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ABSTRACT

OBSTRUCTION AND EXISTENCE FOR TWISTED KAHLER-EINSTEIN
METRICS AND CONVEXITY

By

Ambar Rao

Let L — X be an ample holomorphic line bundle over a compact Kéahler manifold
(X, wq) with ¢1(L) represented by the Kéhler form wg. Given a semi-positive real (1, 1) form
n representing —c1 (K x ® L), one can ask whether there exists a Kéhler metric w € ¢(L)
that solves the equation Ric(w)—w = 1. We study this problem by twisting the Kéhler-Ricci
flow by 7 , that is evolve along the flow Wy = w +n — Ric(w;) starting at wg. We prove that
such a metric exists provided w? > K wg for some K > 0 and all £ > 0. We also study a
twisted version of Futaki’s invariant, which we show is well-defined if 7 is annihilated under
the infinitesimal action of n(X), in particular 1 is Auty(X) invariant. Finally, using Chens
e-geodesics instead, we give another proof of the convexity of L, along geodesics, which

plays a central in Berman’s proof of the uniqueness of critical points of F,.
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Introduction

The study of extremal Kahler metrics has generated a lot of work. A major theme centers
around the equivalence of special metrics and stability in various senses. In the Kahler setting
the manifold version, conjectured by [Y1], [Tian00] and [Do] has taken time to handle. In
one direction, when Aut(X)g is trivial, a refinement of an argument, due to [Sto] of [Do5]
shows existence of a constant scalar curvature metric in ¢ (L) implies (X, L) is K-stable.
See [Ber12] for generalizations to Fano varieties and other improvements: conditions on the
group of automorphisms Aut(X) is dropped while the constant scalar curvature assumption
is strengthened to admitting Kahler-Einstein metric. For the correct notion of stability there
have been several candidates.

While existence of Kéhler-Einstein metrics in the C1(—Kx) positive case comes with
obstructions, existence has been shown to be equivalent to properness of J, functional on
H,,, this is analytic stability [Ti97]. Various notions of stability have been introduced by
Yau, Tian, Donaldson and others, and progress to various degrees have been made. [Do3] has
introduced a notion of B-stability from which existence of Kahler-Einstein metrics was de-
ducible granted additional hypotheses some of which are removable. In [Sz1] on a Fano man-
ifold X under the additional assumptions that both Riemann curvature tensor and Mabuchi

functional are bounded below along Kahler-Ricci flow on X, it is shown K-polystability is



enough to obtain the existence of a Kahler-Einstein metric. Recently [CDS] and [Ti13] have
given solutions of Yau-Tian-Donaldson conjecture for Kahler-Einstein metrics.

Study of the twisted case appear in various settings see [Sto09], [SzCol, [Kel]. This was
preceded by [Fi]. See also [Ber10] and [Bo] for more recent work. In [Sto09] a moment map
description of constant scalar curvature equation (cscK) S(w)—S = Ay is available when a
is a symplectic form, and its shown there is an obstruction and a stability condition in terms
of the Ross-Thomas polynomial for the equation. [Do4] showed scalar curvature comes up as
an equivariant moment map for the action of Symp(B,w) on the space of integrable complex
structures J .The second term Ay« in the twisted equation can be viewed as an equivariant
moment map of the action of Symp(B,w) on the space of diffcomorphism f : B — M,
M, due to [Do7]. The full twisted cscK equation comes as a moment map for the diagonal
action of Symp(B) on a new space S C M x J [Sto09]. From these considerations Stoppa
is motivated to introduce twisted K-energy a quantity which we use in arguments below.
Further in this connection, provided that 7 is annihilated under the infinitesimal action of
n(X), the Futaki type invariant for the twisted equation that we study below, can be shown
to be well-defined. So in certain situations the equation in our setting does come with
classically motivated obstructions.

We also study existence in the twisted setting below, and inspired by [Pal, we establish

an existence result in the twisted setting under similar assumptions:

Proposition 1. Let L — X be holomorphic ample line bundle polarizing (X,w) (c1(L) = w).

Prescribe 0 < n € —c1(Kx ® L) then there is a Kdhler metric such that W e c1(L) solving

the twisted Kdhler Einstein equation Ric(w) —w = n provided wy deforms according to the
n

twisted Kahler-Ricci flow starting at w while satisfying the uniform estimate Z—% > K for

t € [0,00) and some constant K > 0.



Recalling that n(X) is the lie algebra of holomorphic vector fields on X, the following

holds

Proposition 2. When n is annihilated under the infinitesimal action of n(X) the corre-

sponding Futaki-type invariant for the twisted equation is well defined.

So as one expects from the corresponding monge-ampere equations, which are not solvable
in general, the twisted Kahler-Einstein equation comes with obstructions.

Moving in another direction, the problem of existence of smooth geodesics in the space
of Kéhler metrics and their properties are useful for the study of special metrics [Do6].
Using various methods: continuity method [Chen00], quantization [PS] only the existence
of geodesics with oLl regularity have been established. On the other hand one can obtain
CY regularity geodesics directly by an envelope construction see [Bo|]. Even with this weaker
result progress on Bando-Mabuchi like theorems can still be made see [Ber10a], [Bo]. Despite
the existence of smooth geodesics in the space of Kdhler metrics being considered a dubious
problem(they don’t exist in general see [LV] and C'1:! regularity is the best you can expect in
general see [TL]), it morally clarifies the role of convexity in the infinite dimensional analysis.
In fact with these considerations various generalized Moser Trudinger type inequalities are
obtainable. [PSSW] have verified a conjecture of Tian that on a Kéhler-Einstein manifold
(X, wg E) properness of F, wp o0 Hupp (X)) can be upgraded to coerciveness with respect
to Jugp- In a similar direction on a integral Kahler manifold with fixed smooth volume
form using geodesics, Bergmann kernel asymptotics and convexity properties of log K o B
moser trudinger inequality conjectured by Aubin is established in [BeBo12], although in the
Kéhler-Einstein setting this is the Moser Trudinger inequality first proved by [DT]. It might

be worth checking if the Moser-Trudinger inequality corresponding to the coercive estimate



can be obtained using these considerations in the Kahler-Einstein setting, and naturally
the next step would be to see if the quantitative versions holds beyond the Kéahler-Einstein
setting.

An important feature in analyzing the Bando Mabuchi type theorem in [Ber10al, [Bo09],
[Bo] is the convexity of the £ functional. Below we study this in a special case and then
in general and obtain that it is convex along geodesics (in the sense of X.X Chen) using
methods from complex geometry and e-geodesics. In [BerlOal, [Bo09] estimates involved
rely on the Hormander 0 estimates and the setup is more sophisticated. We also study the
uniqueness issue, but from an elementary point of view provided the geodesics are smooth.
So in particular i00u; > 0. Again we rely on a complex geometry inequality crucial to
obtain convexity and analyze the equality case. In the setting when L = —Kx, [Bo| shows
the scope of the result can be improved by establishing uniqueness using only sub-geodesics
and bypasses difficulties introduced by the degeneracies i00u; > 0. Because of its relevance

we describe this but suppress his bundle theoretic set-up in the discussion.



Chapter 1

Convexity of some functionals and

consequences

1.1 Description of Functionals

Let (L, hg) — X be a hermitian holomorphic line bundle over a compact complex manifold
X so that L is ample. A Kéhler form wq is given by the curvature (1,1) form, that is,
set wy = —(21)"1/=10d1og hg in ¢1(L). Write wy = (27)~1/=10d4, where locally the
background hermitian structure hg is represented as hg = e~%0 . This data is manufactured
by using an embedding determined from HO(L¥) (k >> 0) pulling back the Fubini study
metric on O(1) — P and taking k-th roots gives a hermitian metric on L with the required
properties. Now set V' = [ dvoly. Consider the functional defined on the Kéhler potentials,

the open convex subset Hyy = {u € C%°(X)|wy = wp + V—=100u > 0} C C®(X), as

1 & q n—1q
ng(U):m(;/)(UMU/\wO J)

Proposition 1. The functional £,y on Hyyy has differential



for u € Hyyy and v € C°(X)

Proof.

d
(dEuy)u = E(&UO (u+ 1)) le=0
d 1 & , :
:E(m<§/)((u+tv)wi+twwg Nle=0
BCESING 1)!V[Z /X(vwiﬂv Awy 4 j(u A+ to)w) A ddv A wy™7)] =0
=0
1 n ‘ . n .
= —[Z/ vaAwg_Z+Z/ iuwz_l/\ddcv/\wg g
|
1 - "
_ i/\ n—i . i—l/\ddc/\nz
(n+1)!v[§)/)(ku Wy +Z:/wau uAwy ]
1 - :
ZW[Z/XUWZ/\WO —I—Z/ iwwl, /\wO
—Z/ wwu /\wn+1 ]]
) ) n
:—[Z/ vw&/\wgl—l—Z/ iku/\wg ‘
|
n—1
—Z/X(z'—i—l)ku/\wg g
1=0
1 - :
) — LA / A / n_/ n
(n—l—l)!V[ZZ_%/XUw“ o Z v wy Xv(n)wu XUWO]

:W[/)(Uwg+/)(vw3+/)<v(n)w3_/XWSL]

1
NV
1
B n!V/X?MZ

O

Remark 1. This is true in much lower reqularity settings in fact 5‘”0 extends to C’O(X ) by

composing with a nonlinear projection. The extension is gateaux differentiable and has the
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same differential with u,v € CY(X) see [Ber10a].

A similar calculation can be made for a path u; € Hag that is at time ¢, v corresponds
to .

Note that —&u,(u) = n'V(JWO — [xuwy) = n'V‘FO where Jy, is Aubin’s energy
functional. Note whereas ]-"80 is convex, &, is concave. Recall Jy, (u) has derivative
—% Jx (wy} —w() since this induces a closed 1-form on Moy its primitive is taken to be Jy,
after fixing the correct normalization. The differential d&, can also be calculated in terms
of the differential of J,,. Also given a constant ¢, &, (u + ¢) = Ewy(u) + ¢ follows from the
formula. Since &, = n'V]: U the functional has the same cocycle property that .7:80 has.

Recall (s, 5)y, = i’ [y s AseY0 for s € HO(X,L® Kx).

Another functional of importance is
1
Loy (u) == N log det(T'(u))

where T'(u) = [(s;, sj)¢0+u] and {s;} is a basis of HY(X, L& K y) orthogonal with respect
to (-, ), This is independent of the {s;} basis orthogonal with respect to (-, -),, since any
two bases of this type are related by a unitary transformation and the effect of the change is
to conjugate T'[u] by this. So Ly, remains unchanged. The property Ly (u+c) = Ly (u)+c
follows from the definition.

Finally define ‘7:“0 = 5wO — Ewo. This is a functional on HWO' Recall the natural
action of R* on hermitian metrics e ~“hgy on L by multiplication by e~¢ descends to additive
action of R on H,, i.e by addition by c¢. Under the action the functionals &uo,ﬁwo have
values translated by c it follows Fy is constant under this action so that it descends to a

functional on the space of all Kéhler metrics in ¢ (L).



Also note that the natural action of Autg(X, L) on the space of metrics on L corresponds
to the action (u, F') — v := F*(1g4q) — g so that w, = F*wy,. So a statement P holds
for wy in the space of Kahler metrics up to automorphism means that P also holds for any

Kaéhler forms w in the orbit of wy under the action of Auty(X, L).
Proposition 2. Given any orthogonal basis {s;} of (HY(X,L ® Kx), (-, )

o Ly is a well defined functional on Heyyy. The differential takes the form

N
(AL )u(v) = _WlinQ Z /X vs; A Sje~ Yot
1=1

in any basis {s;} orthonormal with respect to (-, ~>¢0+u with u,v as before.

e The functional Foy = 5@0 — EWO defined on Heyy s translation invariant and the
differential at u is given by the second equality in (1.1) in any basis {s;} orthogonal

with respect to (-, '>¢0+“' In particular critical points of Fuyy are smooth solutions of

(1.2).

Proof. The first item is essentially the discussion above and the differential (dﬁwO)u may be

computed similarly as in the previous proposition: take {s;} orthonormal with respect to

<'7 '>w0+u then

d d, —1
7 Lwo (u+10)lr=0 = — (= log det({si, 57) g u-ttv))lt=0

= [ (T9T35)(u+ 10)] =
N

—1 . —-1.,2 o
= WT’I“[T] = Wzn Z;/Xvsi A g Wotw)
P



Critical points u of F,, are smooth solutions of

0= (dFuy)u = / (n'V Zsl Asie~Wotwy e 0®(X) (1.1)

X

Equivalently v is a smooth solution of the monge-ampere equation

n2 N

- V(ddcu +wp)" = Z s; A5 ot (1.2)

1.2 (eodesic Equation
The space of Kéhler potentials associated to a kdhler manifold (X,w) is
Ko = {wgplwy = w + i00¢ > 0,6 € C°(X)} (1.3)

This may be identified with H,, = {¢|¢ € SPSH(X,w)NC(X)} which is open in C°°(X).
For each point of H,, one can associate to it a measure on X, dug = n—q,s With this the

metric on H,, is given by specifying the L? norm on functions i.e.

912 = /X Py

where 1 € TyH, = C(X).

So for a path ¢(t) in Heyy, parametrized by the unit interval, length is given by

1 .
-/ \/ RO (1.4




By taking the first variation of the energy functional fol ) X |¢<t)|2du¢(t)dt, since the critical

points define geodesics in the space of kahler metrics, the smooth geodesic equation is

3(t) ~ 51Vl =0 (1.5

A path uz in Hyy, is viewed as a function U on X x [0, 1]. The following was first noticed

by Donaldson and Semmes.

Proposition 3. A path us satisfying the geodesic equation is the same as looking for solutions

of Q?J"H =0 with U(+,1) = ug and U(-,e) = uy, where Q = (dd°U + 7y wp).

Proof.

0 = (dd°U + wwp)" ™!
= ((8)((9; + ath + 8@; + 8X5X)Ut + W}k(wo)nJrl
= ((0x 05 + 00 x + 05 us + wyy)" !

= P(wut)

where P is a polynomial of degree at most n + 1 i.e

n+1 .
P(wt) = Y a(pi1—i) A,
i=0

Clearly we may assume ag = 0 since wﬁ?’l = 0 does not contribute. From binomial expansion

the terms a,,1_; for i > 3 are terms with forms containing at least three ”dt’s” ( dt A dt A dt

10



etc), so they can also be assumed to vanish. For similar reasons we may assume

ap+1—1 = ap = (n + 1)040puy  since (Oxdpur) A th =0
(n+1)n

Up41-2 = Ap—1 = 723)(35%& A OO x ug
— 0= dd°U + 7% wp)" L
(n+1)!( +7xw)
" 1

= 8t3%ut N % — '8Xafut A 5)(@151115 A wgt_l

(n—1)
A local calculation shows
— 1
O NI A" = — |V 2"
2n 9

It follows

1, 1 ) _

11



1.3 e-Geodesics

By considering the boundary value problem involving a degenerate Monge-Ampere equation

instead in [Chen00] C'1! geodesics are found i.e. solutions of

0= Qg“ (1.6)
= det(gag + ¢a3> on X x R (1.7)
o= ¢ on O(X X R) (1.8)

where R is a riemann surface with boundary which can be taken to be a cylinder.
Solutions are extracted by running a continuity method. Adjustments at ¢ = 1 are
made so the corresponding equation is elliptic. In other words its solution defines a Kahler
potential on V' x R not just on each slice V x {w}, w € R. CY estimates can be obtained using
the boundary data and the maximum principle. An application of Yau’s C? estimate yields
the alternative that either the laplacian is uniformly bounded from above or the maximum
occurs on the boundary. So to obtain a pointwise bound on the maximum of the laplacian
in terms of maximum of the gradient a boundary estimate is needed. This is achieved from
the maximum principle applied to a barrier function construction and the structure of the
equation over the continuity path. So uniform C2 bounds for ¢ > 0 are obtained by obtaining
point-wise bounds on the gradient. This is done through a blowup analysis. This furnishes
a sequence of regular solutions ¢; to elliptic equations corresponding to a sequence t; ~\ 0.
Since at ¢ = 0 the equation is degenerate, one passes only to a subsequence extracting a
weak C11 solution. An application of maximum principle shows this limit is unique. The

details are the main content of [Chen00].

12



As a consequence the following also holds. Another application of the maximum principle
is required to get estimates on solutions with respect to the s parameter again see [Chen00]

for details.

Lemma 1 (Geodesic Approximation Lemma). Let C; : ¢;(s) : [0,1] — H (i = 1,2) be
smooth curves in H. For eqg > 0 sufficiently small there exist two parameter smooth family

of curves C(s,€) : ¢(t,s,€):[0,1] x [0,1] x (0,€e9] — H satisfying

1. For any fized s, €, there is an epsilon approzimate geodesic C(s,€) joining ¢1(s) and

P2(s) i.e. ¢(z,t,s,€) solves

det(gaB + ¢aB) =edet(g) VxR (1.9)
6(=.0,5.6) = 612, 5) (1.10)
gb(z/, 1,s,€) = qbg(z/, s) (1.11)

where zp,4+1 =1+ v —10 and ¢ has trivial dependence on 0.

2. There exists a uniform constant C(which depends only on ¢1, p2) satisfying

6] + [0s0] + |0 < C (1.12)
0<dfp<C (1.13)
¢ < C (1.14)

3. For fized s let € — 0, then the convex curve C(s,€) converges to the unique geodesic

between ¢1(s) and ¢o(s) in the weak CL topology(0 < n < 1).

13



4. The energy element along C(s,€) is given by
Elts.e) = [ lowofdgit. 5,0 (1.15)
1%

where g(t,s,€) is the Kdhler metric corresponding to ¢(t,s,e). Then there exists a

uniform constant C' such that
rrtlax\@tE] <e-C-M (1.16)
]

So the energy/length element converges to a constant along each conver curve as e — 0.

1.4 Convexity and eigenvalue estimate

In this section we study convexity of L, along smooth geodesics in the setting when
dim HO(X, Ky ® L) =1 and L ® Kx is globally generated. So L = —Kx. For exam-
ple this happens when X = P! since L & Op1 (m) for some m € Z from an application of a
theorem of Grothendieck. So m = 2 since L ® Kp1 = O(0).

Let (X, L,wp) be given as in §1 with the above restrictions. Since N = 1 for any

s€ HO(X,Kx ® L), det(T'(u)) simplifies to

2
" s ANSe V0 = eewowg

14



which is basically (using L = —Kx)

e %0 B
detg

w0 (1.17)

We may write i, = ¢ ®t locally where ¢ € I'(Uy, Kx) and ty € I'(Ug, L) holomorphic.

Note that

b @ ta = pgdet(thys) ! @tgdet(tas) = d5®1g (1.18)

where {143, Uy := UaNUpg} is the cocycle determining 7. Denote by ||-]|? the fiber length
induced by hermitian metric hy. Let 0, : Ly, = Uy x C be the associated trivialization

induced by tqy so |0a(ta)]| = 1.

2 2 — 2 [ 2 -
(" s A%8)17, = 1" Ga A dalltal® =" G A Gal0(ta)Pe ™0 =i g0 A dae™V0  (1.19)

2
from (1.18) we may glue the local versions together and view """ s ASe Y0 as a global section
— n2
of Kx ® Kx just like w" and so msi\d+w0 defines a global function. Note also that from
the last equality in (1.19), after shrinking U, to a coordinate chart, with respect to the

coordinates there choosing ¢, = dz1 A ... Adzy, gives that the global function is of the form

given in (1.17).

Remark 2. . = —Kx is not necessary all thats needed is 0 # s € HO(KX ® L) ie
2 _

holomorphic global sections of it. That isi" sAse Y0 transforms as sections of K x @ K x just

as volume forms do so the ratio is a global function. To see this note that two trivialization

0, 6 are related by 0 — g0 on the overlap and similarly 1/1(/) = g + log |g|2 on the overlap.

15



So b, € C°°(X). Applying d0log to (1.17)

e

2

99 log(lw0y = Y1 2_1

V=1 _ .
Taal%,o = Ric(wg) —wo (%)

(80 1og(e™V) — 9D log det(g))

Equation * above is essentially

Y ok, ) = (L ® Kx) = (0(0)) =0

with ¢1 (K x) represented by the negative of the ricci form and ¢1(L) by the curvature of a
hermitian metric given locally by e~ %0. So it follows that w; — Ric(ws) = —”2_185(—9wt).
The negative sign is benign and chosen only to suit our conveniences.

Recall Ric(wg) = —@85 log det(g). Also
V=1 _
wt = wo + Taagbt

where ¢ € Hyy is an arbitrary path. So

V=1 _ .
T@E)@wt =Ric(wt) — wy

_ v —1 —
=Ric(wt) — Ric(w) +wo + VvV —=1900,, — (wo + T@agzﬁt)

V=1 det(g)
o (10g(det(g,)) + ewo — o) (xt)

16



and

det(g)
det( g/ )

6.0, = log( )+ Oy — 01+ ct (1.20)

O, 1s clearly globally defined. To pin down the constant we choose normalization

/ e Pttty — (1.21)
X

Henceforth we abuse notation and denote ¢ + ¢; by ¢;. We conclude after exponentiating

(1.20)

— — wn
o Pl 0 — m 010wy X0 0wy (1.22)
0 wnt 3
t

That is ¢¢ moves along continuity path (1.22). Restricting further to smooth geodesics

we have

Proposition 4. When L @ Kx is globally generated and dim(HO(X,L @ Kx)) = 1 the

Junctional Ly, is convex along smooth geodesics.

To check convexity along these geodesics use second variation of the £, functional. This
simplifies to —log [y e_¢t+9w0w6‘ from the discussion above. So taking ¢ derivatives two

times we obtain the quantity

(Jp e 2000y [ ((6)2 — e 9 %00 — ([ et (6y)wi)?
(fx 6*¢t+9w0w8)2

from which convexity of L, is determined provided the following inequality( £, has a neg-

17



ative sign):

(/X 6*¢t+9w0w6z) /X€¢t+9w0((¢;t)2 _ (¢t))wg _ (/X o~ Pt 0w (ét)w(?})Q <0

Which simplifies using (1.22) to

( /X ot o) /X ot (602 — (o))l — ( / Pt ()l < 0

X

We may without loss assume [y et (gbt)wt” = 0 which follows from differentiating the nor-

malization condition chosen. Hence the inequality desired is

[P0 = @Gt <0
X

. 1 .
= [ P02 = ST e <0

j/ ([Tl o 2 2 / et ((6r)?)ep
X X
So we need to show whenever Ric(w) —w = @85% and [y felwun =0
1
[t < [ S0vigeten

= A (—A - V) > 2 (1.23a)

holds.

18



The first eigenvalue estimate in (1.23a) translates to, in the Ké&hler case,

1 —
[ WY
X 2 X
— = [ @F + P falOu)5)e% pur
X

That is the corresponding first eigenvalue estimate (1.23a) in this setting is pq(—0 —
$(V-, V) > 1.
Remark 3. Just as with eigenvalue estimates for pi(—0) we may similarly consider using

1. ROZB = gaﬁ + 9@3

2. 5OV 1P = fapl + 11,51 + 9°° (fa(Of)5 + Of afz) + Ryz/f°

5. —0f = mf +5(V6u, V)

However this point view encounters problematic pure type terms which cannot be controlled

by (1).

Instead consider u : X — C. Set (u,v)yp = [y wvePw ™ hermitian weighted scalar

product. Using an orthonormal frame we have

/\%\Qeeww”: / ugtime?w "
X X

= / —(uaa+9aua)ﬂeewn
X

= / —(Ou + Oaug)ue?w™ = —(Lu, u)g
X

where Lu := Ou + O ug.

Applying to first eigenfunctions u with eigenvalue pq obtain u1||u||§ > 0 so up > 0.

19



In the case where Ric(w) > w it follows A1 () > 1(using (-, -)g restricted to real valued

functions u):

0< /]ua5|2w” = /uaﬂuaﬁw"
= _/U/BOZ,BU&WTL

- / (g5 tte + Rypuiarp)w”

Using Ric(w) > w it follows that uq(O) > 1.

Similarly consider the quantity [ |uaB|eew” > 0 in the weighted setting. Also note
that since the operator L is essentially [1 up to lower order terms so it is elliptic: symbol
is determined by highest order terms. We wish to apply the following lemma to the first

eigenfunction which is a priori smooth.

Lemma 2. Let u € C*(X,C) then
/ (= (Lu)aTio — [Fu[2)e?w > 0
X

Proof. Following the discussion above

0,.n _ — 0
0< /X |ugple Wwh = /X UgglaBe w"
= /)V( _(uﬁaﬁﬂa + uageﬂﬂa)eewn
= /X(—(Du)aua - ngaﬁﬂaug - Uag%ﬂa)eew"
= [){(_(Lu>aﬂa + QﬁaUBﬂa
— Rsquaqus + gﬁuaﬁﬂa — uageﬂ%)eﬂwn (1.24)
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Since Ric(w) —w = @859 in coordinates is equivalent to R.5— 0,5 = 9.5 = o, it

follows
(Rga — 0pa)uglia = ugla = |Oul”
So (1.24) simplifies to

/ (= (Lu)gtia — |0u)?)efw™ > 0
X

:>/ —(Lu)aﬂaeewnZ/ Oul?ef ™
X X

]

proof of proposition. Suppose u is a first eigenfunction of the operator L with eigenvalue pq

(i.e. —Lu = pju) then by the lemma

,ul/ ugliae? W > / |Ou| 2l
X X

== p =1

1.5 Convexity of L,

Let u; be a path in Hyy. Recall N := dim HY(X,Kx ® L) < oo by hodge theory. Also

recall that Ly, (ut) = _Wl log det (T (ut)) where T'(ut) = [(s;, Sj>?/fo+ut]'
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Proposition 5. When ut € Heyyy is an arbitrary smooth path, the first and second variations

of Luy are given by

& L) = HTIT) (1.25)
2 — : .
%zwo (ur) Wl[Tr(—(T—lT)% +Tr(T7'T)] (1.26)

Proof. This follows by direct computation recalling that for square matrices

© det(T(1)) = det T()Tr (T~ (1)T(1))

[]

Let s € HO(X, Qg( ® L) = HPY(X, L) using resolution of QZ)’( ® L by sheaves AP (L)
which are acyclic (this is Dolbeaut’s theorem asserting Dolbeaut cohomology is isomorphic
to sheaf cohomology of holomorphic differential forms).

In this setting, via Hodge theory using hodge decomposition for holomorphic hermitian
vector bundles on compact hermitian manifolds and type considerations in this range we

obtain the decomposition

APY(X L) =" APY(X, L) & HPO(X, L)

Note that 9" AP:! is orthogonal to Kerd. Let a € AP:L, then since

(00" a, ) = [|18"a|> > 0

we can specialize to p = n to obtain that H™0(X, L) = H™0(X, L). Hence s € HY(X, Ky ®
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L) = H™Y(X, L) is harmonic. So for s € AY(X, 0% ® L) satisfying s L HYX,Kx ® L) we

have by hodge decomposition that s = 9 o + 08 where o € A™! and g € A1 = 0.

Lemma 3. With s as above, orthogonal to global holomorphic sections of Kx ® L, the
following estimate holds

10s]]* = ]3] (1.27)

Remark 4. Restricted to the orthogonal complement of HO(X, Kx®L), 5KX®L operator
has no kernel (on the orthogonal complement, where E}X@’L =0, 5KX®L 15 a restriction
of the elliptic O + " operator) so should be invertible and thus satisfy an inequality of the

type (1.27) with perhaps better constants.

Proof. Since s = 8 o, (1.27) is equivalent to
1000 || = 17 o]
An application of cauchy-schwartz gives that
10%0|* = (90" 0, 0) < (100" o]|||o]| (1.28)

Thus it suffices to show

Claim 1.

o] < (187012 (1.29)

The Hodge decomposition o = o 4+ 93 + @ ~ simplifies to o = 98 where 8 € AO(L).
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Since 0 =8 a = 5*5*7
s=00= 5*5

so we may take o = 0f.
A version of the Bochner-Kodaira-Nakano identity simplifies using [A,0(L)] = [A,w] =

[A, L] to
DD//:DD/+(p+q—n)~f (1.30)
So we may obtain the L? identity from (1.30) applied to o

— — !/ /
[90|[? + 110" |* =[|D o|]* + [|[(D )*o|* + (n+ 1 = n)||o]

112 % 112 2
— ||00]]” + 119" o||* Z||o|| (1.31)
But ¢ is a holomorphic section so we obtain
X
10" o] = [|o]]

So the claim follows and hence the lemma. O

Now given [|s|| > ||s|| for s L HY(X,Kx ® L) we can determine the shape of the

inequality for s € A™0(L). To do this consider

P: A1) - HYX Kx ® L)
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the projection of s € An’O(L) to its holomorphic part that can be viewed as a holomorphic

global section of Kx ® L.

Proposition 6. Given s € A™0(L)
19s]1% > [|s]]* = | P(s)]]” (1.32)
Proof. This follows immediately from the lemma applied to s — P(s) which is orthogonal to

HY(X, Kx®L), and using that the holomorphic projection P is an orthogonal projection. [

Now having obtained the inequality (1.32) we can proceed to the the main business of

this section

Proposition 7. Assume HO(X, Kx ® L) # 0 then Ly is conver along smooth geodesics

(when they exist).

Remark 5. We could have replaced the assumption with the globally generated condition
appearing in [Ber10a/ but that assumption is really cooked up for the critical points equation;

so that it is elliptic.

Proof. Let h be an arbitrary metric on L deformed from the background metric on L, hy,
related by h = hge~?. Taking a basis {s;} ¢ HY(X, Kx ® L) orthogonal basis with respect

to (-,-);,, applied to ¢s; we have in (1.26) that T~ = Id. So

Tr(=(T7'T)?) = = > (| é(sissj)n)”
g /X !

. j 2 .
R Bl e (1.33)
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Also note

1P(dsi) | = / Olsi.5))

' 2
1Bl = /X Vo (s 50 (1.34)

Applying (1.32) to sections ési with respect to the metric A on L and summing over 1 < ¢ <

dim(HY(Kx ® L)) gives

ZH(‘) dsi)l[* > Z (19sill> = [1P(ds:)]1%)

= Z/ |V¢| — %) (54, 80) > —Z(/X (si,57)n)° (1.35)
ij

The proposition follows. O

Together with e-geodesics it can be shown that Ly, is convex along C L1 geodesics. This

is verified in §7.

1.6 Maximizers using e-geodesics

Recall from section §3 there is a smooth path u; , an e-geodesic, connecting a critical point

ug to another point uy of Hyy,. It satisfies

[Viitlger
(uy — T) det g(t) = edetg > 0
- 12
g et Vit [y
det g(t) 2
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where g(t) = g5+ (ut),5 (1 < 0.8 <)

From proposition 1 along smooth paths u; € He,

1 LW
desgl) = [t

- 12
02 1L Vg o
= qblu) = 7 [ = —5 "D

so along an e-geodesic it follows

d2 € det g wﬁt
— —t = 1.
dt2£w0( u) = Vv /X det g(t) n! ‘ (1.36)

Take an orthonormal basis {s;} ¢ HY(X, Ky ® L) with respect to (-,-);, and using the

e-geodesic equation we get

2 _
%Ewo(uz&) = Wl[— Z(/X Ur(si, 805

Vi | d
.2 g(t) € etg
+;Aw e I
1 edetg
Z N XZ:/)( m(sl,Sz)h Z 0 (137)

The last inequality follows from (1.35). In other words

|Vut]

‘Z/“t ir55) +Z/ i = — 1) (s, 500 <0

The right hand side of (1.37) is positive and by item 3 of lemma 1 e-geodesics converge in
cil topology to the cll geodesic connecting the points. In particular sending ¢ — 0, we

obtain f(t) := Lu(t) the function obtained by restricting Ly, along CL1 geodesic, is the
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uniform limit of similarly defined functions f¢(¢) that are convex. So f(t) is convex. In

summary we have

Proposition 8. If dim HO(X, Kx ® L) > 1 then Ly s defined and is convex along cbl

geodesics.
Proof. See discussion above. n
Similarly e(t) := &y (t) restricted to the Ol geodesic is a uniform limit of functions

ee(t), those function that arise from restricting &y to € geodesics. Recall &, is continuous
under uniform limits in ﬂwo NCY(X) (the L1(X,wp) closure), a result of Bedford-Taylor, in
particular with respect to uniform limits of e-geodesics. From (1.36) the second derivative
of &, along e-geodesics goes to zero. Since the second derivative of &, is the integral of
the geodesic equation in the sense of Donaldson and Semmes, the convergence to zero is in

the sense of Chen. Thus e(t) is affine.
Corollary 1. The functional
is concave along C11 geodesics.

Proof. This follows since &y is affine while —L,, is concave along Cbl geodesics. [

The result of Berman [Ber10a] follows:
Corollary 2. Critical points (when they exist) are mazimizers of Fuy

Proof. Let ug be a critical point of Fy, and u; € Hey, any other point connected by the
C11 geodesic ug. Since Fuyy 1s concave along ug, drFy, decreases along ug. It follows ug is a
maximum in ’Hwo for ]:WO' So an absolute maximum of ]:WO on HWO obtains at any critical

point (when it exists). O
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Also for future use we record

d? detg
Fwo(ut e(l——= Z/ SiySi)p) < €

dt? det g(t) g(t

along e-geodesics.

1.7 Uniqueness smooth case

Let u; be a smooth geodesic in Huyg 80 wy, > 0 connecting critical points of Fug- A (1,0)
vector field V; can be defined by

We abuse language and call V; a gradient vector field of u(otherwise we need to fit the
fixed complex structure J into expressions when making the reference).

The main objective in this section is

Proposition 9. When there is a smooth geodesic connecting critical points wy = wyg, Wy,

of Fuy i Huy the critical points are related by an automorphism ¢ of (X, L) i.e wy) = ¢jwo.

Remark 6. Really there is always a ol geodesic connecting the critical points. The propo-

sititon applies with this path smooth.

In this direction note that expression for a gradient vector field in the adjoint setting can

be written as

Lemma 4. For s € AM(L), wy, > 0 and Vi the gradient vector field of 1y

—Oig A s = wuy, A (V]s) = wa(V}JS) (1.38)
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where wa is the lefschetz operator defined by wy, .

Proof. Simply wedge the equation defining the gradient vector field with s € A™0(L). Use
that wy, A s is of type (n+1,1) and therefore vanishes. Then conclude using the elementary

calculation

O - (.Uut NS
0=V (wut A s)
= (VieJwuy) A s+ wuy A (Ve]s)

— Oy ANs= wuy A (Vi]s)

O
Corollary 3.
— Ay ((01r) A s) = Aoy Lioy,, (Vi s) (1.39)
Proof. Just take traces of (1.38). That is, act on it by Aoy, - O
Lemma 5. As above all operators are defined with respect to wy, >0
" " I~
—D (Vi]s) = AD (dug A s) +i(D )*(Dug A s) (1.40)

Proof. To see this recall in the Kahler setting

(LA = H

where L, A, H are the Lefschetz, dual Lefschetz, and counting operator which act on the
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form part of the section.
Note that LA(V;]s) = 0 since V4]s is an L valued (n — 1,0) form and the action of A

reduces type by (1,1).

Claim 2.

AL(Vi]s) = (Vi]s)

Proof. Indeed,

AL(Vi]s) = =[L, A](Vi]s) = =H (Vi]s) = =(n — 1 —n)I(Vi]s) = (Vi]s)

[
From the Kahler identity
i /
[A,D |=—i(D)* (1.41)
noting that the left side of (1.41) is a commutator it follows directly that
D" A@iy A s) = AD" (@i A s) +i(D Y (Ditg A 5) (1.42)
Now (1.40) follows immediately from the corollary and claim. O

Proposition 10. V; is holomorphic for each fixed t.

Proof. 1t is enough to show by lemma 5 (1.40) that D”(A(gu't) As) =0 (0= D" for
unitary connections compatible with the holomorphic structure). This follows because from
holomorphicity of s we obtain V; is away from the zero’s of the vector field, and conclude V4

is holomorphic by Riemanns extension theorem(V; smooth).
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Start by analyzing the equality case. Since Fy is concave it is affine along smooth
geodesics connecting any two of its critical points. &y is affine along geodesics so Ly is
too. By smoothness this means (1.26) and identities (1.33), (1.34) yield the equalities

d2

0= —5Luglue) = %(Z(Hu‘ml? — 1P (iigs;)||? = [[D(uigs;)||2)) > 0 (1.43)

7

which is equivalent to
10(iigs; — Plaigs;))||* = |[tigs; — Plaies;)||? (1.44)

Recalling (1.28), (1.29) and from the discusion in section §5 solving @ o; = tigs; — P(tits;)

with o; holomorphic we have
107 04|* < 100" ail[[|oil| < 108" o3ll[|0" ]| < 110" [[[0" o (1.45)

The last inequality is a consequence (1.44) from which one obtains |[00 ;]| = |0 o;]|-
Since (1.45) is really a string of equalities it follows that the inequality (1.29) is an equality
llogl| = ||3% ;]| Since (1.31) is equality precisely when the terms ||D o;|,|(D’)*o;|| vanish

in the Bochner Kodaira type identity we have
0, y0; =0, 0o; =0 (1.46)
Claim 3.

Eut/\si =0y (1.47)
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Proof. This a consequence of the equality case :

iy A s; = O(gs)
= O(igs; — P(ius;))
— 90"

The last equality follows from type considerations and equations in(1.46) (essentially the

content of (1.30), (1.31)). So

90" 0; = DD//UZ' = (DD/ +1)o; = oy

[l
As a consequence of the claim and (1.46)
"— . "— . N I,
D Ous Ns; =D a((bsi):(); (D)aut/\SiZ(D)UiZO
So by the lemma 5 (1.40) V4 is holomorphic for each fixed t. O

Proposition 11. V; is static.
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Pass to co-ordinates and make the local calculation for %qut = Ouy

V=1g,mV{" X" = (it)7 X7
VP = gPlg,5V/"

= — V—1¢"(ir)g

The following is well known see [Bo09], except here we operate directly on the manifold.

Lemma 6. Along smooth geodesics

. =, .. 1.9

Vthut = O(iiy — §|Wt\wUt> =0 (1.48)
Proof. Differentiate V| Wyy = Oty to obtain

ViJwuy + Vi) Opwu, = Oy (1.49)

ViJwuy = ity — Vi) Opony (1.50)
Using Vi ]wy, = Oty again obtain
V=10Vt |wy, = V=103 = dywy,

Equivalently (1.50) is

Vi Jwu, = ity — V=1V }(0(Vi Jwuy))
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Computing +/—1V;0(V¢]wy, ) locally:

VIV ((tig)7d2T) = V=1Vi] (i) 52" A de)
= VIV (i) 5=

proof of prop. 11. By the lemma
. . Lo 9
ViJwu, = iy — 5| Vi, ) =0

So conclude 0V} = 0 []
proof of prop. 9. Now we are ready to conclude with proposition 8. ﬂ = —ImV gen-
erates the flow ¢; (¢ biholomorphism). Since V' above is static so is iV. Abusing notation
denote this by V' and then ¢; is the flow generated by ReV. Locally V|00 (us + 1) = Oriy.

Virtues of compactness grant a uniform r > 0 , with u; + g given on some Bwo(r, pio) and

Gt(Buy(5,1i)) C Buwg(r,p;) for [t| < 5 and all i. A consequence of chain rule is

(e + 0) - 60) = 5(V10(wn +v0) + VIO T 90)) - 0 + (e 4 00) -6 (151)
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taking /—100 of (1.51) obtain

V=109((ug + 1) - ¢¢) = \/—_185%(1/@(%5 + o) + V]0(ut + 1)) - ¢4

+ /=100 (ur + to) - 6
bt = 507 (VIO 0(uwe + ) + V10wt + 90)
+ 5 (V=100(us + 1))

& Oty = 507 O/ IV ]8O + o) + (v "TV [30(u + 00)

+ ¢F (V=100 (us + 1))
- %\/—_w?(—@éwt +40) + 00(us + 1)) + ¢f (V=100(u + 1)) = 0

So %qﬁf (Wut)\ B(5pi) = 89((ug + 1) - ¢t) = 0. Although the proposition now follows al-

most directly, we may also conclude by partitioning [0, 1] into sufficiently small sub-intervals

depending on the cover and the fact that the time one map is a composition of the maps

corresponding to each subinterval.

Remark 7. Note the above is essentially a manifestation of

d d
%gbitwut = (bit%wut + ¢*—t£7 (V—V) wut
2

where V' is the gradient vector field originally defined and ¢ is the flow generated by ImV .

Use Cartans formula to obtain cancellations.

Since ¢* ywy, — wyy = 0 this means at the level of potentials ¢* ;(ut + 10g) — ¢ = C.
V' can be lifted to a holomorphic vector fields on the total space L so that action by ¢+

is induced from Auty(M, L) by lemma 13 in [Ber10a]. O
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1.8 Berndtsson argument setup

Recall (X,w) is Kéhler and that F,, is concave. Another advantage is that it behaves nicely
in the low regularity setting. In fact, for low regularity purposes, when L = —Kx the
functional simplifies to negative of the Ding-Tian functional and this has better regularity
properties than the Mabuchi functional . Berndtsson shows by a direct envelope construction
critical points of the Ding-Tian functional can be connected by a CY sub-geodesic (see §11,
[Bo] and [BerDe]). These two inputs (Ding-Tian functional and C? sub-geodesics) can be
used to obtain the Bando-Mabuchi uniqueness theorem.

More precisely Berndtsson obtains Bando-Mabuchi uniqueness theorem by deducing

Proposition 3. Let L = —Kx be semi-positive and assume H”’l(X) =0 . Let ¢y be CY
2

sub-geodesic such that ¢ does not depend on Imt, then L(t) = —logi" fX e~ Ptdz A dz is

convez. Further if L(t) is affine in a neighborhood of O then there is holomorphic vector field

V (perhaps time dependent) on X with flow Fy such that F;‘@&bt = 90y .

As in the previous section one needs to analyze the smooth case. The final stage involves
approximation.

Let u; smooth but id0u; > 0. Then consider solvability of
0"ty =7 (Ugs) =: 7 (1.52)

s € HY(X, Q% ® L) as before. From the consequence of the Lefschetz decomposition that

APV 2= APHLY write o = Lyv = v Aw where v € A" 10(X) when a € A1 (X, L). Then
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Proposition 12. Solvability for v in (1.52) is equivalent to solvability of

*
auta ="

for a € AWV (X, L) when n is orthogonal to H)(X, Kx ® L).
Proof. The equivalence is a calculation using the following facts:

e Note that dy, is the (1,0) part of the Chern connection i.e

VD = 9 4 dlog(e ™) = 9 — dupA = By,

e Recall we have for o € P¥(primitive elements of AF)

. k(k+1 :
* Lo = (—1) (2+) J!

A

%, L determined by the structure from (X, w).

) [5*, L] = i0. For L|U = Oy with hermitian structure depending on u; as above, the

adjoint operator is given by

% - -
Op = =%y % = — % Oy, %
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then

gzta = 52,5” ANw
= —%(0—Jug AN (v Aw))

= [0", L]v + *dug * Lv

(n—1)n
But v is primitive and in v € P"~L. It follows *Lv = (—=1)" 2 " v, and using that

dp Nv € P™ we get

(n—1)n

5Zta:5*Lv+*3ut*Lv:[5*,L]v—|—(—1) 2 " L Oup Ao

(n—1)n

—idv+(=1)" 2 " xduAv

n(n+1)
—idv+(=1)" 2 "N=1)" 2 i"ous Av

— i0v+ (—1)" (= 1) Lidug A v
=i(0 — OwN)v

= azta =1 = Oy, v

The solvability of these equations also comes with estimates.

Fact 1. Recall for 0 and its adjoint (Von Neuman’s sense is the relevant one)
o Kerd = (Imd)+
o (Kerd)+ = Imd"
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In particular when 8 is a surjection, O is injective. In fact when H™L(X) = 0 we have
a surjection on O closed forms and the adjoint is injective. When O has closed range the
adjoint has closed range equal to (Kerg)J- . In this setting closedness of range boils down to
the estimates.

If O has closed range then solutions to the equation Of = o comes with the estimate
A1 < Clla]] (1.53)
From here it follows that solvability of Oy, v =1 comes with the estimates
[v]] < Clinl]

To elaborate, (1.53) is similar to §6 where solving o1 = dog for o orthogonal to holo-
morphic (n,1) L-valued sections comes with estimate ||dog|| > Cpl|og||, Co = 1. In §6 we
specialized the hermitian metric to the one whose curvature is —iw to conclude. However,
in the Kahler setting the Akizuki-Nakano identity applies for any unitary connection com-
patible with the holomorphic structure. So more generally ||doq|| > C||og]|| (adjusting to an
auxiliary hermitian metric h changes the constant arising from [ ([0, Alog, 09)dV ). So for
our purposes proceed trivially obtaining the estimate ||, tao||2 +|190p|> > CJ|og]|?, adding
the extra nonnegative term ||52 t00||2. From here conclude through a functional analysis
argument (see [De]) to obtain the estimate ngtaOH > C||oo]|-

In particular we obtain n = gztoz and a = 0f

. .
|0y, all = Clla]
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Next we claim

Claim 4. For a = v Aw as above, ||a| = |[v|].

Proof.

(o, ) = (Lv, Lv) = (v, ALv)
ALv=—[L,Ajlv=—-Hv=—(n—1—-n)Jv=v

= (a,a) = (v,v)

O
As a consequence
— . .
10y, |C = llaf| <= [0y, v]| = Cllv]|
It follows that if v; solves
Ouyvr = 71 (1)
the following estimate holds
. . L. .
[foell <l Gigs) ] < [lies] < el (1.54)

From the properties of C¥ sub-geodesics i.e its Lipschitz, it is known that |[ui¢|| is bounded.
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1.9 Generalized Gradient Vector Field

Since L@ Kx = Oy we can take 1 = s € HY(X, L® Kx) and define vy by 0%wv; = 7| (1igs).

In turn, since s does not vanish, define 1} by

vp = —Vi]s (1.55)

Recall that curvature of a hermitian connection on a holomorphic vector bundle has no (0, 2)

part so it is given by

[Dy,, 0] = 9"t0 4 00"t = 90uy (1.56)

Lemma 7. For solutions Oy, vt = 7 (1its) the following identity holds

O0u A v = 0(iigs) + 0"t dv (1.57)

Proof. Using (1.56) and the definition of 0%tvy

Aouy A vy = [Dut,g]vt = 0"tOv; + Or | (1igs)

From (1.55) obtain

O0ur A v = A0uy A (—V;]s)

= (V;]08uy) A s
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Lemma 8. If Ov = 0 then V; defined in (1.55) satisfies
g = Vi Jwy, (1.58)
Proof. For s as given above

g A s = (V] 00uy) A s
= Oy = V]i00uy

= V’tj w“t

]

Remark 8. V; as defined above is a generalized gradient vector field(referred to as a gradient

vector field for convenience since it behaves similarly).

Note that

F(t) = —log/ e U = —log||s||? (1.59)
X

where ||s||? = Jx cns NSeTUL,

Remark 9. ||5]|? can be viewed as integration along fibers. Ezactly as Berndtsson considers
Kahler fibrations with compact fibers, p: X — Y. Here, 0 e UV = U =Y C C, the fibers
are copies Xy = X = p_l(t) and we may think of X = U x X (we suppress the other
structures since we wish to discuss this naiwvely. Involved is the introduction of a structure
E = Uicpyl{t} x By with B = HO(Xt,L|Xt ® Kyx,). E — U is naturally a holomorphic
vector bundle from semi-positivity of L and that X is Kahler using an Ohsawa-Takegoshi

extension type theorem: an element of Ey needs to extend to a section of E locally in a
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holomorphic way with estimates. Elements of Ey which are L valued (n,0) forms on X; can
be viewed as sections taking values in K over Xy (by wedging with dt) or as the restriction to
X¢ of sections over X with values in K see [Bo09] and [Bo07] for details. Granted elements
of By extend to local sections of E, take a basis of Ey that extends to a local frame of E.
These can be viewed as a collection of (n,0) forms over the preimage under the projection p
of an open set in U in the base. Denote one such by w. Its restriction to each X; defines an
element of Ey. u defines holomorphic section of E if it defines a holmorphic section of K ¢
i.e u A dt is a holomorphic section of K &, that is Ou A dt = 0. Finally E has a naturally
defined hermitian metric coming from that on L (fiber-wise this is the usual hermitian metric

on L ® Kx ) allowing to define the Chern connection operator on E.)

Recall

IIs]|? = Tx(cns A 56 ™)
by definition of integration along fibers obtain

Claim 5. Let v € A" 19(X) and s as above. Set § = s — dt A v then

00|31* = 004|s”

This can also be calculated directly viewing [ y as integration along fibers since the
fibration is trivial.
First note

SAS=8sAS—sANdtANv—dtEANVAS+dEANVNdENDY
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Proof. In the following calculation the type I forms have no contribution so

0345112 = / en005(5 A Fet)
X
:/cnaét(s/\g—s/\dt/\v—dt/\v/\§+dt/\v/\dt/\v)e“t
X
= —/ cns/\E/\ﬁgtute_uth/ (cns A5 A Opup A Opupe” 1)
X X

_ / en0B1(s AFe ") = 9y||s|2
X

Proposition 13. Given § as above we have

85t||§||2 :(—1)”(/ cnOMs N\ O se~ "M +/ cnég/\%e—ut)
X X
- / cnd A5 A O0upe M
X
:(—1)”/ cn05 A D5 Ut + / cnd A5 A DOupe "t
X X

:(H50||2dt A dE + 7 (cn00us A5 A Se” 1))

where [ x 18 interpreted as integration along fibers.

Proof. (1.60) simplifies to (1.61) since 0"t5 vanishes:

vy = ) (us)
= dt N0y = dt A 7 | (ugs)
=dt A (ugs + h)

= gdt As+dtAh

45

(1.60)
(1.61)

(1.62)



=7 (Qut A\ s)
= — 71 ((0 = Ou)s)

= —J"s

Where in the third line A subtracts out the holomorphic part of u;s. The last line follows
since Imo% C Imd" = Kergj'. So 9% 5 = 0.

(1.62) follows since § = s — dt A v so

95 = dt A Qv

= (=1)"u A Dv Adt A dt

QI
VAR
>
QJ||
VAN

To obtain (1.60) some pre-computation is necessary. Observe (1.63), (1.64), and (1.65) hold:
/ cnOts Nde Ut =0 (1.63)
X
since this involves integration along fibers of a type I form
/ cnO§ A Se Ut = / endt AN O A e =0
X X

Similarly

/ Cnd A Dde M =0 (1.64)
X

from (1.63) and (1.64) it follows:

0= a_t/ Cnd A D5e Ut = / 05 A D3e Ut + (—1)”/ Cnd A 0% Dge Ut (1.65)
X X X
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(1.60) follows from the following computation:

004|3||” = (—1)" Oy (cnd A O) T 5e1t)

= (—1)"7(cn 0,15 A O, t5e ™) + i (cnd A DO, e UE)

= (—=1)"74(cp0"t5 A 0% se ") + my(cpd A 00Ut e~ 1)

= (—1)"m(cnd"t3 A O%5e ") + mi(cnd A DDuy A Se™ M)

— ma(cnd A 0¥ D5e ")

Further, applying (1.65)

9915]12 = (= 1) (m4(cn0“t5 A T3 1t)
+ (= 1)"7x(cn03 A %e_“t)) + Tx(cpd A OOuy A G Ut)
and the proposition follows. O

Proposition 14.

151200 F (t) = (0¢s, 5) = —004||s]?
where 04 is the curvature of E.

Proof. Recall ||s||> = [|3]|?. For the second equality see [Bo09]. In the first equality note

that

OflI3]1* = (945, 3) + (—=1)"(5,0"3) = 0
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SO

DOpF (1) =

_00dIs]] , GglIslonIsll _ _00elI] _ _ 00lsl]

1512 Islit sl

where the last equality follows from the claim.

]

Remark 10. Granted the mecessary reqularity, from convexity of F along up connecting

two Kdhler-Einstein metrics 00w F = 0 i.e F is linear on ug. (1.62) and the subsequent

proposition obtain ||0v|| = 0. It also follows O0ur A& A& =0 from which O0ur A § = 0 since

i00us > 0. Since Ov = 0 we see from (1.58) that Vi as defined is a gradient vector field.

Lemma 9. Suppose u; is smooth and 00u; A5 = 0 then

Proof. Since d0uy A 5 = 0 it follows that the coefficient of dt A df vanishes:

but since vy = —V¢|s

and

Ouy

) (ﬁ)(vt)) =0

Ouy

ot~

ouy

Ozdt/\df(ﬁtat

N s) — OxOpur Ndt Nv

Ox O Adt A v = 0X%dt/\df/\vtjs

Ouy
O_E)X(—Eﬁ ) NS
o aUt 8ut
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So from (1.68) and (1.69)

8ut

6X3Ju/\dt/\vt—dt/\dt/\s(VtJ8X( pr )
—- auzg aut
=dt Ndt —
— 0= dt A dE A s(E o — O () (V)
This concludes the calculation. O

Set 1 1= (Sl — Oy (2)(V7).

Remark 11. When i00u; > 0, we have 0 = p = c(¢) satisfies the geodesic equation because

0p(Vy) = |Vi|? with Vi the gradient vector field.

Since V4 satisfies the equation vy = —V;|s, the condition that V4 is static translates to
_ Ouy 8Vt
o ot

since s does not vanish.
Proposition 15. If H™(X, L) = 0(vanishes if i00u; > 0) then 8vt =

Proof. Recall we have

Oy = s + hy (1.70)

where h; is holomorphic for each fixed t.

Since 0% = 0 — Qus A\

0 ov 8ut

— %y = JUt — _ _v
c%a v=27 5 Ox 5 AV
ov 8ut
— Ut = 1.71
=0 af+wﬁk(&)s (1.71)
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from (1.69).

Similarly the right hand side of (1.70) becomes

%(uts + ht) = %s + % (1.72)
Combining (1.71), (1.72)
8“75% = s+ %
but 8“15% is orthogonal to holomorphic forms so
57”% = (us+ %) = (ps) =
since u = 0. Note % Aw is Ox closed. This entails % = 0 because the assumption

H”’l(X) = 0 gives that Oy is surjective so the adjoint is injective i.e let v belong to the

kernel of the adjoint. Then

(u,v) = (Ox7,v) = (-=1)"(7,0"v) =0 = v=0

So the generalized gradient vector field as defined is static and the proposition follows. [J

1.10 Non-smooth case

This section overviews the last part of Berndtssons argument. See [Bo] for further details.
In general a singular metric ¢ with i09¢ > 0 cannot be approximated by a decreasing

sequence of smooth metrics with nonnegative curvature. However, this is possible if the line

50



bundle has some smooth metric of strictly positive curvature.
In fact it is known that one can approximate a singular metric on L with nonnegative

curvature by a decreasing sequence of smooth metrics such that

i00¢” > —eyw (1.73)

where w is some Kéahler form.

This proceeds by considering the line bundle L + ¢/ where F' is positive. Then L + ¢F
admits hermitian metric u; + €y and this can be approximated with smooth metrics y,
of positive curvature (see [ZBSK]). Then u} = x” — e approximates u; satisfying (1.73).
Further the sequence may be arranged to be decreasing.

Recall given u; where i = 0, 1 such that i00u; > 0 there is a bounded geodesic u; defined

for the real part of t € [0, 1] where u; is given by

up = sup{ey }

and the supremum is taken over all ¢y with lim;_,; 1y < u;. Note that the following barrier

function participates in the supremum

xt = max{gg — AR(t), ¢1 + A(R(t) — 1)}

for A > 0 sufficiently large because y+ satisfies the boundary conditions and is plurisubhar-
monic.
So it suffices to restrict to competitors larger the x. But then we have —A <lim, ;4 ¥

and lim ¥ < A. Since 9 is independent of the imaginary part of ¢, i0dy > 0 gives that

t—1"
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1) is convex hence

—A<YPp <A (1.74)

= ¢p — AR(t) < < o1 + AR(Y)

So the same inequality holds for the majorant u; and in fact its upper semicontinous regu-
larization participates in the supremum so that u; is plurisubharmonic. Since its maximal, it
solves the monge-ampere equation with given boundary values. Inequality (1.74) gives that
uy is Lipschitz. Solutions uy arising in this way are called C sub-geodesics.

Obtain F,, from F in (1.59) by replacing u; with u} approximating u; as above. The
loss in positivity i@guty > —¢,w is notational and one can instead proceed as if z'aéut” > 0.

Then i00;F, goes to zero weakly. Corresponding to the smooth metrics uy solutions of
v .
"oy = ) ()

satisfy

. . /
lof || < Cllmy (@ s)|| < Cllsll[[ig]] < € A < o0

So we may extract a subsequence of vy’ that weak converges to a form v € L?. Proposition
13 and 14 give that |[0vY|| — 0 on X x K where K C {2 compact. So weak converges to an

element w € L2. This is v in the distributional sense. It follows dv = 0 since
(w,w) = lim{dvy ,w) < liminf ||0v}||B = 0
from cauchy-schwartz and definition of weak convergence.
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v also satisfies

Oty = | (1gs)

in the weak sense i.e

/ dtAdEAVAOWe M = (—1)”/ dt A dE AT (tigs) A TWe
X xQ X xQ

where W is a smooth form of appropriate degree.

When there are no nontrivial holomorphic vector fields then v = 0, and hence 7| (us) =
0. So 1y is holomorphic and constant since it depends only on the real part of £. Otherwise
one needs to show d;v = 0 in a weak sense. Following the smooth case one needs to obtain a
the distributional formulation of 0"t % = 7 (us) and then conclude using the cohomological
assumption. There is some difficulty in doing this since care is needed taking limits because
it is only known that v; € L2. Some work is also required in deriving the distributional

formulation. However the starting point is the use of proposition 13 and 14 to get that
a0 UV ~ = —ul/
100u; NuNte "t —0
X xQ

See the latest version of [Bo] for details.
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Chapter 2

Obstruction and existence for twisted

Kahler-Einstein equation

2.1 Twisted K.E scalar Equation

Let L be an ample holomorphic hermitian line bundle on a Ké&hler manifold X. Given
] = —c1(Kx ® L) € H*(M,R)n HY1 (M, C) it is natural to seek a corresponding Kihler

metric w with [w] = ¢1(L) satisfying the twisted K&hler-Einstein equation
Ric(w) —w =n (2.1)

In the Kéhler-Einstein setting for Fano manifolds, where n = 0(L = —K ), it is known this
is not always solvable. Similarly extra conditions are needed here.

A flow version of (2.1) can be written as
Org;; = —Ri5+9;5+n; (2.2)
9;5(0) = 9;5

This flow is now known to be called Twisted Kéhler-Ricci flow (Tkrf) (see [SzCol).

Heuristically, if we had long time existence and convergence in C°° topology for time
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derivatives included, then as t — oo

0 = lim 8tg;3 = lim(—R;-j + ggj + 7727)

(ROO) (900) + 175

In other words we obtain a metric g satisfying the twisted Kéhler-Einstein equation. §20
makes this precise.

But to even consider the flow above, short time existence must be clarified when starting
the Tkrf flow at any initial metric gg. To do this it is enough to notice that this can be
written as a scalar flow very similar to the Kéahler-Finstein setting for Fano manifolds where
scalar flow is a parabolic flow for which short time existence is well known.

Write g;7 = g5 + u;7 where u € C®(M x[0,7)),0 < T < co. Set T5 = g;7 +n;5- Since
Ve Rizd A do, FT sdz' ndzT € Cy(M), 0= [T — Ric] € H2(M,R) " H"(M, C), there

is f € C°°(M) unique up to a constant such that Ts— R = fz‘j .

Proposition 16. (2.2) can be written as the scalar equation

6;1: log——iru—l—f—i—(b() (2.3)

where ¢(t) comes from the ambiguity in constant on each time slice that is fized by the

normalization

/ ot Ny = SOV (2.4)
M
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Proof. Rewrite (2.2)

O g;; = — Rij + 923 + U

Using the formula for ricci curvatures obtain

82 m

This is equivalent to

— Ou wil
88(5 —logw—“m —(u+f))=0
ou wi
= 5 zlogw—“m+u+f+¢(t)
Recall [wy] = [w] so we obtain the normalizations in (2.4). O

Remark 12. As a monge-ampere equation the twisted Kdahler-Einstein equation is the same

as that arising in the Kahler-Einstein Fano case i.e.

/

Ae=0Fhwym — () ym (2.5)
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where A is given by

Voly(M) = /

v = A / e~ Othw gy
M M

Using the following

/
L 95 = 955 1 %35

/ /

o /
2. Ric(w)—w —n@Rij—gij_nﬁ

3. (R;5), (n;; + g;7) with associated forms in C (M)

obtain

/
(R_,__R )+R23—g72

1 7717

i

Rig = Rij =05 = Tij = Rig = (“ha)yg

This is equivalent to

85(—log% — ¢+ hy)=0
(W)™

— —log—=— — ¢+ hy = —log A where A >0
w

m

— Ae Ot hwym — (w/)m

Since [w/] = [w], A is normalized to (2.6).
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2.2 Various Estimates (Toy version)

Adjust the scalar equation (2.3) of the twisted Ké&hler-Ricci flow by dropping the term ¢(t)

(referred to ¢¢ in subsequent sections) and study

n

w
Oru =log — +u+ f (2.7)
w
temporarily to gain experience (c(t) adds complications so is relegated to later sections).
Thanks to short time existence there is a 7' > 0. Choose 0 < € < T' < 0.

Proposition 17. C? estimates of u on M x [0, T — €] depend on oscillation of u and bound-

edness of Oru. Explicitly the following estimates are available
o [0l < maxyy |f]

e n+ Au >0 and Au < C. The reduction to estimates on Au comes from well known

point-wise calculation. See [Jo].

Proof. (2.7) can be written as

etop(e tu) = log Pu g f (2.8)

wh

Differentiate in time to obtain

8t(€tat(€_tu)) = Ag(atu)
e' (00 (e u) + O (e~ ")) = Ag(Opu)

[0 (e u) + e ] = Ag(e_tatu) = Ag(@t(e_tu) + e tu)
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Parabolic maximum principle entails (really quantities need to be adjusted by +et and let €

run to zero.)

max (O + (e tu) = max e 'u = max dru < max
Mx[o,T—e}< 4+ I)(e  u) 1 t 1ax O a f

The last inequality follows from (2.8) at ¢ = 0 (replace u with —u to get the bound from

below). So u is bounded.

Lemma 10. Along Tkrf on [0,T — €|, wy > 0. In particular n + Au > 0

Proof. Since % is bounded the monge-ampere equation corresponding to (2.7) wl = ettt fyn
gives w;, > 0(w > 0) so it follows its eigenvalues are nonzero real. At a minimum point p € M,
UyB has positive eigenvalues so that w, has positive eigenvalues near p. By connectedness
and covering appropriately this holds globally(change in sign of eigenvalues would require
w;! to degenerate somewhere). Really this just says that if wy, is positive at a point of M it

is positive everywhere on M. So Trg(wy) =n+ Au > 0on [0,7 — €. O

To get an upper bound on Au use C? inequality obtained by Yau:

Ag(e=0(n + Agu)) > e~ C0UAF — Cn?)

— Cpe C0tn(n + Agu)

F n
n—1

+ (Cp + C)e C0te™ n=T (n + Agu)n—1 (2.9)
where C' = inf; 2 Rz 7 and Cyp + C > 0.
Rewriting (2.7) we set
wit ou
= log(=4) = — —y —
F = log(—) 5 U/
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Inserting into estimate (2.9) and evaluating at a maximum point of the quantity e_Cou(n +

Agu), (po,tp) € M x [0,T — €] obtain

0> Ag(e=0%n + Agu)) > — e C0U(Af + Cn?)

— Cpe~C0tn(n + Agu) + e~ CouA (% —u)

(—u—f+3) 0
—Cou,—
+ (Cp + C)e™ ~0% n=1 (n+ Agu)n-1

(2.10) becomes after multiplying by e“0" and rearranging

C>Agf+Cn > —Con(n + Agu) — Agu+Aggt
Qu_
(ﬁ ) U n
+(Co+Ce * n=T 7 en=T(n+ Agu)n-I

Claim 6. At (pg,tg) when 0 <ty <T —¢

ou ou

Rogy = Cogp

(n + Agu)

Proof. Indeed

0 C e/ ou e/ ou

< — ou A =— 0u=— A OUA qy—

0< 815(6 (n+ Agu)) Coe 5 (n+Ag) +e g,
6 8
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So (2.11) becomes

/

)
C'(n) > — (Con + 1)(n + Agu) + Coa—;‘(n + Agu)

(%*f _n_

_ _u
+(Cy+ e nTT) =T (n + Agu) -1 (2.13)
at tg = 0 we have

e C0uUPo.0)p, > ¢=ComP0.0) (1, + Aju(py, 0)) e~ C0%(n + Agu)
= (n+ Agu) < neCO(u_infMX[QT—E] u)

using that e~Cou(ro-to) < 3_00 f A r 5 [0,7—€] v

When 0 <t < T — e reduce (2.13) further

C’l(n) > — (Con+1— 008_?)(” + Agu)

—|floo+f n

+ (Cop+Ce n-1T en—I(n+ Agju)n-1

, _ -0 n
> —Cy(n+Agu)+Ce n=1 (n+ Agu)n—1

N f=1floo
here Cl) = Con + 1+ Co|floo, C =€ 7L (Cy+C) and n + Agu > 0 holds.

So the inequality takes the form

o lllpo n
Co(l+n+Agu) >Ce  n=1 (n4 Agu)n—T (2.14)
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Claim 7. For x > 0 and positive constants a,b inequalities of the form

n

(1+z)a < (x)n=Tb

hold whenever
x> (28t
provided k > logQ(%) +1 i.e forx > (2%>n_1

_n_ 1
Proof. Clearly z7—1 grows faster than z. Taking zn—1 > 2F

(1+x)a a a a, 1 1 a
e i B R 7 ET _k) <opr <1
xn—1p xn=1b  pn—T1p b an 2 b2
for k an integer bigger than logy (%) + 1. O

By the claim, since (2.14) is the reverse inequality it follows that there is a 0 < C' :=

=2)n=1 5o that

(n + Agu)(po, tg) < celllco
— 0< e D n+ Agu) < e P00 (n 4 Agu(po, to))

— 0< (n+Agu) < Cellullo oCou—ulpg.tg))

< Ce(supr 0,7 u—inf ;o 0,7 u)(Cp+1)
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note that u(0) = 0 so

llullp <max{ sup w,— inf w}< sup w— inf wu
M x[0,T—¢] M x[0,T—¢] Mx[0,T—e  Mx[0,T—¢

2.3 Twisted Mabuchi functional

In this section consider the K-energy functional in the twisted setting. This involves ad-
justing the K-energy functional so that its critical points satisfy the twisted Kahler-Einstein

equation (2.1).

wn—l

Definition 1. V(Z(Qb) = - fol fM(RiC(qu) - (WqS + n))m A dt

Proposition 18. The twisted Mabuchi functional defines a closed 1-form

By(w) = [ ooy Riclwg)) A oy

where 1 € TyH,y,

Recall that

dBy(u,v) = 6ufB(v) — 6uB(u)

where u,v € TyH,,. Mabuchi energy being understood, it suffices to study the differential
n

w
of [ Wf?“qﬂ]ﬁ?- This is given by

Claim 8.

n

w _
(5u/vtr¢nn—? = /v(tr¢nD¢u— (VVu,n))

wTL
¢
S (2.15)
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Proof. Clearly the first term in (2.15) comes from differentiating the volume form.

second term comes from differentiating the ¢ryn term which is locally given by

Really a factor is suppressed but its harmless.

The proposition follows from the next lemma.

Lemma 11.

_ wg wg
dB(u,v) = 5u/vt7'¢77m - 5@/““};577?

— _ wn
= /[trn(UD¢u — ulgv) + u(VVuo,n) — v(VVu, 77>]7‘J|5 -0

The

(2.16)

Proof. Note the second equality follows from the claim. Involved is integration by parts to

obtain cancellation to zero. We suppress all integrals and divergences involved and focus on

the integrands.

By performing integration by parts on trn(vUgu — uldgv) in (2.16) we obtain four terms

that are given by

(—trnVv - Vu — vVitrn - Vu) + (trqVu - Vo + uVitrn - Vo)

= —oVitrn - Vu 4+ uVtry - Vo

(2.17)

The formulas may be verified through a local calculation. For example an integration by
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parts on a term with integrand trnvgpqupq yields
—(trn)pvgPlug — trnvpgPlug = (—vVtrn - Vu — trnVu - Vu)

similarly for the other term.
An integration by parts on the third and fourth terms in (2.16) gives
—gatgsﬁvsufﬁag _ gatgsﬂvsnagju + gatgsﬁvsuznag + gatQSﬂufnaB,sv
= —g"' " vsn, g zu + 9" 9" up 5 0

using that dn = 0 we obtain

—gatgsﬁvsnaﬁju = —gatgsﬂvsnagﬁu = —gsﬁ(trn)gvsu = —uVtry - Vo

similarly

go‘%gsgufnaﬁ’sv = vgo‘%(tm)au{ = oVtrn - Vu

Pairing up corresponding terms in (2.17) with (2.18) and (2.19) we obtain dj = 0.

Recall the Cech 2-differential is given by

(6f) (w1, w2,w3) = flwy,ws) + f(wa,w3) + flws, wr)

where f(wa,wg) = —f(wg,wa). When f defines a Cech cocycle we have

flwi,wo) — flwg,we) = flwi,w3)
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R o /
Letting w1 = w, w9 = w 4+ 100¢, and w3 = w 4+ 100y =: w we can recover how Tian writes

the cocycle condition

/

fw(¢> =) /(¢ ) = fw(w)

w

By the lemma dv}(¢) defines a closed 1 form. Since H,, is contractible the one form is

in fact exact and thus can be integrated to give the functional

n—1
Wi
-1

1
7/77 = U ; .
Yoy =)+ [ [ dma (2.20)

)l

From the discussion in the previous paragraph 1} also satisfies the cocycle condition.

2.4 Twisted Futaki type invariant

For this section we denote the manifold by M so we may notate holomorphic vector fields
by X. Set G := Auty(X). Let n(M) denote the lie algebra of holomorphic vector fields on
M. Given a smooth differential form a we say that the infinitesimal action of X € n(M)
annihilates « if Lxa = 0. We say n(M) annihilates o under the infinitesimal action if
Lxya =0 for each X € n(M).

Here we see that the Futaki invariant can be adapted to the twisted setting under the
condition that 7 is annihilated by n(M). With this taken for granted it can be seen why the
non collapsing condition introduced in subsequent sections guaranteeing existence cannot
hold if the twisted Futaki invariant does not vanish. Though the following argument is
an explicit calculation it seems possible also to conclude through using a moment map

interpretation appearing in [Sto09].
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Proposition 19. Provided n is annihilated by n(M), .7-—;\74 (M) — C given by (2.21) is

well-defined.

F(X, [w]):—/MHX(Ric(w)—w)/\ - _+/M9Xm 7‘;"_ (2.21)

where Ox + o = ixw, o a harmonic 1-form, and X € n(M).

Remark 13. Since n is a real (1,1) form the condition that it is annihilated by the in-
finitesimal action of n(M) means, using that the lie algebra of G is generated by the real
holomorphic vector fields of M, since £X+Y77 =0 for each X € n(M) we conclude that n is

G-invariant.

The first term above is the usual Futaki invariant F'y so is independent of the choice of
metric in [w]. However the second term can potentially destroy the independence.

Following the classical argument there is no loss in assuming holomorphic vector fields
satisfy

ixw=00x (2.22)

since the harmonic piece has no contribution after an integration by parts (see [Tian00] and
(2.26)).

In co-ordinates (2.22) reads
X' =g(0x); = (0x)’ (2.23)
When the metrics vary over any family w; = w + 00¢; in a fixed Kihler class

Oxt="0x +X(¢t) +ct
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since

(Ox4) = ixwt = ix(w—+ 00¢) = D0x + X (o))

Now deduce as in (2.23)

X' =g/ (0x.0)5 = 0% (2.24)

Using (2.22), that X € n(M) and the definition of Ric
o0:0x 4 = —ixRic
see [Tian00] for details. Since n € —c1(L ® K)s) we have
Ric(w) —w = n + 90
for some 1) € C°°(M). Varying over the family {w:} we get
Ricy — (w +n) = 00& (2.25)

where Ric; = Ric(wy).
proof of proposition. From (2.25) we may simplify to get

W~ 1

FI (X wt) QXtaﬁft/\ n Wt — = /M X&—+ (2.26)

Since the space Kéahler metrics is affine it is enough to check the variation over any family
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of metrics in the fixed Kahler class vanishes. So start by computing

d

E‘F}\Z(X’ wt) = /M(Xft + Dtgb.tht)%

Recall we obtain the deformation of the scalar curvature S; by differentiating

- 02
_ Kkl _

to get

$ = —0%) — R 567
Tracing Ric; — (wy + 1) = 00&; we obtain
St —n —trgn = Uy

Differentiating (2.29) and applying (2.28) we obtain

—07¢ — Ragéaﬁ + Uagqgaﬁ = 0y + 04

Recall that
Oss = —(ft)agéag
Set
B = Raf = af ~ EaF = 90
then Ric is harmonic since ARic = cnst and 9 = —i[A, 9] on a Kéhler manifold.
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(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)



In terms of Ric from (2.30), (2.31)

06 = — 07 - Rag¢a3 + %@éag + fagﬁf;ag

- O3 B
So we obtain integrating by parts and using the identity (2.33) for [;&

d
dt

TL
nl

}'0 (X,wp) = /M( Ox, tht + Dt¢txgt)
/ (0x 076 + 0x tRaWaﬁ + XftDt@_t'
M

e 5 aBYl
= M(DtQX,t + Xft)DﬁbH + ' QX,tRagéb )
The first term in (2.34) simplifies to
af | i wi'
0 Sa((Befx )5 + X' (&)i5) ¢

using EDtﬁx,t = —ixRic; and (2.32), (2.35) simplifies to

TL

/ 677 da(Ricg X7 — (g)ﬂxl)

_ [ 0By (RroyxiYt aBy . _xi%l
= /Mgt Qba(RiB)XZm‘i‘/Mgt ¢aﬁi5XZF

Performing by parts on the second term in (2.34) using (2.24) gives

:_/ eXtRzﬁ t ﬁba_
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(2.34)

(2.35)

(2.36)

(2.37)



Putting (2.36) and (2.37) together gives

B aBi B oxiopi WP e

_ /Mgt SaRg(X' = 0% ) - +/Mgt Pan;5X -

[ aBi il

B /Mgt (bomiﬂX n! (239

Compressing notation in (2.38) write
. off ; Ll
(0¢,ixn) = /M 9" PanipX P
To get a well defined invariant we need the last term to vanish. But n(M) annihilates 1 so

0= Lxn=20dixn
(mﬁXi)adzO‘ AdzF =0
= (i X")a =0 (2.39)

From integration by parts and (2.39)

. = owi
(0, ixm) = — /XQSNHX,t(muXZ)aH =0
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2.5 Convexity of the Twisted Mabuchi functional

We restrict ourselves to the smooth setting and consider the twisted mabuchi functional.

Write the differential as

n—1

(n—1)!

) (6) = dEo(X,w) + / o A
M

where ¢ € C°NPsh(w, X). Here we actually mean strictly w-psh so wg > 0. It was observed

in [Sto09)

Proposition 20. Under the provision that n > 0 the twisted mabuchi functional is convex

along smooth geodesics. The second variation of twisted mabuchi energy given by

d—2]:77(X w) = —/ <¢5—1\V¢\2)<Rz‘c<w ) —wp —n) A
A2 0 ’ - M 2 10} ¢ ¢ — 1

+ (9 A Do, ) + || Lo||*

where the operator L = 01 0 (also denoted D).

No argument is given in the literature to the best of our knowledge so we suspect, although

its straightforward, there is an easier way to see this than the argument given below.

Proof. Mabuchi computed the second variation for Ej to be

n—1
“o

— [ iRictios) = o) 1 oty + 1L
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see [Mab]. So it suffices to compute the first variation of

1

. wg_
/M““(n—l)!

Differentiating we obtain

/cbn/\

Integrating by parts the second term may be written as

n 2
/ én Ni006 A Y - (2.40)

2

Wo~
/ agb/\aqb/\nA( )

In the following we abuse notation n <+ ne where ne = 7+ ew > 0 since we can let € run to

zero without trouble.

At a point p € M by choosing normal co-ordinates we may arrange that

n=ngdz Ndz;,  wg =dz; A dzjf.

we omit the TV factor which is ultimately absorbed into £ —,—

Claim 9. The (n,n) form in the second term of (2.40) at the point p is

_ wl
i 3 A ¢
(=Padgdz" N dz") A (nzdz; A dz;) A Z n! (dzp A dzp) A (dzq N dzg)

(PP7#4q)

s &

= (——|ng5|2 + Qspﬁbp)npp
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Proof. This follows because

n;dz; A dzz A Z

n

(pp#qa)
anpn‘dz N dzg * Znqqn'dz N dzg
Z P T 4 “
oy nldzg N dzq
Now
o we
— (09 N OP) N Z[‘ - Z ¢q¢q77ppn_
P#q P#q

S| &

1 .
(_§|V¢|2 + ¢p¢)npp

Remark 14. Another point-wise calculation shows that

2 Ie?:

(3&/\5@ / Qbozq%naa

So it follows from the remark and point-wise computations that

. _. we
/Maqb/\n/\@(?aqb/\ (n—2)l
n

= - M§|V¢\¢tr¢nm+(0¢/\0¢,n)

74



Modulo the second variation of Mabuchi energy, the second variation looks like

N wg_l .
[ (6= 51V g+ (067 o)

so we obtain the second variation formula of Stoppa in untraced form along smooth geodesics:

a2 F(x B | $2)( R w1
+ (99 A 9o, n) + || L]
Convexity along smooth geodesics follows immediately provided n > 0. O

2.6 Application of Twisted Mabuchi Energy: Existence

To attack the existence problem of solutions to the twisted ricci equation

Ric(w) —w=n n>0

we consider twisted Kéhler-Ricci flow starting at some Kéahler metric wg € ¢1(L) satisfying

the following condition along the flow

wi > Cwj C>0cnst Vt>0 (2.41)

Remark 15. Replacing the condition n > 0 with wg + n represents a Kahler class allows n
to be negative. Unfortunately reapplying arguments for n > 0 don’t carry over in any obvious

fashion in regards to the C¥ estimate and the mazimum principles for Perelmans estimates.

5



To establish existence one uses the parabolic formulation

d
— 7N ;
Ewt =T," — Rict
where Tt77 = wt + 1. Henceforth, as is common this will be referred to twisted Kahler-Ricci
flow (Tkrf). Establishing convergence as ¢ — oo is the goal. For this we use three ingredients
the twisted mabuchi functional introduced above, a modified version of Perelmans estimates
for Kéhler-Ricci flow, and a potential theory based C¥ estimate of Tian-Zhu [Ti07].

The relevant theorems are described below. First the Tian-Zhu estimate.

Proposition 4. Let (X,w) be a compact Kihler manifold of complex dimension n. Let
wn
¢ € Hy solve — = f. Then there is €y, 0y so that for € € (0,¢q) and § € (0,0p) there exists

/
constants C;,C" > 0 depending only on w, €y, dy such that

1

0sc(6) < C)" IS ey + € (2.42)

for non-negative f € L'T€(X).

The twisted version version of Perelmans theorem can be stated by first setting TZ7 =

w¢ + 1. Then in the situation 7 is chosen so that Tt77 >0

Proposition 5. Over a Fano manifold (X,w) of complex dimension n, the twisted Kdhler-

Ricci flow

d .
% = Tt — Ric(wt) = z’88¢t

with n > 0 satisfies uniform estimates on the following quantities

61, [Volt, | Ardr|, Diamy(X) (2.43)
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n
Provided % > Ko, t € [0,00) we also have
1S, < C (2.44)

Here normalize the Ricci potential qﬁt by the condition

1 7.
V/Xe St =1 (2.45)

This proposition differs from the recent result [SzCo| only in that the extra condition on
the density of the volume of the Tkrf allows to bound scalar curvature.

The twisted Kahler-Ricci functional is decreasing along the twisted Kéhler-Ricci flow
and there is a similar identity to the classical case from which we conclude this functional
is uniformly bounded from below. Extracting the canonical metric is described in §20. The
arguments follow similar lines as appearing in [Pa] .

Recall the at the level of potentials we have the equation

wn

Qgtzl()g%‘f‘ﬁbt‘i‘f‘f‘ct

where f = —hy,; and let b=+t

Also the differential of the twisted mabuchi functional looks like

n—1
Wi

(n—1)!

vl e) = /X G1(Try — Ric) A

It is essential that our choice of functional enjoys the following property.

Proposition 21. If ¢; evolves according to the Tkrf flow above then the twisted mabuchi

7



functional decreases along the flow.

Proof. Indeed,

n—1
Wi

Y A
() = /X G100 N T

s
— -~ [ 1063
X n:

O

The following can be considered among the more important properties for the existence

result. Since extracting the limit in §20 crucially depends on this.

Proposition 22. The twisted mabuchi energy (2.20) is bounded along Tkrf provided the non

collapsing estimate (2.41) holds. If the flow exists for all time then lims—oovh(¢r) < 00

Claim 10. Along Tkrf the following identity for the twisted K-enerqgy is available.

I 1 [ - 1
v (¢) = v /X Owi' + Ju(St) — 1 /X o + /X heo ™ (2.46)

The twisted ricci flow

dwy .
= Ty — Ric(wy)

at the level of potential is exactly (2.3)(let b=+ ct), and is written as

n

~ . w
¢ = ¢y —log w—fl + By (2.47)
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The corresponding monge-ampere equation is

ehwm=oyn = e Pwp (2.48)

In the classical setting there is the following expression for mabuchi energy(see [Ru]):

—1 1 1 1
Vw(ﬁb):V/Xfw(z)Wg‘f'V/Xfwwn—f-Jw(Cb)—V/)(¢wn—logv/)(€fw_¢wn (2.49)

Adjusting the formula for twisted K-energy we obtain essentially the same formula.

Lemma 12. Along Tkrf we have the following identity:

—1 1 1
l/zg(gb) = V/thqu,nwg—i-v/)(hwmwn—kjw(q»—V/)(qﬁwn

1
—log—/ elwn=o,n (2.50)
VIx

In fact the argument is very similar to the untwisted version.

Proof. The log term in (2.50) vanishes because of normalization (2.45) using (2.48). Recall
the twisted ricci potential is given by —v/—199¢ = Ric=Ty = v/ —185}1%,” which translates

at the level of potentials

o
o = — 108 L = 01+ husy

— hw.t,n = — Adr — oy

Again since the log term vanishes F,(¢) = J,(¢) — [y ¢ Aw™. So %Fw(qﬁ) = — [y dwi =

Ix hu;p??w?' The lemma follows from the following calculation using an integration by parts
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in the second line

d 1 1 . .
Ev/tht,nW? = V/)((hwt,n+hwt,nAt¢)W?

d . .
= SR0)+ 5 /X (i0hey Y A )

d 1 .
— aFw(gb) + v /X P(Ric(wg) — Ty m) A nw?_l (2.51)

Notice that the second term in (2.51) is negative of the differential of twisted mabuchi

k-energy. Integrating in ¢ from 0 to 1 obtains (2.50). O

proof of claim. To obtain the claim note that he, = ¢ — ¢t and since | X wg =V we may

combine the ¢; term as in the statement of the claim. O

proof of proposition. By hypothesis we have uniform noncollapsing estimate w;’ > kw" for
n
t € [0,00). Applying the uniform lower bound on the ratio of the volume forms Z_t" >k to

(2.47) translates into an upper bound

~

p=dt+cp <C

using the Perelman type uniform estimate |¢| < & in (2.43). With this and that J,(¢) > 0

on the Kahler potentials we have by the claim

1

1 . A
0 < Ju(@) = vu(or) — v /X drwy’ + % /X o — vy honw' <vih(g)+C  (2.52)

So
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We can conclude since the twisted Kahler ricci functional decreases along the flow and is

bounded from below limy_ 0 v (¢4) < 0. O
Remark 16. We note that the term fO fX gbn dt appearing in the definition of the
twisted mabuchi K-energy can be bounded from below in terms of the scalar curvature.
1 . w1 1 ) W
t t
dt = t —dt
1 n
> — C'/ trwtnw—t
oo fon e
(n—1)!
Since
trwm > 0, 9] < C
//77/\ dt // n — Ric(wy)) dt+//chwt dt
(n— 1)
Since n € —c1(Kx ® L), n — Ric(wt) € —c1(L) we may write n — Ric(wt) = —(wt + 00) f.
It follows
// n — Ric(wy)) // (wi + 00f) A ( )
= —nV—/ / 90f N “i ‘dt——nV
0 Jx (n—1)!

where we used that

1
N
J 1 G =

which follows from integration by parts since wy is closed.
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Since we have that |S(wi)| < C along the flow

N S
/O/Xch(wt)/\(n_l)!:n/O /XS(wt)H<nCV

Remark 17. 0 <7y, € c1(—=Kx) so that X is Fano.

Proposition 23. For all times t > 0 assume w;' > kw" along the twisted ricci flow(non
collapsing estimate). Then this flow satisfies the uniform estimate |py + ¢t| < Ko, where

Ko > 0,k are independent of t.
Details differ marginally from [Pa] but we provide the argument below for convenience.

Claim 11. [t suffices to obtain the estimate

H¢AtHc()(X) < OSC((ﬁAt) +C

The propositions follows after applying the estimate in (2.42) and moser iteration.

Proof. The claim follows from

[|heoy = el < Osc(huy — 1)

which clearly holds if Ay, — ngt changes sign. But this is true since along the twisted flow
the volume forms deform according to ehwn=dyn — e_¢wf and the normalization condition

on gzgt gives that

X X X
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So

/ (ehwﬂ?_ét — 1)wn =0
X
80 hyy — ggt changes sign. O]

From the estimate in (2.42) we need to bound [y @Grthun=30)(1+)n Iy view of

Perelman’s estimate on ¢ we can reduce to bounding

/ o~ (146 dy n
X

Claim 12. The quantity max x gZ;t 1s bounded. So define 0; := maxyx ggt — gzgt. It follows
e_(1+6)¢;twn < Ceeetw;{‘ fort > 0.

n

Proof. Since Z—tn > K from (2.47) and Perelman’s estimate |¢] < C it follows that ¢y < O]

So it suffices to show that maxy (¢; — hwn) = 0 to conclude maxy ¢¢ is bounded for
¢ > 0. But note that if 0 > maxx (¢ — hwm) > b — hy.n then ehwn=9t > 1. Tn which case
we contradict [ X(ehw’n_qgt — 1w™ = 0. So max ¢ is bounded and 6; is well-defined. The
inequality for the volume forms is an easy calculation which involves writing —gzgt(l +e€) =

€ — e max Qgt — ngt and then use that max gzgt is bounded and gzgt is bounded from above (see

Pa)) . O

So from the volume estimate in the claim it follows it is sufficient to bound

/ ety
X
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by

By power series expanding et it suffices to get the bound

/ Orwy < CPpl
X

for all integers p > 1 and then take 0 < € < % so that the geometric series converges.

Claim 13. The estimates 0 < %fX Orwit < C and fX Qf—i_lw? <Clp+1) fX wa? hold

along the flow.

Note that by iterating the second estimate and combining with the first estimate we may

obtain the desired bound for all integers p > 1.

Proof. For the first estimate apply inequality (2.52) , which uses the hypothesis w;’ > kw".
Combined with the fact that the twisted mabuchi functional is decreasing along the flow, it
follows that J,(¢¢) is bounded along the flow.

So

0 < Iu(d)) = %/X Gi(w — ) < (n+ 1) Ju(er) < C (2.54)

From (2.48) we have

— —— [ fu" < C (2.55)

where the last line follows from Jensens inequality.

Remark 18. In fact (2.55) follows directly from (2.52)
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From equation (2.54) and (2.55) obtain
1/q§"1(¢) 1/g£”<0 1/é”<20 (2.56)
—— wy = - = w' = - = w .
Vv % tWit w\Pt Vv % t > vV % t
Using (2.56) and that maxy ¢y is bounded, conclude
0< / Orwy’ < i/ (maX(bAt — gb})w” <C
~Jx t = VI Ix X t
For the second estimate the starting point is the well known identity

p+1
Y4 -1 _ P a5 -1 _
/XOt(wf—wf /\w)-—/}(@tﬁaét/\w? = p+1 /|89 20

from which it follows (using wf_l ANw >0)

p+1 ( )2
X

In [Pa] it is shown that
Lemma 13. On compact Kdhler manifolds (X,w) of complex dimension n for any u,h €
C°(X,R)
/ OV 102 e = —/ (0A, pu, Ou)yew"
X X
—/ (Ric(w) — i00h)(Vou, JVu)ew™
X

from which a poincare-type inequality obtains.
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Corollary 4. Let X be a Fano manifold of complex dimension n. Let w € c1(L) be a Kdhler
metric, 0 <n € —c1(L® Kx) , and let hy 5 € C(X,R) satisfy Ric(w) — Ty = i@ghwm.

Vie n = Ix ehwnw. Then for any ¢ € C®(X)

2 h 2 h 1 h 2
/ 097, n€ W' 2/ Py — 7 (/ IR
X ’ X hw»ﬂ X

n
Note that when the uniform (in ¢) estimate % > K > 0 is true
cwt > Ty, > wi (2.58)
The second inequality follow directly since n > 0, independent of the uniform estimate. The

first inequality is a consequence of the C'? estimate and is discussed in §7.

Remark 19. Roughly the content of this lemma has appeared in §5. The identity in the
lemma after dropping the nonnegative term leads to an inequality, which for first eigenfunc-

tions simplifies to

2/ |3u|(%ehwﬂ7wn :/ |Vu|?uehwﬂ77wn S/ |VU,|%—V ehuhnwn
X X X w,n

S/\l/ |Ou|2 M mg,n
X

Note that (2.58) is applied in the first inequality and the lemma is used for the second

inequality. The variational characterization of the first eigenvalue

[ luBel e
fX u2ehw7nwn o

86



Jx gelwnen
Vi
w1

applied with ¢ — can be used to obtain the corollary.

proof of proposition. Under the twisted Kahler-Ricci flow

0p = Ty — Ric(wt)

: ptl
So hyy.n = —¢¢. Applying the corollary with metric wy and function 6, 2 gives

p+l . 1 . p+1 .
/ |(90tT|%w ne_qbw? > / GfJF e Ptwp — (/ 0, ° e P2
X ’ X X

hw.n

prl . L ¢ P —¢y
Apply holder’s inequality to 67 e Pt = 49? e 76267 and using i, 5 > wt obtain

. p+1 . . .
/ 95+16_¢wf < / 100, 2 |7e”Ptwl 4 C'/ Qfe_qstw,?/ Ore Ptwp
X X X X
Apply inequality (2.57) with the uniform estimate |¢¢| < C' to obtain

/ 9%’4-1@_927@? < C’p/ wa?—i—C/ efe—cﬁtwg :C'(p—l—l)/ waf
X X X x

and so the second estimate of the claim follows: ||| O(x) < C'fort > 0 with C independent

of t.

2.7 Perelman’s estimates twisted setting

In proposition (2.43) we need to check Perelman’s estimates carries over to the twisted

setting, avoiding any circularity in verifying the first inequality in (2.58) . That is, twisted
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flows satisfying the non-collapsing estimate are uniformly equivalent to the initial metric.

Recall from the calculation

—. 9
00y = —
Ot vt
=Ty — Ric(wt)
= Tt,n - Two,n + RiC(wo) — RiC(wt) — Ric(wo) + TWO»W

n

— w
= 00(¢t + log—L — hwg.n)
“o

the scalar equation for the potentials is

n

. w
th = (rbt + ¢t + lOg W_I;L - hwo,'r] (259)
0

Time differentiating and setting u; = gzgt we obtain the same equation appearing in the
Kahler-Ricci flow setting

Upuy = up + a

where a; = ¢; and [y = 0y — %A. So apply the argument appearing in [Pa] directly to obtain

that a; is uniformly bounded in ¢.

Lemma 14. The scalar curvature R is uniformly bounded from below along the twisted

Kdhler-Ricci flow.

Note this follows from the maximum principle:

Proof.

Oy, (Ric —n)
ot

(wy) = |Rica5 — 770[3\2 + At(Aw, (Ric — 1)) (wt) — Ay (Ric —n)(we)  (2.60)
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This simplifies to

8etAwt (Ric —n)
ot

(wi) = ¢'|Ric, 5 — 05" + ¢ De(Awy (Ric — ) (wr)

from which we get

Aw, (Ric —n)(wt) > e_tAwO(Ric —n)(wp) (2.61)

Since wy >0 and n >0

Awn=1trn =0

we obtain

S(wy) > e_t(S(O) — tryn) > min{0, S(0) — tryn}

To verify (2.60) note that the twisted Kéhler-Ricci flow differs from the standard Kéahler-
Ricci flow in that Ric is replaced by @ := Ric — n. Note Q) = Ric. So the check for the
identity is no different from the Kéhler-Ricci flow setting:

dAtQ _ 2 ozB
ot ot

= — (9t — Qpg(Q" — g;' Baa%gfngﬁ

QaB - _gtaqgfﬁgiﬁQaB + gtaﬁQaB

= — ¢"1Qu7 + |Qugl* — Aigl (g — Q)yg

= |Qpgl® — Ay @ + MM, Q

Corollary 5. Au is bounded from above.
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Proof.

Au=n — (S(ws — Tr))
<n — e H(S(wp) — Tron)
<n — max{0, S(wp) — Tron}

<C

]

In the following lemma we sketch details in places since the argument is almost identical

with the untwisted setting in [ST].
Lemma 15. The function u(t) := ¢(t) is uniformly bounded from below.

Proof. Along the twisted flow we have from (2.59)

du

E:n—(R—trtn)—l—u—l—agn%—C—l—u (2.62)

where the second inequality follows from the lower bound on R — trn obtained from the
lemma. The argument proceeds by contradiction as in [ST].
Start off assuming there is a point and time (¢g,yg) where u is very negative. Using

(2.62) gives that u(t) stays negative for t > ¢ in a neighborhood U of y3. Obtain estimates

u(t)(z) < e70(C + u(ty)) < —Cet t>ty 2€U

B(t)(2) < o(t)(2) — Cet 0 < —Ce! t>>0 zeU (2.63)

The first item follows from integrating out the differential inequality Ccll—? < '+ u and using
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that u(tg) can be made very negative. For the second integrate one more time using u = .
Using the normalization % v e~ () = 1 obtain that u(t) can’t be everywhere too neg-

ative. In particular we have the uniform estimate

t)) > -C 2.64
max(u(t)) > (264
With (2.62) rewritten as

d

—(u — 2.

Zu—9¢)<C (2.65)
obtain the estimate

mﬁxgb(t) > —-C —Ct (2.66)

after integrating and combining with (2.64). All constants are uniform.
We may obtain an upper bound on maxj; ¢(t) using the Green’s formula (see [ST])

applied to ¢(t) and —Agp(t) = —trog(t) + n < n and (2.63). Obtain
t) < t)—Cel +C
max ¢(t) < amax¢(t) — Ce
where 0 < a < 1 and t > tp. Then o < 1 gives the estimate

t) < —Cel +C
mﬁx¢()_ e +

So taking large values of ¢ it follows that maxy; ¢(¢) decays no slower than a linear func-
tion whereas the upper bound gives that it decays at least as fast as an exponential so a

contradiction is obtained. O
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Remark 20. By the corollary
Au < C(u+ 2B)

for B sufficiently large, since u is bounded below by the lemma.

Proposition 24. Under the twisted ricci flow we check the evolution of |Vu|2 and Au satisfy

O(Au) = (8 — A)Au = —|VVul* + Au (2.67)

O(Vul?) = 3| Vul?> — AlVu? = —=|[VVuf? - [VVul]? + |[Vul?> = (n, VuVu),  (2.68)
Proof. Check (2.67) by direct calculation using gz.j = U5 = Tz’j — Ricij and Oru = Au+u+a

O,

O Au =g ]uij
=At — 2giqu3gmui3
=A(Au+u+a)— 2giqujupquij

—A(Au+u) — |[VVul?

and the identity follows.

For (2.68) we start with the Bochner formula

1 1 1 _— z .3
A§]Vu]2 - 5|VW|2 + §\vw12 + R gu’u” + ¢ (ua(Du)g + (Au)qug)
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Also note that

1 T . e . Ore —
8t§|VUI2 =g s + g7 ugi; — 9" g uguus

—¢" (Au+u+ a)iujf- + ¢ ui(Au +u + a)j + gﬁgsj(Ric — T)sfuiuj

Putting this together
(0 — D)|Vul? = —|VVul? — [VVul? + [Vul? - nluju

The identity follows. O]

Using these evolution equations applied to the same quantities appearing in [ST] obtain

by application of the maximum principle the following estimates

Claim 14.

IVul? < C(u+ c) (2.69)
—Au < C(u+C) (2.70)
provided n > 0.
So uniform bounds on |u| give uniform bounds on |Vu| and |Aul.

Remark 21. After this is verified we follow arguments of [SzCo] where Proposition 7. in
the exposition of Sesum-Tian is replaced by a twisted entropy functional more appropriate to
the study of the twisted Ricci flow. At this point instead of following arguments in [ST] such
as Claim 8 where upper bounds on u, R are obtained in terms of the diameter, u is analyzed

Just as the diameter is (by considering sub level sets of u) in the subsequent propositions. We
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outline briefly the remaining arguments for the sake of exposition. Roughly the arguments
make essential use of the monotonicity properties of twisted Perelman entropy and that its
coercive (in the sense of Tao), in that it provides a scale invariant geometric control on the
flow known as k-noncollapsing. Eventually to bound the scalar curvature we will see that the

assumption wi' > Kw™ fort € [0,00) is used.

Remark 22. A priori its not clear what the effect of n > 0 is on applying the mazimum
principle as in original Kdahler setting. We will see the effect is benign. However, if n < 0

there are complications.

Proof. Just as in the case of Kahler Ricci flow we consider the quantity

B |Vu|2

u-+ 2B

an application of the maximum principle will yield (2.69).

Using Oiu = Au+u+a

IVul? 9 Vul? B \Vul?(Au + u + a)
"Ywt2B  u+2B (u+2B)2

Similarly (we omit a factor of 2)

wi2p 9 ap)
2
I s T
S u+2B (u+2B)? (u+2B)?2 (u+2B)3
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So

IVl [VuPuta) AV gPUVulug  gPNVulFup g8 VuPuyug

UH =
u+2B (u+2B)2  u+2B  (u+2B)2  (u+2B)?2 (u+2B)3
_D|Vu|2 B IVul2(u+a)  (V|Vu|2, Vu) + (V|Vul|?, Vi) _ |Vu|*
“u+2B (u+2B)? (u + 2B)2 (u+2B)3

using the evolution identity (2.68) obtain

=YV = |VVu? = (n, VuVu)y  [Vu|?(2B - a)

OH
u+2B (u+ 2B)2
2 T < 2 4

N (VIVul*, Vu) +(V|Vul*, Vu) ) |Vul (2.71)

(u+ 2B)2 (u+2B)3

Note that
3, |Vul? V| g
VH — Ozﬂ | o
928 wr2B)?
Vu-VH
= 2-9 55 (2.72)
v/ 2 4
:(2_€)<VU,V|VU| ) 2o |Vul
(u + 2B)2 (u+2B)3
Rewriting the last two terms in (2.71) using (2.72) obtain
(Vu,VIVul®)  |[Vu* (2 e)vu .VH €<Vu, V|Vul?)
(u+2B)2 (u+2B)3 u+ 2B (u+2B)2
Vul*

—e—— 2.73
“(u+2B)3 (2.73)
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Using an orthonormal frame and an application of Cauchy-Schwartz gives

V- V|Vul?| ZVguVi(VjuV]f.u)
:V;u(vivju)vju + Vguvju(vivju) (2.74)

<|Vul?(|VVu| + [VVu|)

Fix a constant C' > 1. Then apply (2.74) to the term in (2.73) gives

Vu - V|Vul?| _ 6|W|2(|vvu|2+ IVVu|?)
(u+2B)2 = (u+2B)3/2(u+2B)1/2
€ |Vt +02€(yvvm2+\vvuy2)
“4(u+2B)3 T 2 u+ 2B

(2.75)

From (2.75) obtain

Q(vu,V|Vu\2> Ly V| _(Q_E)VU-VH +E<Vu,V\Vu|2> . |Vu|*
(u+2B)2 (u+2B)3 u+ 2B (u+2B)?2 (u+2B)3

<, . 2 T, |2 4

Vu-VH +202€|VVUI +|VVul*  3e [Vuy

u—+ 2B u—+ 2B 4(u+2B)3

<(2-¢

Choose € so that 2C%e < % Applying this inequality to the expression for [1H obtain

_—|VVu|2 — |[VVul? — (n, VuVu)g  |Vul?(2B — a)

OH
u+ 2B (u+ 2B)2
Vu-VH o |VVu? +|VVu|? 3¢ |Vult
2—€)———+2 - — 2.
+ E)u—i-QB 207 u+ 2B 4 (u+2B)3 (2.76)

Note that since n > 0

(n, VuVu)g > 0
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This can be checked through point-wise calculation simultaneously diagonalizing n with

respect g. In co-ordinates this looks like

L N S B
' ujuz = )\iidijuzuj = \jlug|* >0

So drop this term in (2.76) to obtain the inequality

_ (202%¢ — 1)(|VVul]? +|VVul?)  |Vul?(2B —a)
- u+ 2B (u+2B)?

Vu-VH _ 3e |Vl

+2—-¢)——— — —

UH —_—
u+2B 4 (u+2B)3

Since 2C2%¢ — 1 < 0 and u + 2B > 0 we may drop the first term on the right hand side to

obtain

|Vu|?(2B — a)
(u+ 2B)?2

Vu-VH 3¢ |Vul!
u+2B 4 (u+2B)3

UH <

+(2—¢) (2.77)

So even with the extra term (1, VuVu) g we apply the maximum principle to the quantity
H just as in the Kéahler-Ricci flow case. At a point where H achieves it maximum we have

VH =0and AH <0. So

|Vu|? 3¢ |Vul?
0 < oH < 0OH, <—52B—a— — 2.78
= Timax = ma"—(u+23)2< T ut2B (2.78)
2
If the inequality = LZ%'B < (' fails we may produce a sequence of counter examples

given by the data {(zmax,tn), Cn} where C);, — oo. So that the parenthesis of the second
inequality in (2.78) is negative on the sequence for n >> 0. Contradiction. (2.69) follows.

The second inequality —Au < C'(u 4 2B) obtains similarly. The dependency on 7 arises
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as follows

—b|VVul? — (b—1)|VVul? N (K 4+ bH)(2B — a)

U(K +bH) =
(K +bH) u+ 2B u+ 2B
27u-V(K—|—bH) B (n, VuVu)
u+28 u+ 28

_ =A
where K = u+—2% and b > 1.

Since % > 0 we may drop the last term. Set G = K + bH. Then the evolution

identity for Gpax is

d
@ <—(h-1
Gima (b )u—|—2B u+ 2B

dt -

This is also the inequality that one gets in the Kéahler-Ricci flow case so the remaining part

of this argument is identical. m

Tracing the twisted Kéhler-Ricci flow equation obtain Au = Try, Tt — R then R =

T'ry, Ty — Au. Once we can establish

where ¢ is a constant independent of ¢, we can bound the scalar curvature (2.44) since

Trilw,,m <cn

and we can obtain the bound R < C(u + 2B).

Remark 23. However, proceeding exactly as in [ST] does not work since the k-noncollapsing
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property for the flow:

Voly(B(x,1)) > k

for any metric g satisfying
|R—trm| <1 on B(x,1) 0B(xz,1)#0

needs to be established.

Recently this has been verified in [SzCo|. This involves introducing the twisted entropy

functional:

Definition 2. On a compact Kdhler manifold let n) be a closed nonnegative (1,1) form. The
twisted entropy functional

W Met x C*°(R) x Ryg — R is given by
Wi(g, f,7) = /M(T(R —trgn + |Vf|§) + f —2n)(drr) e Tdm
for the unnormalized twisted Kahler ricci flow
w = —2(Ric(w) —n) (2.80)

This is Perelman’s entropy functional with R replaced by R — trgn; exactly the same ad-
justment needed to obtain the twisted Mabuchi functional. Similar to the twisted Mabuchi
functional the monotonicity property of the entropy functional carries over to the twisted
setting. The twisted entropy functional shares many other useful properties with the entropy

functional.

99



Proposition 6. For (g(t), f(t),7(t)) € Met x C*°(R) x R

oW(g(t), f(t),7(t)) =T /M |Ric —n+ Hess(f) — %|%(47T7’)_ne_fdm

where the triple (g(t), f(t), 7(t)) satisfies the usual system of PDE’s with R, Ric replaced by

R — trim, Ric —n.

Following a contradiction argument s-noncollapsing in the formulation of [SzCo] is ob-
tained by applying the twisted entropy to a test function. From its monotonicity properties
and effective estimates one can conclude. The softer version in the spirit of [ST] works too.

But first the flow needs to be reparametrized to work with the twisted entropy functional.

Claim 15. The twisted Kahler ricci flow can be reparametrized to unnormalized twisted ricci

flow

w = —2(Ric(w) —n) (2.81)

Proof. Let g = 1(t)(g) denote the reparametrized metric with respect t(s). To determine

t(s) we need to solve ode’s:

= ¥(g9) + Y(=Ric+g+n)

= (¥ +¥)(g) + ¥ (n — Ric)

So

%atg _ (2% 1 9)(g) — 2Ric = —2(Ric — )
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provided %jtl = 0. Since 05 = a—é&; = %8,5 a choice of reparmetrization ¢(s) can be obtained

by solving

%

T 42="C242=0

¢+ s+
dt_2
ds

Solving we obtain t(s) = —In(C —2s) and if we enforce that ¢(0) = 0 we can take C'=1. [

Remark 24. Reparametrization allows to transfer the k-noncollapsing property for unnor-

malized flow to normalized twisted Kdihler ricci flow. See [SzCo.

From the discussion above adjusting u by a constant appropriately the following uniform
estimates are in hand

|Aul, |[Vul? < Ku (2.82)

So it suffices to bound « from above.

It was observed in [SzCo] that by considering sublevel sets of the form

M(a,b) ={zr € Mla < u < b}

instead of geodesic annuli u can be bounded directly without requiring a diameter bound.
Remark 25. Ifa <b < c¢<d then M(a,b) N M(c,d) =10

For the purpose of bounding u a contradiction argument needs to be made and one starts

by assuming u grows without bound.
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V = Vol(My) is constant along the flow. Partition M using the range of u then
N 1—1 v
> VoM (2! Tk 20y < v
1=1

for k sufficiently large (depending on ) and taking N > % , there is an 1 < ig < N for
which

L
0 < Vol(M(21007 k 10°0kyy

Note that ig can be taken to be 1 at the cost of making k larger.
Like geodesic annuli considered in [ST], [SzCo] does the same for M(a,b) instead. In

particular:

Lemma 16. There is a point x € M with u(zr) = a+ 1 and constants k1 such that if
b—2>a> K then

Vol(M(a,b)) > k1a™ "

Restricting (2.82) to M(a,a +2) C M(a,b) gives estimates necessary to apply the x
non-collapsing property to conclude.

After specifying a threshold that & above must exceed, since u is assumed unbounded we
may assume there is k so that Vol(M (2%, 219%) < ¢ < 1 and we can always find an = € M so
that u(z) = 2°% +1 say. Clearly for k1, ko € [k, 10k], Vol (M (2F1,252)) < € holds. Moreover,

similar to Claim (10) in [ST]

-1
Lemma 17. Provided k exceeds the threshold max{logy(k™ ),2} and 0 < € < 1, there exists
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ki, ko € [k, 10k] with ko > k1 + 4 such that

Vol(M(2F1,2k2)) < ¢

Vol(M(2F1+2 2k2=2)) > 273ny o1 (M (281, 2F2))

The second estimate above follows by iterating the reverse inequality starting with the
sublevel set M (2k, 29k+2). Finally to conclude one applies the previous lemma and uses the
threshold to obtain a contradiction.

The penultimate step is similar to Lemma to 11 in [ST] with —Au = Tr¢(Ric —n) — n

replacing scalar curvature and provided k9 > k; + 1 then

Lemma 18. There exists r € [2F1, 25171 and ro € [25271 2K2) 50 that
/ (—Aw)dm < CVol(M (2", 2F2))
M(ry,ra)

As before one works with (2.82) on sublevel sets. An application of co-area formula allows
to pass to estimates on some smooth sets uw = r;, ¢ = 1,2. Then conclude as in [ST].
Finally just as in Proposition 9 in [ST] we are in the setting of lemma (17) so
~1
Proposition 25. There is an € > 0 such that if k > max{loga(r," ),2} and Vol(M(2F1,2k2)) <

€ then u is bounded.

This proceeds by contradiction, when u grows without bound a cutoff function is con-
structed so that lemma’s 17,18 may be used and fed into the twisted entropy functional
just as in [ST]. In fact the same argument in [ST] with use of the twisted entropy function
can be made. However [SzCo| proceeds using effective estimates to obtain the contradiction:

roughly by lemma (17) there is kq, ko such that V := Vol(M(2F1,2F)) < ¢, whereas via the
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twisted entropy functional we may obtain a choice for which V' > € a contradiction. So u is
bounded from above.

To summarize, along the twisted Kéhler ricci flow [SzCo| obtained

Proposition 7 (Sz-Co). Along TKRF with g(0) = go there exist a constant C' depending

continuously on the C3 norm of gy (and a uniform lower bound of gy) such that
|u| + |Vu|g(t) + |Ag(t)u| < C
Now we are in a position to start bounding scalar curvature and also justify the first

inequality in (2.58). For this it suffices to show for the twisted Kéhler Ricci flow:

n
Lemma 19. Suppose Z—tn > Ko for all t € [0,00) where K is a constant independent of t.
Then there exist positive constants kg, K independent of t > 0 such that for all t > 0 the

following estimates hold

0<n+Apdr < K (2.83)
|00¢¢| <k + /0 (2.84)
kalw <wt < Kw (2.85)

Remark 26. (2.83) appears as the parabolic analogue of Yau’s C? estimate. But a little
modification is needed. In Kdhler-Ricci flow case [Pa] uses Perelman’s estimate |u| < C.
Recall in [ST] this depends on scalar curvature but thanks to [SzCo] this dependency can be

removed.

Proof. For (2.83) the ingredients remain the same as in [Pa]. Consider the quantity appearing
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in Kéahler-Ricci flow

A= log(trywt) — k(¢r +ct) M x [0, 00)

Follow a computation similar to that in [BBEGZ|. Start with 7, 7 Kahler forms on a complex

manifold. There is a lower bound B > 0 for R ﬁ(T) so that
L

trr Ric(T )

ke A

/
A slogtryr > —
T trrm

— Btr 1
T

Apply this when 7 = w and 7= wt. So we obtain when Oy = — (9 — Ay)

/ /
OtryT  tryRic(T)
- - 7

/
O¢ log(trr7 ) > — Btr 7
T

/
treT troT

(8tt7‘7—7'/ + trTRic(T/))

= — 7 - BtTT/T

treT

Note

/ . / /
HArT = Ao =try7 —trrRic(t ) +tren

/
Since C' > trrn > 0 and n < try7 tr ;7 we have
T

/
! tr +ir
O¢ log(tryr ) > — TT—,W — Btr 7
try7T T
C
> -1 ; — Btr 7
troT T

C
>—1—(=+B)tr 7
n T

=—1—-Ctr 71
T
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So choosing k > C and using tr /7 =triw=n—Np=n—A ¢
T T
A 2 =14 (k= C)tr 7+ k(dr —n + ay)

Recall

n . ~
LW _
so using w—tn = ehto—¢

Since estimates |¢|, |¢¢ + ¢t| < C' are available obtain

A
tr y7 > Cpen—1
T

where C' > 0.
So (2.86) becomes

A
[(4A > —C + Cyen—1

(2.86)

It follows by applying the maximum principle that we have a uniform upper bounds on the

maximum of e4 < C"~ 1. since a maximum of A is a maximum of ed. Using boundedness ¢
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on [0, 00) the upper bound of (2.83) follows:

n+ Avp =trpwy < K

The upper bound in (2.85) follows directly from here since

SO

wr < Kw

To get the first inequality in (2.85) use the uniform estimate to get

wi! -1
Ky < w_f”ﬂ =I5 (14 ¢,7) <K" " (1+¢5)
Conclude wy > kg 1y for ko == Kﬁl > 0. In particular, it follows that T}, is uniformly

equivalent to w.

Another pointwise calculation yields (2.84). At a point p

<Wt; Wt)g = Z(l + /\ﬁ>2

]

<3 +27)°
:(trwwt)2

<K?
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Since trywy > 0 it follows Y7, (14 A7) > 0 and so — Y 1" § A= < n. It follows

DN A < 2+ AT < K

) )

n
< K2 Ni < K*+n<(K++/n)
1=1

= |dd°p[; = (A

X

2.8 Twisted Perelman entropy

We note, following [Tao], that this functional can be obtained by analyzing variations of
known functionals. Temporarily replacing the volume form by a static measure, a critical
quantity, which also happens to be a coercive quantity (in the sense of Tao) can be obtained
due to Perelman. It is also monotone with special type of critical points. Denote the volume

form by dp. Consider the functionals

B() =5 [ 193 (2.87)

H(M, g) = /M Ry (2.88)

Provided g is static the E functional deforms like:

d .
—F=- Agffd
GE=— | Agpidu
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The first variation of the H functional is given by

d d 1
—H= dy = —tr,(g))d
7 dt/ Rdp /M(R+27"g(g)) i

. ) . ) 1 )
= /M(—cho‘ﬂgaﬁ — Atrgg + Vavﬂga/g + §trg(g)a5)d,u

ol 1 )
= /M(—chaﬂ Jap + B5trg(9)ap)dp

The gradient flow for the negative functional is known to be not parabolic in general(g =
Ric— Rg n > 3). Replacing du by a static measure dm = e_fdu (so the potential f deforms
like f = %trg(g)) removes the contribution from R%trggaﬂ causing this issue. In this way

obtain modified functionals H™d gmod  gmod deforms like

iHmOd:/ Rdm
dt M

- /M<—Rz'ca%aﬁ = Atrgg + VOV go)dm
- /M( Ric® gop + (Af = [V £15)9*

+ 4o (VOFVIF) = 405 (VOVP f))dm

Note that in the deformation of H"°¢ the second term following the third equality A ftrgg

above comes with an opposite sign to that of the variation of Dirichlet energy, which gives

109



another motivation for the choice of E™0%. Its first variation is given by

%Emd N /M %@O‘ﬁvafvﬁf)dm
/

/

/

~ 4§V f 4+ g7 £y f5 + 970 fy f5)dm

S

2

S

(
(g IO + G r(@))y s+ 970 5 (trg@)s)dm
(

—gos VIV f = (Af = [V f[2)g7° g, 5)dm

=

Define

Fun(M, g) = B4 1 pmod — / (V2 + R)dm
M

So Fp, deforms along g = —(2Ric + 2Hessf) as

O Fm(M.g,f) =2 /M \Ric(g) + Hess(f)|%dm

It follows Fy, is non decreasing along the flow. Along this gradient flow using the relation
f= %trg we see that the potential deforms according to f = —Af — R. Using Ly t9as =
2VaVgf =2Hessf and Lysf = |Vf]§ and 0yp;wi = ¢ (Lxwi +wy) it follows the gradient
flow and the potential flow can be conjugated by a diffeomorphism to § = —2Ric(g) and
f=-Af-R+|Vf2

After conjugation f does not define a static measure but since JF;, is invariant under
diffeomorphism, its variation remains the same whether modified by a diffeomorphism or
not. In particular under the modified flow induced by the diffeomorphism: ¢ = —2Ric(g)
and f = —Af—R+ |Vf|§, Fm is monotone non-decreasing.

From the monotonicity property it can be deduced the periodic solutions (ones for which
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¢*g(to) = g(t1)) are critical points i.e satisfy Ric = —Hessf. Similarly we can consider
functionals with critical points solutions to Ric + Hessf — %g = 0 (gradient shrinking
solitons), which when f = 0 has positively curved Einstein metrics as critical points.

Note that

|Ric + Hessf — |ch+Hessf|g (R+Af)+ (2.89)

n
2|g 472

With respect to Ricci flow scaling 7 has dimension 2. So the derivative of the scale invariant
quantity must have dimension —2. But each of the three terms have dimension —4. So we
must consider a quantity like 27 [, |Ric + Hessf — m| gdm. Recalling the Nash entropy

functional Ny, := [, log ‘fl—rgdm = — [3y fdm deforms like (provided dm is static)

—Nm_ /fdm /AF+Rdm /M(|Vf|§+R)dm

we may integrate to obtain Wy, (M, g, f, 7).

Similarly

Proposition 26. The twisted entropy functional given by
W2 (M, g, 7, f) = (4m)—”/ (r(R— Trga+|VfI2) + (f — 2n))e/dm
M
deforms like

27'/ |Ric —a+ Hessf — —\2dm
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It is monotone provided (g(t), f(t),7(t)) solves the coupled system

g9 = — 2(Ric — )
O f = —Agf+|Vf|§—R+Trga+§

T = —1

on some interval [0,T].

Proof. Following the same heuristics one obtains the twisted entropy functional. For the

same reasons it will be both monotone and a critical quantity (in the sense of Tao).

Along § = —2(Ric — o+ Hessf) with dm static so f = —Ayf — R+ trga, it follows

d
—/ trgadm = / —gso‘gﬂtgaﬁastdm = 2/ (Ric — a+ Hessf,a)dm
dt Jar M M

Just as in (2.89) we have

1
|Rz’c—oz+Hessf—%\§: |Ric—0¢+Hessf]£2]—;(R+Af—trga)+4n?

Similarly we have that for 7 := [},(R + |Vf|§ — trgo)dm

%E% = / (Ric™? + VOV f —a®)gogdm
M
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Likewise for N := [3; —fdm. So if dm is static along § = —2(Ric — a + Hess[) then

d :
%/\/'m = /M —fdm = /M(R—I— Agf —trgo)dm

:/ (R+|Vf\§—trga)dm
M

It follows that

d
%( F — NS — glogr) = 27/M|Rz’c—a+Hessf— %@dm

normailized so that dm is a probability measure.
Write e_fd,u =dm = (4%7)_%e_fdu sof=f+ 45 log(4mT). Since dm is a probability

measure up to an arbitrary constant we may write the functional as
/M(T(R + |Vf\?] — Trga) + f — enst)(dnr) " "dm

Normalize the arbitrary constant to n so that in the euclidean setting, when also a = 0, dm
is gaussian measure and the expression vanishes.
Note that f = —Agf — R+ trga + 5= so conjugating by a diffeomorphism induced by

the vector field V f obtains the coupled system

g= —2(Ric— )

2 ~ n ~
f:(—Agf—R+Trga+Z+\Vf|§)

113



2.9 Extracting canonical metric

In this section we show how the canonical metric g0, solving (2.1), can be extracted. This
follows along the same lines as [Pa] for the Kéhler-Einstein case. Recall we have in hand the

following (with the exception of the fourth bullet point)

n

«bo=log_4+o+f+ci
e 1) is bounded below.

e 1} is decreasing along the twisted Kéhler-Ricci flow.

o [6tl0(X) + |00t 0 (X) + [VOD| o (X) < C

provided n > 0 and the non-collapsing estimate along the flow holds.
A consequence of the second and third bullet points is lim;_, /) < 00. So for sequences
{ti.} " oo we have

lim Vo, 7wl =0
k—o00 X’ ¢tk|tk b

Since otherwise we may integrate and contradict boundedness along the flow.
From the uniform C2,C3 estimates we obtain that the (1,1) forms 9d¢; are uniformly
bounded in C%%(X) topology.

By differentiating the first bullet by ¢ = 0z, , 9z we have from [Pa]

Ot(Cot) + (ot = (Try — Tre) (Lew) + Chayy

The laplacian term in [ and T'r¢ contain g, 150 are bounded in C%¢ norm. By schauder

regularity theory for parabolic equations we obtain (¢; is uniformly bounded in C2:.
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We recall that C* < CF is a compact embedding. So a bounded sequence in CF Jies
in a compact set in C¥( k> 0,0 < o < 1) (see [Jo)).

Since ¢y € C*® is uniformly bounded, ¢y € C3 is uniformly bounded. Further, thanks
to the C¥ uniform estimate |q§t| < C we have ¢; lies in a bounded set in C3. So by the com-
pact embedding we may arrange for a subsequence of ¢tk so that (¢; Iz dog = D0 o va&psk)

converges uniformly to (¢oo, dpoo, 00Ps0, VOO b ).

w

n
00 > K. By (2.85) we have wg > 0.

n
The uniform estimate Z—tn > K > 0 gives that 5

The equation in the limit on this sequence then reads

n

. y w
Y= k:lgrolo (bsk = log w% + Poo — Iy

In particular ¢ is C1. Since ¢5k e C> converges in C3

lim a(bsk = kir&<Aska¢sk + a¢sk - ahw,n) = A0 + Odoo — Ohyyy = OY

k—o0

The convergence being uniform gives that

. . 2 n 2 n
0= kl;n;o/x |V¢5k’3kw5k = /X |aw|¢oow¢00

So ¢ is a constant and from the normalization [ D% e_‘btwf = V we obtain that ¥ = 0. So
Ooo satisfies

n
“oo00

wTL

0 = log + Poo — hwm = F(Cboo)
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Recall that hy, corresponds to the twisted ricci potential. Since wy > 0 ellipticity follows

from computing the linearization:
dFy. (v) = Ag v+

By Schauder regularity theory for elliptic equations we can conclude that ¢ is smooth. So

¢oo 1s a desired solution to the equation Ric(wso) = Woo + 7.

2.10 (° Estimate

Following [PSS] work with the quantity h% = QO‘EQE 3 (5~ 1g is an endomorphism). We follow
the notation g; 3 since most quantities appearing in this formulation come as endomorphisms.
Let g denote the initial metric. Note that Trh = Trgg. Similarly h~1 = ¢71§. Recall also

b= 90,95

that in the Kéhler setting the connection looks like g~1dg, is of pure type i.e. T
(old notation) and the torsion free condition gives symmetry in permutation of ¢, j. Similarly
the curvatures look like RE = ol

The change in connection with respect to the initial metric can be written in terms of

the quantity (Vh)h L.

(Vmh)in = (0 - 1D)F,
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so as not to distract from our main goal we only outline the calculation schematically:

(VR)h ™ = (8h — hT 4+ hD)(h 1)
= (0h — g g9 tag + hg~tog)(h ™)
= (0h— g 19g)(h™ ) +T
= (05 g) — g og)h 4T
= (09 1gh 1 + 1)
= (-5 "9 " 09)§+T)
= (-9 '0g+T)

=(-T'+T0)

Here in the first line the minus sign comes from the connection extended to forms (V,, in
the first line is the covariant derivative induced on endomorphisms). In passing from line 4
to 5 the torsion free property is used to cancel out —g~1dg appearing in line 4.

On forms and vector fields the Levi-Cevita connection differs by a sign we have the

following expression for the change in connection acting on forms and vector fields:

(Vin — Vi)V; = Vo (Vi hh ™18

Similarly for curvature

(R — R)% = Op(V;hh™1)g (2.91)
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Also

¢j%m = @m?]E = —gEa(thh_l)?‘ (2.92)

The minus sign here is attributed to following the convention that gz = gz, + ¢z, -

To establish the C3 estimate one considers the quantity
S = g7 g™ Ot
This can be written as
S = 9" 969" (Vinhh ™) (Vo hh= 1) = [VAR!

using (2.92).

We summarize the process involved in establishing C® estimates. The following obtains

AS =g tgg L (A(VRR Y)Y VRAT 4 (VRA™Y)AVRA-T)

+V (VR Y2 + |[V(Vhh )2 (2.93)

by direct calculation. The term with A = gquvf, can be written in terms of A by

commuting derivatives and introducing curvatures. That is, with (T); = (thh_l)zé obtain

A(Td)j = A(TQ)j — RU(TH)j + Ra(Ty)j + R (1)

Replacing the A expression in (2.93) by this gives another expression for AS with three

extra terms involving curvatures. See [PSS] for the formula. Note that AS is a fifth order
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term and the expression in [PSS] (2.43) contains terms with A(Vhh™1) which are also fifth
order. In order to obtain an expression of the form AS > —C1S — (9 to apply a maximum
principle we need to reduce the order of the terms appearing. At worst to fourth and third
order terms, and of course the fourth order terms must come with favorable sign so they can
be dropped.

An application of Bianchi identity gives

A(VRR Y = —-V.R + g"'V.R.. (2.94)

The first term in (2.94) and curvature terms Rg,, appearing in [PSS] (2.43) need to cancel
out since these are not controlled.

Next S can be expressed in terms of A~ 1h. Noting
o §=gh=g(hth)

o g l=—gl=—(hth)g!

o Vh=gg 09 gh =g 'd(ghg~)g

The appearance of g after the second equality in the first bullet corresponds to lowering the

1

endomorphism (h~1h) to a (0,2) tensor. Similarly in the second bullet g~! corresponds to

raising it to a (2,0) tensor.

Some application of these bullet points give
1. Vh=—h~ h+ (VR)h th+ V(h~thh) = V(K= h)h + Vh(h™1h)

2. (Vhh—1) = V(h~1h)
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Here the first equality in (1.) follows from time differentiating bullet three. With this the

expression S can be computed. This gives rise to terms
9" 569" (O (Vinhh ™) (T hh 1))

and time differentiating the gla term in .S using the second bullet and likewise grp using the
first bullet boils down to replacing ¢'® by —(h~1h)'" and 9us by (h_lh)ﬁﬁ. That is we get

terms like:

— " g (b ) (V™)) (V. hh 1)

G g ™ (VoY) (Vo hR)E

The formula for S appears in [PSS] as equation 2.47. Note that in 2.47 h~1h is raised or

lowered with the metric. So under the action of A — 9, S deforms as

(A= 3)S =[NV + [V (VAR Y2 + ¢ gr56" (A — ) (Viphh ™)) (W hh=1)E)

+ 0" 450" (V™)) (A = 01) (Vo hh=1)5) + (W~ + R)™ ga9™™
— "+ R)sg™™ + " Tgng(h™ Y+ R)®) (V™) (Vo hh =)
(2.95)
Now finally we may begin the verification of the C? estimates for our problem.
Proposition 27. Along the Tkrf the uniform estimate |V05¢t|CO(X) < C holds.

Restrict to twisted Kahler-Ricci flow. Then

(W)Y = P (g+n— Rz = (5 +n—R)!
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It follows that

With

(hLh+R)) = (6+n)) = (1))

cwt > Ty m = wi

©6) < '+ R)Y < c(s)!

together with (2.94), 2. and (2.91) obtain

Using (2.96)

(A=) (Vihh ™), = — VR, + VPR

» -1l
Dim vj<h h)m

L
= — VR, +VPRL,  —

~

= VP Ryjun = Vi ()

(A —8)S > [V(Vhh™ )2 + |V(VhR )2

+ 9" VPR = V)]V kb))

+ 9™ (Vinhh™ YE(VPRL | — Vo (n)h))

+ (2= g g5() T (Vphh ™)) (Vo hh 1)

Lemma 20. The second and third terms in (2.97) are O(S + c1v/'S)

Vj(5 +n— R)gn

(2.96)

(2.97)

Proof. We check this for ¢""7 VP Rgml(vyhhfl)%, and terms involving the conjugate expres-
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sion are similar.

PR _  iPo . pB pp—1ya pB
vaﬁ l_gjp(VJRﬁml = (Vjhh )%Rpal

A

+ (VhhHA RS

— (Vi YRS o)

qmao

_ Jqo . pP —17
—gjq(Vquml-i-O(th R))

Claim 16. Along Tkrf the following estimates are available:

#19, ggmlm > —|VR||Vhh ™Y > —CVS
—g" VgV jhh ) Ry (VyhhhE > — O
gJ'ngthhl)gﬁ;“mzm > —CS

This follows by using R is bounded, so E)gal < C’ég 9gq1 (by the C? estimate g.,. is equivalent

to g) and cauchy schwartz.

Similarly, but with less effort, —gmivmnf (Vyhhfl)% can be handled. Since 7 is fixed

there is a C' > 0 so that —Cég < ng < (155. So

— "I ) (V4 hh= 1)

o~

— — TV ) (Vyhh 1 )% + g (Vnhh™ 1B (V. hh 1)

iy

— "7 (Vmhh ™ anf (Vs 1)L

> — (n, Vhh 1) — 2Cgm7(vmhh—1)f(v7hh—1)%

> — [||Vhh Y| = 2C|VRA? > C1VS — 208
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proof of proposition. Applying the lemma, (2.97) becomes

(A =08 > [V(VRR D2 +|V(VRR Y2 = CS — C1VS > —C1.5 — Oy

To conclude, exactly the same argument as in [PSS| applies. That is, with A sufficiently

large the following expression

(A = 9y)(S+ AAg) > O35 — Cy (2.98)

C5 > 0 is available. An application of the maximum principles allows to conclude that S is

bounded by a positive number. O]
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Chapter 3

Future direction

3.1 Coupled system

Assume HY(X, Ky ® L) is endowed with the natural L? inner product induced from the

hermitian metric on the adjoint bundle Ky ® L. Consider the coupled system

(W) = (Z si ASje V) ! = Z |si|%’W0w6Le_u = pge ¢ (3.1)

) 1

— n2 _
/XhKX®L(SZ',Sj)€ 4= /in s; \sje (ptu) — <Si,3j>u = Céij (3.2)

We note that for the coupled system above solutions are balanced metrics solving the mean
field equation (3.1).

Equation (3.1) is equivalent to the density of states condition

23 5; A g (91w 2 wy
1= it %A =3 fs2 e (3.3)
u i u

very much in the spirit of Donaldson’s double quotient in [Do|. However the hermitian metric

is defined on Kx ® L and is a coupling of a hermitian metric on Kx and one on L with
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wy € c1(L). The same effect is obtained by choosing a hermitian metric only from L

) _
. 2
" Z\Sz!w pe = =1 ) lsili pe

n

So the hermitian metric on L giving (3.3) is determined by the weight ¢ + u — log -
U

The orthogonality condition (3.2) on a basis of HO(X, Kx ® L) with respect to (-, )bt

can now be written as:

n
n2 2 —(¢tutlog Ht) n
Co;p =1" / s; Agie (0t — 0 / s;i NSze Wy Lu (3.4)
] 7 7 7 Vi n
X X wWo

Note that for a solution of the mean field equation that (3.4) can also be written as

s; \Nsje ¢ n
Co;; = 3.5
Kl /X > ok Sk ASpe 5 (35)

Definition 3. Given an embedding into CPY, for some N > 0, induced by an L? orthonor-
mal basis (s;) of HY(X,Kx ® L¥) (with respect to (-, Vk+ku) we say that embedding is

balanced if (3.5) holds.

Fix notation

Bk(¢+u k(p+u) . ZSJ /\53 kE(p+u)

then from [Bo09] the following asymptotics are available

—k(é+u) — g (g0 + %5 +O(k™2))w!

= k"1 + Ok h)

Bi(g1u)€
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Applying this to right hand side of (3.5) obtain

/ si N5je 0 "o / s; N5je ko L
w = w
X sy AsyeRoekuTku T J knep (14 O(k—1)) T

=C / s Asje RO (1 oLy (3.6)
X

where C' is the constant appearing in (3.4).
From [BBEGZ] the mabuchi energy is introduced in a more general setting by defining
it as

Mabyg(9) = [ 1021+ 7(6) = I(¢) (37)

On H,, this restricts to the usual mabuchi functional 14,(¢). Also if Mab,, is proper then the
corresponding mean field equation w;’ = uge™" can be solved, see [BBEGZ]. Next we show

properness is independent of the choice of s.
Proposition 8. If Mab,,. is proper on Hy, then so is Mabug,.

Proof. Recall that the mabuchi functional satisfies the cocyle property [Tian00]

where wl = w4+ 00y and gb, = ¢ —1p. This follows from computing the differential of the left
hand side. Since it vanishes we obtain the left hand side above is constant. Setting ¢ = ¢
determines the constant.

In the smooth case using the cocyle condition and properness as defined by Tian [Tian00]
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we get

v 12 p(Ju(9) = C

w

Since the function p is increasing, it suffices to show

T 1(6) < adu(g) + 8

w

where «, § > 0 are constants. We have

is increasing and then

Begin by recalling

12+1

Jw<¢)=— n—l—l/ dp A O A W' Ay~ i1 (3.8)

where V = [ y w". Throughout we assume that ¢ € H,,. This gives, through a simultaneous
diagonalization argument that the integrands are non-negative so J,,(¢) > 0.

Also recall that

PR (0) < Luf0) < (1 + 1)) 3:9)
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where

_ %/X o — ) (3.10)

Lemma 21. With the notations above the following identity holds:

:l/ Pw" — (w /¢ —qu

/%A@w( T A @)+ 6 (@) = )

>1)6)+ [ () =)+ o) (3.11)

To obtain inequality (3.11) first
Claim 17. [y 8¢ A Oy A (W14 w2 A W (w,)”*l) > —2CnV

Rewrite the expression as

4 W) (3.12)

Note that |¢)| < C. Then
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Claim 18. On H,, with notations as above

wg A ((wn_1 + w2 A w/ o+ (w/)n_l)) >0

At an arbitrary point p € X
/
wp =dzi Ndz;, wy = (14 N;)dz; Adz;  where [\ < 1
set (1 —+ )\)J = erj(l —+ )‘)k Then

. /.
W A WA (W )p =wWe A Z (n—1—)lil (1+ ) ydz! Adz”
[ I|+|J|=n,INJ=0

n

=Y (+em) > I +NS
k Ic{l..n}\{k} '

Since each term in the inner sum is nonnegative there is an € > 0 satisfying

S I+ > =
Ic{l.n\{k}

Therefore

n n

. /.
wg N WA (W )p > eZ(l + ¢kg)o;—, = etrww¢% >0
p ! !

and the claim follows.
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So the first term in the last equality in (3.12) becomes

—/¢w¢/\(u}”_1+wn—2/\w o+ (W)™
X
2—6’/ wd)/\(wnfl—l—w”%/\w
X
/ /
:—C’/ WA W+ 2 AW L
X

—0/ OGN (W T+ 2 Aw 4+ (W)Y
X

:—C/ wA (W T +0" 2 Aw .
X

This a consequence of

/ 0 A (W + W2 A W+ (w/)”*l) =0
X

obtained using integration by parts and stokes theorem. The claim follows from

/ /

/8¢A@/\(w”1+w"2/\w o (@)™h
X

/ /
>—20/ wA W T+ 2 Aw 4 W)
X

> —20nV
Next expand binomially

WA (W) = WA (W e W A BB + . . (909)")
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Integrating and combining with an application of by parts and stokes theorem obtain that

/w”_i/\(wl)i:/ W=V
X X

Now we can conclude

1) > @)+ [ o) =l =200V

/
Since w ,wy represent the same cohomology class

JRECHERARY

So we may choose ¢ > 0 so that ¢ + ¢ < —1. Then we have (suppressing the —2CnV term

since it is O(1))

Because

—/X(¢+C)w$>\/>0, /X(ﬁb-l—c)(w)”:O(l)

we finally obtain
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for some constant C. From (3.9) it follows

1 1 C 1 C
J, > I > I > —=J
L0 2 S 1a@) = — T (0) 4~ > T () +
So o =n? and § = —g—ﬁf and we obtain properness of v 1 on H,, given that v, is. O]

We have seen from (3.6) that metrics in ¢1(L¥) solving the coupled system are approx-
imately balanced for sufficiently large k. In view of the proposition we finally conclude by

posing the following question:

Question 1. Provided Mab,,g is proper, do solutions wy, € cl(Lk) to the coupled system for

sufficiently large k exist?
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