


ABSTRACT

PERTURBATIONS OF STABILITY MATRICES WITH

APPLICATIONS TO LOTKA-VOLTERRA

MODELS OF ECOSYSTEMS

BY

Gary William Harrison

A system of differential equations x’ = Ax + g(x),

where g(x) = 0(HXH), has an asymptotically stable

equilibrium point at the origin if A is a stability

matrix, that is, if all the eigenvalues of A have

negative real part. In theory this condition has

been used to determine the stability of Lotka-Volterra

models of ecosystems, but in practice it breaks down

because A can only be estimated.

Methods are develOped to establish that a

matrix is stable when it is only known approximately.

Specifically, bounds on e are found for the perturbed

matrix A + 63 to be stable when A is stable. When

B is a rank one matrix, necessary and sufficient bounds

are derived from the Routh-Hurwitz stability criterion.

For a general matrix B, sufficient bounds are derived

T
from the Lyapunov equation A S + SA = -Q. Perturbations

eB satisfying these latter bounds are shown to form an
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open convex set, leading to a method to compute open

convex neighborhoods of a stable matrix A which con-

tain only stable matrices. Similar methods yield

sufficient conditions for the bordered matrix [AT b]

c d

to be stable when A is stable.

(1+1) (1+1)N =
Iterative methods of the form NTS + S

NTS(1) + S(l)N + wIATS(l)+S(l)A+Q) are investigated to

solve the Lyapunov equation. They can converge only if

(1+1) 3 Nxm + MAX“)
the vector scheme Nx +q) converges,

and no faster. Sufficient conditions are found for con-

vergence of several methods corresponding to different

choices of N, and examples are given showing that a

block Seidel type method is usually most efficient and

better than previously known methods of solution for

large matrices.

The implications for stability of Lotka-

Volterra and other ecosystem models are discussed, and

conditions are found for stability to be preserved when

a new species is added. A domain of attraction for the

equilibrium point, which in some cases is the entire

positive quadrant, is found using Lyapunov functions.

When coefficients in the model are time varying and the

derivative of the variations is small enough, solutions

are shown to follow close to a moving critical point. If

in addition the coefficients are periodic, there is a

periodic solution.
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CHAPTER I

INTRODUCTION AND BACKGROUND

1.1. Introduction. When is an ecosystem stable?
 

This is one of the most frequently asked questions in

ecology today. In fact, the question of stability is

one of the central questions in any mathematical

analysis of a dynamical system.

Let x(t) be the vector of "state variables",

i.e. the variables which characterize the system, and

assume

(1) x’(t) = f(x,t) .

Definition 1.1. If f is a function of x
 

only, the system defined by (l) is said to be autonomous.

Definition 1.2. A vector XE is called an
 

equilibrium point or a critical point of (1) if

f(xE,t) = O for all t.

We note that an equilibrium point XE is a

solution of (1). In this thesis we will use the following

definition of stability introduced by Lyapunov [25]:



Definition 1.3. An equilibrium point XE is

stable if for every 6 > O and every t .2 0, there is
O

a 6 such that any solution of (1) with ”x(to) - XE” < 5

satisfies “x(t) - XE” < e for all t'Z to.

Definition 1.4. An equilibrium point XE is
 

asymptotically stable if it is stable and for every

t0.2 0 there is a 6 such that ”x(to) - XE” < 5 implies

x(t) converges to xE as t goes to infinity.

The stability of a general solution x(t) of (1)

is that of the equilibrium point 0 under the change of

variables y(t) = x(t) - x(t).

One of the standard techniques to prove stability

is given by the following theorem, found in most advanced

texts on differential equations. (See for example, Hahn

[12], Hale [13], or Rosen [33].)

Definition 1.5. A function g(x) is said to be
 

0(HxH), written g(x) = 0(HxH), if for every 6 > 0

there is a 5 such that “X“ < 6 implies “g(x)” < eHXH.

Theorem 1.6 (Lyapunov, 1893). Let
 

(2) x’=Ax+g(x,t),

where A is a matrix, and g(x,t) = o(HxH). Then if the

0 vector is asymptotically stable for

(3) x' = Ax

the 0 vector is asymptotically stable for (2).



Theorem 1.6 can be generalized to have nonconstant

matrices A(t) in (2) and (3) by introducing the con-

cept of uniform asymptotic stability, but we will not

need this generality.

Theorem 1.7. The system (3) is asymptotically
 

stable if and only if all the eigenvalues of A have

negative real part.

Theorem 1.7 is our motivation to study matrices

whose eigenvalues have negative real part. To avoid

repetition, we make the following definition:

Definition 1.8. A is a stability matrix (or a
 

matrix A is said to be stable) if all the eigenvalues

of A have negative real part.

Lyapunov gave an alternative method to prove

stability, known as his second or direct method. The

function V in Theorem 1.9 is called a Lyapunov function.

For a proof see Hahn [12] or Yoshizawa [44].

Theorem 1.9. Let 0 be an equilibrium point of
 

(l) and assume there is a differentiable function V(x,t)

defined on a neighborhood of O in the domain of f,

satisfying

(i) V(O,t) EEO:

(ii) a(x) g V(x,t), for some continuous positive

definite function a(x),



(iii) v’(x(t) ,t) g 0.

Then 0 is a stable equilibrium point of (1).

If f(x,t) is bounded when x belongs to a

compact set and (iii) is replaced by

(iv) V'(x(t),t) g_—c(x), for some continuous

positive definite function c(x),

then 0 is asymptotically stable equilibrium point of

(1).

l;g, Lotka-Volterra Model of an Ecosystem. To

study the stability of an ecosystem, we will use the

Lotka-volterra model introduced for a two species

system by Lotka in 1925 [24], and independently for the

general n—species system by Volterra in 1926 [40]. (See

also volterra [41].) Let pi(t) be the population (or,

as is often preferred, the pOpulation density) of the ith

species at time t in an ecosystem with n species.

Then the growth rate p{(t) is given by

n

(4) p; = p.1(ri + .2) aijpj)

j—l

where ri is the intrinsic growth rate and dij is the

interaction coefficient measuring the effect of species

j on the growth of species i. If species j preys on

is negative and a..species i, 31aij p031tive. If

species 1 and j compete for the same resource dij



and aji are both negative. The terms aii represent

self-interaction or self-competition. They were omitted

by both Lotka and Volterra in their original formulation,

but there is good biological reason to include them and

assume that they are less than or equal to zero. We will

discuss this system and the significance of the coeffi-

cients more fully in Chapter 5. We also refer the reader

to Rosen [33], who discusses the relationship of (4) to

the "law of mass action" of chemistry.

We assume that the coefficients in (4) are such

that there is an equilibrium point pE satisfying

0 i = l,2,...,n
E

(5) ri + ZEQijpj

with p? > O for all j. Clearly, negative values for

pi have no meaning. There are other equilibrium points

where pi = O for some i and (5) is satisfied for the

other values of i, but a zero value for pi corresponds

to extinction for that species. To investigate the

stability of pE we make the change of co-ordinates

(6a) x = p - pE.

The stability properties of pE are the same as those of

the zero vector in

n

(6b) x; = Z) pgd..x. + _Z} x.d..x., i = l,2,...,n.



The zero vector is asymptotically stable in (6) if the

matrix

_ _ E

(7) A — [ai.]. aij — pioij

is a stability matrix. Several authors (May [28], Rosen

[33], and Strobeck [36]) have discussed the stability of

pE by examining the eigenvalues of A.

It would appear that for an actual ecosystem the

mathematical analysis of stability would be rather straight-

forward, since several numerical techniques for finding

the eigenvalues of a matrix are well developed. But this

presupposes an exact knowledge of the coefficients r.
1

and aij' whereas the biologist will know the signs of

the aij but will only be able to give rough estimates

for their magnitudes. This research started with the

question: If the entries of A are known only approximately,

can we still guarantee that 1k is a stability matrix?

1.3. Description of the PrOblem. To put the
 

prdblem more precisely, if A is a given stability

matrix and B is a given matrix, we want to know for

what values of e, A + 63 is a stability matrix.

More generally, let Eij denote the matrix with 1

in the (i,j) position and zeroes elsewhere. we would

like to find an open region about the origin in nz-space,

such that if the nz-vector (eij) is in the region,



A + Z) 6

i,j

would like to be able to perturb the entries of A in-

ijEij is a stability matrix. That is, we

dependently, not just in a prescribed ratio as is the case

when the perturbation has the form CB. While most

perturbation studies only deal with changes that are

small compared with the original values, we will want to

investigate perturbations that are of the same magnitude

as the original matrix. In fact, we seek bounds on 6

that are as large as possible.

In Chapter II, we find sufficient conditions for

the perturbed matrices to be stable in both of the above

cases, by using the criterion of Lyapunov for a stability

matrix. Part of the significance of these results is that

the bounds on e and on eij are not just theoretical,

but methods are developed to compute them. We also find

sufficient conditions for the bordered matrix [’AT b:] to

c d

be stable when A is stable.

The methods of Chapter II depend on the solution

S of the Lyapunov matrix equation

(8) ATS + SA = -Q

for a given symmetric, positive definite matrix Q. In

Chapter III, we develOp iterative procedures to solve (8),

which appear to be superior to existing procedures if the

matrix A is large.



In Chapter IV, we use the Routh-Hurwitz criterion

for stability matrices to find computable, necessary and

sufficient bounds on e for A + 63 to be a stability

matrix, if B is a rank one matrix.

In Chapter V, we return to an examination of the

stability of the Lotka-Volterra system (4). Besides

answering our original questions from the methods of

Chapters II and IV, we use the criterion for a bordered

matrix to be stable to find conditions for an ecosystem

to remain stable when a new species is added, and use

Lyapunov functions based on the solution S of equation

(8) to establish a domain Of attraction for the equilibrium

point pE, that is, a neighborhood of pE such that any

solution starting in this neighborhood tends to pE.

Finally, we consider not just constant, but also time

varying perturbations B(t) and show that if the deriva-

tive of B(t) is small enough, the solutions stay close

to a certain time-varying critical vector c(t). If, in

addition, B(t) is periodic of period T, there exists

a periodic solution of period T.

All the material in this thesis after section 2.1

is the original work of the author unless explicitly

stated otherwise.



l;4, Notation. Throughout this thesis we will

use capital letters, such as A, to denote matrices and

the corresponding subscripted lower case letters aij

to denote the (i,j)-entry of A. Alternately A = [aij]

will mean A is the matrix with aij as its (i,j)

entry. All matrices are assumed to be real unless stated

otherwise. We will use column vectors, which will be

denoted by lower case letters, such as v, and the sub-

scripted letter vi will denote the ith component of

the vector v. we will also use the notation v = (vi)

to define v as the column vector with ith component vi.

Eigenvalues of matrices will generally be denoted by

lower case Greek letters. Since real matrices can have

complex eigenvalues and eigenvectors, we will not

assume that any eigenvalue or eigenvector is real unless

so stated. If unspecified, matrices will be assumed to

be n x n and vectors to have dimension n.

The transpose of a vector or a matrix will be

denoted by VT or AT, and the conjugate transpose by

v* (or A* should A be specified as a complex matrix).

The symbol v’ will indicate the derivative of v 'with

respect to time.

D = Diag[d1...dn] will mean that D is a diagonal

matrix With entries dii = di' dij = 0 1f 1 # 3. When



_ 10 _

v is a vector, D(v) will denote the diagonal matrix

Diag[v1...vn].

The identity matrix will be denoted by I. If

unspecified it will be n x n. To specify a different

dimension, say m x m, we will use a subscript Im. For

two vectors u and v (or two matrices A and B)

u << v (or A << B) will mean that each entry of

v - u (of B - A) is positive.

The spectral radius of a matrix A, the largest

absolute value of an eigenvalue of A, will be denoted

by 0(A).

The symbol HvH will denote any vector norm. we

will often use the vector norms defined by

n

(9.1) Hle - '2 )Vi)
i=1

(9.2) llvllz = flv

(9.3) [M], = 8111) \Vil

Any matrix norm, HA”, satisfying

(10) HAxll g llAllllxll.

where “Ax“ and “x” are a vector norm, is said to be

consistent with that vector norm. We will make use of the

matrix norms



ll

 

n

(11.1) HAHl = Hjfip=1 HAVHl = mgx igfi laijl'
1 _

(11.2) “All2 = sup llAvll2 = /o(ATA),

(Ivnfl

n

(11.3) “A” = H fip ”Av“on = max Z) :aijl

° v co=1 i j=1

which are consistent with the corresponding vector norms.

It is well known that for any consistent matrix norm,

  
0(A) g ”A . (See, for example, Isaacson and Keller [18]

for a proof of this and equations (ll.1)—(11.3).) Whenever

  
we use the symbol HA , it will stand for a consistent

matrix norm.

1L5. Background. The question of the location of

the eigenvalues of a matrix has often been examined, although

the results are not usually stated in terms of perturbations

of a stability matrix which preserve its stability. We now

review some of these results and ShOW'hOW they are applicable

to our problem. We assume throughout that the matrix A

is a stability matrix.

1.5.1. Continuity of Eigenvalues. It is well known
 

that the eigenvalues of a matrix are continuous functions

of its entries. Thus we know that there is an open region

in n2 space containing A which contains only stability

matrices.
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g:§;g, Sensitivity_Analysis. This approach to

studying the effect of perturbations, based on the deri-

vative of the eigenvalue, is often used in engineering

applications. (See Porter and Crossley [31] or Tomovic

[38]). Let M(e) be a matrix function of 6 having

eigenvalue 1(6) and corresponding right and left eigen-

vectors x(e) and yT(€). Differentiating

(12) M(€)x(e) = x(€)x(€)

with respect to e, multiplying on the left by yT(e), and

solving for X'(€). yields

. fi<e>w<e>x<e>
(13) x (e) = T

Y (€)X(€)

T
In particular, if M = A + 8B and x = x(O), y = yT(0)

are the right and left eigenvectors of A corresponding

to x: x(0)l

T

(14) V(o) = 5%35.

y X

Setting B = Eij yields

.X.

(15) __a_).L__—_.X_1__l .

8a.. T

1] y X

The eigenvalues are most sensitive to changes in the entries

of A for which 'SEA— is largest. For small enough 6

iJ'

the eigenvalues of A + SE can be approximated by

1(0) + ex’(0). But we do not really know x'(e) for
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€ # 0, since we do not know x(e) and y(e) for e # 0.

Without this knowledge we do not have an error bound for

the approximation to x(e), so that we cannot say for

certain that 1(6) has not moved far enough away from

1(0) to cross the imaginary axis into the right half plane.

1.5.3. Characteristic EquatiOn. Since the eigen—

values of A satisfy the characteristic equation

_ n n—l _
(16) det[A—)I] — x + Cl). +...+ Cn-l" + cn — 0,

it is necessary for all the coefficients ci to be posi-

tive in order for all the eigenvalues to have negative

real part. If all the eigenvalues of A are known to be

real (for example if A is symmetric) this is both a

necessary and sufficient condition for A to be a stability

matrix. The Routh-Hurwitz criterion discussed in Chapter

IV is a strengthening of this condition to make it necessary

and sufficient for general matrices.

In particular, we note that it is necessary that

tr A = -c1 = sum of the eigenvalues be negative and that

det A = (-l)ncn = product of the eigenvalues have the same

sign as (-l)n for A to be stable.

1.5.4. Two By Two Matrices. If A is a 2 x 2
 

matrix it is necessary and sufficient for A to be stable

that tr A be negative and det A be positive, which is

useful for constructing counterexamples. Furthermore, the
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eigenvalues of A are given by

 

all+a 'a —a

(17) 1 = ————-33-:n/4-ll§—33)2 + a
2 12a21 °

Perturbations of A which decrease the diagonal entries

of A usually are stabilizing, but not always, since

-3 1

changing

] is stable, but [:g i] is not. In this case

from -2 to -4 decreased the average

a11+322

. 2 '

. /a11‘a22 2
distance between thehn 2V' 2 ) + alza21 .

of the off diagonal entries which increase alza21 (symmetric

a11

value of the eigenvalues, but increased the

 

Perturbations

perturbations) move the eigenvalues further apart and hence

are destabilizing. Perturbations which decrease alza21

(skew-symmetric perturbations) move the eigenvalues together.

When becomes negative enough to make the quantity
a12a21

under the radical zero, the eigenvalues meet and further

reduction of alza21 yields complex conjugate eigenvalues.

Thus skew symmetric perturbations of a 2 x 2 matrix with

negative trace tend to be stabilizing or at least not

destabilizing, though they may lead to imaginary components

in the eigenvalues, which correspond to oscillations in the

solutions of equation (3). We will see evidence that these

Observations are also true for larger matrices. A precise

mathematical formulation of this principle for general

matrices would be valuable.
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1.5.5. Gershgorin's Theorem and Generalizations.

Gershgorin's theorem, that the eigenvalues x of a matrix

R lie within the union of the circles defined by either

(18) ix - riil S.§;irij!

or

(19) ix " rii! S.lerji|

is well known. Thus if R is diagonally dominant and has

negative diagonal entries, it is a stability matrix and

any perturbation which preserves this characteristic pre-

serves its stability.

Generalizations of Gershgorin's theorem may be

formulated (see Householder [17] or Wilkinson [43]) by

writing a matrix R as E + C, where, for some non-

singular matrix P, D = P-lEP is diagonal. (Here we

drop our assumption that D and P be real.) Then

D + P-ICP is similar to R, so that for any eigenvalue

1 of R, there is an eigenvector x such that

(20) Dx + P-lCPX = 1x.

It follows that

(21) 1 g H (1)-11)"1 P'lcpll

and

(22) min (211 _ i) g HP’lcpll g lip-1)) up) (cu.

If E is the diagonal part of R, and P = I, using the

norms H H1 and H H, in (21) yields equations (18) and
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(19) respectively. Various other choices of E and the

norm used give various generalizations of Gershgorin's

theorem.

This can be applied to perturbations of a

stability matrix A in two ways. First, if A is

diagonalizable, letting E = A and C = 88 shows that

A + 63 is stable for any 6 satisfying

(23) eHP-lBPH g_min Reldiil.

i

Letting E = A and C = Z) eijEij shows that

i,j

A + Z: €..E.. is stable as long as
i,j 1] 13

(24) H E: eijEin g ——:fL-——-min Reidii"

i,j HP IIHPH i

If A is normal then P is unitary and HPH2 = HP-l“2

= 1, but if A has nearly parallel eigenvectors,

which generally happens when A has two almost equal

eigenvalues, then the condition number HP-lHHPH may

be very large. In this case,computation of D and P

will be difficult and may be unstable. (Unstable is

used here in the sense of numerical analysis, that small

round-off errors will cause large errors in the final

answer.)

Second, suppose that A = E + C, that E is

stable, and that

(25) HP—lCPH g min Refdiif.

l
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Then A is stable and any perturbation of A which

preserves (25), preserves its stability. It should be

noted, however, that perturbations which change E, not

only change the values of dii but also change the

matrix P.

1.5.6. Symmetric and Skew Symmetric Parts. Any
 

real matrix A can be written as

(26) A=M+K

where M = %(AT+A) is symmetric and K = g(A-AT) is

skew symmetric. It is well known that the real parts of

the eigenvalues of A lie between the smallest and largest

eigenvalues of M, and that their imaginary parts lie be-

tween the conjugate pair of pure imaginary eigenvalues of

K of largest magnitude. Hence for M to be negative

definite is a sufficient condition for A to be stable.

If A is normal, the real parts of the eigenvalues of A

are the eigenvalues of M and their imaginary parts are

the eigenvalues of K, so that M negative definite is

a necessary and sufficient condition for a normal matrix

A to be stable. The stability criterion of Lyapunov

discussed in Chapter II is a weakening of this condition

to make it both sufficient and necessary for general

matrices. The next lemma is a special case of a well

known inequality for the eigenvalues of the sum of two

symmetric matrices. (See Wilkinson [43].)
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Lemma 1.10. Let M and V be symmetric matrices,

u,v, and 1 be the largest eigenvalues of M,V, and

M + V respectively. Then

 

 

(27) ).g u + v.

Proof:

* * *

(28) 1 = sup 2E--—(;‘I~{1-‘f\—7-—)—-‘)igsup X*MX + sup X*VX = u + v.

x x x x x x x x x

Corollary 1.11. Let A satisfy (26), B = V + L

with V symmetric and L skew symmetric, and u and v

be the largest eigenvalues of M and V, respectively.

Assume u < 0. Then A + 6B is stable for all e such

that u+ €v<0.

Proof: The symmetric part of A + 68 is M + 8V,

which by the Lemma has largest eigenvalue x(e) g u + ev.

This simple Corollary is often a very practical

way to establish that a perturbation preserves stability,

and is the starting point for the methods of Chapter II.

1.5.7. Sign Stable Matrices. Quirk and Ruppert

[32] (see also Maybee and Quirk [29p introduced the con-

cept of sign stability in connection with economic problems

and proved the following theorem.

Definition. A matrix A is sign—stable if every

matrix C such that cij is negative, zero, or positive

whenever aij is negative, zero, or positive, respectively,

is stable.
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Theorem 1.12. An indecomposable matrix A is

sign—stable if and only if A satisfies the conditions

(i) aii g_o for every i, aii < 0 for some i.

(ii) aijaji g_o for every i # j.

(iii) For any sequence of 3 or more indices

i,j,k,...,r (with i # j # k #...# r),

the product a = 0.o la: 0.0a I

1] 3k r1

(iv) There exists a nonzero term in the expansion

of det A.

Of course a perturbation of a sign-stable matrix

which preserves the sign pattern of the entries preserves

the stability. Since the signs of the dij of equation

(5) are easily determined but their magnitudes are not,

we will make use of sign stability in our applications.

1.5.8. Norm of (A+1)(A—I)'1. Let C: (A+1)(A-1)‘1.

Then each eigenvalue Y of C is given by

_ 1.11

where 1 is an eigenvalue of A. The linear fractional

transformation 1 4-%§%v maps the left half plane onto the

interior of the unit circle. Therefore A is stable

if and only if 0(0) < 1.

Since 0(0) g_HcH for any consistent matrix norm,

”C“ < l is a sufficient condition for A to be stable.

But it is difficult to apply this condition to the stability
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of the perturbed matrix A + eB, because of the difficulty

of expressing H(A+eB+I)(A+eB-I)_1H as a function of 6.

1.5.9. Canonical Forms. Stability of a matrix A
 

can be determined by transforming it to one of the various

canonical forms which display the eigenvalues. Or one

can use the Schwarz canonical form [34] (see also Barnett

and Storey [4]), which does not display the eigenvalues,

but has all positive entries on the subdiagonal if and

only if A is stable. Canonical forms are not well suited

to perturbation problems, since the transformations in-

volve long computational processes which obscure the re-

lationship of the canonical form of A to that of A + 63.



CHAPTER II

APPLYING LYAPUNOV'S EQUATION

gyl, The Lyapunov Equation. To study the

preservation of the stability of a matrix A under

perturbations we need a necessary and sufficient con-

dition for A to be stable. The most useful of these

is the following theorem due to Lyapunov:

Theorem 2.1 (Lyapunov). If there exist

symmetric positive definite matrices S and Q such

that

(1) ATS + SA = -Q

then A is a stability matrix. Conversely if A is

a stability matrix, then for any positive definite

symmetric matrix 0. there is a unique positive definite

symmetric matrix S which satisfies equation (1).

Lyapunov's equation (1) has many uses and is

discussed in many places in the literature. Bellman [5]

and Barnett and Storey [4] both have detailed expositions.

In this section we review the pertinent results from the

literature. Section 2.2 contains original contributions

to the theory of Lyapunov's equation, and sections 2.3,

21
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2.4, and 2.5 are new applications of Lyapunov's equation,

using it to study perturbations and bordering of stability

matrices. Throughout this chapter, 8 and Q 'will

always stand for symmetric positive definite matrices

unless noted otherwise.

That equation (1) is sufficient for A to be

stable is closely related to the stability of the linear

differential equation

(2) x' = Ax.

If we form the positive definite quadratic form xTSx,

then

(3) (xTSx)’ = xTATSx + xTASx = -xTQx,

and xTSx is a positive definite Lyapunov function for (2)

with a negative time derivative. By Theorem 1.9, this

implies that the zero solution of (2) is asymptotically

stable, which can happen only if all the eigenvalues of

A have negative real part, i.e., only if A is a stability

matrix.

A proof that a positive definite solution S for

equation (1) exists when A is a stability matrix can be

found in Bellman [5], who gives the integral representation

T

(4) s = I" eA t Q eAt dt.

0

Olga Taussky [37] has given an algebraic proof.
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To better understand equation (1), we examine

the Operator A which maps the space of n X n matrices

to the space of n x n matrices and is defined by

(5) Ax = ATX + XA.

It is easily seen that A is linear, and that it maps

symmetric matrices to symmetric matriCes and skew—

symmetric matrices to skew symmetric matrices. It is

also apparent that equation (1) is linear in A, so that

(6) GA + BB = dA + BB

for any matrices A and B and scalars d and B.

For an n X n matrix X, let XV denote the

n2 x 1 column vector formed by taking X row by row.

Then for any two matrices B and C,

(BXC) = (BXCT)
V XV'

where X denotes the Kronecker product. It follows that

- _ T _ T T
(7) (AX)V - (A X+XA)V -— ((A x1) + (IxA ))XV.

If 1

[ all a12 ... a1n

1 a21 a22 ... a2n

(8) A = .

!

‘ an1 an2 °° annJ  
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then

,

r-AT+a I a I

11 21 anll

T T 3121 A +a22I . anZI

(9) (A XI) + (IXA ) =

a I a I AT+a II

i. 1n 2n "' nn J 
It is readily seen that if A is diagonal, triangular,

symmetric, or skew symmetric, then (ATXI) + (IXAT) has

the same property.

Theorem 2.2. If a matrix A has eigenvalues
 

11...xn, then the eigenvalues of the linear Operator A

are precisely the sums of all pairs of eigenvalues xi + xj.

Proof: Let RAR_1 be upper triangular, so that

the eigenvalues of A are the diagonal elements of RAR-l.

Then

T-1 T_1 T T T T
(10) (R XR )[(A x1) + (IxA )](R XR)

-1 -l

= RT ATRT X I + I X RT ATRT

which is lower triangular. The eigenvalues of A are

-1 -l

the diagonal entries of RT ATRT X I + I X RT ATRT

which are the sums of pairs of diagonal entries of RAR-l.

In fact if x and y are eigenvectors of AT,

T
so that ATx = 11x and yTA = y 12, then xyT is the
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"eigenvector" of A corresponding to 11 + 12, since

(11) A(xyT) AT(xyT) + (xyT)A = xlxyT + xyTx2

T
(11+12)Xy -

 

Corollary 2.3. If no two eigenvalues 11,12 (not

necessarily distinct) of A satisfy 11 + 12 = 0, then

the matrix equation ATX + XA = Y has a unique solution

X for every matrix Y.

Proof: The hypothesis guarantees that the linear

operator A has no zero eigenvalues, hence it is non—

singular.

Corollary 2.4. If no two eigenvalues 11,12 (not
 

necessarily distinct) of A satisfy 11 + 12 = 0, and Q

is symmetric, then the solution S to ATS + SA = -Q is

symmetric.

Proof:

(12) ATST + STA = -QT = -Q.

By the uniqueness of solutions, ST = S.

It is clear that any stability matrix satisfies

the hypothesis of the preceding two corollaries, but any

singular matrix or matrix with a conjugate pair of pure

imaginary eigenvalues fails to do so.



 

 
Li
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243, The Lyapgnov Equations and the Symmetric Part

of a Matrix. It does not seem to be widely recognized

that there is a close connection between the Lyapunov

equation (1) and negative definiteness of the symmetric

part of a matrix. Equation (1) shows that a matrix A is

stable if and only if for some positive definite symmetric

matrix S, the matrix SA has negative definite symmetric

part. The following corollary to Lyapunov's theorem

expresses the relation between stability matrices and nega-

tive definite matrices in another way.

Corollary 2.5. A is a stability matrix if and
 

only if A is similar to a matrix with negative definite

symmetric part.

Proof: If A is similar to a matrix with negative

definite symmetric part it is clear that A is a stability

matrix.

If A is a stability matrix, equation (1) holds.

Let S = RTR, R nonsingular. Multiplying (l) on the left

-1

by RT and on the right by R-1 we have

-1 -l
_ -l

(13) RT ATRT + RAR l = -RT QR -

T"1 -1
Thus —R QR , which is negative definite, is twice the

symmetric part of RAR-l.
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If S is a symmetric positive definite matrix,

we can form an inner product (x,y)S = x*Sy. We call a

matrix B S—symmetric if (x,By')S = (Bx,y)s and S—

skew-symmetric if (x,By)S = -(Bx,y)S. It is readily

verified that V is S-symmetric if and only if SV is

symmetric, and that an S-symmetric matrix has all real

eigenvalues {vj} with

(x,Vx) *

(14) min V- = min W-S— = min w

j J x ' S x x Sx

(x,Vx) *

(15) max v- = max —T;-§7§-= max §;§!§

j 3 x ' S x x Sx

Likewise W is S—skew-symmetric if and only if

SW is skew symmetric and an S-skew-symmetric matrix has

pure imaginary eigenvalues {ting} with

 

   

(x,Wx) *
. . . SWX

(16) min w. = min ————-T—-= min X*

j x (X’X S x x Sx

(x,Wx) *
x SWX

(17) max w. = max —————7—-= max *

j x (X'X S x x Sx
 

   

Lemma 2.6. Let S be a symmetric positive definite

matrix. Any matrix A can be written as a sum of an S-

symmetric matrix V and an S—skew-symmetric matrix W.

If v1 and Vn are the smallest and largest eigenvalues

of V, respectively, and iwl and imn, wi'g 0, are the smallest

and largest (in absolute value) eigenvalues of W,

respectively, then any eigenvalue 1 of A satisfies
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(18) v1 g_Re(1) g_vn

(l9) uh g]Im(xfl 3 Mn.

Proof: Let V = %(S—1ATS+A) and W = %(-S—1ATS+A).

Furthermore, for some x

(20) 1x = Ax = Vx + wx

from which it follows that

* *

XSVX xswx

(21) X="'*——+T—-
x Sx x Sx

* *

From the symmetry, x Sx and x SVx are real, and SW

*

skew-symmetric implies that x SWX is pure imaginary.

Equations (18) and (19) now follow from (l4)-(l7).

This leads us naturally to the following theorem,

first proved in separate parts by VOgt [39], and Barnett

and Storey [4] using different methods.

Theorem 2.7. Let A be a matrix with eigenvalues
 

[1k] and S a positive,definite symmetric matrix. Let

ATS + SA = M and -ATS + SA = K. Then V = %S-1M ‘has

real eigenvalues {v1 g_v2 g,..g_vn} and

  

1 . l

(22) '5 min * V1 _<_ Re(1k) S Vn -- '2- max *

for every k.
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S—lK has pure imaginary eigenvalues

N
I
H

Likewise W =

{3:1ij 0 g (01 _<_ (1)2 _<_...g “In and

 

    

* 'k

l . x Kx l x RX

(23) - min —;——- = u) S_Im(x ) Sim = — max *

2 x x Sx l k n 2 x x Sx

for every k.

2529;; V is the S—symmetric part of A and W

is the S-skew symmetric part of A. The inequalities in

(22) and (23) now follow from (18) and (19). The equalities

in (22) and (23) follow from (14)—(17) since x*svx =

l l* * *

5 x Mx and x SWX = 5 x Kx.

When M = -Q with Q positive definite, Theorem

2.7 gives us another proof of the sufficiency of the

Lyapunov condition for A to be stable.

Corollary 2.8. Let ATS + SA = -I, A have
 

eigenvalues with real parts o1 g,..g_an < 0, and Cl

and on be the smallest and largest eigenvalues of S.

respectively. Then

1 1
(24) OIS-ES-ESOnSHSH-

Egggf; The smallest and largest eigenvalues of

- % S"1 are - §%- and - 3%év respectively. By

1 n

Theorem 2.7 with M = —I

l l

(25) —-2-5-l-_<_al_gang-20n.

Equation (24) follows immediately, on g_HsH being true for

any consistent norm.
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The following stability concepts have been

introduced in economic theory:

Definition 2.9. A matrix A is D—stable if for

any matrix D = diag[dl,d2,...,dn], DA is stable if and

only if di > 0 for every i.

Definition. A matrix A is S-stable if for any

symmetric matrix S, SA is stable if and only if S is

positive definite.

Clearly S-stable a D—stable = stable. Arrow and

McManus [2] have shown the following:

Theorem 2.10. If AT + A is negative definite
 

then A is S-stable.

We now show that Theorem 2.10 is equivalent to

Lyapunov's theorem.

Suppose Lyapunov's theorem is true and AT + A

is negative definite. If SA is stable,

(26) (ATs)s'1 + s‘1(SA) = AT + A,

and by Lyapunov's theorem S"1 is positive definite,

which implies S is positive definite. Conversely if

S is positive definite, so is 5‘1 and (26) is Lyapunov's

equation for SA with -Q = AT + A.
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On the other hand suppose the theorem of Arrow

and McManus is true. If equation (1) holds with S and

Q positive definite, then VSA is stable for any posi—

tive definite V. Taking V = 8—1 shows that A is

stable. Conversely, if A is stable we know that for

any Q a solution S to equation (1) exists. We need

only show that S is positive definite. But SA

satisfies the hypothesis of Arrow and McManus. S-1(SA)

= A is stable implies 8-1, and hence S, is positive

definite.

Corollary 2.11. Assume S and Q are symmetric,

positive definite, ATS + SA = -Q, and V is symmetric

and commutes with S. Then VA and AV are stable if

and only if V is positive definite.

Proof: Since V and S commute, VS-l is

symmetric. VA = VS-lSA, which by Arrow and McManus is

stable if and only if VS"l is positive definite, which

happens if and only if V is positive definite.

Corollary 2.12. If there is a positive definite
 

diagonal matrix N and positive definite Q such that

ATN + NA = -Q, then A is D-stable.

Proof: Since any diagonal matrix D commutes

with N, by the preceding corollary, DA is stable

if and only if D is positive definite.
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Definition 2.13. A matrix A is D-negative-

definite if there exists a diagonal matrix D such that

DA has negative definite symmetric part.

We will have applications of D-stability and D-

negative definiteness in Chapter V.

2;§, Stability Preserving Perturbationsjby

Lyapunov's Equation. We now come to our main purpose for

studying the Lyapunov equation, namely finding sufficient

conditions for a perturbed matrix A + 68 to be stable

when A is known to be stable. The basic idea is given

by the following lemma, which we will call the Fundamental

Lemma.

Lemma 2.14. Let ATS + SA = -Q, with S and Q

symmetric positive definite matrices. If -Q + €(BTS+SB)

is negative definite, then A + EB is stable.

Proof:

(27) (A+€B)TS + S(A+€B) = -Q + c(BTS+SB).

The right hand side of (27) is negative-definite.

Thus by Lyapunov's theorem. A.+-eB is stable.

The next three theorems illustrate how the

fundamental lemma can be applied.
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Theorem 2.15. Let ATS + SA = -Q, S and Q

symmetric positive-definite. Let v be the largest

eigenvalue of BTS + SB and q be the smallest eigen-

value of Q. Then A + 63 is stable for all e > 0

such that

(28) 6v - q < 0.

Proof: By Lemma 1.10 the largest eigenvalue of

-Q + €(BTS+SB) is less than 6V - q < 0. Thus

-Q + c(BTS+SB) is negative-definite. The theorem now

follows from Lemma 2.14.

Theorem 2.16. Let ATS + SA = -Q, S and Q
 

symmetric negative-definite. If

1
(29) c(IlBTH + IIBH) _<.-—-—_—-'

HSIIHQ 1“

then A + 68 is stable.

Proof: Let q be the smallest eigenvalue of Q

and v the largest eigenvalue of BTS + SB. Then

1

_ sq-

HQ 1ll

Thus 6V - q is negative and A + 6B is stable by Theorem

 

(30) ev g ellBTs + SBH g a(llBTll + NB“) IISH g

2.15.

We note that if we use the 2-norm, then HBTH = “B“,

and the condition (29) for A + SE to be stable becomes
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1

(31) SHBHZ S leSHZHQ‘lllz

Using the l-norm or the m—norm, HBTHl = HBHO, and

condition (29) becomes

1 1
  (32) ”Bill + ”EH 2

-1 = —1

°' IISII,IIQ ll, IISIIIIIQ II1

Theorem 2.17. Let S and Q be symmetric positive-

definite matrices, ATS + SA = -Q, and nl.S.n2 S:~°S.nn

be the eigenvalues of Q-1(BTS+SB). Then A + SE is

stable:

1 l .

(33a) for all --< 6 < ——, If n < 0 < nn ;

n1 nn 1

1 .

(33b) for all '3; < 6 < a, If fll < Uh S_O ;

l .
(33c) for all -a<< e <-fi;, 1f o.g n1 < nn.

T T

Proof: (A+€B) S + S(A+eB) = -Q + €(B S+SB), and

A + 8B is stable for all e such that V(e) = —Q + €(BTS+SB)

is negative definite. Since V(O) is negative definite,

and the eigenvalues of V(e) are all real continuous

functions of e. we may increase 6 and still have V(€)

negative definite until det V(e) = 0. But

(34) o = det V(e) = det(-Q+e(BTS+SB))

is equivalent to

(35) o = det(% I-Q-1(BTS+SB)),
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which implies % is an eigenvalue of Q—1(BTS+SB). The

smallest positive 6 for which this occurs is % = fin

unless nn'g 0, in which case V(e) is negative definite

for all positive 6. Likewise V(e) remains negative

definite as we decrease e from zero until % = hi, or

if “1.2 0, V(e) is negative definite for all negative 6.

In the preceding three theorems, it is often

computationally convenient to let Q be the identity

matrix. In this case the conditions of Theorems 2.15 and

2.17 for A + 68 to be stable both reduce to

l l

(36) -—'< e < --

Vl Vn

where v1 is the smallest and Vn the largest eigenvalue

of BTS + SB. The condition of Theorem 2.16 reduces to

(37) c(llBTll+llBll) g 17%” .

A stronger result, however, will often be obtained by using the

criterion implied by the first inequality in (30):

(38) eHBTS + SE” g_1.

For some types of perturbation matrices B, the

eigenvalues of BTS + SB are particularly easy to find.

For example if B has rank one, BTS and SB have rank

one and their sum has rank at most 2. Thus there are at

most 2 nonzero eigenvalues of BTS + SB; they are easily

found, since their sum is the trace of BTS + SB and their
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product is the sum of all the 2 X 2 principal minors

of BTS + SB.

Assume that only one column of A is perturbed.

which without loss of generality we may assume to be the

last one, making B a rank one matrix of the form

(39) B = [0.1)]

where 0 denotes an n X (n—l) zero matrix and b denotes

an n-dimensional column vector. We partition S into

(40) s = [ MT]

S

‘ . . T .

where M is an n - l by n matrix and s 18 an n-

dimensional row vector. Then

0 Mb

(41) B S + SB = T

wb M 2sTb

The nonzero eigenvalues satisfy

 

(42) v2 — 2sTbv - bTMMb = 0

or

(43) v = sTb iflsTbV + bTMMb

Noting that the quantity under the radical in (43) is just

bTSZb, and that a similar argument can be carried out for a

perturbation of other columns, we have the following theorem

by applying equation (36) with 6 = l:
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Let ATS + SA = let the jthTheorem 2.18. -1,

column of A be perturbed by adding a column vector b,

T
and let sj be the jth row of S. The perturbed matrix

is stable if

 

(44) sgb +./bTSZb < 1.

. . T T 2

Equation (43) shows that the quantity sjb + b S b

will always be positive.

Now let us assume that only the last row of A

is perturbed so that B is the rank one matrix.

0 T

(45) B = b = (bl’b , .,b )
T 2 n

B ;

and partition S into

S = [M s]

where s is the column vector (81,52....,sn)T. Now

BTS + SB = bsT + st

] ZSlbl slb2+52bl slbn+snb1

_ . 52bl+slb2 2s2b2 ... $2bn+snb2

(46) —.

snbl+slbn 25nbn J

which is again rank two since st and bsT are both

rank one. The two nonzero eigenvalues satisfy

(47) v2-(ZZsb)v-Z(sb—sb)2=0
k k k k z z k

k<£
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(48) _.\)=Z‘sb i/(Zsb)2+ 2(sb-s )2
kkk kkk k<zk££bk

Again a similar computation can be carried out for

other rows of A, and equation (36) applied with 6 = 1

to yield the companion theorem to the Theorem 2.18:

Theorem 2.19. Let ATS + SA = —I, let the ith

row of A be perturbed by adding a row vector

T
b = (b1...bn), and let si be the ith column of S.

The perturbed matrix is stable if

muo‘ ...- 1". a.-“- ... --.- s- -- -- tun.— ...—.L. .... _—.~ ”-1. ~-1

T T2 ” ‘2
(49) Sib +./4sib) + k§i(skib£—s£ibk) < 1.

We note that although equation (44) involves the

entire matrix S, equation (49) involves only the ith

column of S.

Corollary 2.20. Let ATS + SA = —I. Let the

i,jth element of A be perturbed from a.. to a.. + b...

1] l] 13

The perturbed matrix is stable if

  < b.. < 1
1

.-——" 1] .

2 2
Sij -/]Z(:Sik s.. +‘/Zsik

1:] k

(50)

Proof: By taking b to be the column vector

with bij in the ith position and zeroes elsewhere in

T
equation (44) (or b to be a row vector with bij in the
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jth position and zeroes elsewhere in equation (49)), we

 

 

get

2
(51) sjibij +./ E3<skibij) < 1.

Hence

(52) b. . < l ___._-_.
l] I 2

Sji +\/f:3ski

since 5 . + v/E;SZ. is positive
jl k k1 '

Putting bij = —cij in equation (51), we get

1_.§q.§M.

(53) —sjicij +‘//E;Skicij < l

”a-.—~-

and hence, noting that s.. — “/2352. is negative,
31 k ki

(54) b. . = -c. . > l___,_.._,____ .
l] 13 2

Sji “/1? Ski

Alternately, we could return to the left inequality in

equation (36). Equation (50) follows from (52) and (54)

since 3 . = s. for ever k.

k1 1k y

If ATS + SA = -Q, but Q is not the identity,

Theorem 2.15 shows that we may replace the l in equations

(44), (49), and (50) by q, the smallest eigenvalue of Q.
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2.4. Convexity of S—Permissible Perturbations.

Definition 2.21. Let ATS + SA be negative-

definite. A matrix B is an S—permissible perturbation

of A if (A+B)TS + S(A+B) is negative definite.

In other words, a matrix B is an S—permissible

perturbation of A if A + B is stable by the fundamental

lemma, 2.14.

Lemma 2.22. For a given symmetric, positive-

definite matrix S, the set of matrices A such that

ATS + SA is negative definite is a convex cone.

Prggf: .Assume ATS + SA and BTS + SB are

negative definite. Then for any a > 0, (dAT)S + S(dA)

=o(ATS + SA) is negative definite. If 6,6 > o, o + B = 1,

then (oA+53)Ts + S(dA+BB) = a(ATS+SA) + B(BTS+SB) is

negative definite.

Theorem 2.23. Let ATS + SA be negative definite.

The set of S-permissible perturbations of A is an open

convex set.

Proof: Let B and C be S-permissible pertur-

bations of A. If B,Y > O and B + Y = 1, then

(55) A + BB + NC = S(A+B) + y(A+C).

Convexity now follows from Lemma 2.22.
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Since (A+B)TS + S(A+B) is negative definite,

and eigenvalues are continuous functions of the entries

of the matrix, there is an e such that if M is

symmetric and HMH < e, (A+B)Ts + S(A+B) + M is negative

definite. Let 6 = EHéHD' For any matrix R with HRH < 5

and ”RT” < 5, HRTS + SRH < 8, so that (A+B+R)TS +

S(A+B+R) is negative definite. Thus the set of S—

permissible perturbations is Open.

This theorem is important because it allows us to

answer our second question and compute open (and convex)

neighborhoods of the origin which contain only stability

preserving perturbations. Thus we can show that stability

is preserved when the entries of A are perturbed in-

dependently, and not just in a fixed ratio. Equivalently.

a matrix can be shown to be stable when its entries are

only known to lie in certain intervals:

Corollary 2.24. Let ATS + SA = —I, and let
 

8.. > 0 for every i,j and Z} 8.. = 1. Then any
1] —- i,j 1]

matrix R whose entries satisfy

6..

(56) a. < + $3_lw__

B

. + lJ.WM . < r.. a..

13 V/’ 2 13 13 2
sij — Ejsik s.j + Ezsik

 

l

for every i,j is stable.
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A+B, and from

(50) B is a convex combination of S—permissible per-

turbations.

Example 2.25.

sections 2.3 and 2.4 with the matrix

r -10.0

0

 O
O

O

The solution to

places is

1" .077 -

-.004

.057 -

-.015

-.010 -

.003

 .001

O

-9.0

1.0

O
O

O

T
A S +

.004

.088

.026

.064

.045

.031

.012

-7.0

—1.0

-2.0

O

5.0

O

0

SA =

.057

.026

.265

.053

.080

.023

.005

-2.0

-5.0

O

-2.0

2.0

-4.0

O

A, given by

O 0

0 0

-10.0 0

-8.0 -3.0

-l.0 0

0 -l.0

5.0 3.0

We illustrate the techniques of

—4.0

-4.o

 -O.5.A

rounded to 3 decimal

.015

.064

.053

.232

.067

.098

.012

.010

.045

.080

.067

.474

.032

.048

.003

.031

.023

.098

.032

.295

.030

.001

.012

-.005

—.012

.048

.030

.377  
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It is not immediately obvious that S is

positive definite or that A is stable, but if we take

D = diag[0.2,0.2,0.2,0.2,0.5,0.2,0.4] then D + s is

diagonally dominant and hence positive-definite and

AT(D+S) + (D+S)A is

 

(P -5 0 0 -0.4 -o 2 o o 0

0 —4.6 0 0 0 0 0

-O.4 O -1.8 O 0.5 O O

—O.2 O O -1.8 -O.6 O 2 O

0 0 0.5 -0.6 -2.0 0 0

0 0 0 0.2 0 -1.4 0.4

L 0 O 0 0 O 0.4 —1.4_J 
which is diagonally dominant with negative diagonal entries

and hence negative-definite. This implies that A is

stable, which implies that S is positive definite.

The upper and lower bounds for S-permissible

perturbations bij computed from equation (50) are given

 

by

,

r5.726 11.223 6.468 12.032 11.433 9.939 10.092

7.957 4.671 10.027 5.262 12.426 6.385 7.276

2.887 3.796 1.805 4.232 2.704 3.748 3.516

3.845 2.951 4.515 1.973 4.821 2.685 3.808

2.079 2.242 1.749 2.358 1.036 2.177 1.854

3.163 2.881 3.406 2.415 3.519 1.636 2.892

_2.608 2.539 2.652 2.538 2.324 2.429 1°317_, 
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(.48.64 9.812 24.623 8.920 9.281 10.571 10.404

7.697 26.853 6.596 16.313 5.852 10.556 8.780

4.304 3.172 40.321 2.921 4.787 3.206 3.398

L==- 3.460 4.758 3.052 23.672 2.927 5.662 3.490

1.994 1.864 2.434 1.791 58.621 1.911 2.257 
] 3.194 3.506 2.953 4.583 .2.873 47.147 3.490

7 2.628 2.701 2.584 2.702 2.986 2.837 216.374;

Thus the (i,j) element of A may be changed from aij

ij + bij for any zij < bij < uij while leav1ng

the other entries fixed, and stability is preserved. For

to a

example, A will be stable if -216.87 g a77 g + .817

and the other entries are as given.

Using the convexity of S-permissible perturbations,

we know that A + B is stable for any B whose entries

b.. satisfy

13

57 ..L.. b.. 3..u.., .. 0, .. = 1.( ) 613 l] < 1] < #13 1) Bl] > 123 Bl]

For example A + B will be stable for any B,

l 1 . _ 2 _ l
49 L << B << 49 U. Or by taking 667 - §. B77 — 3, we

see that we can add —2.327 < b67 < 1.928 to a67 and

—72.124 < b77 < 0.439 to a while leaving the other
77

entries unchanged and preserve stability.
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By comparison, HSHon = 0.757, so that by

equation (37) A + B is stable if HBHl + H81!” 3 1.32.

7 = 2, b77 = 1, and all

other entries of B are zero, A + 6B is stable for

Equation (28) shows that if b6

-2.86 < e < .814.

As another example of how the convexity of the

S-permissible perturbation of a matrix can be applied,

we prove the following theorem.

Theorem 2.26. If M = [mij

diagonal entries and the nonzero off diagonal entries

] has negative
 

 

satisfy

1 ) (
(58) ‘mij' < zaij'mii

for some dij with Z: dij = 1, then M is a stability

i,j

i741

matrix.

Proof- Let A = diag[m ] and S = diag[ l ].

Since the m.. are all negative, S is positive definite
11

and ATS + SA==-I. Letting B = M - A, M ‘will be stable

if B is an S—permissible perturbation.

Let Eij denote the matrix with l in position

m.. ~

(i,j) and zeros elsewhere. By equation (50), all Eij

ij

will be an S-permiSSible permutation if

1

= -2m..,

0 I 1 1

 

(59) 2mii="'§."."so S~s
11 ij ll
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since all off diagonal entries of S are zero. Equation

(59) is true for all nonzero off diagonal entries m.

13'
m. C

of M ‘by hypothesis. Thus B = Zldij(alJ-Eij) is a

ij

convex combination of S-permissible perturbations and hence

is S-permissible itself.

Example 2.27. The matrix

F

-1.0 0.2 O

  

M = 0 -1.0 0.2

4.4 0 -3.0
)..- 4

. . l
is seen to be stable by taking 012 — 023 — é and

a _ 3

31-4

245, Bordering a Stability Matrix. Another

important way to change a matrix is to border the matrix

with a new row and column. Thus if we know that an n X n

matrix A is stable, we seek conditions for the matrix

cT d

A b

[. :] to be stable, where b and c are n X 1

column vectors and d is a scalar. We may treat this

as a type of perturbation of A and study the stability

of the new matrix by the methods of this chapter.

Let ATS + SA = -Q, q be the smallest eigenvalue

of Q, and r and k be arbitrary positive scalars.

We will choose Optimal values for r and k later.
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Then

T

A c r8 0 . r8 0 A b

| +

bT d c) k ; (3 k cT d

(60) —rQ (er+kc) rQ 0

(er+kc)T 2kd c3 rq

0 er+kc

+ T
(er+kc) 2kd+rq

r0 (3

The smallest eigenvalue of is rq, so that

C) rq

the left hand side of (60) is negative definite if the

0 er+kc

largest eigenvalue of is less

(r8b+kc)T 2kd+rq

than rq, that is if

 

2kd + rL+J(2kd+rq)2 + 4(rsb+ko)T(rsb+kc)
(61) 2 < rq

Isolating the radical, squaring both sides, and collecting

terms we have

(62) 2kdrq + (er+kc)T(er+kc) < 0.

Since k,r, and q are all positive, this is equivalent

to

(63) d < _.J; (r T 2 k TT

2q k b S b + 2c Sb + E c c).

The quantity in parenthesis is positive, and the

least restrictive condition on d will be found by

choosing k and r to minimize this quantity. We note

that it is only the ratio of E which matters. The
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function f(x) = a; + b + cx is readily seen to have a

minimum at x =./ g by taking first and second deriva-

 

. . k bTSZb .
tives. Putting E = ——Er—- in (63), we have the following

c c

theorem:

Theorem 2.28. Let ATS + SA = —Q, S and Q
 

symmetric and positive definite, with q the smallest

 

eigenvalue of Q. Then [AT b is stable if

c d

(64) d < - {-11- ((,/"cchTszb + cTSb).

We note that the right hand side of (64) is always

less than or equal to zero, being zero when c = —dSb,

for some scalar a. Equation (64) is clearly only a

sufficient condition for [AT b to be stable. Examples

Lc d ‘

which are stable but have d > 0 are easy to construct.

It is, however, the best result that can be

r8 0

]obtained by using a matrix of the form [0 k in

equation (60). A better result might be possible using

rS x

[ T :1, but this makes the right hand side of (60)

x k

so complicated that bounds on the eigenvalues are difficult

to find.

If we wish to find a better (possibly positive)

upper bound for d that guarantees [AT b1] to be stable,

c d_)
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could choose a (10 satisfying (64), solve the

apunov equation for

A b A b {:Q 0]

s + s =

CT do 1 1 CT d0 0 -l

‘'s o

asing 1 as an initial guess in the iterative

‘3 20
0

methods discussed in the next chapter, and compute how far

d0 may be perturbed while preserving stability by equation

(50) .

Example 2.29. Let A be the same as in example

2.25,

b? = [o,0,0,0,-1,—3,0],

S the solution to ATS + SA = —I,

and CT = [0,0,0,0,2,4,0].

Equation (64) becomes

(1 < -(\/:’Tc \ATSZb + cTSb) -— -(4.3OXO.96-3.31) = —O.99.

If we let bT = [0,0,0,0,-3,-1,0] and

cT = nicho,0,+4,+2,0]; then d < -(4.47X1.47-6.34)

-O.24. is a sufficient condition for the bordered

A b

matrix [ J to be stable.

.cT d

In this latter case, taking d = -0.24, computing

the solution to the Lyapunov equation for the bordered

matrix, and applying equation (50) shows that the bordered

matrix is stable for d < 0.119.

 

 

 ‘
1
1
‘
1
“
“

 

 



CHAPTER III

IFTERATIVE SOLUTION OF THE LYAPUNOV EQUATION

The methods of the previous chapter depend on

solvdxx; the Lyapunov matrix equation

(1) ATS + SA = —Q.

.As noted in Section 2.1, the Operator

of

A on the space

n X n matrices defined by

(2) As = ATS + SA

is a linear operator. The major difficulty in solving

equation (1) is the size of the system. Since S, Q

- . 2

and AS are n X n matrices, there are n equations

in n2 unknowns, and even using the symmetry of Q and

S there are % n(n+1) equations in % n(n+1) unknowns.

To solve such a system by Gaussian elimination would

1 l 3 l 2 2 l _ 1. 6
take §(§ n(n+1)) + (2 n(n+1)) + 3(5 n(n+1)) — EZ-n

l 5 3 4 13 3 4 2 n . . .
+.§ n + § n + 24 n + 3 n + 3 multiplications and

divisions. (See Westlake [42], p.100.)

Several authors have given methods to solve

epxnfion (1) based on the characteristic polynomial of

A. (See Brickley and McNamee [6], Frame [8], Jameson

[l9]J But the best methods to find characteristic

50

 

 



51

equations require 11 matrix multiplications, and then

these methods require another n matrix multiplications

to get S after finding the characteristic polynomial.

for a total of Zn4 multiplications. There are other

methods (see Smith [35], and Kalman and Bertram [20])

which require first transforming A to a special form,

usually a difficult and potentially an unstable procedure.

A survey of several of these methods is found in Barnett

and Storey [4], Chapter VI.

Iterative procedures are often used to solve

large systems of linear equations. One interative method

to solve (l) is given by Barnett and Storey [4], but

they report that it converges too slowly to be useful

in many cases. This chapter adapts some of the well

known iterative procedures for solving ordinary systems

of linear equations to the solution of the matrix equation

(1) and evaluates their effectiveness for this equation.

Because of the nature of the matrices in the Lotka-VOlterra

system, we will be especially interested in the effective-

ness of these procedures for matrices A with large skew

symmetric components .

3.1. General Iterative Procedures. Equation (1)

may be written in the Operator notation as

(3) '

 

  



52

Let N be an operator which is easy to invert, and w

any real number. Then (3) is equivalent to

l- 1- -
(4) 6 NS — Q NS + AS + Q.

(5) S=S+wN-1(AS+Q).

--l- -—1
(6) S = (I 2+wN A)S +‘wN Q.

n

The choice of the number w, called the overrelaxation

parameter, will be discussed later. An alternate formu—

lation is to let A = P - N, so that

1— 1. - -
(4a) 6 NS = (Q - 1)NS + PS + Q

(5a) S = (l-w)S + wN”1 (PS+Q)

(6a) S = ((l-w)I 2+wN-1P)S + wN-lQ

n

We will find both forms useful. The iterative scheme

derived from (5),

(5b) S(1+1) = 8(1) (1)

+ wN—l (AS +Q)

converges to the solution of (3), for any initial choice

8(0), if and only if the eigenvalues [11) of (INN-1 A)

satisfy 'u' < 1. But

(6) [u] = [l + w1:1 is an eigenvalue of N—IA}

so that (4b) converges if and only if the eigevalues 1

of N -l A satisfy

(7) :1 + W1] < l.

 





Lemma 3.1. Let N

Then the eigenvalues of {I'll-i have negative real part

if and only if there is a positive real number w such

that equation (5b) converges to the Solution of (l) for

any initial matrix 3“”.

Proof: Let [)‘k = xk+iyk} be the sczat of eigen-

values of 51-117., and choose 0 < w < min 7:33-2- . This

k xk+yk

is possible when all the x.k are negative. For every k,

. 2 2 2
(8) {1 + ka52 = l + Zka + (xk+yk)w

is a convex quadratic function of w, which has value 1

-2

for w = O and w = T7. Therefore [1 + ka! < l for

Xk+yk

-2 -2

(9) O < w < min ——:k— -—:k—-
2 2 2 2'

k Xk+yk Xk+yk

On the other hand, suppose for some

xk__>_o. Then l+w)\k=

%k = Xk + iYk'

l + ka + iyk is an eigenvalue

of I 2 + WET '15. and has absolute value _>_ 1 for any

n

choice of w > O.

3.2. Rate of Convergence. For the convergence

scheme (Sb), p(w) = C(I 2+wfi-11-x) is approximately the

n

factor by which the norm of the error is reduced with

each iteration. If M = I 2 + wfi -15., the rate of

n

convergence is usually defined as !log 0 (M) '1 = -log 0 (M).

(See Isaacson and Keller [18].)

and A be any linear operators.

 Ikfl
m
h
;
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Let {x11} be the set of eigenvalues of the

operator 171-117).. To get the best rate of convergence,

we want to choose w to minimize 0(I+wi\-I-l'I-\), which

is equivalent to choosing w to minimize

 

  

(10) p2 (w) = maxll + ka'lz = max(l+2ka+(x.fi+y}2<)w2) .

k k

For a fixed k, H

(11) min'l+wx'2=1_ =__l‘._._
k 2 2 2 2

w Xka Xk+yk

. . . ‘Xk . .
and this minimum occurs for w = 2 2. Since g},

Xk+yk

min p2(w) > minEl + ka!2, convergence will be slow for

w w

even the best choice of w if there is an eigenvalue

>‘k = X'k + iyk with yk much larger than xk.

If all the eigenvalues of 13-113

kn <°°'< X2< XII-<0!

are real with

then Figure2 1 shows that the best

choice for w is where ‘1 + wxn =ll + wxllz , that

isfor w:—
 

X1+Xn° (An algebraic proof is in Isaacson

and Keller [18].)

For this choice of w, we have

 

 
 

l
_ >\ ..er

4 2 l

(12) P(W) = (1+2). ( )+X2 ( ‘) = '. I.

l xlfl‘n 1 (lehTZ' MH‘n

Convergence will be slow if ”‘1! is very small compared

to Mn.” that is if the condition number {7‘9-

1

171-15., is large.

of



 

 

 

 

I
N

’“ I

A: I

E. .
I

I

I

I {

I /

/

I

"' I

I I

I I

5-0 _.’.___:2 :2. :3: :2.

>‘l+)h )‘n )2

Figure 1. Graph of :l + Wkilz versus w, where

kn <...< x2 < x1 < O are real eigen-

values of fi”¥l§. Convergence occurs

for W’ which makes :1 + wxigz < l

for all i, that is for O <'w < 51% -

kn

wConvergence is most rapid for that

which minimizes maxll + winZ, that

i
-2

Xl-I- x2

 

is for w =
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In practice the determination of the best choice

for w is complicated not only by complex eigenvalues,

but also by a lack of knowledge of the exact location

of the eigenvalues.

3.3. Practical Iterative Procedures. In

practice, equation (5b) is used in the form

(13a) P(i) = Ts(i) + S(i)A + Q

(13b) NTv(i) + V(i)N = P(i)

(13c) S(i+l) = 8(1) + wv(i).

where N is a matrix for which it is easy to solve

equation (13b) for V(l). Since we know that

K = AT x I + I x AT and fi = NT x I + I x NT have

eigenvalues that are sums of pairs of eigenvalues of

A and N respectively, we can find criteria for con-

vergence in terms of the eigenvalues or other properties

of the matrices A and N. The following theorem is

the most general in this direction.

Theorem 3.2. A necessary condition for the matrix

iterative scheme,

(14) NTS(1+1) + S(l+l)N = NTS(1) + S(l)N

+ w(ATS(l)+S(1)A+Q)

to converge for all initial values S(O), is that the

vector iterative scheme

(15) Nx(i+1) = Nx(i) + wa(i) + wq
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converges for all initial values x(O) and the rate of

convergence of the matrix scheme can be no faster than

that of the vector scheme.

Proof: In operator form, (14) is
 

S(1+l) = (I 2+wfi'4lA)S(1) + wfi'ALQ and (15) is equiva—

n

X(i+l) (i)
lent to (I+wN-1A)x + wN—lq. Let u be the

eigenvalue of (I+wN-1A) with largest absolute value.

Then (15) converges if and only if (u) < l and the rate

of convergence is —log!u}.

Since u is an eigenvalue of I + wN-lA,

det[uI - (I+wN-1A)] = O, which implies det[(u—l)N - wA]==O,

so that O is an eigenvalue of (u—l)N - wA.

 

The eigenvalues of the Operator (Urlyfif- WA =

(u—l)fi — WA are the sums of all pairs of eigenvalues

of (u~l)N — wA. In particular 0 = O + 0 will be an

eigenvalue. This implies det[(url)fi - wA] = O, which

implies det[uI 2 — (I 2+wfi-4LA)] = 0. Thus u is an

n n

eigenvalue of I 2 + wI-{T -15., and p = O[I 2 + wI-{I -15.] 2

n n

Eu). But (14) converges only if 1.2 p.2 I“), and the

rate of convergence is -log p g_-log}u:. This completes

the proof.

Convergence of (15), however, is not sufficient

for the convergence of (14), as seen in the following

example:
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_ —1 4 _ 1 0
Example 3.3.~ Let A - [_1 3] and N - [O 4]

-1 ’1 4 I . 1
then N A = ..l 2 , which has eigenvalues - §.i i./15/8.

4 4

Since they have negative real part, by Lemma 3.1 there is

a positive real number w such that (15) converges. But

I

I

’

 

 

3-2 F]. -1 O ‘ q

E 4 2 o -1 -.

A = AT x I + I x AT = I

I 4 O 2 -l

I O 4 4 6 J g

g 0 5 O O

and N = NT x I + I x NT = i

- O O 5 O

o o o 8 J

T 1 1 .
g-l -§ --2- O :

I I
I 4 2 1 f

__1_ I E S 0'3 1

S 5 5 g

. 1 1 3 ‘

I 0 2' i ZIJ

which has eigenvalues - $.i i\/l§/8, as predicted by

the proof of Theorem 3.2, and a double eigenvalue 2/5.

Since there are eigenvalues with both positive and

negative real part, again by Lemma 3.1 there is no

positive real ‘w which will make (14) converge.

Even if we restrict ourselves to Operating only on

symmetric matrices S, (14) will not converge. If

Ts s ‘ ___ _

s = 11 12 , (N 1A(S)V is given by

ale S22
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.. , ,_ ..

‘1 '% "21' 0 S11 I

f5?1 g O “E 512

g 0 g ’31" S21

0 % é 43‘: .. I{"322 -,-

Since S is symmetric, we can reduce the dimensions to

 
a 3 x 3 system by identifying s12 and $21. This

requires us to add columns 2 and 3 and delete row 2

or row 3 in the matrix N-JLA, which then collapses

 

to

{-1 —1 0“

if} 2-}
5 5 5

_o 1 3.4 

. . . l . 2
This matrix also has eigenvalues — §.i 1‘/15/8 and §°

In other words, there are eigenvalues of the Operator

N-lA with both positive and negative real part that

correspond to symmetric "eigenvectors".

An important consideration for using any itera-

tive procedure is a good initial guess for the unknown.

(0)
One possibility is to take 8 = N'élQ, another is to

0)
let S( be the identity matrix.
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A convenient choice for Q is the identity

matrix. If A is normal, A = M + K where M - %(AT+A)

and K = %(-AT+A) and M-1 and K commute. Then

(16) ATP-g W1) + (é Elna. = gnarl - KM—l + m'lm

+ Mflx] = -I.

Thus -(AT-I-A)-'l = -

M-l

N
I
H

can be used as an initial

guess for S when A is close to normal and Q = 1.

Our experience Shows, however, that when A is close to

the form -D + K with D diagonal and K

taking S(O) = % D'-l

skew symmetric,

is easier and works as well.

AS mentioned, to actually use the iterative

scheme (5b) (or equivalently (13)) we must find matrices

N for which N is easy to invert, that is for which it

is easy to solve (13b) for V(l). Since N = NT x I + I x NT

is diagonal or triangular when N is diagonal or triangu-

lar, respectively, these are the most natural choices for N.

 

3.4. Simple Iteration. % I is the identity

Operator on n x n matrices, since % IS + S(% I) = S.

Choosing N = % I gives the simple iterative scheme

(17) S(1+l) = 8(1) + w(ATS(1)+S(l)A+Q).

Criteria for convergence is given by the following

corollary to Lemma 3.1.

Corollary 3.4. Let A be a stability matrix.

Then fluue is a positive real number w such that the
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iterative scheme (17) converges to the Solution of

ATS + SA = —Q, for any initial guess S(O).

Proof: N = % I, N is the identity Operator,

N'- A is just A, and (5b) reduces to the iterative

scheme (17). But the eigenvalues of A are sums of pairs

of eigenvalues of A, and hence all have negative real

part. The conclusion follows from Lemma 3.1.

If the ratio of the largest real part to the

smallest real part of the eigenvalues of A is large,

or if A has an eigenvalue with large imaginary part,

the same will be true of A. In Section 3.2 we saw that

the rate of convergence of (17) for such a matrix will

be slow. Since each iteration of (17) takes n3 multi-

plications, if it takes over 2n iterations to achieve

the desired accuracy, the characteristic polynomial

methods will be faster.

3.5. Jacobi Iteration. If N = diag[d1,...,dn],

then equation (13b) componentwise is

13 13 3 ij

p. I

V. . = —]:_1——

1] di+dj

When we use the negatives of the diagonal entries of A

for N in equations (13), the result is JacObi iteration

‘with overrelaxation applied to the operator A. Component—

wise this can be written as
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(2+1) (1) n (1.) n (1)
(l9) sij (l-w)sij - W(kEi akiskj + kEi sik akj

k#i ‘k#j

+ qij)/(aii+ajj)

where 35;) is the value of the (i,j)-entry of S after

the 2th iteration. This can be done with n3 + n2

multiplications per iteration.

A sufficient condition for the Jacobi method with

w = l to converge for ordinary vector equations Ax = y

is that A be diagonally dominant. This is also a

sufficient condition for the convergence of (19), since

AT x I + I x AT is diagonally dominant whenever A is.

For matrices which are exactly or nearly of the

form A = -D + K ‘with D diagonal and K skew symmetric,

which we expect to encounter often in a Lotka—volterra

system, the following theorem is useful:

Theorem 3.5. Let A = —D + K, K skew symmetric,

D = diag[d1,...,dn], with di > 0 Vi. Then there is a

real w > 0, such that

i) --l
+ wD AS(1) '--lS<i+l) + wD Q(20) = S(

converges to the solution 8 of ATS + SA = —Q. The

eigenvalues of B'ali are pure imaginary. Let them be

denoted by idy1,...,iiyn with 0 g yl'g y2 g .,g yn. The
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2

fastest rate of convergence is -% log n2 , which is

' 1+y
n

obtained by taking w = 2

1+y
n

Proof: A = -D + K and D = D x I + I x D is

diagonal and K = K x I + I x KT is skew symmetric.

D has positive diagonal entries, so that (1'))1/2 exists.

51/2 (13 ’1 KH-D -1/2 = 13 -1/2 K5 -1/2 , which is skew symmetric.

It follows that D'alK, being similar to a skew symmetric

matrix, has pure imaginary eigenvalues, which we denote

by :iyl,...,-_I—_iyn. D-lA = -I + D-lK, has eigenvalues

-1 i.iY1"--" l i.iYn' It now follows from Lemma 3.1

that there is a real w > O which makes (20) convergent.

The eigenvalues of the Operator I + wD.ALA have

the form 1 - w :_iwyk. Since for any fixed w,

:1 — wiiwy!2 = (1+y2)w2-2w + l is strictly increasing

as y increases, mixil — w i_iwyk!2 = :1 - w i_iwyn]2,

and the best rate of convergence is obtained for that w

which minimizes (l+yi)w2-2w + 1, that is for

 

 

 

w = 1'2 . (See Figure 2) For this w. 031 + Wfi-élil =

1+yn

//:;T"'

:1 _ w 1'. iwyn! = \/ n2 , which makes the rate of convergence

1+y
____ n

/y2 y2

slog \/ 2 t — 5 log 2

1+yn l+yn
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Figure 2.

   

_i -___.._-_.., . . , ,

1 2 2 2

2 2 2 2
1+yn 1+yn 1+y2 1+yl

Graph of :1 — w i_iwyn!2 versus w, where

iyr1 are the eigenvalues of D'élK with

O g_y1 g y2 <'°2§ Yn' Convergence occurs

if )1 - w i_iwyn)2 < l for all n, that

 

is if w < Best rate of convergence

1+yn

is for w which minimizes

max11 — w i_iwy )2, that is for w =-——j§.

n n 1+yn

W
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Although this theorem guarantees convergence, it

also shows that if the eigenvalues Of D'élK are much

larger than 1 in absolute values, convergence will be

too slow to be practical.

3.6. Seidel Iteration. A third possibility is

to take N to be the upper (or lower) triangular part

of A. Equation (13b) is then equivalent to the system

of equations

1 j

21 Z} .v . + v. . = .. i = 1...n, ' = i...n,
( ) k=l aki kj kg: lkakj pij 3

which can be readily solved by taking the equations in the

order i = l, j = 1...n; i = 2, j = 2...n; up to

i - n, j = n, and utilizing the fact that vkj = ij'

Using this choice for N in equation (5) and

(13) is equivalent to Seidel Iteration applied to the

operator A. Componentwise this can be written analogously

to equation (19):

'-1 n

(“1) _ (2) _ 1 (1+1) (1.)
(22) sij (l w)sij w(k=1 akiskj +k E11 akiskj

5'1 (1+1) “ u.)
+ Z) s. + 23 s a
k1 1k akj kj+11k k3

+ qij)/(a11 ajj)

i: 1...n, j=i...n.

Again this can be done with n3 + n2 multiplications per

iteration. It is usually more efficient than the JacObi
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method and is actually easier to program, since the old

entries are replaced by the new entries as soon as they

are computed, instead of requiring separate storage.

Like the Jacobi method, the Seidel method with w = 1

will converge if A is diagonally dominant. The vector

Seidel method is also known to converge when A is

symmetric positive (negative) definite (see Fox [7],

p.193), and A symmetric positive (negative) definite

implies A is symmetric positive (negative) definite,

so that this result also carries over to the matrix

iterative procedure of (22). If A = (L + D - LT) where

L is strictly lower triangular, D is diagonal, and

T
L + D + L is positive (negative) definite, the Seidel

method can be shown to converge by mimicking Fox's proof.

3.7. Block Seidel Method. Iterative schemes
 

from equation (5b) work best when N-J' is approximately

A'él, but this is not the case for the Jacobi or Seidel

schemes when A has large off diagonal entries and

especially when the off diagonal part is nearly skew

symmetric. In the latter case these schemes try to

approximate the inverse of a matrix having eigenvalues

with large imaginary components by inverting a matrix with

real eigenvalues. The block Seidel method described below

allows us to pull some of these large off diagonal entries

into the part which is inverted, giving much more rapid

convergence.
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Let the n x n matrices A, S, and Q be

partitioned into m x m blocks,

 
  

  

[ A11 A12 "' A1r 1 rs11 S12 °°° S1r

A21 A22 ... A2r 821 822 ... S2r

A = S =

{LArl Ar2 Arr J Sr1 Sr2 Srr

(23)
f‘ .1'

Q11 Q12 er5

Q21 Q22 er

Q =

er Qr2 er

where r = 3' For simplicity we assume that m divides

n. It should be noted that since S and Q are symme-

tric, Sii' Qii are symmetric and Sji = Sfj,

jS = ng. Equation (1) written out block by block

becomes

r‘ T r

(24) (k3; SjkAki) + RE: SikAkj = “Qij

or

(25) AT.s.. + S..A.. = — E) A:.Sk. - E; s. . - Q...
ii ij ij 3] k=1 1 j k=1 lkAkj ij

k¢i k¢j

If m is small, equation (25) can be solved for the m2

entries in block Sij directly, by simply solving the

2 .
m vector equation
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T T _
(26) (Aii x I + I x Ajj)(sij)v — YV

where Y is the right hand side of (25). This allows

us to do a block Seidel iteration with overrelaxation

completely analogous to equation (22) with single entries

replaced by matrix blocks:

T T _ T (1+1) r T (L)

(27a) Aiivij + VijAjj - :23: Akiskj + _Z; Aki j
k—i+1

+1 r
+ :2: Si]: )Ak.+ Sigfhxk. +Qi

j +k=j+l j

S(1+1) _ (z) _
(27b) Sij — (1-w)Siij wvij'

The equations are solved in the order 1 = 1, j = l...r;

i = 2, j = 2...r;...; i = r, j = r: and each time a

block 8.. is found, 8.. is set equal to ST. if

13 31 13

To obtain the maximum benefit from this procedure

it is best to first permute the rows and columns of ‘A

to bring the largest possible Off diagonal elements into

the diagonal blocks, so that instead of solving equation

(1) directly one solves

(28) PTATP(PTSP) + (PTSP)PTAP = —PTQP

for PTSP, where P is a permutation matrix. On the

computer this can be done by leaving A, S, and Q

fixed but permuting the indices of the rows and columns.
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This makes possible the Option of using a sequence of

permutations to bring different off diagonal elements

into the diagonal blocks on successive iterations.

The number of multiplications for each iteration

of the block Seidel method depends on the block size m.

The right hand side of equation (27a) takes 2(3 - l)

multiplications, and solving for the m2 unknowns in

by Gaussian elimination takes % m6 + m4 + g m2

multiplications and divisions. Equation (27b) takes an

Vij

additional m2 multiplications. This must be done for

(9 + 1) blocks, for a total of
m

S 2 l S l 3 2

n + 5 5 m + m + § + (6 m + 2 m —

3

plications. For m = 2, this is n +

each of the %

3 l l 4 M
a
l
t
!

)n + g)n multi-

2

m

11 n + lg-n.
T 2

This number could be reduced somewhat by taking advantage

of the existing zeroes in the matrices Aii x I + I x A?

33"

At the cost of storing an additional :§L(m2n2 + m3n)

real numbers, the matrices Afi x I + I x Ajj could be

stored in factored form after the first iteration, so

that later iterations would require only m4 + m2 multi-

plications and divisions to solve for Vij'

In spite of the extra work involved, the examples

Which follow Show that convergence is enough faster for

the block Seidel method than for the Seidel or Jacobi

method to make it the preferred method. As n gets
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larger the number of additional operations becomes less

significant, and for smaller matrices it would be better

to solve them directly or use a characteristic polynomial

method than an iterative method.

3.8. Examples and Comparisons. The methods
 

described were tested on three different matrices and

the results are given in the tables below. In each case

the best overrelaxation parameter w was found somewhat

experimentally and the result for the best w is given.

It was observed that as w is increased the rate of

convergence increases to a certain point, after which it

rapidly decreases until the procedure becomes divergent.

In the examples below D stands for the negative

of the diagonal of A, w is the overrelaxation para-

meter, and HR“ is the square root of the sum of squares

of the entries of the residual ATS + SA + Q. In each

case the procedure was run for 20 iterations unless the

norm squared of the correction matrix N'41(ATS+SA+Q)

-10
became less than 10 before that.

Since a matrix A of Odd dimension cannot be

divided evenly into 2 x 2 blocks, the block Seidel

method was actually performed on the bordered matrix

A O

[O _1] ’
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Example 3.6.

Simple

iteration

Jacobi

Seidel

Block *

Seidel

  

 

 

 

"-5 l 2 O l 1

-1 -4 7 —l O

A = -—1— —2 -7 -6 0 0
10

0 1 0 -6 —4

L—l O O 4 -5 J

rub.of

(o) itera-

Q S tions HRH

T6diag[5,5,12,9.10] I .584 20 8.28xlO—2

I %’D-1 .333 20 1.12x10'2

I %D"1 .300 20 2.87x10"4

I %D-1 1.0 6 7.67x10‘8

   
 

*Two by two blocks were used.
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Example 3.7.
 

  

 

 

(0) no. of

.4 Q S w iterations HR”

Simple iterationI D i I 1 0.1 ” diverges

I 4

I 5 * IJacobi I I I i 0.125 20 1.32
I

. I . _

D i I g 0.125 40 6.32XlO l

3 a

. 1 -11 I -1Seldel I 5D I 0.15 20 1.76XlO

I

, * I _ a
Block Seidel I [ %I)]': 0.8 . lO 1.4lxlODS

I   

 

  

 

*

Two by two blocks were used and the rows and

columns were first permuted to come in the order

(1.5.3.4.2)-
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Example 3.8.

Simple

iteration

Jacobi

Seidel

Block *

Seidel

Block

Seidel with

sequence of

3 permuta-

tions**

  

 

   

-1O 0 —7 -2 O O O

O -9 —1 -5 O O O

5 l -2 O -10 O O

l 5 O -2 —8 —3 O

0 0 5 2 -1 0 —4

O O O 4 O -1 -4

0 0 0 0 5 3 -0.sj

iterations

-(AT+A)-l ] 0.02 60 11.9

' T -1 ] diverges

3 -(A +A) ; 0.02 60 slowly

. i
1 - s . -

:5 D 1 ] diverges for all w > 1X10 4

I

f; 13'1 0.4 20 6.16><10"1

I1 1 i
:5 D" ] 0.3 20 2.53x10"1

7 I

i
q   

*TWO by two blocks were used and the rows and columns

were first permuted to come in the order (1 3 2 4 5 7 6 8).

'k

in the orders (1 3 2 4 5 7 6 8).

(1 2 3 S 4 6 7 8).

*The 3 permutations used put the rows and columns

(1 8 2 3 4 5 6 7) and

 

F
.
.
.

‘1
.

.

 

 



CHAPTER IV

APPLYING THE ROUTH-HURWITZ STABILITY CRITERION

In this chapter we use the criterion of Routh

and Hurwitz to establish bounds on the size of 6 for

which the perturbed matrix A + €B will be stable

when A is stable. This method usually gives better

bounds on the size of S than the methods of Chapter

II, when only a single entry of A is perturbed, but

is not applicable to all perturbations B. It also

requires calculation of the characteristic polynomial

with its associated difficulties, and does not yield

any result like the convexity of the set of S-

permissible perturbations that would allow us to com-

bine the bounds for perturbations of individual entries

to establish stability when more than one entry of A

is perturbed.

4.1. The Stabilipy Criterion of Routh and

Hurwitz. Let A be a real n by n matrix and let

(1) p(X) = aoxn + boxn'l + alxn’z + b “'3 +...

be the characteristic polynomial of A. The Hurwitz

matrix H is defined to be the n x n square matrix

74
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[b0 b1 b2 b3 I

a0 a1 a2 a3

0 b0 b1 b2 .

H = 0 a0 a1 a2

0 O b0 b1

0 0 a0 a1 . ”L

] ’15  
where each row is terminated with as many zeroes as

 
necessary to make H n x n. ii

The following theorem, first proved by Hurwitz

in 1895, can be found in Gantmacher [9].

Theorem 4.1 (Hurwitz, 1895). Assume aO > 0.

All the roots of the polynomial p(X) (or equivalently

all the eigenvalues of the matrix A) have negative

real part if and only if all the leading principal

minors of the matrix H are positive.

Let us reduce the matrix H to upper triangular

form by elementary row operations as follows: Multiply

a

rows 1.3.5,... by - ~59- and add them to rows 2,4,6,-°°.

0

Call the entry in position (2,2) c0, multiply rows

b

2,4,6,... by — 39- and add them to rows 3,5,7,---.

0

Call the entry in position (3,3) d multiply rows0!
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c

3,5,7 by - 59- and add them to rows 4,6,8,°°°. Con-

O

tinue in this manner until the matrix is upper triangular.

We note that none of these Operations change

the determinant of H or any of its leading principal

minors. The first, second, third,..., up to the nth

principal minor of H are called the Hurwitz numbers

D1,D2,D3 ... Dn' The numbers bO'CO'dO on the diagonal

of the triangularized matrix are called the Routh numbers.

Clearly D1 = b0, D2 = bOcO' D3 = bOcOdO, etc. This

shows that the following criterion for stability, first

given by Routh in 1877, is equivalent to Hurwitz' criterion.

Theorem 4.2 (Routh, 1877). Assume aO > 0.

All the roots of the polynomial p(x) (or equivalently

all the eigenvalues of the matrix A) have negative real

part if and only if the Routh numbers b da0: O’CO' Op 0..

are all positive.

‘An independent proof of this theorem can also be

found in Gantmacher, as well as a proof of the following

theorem due to Orlando:

Theorem 4.3 (Orlando, 1911). Let x1,x2,...,xn

be the roots of p(l) . Then the (n—l)th Hurwitz number

is given by

(2) Dn-l = (-1) 2 a““1 n (xi+xk).
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and the nth Hurwitz number Dn = det H is given by

n(n+1)

_ 2 n

lgi<kgn

Corollary 4.4. Det H is zero if and only if

 for some root X0 of p(x), -x0 is also a root of

p(l). In particular Det H = 0 if zero or a conjugate

pair of pure imaginary numbers are roots of p(x).

4.2. Application to Perturbations. If A and

 

B are real, A + SE must have a zero eigenvalue or a

conjugate pair of pure imaginary eigenvalues when it

passes from stability to instability as 6 changes.

Employing Orlando's theorem to recognize when this

happens is the key to the proof of our main theorem of

this chapter.

Theorem 4.5. Let A be a real stability matrix

with characteristic polynomial P(X) and let B be a

real matrix such that A + SE has characteristic poly-

nomial p(1) + 6q(x), with Hurwitz matrix Hp + €Hq.

If ul < O < ”2 are the smallest and largest real

1
eigenvalues of H; Hq, then A +€B is stable for all

e such that  (4) __1_<€<__L, .
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If there is no real eigenvalue of Hngq less than 0,

(greater than 0), then we can replace - j%- by +9

1

(- :1;- by —a).

2

Proof: Since A is a stability matrix, Hp

can be transformed by elementary row Operations to an

upper triangular matrix with the Routh numbers on the

diagonal and hence H"-1 exists.

Let H(e) = Hp + qu. A + 6B is stable for

e = O, and since its eigenvalues are continuous functions

of e, A + €B remains stable as e is increased up to

some 6 which is the smallest positive number such thatO!

A + eOB has a zero eigenvalue or a pair of conjugate

pure imaginary eigenvalues. By Orlando's theorem, this

implies that det H(€O) = 0.

But

(5) det H(€O) = det(Hp+€OHq) = 0

is equivalent to

(6) det(- éL-I - H-lH ) = O.
O P q

. . . l . . -1 .
which implies - E—- is an eigenvalue of Hp Hq. Since

0

60 is the smallest positive number for which this

happens, --5; = ”1' and A + 6B is stable for all

0

- 4L-. If H-lH has no negative eigenvalues

U1 P g

OS€<€O=
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there cannot be an 80 > O with det H(€O) = O, and

A + SE is stable for all positive 6.

The left hand inequality in (4) is established

similarly by decreasing e from 0 until det H(€)

is zero. This completes the proof.

The characteristic polynomial of A + 6B,

det(lI—(A+€B)), will in general be a polynomial in both

A and 6. Unfortunately it will not be linear in 6,

as the hypothesis Of Theorem 4.5 requires, except in

special cases. J.S. Frame, in private communication,

showed that if B has rank 1, the characteristic poly—

nomial will be linear in a. The next lemma generalizes

this result to perturbations B of arbitrary rank.

Lemma 4.6. The degree in e of the character-

istic polynomial of A + SE is less than or equal to the

rank of B.

Proof: Let m be the rank of B. Then there

exist n x m matrices X and Y of rank m, such that

B = XYT. Since

_ _ _ F(7) XIn A X = XIn A €XY X In 0

SYT I _ 0 I €YT I
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xIn—A x '

(8) det = det(lIn-A—€B).

€YT I
n1-

Since 6 Ioccurs in only m rows of the matrix on the

left in (7) and (8), the highest power of e that can

In

occurIWhen the determinant is expanded is e .

The degree in e of the characteristic poly-

nomial may be strictly less than the rank of B, as

can be seen by taking A upper triangular and B

strictly upper triangular.

Suppose that B has all zero entries for one row

or column, which for ease of notation we take to be the

last column. Then B has rank 1,

+eb

a11 a12 "° a1n 1n

a21 a22 ... a2n+€b2n

(9) A + 68 = .

an1 an2 .. ann+€bnn J  
and
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I

)X-all ‘a12 "' ”ain

a21 X’a22 "' ’azn

det(XI-(A+€B)) = det

.anl an2 x—ann_‘

a21 x'azz "' 'b2n

+ E det '

Lan1 an2 ... -bnn j  

Thus the characteristic polynomial can easily be written

as p(l) + €q(l) and the Hurwitz matrix as Hp + €Hq.

4.3. Examples.

Example 4.7. We illustrate this technique by

computing bounds on 8 such that the matrix

—5 —10 0 e]

I8 -1 -4 oi

(ll) A(€) = '

 
 

is stxflale. A = A(O) is stable, since it is sign stable.

The characteristic polynomial of A is

4 3
(12) p(x) = I + 91 + 113;.2 + 3191 + 390

and tine characteristic polynomial of A(e) is

4 3

 

 
(13) p().) + €q()\) = I. + 9). + 113).2 + 319). + 390 + e(-16).
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The Hurwitz matrix for A(e) is

   

 

?F9 319 I

I 1 113 390

H + 8H = I

P q 9 319

L 1 113 390.1

(14) ,
0 0 0 ]

+ 6

O

O O -16 [O

O O O

O   

 

We form leHq by elementary row operations

on the augmented matrix.

  

r'9 319 0 0 I 0 <3 '0 <3 I

1 113 390 0 ; 0 0 ~16 0

1 0 9 319 0 ; 0 0 0 0

I_0 1 113 390 ' 0 0 0 —16.J

First we reduce the left half to upper triangular form

with the Routh numbers on the diagonal:

  

r‘9 319 0 0 I 0 c) 0 0 I

0 77.56 390 0 I 0 0 -16 0

0 0 273.74 0 f 0 0 +1.86 0

[0 0 0 390 I 0 0 -.527 —l6_]

 



83

From this we see that the (n-l)th Hurwitz number for

A(e) is Dn-l= 9 X 77.56 x (273.74+€ 1.86). Orlando's

theorem shows that A(e) has a pair of conjugate pure

imaginary eigenvalues when 6 = 33% = -l47.l7. The

determinant of A(e) is (390—168), showing that A(€)

390

  

has a zero eigenvalue when 6 = T6_ = 24.375. Completing

the computation we find

[0 0 8.54 0

O O —.241 O

—1
(15) H H =

p q 0 O 147A17 O

0 0 -.0013 -—4iL——
I.. 24.375 4

. . l l
which has nonzero eigenvalues W and - 224—3—75-

Thus A(€) is indeed stable for

(16) -147.17 < e < 24.375.

Example 4.8. It will not always be possible to
 

compute Dn-l as a linear function of e as in the

previous example. For example, if we perturb the (2,4)

element of the same matrix A,

r —5 -10 0 0 I

(17) A(e) =

  

 
 

(
F
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the characteristic polynomial is

4 3
1 + 91 + 11312 + 3191 + 390(18) 9(1) + €Q(l)

+ €(-2 x-lO) .

and

   

  

(19) H + 6H = + e

P q

0 9 319 I 0 0 -2 0

I. l 113 390‘ O 0 0 -IO‘]

Dn-l is now a more complicated function of 6, but

[.0 -4.92><10"l 4.57 0 I

-1 O 7.61x10-3 -1.44><10—l O

(20) H H = _5 _3

p q ' 0 9.43x10 3.07x10 0

[ 0 1.88x10‘5 1.18x10‘3 —1.994

which has eigenvalues -1.99,O,1.OleO—3, and 9.67XlO-3.

A(e) is stable for

_ -1 _:l____
(21) —103 _ 3 < e < -1.99 — 0.502.

9.67x10"

When we can apply Theorem 4.5 we get the true

bounds on e: for A + SE to be stable, since A + eB

has zero or pure imaginary eigenvalues when 6: is equal

to the upper or lower bound. Our method based on the

Lyapunov equation gives us sufficient bounds on e for

A + SE to be stable, but may be much more restrictive

than necessary. This point is readily seen in the follow—

ing simple example.
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-l O]
10 —1 We know thatExample 4.9. Let A = [

 

-l e . . . l
[10 _1] Will be stable if and only if e < Tau The

solution to ATS + SA = -2I, is

51 5

5 I—!

Equation (SO) of Chapter II says that we have

stability for

 
 

 
(23) -.0432 = 2 < e < 2 = .0356.

5 -\/512+52 5 + 5124.52

much more restrictive than actually necessary. But

2 0 1 0 0

(24) H +€H =[' }+6[

P ‘1 ..1 1 ,- ..0 —103!

—l O O .

and H H = [ ] has eigenvalues O, -10, and
p q 0 —lO

equation (4) tells us that we have stability for

(25) -co<€<—]:"
lO '

which are the true bounds.

The eigenvalues U1 and UZ of leHq in (4)

are usually the easiest eigenvalues to compute numerically.

If the characteristic polynomial is easy to calculate

and the perturbation B has rank one (in particular if

only one entry of the matrix is being perturbed), the

method Of this chapter is preferable to that of Chapter

II. But if we wish to perturb entries in several different
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rows and columns, especially if we wish to perturb them

independently, the Lyapunov method is more suitable.

r
.
.
-

_
‘

  EU” 3



CHAPTER V

APPLICATIONS TO LOTKA-VOLTERRA AND

OTHER MODELS OF ECOSYSTEMS

5.1. The Community Matrix. We now return
 

to our original problem, to investigate the stability

of an ecosystem whose population levels are at equili-

brium. We use the Lotka-Volterra model introduced in

Chapter I, and investigate the stability of an equili-

brium point in the first quadrant for the system of

differential equations

(1) pi = pi(ri +

n
3

H
i
d Q m H

n

H s

3

Changing to matrix and vector notation (1) becomes

(2) p’=D(p)[r+Gp]:

].where, as before, D(p) is the matrix diag[pl.p2.---.pn

We will call the matrix a = [Qij] the Volterra Matrix.

The process of linearizing (2) about an equilibrium

point as done in the introduction, may be written in

this notation as follows: Find pE such that

(3) r + GpE = 0.

We assume that pE >> O. Letting

(4) x=p-pE.

We obtain

87
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(5) x’ = D(p)dx = D(pE)ax + D(x)ax.

Levins [23] has appropriately named the matrix

_ E _ E

(6) A — D(p )6: - [pialj]'

the community matrix. Mathematicians will recognize it

as the JacObian of (1) evaluated at pE. Since Ax is

the linear part of (5) and

(7) D(x)6.'x = o(x),

the zero solution of (5) and hence the equilibrium point

pE of (2) is asymptotically stable by Theorem 1.6 if

A is a stability matrix. In this chapter we investi-

gate the implications of our studies about stability

preserving perturbations of A (and the insights we

have gained about the nature of stability matrices) for

stability of ecosystems.

First we note some of the strengths and weaknesses

of our approach to the problem of stability. The major

weakness is that we can only prove local stability, not

global stability. That is, we know that if the pertur—

bation x(O) of the initial populations away from the

equilibrium point is small enough, the pOpulations will

return to their equilibrium values, but we do not know

that any initial pOpulation will move toward the equili-

brium values. we will later find some sufficient

conditions for x(O) to be small enough. On the other

hand we must remember that local stability is a necessary

condition for global stability.
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The major strength of our work is its applicability

not only to Lotka-Volterra models, but also to other

models of ecosystems, and in fact to general autonomous

dynamical systems. For if

(8) p’ = HP)

and

(9) f(pE) = 0.

then letting x = p - pE we have

(10) X' = Ax + g(x)

‘where A is the Jacobian matrix given by

 

(1].) a.. =

and g(x) = O(x). May [28] has reviewed some of the forms

commonly used for the function f. We could also study

age dependent and sex dependent effects by treating age

and sex classes as different species.

Gilpin and Justice [11] have shown that an arbitrary

ecosystem model which they write in the form

(12) pi = piRi(p) i = 1...n,

can be approximated near an equilibrium point pE such

that

(13) R(pE) = 0

by a Lotka-Volterra model, which they (and many other

authors) write in the form introduced by Gause [lO],



r. n

2 _ __Zl_._ _

(15) Vii = 1.

Although they give a detailed geometrical description

of their procedure, what they have really done is to

approximate R(p) by a first order Taylor series about

E

p .

The relationships between (1), (12), and (14)

are given by

 a .

(16) a.. = —El-(pE) = a .Y.. i

l] apj il 13

n 6R n

E

(17) ri — - Z) 3——-(pE)pE = Z? 913p

j=1 93' 3 3=1 3

r.

l _—

(18) k ‘ aii
1

But if one wishes to study the stability of the equilibrium

point pE by approximating (12) by a Lotka-Volterra

model (1) and then forming the community matrix (6), he

might as well take the Jacobian (11) directly, since if

(19) fl (p) = piRi (p)!

using (16) and (13) gives

5f. 8R.
1 E _ E i E = E - -

(20) 5Pj (p ) — pi SE;'(p ) piaij for 1 ¢ 3 .
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M. BR.
1 E _ E E 1 E _ E

5P1 (p) — Ri(p ) + pi Tpi (p ) — piaii .(21)
 

and the Jacobian matrix calculated from (11) is the same

as the community matrix calculated from (6).

The constants ri, ki’ and Qij in (1) and (14)

are usually given the following biological interpretations:

ri is the intrinsic rate of growth of species i, i.e.

births minus deaths per individual per unit of time when

the population is near zero; ki is the carrying-capacity

of the environment for species 1, i.e. the number of

individuals of species i which causes the rate of

growth to decline to zero due to overcrowding even in the

absence of other species; and dij is the change in the

growth rate of species i per each individual of species

j, so that jg: aijpj is the total change (either

damping or acceleration) of the growth rate due to

species interaction.

It is often better to measure population levels

in terms of units of biomass (that is, the total mass of

all members of a species) instead of numbers Of individuals.

When this is done, the word individual is replaced by the

phrase unit of biomass throughout the above paragraph.

In equation (12) the intrinsic growth rate for

species i would be Ri(O), and the carrying capacity
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would be the value of pi which makes Ri(O...O pi O...O)==O.

As Gilpin and Justice point out, these are not necessarily

the same values as ri and ki obtained when approxi-

mating (12) by (14). This is because, although

(22) Ri(p) m ri + §Tdijpj

near the equilibrium point pE, it may not be a good

approximation away from pE, so that it may not be true

that

(23) Ri(0) ksri

(24) R. (O...O k. O...O) :8 r. + O...k. = O.

i i l 11 i

Gilpin and Justice therefore state that when a general

model of the form (12) is approximated by a Lotka-Volterra

model the coefficients no longer have any biological

significance, but what we must do is interpret them in

terms of what happens near the equilibrium point. Thus we

could reinterpret ri as the intrinsic growth rate at

equilibrium, which is just balanced by the dampingk

n

(or acceleration) Z) d..p. when p = pE, and __.=

j=l 13 3
ri

 

as the number Of additional individuals the

ii

environment would support if the levels of the other species

are changed so as to decrease the damping by one unit.

We return to the community matrix A given by

(6) or (11) and investigate the biological significance
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of the entries of A. Whether the matrix A comes

from a Lotka-Volterra model or a more complicated

function f, the signs of the entries aij and aji

correspond to the types of species interaction: (—+)

species j preys on species i, (or is a parasite of

species i), (--) both species compete for the same

resource, (++) symbiosis, (00) no interaction,

(+O) commensalism, and (—O) amensalism. Because of

inefficiencies in energy use and transfer, the gains to

a predator in a predator prey interaction are never as

great as the loss to the prey. Thus if j preys on i,

we can assume |a..[ > Ia..'.
ij ' 31‘

The diagonal entries aii indicate the amount

of self interaction: aii negative means that growth

of species i is self damped near the equilibruim by

some type of inner competition for resources, aii zero

means that growth of species 1 is only limited through

interactions with other species. Positive aii in the

Lotka-Volterra model is biologically unrealistic, since

it would imply positive Qii which would mean that in

the absence of other species, species i grows without

bounds and even faster than exponentially.

The trophic level of a species is the number of

steps in the food chain between it and the abiotic

nutrients. Thus green plants are in the first trophic

level, herbivores in the second, carnivores which eat
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herbivores in the third, etc. (Some species, however,

may be in more than one trophic level.)

It is Often assumed that at the first trophic

level the species exhibit self damping since plant growth

is limited by abiotic factors, but that there is no self

damping at higher trophic levels, Since herbivores and

carnivores are limited only by the existence of prey

and by being preyed upon. Holling [16], however, has

found that many predators do exhibit self damping be—

havior if their numbers become too large.

The existence of some self damping is crucial

for stability, because A cannot have all negative

eigenvalues unless it has a negative trace. Of course

if the aii are sufficiently negative, i.e. if there is

enough self damping, then A is almost certainly stable.

We have also seen that large symmetric off diagonal

entries (competition and symbiosis), tend to be destabi-

lizing, and that large skew symmetric entries (predator-

prey) tend to have a neutral effect or else to be

stabilizing in the sense that they pull the real parts

of the eigenvalues closer together. This leads us to

the conclusion that even though the system may be un-

stable at one trOphic level. coupling it through predator-

prey interactions with a stable trophic level may bring



95

about stability. (May [28] has calculated the conditions

for this to happen in a 3 species two trophic level

system.)

The matrix A in Example 2.25 (pp.42 and 73)

example of a possible community matrix for an ecosystem

with four trophic levels, 2 plant species, 2 herbivores,

2 carnivores, and one top carnivore. This example shows

no direct competition within any trophic level. It

would be reasonable to add competition terms between

the plants by making both a12 and a21 negative. The

matrix A(O) in Example 4.7 (p.81) is another example of a

community matrix, representing a simple food chain with

only one species at each trophic level. Alternatively,

it might be considered as the result of lumping all the

species together in each trOphic level.

Our original goal was to take such a community

matrix, with the entries known only within certain error

bounds, and devise methods to decide whether any matrix

within these error bounds gives a stable system. We

can now do this using the methods of Chapters II and IV,

if we are willing to do enough numerical computation.

Unfortunately, the author found no readily available

examples where the community matrix for a natural ecosystem

has been estimated. Most of the empirical work in

ecology has been at the micro-ecology level, studies of
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interactions between a few competing species and a few

laboratory studies of predator-prey relations. In spite

of declarations by many of the leaders of the discipline

about the importance of studying ecosystems as complete

systems and the dangers of looking at only isolated

parts (see for example Holling [15] and Hardin [14]),

empirical work on a macroecology scale is still in the

pioneering stage. We will let examples 2.25, 2.29, 4.7,

and 4.8 serve as illustrations Of what the mathematics

developed in this thesis makes possible once the coeffi-

cients of a community matrix have been estimated.

Some recent theoretical work has been done

which attempts to compute the interaction coefficients

in a strictly competitive community (no predator—prey

interactions) from the a measurement of "niche overlap."

(See McArthur [26] and [27].) More work is clearly needed

on methods to measure the strength of predator-prey in—

teractions and their effect on birth and death rates.

It should be remembered that the community matrix

A is obtained by multiplying each row of the original

matrix a = [dij] by the corresponding equilibrium

values p?, which in turn depend on the growth rates

ri. We Observe in nature that due to energy losses as

one moves up the food chain, the equilibrium values for

lower trophic levels, measured in units of biomass, are
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generally greater than those of higher trOphic levels.

A careful study of conditions for a Lotka-Volterra

system to have a set of positive equilibrium values

[pg], and the effect of these values on the community

matrix needs to be undertaken.

The equilibrium value factors in the community

matrix complicate the effect that perturbations of the

coefficients in (l) have on the community matrix. If

growth rate vector r is perturbed to r + Ar and

the Volterra matrix a is perturbed to a + afi, then

the new equilibrium values pE + ApE satisfy

E E

(25) r + Ar + (6+Afl)(p +Ap ) = O.

and the new community matrix A + B satisfies

E E ,, _ E E
(26) A + B = D(p +I_\.p Ham...) — D(p Mama) + D(Ap )(6HM).

Thus

(27) APE = -(6+M)'I(Ar+MpE)

and the perturbation to the community matrix is

(28) B = D(pE) m + D(ApE) (mm.

5.2. D-Stable Volterra Matrices. If the
 

Volterra matrix a is D-stable (Def. 2.9), then the

community matrix A will be stable for any vector of

growth rates r which produces positive equilibrium
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‘values. Of course negative equilibrium pOpulations

are unrealistic. In some systems the Volterra matrix

a is clearly D—stable.

If we consider only a trophic level (or simple

food chain) model, the matrix a will have the sign

pattern

 

'which will be sign—stable and thus D-stable if any of

the diagonal terms are strictly negative. Since the

first level can be assumed to exhibit self damping,

all < O, and the community matrix A is stable.

Another special form of the matrix a, used by

Kerner [21], leads to D-stability. The basic assumption

is that when species j preys on species i, the gain

to species j is Y.d.., where —d.. is the loss to

J l] 1]

species i, and that the proportionality constant Yj

depends only on the efficiency of species j in utili—

zing its food, and not on Species i. This leads to the

conclusion that equation (1) can be written in the form

’

(29) P1 " pi(ri+)‘i 2311345”

(100 = -a0 I '

31 13
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for which the community matrix A has (i,j) entry

_ E
(30) aij — pilidij.

Under the assumption that all the diagonal terms Qii

are zero, Kerner shows that

n E 1

(31) 0 = _ZI (pi(t)-pi 1n pi(t)%;7

i=1 1

is a constant of motion for this system and uses it to

prove that there are neutrally stable oscillations about

the equilibrium point and to build a "statistical

mechanics" for the system. Of course if the diagonal

entries are all negative,

 (32) D = diag 5'

pixi

gives

(33) ATD + DA = diag[dii],

the community matrix is stable, and the system has

oscillations spiraling in toward the equilibrium point.

These results are often criticized as being "fragile"

since they are based on the probably invalid assumption

that a.. = -d... Neither Kerner's school nor his critics

31 13

have realized that they can get the same conclusions with

the following weaker hypothesis.

If a is D-negative-definite (Def. 2.13), which

will be the case if a has the form

(34) a = B(M+K)

 I
"
'
u
_

.:

I;
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'with E positive diagonal, M symmetric, negative

definite, and K skew symmetric, then a will be D-

stable and any positive equilibrium point will be

asymptotically stable. (Kerner's formulation (29)

assumes that M is either 0 or a negative diagonal

matrix.) Thus we can tolerate competition terms and

departures from Skew-symmetric in the predator-prey

terms which are not too large compared to the self

damping terms, and still have asymptotic stability for

any realistic set of growth rates.

As the symmetric terms become larger, we may

still have asymptotic stability for particular equilibrium

values, which means for particular growth rates {r1},

but not for all of them. Finally as the competition

terms become too large, the eigenvalues are pushed far

enough apart that some of them become positive, the

system becomes unstable and some species become extinct.

This is expressed in ecology as the competitive exclusion

principle: that two Species competing for exactly the

same resources cannot co—exist indefinitely.

§;33 Addition of a New Species to an Ecosystem.

Suppose we have an ecosystem modeled by equation (1) with

stable community matrix given by equation (6), and add

another species. We seek conditions for the new en-

larged system to be stable. The new community matrix
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‘fiill be the old community matrix bordered by a new row

and column plus a perturbation of the old community

matrix due to the change in the equilibrium values.

The enlarged system can be written as

(35) pf = pi(r' + i = l...n1 1 ).
jpj + bipn+l1

W

0'. .

1

p

p n+1 = pn+l(rn+l +

j

ijj + dpn+l)°

W

Thus the Volterra matrix a is replaced by the bordered

a b

matrix [- T :1] where b is the vector (b_ ...bn)T

»C d

1

and cT is the vector (cl...cn). Let pE + ApE be the

    

 

vector of new equilibrium values for species l,...,n

and pg+l the equilibrium value for the added species.

and let r be the vector (r1....,rn)T. Then

pE+ApE a b _l [r

E = - CT d (r

-pn+1 n+1

(36a) C _ _ _ _ 1 fl

czl+lanJk]' -la]b rr
e e

l T -l l

L. -E C a a rn+l

where h

(36b) e = d — cTa’lb.

. E -1 . .

Since p = -d r, (36) implies

r +CTpE

E _ l _ T -l _ _ n+1

(37a) pn+1 — e(rn C a r) _
+1 d-cTa-lb
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_ l T -l — _ E _

(37b) Ap _ a(r +l-c a r)« 1b _ _pn+la lb.

Our first requirement for a stable ecosystem is that

the new equilibrium values be positive, i.e.

 

T E

r -c p
E n+1

(38a) p = - _ > O

“*1 d—cTa 1b

E E_ E —]1
(38b) p + Ap — p — pn+ld >> O

The new community matrix is now seen to be

(39) D

E T E

\ -

E E' 1 . E - E E —
p +Ap )[4 bJJ= ,A-pn+lD(a lbm D(p -pn+la lb)b

pn+1

E ch d d

pn+1 L pn+1

If S is the solution to the Lyapunov equation

T

(40) A S + SA = -I,

we see from equations (28) and (64) of Chapter II that

sufficient conditions for stability are

(41) Vp§+l — l < 0, v the largest eigenvalue of

-[aTD(a"lb)s + SD (CI—me']

 

pE

(42a) d < MnglV‘/;TchES2Eb + cTSEb),

l_\)‘pn+1

where

(42b) E = D(pE—pfi+la‘lb).
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Equations (38b) and (41) lead to the surprising

conclusion that we are most likely to have stability in

the expanded system, if the vector b, which gives the

effects of the added species on the old species, is

directly proportional to the vector r, which gives

the intrinsic growth rates of the old species. For if

b = fir with B > 0, then

E _ E E

which shows that the inequality (38b) is satisfied, i

 and the perturbation to A is

(44) -p§+lD(a—lb)a = Bpfi+lA:

which shows that v = -B in (41) and (42). This may be

hard to accomplish in nature. since the usual assumption

that the plants have a positive growth rate would imply

that the added species should be preyed upon by the

plants!

The difficulty of adding a new species to an

ecosystem and still maintaining stability, supports the

theme stressed by Robert May, that stability is not en-

hanced by increased complexity. In fact, our results are

another addition to the list of mathematical studies

indicating that increasing the number of species makes

it more difficult to have stability. (See May [28].) ‘
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Perhaps the reason that many field ecologists hold the

Opposite View, that complexity increases stability, is

that they consider stability to be the lack of large

fluctuations or oscillations over a short time period,

'which is something very different from Lyapunov

asymptotic stability, which allows large oscillations

as long as they are damped over a long time period.

5.4. Domain of Attraction by Lyapunov Functions
 

When pE is asymptotically stable, solutions which start

close enough to pE approach pE in the limit. We now

want to investigate how close is close enough.

Definition 5.1. The domain of attraction of a
 

point pE for the differential equation (8) is the set

of all points pO such that the solution p(t) with

initial value pO satisfies lim p(t) = pE.

t4ao

Expositions of the following theorem, due to

LaSalle [22], can be found in Hahn [12], and Yoshizawa [44].

Theorem 5.2 (LaSalle, 1960). Given the
 

differential equation

(45) y’ = F(y).

let V(y) be a function with first order partial

derivatives, V(y) 2 O, and V’(y(t)) g_o in a region

R = (y: V(y) < a}, and let M be the largest invariant
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subset of the set {y:V'(y) = 0}. Then every solution

of (45) which starts in R approaches M as t 4 a.

Corollary 5.3. Assume that in equation (45),

F(O) = 0. Assume that V(y) has first order derivatives,

V(y) > O and V'(y) < O for y # O on the set

R = {y:V(y) < a}, and V(O) = V'(O) = 0. Then 0 is

an asymptotically stable equilibrium point for (45)

and R is contained in the domain of attraction of 0.

We apply this corollary to get an estimate of

the domain of attraction for the Lotka-Volterra system.

The matrix norm used in the following theorem can be

n ”1. n HZ. or n n,

Theorem 5.4. Let pE be the equilibrium point
 

of equation (1) given by equation (3). Let A defined

by equation (6) be a stability matrix,

(46) B = GD(pE) = D'1(pE>AD(pE).

Q a positive definite matrix with smallest eigenvalue

q, and S the solution to

(47) BTS + SB = -Q

with smallest eigenvalue 0. Then pE is asymptotically

stable and any pOpulation vector p such that the

vector y defined by

____i._
(48) Yi ' E
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satisfies

(49) ’ T ‘1/5 qS < .

W Y (HBTH+HBH)HsH

is in the domain of attraction of pE.

Proof: For any solution p(t) of equation (1),

let x(t) be given by equation (4), and y(t) by (48).

Then

(50) y(t) = D’1(pE)x(t)

and from (5)

(51) y’(t) = D’1(pE>x’<t) = «D(pEwm + D(y(t>>an<pE>y<t).

Clearly pE is asymptotically stable and a point p is

in the domain of attraction of pE if and only if 0 is

asymptotically stable and y is in the domain of

attraction of O for equation 51.

Since B and A are similar, B is a stability

matrix and S is positive definite. It follows from

(46). (47) and (51) that

(52) (yTSy)’ = yT[-Q + BTD(y)S + SD(y)B]y.

Since

(53) IIBTD(y)s + sntH g Hwy) H- HSiHHBTJHHBH).

and

 

--— T

(54) “D(y) II = max yi Sx/YTY gV/Y—gl .

1
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the matrix in the brackets in (52) is negative definite,

for any y satisfying (49, and (yTSy)’ < 0 if y # O.

The conclusion now follows from Corollary 5.3 to LaSalle's

theorem.

If Q = I and B (and hence A) have eigen—

values [ak+in} with d1 g,.ng on < 0, then

  

HBT + ”B“ > 2 a ‘ > max 2 +iB , and from Corollary
- 1' — k “k k

1 1
2.8 [Is]! 2 - E'd" and o _ .. 33—. Thus

n l

1

(llBTH+HBH) ”SH

2-“- S, -

‘Vé1a1)3 m:x!ak+inL/21all

!

Hence if B is ill-conditioned (7521' large) or has

' 1

large imaginary parts to its eigenvalues the inequality

in (59) will be very restrictive.

If, however, a is D-negative-definite, the

next theorem shows that the entire positive quadrant is

in the domain of attraction of pE. The Lyapunov function

used was first applied to Lotka-Volterra systems by

Aiken and Lapidus [1], who were following the school of

thought of Kerner and of Montroll and Goel [30]. They

applied it, however, only when a was a diagonal plus

skew symmetric matrix, failing to realize once again

that it gives the same results with much weaker hypothesis.
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Theorem 5.5. Let the matrix a = [Qij] in

equation (1) and (2) be such that D4 has negative

definite (negative semidefinite) symmetric part for

some matrix D = diag[dl...dn], di > O for all i.

Then for any growth rates r such that the equili-

brium vector pE defined by equation (3) satisfies

(56) pE >> 0,

pE is asymptotically stable (stable), and its domain

of attraction includes all pOpulations p with

(57) p >> 0.

Proof: Let p(t) be any solution of (l) with

initial value pO satisfying (57). Define

p.

(58) V(p) = Eldi(pi-p?-p§ ln(;%»-

1

Since

(59) z — l — ln(z) _>_ 0

with equality only if z 1, V(p) 2.0 for any p >> 0

with equality only if p = pE. Now

, . E p1,”)
(60) V (p(t)) = :Ldi(pi(t)-pi m)

and p; = Xi. so that by (5)(or equation (6) of Chapter I)

(61) V’(t) = Zldi((p§+xi) Zldi.x. — p? Zlaijxj)

1 J
J J J

. _ ~ . _ T
(62) V (t) — §’§;Xidiaijxj — X Dflx.
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Stability when DC has negative semidefinite

symmetric part now follows from Lyapunov's Theorem 1.9.

Asymptotic stability and the domain of attraction when

D6 has negative definite symmetric part follow from

Corollary 5.3 to LaSalle's theorem since any point

P >> O is in the set [p:V(p) < a} for some a.

We note that the paper by Aiken and Lapidus

contains an error. They claim asymptotic stability

when a is a diagonal plus a skew symmetric matrix with

non-positive diagonal entries but only one nonzero

diagonal entry. But that only makes the symmetric part

of a negative-semidefinite, proving stability but

not asymptotic stability.

We also note that this generalizes a result of

McArthur [27], who arrived at the same conclusion when

Dd was symmetric and negative—definite for some posi-

tive diagonal matrix D, by using -XTDax as a Lyapunov

function. But this limits him to a restricted set of

competition equations, since predator-prey or unbalanced

competition interactions introduce a skew symmetric

component to a.

5.5. Time Varying Coefficients in the Lotka-

Volterra Model. Certainly it is more realistic to
 

expect the growth rates ri and even the interaction

coefficients dij to vary with time instead of being
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constant. To investigate how this affects stability,

we add time varying perturbations to the coefficients

in the Lotka-Volterra model. Equation (1) becomes

n

(63) pi = pi(ri+pi(t) + iii (Gij+Bij(t))Pj)-

Let p(t) = (pi(t)) and B(t) = [Bij(t)]. There is

no longer a fixed equilibrium point as in equation (1),

but we define a time varying critical vector c(t) by

(64) (r+p (t)) + (d+z3(t))c(t) = 0.

(We may think of c(t) as a moving equilibrium point.)

Let

(65) z(t) = p(t) — c(t).

so that

n

(66) z{(t) = Ci(t)[iéi(aij+flij(t))zi(t)1

n

+ zi(t)[iEi(aij+Bij(t))zi(t)J + c{(t)

or in matrix notation

(67) z’(t) = D(c(t))[61+0(t)]z(t) + D(z(t))[a+/3(t)]z(t)

+ c’(t),

(68) c’(t) = —[a+a(t)1‘1[p'(t)-5'(t)c(t)].

we will show that if c'(t) is small enough, p(t) will

stay close to the critical vector c(t), or in other
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words that solutions z(t) of (67) will be bounded,

the size of the bound depending on the size of c’(t)

and the eigenvalues of a + B(t).

Equation (67) contains a linear term, a

quadratic term, and a forcing term c’(t). We express

the linear part as

(69) z’(t) = [A+B(t)]z(t)

where

(70) A + B(t) = D(c(t) ) (a+a(t)).

Equation (70) does not define A and B(t)

uniquely. We could define them uniquely by defining

A, say by equation (6), and letting (70) define B(t),

but it is not clear what is the best choice for A. We

require A to be a stability matrix, so that we can

solve the Lyapunov equation (40) for a positive—definite

symmetric matrix S. Then if B(t) satisfies the con-

ditions of Theorems 2.15, 2.16, or 2.17 for all t,

zTSz will be a Lyapunov function for (69), the linear

part of (67) will be asymptotically stable by Theorem 1.9,

and this choice for S in equation (71) below will make

q positive, as will be required in Theorems 5.7 and 5.8.

Ideally we would like to find the positive—definite

symmetric matrix S which makes q in (71) as large as

possible, but it is not clear how to do so.
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Lemma 5.6. Let S be a positive definite

symmetric matrix,

(71) -q = sup[1argest eigenvalue of [ATS+SA+BT(t)S+SB(t)]],

t

(72) d = sup 2HsH2HG+B(t)H2.

t

(73) L = sup 2HSc’(t)H§,

t

and o the smallest eigenvalue of S. Then

3 1

T 2 T

(74) (zT(t)SZ(t))’ g.— % zTSz + d(§7§§) + L(57§£)

Proof: From equations 67 to 71,

(75) (zT(t)SZ(t))’ = zT(ATS+SA+BT(t)S+SB(t))z

+ 22T(G+B(t))TD(z)Sz + ZZTSc'.

(76) zT(ATS+SA+BT(t)S+SB(t))z g_—quz.

By the Cauchy Schwarz inequality

(77) zzT(a+B(t))TD(z)SZ g_2HzH2H(a+B(t))TD(z)sZH2

_<_ 211mm IIZIISIIZHMz) ((2)2):

1

_<_ 211mm) lizilsilz(sz>2 .

since HD(z)H2 g HZHZ' Also

1

(78) ZZTSc' g 2HzH2HSc’ll2 S ZHSC'H2(sz)2.

Since sz g_% zTSz, (74) follows.
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Theorem 5.7. Let q,d,L, and o be as in the
 

previous lemma. Assume that q is positive,

2

9_.
(79) L < 4d

and let

(80) w = V/q2 — 4dL ..

then for any solution z(t) of (67) with

l

2T /6 . .
2(0) 6 R = {z:(z 82) < ‘35-(q+w)}, z(t) remains in

R for all t. and for any 6 > O the values of

l

(zT(t)Sz(t))2 are in the set [0,‘ég-(q-w) + e] for

sufficiently large t.

1

Proof: Let W(t) = (zT(t)Sz(t))§. From (74)

a 1 d 2
(81) W s 56-57; W

O

-9 L

o W + 0172)'

From the comparison principle (see Yoshizawa [44]).

W(t) g_u(t) for all t, where u(t) is the solution to

I _1 d 2 q L _

(82) u (t) — 5(3'37'2-11 - '6 u +3175). 11(0) — W(O)-

I

But from (79) and the quadratic formula, u is negative

for all u between ‘ég (q :.w) and positive elsewhere.

,

Thus u(t) 4‘24;- (q-w) for all 0 _<_ u(O) g‘é-g- (q+W),

which completes the proof.
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Theorem 5.7 shows that if z(O) = p(O) - c(O)

is in R, z(t) is bounded, and hence if c(t) is

bounded, p(t) = c(t) + z(t) is bounded. It also shows

that if c’(t) is small enough in comparison to q,

the solution vector p(t) follows the critical vector

c(t) quite closely, because EggE-(q-w) goes to zero

as L = sip 2H8c’(t)H goes to zero. Thus as c’(t)

decreases the difference between p(t) and c(t) also

decreases.

Figures 3, 4, and 5 illustrate these points.

The two dimensional system

(83) pi pl[lO + (-2.5+cos wt)p + (—5 — 2 sin um)p2]
1

I

p2 = p2[—5 + 4pl + (—l+cos wt)p2]

was solved numerically by fifth order Runge-Kutta and

plotted along with the critical values cl(t) and c2(t)

defined by (64), for three different values of w. As

w is decreased q and d remain the same, but L

decreases, resulting in smaller differences between

pi(t) and Ci(t)' One can also observe the initial

transient solution corresponding to the time period when

p(t) - c(t), as measured by (zT(t)Sz(t))1/2, is de-

creasing, followed by the steady state oscillations during

the time period when zT(t)Sz(t) is in the set

[0, q-w) + e].
0

2d (
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Figure 3. Solution and critical values of equation (83)

with w = 2N.

Prey = p1(t) -"‘ Predator = p2(t)-————

c1(t)~-—- c2(t)— —
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It would certainly be reasonable to model

many natural ecosystems with periodic coefficients in

equation (63). If the fluctuations are small enough,

we can prove the existence of a periodic solution:

Theorem 5.8. Let q,d,L,o and w be as in
 

Theorem 5.7. Assume that q is positive and that

equation (79) holds. If pi(t) and Bij(t) in

equation (63) are periodic functions of period T

for all i and j, then there existsa periodic

solution to (63) with p(O) — c(O) <2O(q—w).

Proof: Let F:Rn 4 Rn be defined by

F(zo) = z(T), where z(t) is the solution to (67)

 

with initial value z(O) = 20. From standard theorems

of differential equations, F is well defined and

continuous. Let H = [20 :.¢/zgSzO _IgC-(q-W)) H is

closed and convex. Further F maps H 4 H, since

1

(zT(T)Sz(T))2 g_u(T), where u is the solution of

/"

(82) with u(O) = 20 3‘53- (q—w), which implies

u(t) S91: (q—w) for all t.

Schauder's fixed point theorem (see Hale [13])

implies that F has a fixed point, i.e. z(T) = 2(0)

for some solution 2 of (67) starting in H. From

(64), c(t) is periodic with period T and hence (67)

is periodic with period T. From the uniqueness of
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solutions with given initial values, it follows that

E(t+T) = 2(t) for all t, and therefore 5(t) = 2(t)

+ c(t) is periodic with period T, which completes

the proof.

Putting Theorems 5.7 and 5.8 together, we see

that there is not only a periodic solution p(t) to

(63), but that we can expect it to be close to the

critical vector c(t) if c’(t) is small. Finally,

for any other solution p(t), let y(t) = p(t) - p(t),

 

 

so that

O pj‘:(t) T "'

(84) Y1 ’ 51(t) Yi + 3 pi(t)(“ij+gij(t))yj

7‘ . .. ..+ .j. y (a +£31J(t))yJ

Let

_ Ei’(t)

(85) A(t) = D(p(t))[a + B(t)] + Diag _ .

pi (t) I

then if there exists a positive definite symmetric matrix

S, such that AT(t)S + SA(t) is negative definite for

all t, p(t) is asymptotically stable.



CONCLUSIONS

This thesis develops methods to show that a stability

matrix remains stable under perturbations. The problem was

motivated by the Lotka-VCIterra models of ecosystems, and

the necessity for such a study to make these models useful

in practice was pointed out, but it is clear that the topic

is important for any large dynamical system whose parameters

can only be estimated. This will usually be the case for

models of biological systems. The results will also be im—

portant for the field of structural stability, since most

of this thesis could be described as a study of the structural

stability of linear systems under linear perturbations. The

summary of pertinent results from matrix theory in the intro—

duction should provide starting points for further research

on the subject. Sensitivity methods based on derivatives

of eigenvalues (Section 1.5.2), generalizations of Gershgorin's

theorem (Section 1.5.5), and the transformation A.--o(A+I)(A—I)—1

(Section 1.5.8), appear the most promising to yield more in—

formation about the effect of perturbations on stability.
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This thesis has exploited the two classical

necessary and sufficient criteria for stability, those

of Lyapunov and of Routh and Hurwitz. Of these, the

Lyapunov criterion is the best suited to perturbation

analysis. Theorems 2.15-2.19 and especially Corollary

2.20 give us sufficient bounds on the perturbations

that are computationally feasible, as are the conditions

for preserving stability when bordering a matrix in

Theorem 2.28.

The convexity of the S-permissible perturbations,

Theorem 2.23, is especially useful, since it provides

a method to establish Open regions in n2 space that

contain only stability matrices. This is what we really

need, not just stability under a single perturbation, if

we are to establish the stability of a matrix whose

entries are only known to lie within certain intervals.

Open regions about a matrix A containing only stability

matrices can also be established using Gershgorin type

theorems (Section 1.5.5). In practice these two methods

should complement each other, since the Gershgorin methods

are computationally easiest and give the best results

when the eigenvalues of A are spread apart, whereas

the Lyapunov equation methods are computationally easiest

and give the best results when the eigenvalues of A

are close together.
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Improvements in the Lyapunov equation methods

might be obtained by investigating the best choice for

Q in the equation (1) of Chapter II. Further investi-

gation of criteria for BTS + SB — Q in equation (27)

to be negative-definite would also be useful, especially

when B has rank two or higher. .

The Lyapunov equation has many other applications

besides perturbation analysis. In fact, we have seen

some examples in Chapter V. Other examples can be found

in Barnett and Storey [3] and Chapter 5 of May [28].

Thus the improved understanding of the relationship of

this equation to the symmetric part of A (Section 2.2),

and the iterative procedures to solve it (Chapter III)

are valuable in themselves. The block Seidel method

appears to be a strong candidate for the best procedure

to solve the Lyapunov equation for large matrices (say

dimension 10 or higher). While block Seidel and other

iterative procedures for linear equations are well known,

to the author's knowledge they have not previously been

adapted to the solution of the Lyapunov equation. Theorem

3.2, which tells us how well we can expect these pro-

cedures to perform on the Lyapunov equation, is important

not only for the iteration schemes studied in this thesis

but also for any which might be studied in the future.
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While the Routh-Hurwitz criterion is often used

to prove stability of a particular matrix, Theorem 4.5.

employing this criterion and Orlando's theorem to give

necessary and sufficient upper and lower bounds for a

rank one perturbation to preserve stability of a matrix,

is new. Further research in this direction should in—

clude extensions of this result to perturbation matrices

of higher rank. Perturbations of at least rank 2 will

be important for ecosystem analysis, since changes

in the strength of an interaction between two species

will generally change both aij and aji'

After developing all this mathematical machinery,

it is disappointing to not find any examples in the

ecological literature to apply it to. Certainly an

attempt to estimate the coefficients in the Lotka-Volterra

model for a natural ecosystem would be valuable. Perhaps

the results of this thesis, making it possible to evaluate

the stability of the model with only estimates of the

coefficients, will make such a study more attractive to

the ecologists.

This thesis has contributed to a general under-

standing of the types of species interactions that

contribute to stability. More specific contributions

to mathematical ecology include the conditions for
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maintaining the stability of the system when adding a

new species, and estimating the domain of attraction

for an asymptotically stable equilibrium point of a

Lotka—Volterra model. We also weakened the hypothesis

for the Lyapunov function of Aiken and Lapidus and

thereby generalized results both of Aiken and Lapidus

and of McArthur, showing that the domain of attraction

is the entire first quadrant when the community matrix

is D—negative definite. This leads us to hope that the

general theorem on domains of attraction (Theorem 5.4)

could be improved, and points out the need for further

investigation of D—negative definiteness. We have also

seen that D—stability is important for ecosystem models,

and conjecture that the two may be equivalent. When

are all the equilibrium values positive, and whether

ecosystems are "trophic-level—stable", are other questions

that merit additional research.

The final section, where the coefficients of the

general Lotka-Volterra model are made time varying, is

the first investigation of this problem. We saw that

the solutions follow a moving critical vector and the

closeness of the solutions to the critical vector depends

on the derivative of the critical vector, and that if

the coefficients are periodic there is a periodic solution.
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The existence of a periodic solution when the time

variations of the coefficients are small enough follows

from a general theorem of differential equations (see

Hale [13]), but we have shown an explicit bound on the

size of the variations that is small enough. Weakening

the hypothesis of Theorems 5.7 and 5.8 and investigating

the uniqueness and stability of the periodic solutions

should be goals of additional research in this area.

But this will probably require non—linear techniques,

whereas the methods developed in this thesis are essentially

based on linearization.

There are still many unanswered questions about

the differential equations prOposed fifty years ago by

Lotka and Volterra as a model for ecosystems. There

has recently been a great increase in interest and re-

search about them, but most of it of a theoretical rather

than an applied nature. This thesis has helped to answer

some of the theoretical questions about stability, and

added others to the list of unanswered ones. But its

major contribution is to improve the usefulness of the

Lotka-Volterra equations for analyzing the stability of

actual ecosystems.
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