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ABSTRACT

MINIMUM ENERGY SPACE RENDEZVOUS

by Eugene Harrison

The space rendezvous maneuver is defined as one
which is designed to move a svace vehicle from one
location to another in order to match the vosition
and velocity of an object in orbit at the second loca-
tion. It is equivalent to a space transfer in which
terminal conditions and time of transfer are specified.
An investigation to determine the minimum energevy re-
quired to achieve a space rendezvous is revorted.

Two methods were used to investigate the rendezvous
energy problem-—an analvsis bv the calculus of vari=
ations, and a trajectorv perturbatisn orocedure. For
each method it is assumed that the onlv forces acting
on the rendezvous vehicle are due to the inverse square
gravity field and anonlied thrusts. It is also assumed
that thrust levels are high so that velocity chanees
are essentially impulsive.

The analysis by the calculus of variations is based
upon the use of linearized equations of relative motion
which are reasonably accurate if the distance separating
vehicle and target is in the order of 50 miles or less.
Using the relative equations, a set of Euler-Lagrange

equations were obtained; which, on examination, led to
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the following conclusions:
(1) A minimum enerey trajectorv is comorised »f seg-
ments flown with either zero or maximum thrust.
(2) A minimum energy rendezvous is accomnlished using
either two or three impulses,

The perturtation method of enerey analysis deter=
mines the effect of perturbing a vehicle which would
otherwise move along a nominal coasting trajecto;y joine
ing space terminals. The perturbine velocity is assumed
to be the residual from a partial nullification of the
initiel velocity relative to the coastine trajectory
velocity. At an intermediate time an impulse is anplied
to bring the vehicle back onto the nominal trajectory
at the destination voint. The trajectory from the point
of application of the intermediate imnulse tn the desti-
nation point is selected so that the total transit time
on the perturbed path equals the transfer time along the
nominal trajectory. The velocity at arrival via the two
routes would, of course, be different, and the vector
difference is termed the resultant velocity. A third
impulse potential is defined in terms of the residual,
intermediate, and resultant velocities.

The results of a parametric study in which the third
impulse potential was used to examine the conditions under
which a third impulse could be utilized are reported. A
sample problem is presented in which the velocity required
to rendezvous is shown to be greatly reduced by using

three velocity impulses instead of two.
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CHAPTER I
INTRODUCTION

The purpose of the investigation describved in this
thesis was to determine the minimum energy required to
transfer a spacecraft between two points in an inverse
square gravity field when the time to transfer and
terminal velocities are specified. With these snecifi-
cations, the transfer is equivalent to "space rendezvous"
-8 maneuver generally described as one designed to move
a spaceéraft from one location to another in order to
match the position and velocity of some object in orbit
at the second location. Hereafter, the designations
"vehicle™ and "target™ will be used.

The need for information concerning the rendezvous
problem is becoming increasingly important. A number
of complex satellites have already been pnlaced into orbit
and many more are planned for the near future. Some of
these will be manned and may possibly range from craft
carrying a single operator to facilities that will serve
as launching platforms for lunar or intervlanetery mis-.
sions. Rendezvous capability will be necessary in order
to transfer personnel and suvplies to and from these
facilities and to provide emergency rescue capability.

Recent literature has been replete with articles
concerning rendezvous. One author 1lists a biblioeraphy
containing fifty-nine references.l For the most part,

these articles have deslt with the development of cuidance
1






equations and various rendezvous technioues. The enereies
required to rendezvous by the varisus techniques differ,
and in many cases by a significant am-hunt. One »f the
reasons for attempting to determine the minimum enerey
required for rendezvous was to nrovide a comnarison
energy so that an efficiency number, insofar as energy

or fuel expenditure is concerned, mav b=s determined for
each technique.

The total operation from earth launch t» contact
between vehicle and tareet may be described as consiste-
ing of the following phases:

(1) Launch from earth for a direct anoroach or

into a parking orbvit.

(2) orbit transfer and/or injection into the target
orbit to get an approximate vositinn and velocity
match.,

(3) Rendezvous, which is usually described as be=-
ginning between 10 to 50 miles from the target
and extending to close proximity.

(4) Final approach and docking which begins within
a few feet of the tareet,

It was intended that the subject investigation would

be restricted to the rendezvous nhase, however, in meny
cases the results obtained could equally well aooly to

the orbit transfer phase.



CHAPTER II

PROELFM DEFINITION AND BACXGROUND

PROBLEM STATEMENT

In terms of the generalized coosrdinates q1 and qz,
the subject problem can be stated as that of transferre
ing a spacecraft or rocket from econdition (q},qi,ﬁ%,éi)
to (q%,qi,ﬁé,&i) in time T with a minimum expenditure
of energy. The motion of a rocket in space can be dess
cribed by the vector equation

dV + ¥ = -(T/m) dm (2.1)
It at

where

rocket velocity

B «l
"

= mass of rocket and fuel

= rocket exhaust velocity

=| ol

= gravity force per unit mass.

Energy expended is usually measured in terms of char-
acteristic velocity as determined bv the integral of
either side of Eq. (2.1). Hence, the energv of transfer
(rendezvous) is determined either by the eauation

mr
AV = /-('é'/m) d;g = ¢ loe (my/mp) (2.2)
d

Mo
Vo T
Av-/d'xi-o-/'ﬁdt. (2.73)
Yo o

The problem of minimizing enercy can be considered as

or

one of minimizing the change in mass, (m0 - mT), or the






characteristic velocity as defined by Eq. (2.3).
RELATED STUDIES

Previous studies pertaining to the transfer of a
vehicle between space terminals more or less fell into
two general catagories: (1) those in which time is
specifiéd and are rendezvous equivalent, and (2) those
in which time is not specified. A number of the more
pertinent investigations and their relationship to the
subject investigation are briefly discussed in the fol-
lowing paragraphs.

Rendezvous Equivalent Transfer

In early investigations Lawden used the classical
variational calculus aporoach to analyze the space trans-
fer problem.3'4’5 On the basis of a Taylor series expan-
sion of the gravity potential in which terms greater than
second order were neglected, results were derived which
indicated that the minimum energy transfer trajectory
would contain no segment flown with an intermediate thrust
level, i.e. it would consist of ares of maximum thrust
followed by coasting arcs. However, both Lawden and
Leitmann later showed that an intermediate thrust trajec-
tory cannot be ruled out when the complete gravity poten-
tial is present.e”7 In reference (7) Leitmann treats
'the problem of thrust mode selection and shows it to
depend upon a switching function determined by the
Welerstrass E-function. However, this function does
not furnish apriori information for the above stated

case (a non-linesr gravity function). A running account



must be kept of the switching function during the
numerical inteeration of the Euler-Lsgrange equations.

Thus, one of the primary problems in determinine an
optimal trajectory is the selection nf the anpropriate
thrust mode. However, even going under the premise that
a minimum energy trajectory in an inverse squere gra-
vity field would contain no intermediate thrust segment,
there still remains a major problem. This problem is the
lack of criteria for determining the number of vpowered
arcs to achieve an optimum.

In many cases where the classical calculus of vari=-
ations was used to analvze those space transfer oroblems
which lend themselves to analysis, the procedure has
been to formulate criteria for solution without present-
ing a solution. The difficulty lies in solving the re-
sulting set of Euler-Lagrange equations. It is necessary
to know all of the initial conditions before the equations
can be numerically inteerated. In most cases, terminal
conditions are specified in part as initial, and in part
as final conditions. Thus, an iterative scheme must be
employed to obtain a solution.,

To avold the difficulty associated with the use of
the methods of the calculus of variations, a number of
investigators have proposed the use of direct methods of
optimization., Among those that have been employed for
trajectory optimization are the gradient theory methods,

9,10,11
and a method analogous to the Rayleigh-Ritz methods.






Reference (12) is a survey of the oroblem of opti-
mizing aircraft and missile flight paths. Prior treat-
ments are described and the problems of Bolza, Mayer,
and Lagrange are developed. This reference contains an
excellent biblioeraphy pertaining to trajectory opti-
mizing,

Orbit Transfer

The orblt transfer problems which svecify terminal
conditions but not the transfer time are not equivalent
to the rendezvous problem, although some insight may be
drawn from them. The difference may be seen in Fig. 2.1
which shows two coplanar orbits that are nearly identi-
cal in geometry but differ in orientation. Let it be
assumed that an optimal orbit transfer trajectory would
be similar to path Py-Pp, where one impulse is applied
at P1 on orbit A to initiate the transfer trajectory and
a second is epplied at Pz to enter orbit B. Now, it would
be coincidental if the vehicle and tarezet were phased in
orbit such that this trajectory would result in an
intercept. Further, since the orbital periods would be
nearly equal, waiting until the proper nhasing occurred
might not be feasible. However, if time is of no conse-
quence, the fuel required to rendezvous would, in the
limit, be equal to that required to transfer orbits.
Such a rendezvous would be carried out following the
orbit transfer by applying a small retro thrust at the
perigee (for minimum velocity imoulse required/period

change) of the entered orbit in order to go into a wait-



FIG. 2.1=0RBITAL TRANSFER WITH TIME UNSPECIFIED

GET

FIG, 2.2-=WAITING ORBIT DESIGNED TO CORRECT PHASING
PRIOR TO RENDEZVQUS



ing orbit with a slightly shorter period (Fig. 2.2).

The waiting orbit should be tailored so that the vehicle
and target would arrive at their coincidental perigee
points simultaneously after a number of revolutions.

One of the first works concerned with the minimiz-
ing of orbit transfer energy was the derivation by
Hohmann of the transfer ellipse named for him.,13 The
method uses two impulses to transfer between circular
orbits. The first is apnlied at a point on the initial
orbit to establish an elliptical trajectory tangent to
the two orbits. Transfer is accomplished during 180°
of orbit travel, and another impulse is aoplied to enter
the second orbit at the point of trajectory tangency.
Transfer can be to an orbit of either smaller or larger
radius. The Hohmann transfer ellipse provides a minimum
energy transfer if the radius ratio between the two orbits
is not greater than 11.9.14

Other investigators have examined the more general
problém of transfer between non-circular orbits. It
has been shown that the optimum number of impulses to
transfer from one coplanar orbit to another is either
two or three, depending upon their orientation and ele=-
ment values,l5,18

ANALYSIS METHODS USED IN SURJECT STUDY

Early in the program three avenues of investigation
were followed, more or less simultaneously. The three
consisted of a study of the applicability of the calcu-

lus of variations and two direct minimization methods.
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One of the cdirect methods, a traiectorv perturbation
technique, was the primary tonl of subsequent investi-
gation, The other direct method of analvsis was hased
upon a variation of delta quantities to estsblish a
egradient that would indicate the manner in which a non-
minimum trajectory should be varied t» reduce transfer
energy. It was abendoned because of excessive comonter
time requirements and lack of proof that the determined
trajectory was an extremum and not merely one with a
stationary energy level.

Treatment of the rendezvous energvy oroblem bv thre
methods of the calculus of variations end the traject-
ory perturbation technigue are presented in Chapters
III and IV respectively.

GENERAL ASSUMPTIONS

The followint assumptions were made in order to
facilitate the energy analysis and are nnt believed to
detract from the results obtained:

(1) The earth is spherical. The perturbetionns of

a satellite orbit caused by the earth's
oblateness may be neglected insofar as
rendezvous is concerned because the integrated
effect of the perturbations wsuld be small
during the time interval of interest.? Also,
since the distance betveen tarcet and vehicle
during rendezvous is small comonared to the
radius of the earth, the perturtation effects

would be approximatelv the same on each and



(2)

(3)

(4)

(5)

10

would cancel insofar as relative motion is
concerned. .

Gravity is the only outside disturbing force.
The forces exerted by atmospheric drag, meteor-
ite collision, and sun pressure are neglected.
The target and vehicle are in coplanar orbits.
Motion in a direction normal to the target
orbit plane is, for all practical purvoses,
independent of in-plane motion for the relatively
small separation distances being considered.
(See Eq. A.24.) Thus, it is possible to treat
the in-plane and out-of-plane motion independ-
entiy and superimpose results.

The vehicle is a point mass. The problem of
attitude stablization and thrust vectoring was
not investigated.

Impulsive thrusts and instantaneous velocity
charges are allowed. The time required for a
vehicle to attain a desirable closing velocity
in the usual situation would be small compared
to the time to perform the terminal phase

rendezvous maneuver,



CHAPTER III
ANALYSIS BY THE CALCULUS OF VARIATIONS

The analysis by the calculus of variations pre-
sented here relies heavily upon work desocribed in
references (5,7,12, and 17). The problem of energy
minimization is analyzed using the linearized ren-
dezvous equations (A.22 and A.23). Within the lim-
itations of these equations, which are shown in
Appendix A to be reasonadbly accurate, it will be
shown that a minimum energy rendezvous trajectory
contains no aro flown with intermediate thrust. In
addition, 1t will be shown that if thrust is unbounded,
a minimum eneréy trajectory is achieved with either
two or three impulses.

If the angle between the thrust and velocity
vectors is denoted by , Eqs. (A.22 and A.23) can be

written as the following set of first order equations:

wx-i-u=0 (3.1)
py=F=-v=0 (3.2)
@, =1 -=-2w - (c8/m) CosoL =0 (3.3)
o=+ 2 - 3ufy - (06/m) Sin = 0 (%.4)
Pp=m+8=0. (%.5)

Assuming the rocket exhaust velocity, ¢, to be a
constant, as is nearly so in the case of a chemical

rocket, there are two control variables—Qand Q.

11
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Following Lietmann,7 a sixth equation is introduced

in order to 1imit the mass flow rate such that

Bmin S @ SBmax .
The equation is

Pf = (B~ Bmin) (Bmax -F) -9‘2 =0 - (®.6)

where

£=4(t) .

Equations (3.1-3.6) are six restricting conditions
to be imposed on the eight variables x, vy, u, v, m,
o, 4, &, leaving two degrees of freedom.

The problem at hand is to determine q(t) and
A(t) such that the rocket will traverse a trajeotory
between designated space terminals in time T that
minimizes (m; - mp). As a first requisite for a so-
lution, the Euler-Lagrange equations must be satisfied.

These equations are
d @F) -2F =0; q-= x,y,u,v,m,d,ﬁ,é‘
at\3g 3q

where

F 'XM@.; Q= X,Y,u,v,m,§

and the Aq are the Lagrange multipliers. When applied
to Egs. (3.1-%.6), the resulting set of equations are

as follows:
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Ax =0 (3.7)
Ay + Ay = 0 (3.8)
Au - 26AV + Ax = 0 (3.9)
Av + 2hu + Ay = O (3.10)
i‘m - (ca/mz)(hu Cosa + Av Sina) = 0 (3.11)
(¢/m) (M1 Cos &+ Av Sin &) = Am (3.12)
+ [ (# -Omnin) - (Bmex - B)] = 0
(648/m) (Au Sin & = Av Cosa) = O (3.13)
Ng&=0 (3.14)

Solutions for Ax, Ay, Au, and Av become immediately
avallable by first differentiating Eqs. (3.9 and
3.10) and substituting from Eqs. (3.7 and 3.8), where=-

upon, the following equations are obtained:

Nu - 2RAY = O (3.15)
.7‘..v + Z.J.\.u - &uakv =0 , (3016)

It is seen that with a substitution of Au for x and
Av for y, these equations become identical to the
linearized equations of motion (A.22 and A.23) with
Ax = Ay = O,

Leitmann proved in the case of an analosous problem,
i.e. when the Au-Av equations can be uncoupled from the
remaining set of Euler-Lagrange equations, that no are
flovn with intermediate thrust can exist.’ Thus, an
optimum trajectory ﬁould be composed of arcs of maximum
and minimum thrust. In the present investigation ve-

locity impulses have been assumed, i.e. Amax —»oe.
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Thrust direction is determined from Ea. (%.1%)

as
Tan X = Av , (7.17)
Au

"It is noted that the functions Au and Av remain
defined between impulses since 8min is allowed to
approach but not attain a zero value.

If an ovtimal trajectory is to be c¢composed of
more than one coasting arc, the ErdmanneWeierstrass
corner conditions must be satisfied at each corner

(interior junction). These conditions are exoressed

(%) (3)
7oz -3

which define the equality of quantities immediately

as

prior to and after a corner. Applied to the present

problem they result in

N_ =N, ; q=Xx,7,u,v,m (3.18)
C. = C,

where
C = xxi+7\y5r+xuﬁ+7\vfr.

First, it is noted that Au and Av satisfy Eq. (3.18)

by the noted solutions (analoeous to x and y which are

continuous on a coastine trajectory). Next, parameters
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Ax and Ay satisfy this corner condition because Ax is
a constant by Eq. (3.7), and from Eq. (%.8)

Ay = =365 /Mr dt (3.20)

and so is also continuous. In order for Eq. (3%.14) to
hold, it is necessary that A§ = O, since §(t) % 0 by
definition. Hence, from Eq. (3.12)

No = (¢/m)(Au Cos ¢+ Av Sin a) (3.21)

and, since ¢ = 0 immediately before and after an
impulse, A\m—- = Am,. Thus, all of the corner conditions
of Eq. (3.18) are shown to be satisfied.

The corner condition specified by Eq. (3.19)
furnishes one of a set of equations which can be solved
to determine a stationary three impulse rendezvous tra-
jectory. In totsl, twenty-seven equations can be written
relating thirty-six parameters. From Eqs. (3.1-3.4)
with zero thrust and from Eqs. (3.15 and 3.16), explicit

solutions can be determined for the following twenty

parameters:
Xy, Xp kui, Aup
Yi» ¥ Avy, KvT
ii—' iI'- i.ui
3.'1-: &T- 7.W:I.
‘.11-v ‘.‘1+ 7“x:l
Vioy Vig Ay .

'Six equations remain to be defined.
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At each application of impulsive thrust the
direction of the thrust vector must coincide with
the added velocity vector. Hence, Eq. (3.17) applied

at each impulse results in the three equ=tions

Avg = Aix = Vi, = Vi3 k=0,1,T . (3.22)
Ny Axk Xy, - Xk '

The three other equations, which have been shown tn

be necessary conditions for an optimal trajectory,5 are

[(kuk)z + (hvk)zjl/z =1; k=0,1,T. (3.23)

These equations state that Au and Av are not merely
proportionsl to the thrust components; but in fact,
are the direction cosines of the thrust vector.

The desired unknowns of impulse direction, mags=-
nitude, and timing can be determined as functions of
the eight terminal conditions and total transfer time
by solving the set of twentv-seven equatinns described
above.,

In order to see that no more than three imoulses
can be utilized for optimum transfer it will be re-
called that Eqs. (3.19 and 3.22) must be satisfied at
points of impulse application by the paremeters Au and
Av. Since these two parameters are described bv second
order differential equations between t = 0 and t = T,
the four initial conditions Au,, Avg, iuo, and iwo are
just sufficient to satisfy the conditions svecified by

these equations. Additional conditions that vould be



~
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introduced by another corner c»huld not, in general, be

satisfied.

In summarizing the application »f the calculus

of variations to the problem o>f rendezvous fuel mini-

mization, the following items are noted:

(1)

(2)

Insofar as the linearized equatinns describde
the relative motion of a rendezvous vehicle
and tareget, it has been shown that—

(a) No arc flown with thrust between the
maximum and minimum values can exist on
a minimum energey trajectory.

(b) The minimum energyv transfer is via either
two or three impulses. No criteria was
developed to determine which of these two
modes would provide the minimum.

Since the linearized equatinns have been

shown to be reasonably accurate, it would

not be expected that there would be any sig-

nificant difference in the above results as

applied to the actual rendezvous maneuver,

It should be called to attention that the

linearized x-y equations are based ubon an

axis system whose origin moves in a circular
orbit, but that the target need not. It is
necessary only that the target position be

predictable in the reference frame at time T,






CHAPTER IV

ENERGY ANALYSIS BY TRAJECTORY PERTIRBATION

In many respects this chaoter presents the most
important results obtained from the rendezvous energy
study. The methods of analysis which were develovned
are described and a means for measuringe the potential
of a third impulse is formulated. The results of a
parametric study to determine the conditions under
which a potential exists are slso nresented.

PERTURBATION METHOD

Description

The perturbatio-n method, es ao-nlied to the rendez=-
vous energv study, determines the effect of perturbdbing
a vehicle which would otherwise move along a nominel
trajectory joinineg two space terminals. Let it be
assumed that the origin of an axis svstem as shown in
Fig. 4.1 moves along a nominal trajectory between the
space terminals P; and Pg as if it were attached to an
undisturbed mass., Further, let the positisn and velocity
of the origin be P, V,) at t = 0, and Py, Vez at t = T.
Then, if the absolute velocities of a vehicle immedistely
prior to P, and after P, ere denoted bV'Vo and Vf, these
velocities relative to the coastine reference frame are
determined bv the vector differences
=V -V

Vo

Vf=Vf—Vc2.

18
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i Py

FIG. 4.1=—AXIS SYSTEM ON NOMINAL COASTING TRAJECTORY

FIG. 4.2==RELATIVE TRAJECTORY OF PERTUREED VEHICLE
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(Upper case letters are used to denote absolute
velocities while relative velocities are denoted
by lower case letters.) If impulses were applied
according to the equations

V1 = =V

Vo = -;f’

the vehicle would follow the coasting trajectory

and remain at the origin of the reference frame.
On the other hand, suppose that the relative

velocity at Pl is not entirely cancelled, but that

a residual velocity, v is allowed to remain. 1In

1?
this case the mass would drift away from the frame
origin. However, at an intermediate time, t = ti’
another velocity impulse, Avy, could be applied that
would bring the mass back to the origin at the
moment P2 is reached. Relative trajectdries similar
to those shown in Fig. 4.2 would result. The energy
expended would be the sum of the three impulses

according to the equation
AV = |71 - Vol +lavy|+ [vr - V2|,

Third Impulse Potential

In the case of a two-impulse rendezvous, the
required characteristic velocity is determined by

the equation

Hence, if a three impulse transfer is to require less
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energy than would be required by the use of only two,
it is necessary that the energy denoted by Eq. (4.1)
be less than that denoted by Eq. (4.2). Hence, it is

necessary that

71 = Fol + kovy] + 15 = Tal < 1%l + Ivpl (4.3)
or

AV < Vol = 11 = Vol + Vel = IV = Vol. (4.4)

Considering v,, Vi and (?i - Vo) as three sides of a

triangle, it may be seen that

1Vl > Vol = vy = ¥l (4.5)
and likewise

Ival > [vel = V¢ = V2l. (4.6)

Upon substituting inequalities (4.5) and (4.6) into
(4.4), it is found that

lavil < [v1] + |v2l,

This expression is more convenient when written as the

equality
SV‘ |V1| + |V2| -|AVj.l'

The quantity $v was used as a criterion for deter-
mining whether a third impulse is potentially useful
for reducing rendezvous energy. A positive value sig-
nifies that a potential exists. However, in order

to realize the full potential,'?l and'?z must be
parallel to ¥, and V¢ respectively. At times, the
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initial and final velocities mav be such that the
sum of the impulses required at P1 and Pg is sreater
than the potential corresponding to the selected

magnitude and direction of v;, i.e. the quantity
lavi] + |av,| = |79 = 7] + [¥p = 75| § Sv .

In this case a potential would exist that could not
be realized due to the directions and magnitudes of
the initial and final velocities.

Determination of Nominal Cossting Trajectory

The trajectory of an object coasting in space
follows a conical path which can be either an ellipse,
parabola, or hyperbola. However, the subject invest-
igation was restricted to a consideration of motion
along an elliptical path. (Circular paths are ineluded
in this category.) The term "transfer ellipse" is
used to designate the entire orbit of which the coast-
ing transfer trajectory is a part. Thus, a transfer
trajectory may be described by the ephemeris of the
transfer ellipse.

Unless some special orientation is assumed for
the transfer ellipse, the equations of Aopendix A
alone are not sufficient to determine the ellipse
elements if the known information consists of only
Ryy Roy &¢p end T. Howe#er, this information and the
direction of orbit rotation does snecify a unique
trajectory. The orbit elements may be determined as

£0llows:18
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Let

- Ml/z T

B [2(R1R2)1/% Cos (A@/2)77/2

‘ b = Rl + RL'z - 1/2
4(R1R2)1/* Cos (a¢/2)

where E] and Ep; are the values of the eccentric anomaly
at P; and Py. Then, the parameter AE/2 can be deter=
mined from one of the following equations which are

derived in Appendix B:

+ ay = [by + Sin2 (AE/4)]1/2 (4.9)

- Sin AE) [b, + Sin? (AE/4)]5/2
Sin® (aE/2)

where the sign preceding a; is taken as
+ for AP £ 180°, and = for A@ >180°;
and, for the case in which A@= 180°

( )1/2‘ Tr2/(Ry + R,) 3/2 « AE - Sin AE , (4.10)
‘M [ 1 2] Sin® (AE/2)

These equations can be solved by trial and error,
and with QE known, other elements can be computed
by the following equations:

2R1Rp Sin? (a¢/2) (4.11)
Ry + Ry = 2(RjRp)/% Cos (a@/2) Cos (AE/2)

a = RjRp sin? (A@/2) (4.12)
p Sin® (AE/2)

o = (a - p)l/2 (4.13)
a
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Terminal coasting velocities can be determined from
equations (A.l14 and A.17).

In subsequent references, the above described
method of solution and the computer routine which
was developed to solve the system of equations will
be referred to as the "coasting routine©.

Calculation of Third Impulse Potential

After having determined a nominal coasting tra-
Jectory,"x’r1 and'?z can be computed for an arbitrarily
selected falue of ?l' Two methods of solution were
developed. One makes use of the coasting routine
described in the previous section plus an integration
of the orbital equations of motion. In the second
method, the exact relative equations of motion are
integrated using an iterative procedure to determine
the sought variables. The majority of computations
were made using the coasting routine and orbital
equation technique because it required considerabdbly
less computer time. For the average solution only
about one-tenth as much time was required. However,
the relative equation technique, which is described
in Appendix C, was found to give highly accurate
solutions and was used to check the accuracy of the
other method.

Following is a description of the coasting routine-
orbital equation method for determining the quantities
comprising §v. After Vv , and V,p are computed by the

coasting routine, a selected value of ;i is added to
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Vo1 to egive a new absolute velocitvy at Py, which is

shovn in Fig. 4.3 along with the other vectors of inter-
est. The next step in the solution is to determine the
radial and angular velocities at Py, which can be computed

from the equations

Ry = (Vop +¥1) Sin iy (4.14)
dﬁ = (Vcl + 71) /R1] Cos n . (4.15)

With the initial conditions at Py known, the equations

% -r% + (R®) =0 (4.16)
RP + 2RP = O (4.17)

are integrated to determine the position'ﬁi and velocity
Vi at the intermediate time, tj. Following this step,
the coasting routine is used once again to determine
a coasting trajectory that will traverse the distance
between Py and Py in the time remaining. Innuts to the
routine this second time are denoted bv primes and are

Ry = Ry

R, = Ry

Af'- a¢ -l - @

T =T<«1t4

The velocities V& and Vé are determined at the ter-
minals of the new coasting trajectory, end the snusht

parameters are given by the vector differences
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FIG. 4.3=—=INERTIAL TRAJECTORIES AND VELOCITIES
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Vi = lvih = ViJ
V2 ¥ F’z -_—chl .

The total computer time required to determine a
single value of §v, including use of the coasting
routine for arcs P)-P, and Pyj-Pp, and integration over
arc Py-Py, was slightly less than two seconds. The
accuracy obtained was limited by round-off errors in
the computer (an eiecht digit retentinn routine was used).
Ellipse elements p and a were determined with errors
less than 1 ft; and, although round-off velocity errors
as large as 3 ft/sec were possible, the usual noted

error was in the order of 0.2 to 0.5 ft/sec.

PARAMETRIC STUDY

The perturbation procedure described in the previous
section was used to make a parametric study of the
third-impulse potential, §v. The following parameters
were varied during the study:

Ro/R; = ratio of final to initial radius

T = transit time
AQ = ancle between Ry and Ry
ti{ = time of application of intermediate impulse
vy = magnitude of the residusl velocitv relative
to coasting freme at Py
8, = direction of vy (Fig. 4.2).
It was found that the parameters could be divided into

two groups==those having primary effect and those
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evidencing only slight or secondary effect.

Secondary Effect Parameters

Small variations of R,/Ry and T from nominal
values were found to have only a slight effect upon
the output parameters comprising §v, i.e. Avy, Vo and
its direction By - In addition, it was found that the
ratios ayi/vl and vz/vl are indevendent of the magnitude
of v, &s i1s the velocity directinn B,.

Variations of Rz/Rl were made with resnect to a
nominal Ry corresponding to an orbit altitude of 300
statute miles. This altitude was selected on the basis
that it is above the high atmospheric drag resinn
=200 s mi) and below the earth's resdiatinn belt
(=400 s mi). No veriations in R, were made since
reasonable changes, from a rendezvous consideration,
would probably be less thanIBOO s mi. This variation
would change the total radius by only a small percentage.
Orbital motion is, of course, affected by the total
radius rather than altitude.

The selection of date presented in Table I shows
the insignificant effect upon avy/vy, vs/vy, and B, of
varyving Rz/Rl and vy over the noted range. With respect
to the nominal initial altitude of 300 s mi, the ratios
1.005, 1.010, and 1.015 corresoond to increases in
altitude of 21.3, 42.6, and 64 s mi. Althoush these
variations are relatively small, the results obteined

do indicate the lack of sensitivity to changes in R2/R1.
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TABLE I—RESULTS OBTAINED WITH VARIOUS RADIUS RATIOS
AND RESIDUAL VELOCITIES

AP = 90°%; By = 0°; t;/T = 1/4

(vz/vl) laz Avi/vl
12
N §% 1.005 1.010 1.015 |[|1.005 |1.010 [1.015
100 |.284 |253°].287|254°| .286 [254° || 1.297 [1.300 |1.700
200 |.285 |253°|.284|254°| .286 |254° || 1.299 |1.298 |1.300
400 |.282 |253°].285|254°| . 286 |[254° || 1.700 [1.300 |1.301
AP = 180°%; B, = 80°%; t5/T = 1/2
(Vz/vl) Bp avy /vy
Rp
Nl 1.005 1.010 1.015 [|1.005 [1.010 [1.015
v
100 [2.128[47°|2.124|47°|2.124 |47° ||3.480 |%.474 3,472
200 |2.123]27° |2.122]47° [2.120 [47° ||3.474 [3.473 [3.470
00 [2.116]48° |2.116[47° |2.115 [470 |[3.469 |3.467 |=.466
ap = 270°%; 8 = 140°%; t4/T = 3/4
(vop/vy) [,92 avy /vy
R
1.005 1.010 1.015 ||1.005 [1.010 |1.015
vi
hoo [7.804|217|7.842] 21P|7.882|217°|[11.004 {11,049 [11.004
200  |7.836|217°]7.833|217|7.813[216° [|11. 045 [11.044 |11.127
o
00 |7.898[21€]7.828] 216 7.978|216° 111,110 [11.075 [11.214
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Further, the variation would, in many cases, include
the altitude changes made during actual rendezvous,
Since the trajectories under consideration are
coasting arcs in a conservative field, a trajectory
from P1 to P, is the reverse equivalent of the tra-
Jectory from P to Py. This 1s 1llustrated by Fig. 4.4
in which the reverse quantities sre denoted by orimes.

The following equalities are noted:

v 81 = vz [z

)
Avi = AVy

v; Léé.s vll;fﬁ-'
Thus, except for the secondary effect resulting from
a slight change in the reference (initial) radius, the
data obtained for radius ratios greater than one also
furnish data for the reciprocal ratios less than one.

In order to study the effect of variations in
transit time, a nominal time, T,, was determined and
variations were taken with respect to this time. The
nominal time was determined as the time corresvonding
to the case in which the perigee of the transfer ellipse
coincided with the initisl position. For this selected
orientation, the transfer ellivse elements are determined
by the orbital equations of Appendix A. Substituting
R, and R, into Eq. (A.9) for the case when @ = O and

Pz = APy results in two equations, from which, the semi-

2 atus rectum is determined as
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FIG., 4.4—ILLUSTRATING THY REVFRSE EQUIVALENCE OF
A TRAJECTORY
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P = RiRp(1 - Cos a@) | (4.20)
Ry - Rp Cos AQ

After evaluating the other relevant ellinse elements
from the orbital equations of Apvendix A, T, is deter=-
mined accordine to Eq. (A.11l) bv setting T, = 0, which

gives

T, = (E = e Sin E)/n. (4.21)

Variastions in transfer time un to

T =T, +0.2T,

were investigated. This magnitude nf chanege in T is
comparatively large. Transfer times of 0.8 Tp, Tp,

and 1.2 Tp for each of the transfer angles AQ = 900,
180°, and 270° are shown in Table II. In the case of
AP = 90°, it may be noticed that the variatisns in the
orientation of the transfer ellipses are such that the
perigee is at Py for T = T,, the perigee is between Py
and Py for T = 0.8 T, and the apopee is between Py and
Py for T = 1.2 T,. Table III shows the effect of transit
time variation. Although results certainlv do show the
effect of time variations, fluctuatinns are relatively
small for the time variations involved. The values of
AQ, t;/T, and By, selected for the prevaration of Table
III were selected to present a wide soread of data.

Primary Effect Parameters

The variables having primary effect were found
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TABLE II-—TRANSFER ELLIPSE ELEMENTS CORRESPONDING TO

DIFFERENT TRANSFER TIMES

a@= 90°
T = Tp T =0.8Tp T=1.2T,
T, sec 1417.2 1133.7 1700.6
p, ft 22,736,110 28,661,458 19,302,997
a, ft 22,738,383 33,427,124 20,172,621
e 0.0100 0.3776 0.2076
¢1’ deg 0 31700 133,5
aP= 180°
T =T, T=10.8T) T=1.2 T,
T, sec 2849,2 2279.3 3419.0
p, ft 22,622,994 22,622,996 22,622,993
a, ft 22,623,554 23,499,807 23,029,011
e 0.,00498 0.19316 0.17%278
@1, deg 0 88.5 87.8
P2, deg 180 26845 267.8
aP= 270°
T =T, T=0.8T, | T=1.2 T,
T, sec 4324.6 3459,7 5189.86
p, ft 22,736,110 20,491,523 24,409,270
a, ft 22,738,383 20,862,765 24,718,922
e 0.0100 0.1334 0.1119
@, dee 0 223.0 41.2
@2, deg 270 138.0 311.2
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TABLE III—RESULTS OBTAINED VITH VARIOUS TRANSFER
TIVES

Rp/Ry = 1.010; t4/T = 1/4; vy = 100 ft/sec; B = O

(vo/v1) [_6_2_ avy /vy

0.8 1.0 1.2 0.8 1.0 1.2

90° |.292]257°|.287|254°].283]250°||1.%05 |1.%00 | 1.296
180° [.210|26° |.220|27° |.244|32° ||1.867 |1.943 |2.025
270" |.e61]71° |.795|71° |.919|71° ||2.%07 |2.481 |2.6%0

Rp/Ry = 1.010; t31/T = 1/2; vy = 100 ft/sec; @ = goo

(v2/v1) B2 avy /vy

T

0.8 1.0 1.2 0.8 .0 .2
Py 1 1

90" p.128|35F|1.214 354 . 267 |355°|2. 664 |2.843 |2.217

180° h.s0a|a7° |2.122]47° [2.285]46° ||%.214 |3.474 |3.722

278 F.lBS 70° |2.388|69° |2.584|69° ||2.275 |2.414 |2.60%

Rp/Ry; = 1.010; t4/T = 3/4; v; = 100 ft/sec; & = 140°

(va/v1) Lﬁl avy /vy

0.80 1.0 1.2 0.8 1.0 | 1.2

900 2.605| 44°]| 2.510]42°| 2.47%1| 39° || 3.176 | 2.940 | 2.722
0 0

180° |=.152|169|=.075 |169 2.950|171° 6.640 |6.589 | 6.522

270° |7.401 [218)7.841 |2]7°[a.zel |22109|10.443|11.049]11. 600
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to be Acn.ﬂl and ti/T. A number of computer runs were
made to determine the effect of these variables on the
parameters Sv/vl,awi/vl, v,/v1, and @p. The somewhat
surprising discovery was made that the results showed
a periodicity of 180? with respect t0‘61- This is
seen in Figs. 4.5-4.8 which show the following re-

lationships:

o =
§v/v, at (8y + 180°) = §v/v, at N
Avi/vl at (8, + 180°) = Awi/vl at 3,
0
vz/vl at “91 + 180°9) = vz/v:L at 8,

8, at (8 + 180°) = (8, at 8;) + 180° .

Figures 4.9-4.13 3how the effect of varying AQ and
ti/T. It is seen from the curves relating Sv/vl and
/31 that a third impulse is potentially useful for re-
ducing the transfer energy in the case of each transfer
angle for which data is shown. However, on extrapolating
plots of peak values of §v versus AQ (Fig. 4.14) it is
found that the curves intersect the abscissa at a value
of AQ approximately equal to 300, suggesting that no
potential exists whenever the transfer angle is smaller
than this value. Verification of this point would
require more data than was obtained. In general, the
potential increases with the transfer angle and becomes

substantial at the larger angles.

It is also noticed from Fig. 4.13 that the potential
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4,9~THIRD IMPULSE PARAMETERS

a@= 45%; Ro/Ry = 1,013 T = 700 :See
0.30 3
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i i = /—\—/
v avi 174
i ; N TR
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FIG, 4.,10—~THIRD IMPULSE PARAMETERS

ap= 90°%; Rs/Ry = 1.01; T = 1417 See
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FIG, '4,1}==THIRD IMPULSE PARAMETERS
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FIG. 4.12-=THIRD IMPULSE PARAMETERS
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FIG, 4.13—THIRD IMPULSE PARAMETERS
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FIG. 4.14—CURVES OF THIRD IMPULSE POTENTIAL
PEAK. VALUES
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exists over a wide range of 8, when AQ =315°, This
wider range would be expected as AQ approaches 3600,
since transfering through a large angle to a nearby
point of different radius by apnlying only two impulses
would require a large expenditure of energy. This may
be seen from Fig. 4.15 which depicts a vehicle in an
initiel orvit A. By the two-impulse scheme of transfer,
one impulse would be applied at P, to establish a coast-
ing trajectory to Pz, at which point a second impulse
would be apoiied to match the target velocity. Traject-
ory B of the designated figure illustrates transfer by
this method, and as shown, a large change in velocity
direction would be required at Pl' A much less expen-
sive method of transfer would be to let the vehicle
continue in its orbit until it reached a point near Py
where an impulse could be applied to place it on a near
Hohmann transfer ellipse (orbit C) to P,. It is not
meant to imply that this latter method of transfer would
minimize energy, only that it would obviously require
less energy than a direct two-impulse transfer.

Sample Problem

As was stated previously, the existence of a third
impulse potential does not ensure that a third impulse
can be profitably utilized. It is necessary to also con-
sider the initial and final velocities. The following
problem illustrates the usefulness of the presented data
curves for determining the applicability of a third im-

pulse for an assumed set of conditions.






47

Py=P5: TWO IMPULSE TRANSFER

Py=-Py-P5: THREE IMPULSE TRANSFER

FIG. 4.15=~=COMPARISON OF TRAJECTORIES FOR LARGE
ANGLE TRANSFER
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Let it be assumed that a vehicle is to be trans-
ferred from P; to P, where the conditions of transfer
are as follows:

R, = 22,511 X 108 £t (300 s mi altitude)

Ro = 22,73611 X 106 £t (342.6 s mi altitude)

Ap= 270°

T = 4324,63 Sec = 72.06 min

v, = 211 ft/sec at 120°

ve = 253 ft/sec at 102.20.

The velocities v, and vy are given relative to a coast-
ing axis system as described earlier. A coasting
trajectory joining P, and P, with transit time as noted
above would require absolute velocities at these points
as follows:

v, (Tangential) = 25,132 ft/sec

vy (Radial) = O

Vo (Tangential) = 24,884 ft/sec

Vo, (Radial) = =249 ft/sec.

A two-impulse rendezvous could be achieved by simply
applying impulses to cancel v, and vy and would require

a characteristic velocity of

AV = v <+ v_ = 464 ft/sec.
o by

In order to examine the applicability of a third
impulse, plots of Vi/"l! vz/vl, and & versus 8, were
used to determine the characteristic velocity required
for rendezvous via three impulses. Only the case in

which the magnitude of vy 1s equal to that of v, was
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examined. Thus, for vy = v, = 211 ft/sec¢c and for
various values of 4, the quantities avy, v,, and B,
were found and the characteristic velocity determined

from the equation
av = |vy - vol + lavyg| + |ve - v,

The so0lid curves of Fig. 4.16 are plots of AV versus

8,

impulse. Minimum values of these curves are joined by

for various times of application of the intermediate

the dashed curve. On extrapalating by means of this
dashed curve, the minimum characteristic velocity
required for a three-impulse rendezvous is found to be
200 ft/sec for an intermediate impulse applied at a
time between 3/8 and 1/2 T. Thus, by using three in-
stead of two impulses for rendezvous under the stated
problem conditions, characteristic velocity is reduced

from 464 to 200 ft/sec.
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! | PFIG. 4.16 —THREE IMPULSE CHARACTERISTIC VELOCITY
CURVES FOR SAMPLE PROBLEM
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CHAPTER V
SUMMARY AND CONCLUSIONS

The problem of minimizing the energy required to
perform a space rendezvous has been analyzed by two
different methods: the calculus of variations, and a
trajectory perturbation technique. A brief description
of each method and a summary of the results obtained
by their application are presented in the following
paragraphs.

CALCULUS OF VARIATIONS

The caleculus of variations analysis (Chapnter III)
is based upon the use of linearized relative equations
of motion which are shown in Appendix A to be reasonabdly
accurate in accounting for the acceleration forces.
From the set of Euler-Lagrange equations, two Lagrange
multipliers are determined which are identically equal
to the direction cosines of the thrust vector. It is
shown that these multipliers are independent of the
remaining set and can be expressed in terms of second
order differential equations identical in form to the
equations of motion. As a consequence of this results,
and with reservations according to the assumptions made,
it was possible to reach the following conclusions:

(1) A minimum energy trajectory contains no arc

flown with an intermediate level of thrust.

(2) If the upper bound of thrust is large so that

the assumption of velocity imoulses is valid,

o1
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a minimum energy trajectory is achieved with
either two or three impulses. No criterion
was established that would determine which of
these modes should be used,

TRAJECTORY PERTURBATION

The perturbation technique is based upon determining
the effect of perturbing a vehicle relative to a nominal
coasting trajectory. If the vehicle were to move along
the nominal trajectory it would traverse a path between
space terminals P1 and P2 in a time T. However, by the
perturbation technique, it is given a velocity impulse
at P1 which causes it to deviate from the nominal trajec-
tory. Another impulse is applied at an intermediate time
that brings the vehicle back onto the trajectory at Py
when t = T, A third impulse potential is defined as the
sum of the relative velocities at P; and Py (measured
with respect to an axis system whose origin is restrained
to move along the nominal trajectory) minus the inter-
mediate impulse.

The following results obtained from a psrametric study
pertaining to the third impulse potential, §v, are noted:

(1) Small variation of the radii ratio RZ/R1 and
transfer time T were found to have only slight
effect on §v.

(2) The intermediate impulse avy and the terminal ve-
locity v, were found to be directly provortional
to the initial perturbing velocity, v,. Also,
it was found that AE, the direction of v,, is
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independent of V1.

(3) The primary effect parameters were found to be
8, (the direction of the disturbing velocity),
ty (time of the intermediste imoulse), and
ap (the transfer anele). Variatinn effects
are shown in Figs. 4.5-4.14,

(4) A third impulse potential was found to exist
for a wide range of conditions, with the greatest
potential occurring at large values of AQ How=
ever, the results suggest that no potential exists
for values of Apless than 309, For a target
in a ecircular, 300 s mi orbit this would corre-
spond to a rendezvous time of avonroximately
eight minutes.

The investigation revorted in this thesis did not
determine a complete answer to the rendezvous energy
problem by any means. However, it 1§ felt that much
insight has been gained andvthat tools for fﬁrther investi-

gation have been developed.






CHAPTER VI
SUGGESTIONS FOR FUTURE STUDIES

EXTENSION OF DATA

The data presented in Chapter IV relative to the
conditions under which a third impulse potential exists
need to be expanded. In particularly, it would be de-
sirable to obtain data for larecer values of Rp/Ry. In-
sofar as transfer time is concerned, it 1s sugzested that
the times correspondingz to the four transfer ellinse
orientations obtained by placing the pericee and aporee

alternately at Pl and P, might be of interest.

PRACTICAL COMPUTATIONS

The method used to solve the sample problem of
Chapter IV, although illustrating the principal of three
impulse application, would not be practical for use in
actual satellite interception. A method subject to rapid
solution by digital computer would be needed. One method
that would meet this requirement can be derived by deter-
mining equations to describe the curves relating AWi/Vlv
vz/vl, and 6% to &, and making use of the ordinary method
of maxima-minima determination.

The parameters avi/vy, Vp/v), and 8, are described

with reasonable accuracy by equatiosns of the form
2
(va/vy), (Avi/vy) = A * B Sin" (4 +¢1) (6.1)
C + Sin 1 +6

o4
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Tan (8, + ¢,) = D Sin (8 + ¢4) .
) 2 * 52 0.5 + Cos (4] + ¢1) (6.2)

where A, B, C, and D are constants for a given value
of AY and t1/T, and the ¢ are phase angles. The accuracy
of the describving equations is shovn in Fig. 6.1 for
the case in which 4@ = 270°, and ty/T = 1/2. The solid
curves are actual values while the dashed curves were
determined by Eqs. (6.1 and 6.2). For a fixed value of
AQ, the constants and phase angles in these equations
would depend upon ti/T; and their mode of dependency
should be determinable from plots of the quantities
versus ti/T. It will be assumed that the relationships
could be determined in an appropriate form.

The characteristic velocity required for a three-
impulse rendezvous is determined by Eq. (4.1), which in

algebraic form is

AV = [vog + vl‘2 - 2v v, Cos (B, -@1)]1/3 (6.%)

2 2
+ vyt [Vp + Ve = 27,V Cos (8 'Gr)]l/?

On normalizing with respect to vy this equation takes

the -form

av/vy) = [(vo/v1)2 +1 - 2v_ Cos (8, -61)11/2

+Avi/v1 (604)

+ [(va/v))2 + (vf/vl)2
1/2

- (2vyve/vy) Cos (8, = B¢)]
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FIG. 6.1=—-CURVES COMPARING EXACT TO EMPIRICAL
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By substituting Eqs. (6.3 and 6.4) into this equationn
after having determined the quantities A, B, C, D and
¢ as functions of ti/T, the characteristic velncity,
AY/vl, would be dtermined as a functinn of the initisl
and final conditions and time ratio ti/T. Thus, the
conditions under which AV/vy is minimized could be

determined by solving the set of equations

2(AV/71) =0 (6.5)
9431

agi%v/az = 0. (6.6)
i

It should be possible to obtain a rapvid solution to these
two equations with the aid of a digital computer. It is
believed that rendezvous studies in the direction indicated
above would result in the development of a guidance tech-
nique that could be applied in actual nractice to reduce
energy requirements.

An alternate approach would be to develop a vehicle-
borne computer to solve the set of twenty-seven equations
determined by the calculus of variations analysis of

Chapter III.
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APPENDIX A

EQUATIONS OF MOTION AND ORBITAL MECHANICS

The basic equations used in the rendezvous energy
study are presented in this appendix. No derivations
are presented since they may be found either in well
known mechanics texts or in current literature. Deri-
vations are presented in the noted references.

OREITAL MOTION

The polar equations of motion of the center of mass

of a satellite orbiting about a spherical earth are

R - RéF = ﬁq/Rz + A (A.1)
R + zﬁg’o-AT (A.2)

where (-LUR?)is‘the instantaneous gravity force per unit
mass, and Ap and Ap are the radial and tangential accele-
rations due to thrusting forces. In the absence of
thrusting forces, the center of mass will describe an
ellipse, parabola, or hyperbola accordingly as the sum
of the kinetic and potential energy is negstive, zero,

or positive.

The subject investigation was restricted to an anal-
ysis of elliptical motion. The various parameters shown
in Fig. A.1l which are used to describe elliptical motion
are related as follows:18

semima jor axis =

a=1/2 (Rapogee + Rperigee) (A.3)

61
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FIG. A.1=—ELLIPTICAL ORBIT GEOMETRY
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eccentricity -

e = Rapogee = Rperigee
Rapogee * Rperigee

semilatus rectum =
Pp=all - e?)
angular momentum -

J = (;.(p)l/z

average angular rate -

n= _4%7
ad/2

orbit period -
P= 2Wn
radius -

R = P
1 + e Cos ¢

eccentric anomaly -
-1
E = Cos ~ [(a = R)/ea]
time from perigee passage -

t -T = (E « e Sin E)/n

perigee

flight path angle =

r = Tan-l[(e Sin p)/(1 + e Cos ¢)]

(A.4)

(A.5)

(A.8)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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total velocity -

V= [M2/R - 1/a)]1/2 (A.13)

radial velocity =

R =7V Sin r (A.14)
or
R = (M/p)l/ze Sin @ (A.15)

tangential velocity -
V& = V Cos r (A.186)

angular velocity -

@ = 3/8% (A.17)
or
@ = (VCos N/R. (A.18)

EQUATIONS OF RELATIVE MOTION

In order to facilitate the study of the space ren-
dezvous problem, it is at times advantageous to use
relative equations of motion. A convenient axis system
is one which has its origin affixed to the orbiting tare
get. Such an axis system is illustrated in Fig. A.2
which shows a right-handed rectilinear system with the
negative y axis extending through the center of the earth
and the x axis in the orbit plane.

The equations of relative motion arelg’zo

X - (y+RPp - 2(F + R)p - xf? (A.19)

+qx//o3 = A_
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CIRCULAR ORBIT

EARTH SURFACE

+ EARTH CENTER

FIG. A.2=——RECTANGULAR COORDINATE SYSTEM
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Y+ xp+ 2xp+ R =-(y+ R)gbz (A.20)
+ My + R)/A® = Ay
z +).,(z/ﬂ3 = A

z (A.21)

where

P = [xz + (y + R)zjl/?

The quantities A,, Ay, and Az are thrust accelerations.
For the case in which the origin of the axis system
moves in a circular orbit and relative distances are not
too great, the above equations may be linearized. (Actu-
ally either of two modes of usage are possible: the origin
is affixed to a target moving in a»circular orbit, or
neither the target nor vehicle are in circular orbits
but their motion is expressed with respect to an x-y axis
system whose origin moves in a circular orbit.) Assuming
a circular orbit leads to a constant value for R and
(5 = () where, following custom, «w> is used to denote a con-
stant value of ¢. Then, in order to linearize the equa-

tions,/°'3 is expanded as a power series and all terms

of second order and higher are dropped to give
P=3 = (W/Rr%) (1-3y/R)

Further, for a circular orbit
LUPS ﬂ(&?

so that

A= P - By/R) .
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On substituting this expression into Egs. (A.19-A.21)
and dropping the terms containing y/R which do not

cancel, there results

¥ - 2uy = AL . (A.22)
'i+zuzi--:wz-Ay (A.23)
- 2

z "wz = AZ . (A.24)

When the thrusting accelerations are zero these eguae

tions can be readily solved to obtain

x = 2[(2x,/0) = 3y,] SinWT - (27,/w) Cos T
+ [67, = 3(2o/A0)]uT + x, + 27, /w (A.25)

v = [(2% /o) = 3y,] CosaT + (yoAv) Sin T

+ 4y, - 2% /w (A.26)
z = 25 CoswWT + (2o/6) SinwrT . (A.27)

Equations (A.25-A.27) can be used to determine the
velocity components that would be required at a given
initial position in order to place a vehicle on a coast-
ing path that would intercept a designated target after
a specified time. Assuming the target to be at the

origin of the axis system, the required components are

Xy = Xo SInwT + y (6T SinwT - 14(1 - Cos wT)
alw (A.28)

Y, = 2%5(1 = Cos ) + y (4 Sin wI - 3T Cos wT)
Ao (A.29)

%07 “29 _ (4.30)



as
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where
A= 3T SinWwl = 8(1 = Cos uf').

The linearized equations are ressonablv accurate
provided the relative distance is not tno ereat. For
examnle, assuming distances of x = y = 50 statue miles,
the discarded terms would amount to an accelerating fnorce

of approximately 0.01 ft/se02

in the x end v directions
and 0.0002 ft/sec® in the z direction.

It should be noted that the weak coupline between
the 2z motion and motion in the x-y plane as seen in the
exact equations no longer exists in the linearized equa-
tions. For this reason, many investigators have chosen
to analyze only the more complicated x-y (coplanar) mo-
tion with the suggestion that the total motion be deter=

mined by analyzing the z motion separately and suverposing

the results on the x-y motion.



APPENDIX B
NOMINAL TRAJECTORY EQUATIONS

The method of Gauss can be used to determine the
elliptical elements of an orbiting body when consecu-
tive values of the radius and arc swept are known with
respect to time. Following is a derivation of the

18
necessary equations.
Equation (A.17) can be rearranged to give the

areal rate being swept by a radius vector as

1/2

R(R %g) =2dA=7= (yp) (B.1)
dat :

where dA/dt denotes areal rate. On integrating Eq.

(B.1) over the time of observation the following equa-

tion is obtained

2 e, (8.2)

= [ 1
Asector [=“g)

The area of the triangle between radii Rl and Rz is

given by the equation

Atriangle - Ele Sin AP (B.3)

where aAp is the angle between the radii. The method of

Gauss depends upon the ratio of these areas, which is

n = [(up)l/'2 ] T (B.4)
RiR, 510 AP

Upon substituting values of Ry, Rg, Y1 and goz into
69
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Eq. (A.9), two equations result wvhich can be solved to

give
(B.5)
p(Ry + Rp) = 2 + 2e Cns (Ps + cpl) Cos (cpz -@),
Rle -2

Through the use of Eas. (A.9 and A.10), and after sev-
eral equation menipulstions, the relati-nships

e Cos (P + @) = D Cos (Ep = Eq) (B.6)

- Cos ((Pg - g)
2

e Cos (Ep + Ey El) = Cos (Ep - E;) (B.7)
- (R Rz)l/ Cos (@ - @)
a T2

can be obtained. Equatisns (R.5) end (B.6) combine

to give

(B.8)
o = 2RiRz Sin® (AQ/2)

R + Ro - 2(RjR2)1/%Cos 8®/2) Cos (AE/2)

where

ap- @ - @

AE=E2-E1¢

On eliminatineg p from Eq. (B.5) and using the notations

U‘Ul/z T
[2(RyRs) 172 Cos (a@/2)13/2

by = R + Rp s 1/
4(RjR2)1/2 cos (a@/2)

the followine relationship cen be obtained
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[?2 = (al)z . (B.9)
b; + Sin® (AE/4)

Using Eqs. (A.7 and A.1ll), the expression’

(ﬂ)l/z T = AE - 2e Sin (AE/2) Cos (Ep + Ej)
33 2 2

i1s obtained, and on eliminating eCos (Eg + E;) by
the use of Eq. (B.6) it is found that

_QHL{{EJL = AE - Sin AE
573 (B.10)
a + 2(R!R2)1/2 Sin (AE/2) Cos (BE/2).
a

Another equation involving "a"™ will be determined
so that it can be eliminated. By Eq. (A.10)

Ri/a = 1 - e Cos E;
Rp/a = 1 - e Cos E,

from which

R) + Ry = 2 - 26 Cos (BE/2) Cos (E5 + Ey), (B.11)

a 2

Again using Eq. (B.6) to eliminate the term eCos (EZ + E])
and rearranging terms, Eq. (B.1ll) can be written as

(B.12)
1/a = __2 sin® (AE/2) .
R} + Ry = 2(R1R2)*/% Cos (AE/2) Cos (ap/2)

Further, on combining Eq. (B.9) with this equatinn it
is found that
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1/a = [27) Sin (AE/2) Cos (a@/2)7> RR2 .  (B.1%)
M T2

Eliminating "a" from Eqs. (B.10) and (B.l3) gives

N -_N__=AOE - Sin AE (B.14)
(8)°  (8)% sin® (aE/2)

and from Eq. (B.9)

=1 a1 . . (B.15)
7 [b1 + Sin® (AE/4)]l/%

In order to determine which sign should be taken, it
is noted that according to Eq. (B.4), /7 is positive
for A@ < 180°, and negative for A¢ » 180°. Therefore,
Egqs. (B.14 and B.15) can be combined to give

+ 8, = [by + Sin® (aE/4)1/2 (B.16)
+ (AE - Sin AE) 3/2
sin®> (AE/2)

[by + Sin® (AE/4)]

where the sign preceding a; is taken as
+ for AQ< 180°
- for Ap »180°.
It can also be seen from Eq (B.4) that /7 is
singular for &Y= 180°. A separate equation must be
determined for this case. For A@= 180°, Egs. (B.10

and B.12) reduce to

a3/2 . ( 1/2 o (B.17)
%Tm

and
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a=R; +Rp . (B.18)
2 sin?® (aE/2)

Whence

3/2

(k()l/z T(2/(Ry + Rz)] = AE - Sin AE . (B.19)

Sin” (AE/2)




APPENDIX C

TRAJECTORY PERTURBATIONS USING
RELATIVE EQUATIONS

The method described in this appendix can be
used to determine the parameters comprising the thirad
impulse potential of Chapter IV, 1l.e. vy, Vs, and 4.
The same type of perturbation technique is used to exam-
ine the effect of deviations from a nominal coasting
trajectory due to a disturbing velocity, vy, applied
at the initial space terminal. However, relative
equations are used instead of the orbital eaquations
previously employed.

Equations (A.19 and A.20), which are exact, are
used to express the relative motion. Since the co-
efficients of these equations are functions of R and
®, Egs. (A.l and A.2), with Ap = Ap = O, are also
needed.

Initial conditions X, and y, are determined as
components of the selected value of ?1, and since the
vehicle is assumed to be at the ofigin before it is per-
turbed, X, " Y " O. Initial conditions for the R-
equations are determined from the nominal coasting tra-
jectory as explained in Appendix B. Having determined
the initial conditions, the equations can be integrated
gimultaneously from t = O to t = t{ to determine the
position and velocity just prior to the intermediate

impulse. It is next necessary to determine values of
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% and y which would reduce x and y to zero in the
remaining time, (T - ti). The problem is a boundary
value problem in which the initial and final positions
are known and the initial velocity is sought.

The following described technique, employing a
system of adjoint equations and iterative integration,
is used to determine the initisl velocity.

The second order x-y equations are replaced by a

set of first order equations by making the substitutions
X=y; Y=Y X=7y3 ¥=7,

in Eqs. (A.19 and A.20). The resulting set of first

order equations are as follows:

¥y = Vs (C.1)
V2 = ¥, (€.2)
5 = (v, + RIp + 2(y, + R)D + y1¢2 -Aylks(c.s)
o= =P -2 - R+ (7, + R (C.4)

- K(yy + R) /2

where = [y; + (y, + R)z ]1/?

In order to clarify notations, a new variable 7 is
introduced to denote time; and a solution is obtained
for the time span7= 0 to Tf, where 7r = T - t,. At
the initiation of solution, the known initial and final

conditions are

¥, (T=0) = yy(t=t1); yo(T=0) = yp(t=ty);
V,(r=T3) = yo(T=7¢) = O.
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The immediate objective is to determine yz(r=0) end
y4ﬂr=0). As a first step, trial velues are selected
for these sought parameters. (It was found that a
good first guess could be determined by Eqs (A.28 and
A.29) which are solutions of the linearized x-v
equations.) Denotine the trial solutinn of Fas. (C.l-

C.4) as y;, let
y4(7) = y4(7) = yi(7). (C.5)

It is desired to make Syitrf) equal to or less than
some selected value.
Taking the derivative of Eq. (C.5) and using the

notation
5&1 = gi(Yj); J=1,2,3,4,

where the g; denote the functions of Egs. (C.1-C.4),

gives

3y1 = eylyy) - FZ.I(YJ) = Seylyy)

or

§y; =dg; = 281 vy; 1=1,2,3,4., (C.8)
Yy

Using matrix notation, Eq. (C.6) becomes

57, = ASy; (C.7)

where A has the form

all e o o 8.14

Y ]
L[] .

841 « o o 8.44
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The matrix coefficients are determined by carryine

out the operations denoted by Eq. (C.8) and are

81] = 812 ™ 814 = 8p] = 8pp = 8p3z ™ 833 < 844 = O
813 = 8p4 = 1 |
. 2 2 5
sy '¢2 - L{(P“ - SYI ) /P
axs = P+ ZMyi(y} + R) fo*°
834 = 29
agy = =0+ yi(yy + R) /0%
2 2 2 S
8y =" =MIA* - 3(y3 + R} J/P*
where the star denotes evaluation along the trial
trajectory.
The next step is to form the ad joint system of

equations whioch are defined as
-ii = A' xi (0.8)

1l
where A' is the transpose of A. Goodman and Lance2
showed the application of Green's Theorem to the adjoint

equations to derive the relationship
4

iii(rf)sn(rf) - Xxi(ouyi(m =o0. (C.9)

i= |
This equation expresses a relationship between the end

values of Syi and the adjoint equation parameters xj.
No restrictions have been placed on the end conditions
of the xy. Thus, various sets of end conditions can be
selected that will allow a set of equations to be de=-
rived from Eq. (C.9) that can be used to determine

initial values of Syi when the final values are known,
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Taking first the initial conditions [x1(7¢) = 1,
xp(7¢) = x3(7p) = x4(T¢) = 0], Egs. (C.9) and the R-
equations are ihtegrated in reverse time to get 151(0)
and x41(0). The second subscript denotes the value of
x3(0) and x4(0) for the selected initial condition
xl(7}) = 1, On substituting 131(0) and x41(0) into
Eq. (C.9) and noting that yl(O) = y,(0) = 0, the fol-

lowing equation is obtained

§7,(Te) = x3,(0)8y5(0) + x4, (0)5y,(0) . (C.10)

In the same manner the set of conditions [xi(T}) = 0,

12(7}) =1, 15(7}) = x4(7}) = 0] are used to obtain
syz(‘rf) = xf.’)z(o)‘y3(o) + 142(0)5Y4(0) o (Coll)

Equations (C.10 and C.1l1l) are solved for 3y3(0)
and §y,(0) and these delta quantities are used to de-
termine a better guess for the initial velocities of
a new trial solution. New trial values are determined

by Eq. (C.5) as
(vi(0) Jpew = [75(0) 3014 + 8v4(0); 1 = 3,4.(C.12)

The process is repeated until the miss distance is equal
to or less than the selected value. As applied to the
rendezvous energy study, only one correction was found
to be sufficient to reduce the miss distance to less
than 10 ft in the usual case.

Upon determining an acceptable solution, the tra-

Jectory between Pi and Pz is known and the following
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velocities have been determined:
x(t=ty); ¥(t=t3); x(T=0); §7=0); x(7=73); y(T=7,).

Thus, the intermediate impulse is found as

. . . /
ovy = [[X(T=0) = X(t=t;)1° + [7r=0) - F(t=t;)1°} "
(C.13)
The final velocity 1is
Vo = ([x(re)1° + [i'('rf)lz}l/z (C.14)

and its direction is determined bv the equation

B, = Tan'l[:}(?f)/i(rfn. (C.15)
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