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ABSTRACT

OBSTRUCTION AND EXISTENCE FOR TWISTED KÄHLER-EINSTEIN
METRICS AND CONVEXITY

By

Ambar Rao

Let L → X be an ample holomorphic line bundle over a compact Kähler manifold

(X,ω0) with c1(L) represented by the Kähler form ω0. Given a semi-positive real (1, 1) form

η representing −c1(KX ⊗ L), one can ask whether there exists a Kähler metric ω ∈ c1(L)

that solves the equation Ric(ω)−ω = η. We study this problem by twisting the Kähler-Ricci

flow by η , that is evolve along the flow ω̇t = ωt + η−Ric(ωt) starting at ω0. We prove that

such a metric exists provided ωnt ≥ Kωn0 for some K > 0 and all t ≥ 0. We also study a

twisted version of Futaki’s invariant, which we show is well-defined if η is annihilated under

the infinitesimal action of η(X), in particular η is Aut0(X) invariant. Finally, using Chens

ε-geodesics instead, we give another proof of the convexity of Lω along geodesics, which

plays a central in Berman’s proof of the uniqueness of critical points of Fω.
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Introduction

The study of extremal Kähler metrics has generated a lot of work. A major theme centers

around the equivalence of special metrics and stability in various senses. In the Kähler setting

the manifold version, conjectured by [Y1], [Tian00] and [Do] has taken time to handle. In

one direction, when Aut(X)0 is trivial, a refinement of an argument, due to [Sto] of [Do5]

shows existence of a constant scalar curvature metric in c1(L) implies (X,L) is K-stable.

See [Ber12] for generalizations to Fano varieties and other improvements: conditions on the

group of automorphisms Aut(X) is dropped while the constant scalar curvature assumption

is strengthened to admitting Kähler-Einstein metric. For the correct notion of stability there

have been several candidates.

While existence of Kähler-Einstein metrics in the C1(−KX) positive case comes with

obstructions, existence has been shown to be equivalent to properness of Jω functional on

Hω, this is analytic stability [Ti97]. Various notions of stability have been introduced by

Yau, Tian, Donaldson and others, and progress to various degrees have been made. [Do3] has

introduced a notion of B-stability from which existence of Kähler-Einstein metrics was de-

ducible granted additional hypotheses some of which are removable. In [Sz1] on a Fano man-

ifold X under the additional assumptions that both Riemann curvature tensor and Mabuchi

functional are bounded below along Kähler-Ricci flow on X, it is shown K-polystability is
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enough to obtain the existence of a Kähler-Einstein metric. Recently [CDS] and [Ti13] have

given solutions of Yau-Tian-Donaldson conjecture for Kähler-Einstein metrics.

Study of the twisted case appear in various settings see [Sto09], [SzCo], [Kel]. This was

preceded by [Fi]. See also [Ber10] and [Bo] for more recent work. In [Sto09] a moment map

description of constant scalar curvature equation (cscK) S(ω)−S = Λωα is available when α

is a symplectic form, and its shown there is an obstruction and a stability condition in terms

of the Ross-Thomas polynomial for the equation. [Do4] showed scalar curvature comes up as

an equivariant moment map for the action of Symp(B,ω) on the space of integrable complex

structures J .The second term Λωα in the twisted equation can be viewed as an equivariant

moment map of the action of Symp(B,ω) on the space of diffeomorphism f : B → M ,

M, due to [Do7]. The full twisted cscK equation comes as a moment map for the diagonal

action of Symp(B) on a new space S ⊂ M×J [Sto09]. From these considerations Stoppa

is motivated to introduce twisted K-energy a quantity which we use in arguments below.

Further in this connection, provided that η is annihilated under the infinitesimal action of

η(X), the Futaki type invariant for the twisted equation that we study below, can be shown

to be well-defined. So in certain situations the equation in our setting does come with

classically motivated obstructions.

We also study existence in the twisted setting below, and inspired by [Pa], we establish

an existence result in the twisted setting under similar assumptions:

Proposition 1. Let L→ X be holomorphic ample line bundle polarizing (X,ω) (c1(L) = ω).

Prescribe 0 ≤ η ∈ −c1(KX ⊗ L) then there is a Kähler metric such that ω
′ ∈ c1(L) solving

the twisted Kähler Einstein equation Ric(ω) − ω = η provided ωt deforms according to the

twisted Kähler-Ricci flow starting at ω while satisfying the uniform estimate
ωnt
ωn ≥ K for

t ∈ [0,∞) and some constant K > 0.
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Recalling that η(X) is the lie algebra of holomorphic vector fields on X, the following

holds

Proposition 2. When η is annihilated under the infinitesimal action of η(X) the corre-

sponding Futaki-type invariant for the twisted equation is well defined.

So as one expects from the corresponding monge-ampere equations, which are not solvable

in general, the twisted Kähler-Einstein equation comes with obstructions.

Moving in another direction, the problem of existence of smooth geodesics in the space

of Kähler metrics and their properties are useful for the study of special metrics [Do6].

Using various methods: continuity method [Chen00], quantization [PS] only the existence

of geodesics with C1,1 regularity have been established. On the other hand one can obtain

C0 regularity geodesics directly by an envelope construction see [Bo]. Even with this weaker

result progress on Bando-Mabuchi like theorems can still be made see [Ber10a], [Bo]. Despite

the existence of smooth geodesics in the space of Kähler metrics being considered a dubious

problem(they don’t exist in general see [LV] and C1,1 regularity is the best you can expect in

general see [TL]), it morally clarifies the role of convexity in the infinite dimensional analysis.

In fact with these considerations various generalized Moser Trudinger type inequalities are

obtainable. [PSSW] have verified a conjecture of Tian that on a Kähler-Einstein manifold

(X,ωKE) properness of FωKE on HωKE (X) can be upgraded to coerciveness with respect

to JωKE . In a similar direction on a integral Kähler manifold with fixed smooth volume

form using geodesics, Bergmann kernel asymptotics and convexity properties of logKφt a

moser trudinger inequality conjectured by Aubin is established in [BeBo12], although in the

Kähler-Einstein setting this is the Moser Trudinger inequality first proved by [DT]. It might

be worth checking if the Moser-Trudinger inequality corresponding to the coercive estimate
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can be obtained using these considerations in the Kähler-Einstein setting, and naturally

the next step would be to see if the quantitative versions holds beyond the Kähler-Einstein

setting.

An important feature in analyzing the Bando Mabuchi type theorem in [Ber10a], [Bo09],

[Bo] is the convexity of the L functional. Below we study this in a special case and then

in general and obtain that it is convex along geodesics (in the sense of X.X Chen) using

methods from complex geometry and ε-geodesics. In [Ber10a], [Bo09] estimates involved

rely on the Hormander ∂ estimates and the setup is more sophisticated. We also study the

uniqueness issue, but from an elementary point of view provided the geodesics are smooth.

So in particular i∂∂ut > 0. Again we rely on a complex geometry inequality crucial to

obtain convexity and analyze the equality case. In the setting when L = −KX , [Bo] shows

the scope of the result can be improved by establishing uniqueness using only sub-geodesics

and bypasses difficulties introduced by the degeneracies i∂∂ut ≥ 0. Because of its relevance

we describe this but suppress his bundle theoretic set-up in the discussion.
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Chapter 1

Convexity of some functionals and

consequences

1.1 Description of Functionals

Let (L, h0) −→ X be a hermitian holomorphic line bundle over a compact complex manifold

X so that L is ample. A Kähler form ω0 is given by the curvature (1,1) form, that is,

set ω0 = −(2π)−1
√
−1∂∂ log h0 in c1(L). Write ω0 = (2π)−1

√
−1∂∂ψ0, where locally the

background hermitian structure h0 is represented as h0 = e−ψ0 . This data is manufactured

by using an embedding determined from H0(Lk) (k >> 0) pulling back the Fubini study

metric on O(1)→ Pn and taking k-th roots gives a hermitian metric on L with the required

properties. Now set V =
∫
X dvolg. Consider the functional defined on the Kähler potentials,

the open convex subset Hω0 = {u ∈ C∞(X)|ωu = ω0 +
√
−1∂∂u > 0} ⊂ C∞(X), as

Eω0(u) =
1

(n+ 1)!V
(
n∑
i=0

∫
X
uωiu ∧ ω

n−j
0 )

Proposition 1. The functional Eω0 on Hω0 has differential

(dEω0)u(v) =
1

n!

∫
X
vωnu
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for u ∈ Hω0 and v ∈ C∞(X)

Proof.

(dEω0)u =
d

dt
(Eω0(u+ tv))|t=0

=
d

dt
(

1

(n+ 1)!V
(
n∑
i=0

∫
X

(u+ tv)ωiu+tv ∧ ωn−i0 ))|t=0

=
1

(n+ 1)!V
[
n∑
j=0

∫
X

(vω
j
u+tv ∧ ω

n−j
0 + j(u+ tv)ω

j−1
u+tv ∧ dd

cv ∧ ωn−j0 )]|t=0

=
1

(n+ 1)!V
[
n∑
i=0

∫
X
vωiu ∧ ωn−i0 +

n∑
i=1

∫
X
iuωi−1

u ∧ ddcv ∧ ωn−i0 ]

=
1

(n+ 1)!V
[
n∑
j=0

∫
X
vωiu ∧ ωn−i0 +

n∑
i=1

∫
X
ivωi−1

u ∧ ddcu ∧ ωn−i0 ]

=
1

(n+ 1)!V
[
n∑
j=0

∫
X
vωiu ∧ ωn−i0 +

n∑
i=1

∫
X
ivωiu ∧ ωn−i0

−
n∑
i=1

∫
X
ivω

j−1
u ∧ ωn+1−j

0 ]

=
1

(n+ 1)!V
[
n∑
j=0

∫
X
vωiu ∧ ωn−i0 +

n∑
i=1

∫
X
ivωiu ∧ ωn−i0

−
n−1∑
i=0

∫
X

(i+ 1)vωiu ∧ ωn−i0 ]

=
1

(n+ 1)!V
[
n∑
i=0

∫
X
vωiu ∧ ωn−i0 −

n−1∑
i=1

∫
X
vωiu ∧ ωn−i0 +

∫
X
v(n)ωnu −

∫
X
vωn0 ]

=
1

(n+ 1)!V
[

∫
X
vωn0 +

∫
X
vωnu +

∫
X
v(n)ωnu −

∫
X
vωn0 ]

=
1

n!V

∫
X
vωnu

Remark 1. This is true in much lower regularity settings in fact Eω0 extends to C0(X) by

composing with a nonlinear projection. The extension is gateaux differentiable and has the
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same differential with u, v ∈ C0(X) see [Ber10a].

A similar calculation can be made for a path ut ∈ Hω0 that is at time t, v corresponds

to u̇t.

Note that −Eω0(u) = 1
n!V (Jω0(u) −

∫
X uωn0 ) = 1

n!V F
0
ω0

where Jω0 is Aubin’s energy

functional. Note whereas F0
ω0

is convex, Eω0 is concave. Recall Jω0(u) has derivative

− 1
V

∫
X u̇(ωnu −ωn0 ) since this induces a closed 1-form on Hω0 its primitive is taken to be Jω0

after fixing the correct normalization. The differential dEω can also be calculated in terms

of the differential of Jω. Also given a constant c, Eω0(u + c) = Eω0(u) + c follows from the

formula. Since Eω0 = − 1
n!V F

0
ω0

the functional has the same cocycle property that F0
ω0

has.

Recall 〈s, s〉ψ0
= in

2 ∫
X s ∧ se−ψ0 for s ∈ H0(X,L⊗KX).

Another functional of importance is

Lω0(u) := − 1

N
log det(T (u))

where T (u) = [〈si, sj〉ψ0+u] and {si} is a basis of H0(X,L⊗KX) orthogonal with respect

to 〈·, ·〉ψ0
. This is independent of the {si} basis orthogonal with respect to 〈·, ·〉ψ0

, since any

two bases of this type are related by a unitary transformation and the effect of the change is

to conjugate T [u] by this. So Lω0 remains unchanged. The property Lω0(u+c) = Lω0(u)+c

follows from the definition.

Finally define Fω0 := Eω0 − Lω0 . This is a functional on Hω0 . Recall the natural

action of R∗ on hermitian metrics e−uh0 on L by multiplication by e−c descends to additive

action of R on Hω i.e by addition by c. Under the action the functionals Eω0 ,Lω0 have

values translated by c it follows Fω0 is constant under this action so that it descends to a

functional on the space of all Kähler metrics in c1(L).

7



Also note that the natural action of Aut0(X,L) on the space of metrics on L corresponds

to the action (u, F ) → v := F ∗(ψ0+u) − ψ0 so that ωv = F ∗ωu. So a statement P holds

for ω1 in the space of Kähler metrics up to automorphism means that P also holds for any

Kähler forms ω in the orbit of ω1 under the action of Aut0(X,L).

Proposition 2. Given any orthogonal basis {si} of (H0(X,L⊗KX), 〈·, ·〉ψ0
)

• Lω0 is a well defined functional on Hω0. The differential takes the form

(dLω0)u(v) =
−1

N
in

2
N∑
i=1

∫
X
vsi ∧ sie−(ψ0+u)

in any basis {si} orthonormal with respect to 〈·, ·〉ψ0+u with u, v as before.

• The functional Fω0 = Eω0 − Lω0 defined on Hω0 is translation invariant and the

differential at u is given by the second equality in (1.1) in any basis {si} orthogonal

with respect to 〈·, ·〉ψ0+u. In particular critical points of Fω0 are smooth solutions of

(1.2).

Proof. The first item is essentially the discussion above and the differential (dLω0)u may be

computed similarly as in the previous proposition: take {si} orthonormal with respect to

〈·, ·〉ψ0+u then

d

dt
Lω0(u+ tv)|t=0 =

d

dt
(
−1

N
log det(〈si, sj〉ψ0+u+tv))|t=0

= [
−1

N
(T ij ˙Tij)(u+ tv)]|t=0

=
−1

N
Tr[Ṫ ] =

−1

N
in

2
N∑
i=1

∫
X
vsi ∧ sie−(ψ0+u)
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Critical points u of Fω0 are smooth solutions of

0 = (dFω0)u =

∫
X
v(

1

n!V
ωnu +

in
2

N

N∑
i=1

si ∧ sie−(ψ0+u)) v ∈ C∞(X) (1.1)

Equivalently u is a smooth solution of the monge-ampere equation

1

n!V
(ddcu+ ω0)n = −i

n2

N

N∑
i=1

si ∧ sie−(ψ0+u) (1.2)

1.2 Geodesic Equation

The space of Kähler potentials associated to a kähler manifold (X,ω) is

Kω = {ωφ|ωφ = ω + i∂∂φ > 0, φ ∈ C∞(X)} (1.3)

This may be identified with Hω = {φ|φ ∈ SPSH(X,ω)∩C∞(X)} which is open in C∞(X).

For each point of Hω one can associate to it a measure on X, dµφ =
ωnφ
n! . With this the

metric on Hω is given by specifying the L2 norm on functions i.e.

||ψ||2φ =

∫
X
ψ2dµφ

where ψ ∈ TφHω ∼= C∞(X).

So for a path φ(t) in Hω0 , parametrized by the unit interval, length is given by

l(φ) :=

∫ 1

0

√∫
X

( ˙φ(t))2dµφ(t)dt (1.4)
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By taking the first variation of the energy functional
∫ 1

0

∫
X | ˙φ(t)|2dµφ(t)dt, since the critical

points define geodesics in the space of kähler metrics, the smooth geodesic equation is

φ̈(t)− 1

2
|∇ ˙φ(t)|2φ(t) = 0 (1.5)

A path ut in Hω0 is viewed as a function U on X × [0, 1]. The following was first noticed

by Donaldson and Semmes.

Proposition 3. A path ut satisfying the geodesic equation is the same as looking for solutions

of Ωn+1
U = 0 with U(·, 1) = u0 and U(·, e) = u1, where ΩU = (ddcU + π∗Xω0).

Proof.

0 = (ddcU + π∗Xω0)n+1

= ((∂X∂t + ∂t∂X + ∂t∂t + ∂X∂X)ut + π∗Xω0)n+1

= ((∂X∂t + ∂t∂X + ∂t∂t)ut + ωut)
n+1

= P (ωut)

where P is a polynomial of degree at most n+ 1 i.e

P (ωt) =
n+1∑
i=0

a(n+1−i) ∧ ω
i
ut

Clearly we may assume a0 = 0 since ωn+1
ut

= 0 does not contribute. From binomial expansion

the terms an+1−i for i ≥ 3 are terms with forms containing at least three ”dt’s”( dt∧ dt∧ dt

10



etc), so they can also be assumed to vanish. For similar reasons we may assume

an+1−1 = an = (n+ 1)∂t∂tut since (∂X∂tut) ∧ ω
n
ut

= 0

an+1−2 = an−1 =
(n+ 1)n

2
2∂X∂tut ∧ ∂t∂Xut

=⇒ 0 =
1

(n+ 1)!
(ddcU + π∗Xω0)n+1

= ∂t∂tut ∧
ωnut
n!
− 1

(n− 1)!
∂X∂tut ∧ ∂X∂tut ∧ ω

n−1
ut

A local calculation shows

∂φ ∧ ∂φ ∧ ωn−1 =
1

2n
|∇φ|2gωn

It follows

0 =
1

n!
(üt −

1

2
|∇∂tut|

2
ut

)ωnut ∧ dt ∧ dt

11



1.3 ε-Geodesics

By considering the boundary value problem involving a degenerate Monge-Ampere equation

instead in [Chen00] C1,1 geodesics are found i.e. solutions of

0 = Ωn+1
φ (1.6)

= det(gαβ + φαβ) on X ×R (1.7)

φ0 = φ on ∂(X ×R) (1.8)

where R is a riemann surface with boundary which can be taken to be a cylinder.

Solutions are extracted by running a continuity method. Adjustments at t = 1 are

made so the corresponding equation is elliptic. In other words its solution defines a Kähler

potential on V ×R not just on each slice V ×{w}, w ∈ R. C0 estimates can be obtained using

the boundary data and the maximum principle. An application of Yau’s C2 estimate yields

the alternative that either the laplacian is uniformly bounded from above or the maximum

occurs on the boundary. So to obtain a pointwise bound on the maximum of the laplacian

in terms of maximum of the gradient a boundary estimate is needed. This is achieved from

the maximum principle applied to a barrier function construction and the structure of the

equation over the continuity path. So uniform C2 bounds for t > 0 are obtained by obtaining

point-wise bounds on the gradient. This is done through a blowup analysis. This furnishes

a sequence of regular solutions φi to elliptic equations corresponding to a sequence ti ↘ 0.

Since at t = 0 the equation is degenerate, one passes only to a subsequence extracting a

weak C1,1 solution. An application of maximum principle shows this limit is unique. The

details are the main content of [Chen00].
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As a consequence the following also holds. Another application of the maximum principle

is required to get estimates on solutions with respect to the s parameter again see [Chen00]

for details.

Lemma 1 (Geodesic Approximation Lemma). Let Ci : φi(s) : [0, 1] → H (i = 1, 2) be

smooth curves in H. For ε0 > 0 sufficiently small there exist two parameter smooth family

of curves C(s, ε) : φ(t, s, ε) : [0, 1]× [0, 1]× (0, ε0]→ H satisfying

1. For any fixed s, ε, there is an epsilon approximate geodesic C(s, ε) joining φ1(s) and

φ2(s) i.e. φ(z, t, s, ε) solves

det(gαβ + φαβ) = ε det(g) V ×R (1.9)

φ(z
′
, 0, s, ε) = φ1(z

′
, s) (1.10)

φ(z
′
, 1, s, ε) = φ2(z

′
, s) (1.11)

where zn+1 = t+
√
−1θ and φ has trivial dependence on θ.

2. There exists a uniform constant C(which depends only on φ1, φ2) satisfying

|φ|+ |∂sφ|+ |∂tφ| < C (1.12)

0 ≤ ∂2
t φ < C (1.13)

∂2
sφ < C (1.14)

3. For fixed s let ε → 0, then the convex curve C(s, ε) converges to the unique geodesic

between φ1(s) and φ2(s) in the weak C1,η topology(0 < η < 1).
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4. The energy element along C(s, ε) is given by

E(t, s, ε) =

∫
V
|∂tφ|2dg(t, s, ε) (1.15)

where g(t, s, ε) is the Kähler metric corresponding to φ(t, s, ε). Then there exists a

uniform constant C such that

max
t,s
|∂tE| ≤ ε · C ·M (1.16)

So the energy/length element converges to a constant along each convex curve as ε→ 0.

1.4 Convexity and eigenvalue estimate

In this section we study convexity of Lω0 along smooth geodesics in the setting when

dimH0(X,KX ⊗ L) = 1 and L ⊗ KX is globally generated. So L = −KX . For exam-

ple this happens when X = P1 since L ∼= OP1(m) for some m ∈ Z from an application of a

theorem of Grothendieck. So m = 2 since L⊗KP1 = O(0).

Let (X,L, ω0) be given as in §1 with the above restrictions. Since N = 1 for any

s ∈ H0(X,KX ⊗ L), det(T (u)) simplifies to

in
2
s ∧ se−ψ0 = eθω0ωn0

14



which is basically (using L = −KX)

e−ψ0

det g
= eθω0 (1.17)

We may write s|Uα = φ⊗ t locally where φα ∈ Γ(Uα, KX) and tα ∈ Γ(Uα, L) holomorphic.

Note that

φα ⊗ tα = φβ det(ψαβ)−1 ⊗ tβ det(ψαβ) = φβ ⊗ tβ (1.18)

where {ψαβ , Uαβ := Uα∩Uβ} is the cocycle determining TX . Denote by ||·||2 the fiber length

induced by hermitian metric h0. Let θα : LUα
∼= Uα × C be the associated trivialization

induced by tα so |θα(tα)| = 1.

(in
2
s ∧ ∗s)|Uα = in

2
φα ∧ φα||tα||2 = in

2
φα ∧ φα|θ(tα)|2e−ψ0 = in

2
φα ∧ φαe−ψ0 (1.19)

from (1.18) we may glue the local versions together and view in
2
s∧se−ψ0 as a global section

of KX ⊗KX just like ωn and so in
2
s∧se−ψ0
ωn defines a global function. Note also that from

the last equality in (1.19), after shrinking Uα to a coordinate chart, with respect to the

coordinates there choosing φα = dz1 ∧ . . .∧ dzn gives that the global function is of the form

given in (1.17).

Remark 2. L = −KX is not necessary all thats needed is 0 6= s ∈ H0(KX ⊗ L) i.e

holomorphic global sections of it. That is in
2
s∧se−ψ0 transforms as sections of KX⊗KX just

as volume forms do so the ratio is a global function. To see this note that two trivialization

θ, θ
′

are related by θ
′

= gθ on the overlap and similarly ψ
′
0 = ψ0 + log |g|2 on the overlap.
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So θω0 ∈ C
∞(X). Applying ∂∂log to (1.17)

√
−1

2
∂∂ log(eθω0 ) =

√
−1

2
(∂∂ log(e−ψ)− ∂∂ log det(g))

√
−1

2
∂∂θω0 = Ric(ω0)− ω0 (∗)

Equation ∗ above is essentially

[F∇L⊗KX
] = c1(L⊗KX) = c1(O(0)) = 0

with c1(KX) represented by the negative of the ricci form and c1(L) by the curvature of a

hermitian metric given locally by e−ψ0 . So it follows that ωt − Ric(ωt) =
√
−1
2 ∂∂(−θωt).

The negative sign is benign and chosen only to suit our conveniences.

Recall Ric(ω0) = −
√
−1
2 ∂∂ log det(g). Also

ωt = ω0 +

√
−1

2
∂∂φt

where φt ∈ Hω0 is an arbitrary path. So

√
−1

2
∂∂θωt =Ric(ωt)− ωt

=Ric(ωt)−Ric(ω) + ω0 +
√
−1∂∂θω0 − (ω0 +

√
−1

2
∂∂φt)

=

√
−1

2
(log(

det(g)

det(g
′
)
) + θω0 − φt) (∗t)
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and

θωt = log(
det(g)

det(g
′
)
) + θω0 − φt + ct (1.20)

θωt is clearly globally defined. To pin down the constant we choose normalization

∫
X
e−φt+ct+θω0ωn0 = 1 (1.21)

Henceforth we abuse notation and denote φt + ct by φt. We conclude after exponentiating

(1.20)

e−φt+θω0ωn0 = e−φt+θω0
ωn0
ωnt

ωnt = eθωtωnt (1.22)

That is φt moves along continuity path (1.22). Restricting further to smooth geodesics

we have

Proposition 4. When L ⊗ KX is globally generated and dim(H0(X,L ⊗ KX)) = 1 the

functional Lω0 is convex along smooth geodesics.

To check convexity along these geodesics use second variation of the Lω functional. This

simplifies to − log
∫
X e−φt+θω0ωn0 from the discussion above. So taking t derivatives two

times we obtain the quantity

(
∫
X e−φt+θω0ωn0 )

∫
X((φ̇)2 − φ̈)e−φt+θω0ωn0 − (

∫
X eθωt (φ̇t)ω

n
t )2

(
∫
X e−φt+θω0ωn0 )2

from which convexity of Lω is determined provided the following inequality( Lω has a neg-
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ative sign):

(

∫
X
e−φt+θω0ωn0 )

∫
X
e−φt+θω0 ((φ̇t)

2 − (φ̈t))ω
n
0 − (

∫
X
e−φt+θω0 (φ̇t)ω

n
0 )2 ≤ 0

Which simplifies using (1.22) to

(

∫
X
eθωtωnt )

∫
X
eθωt ((φ̇t)

2 − (φ̈t))ω
n
t − (

∫
X
eθωt (φ̇t)ω

n
t )2 ≤ 0

We may without loss assume
∫
X eθωt (φ̇t)ω

n
t = 0 which follows from differentiating the nor-

malization condition chosen. Hence the inequality desired is

∫
X
eθωt ((φ̇t)

2 − (φ̈t))ω
n
t ≤ 0

⇒
∫
X
eθωt ((φ̇t)

2 − 1

2
(|∇φ̇t|2g(t)))ω

n
t ≤ 0

⇒
∫
X
eθωt (|∇φ̇t|2g(t))ω

n
t ≥ 2

∫
X
eθωt ((φ̇t)

2)ωnt

So we need to show whenever Ric(ω)− ω =
√
−1
2 ∂∂θω and

∫
X feθωωn = 0

∫
X
eθω(f)2ωn ≤

∫
X

1

2
(|∇f |2g))eθωωn

⇒ λ1(−∆−∇θω·) ≥ 2 (1.23a)

holds.

18



The first eigenvalue estimate in (1.23a) translates to, in the Kähler case,

∫
X

1

2
|∇f |2eθωωn =

∫
X
gαβfαfβe

θωωn

= −
∫
X

(�f + gαβfα(θω)β)eθωfωn

That is the corresponding first eigenvalue estimate (1.23a) in this setting is µ1(−� −

1
2〈∇·,∇θω〉) ≥ 1.

Remark 3. Just as with eigenvalue estimates for µ1(−�) we may similarly consider using

1. Rαβ = gαβ + θαβ

2. 1
2�|∇f |

2 = |fαβ |2 + |fαβ |
2 + gαβ(fα(�f)β + (�f)αfβ) +Rαβf

αfβ

3. −�f = µ1f + 1
2〈∇θω,∇f〉

However this point view encounters problematic pure type terms which cannot be controlled

by (1).

Instead consider u : X → C. Set 〈u, v〉θ =
∫
X uveθωωn hermitian weighted scalar

product. Using an orthonormal frame we have

∫
X
|∂u|2eθωωn =

∫
X
uαuαe

θωωn

=

∫
X
−(uαα + θαuα)ueθωn

=

∫
X
−(�u+ θαuα)ueθωn = −〈Lu, u〉θ

where Lu := �u+ θαuα.

Applying to first eigenfunctions u with eigenvalue µ1 obtain µ1||u||2θ > 0 so µ1 > 0.
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In the case where Ric(ω) ≥ ω it follows λ1(�) ≥ 1(using 〈·, ·〉0 restricted to real valued

functions u):

0 ≤
∫
|uαβ |2ωn =

∫
uαβuαβω

n

= −
∫
uβα,βuαω

n

= −
∫

(uββ,αuα +Rαβuαuβ)ωn

Using Ric(ω) ≥ ω it follows that µ1(�) ≥ 1.

Similarly consider the quantity
∫
X |uαβ |e

θωn ≥ 0 in the weighted setting. Also note

that since the operator L is essentially � up to lower order terms so it is elliptic: symbol

is determined by highest order terms. We wish to apply the following lemma to the first

eigenfunction which is a priori smooth.

Lemma 2. Let u ∈ C∞(X,C) then

∫
X

(−(Lu)αuα − |∂u|2)eθωn ≥ 0

Proof. Following the discussion above

0 ≤
∫
X
|uαβ |e

θωn =

∫
X
uαβuαβe

θωn

=

∫
X
−(uβαβuα + uαβθβuα)eθωn

=

∫
X

(−(�u)αuα −Rsβαβuαus − uαβθβuα)eθωn

=

∫
X

(−(Lu)αuα + θβαuβuα

−Rsαuαus + θβuαβuα − uαβθβuα)eθωn (1.24)
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Since Ric(ω) − ω =
√
−1
2 ∂∂θ in coordinates is equivalent to Rαβ − θαβ = gαβ = δαβ , it

follows

(Rβα − θβα)uβuα = uαuα = |∂u|2

So (1.24) simplifies to

∫
X

(−(Lu)αuα − |∂u|2)eθωn ≥ 0

⇒
∫
X
−(Lu)αuαe

θωn ≥
∫
X
|∂u|2eθωn

proof of proposition. Suppose u is a first eigenfunction of the operator L with eigenvalue µ1

(i.e. −Lu = µ1u) then by the lemma

µ1

∫
X
uαuαe

θωn ≥
∫
X
|∂u|2eθωn

=⇒ µ1 ≥ 1

1.5 Convexity of Lω0

Let ut be a path in Hω0 . Recall N := dimH0(X,KX ⊗ L) < ∞ by hodge theory. Also

recall that Lω0(ut) = −1
N log det(T (ut)) where T (ut) = [〈si, sj〉ψ0+ut

].
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Proposition 5. When ut ∈ Hω0 is an arbitrary smooth path, the first and second variations

of Lω0 are given by

d

dt
Lω0(ut) =

−1

N
(T ij ˙Tij) (1.25)

d2

dt2
Lω0(ut) =

−1

N
[Tr(−(T−1Ṫ )2) + Tr(T−1T̈ )] (1.26)

Proof. This follows by direct computation recalling that for square matrices

d

dt
det(T (t)) = detT (t)Tr(T−1(t) ˙T (t))

Let s ∈ H0(X,Ω
p
X ⊗ L) ∼= Hp,0(X,L) using resolution of Ω

p
X ⊗ L by sheaves Ap,·(L)

which are acyclic (this is Dolbeaut’s theorem asserting Dolbeaut cohomology is isomorphic

to sheaf cohomology of holomorphic differential forms).

In this setting, via Hodge theory using hodge decomposition for holomorphic hermitian

vector bundles on compact hermitian manifolds and type considerations in this range we

obtain the decomposition

Ap,0(X,L) = ∂
∗Ap,1(X,L)⊕Hp,0(X,L)

Note that ∂
∗Ap,1 is orthogonal to Ker∂. Let α ∈ Ap,1, then since

(∂∂
∗
α, α) = ||∂∗α||2 > 0

we can specialize to p = n to obtain that Hn,0(X,L) ∼= Hn,0(X,L). Hence s ∈ H0(X,KX ⊗
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L) ∼= Hn,0(X,L) is harmonic. So for s ∈ A0(X,ΩnX ⊗ L) satisfying s ⊥ H0(X,KX ⊗ L) we

have by hodge decomposition that s = ∂
∗
σ + ∂β where σ ∈ An,1 and β ∈ An,−1 = 0.

Lemma 3. With s as above, orthogonal to global holomorphic sections of KX ⊗ L, the

following estimate holds

||∂s||2 ≥ ||s||2 (1.27)

Remark 4. Restricted to the orthogonal complement of H0(X,KX ⊗ L), ∂KX⊗L operator

has no kernel (on the orthogonal complement, where ∂
∗
KX⊗L = 0, ∂KX⊗L is a restriction

of the elliptic ∂ + ∂
∗

operator) so should be invertible and thus satisfy an inequality of the

type (1.27) with perhaps better constants.

Proof. Since s = ∂
∗
σ, (1.27) is equivalent to

||∂∂∗σ||2 ≥ ||∂∗σ||2

An application of cauchy-schwartz gives that

||∂∗σ||2 = 〈∂∂∗σ, σ〉 ≤ ||∂∂∗σ||||σ|| (1.28)

Thus it suffices to show

Claim 1.

||σ||2 ≤ ||∂∗σ||2 (1.29)

The Hodge decomposition σ = α + ∂β + ∂
∗
γ simplifies to σ = ∂β where β ∈ An,0(L).
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Since 0 = ∂
∗
α = ∂

∗
∂
∗
γ

s = ∂
∗
σ = ∂

∗
β

so we may take σ = ∂β.

A version of the Bochner-Kodaira-Nakano identity simplifies using [Λ, θ(L)] = [Λ, ω] =

[Λ, L] to

�
D
′′ = �

D
′ + (p+ q − n) · I (1.30)

So we may obtain the L2 identity from (1.30) applied to σ

||∂σ||2 + ||∂∗σ||2 =||D
′
σ||2 + ||(D

′
)∗σ||2 + (n+ 1− n)||σ||2

=⇒ ||∂σ||2 + ||∂∗σ||2 ≥||σ||2 (1.31)

But σ is a holomorphic section so we obtain

||∂∗σ|| ≥ ||σ||

So the claim follows and hence the lemma.

Now given ||∂s|| ≥ ||s|| for s ⊥ H0(X,KX ⊗ L) we can determine the shape of the

inequality for s ∈ An,0(L). To do this consider

P : An,0(L)→ H0(X,KX ⊗ L)
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the projection of s ∈ An,0(L) to its holomorphic part that can be viewed as a holomorphic

global section of KX ⊗ L.

Proposition 6. Given s ∈ An,0(L)

||∂s||2 ≥ ||s||2 − ||P (s)||2 (1.32)

Proof. This follows immediately from the lemma applied to s−P (s) which is orthogonal to

H0(X,KX⊗L), and using that the holomorphic projection P is an orthogonal projection.

Now having obtained the inequality (1.32) we can proceed to the the main business of

this section

Proposition 7. Assume H0(X,KX ⊗ L) 6= 0 then Lω0 is convex along smooth geodesics

(when they exist).

Remark 5. We could have replaced the assumption with the globally generated condition

appearing in [Ber10a] but that assumption is really cooked up for the critical points equation;

so that it is elliptic.

Proof. Let h be an arbitrary metric on L deformed from the background metric on L, h0,

related by h = h0e
−φ. Taking a basis {si} ⊂ H0(X,KX ⊗ L) orthogonal basis with respect

to 〈·, ·〉h, applied to φ̇si we have in (1.26) that T−1 = Id. So

Tr(−(T−1Ṫ )2) = −
∑
ij

(

∫
X
φ̇(si, sj)h)2

Tr(T−1T̈ ) = −
∑
i

∫
X

(
|∇φ̇|2

2
− φ̇2)(si, si)h (1.33)
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Also note

||P (φ̇si)||2 =
∑
j

(

∫
X
φ̇(si, sj)h)2

||∂(φ̇si)||2 =

∫
X

|∇φ̇|2

2
(si, si)h (1.34)

Applying (1.32) to sections φ̇si with respect to the metric h on L and summing over 1 ≤ i ≤

dim(H0(KX ⊗ L)) gives

∑
i

||∂(φ̇si)||2 ≥
∑
i

(||φ̇si||2 − ||P (φ̇si)||2)

⇒
∑
i

∫
X

(
|∇φ̇|2

2
− φ̇2)(si, si)h ≥ −

∑
ij

(

∫
X
φ̇(si, sj)h)2 (1.35)

The proposition follows.

Together with ε-geodesics it can be shown that Lω0 is convex along C1,1 geodesics. This

is verified in §7.

1.6 Maximizers using ε-geodesics

Recall from section §3 there is a smooth path ut , an ε-geodesic, connecting a critical point

u0 to another point u1 of Hω0 . It satisfies

(üt −
|∇u̇t|2g(t)

2
) det g(t) = ε det g > 0

=⇒ üt =
ε det g

det g(t)
+
|∇u̇t|2g(t)

2
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where g(t) = gαβ + (ut)αβ ( 1 ≤ α, β ≤ n)

From proposition 1 along smooth paths ut ∈ Hω0

dEω0(ut) =
1

V

∫
X
u̇t
ωnut
n!

=⇒ d2

dt2
Eω0(ut) =

1

V

∫
X

(üt −
|∇u̇t|2g(t)

2
)
ωnut
n!

so along an ε-geodesic it follows

d2

dt2
Eω0(ut) =

ε

V

∫
X

det g

det g(t)

ωnut
n!

= ε (1.36)

Take an orthonormal basis {si} ⊂ H0(X,KX ⊗ L) with respect to 〈·, ·〉h and using the

ε-geodesic equation we get

d2

dt2
Lω0(ut) =

−1

N
[−

∑
ij

(

∫
X
u̇t〈si, sj〉h)2

+
∑
i

∫
X

(u̇t
2 −
|∇u̇t|2g(t)

2
− ε det g

det g(t)
)(si, si)h]

≥ 1

N

∑
i

∫
X

ε det g

det g(t)
(si, si)h ≥ 0 (1.37)

The last inequality follows from (1.35). In other words

−
∑
ij

(

∫
X
u̇t〈si, sj〉h)2 +

∑
i

∫
X

(u̇t
2 −
|∇u̇t|2g(t)

2
)(si, si)h ≤ 0

The right hand side of (1.37) is positive and by item 3 of lemma 1 ε-geodesics converge in

C1,1 topology to the C1,1 geodesic connecting the points. In particular sending ε → 0, we

obtain f(t) := Lω0(t) the function obtained by restricting Lω0 along C1,1 geodesic, is the
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uniform limit of similarly defined functions fε(t) that are convex. So f(t) is convex. In

summary we have

Proposition 8. If dimH0(X,KX ⊗ L) ≥ 1 then Lω0 is defined and is convex along C1,1

geodesics.

Proof. See discussion above.

Similarly e(t) := Eω0(t) restricted to the C1,1 geodesic is a uniform limit of functions

eε(t), those function that arise from restricting Eω0 to ε geodesics. Recall Eω0 is continuous

under uniform limits in Hω0 ∩C
0(X) (the L1(X,ω0) closure), a result of Bedford-Taylor, in

particular with respect to uniform limits of ε-geodesics. From (1.36) the second derivative

of Eω0 along ε-geodesics goes to zero. Since the second derivative of Eω0 is the integral of

the geodesic equation in the sense of Donaldson and Semmes, the convergence to zero is in

the sense of Chen. Thus e(t) is affine.

Corollary 1. The functional

Fω0 := Eω0 − Lω0

is concave along C1,1 geodesics.

Proof. This follows since Eω0 is affine while −Lω0 is concave along C1,1 geodesics.

The result of Berman [Ber10a] follows:

Corollary 2. Critical points (when they exist) are maximizers of Fω0

Proof. Let u0 be a critical point of Fω0 and u1 ∈ Hω0 any other point connected by the

C1,1 geodesic ut. Since Fω0 is concave along ut, dtFω0 decreases along ut. It follows u0 is a

maximum in Hω0 for Fω0 . So an absolute maximum of Fω0 on Hω0 obtains at any critical

point (when it exists).
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Also for future use we record

d2

dt2
Fω0(ut) ≤ ε(1− 1

N

∑
i

∫
X

det g

det g(t)
(si, si)h) ≤ ε

along ε-geodesics.

1.7 Uniqueness smooth case

Let ut be a smooth geodesic in Hω0 so ωut > 0 connecting critical points of Fω0 . A (1, 0)

vector field Vt can be defined by

ωut(Vt, ·) = ∂u̇t

We abuse language and call Vt a gradient vector field of u̇(otherwise we need to fit the

fixed complex structure J into expressions when making the reference).

The main objective in this section is

Proposition 9. When there is a smooth geodesic connecting critical points ω0 := ωu0 , ωu1

of Fω0 in Hω0 the critical points are related by an automorphism φ of (X,L) i.e ωu1 = φ∗1ω0.

Remark 6. Really there is always a C1,1 geodesic connecting the critical points. The propo-

sition applies with this path smooth.

In this direction note that expression for a gradient vector field in the adjoint setting can

be written as

Lemma 4. For s ∈ An,0(L), ωut > 0 and Vt the gradient vector field of u̇t

−∂u̇t ∧ s = ωut ∧ (Vtcs) = Lωut
(Vtcs) (1.38)
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where Lωut
is the lefschetz operator defined by ωut.

Proof. Simply wedge the equation defining the gradient vector field with s ∈ An,0(L). Use

that ωut ∧ s is of type (n+ 1, 1) and therefore vanishes. Then conclude using the elementary

calculation

0 = ωut ∧ s

0 = Vtc(ωut ∧ s)

= (Vtcωut) ∧ s+ ωut ∧ (Vtcs)

=⇒ −∂u̇t ∧ s = ωut ∧ (Vtcs)

Corollary 3.

−Λωt((∂u̇t) ∧ s) = ΛωtLωut
(Vtcs) (1.39)

Proof. Just take traces of (1.38). That is, act on it by Λωut
.

Lemma 5. As above all operators are defined with respect to ωut > 0

−D
′′
(Vtcs) = ΛD

′′
(∂u̇t ∧ s) + i(D

′
)∗(∂u̇t ∧ s) (1.40)

Proof. To see this recall in the Kähler setting

[L,Λ] = H

where L,Λ, H are the Lefschetz, dual Lefschetz, and counting operator which act on the
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form part of the section.

Note that LΛ(Vtcs) = 0 since Vtcs is an L valued (n − 1, 0) form and the action of Λ

reduces type by (1, 1).

Claim 2.

ΛL(Vtcs) = (Vtcs)

Proof. Indeed,

ΛL(Vtcs) = −[L,Λ](Vtcs) = −H(Vtcs) = −(n− 1− n)I(Vtcs) = (Vtcs)

From the Kähler identity

[Λ, D
′′
] = −i(D

′
)∗ (1.41)

noting that the left side of (1.41) is a commutator it follows directly that

D
′′
Λ(∂u̇t ∧ s) = ΛD

′′
(∂u̇t ∧ s) + i(D

′
)∗(∂u̇t ∧ s) (1.42)

Now (1.40) follows immediately from the corollary and claim.

Proposition 10. Vt is holomorphic for each fixed t.

Proof. It is enough to show by lemma 5 (1.40) that D
′′
(Λ(∂u̇t) ∧ s) = 0 (∂ = D

′′
for

unitary connections compatible with the holomorphic structure). This follows because from

holomorphicity of s we obtain Vt is away from the zero’s of the vector field, and conclude Vt

is holomorphic by Riemanns extension theorem(Vt smooth).
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Start by analyzing the equality case. Since Fω0 is concave it is affine along smooth

geodesics connecting any two of its critical points. Eω0 is affine along geodesics so Lω0 is

too. By smoothness this means (1.26) and identities (1.33), (1.34) yield the equalities

0 =
d2

dt2
Lω0(ut) =

−1

N
(
∑
i

(||u̇tsi||2 − ||P (u̇tsi)||2 − ||∂(u̇tsi)||2)) ≥ 0 (1.43)

which is equivalent to

||∂(u̇tsi − P (u̇tsi))||2 = ||u̇tsi − P (u̇tsi)||2 (1.44)

Recalling (1.28), (1.29) and from the discusion in section §5 solving ∂
∗
σi = u̇tsi − P (u̇tsi)

with σi holomorphic we have

||∂∗σi||2 ≤ ||∂∂
∗
σi||||σi|| ≤ ||∂∂

∗
σi||||∂

∗
σi|| ≤ ||∂

∗
σi||||∂

∗
σi|| (1.45)

The last inequality is a consequence (1.44) from which one obtains ||∂∂∗σi|| = ||∂∗σi||.

Since (1.45) is really a string of equalities it follows that the inequality (1.29) is an equality

||σi|| = ||∂
∗
σi||. Since (1.31) is equality precisely when the terms ||D′σi||, ||(D

′
)∗σi|| vanish

in the Bochner Kodaira type identity we have

�
D
′σi = 0, ∂σi = 0 (1.46)

Claim 3.

∂u̇t ∧ si = σi (1.47)
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Proof. This a consequence of the equality case :

∂u̇t ∧ si = ∂(u̇ts)

= ∂(u̇tsi − P (u̇tsi))

= ∂∂
∗
σi

= σi

The last equality follows from type considerations and equations in(1.46) (essentially the

content of (1.30), (1.31)). So

∂∂
∗
σi = �

D
′′σi = (�

D
′ + I)σi = σi

As a consequence of the claim and (1.46)

D
′′
∂u̇t ∧ si = D

′′
∂(φ̇si) = 0; (D

′
)∗∂u̇t ∧ si = (D

′
)∗σi = 0

So by the lemma 5 (1.40) Vt is holomorphic for each fixed t.

Proposition 11. Vt is static.
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Pass to co-ordinates and make the local calculation for Vtcωut = ∂u̇t

√
−1gmnV

m
t Xn = (u̇t)qX

q

V
p
t = gpqgmqV

m
t

= −
√
−1gpq(u̇t)q

The following is well known see [Bo09], except here we operate directly on the manifold.

Lemma 6. Along smooth geodesics

V̇tcωut = ∂(üt −
1

2
|∇u̇t|2ωut ) = 0 (1.48)

Proof. Differentiate Vtcωut = ∂u̇t to obtain

V̇tcωut + Vtc∂tωut = ∂üt (1.49)

V̇tcωut = ∂üt − Vtc∂tωut (1.50)

Using Vtcωut = ∂u̇t again obtain

√
−1∂Vtcωut =

√
−1∂∂u̇t = ∂tωut

Equivalently (1.50) is

V̇tcωut = ∂üt −
√
−1Vtc(∂(Vtcωut))
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Computing
√
−1Vt∂(Vtcωut) locally:

√
−1Vtc∂((u̇t)jdz

j) =
√
−1Vtc((u̇t)ijdz

i ∧ dzj)

=
√
−1V it (u̇t)ijdz

j

= gis(u̇s)(u̇ij)dz
j

= ∂
1

2
|∇u̇t|2ωut − ∂(V it )(u̇t)i

= ∂(
1

2
|∇u̇t|2ωut )

proof of prop. 11. By the lemma

V̇tcωut = ∂(üt −
1

2
|∇u̇t|2ωut ) = 0

So conclude δVt = 0

proof of prop. 9. Now we are ready to conclude with proposition 8. −V+V
2 = −ImV gen-

erates the flow φt (φt biholomorphism). Since V above is static so is iV . Abusing notation

denote this by V and then φt is the flow generated by ReV . Locally V c∂∂(ut + ψ0) = ∂u̇t.

Virtues of compactness grant a uniform r > 0 , with ut + ψ0 given on some Bω0(r, pi0) and

φt(Bω0(r2 , pi)) ⊂ Bω0(r, pi) for |t| < r
2 and all i. A consequence of chain rule is

˙((ut + ψ0) · φt) =
1

2
(V c∂(ut + ψ0) + V c∂(ut + ψ0)) · φt + ˙(ut + ψ0) · φt (1.51)
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taking
√
−1∂∂ of (1.51) obtain

√
−1∂∂( ˙(ut + ψ0) · φt) =

√
−1∂∂

1

2
(V c∂(ut + ψ0) + V c∂(ut + ψ0)) · φt

+
√
−1∂∂ ˙(ut + ψ0) · φt

d

dt
φ∗tωut =

1

2
φ∗t (
√
−1∂∂(V c∂(ut + ψ0) + V c∂(ut + ψ0)))

+ φ∗t (
√
−1∂∂ ˙(ut + ψ0))

d

dt
φ∗tωut =

1

2
φ∗t (∂(

√
−1V c∂∂(ut + ψ0)) + ∂(−

√
−1V c∂∂(ut + ψ0)))

+ φ∗t (
√
−1∂∂ ˙(ut + ψ0))

=
1

2

√
−1φ∗t (−∂∂ ˙(ut + ψ0) + ∂∂ ˙(ut + ψ0)) + φ∗t (

√
−1∂∂ ˙(ut + ψ0)) = 0

So d
dtφ
∗
t (ωut)|B(r2 ,pi0

) = ∂∂( ˙(ut + ψ0) · φt) = 0. Although the proposition now follows al-

most directly, we may also conclude by partitioning [0, 1] into sufficiently small sub-intervals

depending on the cover and the fact that the time one map is a composition of the maps

corresponding to each subinterval.

Remark 7. Note the above is essentially a manifestation of

d

dt
φ∗−tωut = φ∗−t

d

dt
ωut + φ∗−tL

− (V−V )
2

ωut

where V is the gradient vector field originally defined and φt is the flow generated by ImV .

Use Cartans formula to obtain cancellations.

Since φ∗−tωut − ωu0 = 0 this means at the level of potentials φ∗−t(ut + ψ0)− ψ0 = Ct.

V can be lifted to a holomorphic vector fields on the total space L so that action by φt

is induced from Aut0(M,L) by lemma 13 in [Ber10a].
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1.8 Berndtsson argument setup

Recall (X,ω) is Kähler and that Fω is concave. Another advantage is that it behaves nicely

in the low regularity setting. In fact, for low regularity purposes, when L = −KX the

functional simplifies to negative of the Ding-Tian functional and this has better regularity

properties than the Mabuchi functional . Berndtsson shows by a direct envelope construction

critical points of the Ding-Tian functional can be connected by a C0 sub-geodesic (see §11,

[Bo] and [BerDe]). These two inputs (Ding-Tian functional and C0 sub-geodesics) can be

used to obtain the Bando-Mabuchi uniqueness theorem.

More precisely Berndtsson obtains Bando-Mabuchi uniqueness theorem by deducing

Proposition 3. Let L = −KX be semi-positive and assume Hn,1(X) = 0 . Let φt be C0

sub-geodesic such that φt does not depend on Imt, then L(t) = − log in
2 ∫

X e−φtdz ∧ dz is

convex. Further if L(t) is affine in a neighborhood of 0 then there is holomorphic vector field

V (perhaps time dependent) on X with flow Ft such that F ∗t ∂∂φt = ∂∂φ0.

As in the previous section one needs to analyze the smooth case. The final stage involves

approximation.

Let ut smooth but i∂∂ut ≥ 0. Then consider solvability of

∂utv = π⊥(u̇ts) =: η (1.52)

s ∈ H0(X,ΩnX ⊗ L) as before. From the consequence of the Lefschetz decomposition that

Λn−1V ∼= Λn+1V write α = Lωv = v∧ω where v ∈ An−1,0(X) when α ∈ An,1(X,L). Then
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Proposition 12. Solvability for v in (1.52) is equivalent to solvability of

∂
∗
ut
α = η

for α ∈ An,1(X,L) when η is orthogonal to H0(X,KX ⊗ L).

Proof. The equivalence is a calculation using the following facts:

• Note that ∂ut is the (1, 0) part of the Chern connection i.e

∇(1,0) := ∂ + ∂ log(e−ut) = ∂ − ∂ut∧ = ∂ut

• Recall we have for α ∈ P k(primitive elements of Λk)

∗Ljα = (−1)
k(k+1)

2
j!

(n− k − j)!
Ln−k−jI(α)

∗, L determined by the structure from (X,ω).

• [∂
∗
, L] = i∂. For L|U ∼= OU with hermitian structure depending on ut as above, the

adjoint operator is given by

∂
∗
t = −∗∂ut∗ = − ∗ ∂ut∗
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then

∂
∗
ut
α = ∂

∗
ut
v ∧ ω

= − ∗(∂ − ∂ut ∧ ∗(v ∧ ω))

= [∂
∗
, L]v + ∗∂ut ∗ Lv

But v is primitive and in v ∈ Pn−1. It follows ∗Lv = (−1)
(n−1)n

2 in−1v, and using that

∂φ ∧ v ∈ Pn we get

∂
∗
ut
α = ∂

∗
Lv + ∗∂ut ∗ Lv = [∂

∗
, L]v + (−1)

(n−1)n
2 in−1 ∗ ∂ut ∧ v

= i∂v + (−1)
(n−1)n

2 in−1 ∗ ∂ut ∧ v

= i∂v + (−1)
(n−1)n

2 in−1(−1)
n(n+1)

2 in∂ut ∧ v

= i∂v + (−1)n
2
(−1)n−1i∂ut ∧ v

= i(∂ − ∂ut∧)v

= i∂utv

=⇒ ∂
∗
ut
α = η = ∂utv

The solvability of these equations also comes with estimates.

Fact 1. Recall for ∂ and its adjoint (Von Neuman’s sense is the relevant one)

• Ker∂∗ = (Im∂)⊥

• (Ker∂)⊥ = Im∂
∗
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In particular when ∂ is a surjection, ∂
∗

is injective. In fact when Hn,1(X) = 0 we have

a surjection on ∂ closed forms and the adjoint is injective. When ∂ has closed range the

adjoint has closed range equal to (Ker∂)⊥ . In this setting closedness of range boils down to

the estimates.

If ∂ has closed range then solutions to the equation ∂f = α comes with the estimate

||f || ≤ C||α|| (1.53)

From here it follows that solvability of ∂utv = η comes with the estimates

||v|| ≤ C||η||

To elaborate, (1.53) is similar to §6 where solving σ1 = ∂σ0 for σ0 orthogonal to holo-

morphic (n, 1) L-valued sections comes with estimate ||∂σ0|| ≥ C0||σ0||, C0 = 1. In §6 we

specialized the hermitian metric to the one whose curvature is −iω to conclude. However,

in the Kähler setting the Akizuki-Nakano identity applies for any unitary connection com-

patible with the holomorphic structure. So more generally ||∂σ0|| ≥ C||σ0|| (adjusting to an

auxiliary hermitian metric h changes the constant arising from
∫
X〈[θh,Λ]σ0, σ0〉dV ). So for

our purposes proceed trivially obtaining the estimate ||∂∗utσ0||2 + ||∂σ0||2 ≥ C||σ0||2, adding

the extra nonnegative term ||∂∗utσ0||2. From here conclude through a functional analysis

argument (see [De]) to obtain the estimate ||∂∗utσ0|| ≥ C̃||σ0||.

In particular we obtain η = ∂
∗
ut
α and α = ∂f

||∂∗utα|| ≥ C̃||α||
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Next we claim

Claim 4. For α = v ∧ ω as above, ||α|| = ||v||.

Proof.

〈α, α〉 = 〈Lv, Lv〉 = 〈v,ΛLv〉

ΛLv = −[L,Λ]v = −Hv = −(n− 1− n)v = v

=⇒ 〈α, α〉 = 〈v, v〉

As a consequence

||∂∗utα||C̃ ≥ ||α|| ⇐⇒ ||∂utv|| ≥ C̃||v||

It follows that if vt solves

∂utvt = π⊥(u̇s)

the following estimate holds

||vt|| ≤ ||π⊥(u̇ts)|| ≤ ||u̇ts|| ≤
1

C̃
||u̇t||||s|| (1.54)

From the properties of C0 sub-geodesics i.e its Lipschitz, it is known that ||u̇t|| is bounded.
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1.9 Generalized Gradient Vector Field

Since L⊗KX ∼= OX we can take 1 = s ∈ H0(X,L⊗KX) and define vt by ∂utvt = π⊥(u̇ts).

In turn, since s does not vanish, define Vt by

vt = −Vtcs (1.55)

Recall that curvature of a hermitian connection on a holomorphic vector bundle has no (0, 2)

part so it is given by

[Dut , ∂] = ∂ut∂ + ∂∂ut = ∂∂ut (1.56)

Lemma 7. For solutions ∂utvt = π⊥(u̇ts) the following identity holds

∂∂ut ∧ v = ∂(u̇ts) + ∂ut∂v (1.57)

Proof. Using (1.56) and the definition of ∂utvt

∂∂ut ∧ vt = [Dut , ∂]vt = ∂ut∂vt + ∂π⊥(u̇ts)

From (1.55) obtain

∂∂ut ∧ v = ∂∂ut ∧ (−Vtcs)

= (Vtc∂∂ut) ∧ s
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Lemma 8. If ∂v = 0 then Vt defined in (1.55) satisfies

∂u̇t = Vtcωut (1.58)

Proof. For s as given above

∂u̇t ∧ s = (Vtc∂∂ut) ∧ s

=⇒ i∂u̇t = Vtci∂∂ut

= Vtcωut

Remark 8. Vt as defined above is a generalized gradient vector field(referred to as a gradient

vector field for convenience since it behaves similarly).

Note that

F(t) := − log

∫
X
e−ut = − log ||s||2 (1.59)

where ||s||2 =
∫
X cns ∧ se−ut .

Remark 9. ||s̃||2 can be viewed as integration along fibers. Exactly as Berndtsson considers

Kähler fibrations with compact fibers, p : X̃ → Y . Here, 0 ∈ U0 = U = Y ⊂ C, the fibers

are copies Xt := X = p−1(t) and we may think of X̃ = U × X (we suppress the other

structures since we wish to discuss this naively. Involved is the introduction of a structure

E := ∪t∈U{t} × Et with Et := H0(Xt, L|Xt ⊗ KXt). E → U is naturally a holomorphic

vector bundle from semi-positivity of L and that X is Kähler using an Ohsawa-Takegoshi

extension type theorem: an element of Et needs to extend to a section of E locally in a
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holomorphic way with estimates. Elements of Et which are L valued (n, 0) forms on Xt can

be viewed as sections taking values in K
X̃

over Xt(by wedging with dt) or as the restriction to

Xt of sections over X̃ with values in K
X̃

see [Bo09] and [Bo07] for details. Granted elements

of Et extend to local sections of E, take a basis of Et that extends to a local frame of E.

These can be viewed as a collection of (n, 0) forms over the preimage under the projection p

of an open set in U in the base. Denote one such by u. Its restriction to each Xt defines an

element of Et. u defines holomorphic section of E if it defines a holmorphic section of K
X̃

i.e u ∧ dt is a holomorphic section of K
X̃

, that is ∂u ∧ dt = 0. Finally E has a naturally

defined hermitian metric coming from that on L(fiber-wise this is the usual hermitian metric

on L⊗KX) allowing to define the Chern connection operator on E.)

Recall

||s||2 = π∗(cns ∧ se−ut)

by definition of integration along fibers obtain

Claim 5. Let v ∈ An−1,0(X) and s as above. Set s̃ = s− dt ∧ v then

∂∂t||s̃||2 = ∂∂t||s||2

This can also be calculated directly viewing
∫
X as integration along fibers since the

fibration is trivial.

First note

s̃ ∧ s̃ = s ∧ s− s ∧ dt ∧ v − dt ∧ v ∧ s+ dt ∧ v ∧ dt ∧ v
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Proof. In the following calculation the type I forms have no contribution so

∂∂t||s̃||2 =

∫
X
cn∂∂t(s̃ ∧ s̃e−ut)

=

∫
X
cn∂∂t(s ∧ s− s ∧ dt ∧ v − dt ∧ v ∧ s+ dt ∧ v ∧ dt ∧ v)e−ut

= −
∫
X
cns ∧ s ∧ ∂∂tute−ut +

∫
X

(cns ∧ s ∧ ∂tut ∧ ∂tute−ut)

=

∫
X
cn∂∂t(s ∧ se−ut) = ∂∂t||s||2

Proposition 13. Given s̃ as above we have

∂∂t||s̃||2 =(−1)n(

∫
X
cn∂

ut s̃ ∧ ∂ut s̃e−ut +

∫
X
cn∂s̃ ∧ ∂s̃e−ut)

+

∫
X
cns̃ ∧ s̃ ∧ ∂∂ute−ut (1.60)

=(−1)n
∫
X
cn∂s̃ ∧ ∂s̃e−ut +

∫
X
cns̃ ∧ s̃ ∧ ∂∂ute−ut (1.61)

=(||∂v||2dt ∧ dt+ π∗(cn∂∂ut ∧ s̃ ∧ s̃e−ut)) (1.62)

where
∫
X is interpreted as integration along fibers.

Proof. (1.60) simplifies to (1.61) since ∂ut s̃ vanishes:

∂utvt = π⊥(u̇s)

=⇒ dt ∧ ∂utvt = dt ∧ π⊥(u̇ts)

= dt ∧ (u̇ts+ h)

= u̇tdt ∧ s+ dt ∧ h
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= π⊥(∂ut ∧ s)

= − π⊥((∂ − ∂ut)s)

= − ∂uts

Where in the third line h subtracts out the holomorphic part of u̇ts. The last line follows

since Im∂u ⊆ Im∂
∗

= Ker∂
⊥

. So ∂ut s̃ = 0.

(1.62) follows since s̃ = s− dt ∧ v so

∂s̃ = dt ∧ ∂v

=⇒ ∂s̃ ∧ ∂s̃ = (−1)n∂v ∧ ∂v ∧ dt ∧ dt

To obtain (1.60) some pre-computation is necessary. Observe (1.63), (1.64), and (1.65) hold:

∫
X
cn∂ts̃ ∧ s̃e−ut = 0 (1.63)

since this involves integration along fibers of a type I form

∫
X
cn∂ts̃ ∧ s̃e−ut =

∫
X
cndt ∧ ∂tv ∧ s̃e−ut = 0

Similarly ∫
X
cns̃ ∧ ∂s̃e−ut = 0 (1.64)

from (1.63) and (1.64) it follows:

0 = ∂t

∫
X
cns̃ ∧ ∂s̃e−ut =

∫
X
cn∂s̃ ∧ ∂s̃e−ut + (−1)n

∫
X
cns̃ ∧ ∂ut∂s̃e−ut (1.65)

46



(1.60) follows from the following computation:

∂∂t||s̃||2 = (−1)n∂tπ∗(cns̃ ∧ ∂
ut
t s̃e

−ut)

= (−1)nπ∗(cn∂
ut
t s̃ ∧ ∂

ut
t s̃e

−ut) + π∗(cns̃ ∧ ∂∂
ut
t s̃e

−ut)

= (−1)nπ∗(cn∂ut s̃ ∧ ∂utse−ut) + π∗(cns̃ ∧ ∂∂ut s̃e−ut)

= (−1)nπ∗(cn∂ut s̃ ∧ ∂ut s̃e−ut) + π∗(cns̃ ∧ ∂∂ut ∧ s̃e−ut)

− π∗(cns̃ ∧ ∂ut∂s̃e−ut)

Further, applying (1.65)

∂∂t||s̃||2 = (−1)n(π∗(cn∂ut s̃ ∧ ∂ut s̃e−ut)

+ (−1)nπ∗(cn∂s̃ ∧ ∂s̃e−ut)) + π∗(cns̃ ∧ ∂∂ut ∧ s̃e−ut)

and the proposition follows.

Proposition 14.

||s||2∂∂tF(t) = 〈θts, s〉 = −∂∂t||s||2

where θt is the curvature of E.

Proof. Recall ||s||2 = ||s̃||2. For the second equality see [Bo09]. In the first equality note

that

∂t||s̃||
2 = 〈∂ts̃, s̃〉+ (−1)n〈s̃, ∂ut s̃〉 = 0
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so

∂t∂tF(t) = −∂∂t||s̃||
||s||2

+
∂t||s̃||∂t||s̃||
||s||4

= −∂∂t||s̃||
||s||2

= −∂∂t||s||
||s||2

where the last equality follows from the claim.

Remark 10. Granted the necessary regularity, from convexity of F along ut connecting

two Kähler-Einstein metrics ∂∂tF ≡ 0 i.e F is linear on ut. (1.62) and the subsequent

proposition obtain ||∂v|| = 0. It also follows ∂∂ut ∧ s̃ ∧ s̃ = 0 from which ∂∂ut ∧ s̃ = 0 since

i∂∂ut ≥ 0. Since ∂v = 0 we see from (1.58) that Vt as defined is a gradient vector field.

Lemma 9. Suppose ut is smooth and ∂∂ut ∧ s̃ = 0 then

(
∂ut
∂t∂t

− ∂X(
∂ut
dt

)(Vt)) = 0 (1.66)

Proof. Since ∂∂ut ∧ s̃ = 0 it follows that the coefficient of dt ∧ dt vanishes:

0 = dt ∧ dt( ∂ut
∂t∂t

∧ s)− ∂X∂tut ∧ dt ∧ v (1.67)

but since vt = −Vtcs

∂X∂tu ∧ dt ∧ v = ∂X
∂ut
∂t

dt ∧ dt ∧ Vtcs (1.68)

and

0 = ∂X(
∂ut
∂t

) ∧ s

=⇒ 0 = Vtc∂X(
∂ut
∂t

) ∧ s− ∂X(
∂ut
∂t

) ∧ Vtcs (1.69)
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So from (1.68) and (1.69)

∂X∂tu ∧ dt ∧ vt = dt ∧ dt ∧ s(Vtc∂X(
∂ut
dt

))

=⇒ 0 = dt ∧ dt ∧ s( ∂ut
∂t∂t

− ∂X(
∂ut
dt

)(Vt))

This concludes the calculation.

Set µ := (
∂ut
∂t∂t
− ∂X(

∂ut
dt

)(Vt)).

Remark 11. When i∂∂ut > 0, we have 0 = µ = c(φ) satisfies the geodesic equation because

∂φ̇(Vt) = |Vt|2t with Vt the gradient vector field.

Since Vt satisfies the equation vt = −Vtcs, the condition that Vt is static translates to

0 =
∂vt
∂t

= −∂Vt
∂t
cs

since s does not vanish.

Proposition 15. If Hn,1(X,L) = 0(vanishes if i∂∂ut > 0) then
∂vt
∂t

= 0

Proof. Recall we have

∂utv = u̇ts+ ht (1.70)

where ht is holomorphic for each fixed t.

Since ∂ut = ∂ − ∂ut∧

∂

∂t
∂utv = ∂ut

∂v

∂t
− ∂X

∂ut
∂t
∧ v

= ∂ut
∂v

∂t
+ Vtc∂X(

∂ut
∂t

)s (1.71)
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from (1.69).

Similarly the right hand side of (1.70) becomes

∂

∂t
(u̇ts+ ht) =

∂2ut
∂t∂t

s+
∂ht
∂t

(1.72)

Combining (1.71), (1.72)

∂ut
∂v

∂t
= µs+

∂ht
∂t

but ∂ut ∂v
∂t

is orthogonal to holomorphic forms so

∂ut
∂v

∂t
= π⊥(µs+

∂ht
∂t

) = π⊥(µs) = 0

since µ = 0. Note ∂v
∂t
∧ ω is ∂X closed. This entails ∂v

∂t
= 0 because the assumption

Hn,1(X) = 0 gives that ∂X is surjective so the adjoint is injective i.e let v belong to the

kernel of the adjoint. Then

〈u, v〉 = 〈∂Xγ, v〉 = (−1)n〈γ, ∂utv〉 = 0 =⇒ v = 0

So the generalized gradient vector field as defined is static and the proposition follows.

1.10 Non-smooth case

This section overviews the last part of Berndtssons argument. See [Bo] for further details.

In general a singular metric φ with i∂∂φ ≥ 0 cannot be approximated by a decreasing

sequence of smooth metrics with nonnegative curvature. However, this is possible if the line
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bundle has some smooth metric of strictly positive curvature.

In fact it is known that one can approximate a singular metric on L with nonnegative

curvature by a decreasing sequence of smooth metrics such that

i∂∂φν > −ενω (1.73)

where ω is some Kähler form.

This proceeds by considering the line bundle L + εF where F is positive. Then L + εF

admits hermitian metric ut + εψ and this can be approximated with smooth metrics χν

of positive curvature (see [ZBSK]). Then uνt = χν − εψ approximates ut satisfying (1.73).

Further the sequence may be arranged to be decreasing.

Recall given ui where i = 0, 1 such that i∂∂ui ≥ 0 there is a bounded geodesic ut defined

for the real part of t ∈ [0, 1] where ut is given by

ut = sup{ψt}

and the supremum is taken over all ψt with limt→i ψt ≤ ui. Note that the following barrier

function participates in the supremum

χt = max{φ0 − A<(t), φ1 + A(<(t)− 1)}

for A > 0 sufficiently large because χt satisfies the boundary conditions and is plurisubhar-

monic.

So it suffices to restrict to competitors larger the χ. But then we have −A ≤ limt→0+ ψ̇

and limt→1− ψ̇ ≤ A. Since ψ is independent of the imaginary part of t, i∂∂ψ ≥ 0 gives that
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ψ is convex hence

−A ≤ ψ̇ ≤ A (1.74)

=⇒ φ0 − A<(t) ≤ ψ ≤ φ1 + A<(t)

So the same inequality holds for the majorant ut and in fact its upper semicontinous regu-

larization participates in the supremum so that ut is plurisubharmonic. Since its maximal, it

solves the monge-ampere equation with given boundary values. Inequality (1.74) gives that

ut is Lipschitz. Solutions ut arising in this way are called C0 sub-geodesics.

Obtain Fν from F in (1.59) by replacing ut with uνt approximating ut as above. The

loss in positivity i∂∂uνt ≥ −ενω is notational and one can instead proceed as if i∂∂uνt ≥ 0.

Then i∂∂tFν goes to zero weakly. Corresponding to the smooth metrics uνt solutions of

∂u
ν
t vνt = π⊥(u̇νt )

satisfy

||vνt || ≤ C||π⊥(u̇νt s)|| ≤ C||s||||u̇νt || ≤ C
′
A <∞

So we may extract a subsequence of vνt that weak converges to a form v ∈ L2. Proposition

13 and 14 give that ||∂vνt || → 0 on X ×K where K ⊂ Ω compact. So weak converges to an

element w ∈ L2. This is ∂v in the distributional sense. It follows ∂v = 0 since

〈w,w〉 = lim〈∂vνt , w〉 ≤ lim inf ||∂vνt ||B = 0

from cauchy-schwartz and definition of weak convergence.
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v also satisfies

∂utv = π⊥(u̇ts)

in the weak sense i.e

∫
X×Ω

dt ∧ dt ∧ v ∧ ∂We−ut = (−1)n
∫
X×Ω

dt ∧ dt ∧ π⊥(u̇ts) ∧We−ut

where W is a smooth form of appropriate degree.

When there are no nontrivial holomorphic vector fields then v = 0, and hence π⊥(u̇ts) =

0. So u̇t is holomorphic and constant since it depends only on the real part of t. Otherwise

one needs to show ∂tv = 0 in a weak sense. Following the smooth case one needs to obtain a

the distributional formulation of ∂ut
∂vt
∂t

= π⊥(µs) and then conclude using the cohomological

assumption. There is some difficulty in doing this since care is needed taking limits because

it is only known that vt ∈ L2. Some work is also required in deriving the distributional

formulation. However the starting point is the use of proposition 13 and 14 to get that

∫
X×Ω

i∂∂uνt ∧ û ∧ ûe
−uνt → 0

See the latest version of [Bo] for details.
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Chapter 2

Obstruction and existence for twisted

Kähler-Einstein equation

2.1 Twisted K.E scalar Equation

Let L be an ample holomorphic hermitian line bundle on a Kähler manifold X. Given

[η] = −c1(KX ⊗ L) ∈ H2(M,R) ∩H1,1(M,C) it is natural to seek a corresponding Kähler

metric ω with [ω] = c1(L) satisfying the twisted Kähler-Einstein equation

Ric(ω)− ω = η (2.1)

In the Kähler-Einstein setting for Fano manifolds, where η = 0(L = −KX), it is known this

is not always solvable. Similarly extra conditions are needed here.

A flow version of (2.1) can be written as

∂tg̃ij = −R̃ij + g̃ij + ηij (2.2)

g̃ij(0) = gij

This flow is now known to be called Twisted Kähler-Ricci flow (Tkrf) (see [SzCo]).

Heuristically, if we had long time existence and convergence in C∞ topology for time
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derivatives included, then as t→∞

0 = lim ∂tg̃ij = lim(−R̃ij + g̃ij + ηij)

= − (R∞)ij + (g∞)ij + ηij

In other words we obtain a metric g∞ satisfying the twisted Kähler-Einstein equation. §20

makes this precise.

But to even consider the flow above, short time existence must be clarified when starting

the Tkrf flow at any initial metric g0. To do this it is enough to notice that this can be

written as a scalar flow very similar to the Kähler-Einstein setting for Fano manifolds where

scalar flow is a parabolic flow for which short time existence is well known.

Write g̃ij = gij + uij where u ∈ C∞(M × [0, T )), 0 < T <∞. Set Tij = gij + ηij . Since
√
−1

2π Rijdz
i∧dzj ,

√
−1

2π Tijdz
i∧dzj ∈ C1(M), 0 = [T −Ric] ∈ H2(M,R)∩H1,1(M,C), there

is f ∈ C∞(M) unique up to a constant such that Tij −Rij = fij .

Proposition 16. (2.2) can be written as the scalar equation

∂u

∂t
= log

ωmu
ωm

+ u+ f + φ(t) (2.3)

where φ(t) comes from the ambiguity in constant on each time slice that is fixed by the

normalization ∫
M
e
∂u
∂t
−(u+f)

dV = eφ(t)V ol(M) (2.4)
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Proof. Rewrite (2.2)

∂tg̃ij = − R̃ij + g̃ij + ηij

= − R̃ij + (Rij −Rij) + g̃ij + ηij

= − R̃ij +Rij + (−Rij + g̃ij + ηij)

Using the formula for ricci curvatures obtain

=
∂2

∂zi∂zj
log

ωmu
ωm

+ uij + (−Rij + (gij + ηij))

=
∂2

∂zi∂zj
log

ωmu
ωm

+ uij + (fij)

This is equivalent to

∂∂(
∂u

∂t
− log

ωmu
ωm
− (u+ f)) = 0

=⇒ ∂u

∂t
= log

ωmu
ωm

+ u+ f + φ(t)

Recall [ωu] = [ω] so we obtain the normalizations in (2.4).

Remark 12. As a monge-ampere equation the twisted Kähler-Einstein equation is the same

as that arising in the Kähler-Einstein Fano case i.e.

Ae−φ+hωωm = (ω
′
)m (2.5)
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where A is given by

V olg(M) =

∫
M
dV
′

= A

∫
M
e−φ+hωdV (2.6)

Using the following

1. g
′
ij

= gij + φij

2. Ric(ω
′
)− ω′ = η ⇔ R

′
ij
− g′

ij
= ηij

3. (Rij), (ηij + gij) with associated forms in C1(M)

4. Tij −Rij = (−hω)ij

obtain

(R
′
ij
−Rij) +Rij − g

′
ij

= ηij

R
′
ij
−Rij − φij = Tij −Rij = (−hω)ij

This is equivalent to

∂∂(− log
(ω
′
)m

ωm
− φ+ hω) = 0

=⇒ − log
(ω
′
)m

ωm
− φ+ hω = − logA where A > 0

=⇒ Ae−φ+hωωm = (ω
′
)m

Since [ω
′
] = [ω], A is normalized to (2.6).
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2.2 Various Estimates (Toy version)

Adjust the scalar equation (2.3) of the twisted Kähler-Ricci flow by dropping the term φ(t)

(referred to ct in subsequent sections) and study

∂tu = log
ωnu
ωn

+ u+ f (2.7)

temporarily to gain experience (c(t) adds complications so is relegated to later sections).

Thanks to short time existence there is a T > 0. Choose 0 < ε < T <∞.

Proposition 17. C2 estimates of u on M × [0, T − ε] depend on oscillation of u and bound-

edness of ∂tu. Explicitly the following estimates are available

• |∂tu| ≤ maxM |f |

• n + ∆u > 0 and ∆u < C. The reduction to estimates on ∆u comes from well known

point-wise calculation. See [Jo].

Proof. (2.7) can be written as

et∂t(e
−tu) = log

ωnu
ωn

+ f (2.8)

Differentiate in time to obtain

∂t(e
t∂t(e

−tu)) = ∆g̃(∂tu)

et[∂t∂t(e
−tu) + ∂t(e

−tu)] = ∆g̃(∂tu)

∂t[∂t(e
−tu) + e−tu] = ∆g̃(e

−t∂tu) = ∆g̃(∂t(e
−tu) + e−tu)
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Parabolic maximum principle entails (really quantities need to be adjusted by ±εt and let ε

run to zero.)

max
M×[0,T−ε]

(∂t + I)(e−tu) = max
M

e−t∂tu = max
M

∂tu ≤ max
M

f

The last inequality follows from (2.8) at t = 0 (replace u with −u to get the bound from

below). So u̇ is bounded.

Lemma 10. Along Tkrf on [0, T − ε], ωu > 0. In particular n+ ∆u > 0

Proof. Since u̇ is bounded the monge-ampere equation corresponding to (2.7) ωnu = eu̇−u−fωn

gives ωnu > 0(ω > 0) so it follows its eigenvalues are nonzero real. At a minimum point p ∈M ,

uαβ has positive eigenvalues so that ωu has positive eigenvalues near p. By connectedness

and covering appropriately this holds globally(change in sign of eigenvalues would require

ωnu to degenerate somewhere). Really this just says that if ωu is positive at a point of Mt it

is positive everywhere on Mt. So Trg(ωu) = n+ ∆u > 0 on [0, T − ε].

To get an upper bound on ∆u use C2 inequality obtained by Yau:

∆g̃(e
−C0(n+ ∆gu)) ≥ e−C0u(∆F − Cn2)

− C0e
−C0un(n+ ∆gu)

+ (C0 + C)e−C0ue
− F
n−1 (n+ ∆gu)

n
n−1 (2.9)

where C = infi6=k Riikk and C0 + C > 0.

Rewriting (2.7) we set

F := log(
ωnu
ωn

) =
∂u

∂t
− u− f
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Inserting into estimate (2.9) and evaluating at a maximum point of the quantity e−C0u(n+

∆gu), (p0, t0) ∈M × [0, T − ε] obtain

0 ≥ ∆g̃(e
−C0u(n+ ∆gu)) ≥ − e−C0u(∆gf + Cn2)

− C0e
−C0un(n+ ∆gu) + e−C0u∆g(

∂u

∂t
− u)

+ (C0 + C)e−C0ue
−

(−u−f+∂u
∂t

)

n−1 (n+ ∆gu)
n
n−1 (2.10)

(2.10) becomes after multiplying by ec0u and rearranging

C
′
≥ ∆gf + Cn2 ≥ −C0n(n+ ∆gu)−∆gu+ ∆g

∂u

∂t

+(C0 + C)e
−(

∂u
∂t
−f

n−1 )
e

u
n−1 (n+ ∆gu)

n
n−1 (2.11)

Claim 6. At (p0, t0) when 0 ≤ t0 ≤ T − ε

∆g
∂u

∂t
≥ C0

∂u

∂t
(n+ ∆gu) (2.12)

Proof. Indeed

0 ≤ ∂

∂t
(e−C0u(n+ ∆gu)) = −C0e

−C0u
∂u

∂t
(n+ ∆g) + e−C0u∆gu

∂u

∂t

=⇒ ∆g
∂u

∂t
≥ C0

∂u

∂t
(n+ ∆gu)
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So (2.11) becomes

C
′
(n) ≥− (C0n+ 1)(n+ ∆gu) + C0

∂u

∂t
(n+ ∆gu)

+(C0 + C)e
−(

∂u
∂t
−f

n−1 )
e

u
n−1 (n+ ∆gu)

n
n−1 (2.13)

at t0 = 0 we have

e−C0u(p0,0)n ≥ e−C0u(p0,0)(n+ ∆gu(p0, 0)) ≥e−C0u(n+ ∆gu)

=⇒ (n+ ∆gu) ≤ ne
C0(u−infM×[0,T−ε] u)

using that e−C0u(p0,t0) ≤ e
−C0 infM×[0,T−ε] u.

When 0 ≤ t ≤ T − ε reduce (2.13) further

C
′
(n) ≥ − (C0n+ 1− C0

∂u

∂t
)(n+ ∆gu)

+ (C0 + C)e
−|f |∞+f
n−1 e

u
n−1 (n+ ∆gu)

n
n−1

≥ − C
′
0(n+ ∆gu) + C̃e

−||u||
C0

n−1 (n+ ∆gu)
n
n−1

here C
′
0 = C0n+ 1 + C0|f |∞, C̃ = e

f−|f |∞
n−1 (C0 + C) and n+ ∆gu > 0 holds.

So the inequality takes the form

C2(1 + n+ ∆gu) ≥ C̃e
−
||u||

C0
n−1 (n+ ∆gu)

n
n−1 (2.14)
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Claim 7. For x > 0 and positive constants a, b inequalities of the form

(1 + x)a < (x)
n
n−1 b

hold whenever

x > (2k)n−1

provided k > log2(ab ) + 1 i.e for x > (2ab )n−1

Proof. Clearly x
n
n−1 grows faster than x. Taking x

1
n−1 > 2k

(1 + x)a

x
n
n−1 b

=
a

x
n
n−1 b

+
a

x
1

n−1 b

<
a

b
(

1

2nk
+

1

2k
) <

a

b2k−1
< 1

for k an integer bigger than log2(ab ) + 1.

By the claim, since (2.14) is the reverse inequality it follows that there is a 0 < C :=

(
2C2
C̃

)n−1 so that

(n+ ∆gu)(p0, t0) ≤ Ce
||u||

C0

=⇒ 0 < e−C0u(n+ ∆gu) ≤ e−C0u(p0,t0)(n+ ∆gu(p0, t0))

≤ Ce||u||0e−C0u(p0,t0)

=⇒ 0 < (n+ ∆gu) < Ce||u||0eC0(u−u(p0,t0))

< Ce
(supM×[0,T−ε] u−infM×[0,T−ε] u)(C0+1)
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note that u(0) = 0 so

||u||0 ≤ max{ sup
M×[0,T−ε]

u,− inf
M×[0,T−ε]

u} ≤ sup
M×[0,T−ε]

u− inf
M×[0,T−ε]

u

2.3 Twisted Mabuchi functional

In this section consider the K-energy functional in the twisted setting. This involves ad-

justing the K-energy functional so that its critical points satisfy the twisted Kähler-Einstein

equation (2.1).

Definition 1. ν
η
ω(φ) = −

∫ 1
0

∫
M (Ric(ωφ)− (ωφ + η))

ωn−1
φ

(n−1)!
∧ dt

Proposition 18. The twisted Mabuchi functional defines a closed 1-form

B̃φ(ψ) =

∫
M
ψ(ωφ + η −Ric(ωφ)) ∧

ωn−1
φ

(n− 1)!
.

where ψ ∈ TφHω

Recall that

dβ̃φ(u, v) = δuβ(v)− δvβ(u)

where u, v ∈ TφHω. Mabuchi energy being understood, it suffices to study the differential

of
∫
ψtrφη

ωnφ
n! . This is given by

Claim 8.

δu

∫
vtrφη

ωnφ
n!

=

∫
v(trφη�φu− 〈∇∇u, η〉)

ωnφ
n!

(2.15)

63



Proof. Clearly the first term in (2.15) comes from differentiating the volume form. The

second term comes from differentiating the trφη term which is locally given by

−gαtgsβ(ust)ηαβ = −〈∇∇u, η〉

Really a factor is suppressed but its harmless.

The proposition follows from the next lemma.

Lemma 11.

dβ̃(u, v) = δu

∫
vtrφη

ωnφ
n!
− δv

∫
utrφη

ωnφ
n!

=

∫
[trη(v�φu− u�φv) + u〈∇∇v, η〉 − v〈∇∇u, η〉]

ωnφ
n!

= 0 (2.16)

Proof. Note the second equality follows from the claim. Involved is integration by parts to

obtain cancellation to zero. We suppress all integrals and divergences involved and focus on

the integrands.

By performing integration by parts on trη(v�φu− u�φv) in (2.16) we obtain four terms

that are given by

(−trη∇v · ∇u− v∇trη · ∇u) + (trη∇u · ∇v + u∇trη · ∇v)

= −v∇trη · ∇u+ u∇trη · ∇v (2.17)

The formulas may be verified through a local calculation. For example an integration by
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parts on a term with integrand trηvgpqupq yields

−(trη)pvg
pquq − trηvpgpquq = (−v∇trη · ∇u− trη∇v · ∇u)

similarly for the other term.

An integration by parts on the third and fourth terms in (2.16) gives

−gαtgsβvsutηαβ − g
αtgsβvsηαβ,tu+ gαtgsβvsutηαβ + gαtgsβutηαβ,sv

= −gαtgsβvsηαβ,tu+ gαtgsβutηαβ,sv

using that dη = 0 we obtain

−gαtgsβvsηαβ,tu = −gαtgsβvsηαt,βu = −gsβ(trη)βvsu = −u∇trη · ∇v (2.18)

similarly

gαtgsβutηαβ,sv = vgαt(trη)αut = v∇trη · ∇u (2.19)

Pairing up corresponding terms in (2.17) with (2.18) and (2.19) we obtain dβ̃ = 0.

Recall the Cech 2-differential is given by

(δf)(ω1, ω2, ω3) = f(ω1, ω2) + f(ω2, ω3) + f(ω3, ω1)

where f(ωα, ωβ) = −f(ωβ , ωα). When f defines a Cech cocycle we have

f(ω1, ω2)− f(ω3, ω2) = f(ω1, ω3)
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Letting ω1 = ω, ω2 = ω + i∂∂φ, and ω3 = ω + i∂∂ψ =: ω
′

we can recover how Tian writes

the cocycle condition

fω(φ)− f
ω
′ (φ
′
) = fω(ψ)

By the lemma dν
η
ω(φ) defines a closed 1 form. Since Hω is contractible the one form is

in fact exact and thus can be integrated to give the functional

ν
η
ω(φ) = νω(φ) +

∫ 1

0

∫
X
φ̇tη ∧

ωn−1
t

(n− 1)!
(2.20)

From the discussion in the previous paragraph ν
η
ω also satisfies the cocycle condition.

2.4 Twisted Futaki type invariant

For this section we denote the manifold by M so we may notate holomorphic vector fields

by X. Set G := Aut0(X). Let η(M) denote the lie algebra of holomorphic vector fields on

M . Given a smooth differential form α we say that the infinitesimal action of X ∈ η(M)

annihilates α if LXα = 0. We say η(M) annihilates α under the infinitesimal action if

LXα = 0 for each X ∈ η(M).

Here we see that the Futaki invariant can be adapted to the twisted setting under the

condition that η is annihilated by η(M). With this taken for granted it can be seen why the

non collapsing condition introduced in subsequent sections guaranteeing existence cannot

hold if the twisted Futaki invariant does not vanish. Though the following argument is

an explicit calculation it seems possible also to conclude through using a moment map

interpretation appearing in [Sto09].
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Proposition 19. Provided η is annihilated by η(M), FηM : η(M) → C given by (2.21) is

well-defined.

FηM (X, [ω]) = −
∫
M
θX(Ric(ω)− ω) ∧ ωn−1

(n− 1)!
+

∫
M
θXη ∧

ωn−1

(n− 1)!
(2.21)

where θX + α = iXω, α a harmonic 1-form, and X ∈ η(M).

Remark 13. Since η is a real (1, 1) form the condition that it is annihilated by the in-

finitesimal action of η(M) means, using that the lie algebra of G is generated by the real

holomorphic vector fields of M , since LX+Xη = 0 for each X ∈ η(M) we conclude that η is

G-invariant.

The first term above is the usual Futaki invariant FX so is independent of the choice of

metric in [ω]. However the second term can potentially destroy the independence.

Following the classical argument there is no loss in assuming holomorphic vector fields

satisfy

iXω = ∂θX (2.22)

since the harmonic piece has no contribution after an integration by parts (see [Tian00] and

(2.26)).

In co-ordinates (2.22) reads

Xi = gij(θX)j = (θX)i (2.23)

When the metrics vary over any family ωt = ω + ∂∂φt in a fixed Kähler class

θX,t = θX +X(φt) + ct
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since

∂(θX,t) = iXωt = iX(ω + ∂∂φt) = ∂(θX +X(φt)).

Now deduce as in (2.23)

Xi = g
ij
t (θX,t)j = θiX,t. (2.24)

Using (2.22), that X ∈ η(M) and the definition of Ric

∂�tθX,t = −iXRict

see [Tian00] for details. Since η ∈ −c1(L⊗KM ) we have

Ric(ω)− ω = η + ∂∂ψ

for some ψ ∈ C∞(M). Varying over the family {ωt} we get

Rict − (ωt + η) = ∂∂ξt (2.25)

where Rict = Ric(ωt).

proof of proposition. From (2.25) we may simplify to get

FηM (X,ωt) = −
∫
M
θX,t∂∂ξt ∧

ωn−1
t

(n− 1)!
=

∫
M
Xξt

ωnt
n!

(2.26)

Since the space Kähler metrics is affine it is enough to check the variation over any family
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of metrics in the fixed Kähler class vanishes. So start by computing

d

dt
FηM (X,ωt) =

∫
M

(Xξ̇t + �tφ̇tXξt)
ωnt
n!

(2.27)

Recall we obtain the deformation of the scalar curvature St by differentiating

St = −gklt
∂2

∂zk∂zl
log det((gt)ij)

to get

Ṡt = −�2φ̇−Rαβφ̇
αβ (2.28)

Tracing Rict − (ωt + η) = ∂∂ξt we obtain

St − n− trtη = �tξt (2.29)

Differentiating (2.29) and applying (2.28) we obtain

−�2
t φ̇−Rαβφ̇

αβ + ηαβφ̇
αβ = �̇tξt + �ξ̇t (2.30)

Recall that

�̇tξt = −(ξt)αβφ̇
αβ (2.31)

Set

R̃αβ := Rαβ − ηαβ − ξαβ = gαβ (2.32)

then R̃ic is harmonic since ΛR̃ic = cnst and ∂
∗

= −i[Λ, ∂] on a Kähler manifold.
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In terms of R̃ic from (2.30), (2.31)

�ξ̇t = −�2
t φ̇−Rαβφ̇

αβ + ηαβφ̇
αβ + ξαβφ̇

αβ

= −�2
t φ̇− R̃αβφ̇

αβ (2.33)

So we obtain integrating by parts and using the identity (2.33) for �tξ̇t

d

dt
Fη0 (X,ωt) =

∫
M

(−θX,t�ξ̇t + �tφ̇tXξt)
ωnt
n!

=

∫
M

(θX,t�
2
t φ̇+ θX,tR̃αβφ̇

αβ +Xξt�tφ̇)
ωnt
n!

=

∫
M

(�tθX,t +Xξt)�φ̇
ωnt
n!

+

∫
M
θX,tR̃αβφ̇

αβ ω
n
t

n!
(2.34)

The first term in (2.34) simplifies to

∫
M
−gαβt φ̇α((�tθX,t)β +Xi(ξt)iβ)

ωnt
n!

(2.35)

using ∂�tθX,t = −iXRict and (2.32), (2.35) simplifies to

∫
M
g
αβ
t φ̇α(RiciβX

i − (ξt)iβX
i)
ωnt
n!

=

∫
M
g
αβ
t φ̇α(R̃iβ)Xiω

n
t

n!
+

∫
M
g
αβ
t φ̇αηiβX

iω
n
t

n!
(2.36)

Performing by parts on the second term in (2.34) using (2.24) gives

= −
∫
M
θiX,tR̃iβg

αβ
t φ̇α

ωnt
n!

(2.37)
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Putting (2.36) and (2.37) together gives

=

∫
M
g
αβ
t φ̇αR̃iβ(Xi − θiX,t)

ωnt
n!

+

∫
M
g
αβ
t φ̇αηiβX

iω
n
t

n!

=

∫
M
g
αβ
t φ̇αηiβX

iω
n
t

n!
(2.38)

Compressing notation in (2.38) write

〈∂φ̇, iXη〉 :=

∫
M
g
αµ
t φ̇αηiµX

iω
n
t

n!

To get a well defined invariant we need the last term to vanish. But η(M) annihilates η so

0 = LXη = ∂iXη

(ηiµX
i)αdz

α ∧ dzµ = 0

=⇒ (ηiµX
i)α = 0 (2.39)

From integration by parts and (2.39)

〈∂φ̇, iXη〉 = −
∫
X
g
αµ
t θX,t(ηiµX

i)α
ωnt
n!

= 0
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2.5 Convexity of the Twisted Mabuchi functional

We restrict ourselves to the smooth setting and consider the twisted mabuchi functional.

Write the differential as

dν
η
ω(φ) = dE0(X,ω) +

∫
M
φ̇η ∧ ωn−1

(n− 1)!

where φ ∈ C∞∩Psh(ω,X). Here we actually mean strictly ω-psh so ωφ > 0. It was observed

in [Sto09]

Proposition 20. Under the provision that η ≥ 0 the twisted mabuchi functional is convex

along smooth geodesics. The second variation of twisted mabuchi energy given by

d2

dt2
Fη0 (X,ω) = −

∫
M

(φ̈− 1

2
|∇φ̇|2φ)(Ric(ωφ)− ωφ − η) ∧ ωn−1

(n− 1)!

+ (∂φ̇ ∧ ∂φ̇, η) + ||Lφ̇||2

where the operator L = ∂ ↑ ∂ (also denoted D).

No argument is given in the literature to the best of our knowledge so we suspect, although

its straightforward, there is an easier way to see this than the argument given below.

Proof. Mabuchi computed the second variation for E0 to be

−
∫
M
φ̈(Ric(ωφ)− ωφ) ∧

ωn−1
φ

(n− 1)!
+ ||Lφ̇||2
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see [Mab]. So it suffices to compute the first variation of

∫
M
φ̇ ∧ η ∧

ωn−1
φ

(n− 1)!

Differentiating we obtain

∫
M
φ̈η ∧

ωn−1
φ

(n− 1)!
+

∫
X
φ̇η ∧ i∂∂φ̇ ∧

ωn−2
φ

(n− 2)!
(2.40)

Integrating by parts the second term may be written as

−
∫
M
∂φ̇ ∧ ∂φ̇ ∧ η ∧

ωn−2
φ

(n− 2)!

In the following we abuse notation η ↔ ηε where ηε = η + εω > 0 since we can let ε run to

zero without trouble.

At a point p ∈M by choosing normal co-ordinates we may arrange that

η = ηiidzi ∧ dzi, ωφ = dzj ∧ dzj

we omit the
√
−1
2 factor which is ultimately absorbed into ωn

n! .

Claim 9. The (n, n) form in the second term of (2.40) at the point p is

(−φ̇αφ̇βdz
α ∧ dzβ) ∧ (ηiidzi ∧ dzi) ∧

∑
(pp6=qq)′

ωnφ
n! (dzp ∧ dzp) ∧ (dzq ∧ dzq)

= (−1

2
|∇φ̇|2 + φ̇pφ̇p)ηpp

ωnφ
n!
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Proof. This follows because

ηiidzi ∧ dzi ∧
∑

(pp6=qq)′
[. . .]

=
∑
p<q

ηpp
ωnφ

n! dzq ∧ dzq
+
∑
p<q

ηqq
ωnφ

n! dzp ∧ dzp

=
∑
p6=q

ηpp
ωnφ

n! dzq ∧ dzq

Now

−(∂φ̇ ∧ ∂φ̇) ∧
∑
p6=q

[. . .] = −
∑
p 6=q

φ̇qφ̇qηpp
ωnφ
n!

= (−1

2
|∇φ̇|2 + φ̇pφ̇p)ηpp

ωnφ
n!

Remark 14. Another point-wise calculation shows that

(∂φ̇ ∧ ∂φ̇, η) =

∫
M
φ̇αφ̇αηαα

ωnφ
n!

So it follows from the remark and point-wise computations that

∫
M
∂φ̇ ∧ η ∧ i∂∂φ̇ ∧

ωnφ
(n− 2)!

= −
∫
M

1

2
|∇φ̇|2φtrφη

ωnφ
n!

+ (∂φ̇ ∧ ∂φ̇, η)
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Modulo the second variation of Mabuchi energy, the second variation looks like

∫
M

(φ̈− 1

2
|∇|2φ)η ∧

ωn−1
φ

(n− 1)!
+ (∂φ̇ ∧ ∂φ̇, η)

so we obtain the second variation formula of Stoppa in untraced form along smooth geodesics:

d2

dt2
Fη0 (X,ω) = −

∫
M

(φ̈− 1

2
|∇φ̇|2φ)(Ric(ωφ)− ωφ − η) ∧ ωn−1

(n− 1)!

+ (∂φ̇ ∧ ∂φ̇, η) + ||Lφ̇||2

Convexity along smooth geodesics follows immediately provided η ≥ 0.

2.6 Application of Twisted Mabuchi Energy: Existence

To attack the existence problem of solutions to the twisted ricci equation

Ric(ω)− ω = η η ≥ 0

we consider twisted Kähler-Ricci flow starting at some Kähler metric ω0 ∈ c1(L) satisfying

the following condition along the flow

ωnt ≥ Cωn0 C > 0 cnst ∀t ≥ 0 (2.41)

Remark 15. Replacing the condition η ≥ 0 with ω0 + η represents a Kähler class allows η

to be negative. Unfortunately reapplying arguments for η ≥ 0 don’t carry over in any obvious

fashion in regards to the C0 estimate and the maximum principles for Perelmans estimates.
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To establish existence one uses the parabolic formulation

d

dt
ωt = T

η
t −Rict

where T
η
t = ωt + η. Henceforth, as is common this will be referred to twisted Kähler-Ricci

flow (Tkrf). Establishing convergence as t→∞ is the goal. For this we use three ingredients

the twisted mabuchi functional introduced above, a modified version of Perelmans estimates

for Kähler-Ricci flow, and a potential theory based C0 estimate of Tian-Zhu [Ti07].

The relevant theorems are described below. First the Tian-Zhu estimate.

Proposition 4. Let (X,ω) be a compact Kähler manifold of complex dimension n. Let

φ ∈ Hω solve
ωnφ
ωn = f . Then there is ε0, δ0 so that for ε ∈ (0, ε0) and δ ∈ (0, δ0) there exists

constants C,C
′
> 0 depending only on ω, ε0, δ0 such that

Osc(φ) ≤ C(
1

εδ
)n+δ||f ||δ

L1+ε(X,ω)
+ C

′
(2.42)

for non-negative f ∈ L1+ε(X).

The twisted version version of Perelmans theorem can be stated by first setting T
η
t :=

ωt + η. Then in the situation η is chosen so that T
η
t ≥ 0

Proposition 5. Over a Fano manifold (X,ω) of complex dimension n, the twisted Kähler-

Ricci flow

dωt
dt

= Tt −Ric(ωt) = i∂∂φ̇t

with η ≥ 0 satisfies uniform estimates on the following quantities

|φ̇|, |∇tφ̇|t, |∆tφ̇t|, Diamt(X) (2.43)
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Provided
ωnt
ω ≥ K0, t ∈ [0,∞) we also have

|Sct| ≤ C (2.44)

Here normalize the Ricci potential φ̇t by the condition

1

V

∫
X
e−φ̇ωnt = 1 (2.45)

This proposition differs from the recent result [SzCo] only in that the extra condition on

the density of the volume of the Tkrf allows to bound scalar curvature.

The twisted Kähler-Ricci functional is decreasing along the twisted Kähler-Ricci flow

and there is a similar identity to the classical case from which we conclude this functional

is uniformly bounded from below. Extracting the canonical metric is described in §20. The

arguments follow similar lines as appearing in [Pa] .

Recall the at the level of potentials we have the equation

φ̇t = log
ωnφt
ωn

+ φt + f + ct

where f = −hω,η and let φ̂ := φ+ ct.

Also the differential of the twisted mabuchi functional looks like

dν
η
ω(φt) =

∫
X
φ̇t(Tt,η −Rict) ∧

ωn−1
t

(n− 1)!

It is essential that our choice of functional enjoys the following property.

Proposition 21. If φt evolves according to the Tkrf flow above then the twisted mabuchi
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functional decreases along the flow.

Proof. Indeed,

d

dt
ν
η
ω(φt) =

∫
X
φ̇ti∂∂φ̇t ∧

ωn−1
t

(n− 1)!

= −
∫
X
|∂φ̇t|2t

ωnt
n!

The following can be considered among the more important properties for the existence

result. Since extracting the limit in §20 crucially depends on this.

Proposition 22. The twisted mabuchi energy (2.20) is bounded along Tkrf provided the non

collapsing estimate (2.41) holds. If the flow exists for all time then limt→∞v
η
ω(φt) <∞

Claim 10. Along Tkrf the following identity for the twisted K-energy is available.

ν
η
ω(φ) =

1

V

∫
X
φ̇tω

n
t + Jω(φt)−

1

V

∫
X
φ̂tω

n +
1

V

∫
X
hω,ηω

n (2.46)

The twisted ricci flow

dωt
dt

= Tωt,η −Ric(ωt)

at the level of potential is exactly (2.3)(let φ̂ = φ+ ct), and is written as

φ̂ = φ̇t − log
ωnt
ωn

+ hω,η (2.47)
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The corresponding monge-ampere equation is

ehω,η−φωn = e−φ̇ωnt (2.48)

In the classical setting there is the following expression for mabuchi energy(see [Ru]):

νω(φ) =
−1

V

∫
X
fωφω

n
φ +

1

V

∫
X
fωω

n + Jω(φ)− 1

V

∫
X
φωn − log

1

V

∫
X
efω−φωn (2.49)

Adjusting the formula for twisted K-energy we obtain essentially the same formula.

Lemma 12. Along Tkrf we have the following identity:

ν
η
ω(φ) =

−1

V

∫
X
hωφ,ηω

n
φ +

1

V

∫
X
hω,ηω

n + Jω(φ)− 1

V

∫
X
φωn

− log
1

V

∫
X
ehω,η−φωn (2.50)

In fact the argument is very similar to the untwisted version.

Proof. The log term in (2.50) vanishes because of normalization (2.45) using (2.48). Recall

the twisted ricci potential is given by−
√
−1∂∂φ̇ = Ric−Tt,η =

√
−1∂∂hωt,η which translates

at the level of potentials

hωt,η = − log
ωnt
ωn
− φt + hω,η

=⇒ ˙hωt,η = −∆tφ̇t − φ̇t

Again since the log term vanishes Fω(φ) = Jω(φ) −
∫
X φ ∧ ωn. So d

dtFω(φ) = −
∫
X φ̇ωnt =∫

X
˙hωt,ηω

n
t . The lemma follows from the following calculation using an integration by parts
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in the second line

d

dt

1

V

∫
X
hωt,ηω

n
t =

1

V

∫
X

( ˙hωt,η + hωt,η∆tφ̇)ωnt

=
d

dt
Fω(φ) +

1

V

∫
X
φ̇(i∂∂hωt,)n ∧ ω

n−1
t

=
d

dt
Fω(φ) +

1

V

∫
X
φ̇(Ric(ωφ)− Tωt,η) ∧ nωn−1

t (2.51)

Notice that the second term in (2.51) is negative of the differential of twisted mabuchi

k-energy. Integrating in t from 0 to 1 obtains (2.50).

proof of claim. To obtain the claim note that hωt,η = φ̇ − ct and since
∫
X ωnφ = V we may

combine the ct term as in the statement of the claim.

proof of proposition. By hypothesis we have uniform noncollapsing estimate ωnt ≥ kωn for

t ∈ [0,∞). Applying the uniform lower bound on the ratio of the volume forms
ωnt
ωn ≥ k to

(2.47) translates into an upper bound

φ̂ = φt + ct ≤ C

using the Perelman type uniform estimate |φ̇| ≤ c̃ in (2.43). With this and that Jω(φ) ≥ 0

on the Kähler potentials we have by the claim

0 ≤ Jω(φ) = νω(φt)−
1

V

∫
X
φ̇tω

n
t +

1

V

∫
X
φ̂tω

n − 1

V

∫
X
hω,ηω

n ≤ ν
η
ω(φ) + C (2.52)

So

ν
η
ω(φ) > −C
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We can conclude since the twisted Kähler ricci functional decreases along the flow and is

bounded from below limt→∞ ν
η
ω(φt) <∞.

Remark 16. We note that the term
∫ 1

0

∫
X φ̇η

ωnt
(n−1)!

dt appearing in the definition of the

twisted mabuchi K-energy can be bounded from below in terms of the scalar curvature.

∫ 1

0

∫
X
φ̇tη ∧

ωn−1
t

(n− 1)!
dt =

∫ 1

0

∫
X
φ̇trωtη

ωnt
n!
dt

>− C
∫ 1

0
trωtη

ωnt
n!

=− C
∫ 1

0

∫
X
η ∧

ωn−1
t

(n− 1)!
dt

Since

trωtη ≥ 0, |φ̇| < C

∫ 1

0

∫
X
η ∧

ωn−1
t

(n− 1)!
dt =

∫ 1

0

∫
X

(η −Ric(ωt)) ∧
ωn−1
t

(n− 1)!
dt+

∫ 1

0

∫
X
Ric(ωt) ∧

ωn−1
t

(n− 1)!
dt

Since η ∈ −c1(KX ⊗ L), η − Ric(ωt) ∈ −c1(L) we may write η − Ric(ωt) = −(ωt + ∂∂)f .

It follows

∫ 1

0

∫
X

(η −Ric(ωt)) ∧
ωn−1
t

(n− 1)!
= −

∫ 1

0

∫
X

(ωt + ∂∂f) ∧
ωn−1
t

(n− 1)!
dt

= − nV −
∫ 1

0

∫
X
∂∂f ∧

ωn−1
t

(n− 1)!
dt = −nV

where we used that ∫
X
∂∂f ∧

ωn−1
t

(n− 1)!
= 0

which follows from integration by parts since ωt is closed.
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Since we have that |S(ωt)| < C along the flow

∫ 1

0

∫
X
Ric(ωt) ∧

ωn−1
t

(n− 1)!
= n

∫ 1

0

∫
X
S(ωt)

ωnt
n!

< nCV

Remark 17. 0 < Tωt ∈ c1(−KX) so that X is Fano.

Proposition 23. For all times t ≥ 0 assume ωnt ≥ kωn along the twisted ricci flow(non

collapsing estimate). Then this flow satisfies the uniform estimate |φt + ct| ≤ K0, where

K0 > 0, k are independent of t.

Details differ marginally from [Pa] but we provide the argument below for convenience.

Claim 11. It suffices to obtain the estimate

||φ̂t||C0(X)
≤ Osc(φ̂t) + C

The propositions follows after applying the estimate in (2.42) and moser iteration.

Proof. The claim follows from

||hω,η − φ̂t|| ≤ Osc(hω,η − φ̂t)

which clearly holds if hω,η − φ̂t changes sign. But this is true since along the twisted flow

the volume forms deform according to ehω,η−φωn = e−φ̇ωnt and the normalization condition

on φ̇t gives that ∫
X
ehω,η−φωn =

∫
X
e−φ̇tωnt = V =

∫
X
ωn (2.53)
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So ∫
X

(ehω,η−φ̂t − 1)ωn = 0

so hω,η − φ̂t changes sign.

From the estimate in (2.42) we need to bound
∫
X e(φ̇t+hω,η−φ̂t)(1+ε)ωn. In view of

Perelman’s estimate on φ̇ we can reduce to bounding

∫
X
e−(1+ε)φ̂tωn

Claim 12. The quantity maxX φ̂t is bounded. So define θt := maxX φ̂t − φ̂t. It follows

e−(1+ε)φ̂tωn ≤ Ceεθtωnt for t ≥ 0.

Proof. Since
ωnt
ωn ≥ K from (2.47) and Perelman’s estimate |φ̇| < C it follows that φ̂t < C1

. So it suffices to show that maxX(φ̂t − hω,η) ≥ 0 to conclude maxX φ̂t is bounded for

t ≥ 0. But note that if 0 > maxX(φ̂t − hω,η) ≥ φ̂t − hω,η then ehω,η−φ̂t > 1. In which case

we contradict
∫
X(ehω,η−φ̂t − 1)ωn = 0. So max φ̂t is bounded and θt is well-defined. The

inequality for the volume forms is an easy calculation which involves writing −φ̂t(1 + ε) =

εθ − εmax φ̂t − φ̂t and then use that max φ̂t is bounded and φ̂t is bounded from above (see

[Pa]) .

So from the volume estimate in the claim it follows it is sufficient to bound

∫
X
eεθtωnt
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By power series expanding eεθt it suffices to get the bound

∫
X
θ
p
t ω

n
t ≤ Cpp!

for all integers p ≥ 1 and then take 0 < ε < 1
C so that the geometric series converges.

Claim 13. The estimates 0 ≤ 1
V

∫
X θtω

n
t ≤ C and

∫
X θ

p+1
t ωnt ≤ C(p + 1)

∫
X θ

p
t ω

n
t hold

along the flow.

Note that by iterating the second estimate and combining with the first estimate we may

obtain the desired bound for all integers p ≥ 1.

Proof. For the first estimate apply inequality (2.52) , which uses the hypothesis ωnt ≥ kωn.

Combined with the fact that the twisted mabuchi functional is decreasing along the flow, it

follows that Jω(φt) is bounded along the flow.

So

0 < Iω(φt) =
1

V

∫
X
φ̂t(ω

n − ωnt ) ≤ (n+ 1)Jω(φt) ≤ C (2.54)

From (2.48) we have

V =

∫
X
ehω,η−φ̂ωn ≥ C

′
∫
X
e−φ̂tωn

=⇒ 1

V

∫
X
e−φ̂tωn < C

=⇒ − 1

V

∫
X
φ̂tω

n < C (2.55)

where the last line follows from Jensens inequality.

Remark 18. In fact (2.55) follows directly from (2.52)
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From equation (2.54) and (2.55) obtain

− 1

V

∫
X
φ̂tω

n
t = Iω(φt)−

1

V

∫
X
φ̂tω

n =≤ C − 1

V

∫
X
φ̂tω

n < 2C (2.56)

Using (2.56) and that maxX φ̂t is bounded, conclude

0 ≤
∫
X
θtω

n
t ≤

1

V

∫
X

(max
X

φ̂t − φ̂t)ωnt < C

For the second estimate the starting point is the well known identity

∫
X
θ
p
t (ωnt − ωn−1

t ∧ ω) = −
∫
X
θ
p
t ∂∂θt ∧ ω

n−1
t =

4p

n(p+ 1)2

∫
X
|∂θ

p+1
2

t |2tωnt

from which it follows (using ωn−1
t ∧ ω ≥ 0)

∫
X
|∂θ

p+1
2

t |2tωnt ≤
n(p+ 1)2

4p

∫
X
θ
p
t ω

n
t (2.57)

In [Pa] it is shown that

Lemma 13. On compact Kähler manifolds (X,ω) of complex dimension n for any u, h ∈

C∞(X,R)

∫
X
|∂∇1,0u|2ωehωn = −

∫
X
〈∂∆ω,hu, ∂u〉ωenωn

−
∫
X

(Ric(ω)− i∂∂h)(∇ωu, J∇ωu)ehωn

from which a poincare-type inequality obtains.
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Corollary 4. Let X be a Fano manifold of complex dimension n. Let ω ∈ c1(L) be a Kähler

metric, 0 ≤ η ∈ −c1(L⊗KX) , and let hω,η ∈ C∞(X,R) satisfy Ric(ω)− Tω,η = i∂∂hω,η.

Vhω,η :=
∫
X ehω,ηω. Then for any φ ∈ C∞(X)

∫
X
|∂φ|2Tω,ηe

hω,ηωn ≥
∫
X
φ2ehω,ηωn − 1

Vhω,η
(

∫
X
φehω,ηωn)2

Note that when the uniform (in t) estimate
ωnt
ωn ≥ K > 0 is true

cωt ≥ Tωt,η ≥ ωt (2.58)

The second inequality follow directly since η ≥ 0, independent of the uniform estimate. The

first inequality is a consequence of the C2 estimate and is discussed in §7.

Remark 19. Roughly the content of this lemma has appeared in §5. The identity in the

lemma after dropping the nonnegative term leads to an inequality, which for first eigenfunc-

tions simplifies to

2

∫
X
|∂u|2ωehω,ηωn =

∫
X
|∇u|2ωehω,ηωn ≤

∫
X
|∇u|2Tω,ηe

hω,ηωn

≤ λ1

∫
X
|∂u|2ωehω,ηωn

Note that (2.58) is applied in the first inequality and the lemma is used for the second

inequality. The variational characterization of the first eigenvalue

inf

∫
X |∂u|

2
ωe
hω,ηωn∫

X u2ehω,ηωn
= λ1 ≥ 2
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applied with φ−
∫
X φehω,ηωn

Vhω,η
can be used to obtain the corollary.

proof of proposition. Under the twisted Kähler-Ricci flow

∂∂φ̇ = Tωt,η −Ric(ωt)

So hωt,η = −φ̇t. Applying the corollary with metric ωt and function θ
p+1

2
t gives

∫
X
|∂θ

p+1
2

t |2Tω,ηe
−φ̇ωnt ≥

∫
X
θ
p+1
t e−φ̇tωnt −

1

Vhω,η
(

∫
X
θ
p+1

2
t e−φ̇ωnt )2

Apply hölder’s inequality to θ
p+1

2
t e−φ̇t = θ

1
2
t e
− φ̇t2 θ

p
2
t e
−φ̇t

2 and using Tωt,η ≥ ωt obtain

∫
X
θ
p+1
t e−φ̇ωnt ≤

∫
X
|∂θ

p+1
2

t |2t e−φ̇tωnt + C

∫
X
θ
p
t e
−φ̇tωnt

∫
X
θte
−φ̇tωnt

Apply inequality (2.57) with the uniform estimate |φ̇t| < C to obtain

∫
X
θ
p+1
t e−φ̇ωnt ≤ Cp

∫
X
θ
p
t ω

n
t + C

∫
X
θ
p
t e
−φ̇tωnt = C(p+ 1)

∫
X
θ
p
t ω

n
t

and so the second estimate of the claim follows: ||φ̂t||C0(X)
≤ C for t ≥ 0 with C independent

of t.

2.7 Perelman’s estimates twisted setting

In proposition (2.43) we need to check Perelman’s estimates carries over to the twisted

setting, avoiding any circularity in verifying the first inequality in (2.58) . That is, twisted

87



flows satisfying the non-collapsing estimate are uniformly equivalent to the initial metric.

Recall from the calculation

∂∂φ̇t =
∂

∂t
ωt

= Tt,η −Ric(ωt)

= Tt,η − Tω0,η +Ric(ω0)−Ric(ωt)−Ric(ω0) + Tω0,η

= ∂∂(φt + log
ωnt
ωn0
− hω0,η)

the scalar equation for the potentials is

φ̇t = φt + ct + log
ωnt
ωn0
− hω0,η (2.59)

Time differentiating and setting ut = φ̇t we obtain the same equation appearing in the

Kähler-Ricci flow setting

�tut = ut + at

where at = ċt and �t = ∂t− 1
2∆. So apply the argument appearing in [Pa] directly to obtain

that at is uniformly bounded in t.

Lemma 14. The scalar curvature R is uniformly bounded from below along the twisted

Kähler-Ricci flow.

Note this follows from the maximum principle:

Proof.

∂Λωt(Ric− η)

∂t
(ωt) = |Ricαβ − ηαβ |

2 + ∆t(Λωt(Ric− η))(ωt)− Λωt(Ric− η)(ωt) (2.60)
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This simplifies to

∂etΛωt(Ric− η)

∂t
(ωt) = et|Ricαβ − ηαβ |

2 + et∆t(Λωt(Ric− η))(ωt)

from which we get

Λωt(Ric− η)(ωt) ≥ e−tΛω0(Ric− η)(ω0) (2.61)

Since ωt > 0 and η ≥ 0

Λωtη = trtη ≥ 0

we obtain

S(ωt) ≥ e−t(S(0)− trωη) ≥ min{0, S(0)− trωη}

To verify (2.60) note that the twisted Kähler-Ricci flow differs from the standard Kähler-

Ricci flow in that Ric is replaced by Q := Ric − η. Note Q̇ = Ṙic. So the check for the

identity is no different from the Kähler-Ricci flow setting:

dΛtQ

∂t
=

∂

∂t
g
αβ
t Qαβ = −gαqt g

pβ
t ˙gpqQαβ + g

αβ
t Q̇αβ

= − (gt −Q)pq(Q)pq − gαβt ∂α∂βg
pq
t ˙gpq

= − gpqt Qpq + |Qpq|2 −∆tg
pq
t (gt −Q)pq

= |Qpq|2 − ΛωtQ+ ∆tΛωtQ

Corollary 5. ∆u is bounded from above.
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Proof.

∆u =n− (S(ωt − Trtη))

≤n− e−t(S(ω0)− Tr0η)

≤n−max{0, S(ω0)− Tr0η}

<C

In the following lemma we sketch details in places since the argument is almost identical

with the untwisted setting in [ST].

Lemma 15. The function u(t) := φ̇(t) is uniformly bounded from below.

Proof. Along the twisted flow we have from (2.59)

du

dt
= n− (R− trtη) + u+ a ≤ n+ C + u (2.62)

where the second inequality follows from the lower bound on R − trtη obtained from the

lemma. The argument proceeds by contradiction as in [ST].

Start off assuming there is a point and time (t0, y0) where u is very negative. Using

(2.62) gives that u(t) stays negative for t ≥ t0 in a neighborhood U of y0. Obtain estimates

u(t)(z) ≤ et−t0(C + u(t0)) ≤ −C̃et t ≥ t0 z ∈ U

φ(t)(z) ≤ φ(t)(z)− C̃et−t0 ≤ −Cet t >> 0 z ∈ U (2.63)

The first item follows from integrating out the differential inequality du
dt ≤ C + u and using
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that u(t0) can be made very negative. For the second integrate one more time using u = φ̇.

Using the normalization 1
V

∫
M e−u(t) = 1 obtain that u(t) can’t be everywhere too neg-

ative. In particular we have the uniform estimate

max
M

(u(t)) ≥ −C (2.64)

With (2.62) rewritten as

d

dt
(u− φ) < C (2.65)

obtain the estimate

max
M

φ(t) ≥ −C − C̃t (2.66)

after integrating and combining with (2.64). All constants are uniform.

We may obtain an upper bound on maxM φ(t) using the Green’s formula (see [ST])

applied to φ(t) and −∆0φ(t) = −tr0g(t) + n < n and (2.63). Obtain

max
M

φ(t) ≤ αmax
M

φ(t)− Cet + C̃

where 0 < α < 1 and t ≥ t0. Then α < 1 gives the estimate

max
M

φ(t) ≤ −Cet + C̃

So taking large values of t it follows that maxM φ(t) decays no slower than a linear func-

tion whereas the upper bound gives that it decays at least as fast as an exponential so a

contradiction is obtained.
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Remark 20. By the corollary

∆u < C(u+ 2B)

for B sufficiently large, since u is bounded below by the lemma.

Proposition 24. Under the twisted ricci flow we check the evolution of |∇u|2 and ∆u satisfy

�(∆u) = (∂t −∆)∆u = −|∇∇u|2 + ∆u (2.67)

�(|∇u|2) = ∂t|∇u|2 −∆|∇u|2 = −|∇∇u|2 − |∇∇u|2 + |∇u|2 − 〈η,∇u∇u〉g (2.68)

Proof. Check (2.67) by direct calculation using ġij = uij = Tij−Ricij and ∂tu = ∆u+u+a

∂t∆u =∂tg
ijuij

=∆u̇− 2giqgpj ˙gpquij

=∆(∆u+ u+ a)− 2giqgpjupquij

=∆(∆u+ u)− |∇∇u|2

and the identity follows.

For (2.68) we start with the Bochner formula

∆
1

2
|∇u|2 =

1

2
|∇∇u|2 +

1

2
|∇∇u|2 +Rαβu

αuβ + gαβ(uα(∆u)β + (∆u)αuβ)
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Also note that

∂t
1

2
|∇u|2 =gij u̇iuj + gijuiu̇j − g

itgsjustuiuj

=gij(∆u+ u+ a)iuj + gijui(∆u+ u+ a)j + gitgsj(Ric− T )stuiuj

Putting this together

(∂t −∆)|∇u|2 = −|∇∇u|2 − |∇∇u|2 + |∇u|2 − ηijuiuj

The identity follows.

Using these evolution equations applied to the same quantities appearing in [ST] obtain

by application of the maximum principle the following estimates

Claim 14.

|∇u|2 ≤ C(u+ c) (2.69)

−∆u ≤ C(u+ C) (2.70)

provided η ≥ 0.

So uniform bounds on |u| give uniform bounds on |∇u| and |∆u|.

Remark 21. After this is verified we follow arguments of [SzCo] where Proposition 7. in

the exposition of Sesum-Tian is replaced by a twisted entropy functional more appropriate to

the study of the twisted Ricci flow. At this point instead of following arguments in [ST] such

as Claim 8 where upper bounds on u,R are obtained in terms of the diameter, u is analyzed

just as the diameter is (by considering sub level sets of u) in the subsequent propositions. We
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outline briefly the remaining arguments for the sake of exposition. Roughly the arguments

make essential use of the monotonicity properties of twisted Perelman entropy and that its

coercive (in the sense of Tao), in that it provides a scale invariant geometric control on the

flow known as κ-noncollapsing. Eventually to bound the scalar curvature we will see that the

assumption ωnt ≥ Kωn for t ∈ [0,∞) is used.

Remark 22. A priori its not clear what the effect of η ≥ 0 is on applying the maximum

principle as in original Kähler setting. We will see the effect is benign. However, if η < 0

there are complications.

Proof. Just as in the case of Kähler Ricci flow we consider the quantity

H =
|∇u|2

u+ 2B

an application of the maximum principle will yield (2.69).

Using ∂tu = ∆u+ u+ a

∂t
|∇u|2

u+ 2B
=
∂t|∇u|2

u+ 2B
− |∇u|

2(∆u+ u+ a)

(u+ 2B)2

Similarly (we omit a factor of 2)

∆
|∇u|2

u+ 2B
=gpq∂q∂p(

|∇u|2

u+ 2B
)

=gpq(
|∇u|2p
u+ 2B

−
|∇u|2up

(u+ 2B)2
)q

=
∆|∇u|2

u+ 2B
−
gpq|∇u|2puq
(u+ 2B)2

−
gpq|∇u|2qup + |∇u|2∆u

(u+ 2B)2
+ 2

gpq|∇u|2upuq
(u+ 2B)3
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So

�H =
∂t|∇u|2

u+ 2B
− |∇u|

2(u+ a)

(u+ 2B)2
− ∆|∇u|2

u+ 2B
+
gpq|∇u|2puq
(u+ 2B)2

+
gpq|∇u|2qup
(u+ 2B)2

− 2
gpq|∇u|2upuq

(u+ 2B)3

=
�|∇u|2

u+ 2B
− |∇u|

2(u+ a)

(u+ 2B)2
+
〈∇|∇u|2,∇u〉+ 〈∇|∇u|2,∇u〉

(u+ 2B)2
− 2

|∇u|4

(u+ 2B)3

using the evolution identity (2.68) obtain

�H =
−|∇∇u|2 − |∇∇u|2 − 〈η,∇u∇u〉g

u+ 2B
+
|∇u|2(2B − a)

(u+ 2B)2

+
〈∇|∇u|2,∇u〉+ 〈∇|∇u|2,∇u〉

(u+ 2B)2
− 2

|∇u|4

(u+ 2B)3
(2.71)

Note that

∇H =gαβ(
|∇u|2α
u+ 2B

− |∇u|
2uα

(u+ 2B)2
)

=⇒ (2− ε)∇u · ∇H
u+ 2B

(2.72)

=(2− ε)〈∇u,∇|∇u|
2〉

(u+ 2B)2
− (2− ε) |∇u|4

(u+ 2B)3

Rewriting the last two terms in (2.71) using (2.72) obtain

2
〈∇u,∇|∇u|2〉

(u+ 2B)2
− 2

|∇u|4

(u+ 2B)3
= (2− ε)∇u · ∇H

u+ 2B
+ ε
〈∇u,∇|∇u|2〉

(u+ 2B)2

− ε |∇u|4

(u+ 2B)3
(2.73)

95



Using an orthonormal frame and an application of Cauchy-Schwartz gives

|∇u · ∇|∇u|2| =∇iu∇i(∇ju∇ju)

=∇iu(∇i∇ju)∇ju+∇iu∇ju(∇i∇ju) (2.74)

≤|∇u|2(|∇∇u|+ |∇∇u|)

Fix a constant C ≥ 1. Then apply (2.74) to the term in (2.73) gives

ε
|∇u · ∇|∇u|2|

(u+ 2B)2
≤Cε |∇u|

2(|∇∇u|2 + |∇∇u|2)

(u+ 2B)3/2(u+ 2B)1/2

≤ ε
4

|∇u|4

(u+ 2B)3
+
C2ε

2

(|∇∇u|2 + |∇∇u|2)

u+ 2B
(2.75)

From (2.75) obtain

2
〈∇u,∇|∇u|2〉

(u+ 2B)2
− 2

|∇u|4

(u+ 2B)3
=(2− ε)∇u · ∇H

u+ 2B
+ ε
〈∇u,∇|∇u|2〉

(u+ 2B)2
− ε |∇u|4

(u+ 2B)3

≤(2− ε)∇u · ∇H
u+ 2B

+ 2C2ε
|∇∇u|2 + |∇∇u|2

u+ 2B
− 3ε

4

|∇u|4

(u+ 2B)3

Choose ε so that 2C2ε < 1
2 . Applying this inequality to the expression for �H obtain

�H =
−|∇∇u|2 − |∇∇u|2 − 〈η,∇u∇u〉g

u+ 2B
+
|∇u|2(2B − a)

(u+ 2B)2

+ (2− ε)∇u · ∇H
u+ 2B

+ 2C2ε
|∇∇u|2 + |∇∇u|2

u+ 2B
− 3ε

4

|∇u|4

(u+ 2B)3
(2.76)

Note that since η ≥ 0

〈η,∇u∇u〉g ≥ 0
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This can be checked through point-wise calculation simultaneously diagonalizing η with

respect g. In co-ordinates this looks like

ηijuiuj = λiiδijuiuj = λii|ui|
2 ≥ 0

So drop this term in (2.76) to obtain the inequality

�H ≤ (2C2ε− 1)(|∇∇u|2 + |∇∇u|2)

u+ 2B
+
|∇u|2(2B − a)

(u+ 2B)2
+ (2− ε)∇u · ∇H

u+ 2B
− 3ε

4

|∇u|4

(u+ 2B)3

Since 2C2ε − 1 < 0 and u + 2B > 0 we may drop the first term on the right hand side to

obtain

�H ≤ |∇u|
2(2B − a)

(u+ 2B)2
+ (2− ε)∇u · ∇H

u+ 2B
− 3ε

4

|∇u|4

(u+ 2B)3
(2.77)

So even with the extra term 〈η,∇u∇u〉g we apply the maximum principle to the quantity

H just as in the Kähler-Ricci flow case. At a point where H achieves it maximum we have

∇H = 0 and ∆H ≤ 0. So

0 ≤ ∂tHmax ≤ �Hmax ≤
|∇u|2

(u+ 2B)2
(2B − a− 3ε

4

|∇u|2

u+ 2B
) (2.78)

If the inequality H =
|∇u|2
u+2B ≤ C fails we may produce a sequence of counter examples

given by the data {(xmax, tn), Cn} where Cn → ∞. So that the parenthesis of the second

inequality in (2.78) is negative on the sequence for n >> 0. Contradiction. (2.69) follows.

The second inequality −∆u < C(u+ 2B) obtains similarly. The dependency on η arises
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as follows

�(K + bH) =
−b|∇∇u|2 − (b− 1)|∇∇u|2

u+ 2B
+

(K + bH)(2B − a)

u+ 2B

+2
∇u · ∇(K + bH)

u+ 2B
− 〈η,∇u∇u〉

u+ 2B

where K = −∆u
u+2B and b > 1.

Since
〈η,∇u∇u〉
u+2B ≥ 0 we may drop the last term. Set G = K + bH. Then the evolution

identity for Gmax is

d

dt
Gmax ≤ −(b− 1)

|∇∇u|2

u+ 2B
+
Gmax(2B − a)

u+ 2B

This is also the inequality that one gets in the Kähler-Ricci flow case so the remaining part

of this argument is identical.

Tracing the twisted Kähler-Ricci flow equation obtain ∆u = TrωtTt − R then R =

TrωtTt −∆u. Once we can establish

Tωt,η ≤ cωt (2.79)

where c is a constant independent of t, we can bound the scalar curvature (2.44) since

TrtTωt,η ≤ cn

and we can obtain the bound R < C(u+ 2B).

Remark 23. However, proceeding exactly as in [ST] does not work since the κ-noncollapsing
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property for the flow:

V olt(B(x, 1)) ≥ κ

for any metric g satisfying

|R− trtη| ≤ 1 on B(x, 1) ∂B(x, 1) 6= ∅

needs to be established.

Recently this has been verified in [SzCo]. This involves introducing the twisted entropy

functional:

Definition 2. On a compact Kähler manifold let η be a closed nonnegative (1,1) form. The

twisted entropy functional

W : Met× C∞(R)× R>0 −→ R is given by

Wη(g, f, τ) :=

∫
M

(τ(R− trgη + |∇f |2g) + f − 2n)(4πτ)−ne−fdm

for the unnormalized twisted Kähler ricci flow

ω̇ = −2(Ric(ω)− η) (2.80)

This is Perelman’s entropy functional with R replaced by R − trgη; exactly the same ad-

justment needed to obtain the twisted Mabuchi functional. Similar to the twisted Mabuchi

functional the monotonicity property of the entropy functional carries over to the twisted

setting. The twisted entropy functional shares many other useful properties with the entropy

functional.
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Proposition 6. For (g(t), f(t), τ(t)) ∈Met× C∞(R)× R

∂tW(g(t), f(t), τ(t)) = τ

∫
M
|Ric− η +Hess(f)− g

2τ
|2t (4πτ)−ne−fdm

where the triple (g(t), f(t), τ(t)) satisfies the usual system of PDE’s with R,Ric replaced by

R− trtη,Ric− η.

Following a contradiction argument κ-noncollapsing in the formulation of [SzCo] is ob-

tained by applying the twisted entropy to a test function. From its monotonicity properties

and effective estimates one can conclude. The softer version in the spirit of [ST] works too.

But first the flow needs to be reparametrized to work with the twisted entropy functional.

Claim 15. The twisted Kähler ricci flow can be reparametrized to unnormalized twisted ricci

flow

ω̇ = −2(Ric(ω)− η) (2.81)

Proof. Let g̃ = ψ(t)(g) denote the reparametrized metric with respect t(s). To determine

t(s) we need to solve ode’s:

∂tg̃ = ψ̇(g) + ψ(ġ)

= ψ̇(g) + ψ(−Ric+ g + η)

= (ψ̇ + ψ)(g) + ψ(η −Ric)

So

2

ψ
∂tg̃ = (2

ψ̇

ψ
+ 2)(g)− 2Ric = −2(Ric− η)
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provided ψ̇
ψ +1 = 0. Since ∂s = ∂t

∂s∂t = 2
ψ∂t a choice of reparmetrization t(s) can be obtained

by solving

2ψ̇

ψ
+ 2 =

∂ψ

∂s
+ 2 = 0

dt

ds
=

2

ψ

Solving we obtain t(s) = −ln(C−2s) and if we enforce that t(0) = 0 we can take C = 1.

Remark 24. Reparametrization allows to transfer the κ-noncollapsing property for unnor-

malized flow to normalized twisted Kähler ricci flow. See [SzCo].

From the discussion above adjusting u by a constant appropriately the following uniform

estimates are in hand

|∆u|, |∇u|2 < Ku (2.82)

So it suffices to bound u from above.

It was observed in [SzCo] that by considering sublevel sets of the form

M(a, b) = {x ∈M |a < u < b}

instead of geodesic annuli u can be bounded directly without requiring a diameter bound.

Remark 25. If a < b < c < d then M(a, b) ∩M(c, d) = ∅

For the purpose of bounding u a contradiction argument needs to be made and one starts

by assuming u grows without bound.
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V = V ol(Mt) is constant along the flow. Partition M using the range of u then

N∑
i=1

V ol(M(210i−1k, 210ik)) < V

for k sufficiently large (depending on u) and taking N > V
ε , there is an 1 ≤ i0 ≤ N for

which

0 < V ol(M(210i0−1k, 210i0k)) < ε

Note that i0 can be taken to be 1 at the cost of making k larger.

Like geodesic annuli considered in [ST], [SzCo] does the same for M(a, b) instead. In

particular:

Lemma 16. There is a point x ∈ M with u(x) = a + 1 and constants κ1 such that if

b− 2 > a > K then

V ol(M(a, b)) > κ1a
−n

Restricting (2.82) to M(a, a + 2) ⊂ M(a, b) gives estimates necessary to apply the κ

non-collapsing property to conclude.

After specifying a threshold that k above must exceed, since u is assumed unbounded we

may assume there is k so that V ol(M(2k, 210k) < ε < 1 and we can always find an x ∈M so

that u(x) = 25k + 1 say. Clearly for k1, k2 ∈ [k, 10k], V ol(M(2k1 , 2k2)) < ε holds. Moreover,

similar to Claim (10) in [ST]

Lemma 17. Provided k exceeds the threshold max{log2(κ
−1
n ), 2} and 0 < ε < 1, there exists

102



k1, k2 ∈ [k, 10k] with k2 > k1 + 4 such that

V ol(M(2k1 , 2k2)) < ε

V ol(M(2k1+2, 2k2−2)) > 2−3nV ol(M(2k1 , 2k2))

The second estimate above follows by iterating the reverse inequality starting with the

sublevel set M(2k, 29k+2). Finally to conclude one applies the previous lemma and uses the

threshold to obtain a contradiction.

The penultimate step is similar to Lemma to 11 in [ST] with −∆u = Trt(Ric − η) − n

replacing scalar curvature and provided k2 > k1 + 1 then

Lemma 18. There exists r ∈ [2k1 , 2k1+1] and r2 ∈ [2k2−1, 2k2 ] so that

∫
M(r1,r2)

(−∆u)dm < CV ol(M(2k1 , 2k2))

As before one works with (2.82) on sublevel sets. An application of co-area formula allows

to pass to estimates on some smooth sets u = ri, i = 1, 2. Then conclude as in [ST].

Finally just as in Proposition 9 in [ST] we are in the setting of lemma (17) so

Proposition 25. There is an ε > 0 such that if k > max{log2(κ
−1
n

1 ), 2} and V ol(M(2k1 , 2k2)) <

ε then u is bounded.

This proceeds by contradiction, when u grows without bound a cutoff function is con-

structed so that lemma’s 17, 18 may be used and fed into the twisted entropy functional

just as in [ST]. In fact the same argument in [ST] with use of the twisted entropy function

can be made. However [SzCo] proceeds using effective estimates to obtain the contradiction:

roughly by lemma (17) there is k1, k2 such that V := V ol(M(2k1 , 2k)) < ε, whereas via the
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twisted entropy functional we may obtain a choice for which V > ε a contradiction. So u is

bounded from above.

To summarize, along the twisted Kähler ricci flow [SzCo] obtained

Proposition 7 (Sz-Co). Along TKRF with g(0) = g0 there exist a constant C depending

continuously on the C3 norm of g0(and a uniform lower bound of g0) such that

|u|+ |∇u|g(t) + |∆g(t)u| ≤ C

Now we are in a position to start bounding scalar curvature and also justify the first

inequality in (2.58). For this it suffices to show for the twisted Kähler Ricci flow:

Lemma 19. Suppose
ωnt
ωn ≥ K0 for all t ∈ [0,∞) where K0 is a constant independent of t.

Then there exist positive constants k0, K independent of t > 0 such that for all t > 0 the

following estimates hold

0 <n+ ∆ωφt < K (2.83)

|∂∂φt|ω <k +
√
n (2.84)

k−1
0 ω <ωt < Kω (2.85)

Remark 26. (2.83) appears as the parabolic analogue of Yau’s C2 estimate. But a little

modification is needed. In Kähler-Ricci flow case [Pa] uses Perelman’s estimate |u| < C.

Recall in [ST] this depends on scalar curvature but thanks to [SzCo] this dependency can be

removed.

Proof. For (2.83) the ingredients remain the same as in [Pa]. Consider the quantity appearing

104



in Kähler-Ricci flow

A := log(trωωt)− k(φt + ct) M × [0,∞)

Follow a computation similar to that in [BBEGZ]. Start with τ, τ
′

Kähler forms on a complex

manifold. There is a lower bound B > 0 for Riijj(τ) so that

∆
τ
′ log trτ τ

′
≥ −trτRic(τ

′
)

trτ τ
′ −Btr

τ
′τ

Apply this when τ = ω and τ
′

= ωt. So we obtain when �t = −(∂t −∆t)

�t log(trτ τ
′
) ≥− ∂ttrτ τ

′

trτ τ
′ −

trτRic(τ
′
)

trτ τ
′ −Btr

τ
′τ

=− (∂ttrτ τ
′
+ trτRic(τ

′
))

trτ τ
′ −Btr

τ
′τ

Note

∂t∆τ τ
′

= ∆ωφ̇ = trτ τ
′
− trτRic(τ

′
) + trτη

Since C ≥ trτη ≥ 0 and n ≤ trτ τ
′
tr
τ
′τ we have

�t log(trτ τ
′
) ≥− trτ τ

′
+ trtη

trτ τ
′ −Btr

τ
′τ

≥− 1− C

trτ τ
′ −Btrτ ′τ

≥− 1− (
C

n
+B)tr

τ
′τ

=− 1− Ctr
τ
′τ
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So choosing k > C and using tr
τ
′τ = trtω = n−∆tφ = n−∆

τ
′φ

�tA ≥ −1 + (k − C)tr
τ
′τ + k(φ̇t − n+ at) (2.86)

Recall

trτ1τ2 ≤
τn2
τn1

(trτ2τ1)n−1

so using
ωnt
ωn = eh+φ̇−φ̂

tr
τ
′τ ≥(

τn

(τ
′
)n
trτ τ

′
)

1
n−1

=e
φ̂−h−φ̇
n−1 (trωωt)

1
n−1

=e
A
n−1 e

(k+1)φ̂−h−φ̇
n−1

Since estimates |φ̇|, |φt + ct| < C are available obtain

tr
τ
′τ ≥ C0e

A
n−1

where C > 0.

So (2.86) becomes

�tA ≥ −C + C0e
A
n−1

It follows by applying the maximum principle that we have a uniform upper bounds on the

maximum of eA < Cn−1; since a maximum of A is a maximum of eA. Using boundedness φ̂
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on [0,∞) the upper bound of (2.83) follows:

n+ ∆tφ = trωωt < K

The upper bound in (2.85) follows directly from here since

1 + φii < trωωt < K

so

ωt < Kω

To get the first inequality in (2.85) use the uniform estimate to get

K0 ≤
ωnt
ωn

= Πnj=1(1 + φjj) < Kn−1(1 + φii)

Conclude ωt > k−1
0 ω for k0 :=

K0
Kn−1 > 0. In particular, it follows that Tt,η is uniformly

equivalent to ω.

Another pointwise calculation yields (2.84). At a point p

〈ωt, ωt〉g =
∑
i

(1 + λii)
2

<(
∑
i

(1 + λii))
2

=(trωωt)
2

<K2
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Since trωωt > 0 it follows
∑
i(1 + λii) > 0 and so −

∑n
i=1 λii < n. It follows

∑
i

(λ2
ii

+ λii) <
∑
i

(1 + λii)
2 < K2

=⇒ |ddcφ|2g = (λii)
2 < K2 −

n∑
i=1

λii < K2 + n < (K +
√
n)2

2.8 Twisted Perelman entropy

We note, following [Tao], that this functional can be obtained by analyzing variations of

known functionals. Temporarily replacing the volume form by a static measure, a critical

quantity, which also happens to be a coercive quantity (in the sense of Tao) can be obtained

due to Perelman. It is also monotone with special type of critical points. Denote the volume

form by dµ. Consider the functionals

E(f) =
1

2

∫
M
|∇f |2gdµ (2.87)

H(M, g) =

∫
M
Rdµ (2.88)

Provided g is static the E functional deforms like:

d

dt
E = −

∫
M

∆gfḟdµ
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The first variation of the H functional is given by

d

dt
H =

d

dt

∫
M
Rdµ =

∫
M

(Ṙ +
1

2
trg(ġ))dµ

=

∫
M

(−Ricαβ ˙gαβ −∆trg ġ +∇α∇β ġαβ +
1

2
trg(ġ)αβ)dµ

=

∫
M

(−Ricαβ ġαβ +R
1

2
trg(ġ)αβ)dµ

The gradient flow for the negative functional is known to be not parabolic in general(ġ =

Ric−Rg n ≥ 3). Replacing dµ by a static measure dm = e−fdµ (so the potential f deforms

like ḟ = 1
2trg(ġ)) removes the contribution from R1

2trg ġαβ causing this issue. In this way

obtain modified functionals Hmod, Emod. Hmod deforms like

d

dt
Hmod =

∫
M
Ṙdm

=

∫
M

(−Ricαβ ġαβ −∆trg ġ +∇α∇β ġαβ)dm

=

∫
M

(−Ricαβ ġαβ + (∆f − |∇f |2g)gαβ ġαβ

+ ġαβ(∇αf∇βf)− ġαβ(∇α∇βf))dm

Note that in the deformation of Hmod the second term following the third equality ∆ftrg ġ

above comes with an opposite sign to that of the variation of Dirichlet energy, which gives

109



another motivation for the choice of Emod. Its first variation is given by

d

dt
Emod =

∫
M

d

dt
(gαβ∇αf∇βf)dm

=

∫
M

(−ġγδ∇γf∇δf + gγδ ḟγfδ + gγδfγ ḟδ)dm

=

∫
M

(−ġγδ∇γf∇δf + gγδ(
1

2
tr(ġ))γfδ + gγδfγ

1

2
(trg ġ)δ)dm

=

∫
M

(−ġγδ∇γf∇δf − (∆f − |∇f |2g)gγδ ġγδ)dm

Define

Fm(M, g) := Hmod + Emod =

∫
M

(|∇f |2g +R)dm

So Fm deforms along ġ = −(2Ric+ 2Hessf) as

∂tFm(M, g, f) = 2

∫
M
|Ric(g) +Hess(f)|2dm

It follows Fm is non decreasing along the flow. Along this gradient flow using the relation

ḟ = 1
2trġ we see that the potential deforms according to ḟ = −∆f − R. Using L∇fgαβ =

2∇α∇βf = 2Hessf and L∇ff = |∇f |2g and ∂tφ
∗
tωt = φ∗t (LXωt+ ω̇t) it follows the gradient

flow and the potential flow can be conjugated by a diffeomorphism to ġ = −2Ric(g) and

ḟ = −∆f −R + |∇f |2g.

After conjugation f does not define a static measure but since Fm is invariant under

diffeomorphism, its variation remains the same whether modified by a diffeomorphism or

not. In particular under the modified flow induced by the diffeomorphism: ġ = −2Ric(g)

and ḟ = −∆f −R + |∇f |2g, Fm is monotone non-decreasing.

From the monotonicity property it can be deduced the periodic solutions (ones for which
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φ∗g(t2) = g(t1)) are critical points i.e satisfy Ric = −Hessf . Similarly we can consider

functionals with critical points solutions to Ric + Hessf − 1
2τ g = 0 (gradient shrinking

solitons), which when f = 0 has positively curved Einstein metrics as critical points.

Note that

|Ric+Hessf − g

2τ2
|2g = |Ric+Hessf |2g −

1

τ
(R + ∆f) +

n

4τ2
(2.89)

With respect to Ricci flow scaling τ has dimension 2. So the derivative of the scale invariant

quantity must have dimension −2. But each of the three terms have dimension −4. So we

must consider a quantity like 2τ
∫
M |Ric + Hessf − g

2τ2 |
2
gdm. Recalling the Nash entropy

functional Nm :=
∫
M log dm

dµ dm = −
∫
M fdm deforms like (provided dm is static)

d

dt
Nm = −

∫
M
ḟdm =

∫
M

(∆F +R)dm =

∫
M

(|∇f |2g +R)dm

we may integrate to obtain Wm(M, g, f, τ).

Similarly

Proposition 26. The twisted entropy functional given by

Wα
m(M, g, τ, f) = (4πτ)−n

∫
M

(τ(R− Trgα + |∇f |2g) + (f − 2n))e−fdm

deforms like

2τ

∫
M
|Ric− α +Hessf − g

2τ
|2gdm
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It is monotone provided (g(t), f(t), τ(t)) solves the coupled system

∂g ġ = − 2(Ric− α)

∂tf = −∆gf + |∇f |2g −R + Trgα +
n

τ

∂tτ = − 1

on some interval [0, T ].

Proof. Following the same heuristics one obtains the twisted entropy functional. For the

same reasons it will be both monotone and a critical quantity (in the sense of Tao).

Along ġ = −2(Ric− α +Hessf) with dm static so ḟ = −∆gf −R + trgα, it follows

d

dt

∫
M
trgαdm =

∫
M
−gsαgβtġαβαstdm = 2

∫
M
〈Ric− α +Hessf, α〉dm

Just as in (2.89) we have

|Ric− α +Hessf − g

2τ
|2g = |Ric− α +Hessf |2g −

1

τ
(R + ∆f − trgα) +

n

4τ2
(2.90)

Similarly we have that for Fαm :=
∫
M (R + |∇f |2g − trgα)dm

d

dt
Fαm = −

∫
M

(Ricαβ +∇α∇βf − ααβ)ġαβdm
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Likewise for Nα
m :=

∫
M −fdm. So if dm is static along ġ = −2(Ric− α +Hessf) then

d

dt
Nα
m =

∫
M
−ḟdm =

∫
M

(R + ∆gf − trgα)dm

=

∫
M

(R + |∇f |2g − trgα)dm

It follows that

d

dt
(τFαm −Nα

m −
n

2
log τ) = 2τ

∫
M
|Ric− α +Hessf − g

2τ
|2gdm

normailized so that dm is a probability measure.

Write e−fdµ = dm = (4πτ)−
n
2 e−f̃dµ so f = f̃ + n

2 log(4πτ). Since dm is a probability

measure up to an arbitrary constant we may write the functional as

∫
M

(τ(R + |∇f̃ |2g − Trgα) + f̃ − cnst)(4πτ)−ndm

Normalize the arbitrary constant to n so that in the euclidean setting, when also α = 0, dm

is gaussian measure and the expression vanishes.

Note that ˙̃f = −∆gf − R + trgα + n
2τ so conjugating by a diffeomorphism induced by

the vector field ∇f obtains the coupled system

ġ = − 2(Ric− α)

˙̃f = (−∆gf̃ −R + Trgα +
n

2τ
+ |∇f̃ |2g)
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2.9 Extracting canonical metric

In this section we show how the canonical metric g∞, solving (2.1), can be extracted. This

follows along the same lines as [Pa] for the Kähler-Einstein case. Recall we have in hand the

following (with the exception of the fourth bullet point)

• φ̇ = log
ωnφ
ωn + φ+ f + ct

• νηω is bounded below.

• νηω is decreasing along the twisted Kähler-Ricci flow.

• |φ̂t|C0(X) + |∂∂φt|C0(X) + |∇∂∂φt|C0(X) < C

provided η ≥ 0 and the non-collapsing estimate along the flow holds.

A consequence of the second and third bullet points is limt→∞ ν
η
ω <∞. So for sequences

{tk} ↗ ∞ we have

lim
k→∞

∫
X
|∇φ̇tk |

2
tk
ωntk

= 0

Since otherwise we may integrate and contradict boundedness along the flow.

From the uniform C2, C3 estimates we obtain that the (1, 1) forms ∂∂φt are uniformly

bounded in C0,α(X) topology.

By differentiating the first bullet by ζ = ∂zk , ∂zk we have from [Pa]

�t(ζφt) + ζφt = (Trω − Trt)(Lζω) + ζhω,η

The laplacian term in �t and Trt contain g−1
t so are bounded in C0,α norm. By schauder

regularity theory for parabolic equations we obtain ζφt is uniformly bounded in C2,α.

114



We recall that Ck,α ↪→ Ck is a compact embedding. So a bounded sequence in Ck,α lies

in a compact set in Ck( k ≥ 0, 0 < α < 1) (see [Jo]).

Since ζφt ∈ C2,α is uniformly bounded, φt ∈ C3,α is uniformly bounded. Further, thanks

to the C0 uniform estimate |φ̂t| < C we have φ̂t lies in a bounded set in C3,α. So by the com-

pact embedding we may arrange for a subsequence of φtk so that ( ˆφsk , dφsk , ∂∂φsk ,∇∂∂φsk)

converges uniformly to (φ∞, dφ∞, ∂∂φ∞,∇∂∂φ∞).

The uniform estimate
ωnt
ωn ≥ K > 0 gives that

ωnφ∞
ωn > K. By (2.85) we have ωφ∞ > 0.

The equation in the limit on this sequence then reads

ψ := lim
k→∞

φ̇sk = log
ωn∞
ωn

+ φ∞ − hω,η

In particular ψ is C1. Since φsk ∈ C
3,α converges in C3

lim
k→∞

∂φ̇sk = lim
k→∞

(∆sk
∂φsk + ∂φsk − ∂hω,η) = ∆∞∂φ∞ + ∂φ∞ − ∂hω,η = ∂ψ

The convergence being uniform gives that

0 = lim
k→∞

∫
X
|∇φ̇sk |

2
sk
ωnsk

=

∫
X
|∂ψ|2φ∞ω

n
φ∞

So ψ is a constant and from the normalization
∫
X e−φ̇tωnt = V we obtain that ψ = 0. So

φ∞ satisfies

0 = log
ωnφ∞
ωn

+ φ∞ − hω,η =: F (φ∞)

115



Recall that hω corresponds to the twisted ricci potential. Since ω∞ > 0 ellipticity follows

from computing the linearization:

dFφ∞(v) = ∆φ∞v + v

By Schauder regularity theory for elliptic equations we can conclude that φ∞ is smooth. So

φ∞ is a desired solution to the equation Ric(ω∞) = ω∞ + η.

2.10 C3 Estimate

Following [PSS] work with the quantity hαβ := ĝαkgkβ (ĝ−1g is an endomorphism). We follow

the notation gkβ since most quantities appearing in this formulation come as endomorphisms.

Let ĝ denote the initial metric. Note that Trh = Trĝg. Similarly h−1 = g−1ĝ. Recall also

that in the Kähler setting the connection looks like g−1∂g, is of pure type i.e. Γkij = gks∂jgis

(old notation) and the torsion free condition gives symmetry in permutation of i, j. Similarly

the curvatures look like R··k· = ∂kΓ···.

The change in connection with respect to the initial metric can be written in terms of

the quantity (∇h)h−1.

(∇mh)kλh
λ
l = (Γ− Γ̂)kml
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so as not to distract from our main goal we only outline the calculation schematically:

(∇h)h−1 = (∂h− hΓ + hΓ)(h−1)

= (∂h− ĝ−1gg−1∂g + hg−1∂g)(h−1)

= (∂h− ˆg−1∂g)(h−1) + Γ

= (∂(ĝ−1g)− ĝ−1∂g)h−1 + Γ

= (∂ĝ−1gh−1 + Γ)

= (−ĝ−1ĝ−1(∂ĝ)ĝ + Γ)

= (−ĝ−1∂ĝ + Γ)

= (−Γ̂ + Γ)

Here in the first line the minus sign comes from the connection extended to forms (∇m in

the first line is the covariant derivative induced on endomorphisms). In passing from line 4

to 5 the torsion free property is used to cancel out −ĝ−1∂g appearing in line 4.

On forms and vector fields the Levi-Cevita connection differs by a sign we have the

following expression for the change in connection acting on forms and vector fields:

(∇m − ∇̂m)Vl = −Vα(∇mhh−1)αl

(∇m − ∇̂m)V l = (∇mhh−1)lαV
α

Similarly for curvature

(R̂−R)α
jkβ

= ∂k(∇jhh−1)αβ (2.91)
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Also

φjkm = ∇̂mφjk = −gkα(∇mhh−1)αj (2.92)

The minus sign here is attributed to following the convention that gkα = ĝkα + φkα.

To establish the C3 estimate one considers the quantity

S = gjrgskgmtφjkmφrst

This can be written as

S = gmγgµβg
lα(∇mhh−1)

β
l (∇γhh−1)

µ
α = |∇hh−1|2

using (2.92).

We summarize the process involved in establishing C3 estimates. The following obtains

∆S = g−1gg−1(∆(∇hh−1)∇hh−1 + (∇hh−1)∆∇hh−1)

+|∇(∇hh−1)|2 + |∇(∇hh−1)|2 (2.93)

by direct calculation. The term with ∆ = gpq∇q∇p can be written in terms of ∆ by

commuting derivatives and introducing curvatures. That is, with (T
γ
α )j = (∇jhh−1)

γ
α obtain

∆(T
γ
α )j = ∆(T

γ
α )j −R

γ
µ(T

µ
α )j +R

µ
α(T

γ
µ )j +R

µ
j (T

γ
α )µ

Replacing the ∆ expression in (2.93) by this gives another expression for ∆S with three

extra terms involving curvatures. See [PSS] for the formula. Note that ∆S is a fifth order
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term and the expression in [PSS] (2.43) contains terms with ∆(∇hh−1) which are also fifth

order. In order to obtain an expression of the form ∆S ≥ −C1S − C2 to apply a maximum

principle we need to reduce the order of the terms appearing. At worst to fourth and third

order terms, and of course the fourth order terms must come with favorable sign so they can

be dropped.

An application of Bianchi identity gives

∆(∇hh−1) = −∇·R·· + g−1∇·R̂··
·
· (2.94)

The first term in (2.94) and curvature terms Rβα appearing in [PSS] (2.43) need to cancel

out since these are not controlled.

Next Ṡ can be expressed in terms of h−1ḣ. Noting

• ġ = ĝḣ = g(h−1ḣ)

• ˙g−1 = −ġ−1 = −(h−1ḣ)g−1

• ∇h = gg−1∂g−1gh = g−1∂(ghg−1)g

The appearance of g after the second equality in the first bullet corresponds to lowering the

endomorphism (h−1ḣ) to a (0,2) tensor. Similarly in the second bullet g−1 corresponds to

raising it to a (2,0) tensor.

Some application of these bullet points give

1. ∇̇h = −h−1ḣ+ (∇h)h−1ḣ+∇(h−1ḣh) = ∇(h−1ḣ)h+∇h(h−1ḣ)

2. ˙(∇hh−1) = ∇(h−1ḣ)
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Here the first equality in (1.) follows from time differentiating bullet three. With this the

expression Ṡ can be computed. This gives rise to terms

gmγgµβg
lα(∂t(∇mhh−1)

β
l (∇γhh−1)

µ
α)

and time differentiating the glα term in S using the second bullet and likewise gµβ using the

first bullet boils down to replacing glα by −(h−1ḣ)lα and gµβ by (h−1ḣ)µβ . That is we get

terms like:

−gmγgµβ(h−1ḣ)lα(∇mhh−1)
β
l (∇γhh−1)

µ
α

gmγ(h−1ḣ)µβg
lα(∇mhh−1)

β
l (∇γhh−1)

µ
α

The formula for Ṡ appears in [PSS] as equation 2.47. Note that in 2.47 h−1ḣ is raised or

lowered with the metric. So under the action of ∆− ∂t, S deforms as

(∆− ∂t)S =|∇(∇hh−1)|2 + |∇(∇hh−1)|2 + gmγgµβg
lα((∆− ∂t)(∇mhh−1)

β
l (∇γhh−1)

µ
α)

+ gmγgµβg
lα((∇mhh−1)

β
l (∆− ∂t)(∇γhh−1)

µ
α) + ((h−1ḣ+R)mγgµβg

lα

− gmγ(h−1ḣ+R)µβg
lα + gmγgµβ(h−1ḣ+R)lα)(∇mhh−1)

β
l (∇γhh−1)

µ
α

(2.95)

Now finally we may begin the verification of the C3 estimates for our problem.

Proposition 27. Along the Tkrf the uniform estimate |∇∂∂φt|C0(X)
< C holds.

Restrict to twisted Kähler-Ricci flow. Then

(h−1ḣ)
β
l = gβα(g + η −R)lα = (δ + η −R)

β
l
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It follows that

(h−1ḣ+R)
β
l = (δ + η)

β
l = (Tη)

β
l

With

cωt ≥ Tωt,η ≥ ωt

(δ)
β
l ≤ (h−1ḣ+R)

β
l ≤ c(δ)

β
l (2.96)

together with (2.94), 2. and (2.91) obtain

(∆− ∂t)(∇jhh−1)lm = −∇jRlm +∇pR̂lpjm −∇j(h
−1ḣ)lm

= −∇jRlm +∇pR̂lpjm −∇j(δ + η −R)lm

= ∇pR̂lpjm −∇j(η)lm

Using (2.96)

(∆− ∂t)S ≥ |∇(∇hh−1)|2 + |∇(∇hh−1)|2

+ gmγ(∇pR̂βpml −∇m(η)
β
l )(∇γhh−1)l

β
)

+ gmγ(∇mhh−1)αµ(∇pR̂µpγα −∇γ(η)
µ
α))

+ (2− c)gmγgµβ(g)lα(∇mhh−1)
β
l (∇γhh−1)

µ
α (2.97)

Lemma 20. The second and third terms in (2.97) are O(S + c1
√
S)

Proof. We check this for gmγ∇pR̂βpml(∇γhh
−1)l

β
, and terms involving the conjugate expres-
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sion are similar.

∇pR̂βpml = gjp(∇̂jR̂
β
pml − (∇jhh−1)αmR̂

β
pαl

− (∇jhh−1)αl R̂
β
qmα + (∇jhh−1)

β
αR̂

α
qml)

= gjq(∇̂jR̂
β
qml +O(∇hh−1R̂))

Claim 16. Along Tkrf the following estimates are available:

gjq∇̂jR̂
β
qml(∇γhh

−1)l
β
≥ − |∇̂R̂||∇hh−1| ≥ −C

√
S

−gmγgjq(∇jhh−1)αmR̂
β
qαl(∇γhh

−1)l
β
≥ − CS

gjqgmγ(∇jhh−1)αl R̂
β
qmα(∇γhh−1)l

β
≥ − CS

gjqgmγ(∇jhh−1)
β
αR̂

α
qml(∇γhh−1)l

β
≥ − CS

This follows by using R̂ is bounded, so R̂
β
qαl ≤ Cδ

β
αgql (by the C2 estimate g·,· is equivalent

to ĝ) and cauchy schwartz.

Similarly, but with less effort, −gmγ∇mηβl (∇γhh−1)l
β

can be handled. Since η is fixed

there is a C > 0 so that −Cδβα ≤ η
β
α ≤ Cδ

β
α. So

−gmγ∇mηβl (∇γhh−1)l
β

=− gmγ∇̂mηβl (∇γhh−1)l
β

+ gmγ(∇mhh−1)αl η
β
α(∇γhh−1)l

β

− gmγ(∇mhh−1)
β
αη

α
l (∇γhh−1)l

β

≥− 〈η,∇hh−1〉 − 2Cgmγ(∇mhh−1)
β
l (∇γhh−1)l

β

≥− |η||∇hh−1| − 2C|∇hh−1|2 ≥ C1

√
S − 2CS
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proof of proposition. Applying the lemma, (2.97) becomes

(∆− ∂t)S ≥ |∇(∇hh−1)|2 + |∇(∇hh−1)|2 − C̃S − C̃1

√
S ≥ −C1S − C2

To conclude, exactly the same argument as in [PSS] applies. That is, with A sufficiently

large the following expression

(∆− ∂t)(S + A∆̂φ) ≥ C3S − C4 (2.98)

C3 > 0 is available. An application of the maximum principles allows to conclude that S is

bounded by a positive number.
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Chapter 3

Future direction

3.1 Coupled system

Assume H0(X,KX ⊗ L) is endowed with the natural L2 inner product induced from the

hermitian metric on the adjoint bundle KX ⊗ L. Consider the coupled system

(ωu)n = (
∑
i

si ∧ sie−φ)e−u =
∑
i

|si|2h,ω0
ωn0 e
−u := µse

−u (3.1)

∫
X
hKX⊗L(si, sj)e

−u =

∫
X
in

2
si ∧ sje−(φ+u) = 〈si, sj〉u = Cδij (3.2)

We note that for the coupled system above solutions are balanced metrics solving the mean

field equation (3.1).

Equation (3.1) is equivalent to the density of states condition

1 = in
2
∑
i si ∧ sie−(φ+u)

ωnu
= in

2 ∑
i

|si|2ω,he
−uω

n
0

ωnu
(3.3)

very much in the spirit of Donaldson’s double quotient in [Do]. However the hermitian metric

is defined on KX ⊗ L and is a coupling of a hermitian metric on KX and one on L with
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ωu ∈ c1(L). The same effect is obtained by choosing a hermitian metric only from L:

1 = in
2 ∑

i

|si|2ω,he
−uω

n
0

ωnu
= in

2 ∑
i

|si|2ω,he
−u+log

ωn0
ωnu

So the hermitian metric on L giving (3.3) is determined by the weight φ+ u− log
ωn0
ωnu

.

The orthogonality condition (3.2) on a basis of H0(X,KX ⊗ L) with respect to 〈·, ·〉φ+u

can now be written as:

Cδij = in
2
∫
X
si ∧ sje−(φ+u) = in

2
∫
X
si ∧ sje

−(φ+u+log
ωnu
ωn0

)ωnu
ωn0

(3.4)

Note that for a solution of the mean field equation that (3.4) can also be written as

Cδij =

∫
X

si ∧ sje−φ∑
k sk ∧ ske−φ

ωnu (3.5)

Definition 3. Given an embedding into CPN , for some N > 0, induced by an L2 orthonor-

mal basis (si) of H0(X,KX ⊗ Lk) (with respect to 〈·, ·〉kφ+ku) we say that embedding is

balanced if (3.5) holds.

Fix notation

Bk(φ+u)e
−k(φ+u) :=

∑
sj ∧ sje−k(φ+u)

then from [Bo09] the following asymptotics are available

Bk(φ+u)e
−k(φ+u) = kn(a0 +

a1

k
S +O(k−2))ωnu

= knωnu(1 +O(k−1))
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Applying this to right hand side of (3.5) obtain

∫
X

si ∧ sje−φ∑
γ sγ ∧ sγe−kφe−ku

ωnku = C

∫
X

si ∧ sje−kφ

knωnu(1 +O(k−1))
knωnu

= C

∫
X
si ∧ sje−k(φ+u)(1 +O(k−1)) (3.6)

where C is the constant appearing in (3.4).

From [BBEGZ] the mabuchi energy is introduced in a more general setting by defining

it as

Mabµs(φ) :=

∫
X

log(
ωnφ
µs

)ωn + J(φ)− I(φ) (3.7)

On Hω this restricts to the usual mabuchi functional νω(φ). Also if Mabµ is proper then the

corresponding mean field equation ωnu = µse
−u can be solved, see [BBEGZ]. Next we show

properness is independent of the choice of s.

Proposition 8. If Mabµs is proper on Hω then so is Mabµ
s
′ .

Proof. Recall that the mabuchi functional satisfies the cocyle property [Tian00]

νω(φ)− ν
ω
′ (φ
′
) = νω(ψ)

where ω
′

= ω+ ∂∂ψ and φ
′

= φ−ψ. This follows from computing the differential of the left

hand side. Since it vanishes we obtain the left hand side above is constant. Setting φ = ψ

determines the constant.

In the smooth case using the cocyle condition and properness as defined by Tian [Tian00]
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we get

ν
ω
′ ≥ µ(Jω(φ))− C

Since the function µ is increasing, it suffices to show

J
ω
′ (φ
′
) ≤ αJω(φ) + β

where α, β > 0 are constants. We have

µ
′
(·) = µ(

· − β
α

)

is increasing and then

ν
ω
′ ≥ µ

′
(J
ω
′ (φ
′
))− C

Begin by recalling

Jω(φ) =
1

V

n−1∑
i=0

i+ 1

n+ 1

∫
X
∂φ ∧ ∂φ ∧ ωi ∧ ωn−i−1

φ (3.8)

where V =
∫
X ωn. Throughout we assume that φ ∈ Hω. This gives, through a simultaneous

diagonalization argument that the integrands are non-negative so Jω(φ) ≥ 0.

Also recall that

n+ 1

n2
Jω(φ) ≤ Iω(φ) ≤ (n+ 1)Jω(φ) (3.9)
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where

Iω(φ) =
1

V

∫
X
φ(ωn − ωnφ) (3.10)

Lemma 21. With the notations above the following identity holds:

Iω(φ) =
1

V

∫
X
φ(ωn − (ω

′
)n) +

∫
X
φ((ω

′
)n − ωnφ)

=

∫
X
∂φ ∧ ∂ψ ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n) +

∫
X
φ
′
((ω
′
)n − ωnφ)

+

∫
X
ψ((ω

′
)n − ωnφ)

≥I
ω
′ (φ
′
) +

∫
X
ψ((ω

′
)n − ωnφ) +O(1) (3.11)

To obtain inequality (3.11) first

Claim 17.
∫
X ∂φ ∧ ∂ψ ∧ (ωn−1 + ωn−2 ∧ ω′ . . .+ (ω

′
)n−1) > −2CnV

Rewrite the expression as

∫
X
∂φ ∧ ∂ψ ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

=−
∫
X
ψ(∂∂φ) ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

=−
∫
X
ψωφ ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

+

∫
X
ψω ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1) (3.12)

Note that |ψ| < C. Then
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Claim 18. On Hω with notations as above

ωφ ∧ ((ωn−1 + ωn−2 ∧ ω
′
. . .+ (ω

′
)n−1)) ≥ 0

At an arbitrary point p ∈ X

ωp = dzi ∧ dzi, ω
′
p = (1 + λi)dzi ∧ dzi where |λi| < 1

set (1 + λ)J = Πk∈J (1 + λ)k. Then

ωφ ∧ ωn−1−i ∧ (ω
′
)ip =ωφ ∧

∑
|I|+|J |=n,I∩J=Ø

(n− 1− i)! i! (1 + λ)Jdz
I ∧ dzJ

=
∑
k

(1 + φkk)
∑

I⊂{1...n}\{k}
|I|! |J |! (1 + λ)J

ωn

n!

Since each term in the inner sum is nonnegative there is an ε > 0 satisfying

∑
I⊂{1...n}\{k}

|I|! |J |! (1 + λ)I >
ε

n

Therefore

ωφ ∧ ωn−1−i ∧ (ω
′
)ip > ε

∑
k

(1 + φkk)
ωn

n!
= εtrωωφ

ωn

n!
> 0

and the claim follows.
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So the first term in the last equality in (3.12) becomes

−
∫
X
ψωφ ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

≥− C
∫
X
ωφ ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

=− C
∫
X
ω ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

− C
∫
X
∂∂φ ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

=− C
∫
X
ω ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

This a consequence of

∫
X
∂∂φ ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1) = 0

obtained using integration by parts and stokes theorem. The claim follows from

∫
X
∂φ ∧ ∂ψ ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

>− 2C

∫
X
ω ∧ (ωn−1 + ωn−2 ∧ ω

′
. . .+ (ω

′
)n−1)

>− 2CnV

Next expand binomially

ωn−i ∧ (ω
′
)i = ωn−i ∧ (ωi + cn,1ω

n−1 ∧ ∂∂φ+ . . . (∂∂φ)i)
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Integrating and combining with an application of by parts and stokes theorem obtain that

∫
X
ωn−i ∧ (ω

′
)i =

∫
X
ωn = V

Now we can conclude

Iω(φ) > I
ω
′ (φ
′
) +

∫
X
ψ((ω

′
)n − ωnφ)− 2CnV

Since ω
′
, ωφ represent the same cohomology class

∫
X
c((ω

′
)n − ωnφ) = 0

So we may choose c > 0 so that ψ + c < −1. Then we have (suppressing the −2CnV term

since it is O(1))

Iω(φ) ≥I
ω
′ (φ
′
) +

∫
X

(ψ + c)((ω
′
)n − ωnφ)

=I
ω
′ (φ
′
) +

∫
X

(ψ + c)(ω
′
)n −

∫
X

(ψ + c)ωnφ

Because

−
∫
X

(ψ + c)ωnφ > V > 0,

∫
X

(ψ + c)(ω
′
)n = O(1)

we finally obtain

Iω(φ) ≥ I
ω
′ (φ
′
) + C
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for some constant C. From (3.9) it follows

Jω(φ) ≥ 1

n+ 1
Iω(φ) ≥ 1

n+ 1
I
ω
′ (φ) +

C

n+ 1
≥ 1

n2
J
ω
′ (φ) +

C

n+ 1

So α = n2 and β = −Cn
2

n+1 and we obtain properness of ν
ω
′ on Hω given that νω is.

We have seen from (3.6) that metrics in c1(Lk) solving the coupled system are approx-

imately balanced for sufficiently large k. In view of the proposition we finally conclude by

posing the following question:

Question 1. Provided Mabµs is proper, do solutions ωu ∈ c1(Lk) to the coupled system for

sufficiently large k exist?

132



BIBLIOGRAPHY

133



BIBLIOGRAPHY

[Ber12] Berman, R.J: K-polystability of Q-Fano varieties admitting Kähler-Einstein met-
rics. Preprint.

[BeBo12] Berman, R.J.; Berndtsson, B: Moser-Trudinger type inequalities for complex
Monge- Ampre operators and Aubins hypothse fondamentale. Preprint in 2011
at arXiv:1109.1263.

[BerBo] Berman, R.J.; Berndtsson, B: Real Monge-Ampre equations and Khler-Ricci soli-
tons on toric log Fano varieties. Preprint.

[Ber10] R. Berman: A thermodynamical formalism for Monge-Amp‘ere equations,
Moser-Trudinger inequalities and Kähler-Einstein metrics. Preprint (2010)
arXiv:1011.3976.

[Ber10a] Berman, R.J. Analytic torsion, vortices and positive Ricci curvature.
arXiv:1006.2988

[BBEGZ] Berman R., S. Boucksom, P. Eyssidieux, V. Guedj A. Zeriahi Kähler-Einstein
metrics and the Kähler-Ricci flow on log-Fano varieties, arXiv:1111.7158v2 (2011).

[Bo] Berndtsson, B: A Brunn-Minkowski type inequality for Fano manifolds and the
Bando-Mabuchi uniqueness theorem. arXiv:1103.0923

[Bo09] Berndtsson, B: Positivity of direct image bundles and convexity on the space of
Kähler metrics. J. Differential Geom. Volume 81, Number 3 (2009), 457-482. arxiv:
math.CV/0608385.

[Bo07] B. Berndtsson, Curvature of vector bundles associated to holomorphic fibrations,
math arXiv: mathCV/0511225.

[Chen00] Chen, Xiuxiong The space of Kähler metrics. J. Differential Geom. 56 (2000), no.
2, 189234.

[CDS] X.X Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds, I:
approximation of metrics with cone singularities, arXiv:1211.4566, 2012.

134



[CDS1] X.X Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds, II:
limits with cone angle less than 2 pi, arXiv:1212.4714, 2012.

[CDS2] X.X Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds,
III: limits as cone angle approaches 2 and completion of the main proof,
arXiv:1302.0282.

[SzCo] Collins, T.C., Szekelyhidi, G. The twisted Kahler-Ricci flow. Preprint.

[TL] Darvas T.; Lempert, L.:Weak Geodesics in the space of Kähler metrics, preprint.

[BerDe] Berman, R.; Demailly, J.-P.: Regularity of plurisubharmonic upper envelopes in
big cohomology classes. Preprint (2009) arXiv:0905.1246.

[De] J. -P. Demailley: L2 estimates for the ∂-operator on complex manifolds, Notes de
cours, Ecole d’t de Mathmatiques (Analyse Complexe), Institut Fourier, Grenoble,
Juin 1996.

[DT] Ding, W. and Tian, G.: The generalized Moser-Trudinger Inequality. Proceedings
of Nankai International Conference on Nonlinear Analysis, 1993.

[Do4] S. K. Donaldson.: Remarks on gauge theory, complex geometry and 4-manifold
topology. In Fields Medalists lectures, volume 5 of World Sci.Ser. 20th Century
Math., pages 384403. World Sci. Publ., River Edge, NJ, 1997.

[Do7] Donaldson, S. K.: Moment maps and diffeomorphisms. Sir Michael Atiyah: a
great mathematician of the twentieth century. Asian J. Math. 3 (1999), no. 1,
115.

[Do5] Donaldson, S. K.: Lower bounds on the Calabi functional. J. Differential Geom.
70 (2005), no. 3.

[Do] Donaldson, S.K.: Scalar curvature and projective embeddings. I. J. Differential
Geom. 59 (2001), no. 3, 479-522.

[Do2] Donaldson, S.K.: Scalar curvature and stability of toric varities. J. Diff. Geom.
62 (2002), 289-349.

[Do3] Donaldson, S.K.: ”Discussion of the Kähler-Einstein problem”. Available at
http://www2.imperial.ac.uk/ skdona/KENOTES.PDF

135



[Do6] Donaldson, S. K.: Symmetric spaces, Kähler geometry and Hamiltonian dynam-
ics. Northern California Symplectic Geometry Seminar, 1333, Amer. Math. Soc.
Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999.

[Fi] J. Fine, Constant scalar curvature Kähler metrics on fibered complex surfaces.
J.Differential Geom. 68 (2004), no. 3, 397432, MR 2144537, Zbl 1085.53064.

[Jo] Joyce, Dominic D. (2007), Riemannian Holonomy Groups and Calibrated Geom-
etry, Oxford Graduate Texts in Mathematics, Oxford: Oxford University Press,
ISBN 978-0-19-921559-1.

[Kel] Keller, J: Twisted Balanced Metrics. Lie Groups : New research”, Mathematics
Research Developments , Editor Altos B. Canterra, 267–281, Nova publishers NJ.

[Mab] Toshiki Mabuchi, K-energy maps integrating Futaki invariants, Tohoku Math. J.
(2) 38 (1986), no. 4, 575593. MR 867064 (88b:53060).

[Pa] Pali, Nefton: Characterization of Einstein-Fano manifolds via the Kähler-Ricci
flow. Indiana Univ. Math. J. 57 (2008), no. 7, 32413274.

[PS] Phong, D. H.; Sturm, Jacob The Monge-Ampre operator and geodesics in the
space of Kähler potentials. Invent. Math. 166 (2006), no. 1, 125149.

[PSSW] Phong, D.H: Song, J; Sturm, J; Weinkove, B: The Moser-Trudinger inequal-
ity on Kähler-Einstein manifolds. Amer. J. Math. 130 (2008), no. 4, 1067-1085,
arXiv:math/0604076

[PSS] Phong, D.H., N. Sesum, and J. Sturm, Multiplier ideal sheaves and the Kähler-
Ricci flow, Comm. Anal. Geom. 15 (2007), no. 3, 613632.

[LV] L. Lempert, L. Vivas, Geodesics in the space of Kähler metrics, arXiv:1105.2188.

[Ru] Rubinstein, Yanir:On energy functionals, Kähler-Einstein metrics, and the Moser-
Trudinger-Onofri neighborhood, J. Funct. Anal. 255.

[ST] Sesum, N., Tian G.: Bounding scalar curvature and diameter along the Kähler
Ricci Flow(after Perelman): Lecture note.

[Sto] J. Stoppa: K-stability of constant scalar curvature Kahler manifolds, Adv. Math.
221 (2009), no. 4, 13971408.

136



[Sto09] Stoppa, J: Twisted constant scalar curvature Khler metrics and Khler slope sta-
bility. J. Differential Geom. Volume 83, Number 3 (2009), 663-691.

[Sz1] Szekelyhidi, G.: The Kähler-Ricci flow and K-stability. arXiv:0803.1613.

[Tian00] Tian, G: Canonical Metrics in Kähler Geometry, Birkhauser, 2000.

[Ti07] G. Tian and X. Zhu, Convergence of the Kähler-Ricci flow, J. Amer. Math.
Soc.20 (2007), no. 3, 675-699.

[Ti97] Tian, G: Kähler-Einstein metrics with positive scalar curvature. Invent. Math.
130 (1997), no. 1, 137.

[Ti13] Tian, G. K-stability and Kähler-Einstein metrics. arXiv:1211.4669.

[Tao] Terence Tao, Poincares legacies: pages from year two of a mathematical blog (Vol-
ume I, Volume II), American Mathematical Society, Volume I: ISBN-10 0-8218-
4883-6, ISBN-13 978-0-8218-4883-8; Volume II: ISBN-10 0-8218-4885-2, ISBN-13
978-0-8218-4885-2.

[Y1] Yau, S.-T.: (1993). Open Problems in Geometry. Differential Geometry: partial
differential equations on manifolds (Los, Angeles, CA, 1990), 1-28, Proc. Sympos.
Pure Math., 54, AMS publications.

[ZBSK] Z. Blocki, S. Kolodziej:On Regularization of Plurisubharmonic functions on Man-
ifolds, Proceeding of the AMS, Volume 134, Number 7, 2007.

137


