .286 254° 1.297 1.500 1.500

(200 .285 255° .284 254° .286 254° 1.299 1.298 1.500

400 .282 255° .285 254° .285 254° 1.500 1.500 1.501

.A¢ - 180°; 61 = 80°; ti/T = 1/2

(Va/V1) (432 avi/vl

R2
v1 1 1.005 1.010 1.015 1.005 1.010 1.015

100 2.128 47° 2.124 47° 2.124 47° 5.480 5.474 5.474

200 2.125 47° 2.122 47° 2.120|47° 5.474 5.475 5.470

00 2.115 48° 2.115 47° 2.115|47° 5.459 5.457 5.455

mo- 270°; 41 - 140°; ti/T - 5/4

(vz/vl) [42 Avi/vl

R ;

1.005 1.010 1.015 1.005 1.010 1.015

v1

100 7.804|21¢’7.842|215’7.882 217° 11.004 11.049 11.099

200 7.836]213°7.833|21T37.813'2160 11.045 11.044 11.127

O

l400 7-893Lélé.7oBZBl§gg§'7.978|215°,11.110 11.055 11.219        
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Further, the variation would, in many cases, include

the altitude changes made during actual rendezvous.

Since the trajectories under consideration are

coasting arcs in a conservative field, a trajectory

fromP1 to P2 is the reverse equivalent of the tra-

jectory from.Pz to P1. This is illustrated by Fig. 4.4

in which the reverse quantities are denoted by primes.

The following equalities are noted:

' '

v1 [£1 = V2 ‘53

0

.4171 " Avi

VéLfié'vlL‘fll'

Thus, except for the secondary effect resulting from

a slight change in the reference (initial) radius, the

data obtained for radius ratios greater than one also

furnish data for the reciprocal ratios less than one.

In order to study the effect of variations in

transit time, a nominal time, Tn, was determined and.

variations were taken with respect to this time. The

nominal time was determined as the time corresponding

to the case in which the perigee of the transfer ellipse

coincided with the initial position. For this selected

<orientation, the transfer ellipse elements are determined

‘by'the orbital equations of Appendix A.‘ Substituting

111 and R2 into Eq. (A.9) for the case when Qfl,= 0 and

@z '- A0 results in two equations, from which, the semi-

latus rectum is determined as
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R1 - R2 008 ACP

 

After evaluating the other relevant ellipse elements

from the orbital equations of Appendix A, Tn is deter-

mined according to Eq. (A.1l) by setting TD = 0, which

gives

Tn = (E - e Sin E)/n. (4.21)

Variations in transfer time up to

T = Tn t 0.2 Tn

were investigated. This magnitude of change in T is

comparatively large. Transfer times of 0.8 Tn, Tn,

and 1.2 Tn for each of the transfer angles A¢ *3 90°,

180°, and 2700 are shown in Table II. In the case of

ACP- 90°, it may be noticed that the variations in the

orientation of the transfer ellipses are such that the

perigee is at P1 for T = Tn, the perigee is between P1

and P2 for T = 0.8 Tn, and the apogee is between P1 and

P2 for T = 1.2 Tn‘ Table III shows the effect of transit

time variation. Although results certainly do show the

effect of time variations, fluctuations are relatively

small for the time variations involved. The values of

Mp, ti/T, and 31, selected for the preparation of Table

III were selected to present a Wide spread of data.

Primary Effect Parameters
 

The variables having primary effect were found
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TABLE II-—TRANSFER ELLIPSE ELEMENTS CORRESPONDING TO

DIFFERENT TRANSFER TIMES

 

 

 

    
 

 

 

 

    
 

 

 

 

 

A¢= 90°

T-Tn T-OeBTn T'leZTn

T, sec 1417.2 1133.7 1700.6

p, ft 22,755,110 28,551,458 19,502,997

a, ft 22,738,383 55,427,124 20,172,521

8 0.0100 0.3776 0.2076

m1, deg C 517.0 155.5

(02» deg 90 47.0 225.0

49’- 180°

T . Tn T = 0.8 Tn T - 1.2 Tn

T, sec 2849.2 2279.3 3419.0

p, ft 22,522,994 22,522,995 22.522,995

a, ft 22,525,554 25,499,807 25,029,011

8 0.00498 0.19316 0.13278

CH: dog 0 88.5 87.8

C2! deg 180 268.5 267.8

49’: 270°

T'Tn T-0.8Tn. T-‘1.2Tn

T, sec 4324.6 3459.7 5189.6

p, ft 22,736,110 20,491,523 24,409,270

a, ft 22,738,383 20,862,765 24,718,922

e 0.0100 0.1334 0.1119

4n, deg C 228.0 41.2

¢Q, deg 270 138.0 311.2   
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TABLE III—RESULTS OBTAINED WITH VARIOUS TRANSFER

TIMES

Rz/Rl - 1.010; ti/T = 1/4; v1 - 100 ft/sec: ’31 - 0

(Va/V1) [fig 7 Avi/vl

r
;::IE§ 0.8 1.0 1.2 0.8 1.0 1.2

‘44’

90° .292 257° .287 254° .285 250° 1.505 1.500 1.295

180° .210l25° .220 27° .244I52° 1.857 1.945 2.025

2709 .551 71° .795 71° .919 71° 2.507 2.481 2.550

 

 

 

 

         
 

Rg/Rl - 1.010; ti/T - 1/2; v1 - 100 rt/seo; finls 800

 

 

(ya/v1) lfi zznri/vl

 

EL.
£> n. 0.8 1.0 1.2 0.8 1.0 1.2

 

O

90’ 1.158)555’1.214 554 1.257I555° 2.554 2.845 2.217

180‘3 ;.804 47° 2.122 47° 2.285 45° 5.214 5.474 5.722 
270’ .185 70° 2.588 59° 2.584)59° 2.275 2.414 2.505         
 

Rg/Rl - 1.010; t1/T = 5/4; v1 - 100 ft/sec; .51 - 140°

(Va/V1)L@_& Avi/Vl

 

 

 

n 0.80 1.0 1.2 0.8 1.0 1.2

403

90° 2.505 44° 2.510 42° 2.451 59° 5.175 2.940 2.722

 

 
0 0

180° 5.152 159 5.075 159 2.950]171° 5.540 5.589 5.522

(270° 7.401121437.s41)217°8.251 219° 10.445 11.049 11.500        
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to be A45.61 and ti/T. A number of computer runs were

made to determine the effect of these variables on the

parameters Sv/v1,4y1/vl, vz/vl, and.62. The somewhat

surprising discovery was made that the results showed

a periodicity of 1800. with respect to .31. This is

seen in Figs. 4.5-4.8 which show the following re-

lationships:

O B“/171 at (,61 + 180 ) .sv/v1 at )31

Avi/vl at (51 + 180°) = Avi/vl at .51

O

vz/vl at (.61 + 180 ) = vz/vl at [91

£2 at (£1 + 180°) - (I32 at .91) + 180° .

Figures 4.9-4.13 show the effect of varying M, and

ti/T. It is seen from the curves relating 5v/v1 and

I31 that a third impulse is potentially useful for re-

ducing the transfer energy in the case of each transfer

angle for which data is shown. However, on extrapolating

plots of peak values of 8v versus Acp (Fig. 4.14) it is

found that the curves intersect the abscissa at a value

of 41¢ approximately equal to 30°, suggesting that no

potential exists whenever the transfer angle is smaller

than this value. Verification of this point would

require more data than was obtained. In general, the

potential increases with the transfer angle and becomes

substantial at the larger angles.

It is also noticed from Fig. 4.13 that the potential
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FIG. 4.9-—THIRD IMPULSE PARAMETERS

Aw- 45°; Rz/Rl - 1.01: T - 700 890‘
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FIG. 4.10-—TKIRD IMPULSE PARAMETERS
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FIG. 4.11—THIRD IMPULSE PARAMETERS
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FIG. 4.12—THIRD IMPULSE PARAMETERS
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FIG. 4.13-—THIRD IMPULSE PARAMETERS
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exists over a wide range of 51 when A0 =3150. This

wider range would be expected as A¢>approaches 360°,

since transfering through a large angle to a nearby

point of different radius by applying only two impulses

‘would require a large expenditure of energy. This may

be seen from Fig. 4.15 which depicts a vehicle in an

initial orbit A. By the two-impulse scheme of transfer,

one impulse would be applied at P1 to establish a coast-

ing trajectory to P2, at which point a second impulse

would be applied to match the target velocity. Traject-

ory B of the designated figure illustrates transfer by

this method, and as shown, a large change in velocity

direction would be required at P1. A much less expen-

sive method of transfer would be to let the vehicle

continue in its orbit until it reached a point near P1

where an impulse could be applied to place it on a near

Hohmann transfer ellipse (orbit C) to P2. It is not

meant to imply that this latter method of transfer would

minimize energy, only that it would obviously require

less energy than a direct two-impulse transfer.

Sample Problem

As was stated previously, the existence of a third

impulse potential does not ensure that a third impulse

can be profitably utilized. It is necessary to also con-

sider the initial and final velocities. The following

problem illustrates the usefulness of the presented data

curves for determining the applicability of a third im-

pulse for an assumed set of conditions.
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Pl-Pz: TWO IMPULSE TRANSFER

Pl'Pi'PZ: THREE IMPULSE TRANSFER

FIG. 4.15-—COMPARISON OF TRAJECTORIES FOR LARGE

ANGLE TRANSFER
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Let it be assumed that a vehicle is to be trans—

ferred from.P1 to P2 where the conditions of transfer

are as follows:

R1 - 22.511 x 106 ft (300 e mi altitude)

R2 - 22.73611 x 106 ft (342.6 e mi altitude)

Ago - 270°

T - 4324.63 Sec ' 72.06 min

v - 211 ft/sec at 1200
0

v1. - 253 ft/sec at 102.20.

The velocities V0 and vf are given relative to a coast-

ing axis system as described earlier. A coasting

trajectory Joining P1 and P2 with transit time as noted

above would require absolute velocities at these points

as follows:

Vi (Tangential) - 25,132 ft/sec

Vi (Radial) - 0

V2 (Tangential) - 24,884 ft/sec

V2 (Radial) - ~249 ft/seco

A two-impulse rendezvous could be achieved by simply

applying impulses to cancel v0 and Vf and would require

e characteristic velocity of

AV= v + v - 464 ft/sec.

o f

In order to examine the applicability of a third

impulse, plots of Vi/vl! vz/vl, and ‘52 versus 31 were

used to determine the characteristic velocity required

for rendezvous via three impulses. Only the case in

which the magnitude of VI is equal to that of V0 was
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examined. Thus, for v1 - o - 211 ft/sec and for

various values of761, the quantities Ayi, v2, and 6%

were found and the characteristic velocity determined

from the equation

AV - [v1 - vol + (Avil + Ivf - vzl .

The solid curves of Fig. 4.16 are plots of.AN versus

.61 for various times of application of the intermediate

impulse. ‘Minimum values of these curves are Joined by

the dashed curve. On extrapalating by means of this

dashed curve, the minimum characteristic velocity

required for a three-impulse rendezvous is found to be

200 ft/sec for an intermediate impulse applied at a

time between 3/8 and 1/2 T. Thus, by using three in-

stead of two impulses for rendezvous under the stated

problem conditions, characteristic velocity is reduced

from 464 to 200 ft/sec.
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CHAPTER v

SUMMARY AND CONCLUSIONS

The problem of minimizing the energy required to

perform.a space rendezvous has been analyzed by two

different methods: the calculus of variations, and a

trajectory perturbation technique. A brief description

of each method and a summary of the results obtained

by their application are presented in the following

‘paragraphs.

CALCULUSIQ§E§RIATIONS

The calculus of variations analysis (Chapter III)

is based upon the use of linearized relative equations

of motion which are shown in Appendix A to be reasonably

accurate in accounting for the acceleration forces.

From the set of Euler-Lagrange equations, two Lagrange

multipliers are determined which are identically equal

to the direction cosines of the thrust vector. It is

shown that these multipliers are independent of the

remaining set and can be expressed in terms of second

order differential equations identical in form to the

equations of motion. As a consequence of this results,

and with reservations according to the assumptions made,

it was possible to reach the following conclusions:

(1) A minimum energy trajectory contains no arc

flown with an intermediate level of thrust.

(2) If the upper bound of thrust is large so that

the assumption of velocity impulses is valid,
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a minimum energy trajectory is achieved with

either two or three impulses. .No criterion

was established that would determine which of

these modes should be used.

TRAJ'ECTORY PERTURBATION

The perturbation technique is based upon determining

the effect of perturbing a vehicle relative to a nominal

coasting trajectory. If the vehicle were to move along

the nominal trajectory it would traverse a path between

space terminals P1 and P2 in a time T. However, by the

perturbation technique, it is given a velocity impulse

at P1 which causes it to deviate from the nominal trajec-

tory. Another impulse is applied at an intermediate time

that brings the vehicle back onto the trajectory at P2

when t - T. A third impulse potential is defined as the

sum of the relative velocities at P1 and P2 (measured

with respect to an axis system.whose origin is restrained

to move along the nominal trajectory) minus the inter-

mediate impulse.

The following results obtained from a parametric study

pertaining to the third impulse potential, 5v, are noted:

(1) Small variation of the radii ratio Rz/‘R1 and

transfer time T were found to have only slight

effect on 5v.

(2) The intermediate impulse ANi and the terminal ve-

locity v2 were found to be directly proportional

to the initial perturbing velocity, v1. Also,

it was found that.4%, the direction of v2, is
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independent of VI.

(3) The primary effect parameters were found to be

.61 (the direction of the disturbing velocity),

t1 (time of the intermediate impulse), and

A? (the transfer angle). Variation effects

are shown in Figs. 4.5-4.14.

(4) A third impulse potential was found to exist

for a wide range of conditions, with the greatest

potential‘occurring at large values of (sq). How-

ever, the results suggest that no potential exists

for values ofupless than 30°. For a target

in a circular, 300 5 mi orbit this would corre-

spond to a rendezvous time of approximately

eight minutes.

The investigation reported in this thesis did not

determine a complete answer to the rendezvous energy

problem by any means. However, it is felt that much

insight has been gained and that tools for further investi-

gation have been developed.





CHAPTER VI

SUGGESTIONS FOR FUTURE STUDIES

EXTENSION 9;; DATA
 

The data presented in Chapter IV relative to the

conditions under which a third impulse potential exists

need to be expanded., In particularly, it would be de-

sirabha to obtain data for larger values of RZ/Rl° In-

sofar as transfer time is concerned, it is suggested that

the times corresponding to the four transfer ellipse

orientations obtained by placing the perigee and apogee

alternately at P1 and P2 might be of interest.

PRACTICAL COMPUTATIONS
 

The method used to solve the sample problem of

Chapter IV, although illustrating the principal of three

impulse application, would not be practical for use in

actual satellite interception. A method subject to rapid

solution by digital computer would be needed. One method

that would meet this requirement can be derived by deter-

mining equations to describe the curves relating ANi/vl:

v2/vl, andneé to.di, and making use of the ordinary method

of maxima-minima determination.

The parameters Ami/v1, vz/vl, and.62 are described

with reasonable accuracy by equations of the form

2

(Va/V1), (Avi/Vl) = A "' B Sin /3 +91) (6.1)

54
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Tan (52 + 5‘2) - £7851: £ng (a?) ‘1) (5.2)

where A, B, C, and D are constants for a given value

of AV and ti/T, and the 4 are phase angles. The accuracy

of the describing equations is shown in Fig. 6.1 for

the case in which 490- 270°, and ti/T - 1/2. The solid

curves are actual values while the dashed curves were

determined by Eqs. (6.1 and 6.2). For a fixed value of

Ag» the constants and phase angles in these equations

would depend upon ti/T; and their mode of dependency

should be determinable from plots of the quantities

versus ti/T. It will be assumed that the relationships

could be determined in an appropriate form.

The characteristic velocity required for a three-

impulse rendezvous is determined by Eq. (4.1), which in

algebraic form is

AV a [v02 + v12 - ZVOVI COS (250 '31)]1/2 (6.3)

2 2
+ v:l + [v2 + vf - 2v2vf Cos (.62 ~Er)]l/?

On normalizing with respect to v1 this equation takes

the-form

(Av/v1) 3 [(vo/VI)2 + 1 " Zvo COS (£0 -61)]1/2

+A'V1/Vl '(604)

+ [(vz/vl)2 + (vf/v1)2

1/2- (2v2vf/v1) Cos (62 -.ef)]
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By substituting Eqs. (6.3 and 6.4) into this equation

after having determined the quantities A, B, C, D and

S‘as functions of ti/T, the characteristic velocity,

.AN/vl, would be dtermined as a function of the initial

and final conditions and time ratio ti/T. Thus, the

conditions under which AN/vl is minimized could be

determined by solving the set of equations

egévgm = O (6.5)

29431

9(AV/v)! = O. (6.6)

29 ti T

It should be possible to obtain a rapid solution to these

two equations with the aid of a digital computer. It is

believed that rendezvous studies in the direction indicated

above would result in the development of a guidance tech-

nique that could be applied in actual practice to reduce

energy requirements.

An alternate approach would be to develop a vehicle-

borne computer to solve the set of twenty-seven equations

determined by the calculus of variations analysis of

Chapter III.
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APPENDIX A

EQUATIONS OF MOTION AND ORBITAL MECHANICS

The basic equations used in the rendezvous energy

study are presented in this appendix. No derivations

are presented since they may be found either in well

known mechanics texts or in current literature. Deri-

vations are presented in the noted references.

ORBITAL MOTION

The polar equations of motion of the center of mass

of a satellite orbiting about a spherical earth are

R - R¢F . aq/R21+ AR (A.1)

Rd) + and: AT (A-Z)

where (-LVR?)is the instantaneous gravity force per unit

mass, and AR and AT are the radial and tangential accele-

rations due to thrusting forces. In the absence of

thrusting forces, the center of mass will describe an

ellipse, parabola, or hyperbola accordingly as the sum

of the kinetic and potential energy is negative, zero,

or positive.

The subject investigation was restricted to an anal-

ysis of elliptical motion. The various parameters shown

in Fig. A.1 which are used to describe elliptical motion

are related as follows:18

semimajor axis -

Ra ' 1/2 (Rapogee I Rperigee) (A‘g)
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63

eccentricity -

9 '-Rapogee ' Rperigee

Rapogee * Rperigee

semilatus rectum -

p - a(l - e2)

angular momentum -

J = (“ml/2

average angular rate -

“A;

33 2

orbit period -

P - 2fl%n

radius -

R B p

1 + eTSoscp

eccentric anomaly -

-1
E = Cos [(a - R)/ea]

time from perigee passage -

t - T = (E - 6 Sin E)/n
perigee

flight path angle -

r -- Tan'1[(e Sin w/(l + e 008 W]

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(11.11)

(A.12)
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total velocity -

V'= [Adz/R - 1/a)]1/2 (A.15)

radial velocity -

R = v Sin r (A.14)

01‘

° 1 2

R - WP) / e 31:14) (A.15)

tangential velocity -

angular velocity -

¢ =- J/R‘2 (A.1?)

or

(i: - (v Cos n/R . (A.18)

EQUATIONS 92 RELATIVE MOTION

In order to facilitate the study of the space ren-

dezvous problem, it is at times advantageous to use

relative equations of motion. A convenient axis system

is one which has its origin affixed to the orbiting tar-

get. Such an axis system is illustrated in Fig. A.2

which shows a right-handed rectilinear system with the

negative y axis extending through the center of the earth

and the x axis in the orbit plane.

The equations of relative motion arelg’zO

SE - (y + Rx'é - 2(3} + fax}; - x932 (A.19)

{-qx/fls - Ax



 

CIRCULAR ORBIT
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FIG. A.2—RECTANGULAR COORDINATE SYSTEM



I
,
”

l
l
.
I
i
i
|
-
i

I
,

, M..__:....- ..+._ .
--....~, g ‘- --~“ O

‘\

.
.
\

H.
.

.
\

_
fi
\

.na
.

1..r..
g
.
\

c
o
.

s
t

r
.

.
.
.
.

t
a

 

o
I
n
"
!

.1.

(
4
.
!
"

.
l
'
b
u
‘
q
.
I
-
i
i
'
i

'
I
i
l
“
a
l
l
l
l
i
‘
i
\
!
‘

.

W..I.

t
I
t
)

‘
1
T
l
‘
’
1

i
f
i
i
i
o
g

I
a
.



66

y + xgo + zip.» ii - (y + R)¢2 (A.20)

+lqjy + R)Ao5 - Ay.

'z' +uz/fi3 .. AZ (A021)

where

1° - [x2 + (y + R)2]1/?

The quantities Ax! Ay, and A2 are thrust accelerations.

For the case in.which the origin of the axis system

moves in a circular orbit and relative distances are not

too great, the above equations may be linearized. (Actu-

ally either of two modes of usage are possible: the origin

is affixed to a target moving in a circular orbit, or

neither the target nor vehicle are in circular orbits

but their motion is expressed with respect to an x-y axis

system whose origin moves in a circular orbit.) Assuming

a circular orbit leads to a constant value for R and

«3 '00 where, following custom, to is used to denote a con-

stant value of {5. Then, in order to linearize the equa-

tions,/°'3 is expanded as a power series and all terms

of second order and higher are dropped to give

#5 z (WRSHI-Sy/R)

Further, for a circular orbit

AVE; 8“?

so that
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On substituting this expression into Eqs. (A.19-A.21)

and dropping the terms containing y/R which do not

cancel, there results

" - 2&4? - Ax . (A.22)

§+2<.:i-owz-Ay (A.23)

,, 2

2 +002 - AZ 0 (A024)

When the thrusting accelerations are zero these equa-

tions can be readily solved to obtain

x - 2[(2ibflu» - 3Y0] Sin‘dT - (2&0Au» Cosch

+ [6yo - ado/concur + x0 + 2&0/0.) (11.25)

y 3 [(210/00) - 3Y0] Cosodr + (yo/in) Sinodl'

+ 4yo - zinc/w (A.26)

z =- 20 Cosz + (EC/w) Sincdl‘ . (A.2?)

Equations (A.25-A.27) can be used to determine the

velocity components that would be required at a given

initial position in order to place a vehicle on a coast-

ing path that would intercept a designated target after

a specified time. Assuming the target to be at the

origin of the axis system, the required components are

 

 

i0 ' xo SincuT + yo[6wT Sinqu - 14(1 - Cosch)

A/w (A.28)

5'0 ' 210(1 - Cosodl‘) + 331(4 Sinw'I'm- our Cosz)

AT“ (A.29)

zo ' :39— (11.30)
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where

A= SUI' Sinwl‘ - 8(1 - 003m)-

The linearized equations are reasonablv accurate

provided the relative distance is not too great. For

example, assuming distances of x = y = 50 statue miles,

the discarded terms would amount to an accelerating force

of approximately 0.01 ft/secz in the x and y directions

and 0.0002 ft/secz in the z direction.

It should be noted that the weak coupling between

the z motion and motion in the x-y plane as seen in the

exact equations no longer exists in the linearized equa-

tions. For this reason, many investigators have chosen

to analyze only the more complicated x-y (coplanar) mo-

tion with the suggestion that the total motion be deter-

mined by analyzing the z motion separately and superposing

the results on the x-y motion.



APPENDIX B

NOMINAL TRAJECTORY EQUATIONS

The method of Gauss can be used to determine the

elliptical elements of an orbiting body when consecu-

tive values of the radius and are swept are known with

respect to time. Following is a derivation of the

1
necessary equations.

Equation (A.1?) can be rearranged to give the

areal rate being swept by a radius vector as

1/2

R(R 51%) = 2 dA . J= (Mp) (B.1)

where dA/dt denotes areal rate. On integrating Eq.

(B.1) over the time of observation the following equa-

tion is obtained

Asector - meL 'LT (13.2)

The area of the triangle between radii R1 and R2 is

given by the equation

Atriangle = P332 5111155" (3-3)

where Ap is the angle between the radii. The method of

Gauss depends upon the ratio of these areas, which is

I) - [Owl/231' . (13.4)

RlRZ Sin Ago

Upon substituting values of R1, R2,¢p1, and ¢h into
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Eq. (A.9), two equations result which can be solved to

give
.

~ (B.5)

p(R1 +R2) = 2 + 2e Cos ((92 + (91) Cos (¢2 -cp1),
m

slag 2 2
 

Through the use of Eqs. (A.9 and A.10), and after sev-

eral equation manipulations, the relationships

(8.6)
e COS ((92 +CPi) _p COS (E2 - E1)

(R1R2)Il2 2

" COS (sz " g)

2

e Cos (E +>E ) - 008 (E - E )
2 2 1 'Z‘Tl (13.7)

- (R1R2)1/ZCOS “Pg “@1)

a 2

 

can be obtained. Equations (B.5) and (B.6) combine

to give

2 (B.8)

p ._. 2R1R3 Sin (4072)

R1 + R2 - Malawi/zoos (Am/2) Cos (AB/2)

 

where

4<P=<02-¢1

AE=E2-Elo

0n eliminating p from Eq. (B.5) and using the notations

81 = “01/2 T

[2(R1R2)1f2 Cos (Mp/2n“?

bl = R1 + R2 _ 1/2

4(R1R3)1/2 Cos (409/2)

the following relationship can be obtained
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[22 a (81)2 . (B.9)

b1 + Sin? (AB/4)

 

Using Eqs. (A.7 and A.11), the expression'

(“)1/2 T " AE - 2e Sin (AB/2) Cos (E2 + E1)

a3/§ 2

is obtained, and on eliminating eCos (E2 + E1) by

the use of Eq. (B.6) it is found that

iii/.33." ' AE - Sin AB (13.10)
3 2

a + 2(RlR2)1/2 Sin (AE/2) Cos (AB/2).

a

Another equation involving "a" will be determined

so that it can be eliminated. By Eq. (A.10)

Rl/a - 1 - e Cos E1

Rg/a = 1 - e Cos E2

from which

R1 + R2 3 3 - 26 Cos (AE/z) 003 (E2 + 111). (3'11)

a 2

Again using Eq. (B.6) to eliminate the term eCos (E2 + El)

and rearranging terms, Eq. (B.11) can be written as

2 (13.12)

1/a = 2 Sin @E/Z) ‘ .

R1 + R2 - 2(R1R2)1/2 Cos (AE/Z) Cos (ago/2)

Further, on combining Eq. (B.9) with this equation it

is found that
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178 [222 Sin (AB/2) Cos (A¢/2)JER1R2 . (B.13)

MTZ

 

Eliminating "a" from Eqs. (B.10) and (B.15) gives

a - g .. AE - SinAE (B.14)

(a1) (a1) Sins (AB/2)

and from Eq. (B.9)

’7 = '1 81 t r . (B.15)

[b1 + Sind (AE/4)]I/z

In order to determine which sign should be taken, it

is noted that according to Eq. (B.4),/7 is positive

for A¢< 180°, and negative for 21¢) 180°. Therefore,

Eqs. (B.14 and B.15) can be combined to give

3 a1 - [b1 + Sing (AE/4)]1/3 (B.16)

+ (AE - Sin AE) b + Si 2 “E 4) 3/2

Sin3 (AB/2) [ l n / 3

where the sign preceding a1 is taken as

+ for A¢< 180°

- for A(0 > 180°.

It can also be seen from Eq (B.4) that I] is

singular for M- 180°. A separate equation must be

determined for this case. For A¢= 180°, Eqs. (B.10

and B.12) reduce to

83/3 . ( 1/2 T (B.17)

A> - Sin 4E

 

and
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a = R1 + R2 . (B.18)

2 Sinz (AE /2)

 

Whence

(101/2 1*[2/(31 + 32)]3/2 .. AE - Sin A3 . (3.19)

51:13 (AE/z)



APPENDIX C

TRAJECTORY PERTURBATIONS USING

RELATIVE EQUATIONS

The method described in this appendix can be

used to determine the parameters comprising the third

impulse potential of Chapter IV, i.e. v1, v2, and Ab.

The same type of perturbation technique is used to exam-

ine the effect of deviations from a nominal coasting

trajectory due to a disturbing velocity, v1, applied

at the initial space terminal. However, relative

equations are used instead of the orbital equations

previously employed.

Equations (A.19 and A.20), which are exact, are

used to express the relative motion. Since the co-

efficients of these equations are functions of R and

(0, Eqs. (A.1 and A.2), with AR II AT - 0, are also

needed. X

Initial conditions x0 and yo are determined as

components of the selected value of V1, and since the

vehicle is assumed to be at the origin before it is per-

turbed, x0 - yo = 0. Initial conditions for the R-

aquations are determined from the nominal coasting tra-

jectory as explained in Appendix B. Having determined

the initial conditions, the equations can be integrated

simultaneously from t = O to t 8 t1 to determine the

position and velocity just prior to the intermediate

impulse. It is next necessary to determine values of
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i and i which would reduce x and y to zero in the

remaining time, (T - t1). The problem is a boundary

value problem in which the initial and final positions

are known and the initial velocity is sought.

The following described technique, employing a

system of adjoint equations and iterative integration,

is used to determine the initial velocity.

The second order x-y equations are replaced by a

set of first order equations by making the substitutions

x'y1;y-y2; i-y3;$'-y4

in Eqs. (A.19 and A.20). The resulting set of first

order equations are as follows:

#1 - Y3 (0.1)

E2 = Y4 (0.2)

jg - (y2 + 3x}; + 2(y4 + 130:3 + y1¢2 -A(y1l°3(c.o)

5'4 ' - ylé" - Zygé’ - F + “’2 + R)¢2 (0.4)

«(ya + lav/03

where /°= [yl + (Y2 + R)2 11/2

In order to clarify notations, a new variable‘T is

introduced to denote time; and a solution is obtained

for the time span 7"- O to 7f, where Tr = T - t1. At

the initiation of solution,the known initial and final

conditions are

Y1(T'O) " Y1(t't1);' 172(7'=O) *3 yg(t=t1);

Y1V'7f) "' Y2(T'7}) "' O.
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The immediate objective is to determine y3(7’=0) and

yng=O). As a first step, trial values are selected

for these sought parameters. (It was found that a

good first guess could be determined by Eqs (A.28 and

A.29) which are solutions of the linearized x-v

equations.) Denoting the trial solution of Eqs. (0.1-

*
0.4) as yl, let

yim = yim - vim. (0.5)

It is desired to make Sy1CTf) equal to or less than

some selected value.

Taking the derivative of Eq. (0.5) and using the

notation

5E1 = 81(YJ); 3: 1929324:

where the g1 denote the functions of Eqs. (C.1-C.4),

gives

53': = 21(3'3) - sing) = 521(3'3)

or

55:, = Jgi =- agj yi; 1 = 1,2,3,4 . (0.6)

8W1

Using matrix notation, Eq. (0.6) becomes

55,1 = Asyi (C.7)

where A has the form

all e e e 8.14

8.41 o e e 844
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The matrix coefficients are determined by carrying

out the operations denoted by Eq. (0.6) and are

811 ' a12 ‘ a14 ’ a21 ‘ a22 ' a23 ' 833 ‘ a44 ‘ 0

a13 ' a24 ' 1 .

3331 =¢2 - ({(P*2 - 3Yf2)/’°*5

e32 . (z. sqyyyg + awaits

a:34 = 2W

a41 - «22+ WW; + R)/,o*5

a42 =¢2 -p([,°*2 - My; + mg ]//0*5

a43 - -2¢7

where the star denotes evaluation along the trial

trajectory.

The next step is to form the adjoint system of

equations which are defined as

~i1 a A' x1 (0.3)

where A! is the transpose of A. Goodman and Lance21

showed the application of Green's Theorem to the adjoint

equations to derive the relationship

4 44

Ecfirfisnvf) - ;x1(o)5y1(0) = o . (0.9)

l-s |

This equation expresses a relationship between the and

values of Syi and the adjoint equation parameters x1.

No restrictions have been placed on the and conditions

of the x1. Thus, various sets of and conditions can be

selected that will allow a set of equations to be de-

rived from Eq. (0.9) that can be used to determine

initial values of 5y1 when the final values are known.
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Taking first the initial Conditions [x1('rf) -= 1,

12(Tf) . xgtrf) . x4frf) - O], Eqs. (0.9) and the R—

equations are integrated in reverse time to get x51(0)

and x41(0). The second subscript denotes the value of

x3(0) and x4(O) for the selected initial condition

x1(7}) = 1. On substituting x31(0) and x41(0) into

Eq. (0.9) and noting that y1(0) - y2(0) = O, the fol-

lowing equation is obtained

Sylh'f) - 131(0)5y3(0) + 141(0)5y4(0) . (0.10)

In the same manner the set of conditions [x1(Tf) - O,

x2(Tf) - 1, xstf) . x407}) - O] are used to obtain

Jyzh'f) ' x32(0)ly3(0) + x42(0)8y4(0) . (0.11)

Equations (0.10 and 0.11) are solved for 5y3(0)

and £y4(0) and these delta quantities are used to de-

termine a better guess for the initial velocities of

a new trial solution. New trial values are determined

by Eq. (0.5) as

[y’i‘mnnew - [monold + 533(0); 1 = 5,4.(0.12)

The process is repeated until the miss distance is equal

to or less than the selected value. As applied to the

rendezvous energy study, only one correction was found

to be sufficient to reduce the miss distance to less

than 10 ft in the usual case.

Upon determining an acceptable solution, the tra-

jectory between P1 and P2 is known and the following
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velocities have been determined:

5c(t=t1); $r(t=ti); 5c(1'=0); Sty-=0): 5c(T=Tf): ir(T=Tf).

Thus, the intermediate impulse is found as

» . . .1 /
Avi = ([2020) - x(t=ti)]2 + fy(7"=0) - y(t=ti)]2)1,2

(0.13)

The final velocity is

v2 = ([Sdrfnz + [$r(7-f)]2}1/2 (0.14)

and its direction is determined by the equation

62 = Tan'1[5r(rf)/i(7-f)1. (0.15)



 

 

 



      

  

    

   

HENRY NUSS

BOOKBINDER

LOOSE LEAF BINDERS

RULED FORMS I. INDEXES

RECORD BOOKS

419 So. Envoy St. Dallas I. Tam

Rlverslde 7-5‘545



 

  


