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ABSTRACT

COMPUTER GENERATED VITREOUS SILICA NETWORKS

AND

ELASTIC PROPERTIES OF GLASSES

By

HONGXING HE

A large fully bonded periodic continuous random network model of

vitreous silica is generated via a computer simulation. This is done by

introducing the defects into a diamond lattice and then decorating with

oxygen atoms. The model shows a good agreement in Radial Distribution

Function with experiment. Chapter 1 describes the process of generation

of the model and compares this work with some other works. The

characteristics of the model are also described in this Chapter.

The elastic properties of glasses of different mean coordination

are quite different. There are two classes of covalent glasses,

amorphous solids and polymeric glasses. When the mean coordination



number decreases, a transition takes place from the former to the

latter. Transition point is close to (r) = 2.”. This is in good

agreement with the Constraint Counting Argument. Chapter 2 presents the

evidence tOlthiS and describes the behavior of two physical quantities

(Fraction of Zero Frequency Modes and the Elastic Moduli) when the mean
 

coordination decreases from four towards the transition point. The

implication of the introduction of the dihedral angle forces is also

discussed in this Chapter.
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Chapter 1 Computer Generated Models of Vitreous Silica Networks

Section 1.1 Introduction

Fundamental understanding of the properties of solids requires that

we know the identities of the constituent atoms and their arrangement in

space. In crystalline solids, due to the long-range periodicity, we can

determine the microscopic arrangement accurately.

In.a disordered solid, however, this long-range order does not

exist and the structure is usually characterized by short and or

intermediate-range order such as nearest neighbor coordinatnon numbers,

average bond length and bond angle of bonded atoms and ring statistics

etc.

Zachariasen (Reference 1.1) proposed the continuous random network

model for the glass structure more than fifty years ago. This continuous

random network model now is generally believed to be the best

description of covalently bonded amorphous solids.

Unlike crystalline solids, there is no unique set of atomic

coordinates to describe the structure of an amorphous material. There

may be many configurations of the material which are degenerate or

separated by only a small energy barrier. The experimentally measured

 

Radial Distribution Function (RDF, usually is defined in terms of the

atomic density p(r) at distance r from any chosen atom: J(r) = Anr2p(r))



can provide only partial information regarding their structure. Actually

many different models can have similar radial distribution function.

Model construction is appealing even though it supplies us with

only one possible microscopic structure of an amorphous solid. The

atomic coordinates so generated may be used to study other properties of

amorphous solids via computer simulations, such as electronic,

vibrational and optical properties etc.

Much work has been done to construct continuous random network

models of various amorphous solids, such as tetrahedrally bonded

amorphous semiconductors and various amorphous compounds with

constituent atoms of different coordination numbers.

Building of the model of tetrahedrally bonded amorphous

semiconductors has received much attention. Amorphous silicon (a-Si) is

a particularly important and interesting material. It is a typical

covalently bonded amorphous semiconductor and it is the most promising

material for a wide range of application of solar energy conversion.

The structure of tetrahedrally bonded amorphous semiconductors have

the following main features:

(1) Z-M, each atom is four-fold coordinated (Z is coordination

number).

(2) Narrow distribution of the bond lengths.

(3) No dangling bonds.

(A) Significant spread in bond angles.

(5) No long-range order.



It was a model built by D. E. Polk (Reference 1.2) that first

demonstrated the possibility of building an extended Zn“ continuous

random network with small distortions in bond lengths and bond angles.

He built the model by hand, using plastic and metal units. The model

contained ““0 atomic centers and was later extended by D. E. Polk and D.

S. Boudreaux to contain 519 atomic centers. Paul Steinhardt and others

(Reference 1.3) later relaxed the Polk model via a Keating's potential

(Reference 1.“):

3 a 2 2 2
v=—-—— {(r- -d)

16 d 1’1 ii

+3—L 2(3-3 +92)2 (111)
8 d2 2 1,3 21 ij 3

Here a and B are elastic force constant and d is the desired nearest

neighbor distance. Through relaxation, they were able to improve the

model by reducing the rms deviation in the bond length to only 0.8 1 and

the rms angle deviation to 6.7°. They also built a new 201-atom model

starting from a 21-atom seed and serially adding atoms. As each small

group of atoms was added, their positions were relaxed by computer to

minimize the forces on them.

All the above models contain five, six, seven and higher membered

rings. G. A. N. Connell and R. J. Temkin later built a 238 atom

tetrhedrally bonded amorphous semiconductor model (Reference 1.5) using

plastic and metal units with only even membered rings (6,8 . . . ). They

did this on the basis of great structure similarity of a-Ge and



III - V semiconductor (InAs for example) (Reference 1.6) and that since

odd-membered rings would lead to the presence of energetically

unfavorable bonds between like atoms. Their model has reasonable

distortions with 1.2% and 10.7° in the rms bond length and angle

deviations, respectively. There is a main disagreement between Connell-

Temkin model and experiment that is the Connell-Temkin model has more

features than that the experiment at higher r in the correlation

function (Reference 1.7). This indicates that the restriction to even-

membered rings imposes an longer range order which does not exist in the

amorphous semiconductors.

Beeman and Bobbs (Reference 1.8) on the other hand, noticed that

there was some experimental evidence for bonds between like atoms in the

amorphous III - V semiconductors. They produced a sequence of models

containing an increasing number of odd-membered rings, using the

Connell-Temkin model as a starting point. The technique was to randomly

(rdisplace atoms in the structure by up to 0.22 r is nearest neighbor

1

distance) and then adjust neighbor table for each atom if appropriate.

1

The resulting model was relaxed to reduce the distortions. The model

turned out to have better agreement with experiment in RDF.

All the above hand built models had small deviations for bond

lengths and bond angles and showed agreement with experimentally

obtained radial distribution functions (Figure 1.1 displays some of the

comparisons). However, they all had free boundaries. The good agreement

with experiment in the radial distribution function is a necessary but

not sufficient condition for a good model. Other properties of solids

based on the constructed model are more discriminating. In this respect,

models with periodic boundary conditions are more valuable because they



represent an infinite array of network atoms which are free from surface

effect.
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Figure 1.1

RDF, dotted line is from even-membered ring

model of Connell and Temkin, dashed line is

from 519 atom model of Polk and Boudreaux,

heavy line is from experiment (Reference 1.9).

A few periodic models of tetrahedrally bonded amorphous

semiconductors have been built. The first such models was built by D.

Henderson and F. Herman (Reference 1.10). Their first model with 6“

atoms was built via a computer simulation. Their method was as follows.



They first placed N atoms in a diamond structure which forms a unit

cell. Then they disrupted this crystalline structure by moving the atoms

at random. Each atom was considered in turn and moved 10 percent of the

distance to the centroid of its four nearest neighbors. Then the four

nearest neighbors and the twelve next nearest neighbors were moved

radially ten percent of the distance to the nearest neighbor and next

nearest neighbor distances of the crystal. Finally each atom was

reconnected with the four closest atoms, thus generating a random

network. This 6“ model had too large distortions, then Henderson and

Herman also hand built a continuous random network with periodic

boundary conditions containing 61 atoms, with a rms bond angle deviation

of 12° which is slightly higher than the value experimentally suggested

(10°). Some other periodic networks of similar size followed (Reference

1.11). L. Guttman generated a periodic random network with a large unit

(512 atoms) using a computer algorithm. His method was as follows. He

started with a part of crystalline lattice with n)“ (FCC lattice for

example, n is number of nearest neighbors). Then he selected four out of

n nearest neighbors to bond to each atom at random. Success of such

proccess to match all the bonds and periodic boundaries was about one

every 1000 attempts. Finally the network was relaxed. The model

generated this way turned out to be poor, with a density 35 percent

higher than the density of the crystal and the angle deviation was too

large, being about 19-20 degrees (Reference 1.12).

Model construction for vitreous silica based on the continuous

random network model began as early as the mid-19603 (References 1.13

and 1.1“).



The structure of vitreous silica are believed by experiment to have

the following main features (Reference 1.15):

(1) Z(Si)-“ and Z(0)=2, four-fold and two-fold coordinations for

silicon and oxygen, respectively, with complete chemical ordering.

(2) Almost constant Si-O bond lengths and O-Si-O angles.

(3) No dangling bond in the bulk.

(“) There is no long range order.

(5) The Si-O-Si angles have an average angle of about 150° with a

15-20° in deviation.

R. Bell and P. Dean built the first continuous random network

model of vitreous silica( Reference 1.1“). The radial distribution

function was in good agreement with experiment (Figure 1.2). They built

the model by hand with polystyrene spheres and steel wires.‘Their model

had free boundaries and contained 188 tetrahedral units. In terms of

atoms, this comprised 188 four-coordinated silicon atoms, 326 doubly

coordinated or bridging oxygen atoms and 100 singly coordinated non-

bridging oxygen atoms at the boundary of the model, giving 61“ atoms in

total.

This model was characterized by a large number of four-membered

rings. We define an n-fold ring as a closed path of bonds in the network

which passes once, and only once, through n different silicon atoms.

There were “8 four-fold rings, 55 five-fold rings, 9“ six-fold rings and

3
165 seven fold rings. The density of the model is 1.99 g / cm which is

3
lower than the experimental value of 2.20 g / cm . The deviation of 31-0

bond lengths and O-Si-O angles were 3.5% and 6.2°, respectively.
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Figure 1.2

RDF for neutron scattering from vitreous silica:

(a) Computed for the Bell and Dean model.

(b) Experimental curve.

(Reference 1.9)

w. T. Ching (Reference 1.16) generated a few periodic a-SiO2

networks by decorating the existing periodic Si networks with oxygen

atoms. He breaks each Si-Si bond and inserts an oxygen in between to

bond to these two silicon atoms. Finally he relaxed the network with a

Keating like potential:



8
Si 3 a -> ~> 2 2 3 1 + + 2 2

v =————— Z(r.-r -d ) +--— 2 (r -r -dcos¢)
t 16 d i 21 21 8 (12 1,3 21 23

v 0 - ——-3 -——°‘ 2 (F o? - c12 )2 + -3- :2 2 (F .; - d2COSG)2
n 16 d 1 hi hi 8 (12 i J ni nj

Where 521 is the radius vector from atom i to its nearest neighbor atom

1, ¢ is the ideal 0-Si-0 angle, and 0 is the average Si-O-Si angle (was

taken to be 1“7°). Ching used Blla - 0.17, 82/a - 1/3. In this manner he

produced three periodic random networks with unit cells containing 162,

183, and 186 atoms respectively. These models have correct experimental

density,(L7 to 1.7 percent deviation in 81-0 bond lengths, “.8-8.2

degrees deviation in O-Si-O bond angles. The Si-O-Si bond angles have

13-1“ degrees variation. The radial distribution functions calculated

from the models agree with the experiment (Figure 1.3).

Some defects of these models are that they are small in size and

contain only five and higher membered rings since they were generated

from existing a-Si networks which do not contain four-fold rings.

However, some analysis of the experimenal results do suggest the

existence of the small rings in vitreous silica (Reference 1.17).
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Figure 1.3

RDF of vitreous silica. Solid line is averaged

RDF of the three periodic networks generated

by W. Y. Ching. Dashed line is experimental

X-ray RDF.

There is a more recent report (Reference 1.18) of computer

generated large a-SiO2 network containing 10,000 atoms, but the network

has free boundaries and a large fraction of Si dangling bonds, ring
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statistics are unrealistic, and three-fold rings dominate providing 80

percent of the total ring population.

Much work has been done to generate more or less realistic models

in order to understand the structure of amorphous solids from the

microscopic level and to produce objects for studying various properties

of amorphous solids. What we tried to do is to generate a good model of

vitreous silica via a computer simulation. Since previous models

generated to simulate the structure of vitreous silica were not quite

satisfactory, being either too small or having free boundaries. Our ainl

was to generate a model which was fully bonded, with periodic boundary

conditions and a large unit cell (at least a few hundred atoms). The

model must have the main structural features of vitreous silica so far

as we know them from the experiment, the correct radial distribution

function for example. The next sections describe how this was done.
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Section 1.2 Generation of a-Si Network by the Introduction

of Defects into a Diamond Lattice

There are generally two ways of generating continuous random

networks. (hue is generating by hand using plastic and metal units, for

example. Second is generating random network via computer simulations.

'There are still two methods in computer generating random networks. One

method is to let computer substitute the functions of our hands and

brain to simulate the hand-building process. Another method is to

disrupt the crystalline system to obtain random networks. For this

method, many previous works were imposing random move of the atoms and

rearranging the connectivity table and finally relaxing the system.

There is another way to create the random network via a computer

simulation by disordering a crystal.

0. Weaire (Reference 1.19) has suggested a defect structure which

can be introduced into a crystalline stucture to disorder the crystal

and eventually generate a model of an amorphous solids.

Figure 1.“ depicts such a defect which will be introduced into the

diamond lattice to generate model of a-Si. Figure 1.“ (a) is a part of a

diamond lattice. The defect is introduced by moving atoms 1 and 2 to new

positions and breaking the bonds between 1 and 3 and 2 and 8. We then

connect 1 and 8, and 2 and 3 with new bonds. The new structure is shown

in the Figure 1.“ (b). As a consequence of this defect, four five

membered rings are created, twelve sixfold rings are removed (converted

into five-and seven-fold rings), sixteen seven-fold rings are created
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and the bond lengths and bond angles involved are no longer equal to the

values of the diamond lattice.

  
(a) . (b)

Figure 1.“

30 pair defect. (a) is a part of diamond lattice.

(b) is the structure after the introduction of

the defect.

After a large number of such defects have been introduced into the

diamond lattice, the system will hopefully lose its crystalline memory

and become totally disordered. There will be rings of all different

sizes and variations in the bond lengths and the bond angles. This

random network may then be a good-candidate to model the structure of

tetrahedrally bonded amorphous solids, like a-Si or a-Ge.
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Il.is.easier to visualize this whole process in two dimension.

Similar defects can be introduced into the 2D honeycomb lattice to

generate a 2D continuous random network.

(a) (b)

Figure 1.5

20 pair defect.(a) is a part of honeycomb lattice.

(b) is the structure after the introduction of

the defect.

Figure 1.5 shows such a defect construction in the 2D honeycomb

lattice. By changing the positions of atoms 1 and 2, breaking the bond

between 1 and “ and 2 and 5, making the new bonds to connect 1 and S and

2 and “, the local structure in Figure 1.5(a) is then transformed into
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Figure 1.5(b). Consequently, two five-fold rings and two seven-fold

rings are introduced into the honeycomb lattice and four six~fold rings

are removed. Bond length and bond angle deviation from their crystalline

values are also introduced into the network.

Figure 1.6

Four-fold ring is created upon introduction of

a defect on a side of a five-fold ring.

A large number of such defects need to be introduced to disorder

the crystal to create a random network. When a small number of defects

are introduced at random, only five and seven membered rings can be

created. But when fairly large number of defects are introduced, they
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are run longer separated, rings of different size can be introduced. For

example, the four-fold ring can be created when a defect is introduced

on a side of five-fold ring (Figure 1.6).

 

Figure 1.7

Concave ring is not allowed, since it gives rise

to a large angle distortion.

We have generated the 20 random networks by introducing a large

number of such defects into the honeycomb lattice. The process is as

follows: choose one atom at random, then choose one of its three nearest

neighbors at random and introduce the defect using this pair (1. e. let

these two atoms play the role of 1 and 2 in the Figure 1.5) under the

following restrictions:

(1) No four-membered or smaller rings can be introduced, because this

would cause a large bond angle distortions.

(2) All rings have to be convex. Concave ring would give large angle

distortions in the local structure (Figure 1.7).
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Figure 1.8

A 2D periodic network generated by introducing

250 defects into an BOO-site honeycomb lattice.



18

Periodic boundary conditions are always maintained and local

relaxation follows each successful introduction of a defect. The entire

system is globally relaxed every time a certain number of defects have

been introduced. The relaxation is via a Keating-like potential. The

details of the relaxation are described in the Appendix A.

Figure 1.8 is a 2D network generated in this way. There are 800

atoms in this network, and 250 defects have been introduced into the

honeycomb lattice to get this network. The network has periodic boundary

conditions and contains 33.5% five-fold rings, 38% six-fold rings, 2“%

seven-fold rings and “.5$ eight-fold rings. The rms bond length

distortion is 5%, rms angle distortion is 16.5°. The network looks very

disordered, and all memory of the honeycomb lattice seems to have been

lost.

We have also generated 3D networks by introducing defect shown in

Figure 1.“ to the diamond lattice. The process is exactly same as in 2D

but the restrictions on accepting the defect are slightly different. The

minimum ring size is usually chosen to be four to make an ideal

underlying a-Si lattice for an a--SiO2 network. One additional condition

is that the next nearest neighbor distances must always be greater than

the nearest neighbor distances.

F. Wooten and D. Weaire have done similar model building, using the

same kind of defects to disrupt the diamond lattice to generate the a-Si

networks (References 1.20 and 1.21). We will compare their results to

ours in the next section.

This kind of defect was proposed merely as a means to disrupting

crystalline structures in order to get continuous random networks. There

was no physical basis to the particular atomic rearangement chosen.
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However, it is quite interesting that a recent report on molecular

dynamic simulations reveals that this may be a real defect structure

when a liquid is cooled down to the crystallization point (Reference

1.22). F. H. Stillinger and T. A. Weber used-molecular dynamics to

simulate the melting and freezing process of a diamond lattice

containing 216 atoms with periodic boundary conditions. They found a

local topological defect in the final crystal structure. The defect they

found (Figure 1.9) is exactly the one used to disrupt the diamond

lattice! This suggests a physical Justification for our model building

process.

 

(0) PERFECT CRYSTAL

 

    

1b) eowomc DEFECT

Figure 1.9

Defects observed by F. H. Sillinger and T. A. Weber

in molecular dynamic simulations.
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Section 1.3 Bragg Diffraction Pattern

Introducing atomic rearrangement into a crystal to disorder the

system is a novel procedure to generate random networks. But one

shortcoming of this method that might be crucial is that the networks

are generated from a crystal lattice. There is a question whether the

introduction of defects can indeed eliminate all memory of the crystal.

A good criteria is needed to check whether the memory of the crystal

lattice still exists in the network or not. The radial distribution

function is not a good candidate, as many different models can produce

similar radial distribution function. We must calculate the diffraction

intensity function to judge whether the network is really random.

We define the diffraction intensity functdtnill(q) which is

proportional to the square of the structure factor.

NE) "13'1' X e (1.3.1)

For a crystal network, 1(a) should be a series of Bragg peaks on

some particular a values. For a random network 1(a) should not have any

outstanding Bragg peaks, rather it should have only some features of

the given amorphous material and fluctuations on the uniform background.

This criteria is very sensitive to any remaining crystalline

features. The introduction of each defect gives substantial displacement

to only two atoms (1 and 2 in the Figure 1.“) from their crystal
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positions. A few neighboring atoms move slightly from their crystal

positions after the relaxation of the network. If we can introduce

defects on each pair that move each atom far enough from its original

positions we should be able to eliminate the memory of the crystal

entirely. But in the real process this may not be possible. We have

imposed several conditions on accepting the defect in order to avoid

introducing too large a strain energy, such as the minimum ring size,

and the nearest neighbors being always inside the next nearest neighbor

shell. When a certain number of defects have already been introduced,

some local areas may become very resistant against accepting any further

topological change, such as large number of small rings or large angle

and length deviations etc, so that any new defect in this area may

violate some of conditions. Consequently even if a large number of

defects have already been introduced, a small number of atoms may still

be situated close to their positions in the crystal.

The phase difference between radiation scaterred by any two lattice

points is easily shown to be E-fi where R is the lattice vector

separating the two sites. The phase coherence of ER gives rise to the

enhancement or cancellation in the diffraction pattern, this gives rise

to Bragg peaks for crystalline solids. There is no such phase coherence

in a random system, therefore there are no Bragg peaks in diffraction

pattern of a random system. Thus we have a semi-quantitative measure of

the randomness of a solid. Since our system was constructed starting

from a crystal structure, there is always a danger that the deviation of

the sites from their crystalline positions is not great enough to

sufficiently randomize the phases of the scattered radiation and hence

eliminate the Bragg peaks. This is especially true for small a which
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gives rise to small phase differences of the order of 36R where GR is

the deviation from the crystalline positions.

We first take a 2D network as an example. Figure 1.10 is the Bragg

diffraction pattern of the 2D network shown in Figure 1.8. The network

itself appears random, but the peaks marked 1 and 2 all have a crystal

counterpart. These peaks are much lower in height than that would be in

the honeycomb crystal, but they are still higher than the background

noise. The memory of the crystal clearly has not been eliminated

entirely.

The situation is even more severe in three dimension than that in

two dimension. Figure 1.11 shows the diffraction pattern for a 3D

network we have generated. Two hundred and fifty defects have been

introduced into the diamond lattice to build this structure with a unit

cell of 512 atoms. Figure 1.11 shows the diffraction pattern along the

(100),(110), and (111) directions, where each is averaged over all the

possible equivalent directions. Each component of ‘5 is taken to be an

integer times 2n/L (L is the box length of the supercell), the x axis of

the Figure 1.11 is the magnitude of the q. We can see that there are

still pronounced Bragg peaks which have crystalline counterparts. The

(111) peak is most pronounced here, and remains so even when more

defects are introduced.

There are two competing factors here, between the rms deviations in

bond lengths and bond angles (a measure of the strain energy), and the

height of the Bragg peaks (a measure of crystal memory left in the

network). Generally speaking, introducing more defects will bring down

the Bragg peaks or disorder the system more, but at the same time will

make the bond length and angle distortions larger.
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Table 1.1 gives the relationship between the rms distortions of the

bond lengths and the bond angles, and the height of the most pronunced

(111) Bragg peak vs the the number of defects per atom introduced, for a

particular series of networks, where each time we introduce more defects

on the 512-atom network previously obtained. Local relaxation followed

each successful defect and a global relaxation is done after every 10

defects introduced. Only five or more fold rings are allowed, and the

ratio of the two elastic force constants B/a=0.2.
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Diffraction pattern of the 2D network

depicted in Figure 1.8.
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Diffraction pattern of a 3D network, N-512,

250 defects have been introduced into the diamond

lattice.
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Table 1.1

The rms deviations of the bond length and angle

and the height of the (111) peak in th Bragg

diffraction pattern vs the number of defects

introduced.

Defects/atom rms A0 (degree) rms AL (1) Height of (111) Peak

0.098 A 11.15 2.60 1“1.0

0.195 13.86 3.39 79.0

0.293 1“.55 3.63 68.5

0.391 15.05 3.77 51.2

0.“88 15.61 3.95 35.6

0.586 15.85 “.03 3“.3

0.68“ 16.0“ “.06 27.9

0.781 16.53 ”.18 23.0

0.379 16.59 “.23 21.1

0.977 17.27 “.35 16.“
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We can see that the difficulty lies in how to eliminate the crystal

memory without raising the bond length and bond angle distortions to an

unacceptable level. Even when five hundred defects are introduced, the

(111) peak is still much higher than the background noise (about 1 ~ 2),

while the distortions are already significantly higher than the

experiment.

F. Wooten and D. Weaire did not realize the stubbonness of the

crystal memory when they were generating their a-Si network using the

defect method. When only a small number of defects are introduced, the

bond length and angle distortions are already high. In order to reduce

the strain energy, they adopted two-step annealing process. The first

step is: try a defect attempt, if it decreases the energy accept it

certainly, if it increases the energy, accept it with probability

e-AE/KT
(Reference 1.23). The second step is: introduce the defect only

when it decreases the energy. This second step is a way to relax the

 

system via the defect introduction. We shall call this step Geometrical

Relaxation.
 

This is a highly risky procedure, since the defect construction is

a reversible process. From Figure 1.“ we can see that if we introduce a

defect twice on the same pair of atoms consecutively it will bring them

back to original structure. Wooten and Weaire really found that when

only a small number of defects are introduced the system can go back to

the diamond lattice through the geometrical relaxation. And even if the

whole system does not go back to the crystal a small part of the

network may still return to crystalline positions.

We have tried the same process to reduce the strain energy and

found that if the memory Of the crystal structure is not eliminated, any
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reduction of the strain energy will sacrifice the randomness of the

network. For example, on one sample we introduced five hundred defects

first, then introduced additional defects only when it decreased the

energy, one hundred more defects were introduced in this way. The

deviations.of bond lengths and angles and the height of the Bragg peaks

before and after the geometrical relaxation process are in Table 1.2:

Table 1.2

rms A0 rms AL Height of the (111) peak

before 16.7° 6.1% 2“.0

after 1“.2° “.7% 26.0

‘We have also tried the step 1 process; it turns out that it always

helps the distortions but hurts the randomness, or vice versa.

Wooten and Weaire claimed that they obtained an a-Si network which

produced a radial distribution function in good agreement with the

experiment, and had a rms bond deviation 2.7% and a rms bond angle

deviation of 10.9°. However they did not check the Bragg diffraction

pattern. And from a private communication we know that they have only

introduced one hundred defects in 216 atom system before taking steps 1

and 2 to reduce the elastic energy. From our experience, the Bragg

diffraction pattern of their network should be like the Figure 1.11 or

worse, implying that their model is not a random network but a

quasicrystal!
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Chn~'ultimate goal is to generate a random network. We must get rid

of memory of the crystal entirely before trying to reduce the strain

energy. Otherwise, any step which reduces the energy willtndng the

system back to a structure which has more crystal memory than before.

We finally succeeded in generating one random network with no

remaining crystal memory. We did this by introducing a very large

number of defects ( > 3 per atom), and allowing four membered rings.

Figure 1.12 is the Bragg diffraction pattern of this network. There are

no Bragg peaks. But we had to sacrifice the deviations to get this. The

angle deviation is 19.8° and the bond length deviation is “.71. These

about double the proper values. The ring statistics is listed in Table

1.3:

Table 1.3

Size of Ring Number Per Atom

“ 0.09

5 0.36

6 0.68

7 1.0“

A similar attempt to generate a random network with no four-fold

rings was unsuccessful as we were unable to completely eliminate the

memory of the crystal.

Since we have already eliminated the crystal memory in above

system, we were able to proceed with the geometrical relaxation (needed

to reduce the distortions of bond length and angles) with little risk of
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Figure 1.12

Diffraction pattern of a generated a-Si

network with no crystal memory.
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returning back to the crystal structure. We successfully introduced 180

additional defects into our 512 atom system under the condition that

only those which decreases the energy be accepted. This reduces the

angle deviation to 17.1°, and the bond length deviation to 2.9%. Using a

Boltzman factor, like Wooten an Weaire did, did not improve the

deviations. Therefore, this is about the best we could do.

Finally our a-Si network which has the following characteristics:

(1) Large size, there are 512 atoms in the unit cell.

(2) Fully bonded, with no dangling bond.

(3) Periodic boundary conditions.

(“) There is no long range order. There is no memory of the

crystal, Figure 1.13 shows the Bragg diffraction pattern of the

network after geometrical relaxation.

(5) Ring statistics is listed in the table 1.“.

Table 1.“

Size of the Ring Number Per Atom

“ 0.1“

5 0.“2

6 0.71

7 1.06

(6) Deviations of bond length and bond anglestare 2.9% and 17.1°,

respectively.
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This is not a good a-Si network, because the bond lengths and

especially the bond angles have large deviations. However, it can supply

us with a underlying a~Si network to decorate with oxygen atoms to build

a good vitreous silica network. Since the two-fold coordinated oxygen

atoms will bring more flexibility to the system, we can perhaps build a

less distorted a-SiO2 network.

The difference between our model and many other models in terms of

ring statistics is that our model has a certain number of four-fold

rings but the others do not have. We do need four-fold rings to make our

model a good underlying a-Si network for vitreous silica network.
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Figure 1.13

Bragg diffraction pattern of a 3D a-Si random network

after geometric relaxation.
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Section 1.“ Construction of the Vitreous Silica Network

We start with our best a-Si continuous randon network mentioned in

section 1.3, which has periodic boundary, large size and no Bragg peaks.

Now all we need to do is to break each Si-Si bond, insert an oxygen atom

in between and bond the oxygen atom to the two silicon atoms. After this

procedure is completed, the network will become fully bonded periodic a-

3102 network.

To produce the experimental density we need to choose our length

scale properly. We have a fixed number of atoms (512 810 units, or
2

chemical units in our unit cell), so the length of our cubic box should

be chosen so that the network will have the experimental density of

vitreous silica. The experimental density is 2.20 g/cm3 2

3

, or 2.206x1o’

c.u./A for vitreous silica, so our box length is determined by:

-!§ - 2.206 x 10-2

L

N

2.206.10-

1/3

L-( )
 

2

N=512 for our particular system, so L should be chosen:

512

2.206x10-

L - ( )1/3 A = 28.52 A 

2

Now we decorate the network with oxygen atoms. We break all the
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Si-Si bonds, insert an oxygen atom in between each pair and bond the

oxygen atoms to the Si pairs.

As is well known that the main feature of the structure of vitreous

silica is that each silicon atom is situated in the center of an almost

perfect tetrahedron formed by its four nearest neighbor oxygen atoms.

From one oxygen atom's point of view, it should have six nearest

neighbors which are divided into two groups, with three oxygen atoms

plus. the‘given one making an almost perfect tetrahedron with a silicon

atom in its center. The angle between two such tetrahedran can vary

quite a bit.due to the wide distribution of Si-O-Si angles (Figure 1.1“

is a schematic view of the this local structure).

 

 

Figure 1.1“

A schematic view of the local structure of

vitreous silica.

Motivated by the above feature, we adopt the following process to

get a good a--SiO2 networks. We store the six nearest neighboring oxygen

atoms of each oxygen atom in a coordination table, then take away all
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the silicon atoms for the time being and relax the all oxygen system

vuth.central forces only. If all oxygen-oxygen pairs had equal bond

length, the four oxygen atoms would make a perfect tetrahedron, so that

when we bring back the silicon atoms, all Si-O bOnds would be of equal

length and all O-Si-O angles would be equal to the tetrahedral angle

109.“7°. This procedure is novel because we are now dealing1with a much

simpler system, and the potential will have no adjustable ratio of force

constants. The potential is written as:

- N 6 +

vac) )(r1.-r) ' (1.11.1)

i=1 j=1 3 '

11 is the number of oxygen atoms, and the force constant a is arbitrary.

We know the Si-O distance from experiment ought to be 1.61 A (Reference

1.17) and the O-Si-O angle is 109.“7°, so that the oxygen-oxygen

distance r0 should be( Figure 1.15):

 

 

Figure 1.15

Nearest 0-0 distance vs related bond lengths and

angles.

0

O-Si-O g 109.“7°
p0 = 2 rSI“0 SIN 2 2 X 1.61 x SIN ——§—- ‘ 2.63 A



37

We relax this oxygen system until the energy saturates, finally

getting rms deviation of the oxygen-oxygen bond length to be 1.5%.

Then we put the silicon atoms back in the center of four nearest

oxygen neighbors to get an a-SiO network. We next relax the 810 system

2 2

with a Keating-like potential:

 

“ B 2
3 a 2 2 2 3 1 ~ + + d 2

V - -—— Z Z ( r - d ) + — -—— Z l (r -r + )
16 d2 2 1:1 21 8 d 2 1’3 21 23 3

+ 3 —E3 2 (F .; - d2 cos 8 )2 (1 u 2)
8 d2 2 i1 22 o ' °

Where a, B1, 82 are the three elastic force constants. 9. in the first

and second terms is summed over all the silicon atoms, 1,3 are nearest

neighbor oxygen atoms of silicon atom 11., 2. in the the third term is

summed over the all oxygen atoms, 1 and 2 are two of an oxygen's nearest

neighbor silicon atoms, d-1.61 A, and 00 is average Si-O-Si angle.

There are three elastic force constants to be chosen. The relative

ratios of d, 8,, 8 will determine the rms deviations of 81-0 bond

2

lengths, the O-Si-O angles and the Si-O-Si angles. We take the value of

B,/u.- 0.2, and 82 . 0, based on the wide distribution of Si-O-Si angle

and the narrow distribution of O-Si-O angles in vitreous silica.

Finally we get our a-SiO2 network following relaxation of the

network with the potential (1.“.2). Our network has following

characteristics:
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(1) Large size - there are 512 810 units in the systemn giving 512
2

silicon atoms and 102“ oxygen atoms, the total number of atoms is 1536.

(2) The network is fully bonded with periodic boundary conditions.

(3) The network is random, there are no Bragg peaks in the diffraction

.y

pattern ( Figure 1.16 ). Here I(q) is defined as:

+ 1 N -

I(q) = 'fi 2 b e (1.11.3)

Where 61 is taken to be the isotropic average neutron scattering lenghth

of the i'th atom, b / 60 - 0.715.

Si

(“) This network has the experimental density p . 2.206 x 10_2c.u./A3.

(5) The distributions of the bond lengths and angles are listed in the

table 1.5:

Table 1.5

Average Value rms Deviation

Si-O Bond Length 1.62 A 1.2 1

O-Si-O Angles 109.“° 5.8°

Si-0~Si angles 1“7.“° 18.8°

(6) The ring statistics are same as that listed in the table 1.“,

since we did not change the topology of our a-Si network.

We made our a-SiO network based on our a-Si network, which was

2

made from diamond lattice by introducing a large number of defects while

limiting the smallest ring size to be four. The above ring statistics
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comes naturally out of this procedure. Although four is likely to be the

smallest ring size from energy considerations, some people do suggest

the existence of a small number of three-fold planar rings (Reference

1.17). We have actually generated an a-SiO2 network based on this

conjecture to see the effect of the three-fold rings (Reference 1.23).

Figure 1.17 shows the distribution of the 81-0 bond lengths and O-

Si-O angles and Si-O-Si angles.

We now compare our a-SiO model with some previously existing

2

models and experiment data in the Table 1.6. HT stands for our model, 80

is the hand-built Bell and Dean model, GS“, H61 and Y62 are models built

by W. Y. Ching by decorating already existing periodic a-Si networks.
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Table 1.6

Comparison of our HT model, some other models

and the experiment.

Model HT G5“ H61 Y62 BD

No.Of Atoms 1536 162 183 186 61“

Type Periodic Periodic Periodic Periodic Cluster

Density(g/cm3) 2.20 2.20 2.20 2.20 1.99

RSi_O 1.62 1.62 1.62 1.6“ 1.62

%5 x1001 1.2 0.7 1.0 1.7 3.5

6(0-31-0) 109.“° 1o9.3° 1o9.3° 109.2° 1o9.3°

A0 5.8° “.8° 6.8° 8.2° 6.2°

$(s1-o-SI) 1“7.7° 1“7.2° 152.3° 151.5° 153.3°

A0 18.8° 13.8° 1“.2° 13.1° 9.6°

Exp

2.20

1.61

109.“7°

1uu°-152°

15°~2o°



<
4
H
m
2
n
4
2
”

1—-—-—-—— m DIFTRRC'I’ICN PRTTERN N-1536 5192

Bragg diffraction pattern of our a-SiO

“1

AF—fi
was 180 DIRECTION

. no DIRECTION

°" ‘° 111 DIRECTION

T 1
‘1 1l 9 I 1%

“ I?l’ l I T E T 1’ k

1 L

     11111 1 11.111111111111111
8519152825

 
 

V

”
—
0

W

as 35 40 45 so

01%:

Figure 1.16

2 network.



4
2
9
1
0
3
”
?

«
z
n
n
a
n
b

4
2
1
-
1
0
:
a
n

. 8?

.83

.81

“2

q‘SI-O m LDCTH DISTRIBJTIG'C $102 "-155“

 
  I l I I 1 l l

1.4 1.45 1.5 1.55 1.6 1.65. 1.7 1.73 1.9

'8
11

1
1
1

. 81$

.01

(A)

MST-Om: DISTRIach smz muslin“fl

 A.

I I I I I I ‘1
  

' I

B 23 43 60 ea 1% m 140 360 IN

3%

.HI-O-SI “(LE DISTRIIJTIM SIQ "-1

q

    
0 29 48 60 a In 123 16

m

Figure 1.17

16. 18

81-0 bond length, O-Si-O angle, and Si~0~Si angle

distributions of our a-SiO network.
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Section 1.5 Radial Distribution Function

We now compare Radial Distribution Function of our model with the

experimental results. The experimental data we are comparing to are from

A. C. Wright's neutron scattering experiment. Function T(r) is used in

the experiment, so we also calculate the function T(r) from our model to

compare with the experiment data.

T(r) is defined b! A. C. Wright as (Reference 1.2“):

T(r) - “nrJZbJ {bi gji (r) (1.5.1)

Where DJ is isotropical average of neutron scattering length of the j'th

atom.

BJ - 0.“1“9 x 10"12 cm if the j'th atom is a silicon atom

DJ - 0.580“ x 10‘.12 cm if the j'th atom is a oxygen atom

gJ1(r) is the atomic distribution of i type atoms about the origin (3)

atom.

j is summed over a chemical unit, i is summed over all atoms.

For large r, if p° is the number density, we get the asymptoth:

 

form
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. “ 11 r p° ( 3: 63)

Figure 1.18 shows the comparison of the T(r) calculated from our

model and that from neutron scattering data of vitreous silica. They

both have the same asymptotic behavior for large r. The first and second

peaks of the model are sharper than those of experimental, because we do

not include the effects of the thermal broadening in our T(r).

The first peak of T(r) is the 81-0 peak, this peak is very sharp,

because the length of 81-0 bond has a very narrow distribution. The

position of the first peak is slightly shifted to the right from the

experimental peak, because the average Si-O distance in our model is

1.62A, which is slightly higher than the experimental value of 1.61A.

The second peak is the 0-0 peak. Our model has a narrow

distribution of 81-0 bond length r and the narrow distribution of 0-

81-0

81-0 angles 90-Si-O° Thus the 0-0 distance r0_O is given by

eO-Si-O

rO‘O = 2 rSi’O ° SIN( —-—2——-— ) (1.5.2)

ought also to have a narrow ditribution, giving a sharp second peak in

T(r).

The third peak is mainly decided by the nearest Si-Si pair. This

distance rSi-Si is decided by:

e
Si-O-SI

rSI_Si . 2 rSi-O SIN 2 (1.5.3)



“5

the value of Si-O-Si angle 0 has a wide distribution, so that we

Si-O-Si

will not get a sharp Si-Si peak. Our model has a very small third peak.

The experimental T(r) does not have a peak but only a shoulder.

We can see all the above features more clearly from the partial

pair correlation functions. Figure 1.19 are 81-81, 31-0, and 0-0 pair

correlation functions. These correlation functions are defined so that

the area under the curve gives the number of atoms in the corresponding

value of r. We can see the sharp first peak of Si-O and<l<>and the

broad first peak for 81-81. Further 81-0 and 0-0 neighbor may also fall

in the region of the 81-31 distance which will broaden the 81-31 peak in

the T(r) further.

From Figure 1.18, we can see that T(r) of our model reproduces all

the experimental features, with overall good agreement.
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Comparison of T(r) calculated from our network

and that from neutron scattering experiment.
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Section 1.6 Conclusions

From our work we would like to make the following conclusions:

(1) The introduction of defects into a crystal structure to

generate the structure of an amorphous solid is a novel procedure, which

can easily be done on the computer while maintaining periodic boundry

conditions.

(2) The main difficulty of this method is that it is very hard to

eliminate the memory of the crystalline structure. Calculation of the

diffraction pattern of the network is a reliable way to judge if the

memory of the crystal structure is still retained or not. The RDF can

not easily distinguish between a quasicrystal model and a continuous

random network model.

(3) To eliminate the memory of the crystal and to keep the

distortions of bond lengths and angles under control are two competing

requirements. So far we are unable to reach both goals to get a really

good a-Si network. We have generated an a-Si network which has no

crystal memory, but the angle distortion is much larger than that

observed in experiment (17° for our model, while 10° for experimental

value and for relaxed hand built models with free boundaries).

(“) Based on our a-Si model, we have generated a good model of

vitreous silica, which has a large size, periodic boundaries, is fully
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bonded, has no Bragg peaks in the diffraction pattern, has reasonbaly

small Si-O bond length and O-Si-O angle distortions, and whose RDF

agrees with experiment. Our model contains four and higher fold rings.

(5) Our fully bonded large periodic random network is a good model

to be used to study the various properties of vitreous silica. S. W.

Deleeuw and M. F. Thorpe have used the model to study vibrational

properties of vitreous silica (Reference 1.25).



Chapter 2 Elastic Properties of Glasses

Section 2.1 Introduction

The introduction of a small amount of impurity (Phosphorus, Boron

for example) in the crystalline tetrahedrally bonded semiconductors can

change the conductivity a great deal. In contrast, the electrical

properties of chalcogenide glasses do not exhibit great sensitivity to

impurities, and are in fact often insensitive in compositional change of

even a few percent. The insensitivity of the electrical properties of

the chalcogenide glasses led N. F. Mott to propose the "eight-minus-n

rule" (Reference 2.1).

The valence of each constituent atom is satisfied by every atom in

the covalently bonded amorphous solids. The number of electrons needed

to fill the outermost shell of each atom is 8 - n, where n is the

number of s and p electrons of the outermost shell. Therefore each atom

in the covalently bonded amorphous solids form Z 8 - n covalent

bonds with its 2 nearest neighbors. In other words, Z - 8 - n is the

coordination number, which is satisfied by each atom in the glasses.

Consider a ternary system like GexAsySe . Since respectively

1-x-y

the valence of Si, As, Se are “, 5 and 6, the coordination numbers are

“, 3, and 2 respectively, when we form a compositionally and

topologically disordered system out of these three species, they forbIaa

50
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continuous random network with a definite coordination number for each

species. Figure 2.1 schematically illustrates this features of the

networks (Reference 2.2). There each Ge atom is connected to four

neigboring atoms, each As atom is connected to three, and each Se atom

is connected to two neighboring atoms.
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Schematic bonding topology of GexAs Se Glasses.

1-x-y .

As is well known, when isolated Si atoms come together to form a

crystal, the four electrons in the outermost shell (two “3 and two “p

electrons), occupy the four hybrid bonding orbitals to bond each atom to

its four nearest neighbors, forming a tetrahedral structure (Figure
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2.2). The bonds are very strong and directional. This feature is also

present in amorphous silicon with only some deviations in bond lengths

and bond angles when continuous random networks are formed. This

structure can be generalized to all covalently bonded glasses. The

dominant forces are covalent forces, so that any Change in bond lengths

or bond angles causes a significant increase in strain energy.

\

Figure 2.2

Hybrid bonding orbitals of Si in the solid.

More distant forces, van der Waals forces (by van der Waals forces

we mean all other forces other than strong covalent forces), are rather

weak in comparison with the covalent forces. Therefore, it is reasonable

to neglect those weak forces in a first approximation.
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(b) Chains with cross links introduced by As

and Ge atoms.

Figure 2.3

If we take this approxihmtion, that is we include only bond

stretching and bond bending forces and neglect the dihedral angle forces

and other forces, we may find two different kinds of regions in a
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GexAsySe1__x__y system. One kind is Se-rich regions, where Se atoms form

long polymer chains (Figure 2.3 (3)). There are two constraints

corresponding to each Se atom: one is from bond stretching (there are

two bonds connecting each atom, but it is shared by two atoms), another

one is from bond angle bending. However, since there are three degrees

of freedom per atom in three dimension, we can twist these chains

freely with no cost in energy because the Se atoms can always adjust

their positions to relieve any external stress. We call this kind of

region Floppy Region.
 

Obviously, a few cross links, which interconnect the chains,

stabilizes the structure or makes it rigid ( Figure 2.3 (b)). The

higher coordinated atoms ( Ge and As ) introduce these cross links to

otherwise isolated chains to stablize the structure. Therefore the Ge or

As rich regions are stable and resist any external stress; we call this

kind of region Rigid Region.
 

The floppy regions are characterized by low mean coordination. The

rigid regions, on the other hand, are characterized by high mean

coordination.

There are essentially two different situations when rigid regions

and floppy regions coexist in the same system. One possibility is as

shown in Figure 2.“ (b), where the rigid regions percolate through the

system and form an infinitely large rigid backbone (if system is

infinite). Second possibility is depicted in Figure 2.“ (a), where the

rigid regions just form a few isolated islands in the matrix of the

floppy regions. This picture corresponds to the basic notion that there

are two classes in the covalent glasses: Amorphous Solids with high Mean
 

Coordination and Polymeric Glasses with low mean coordination.
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The questions of whether or not the rigid regions percolate for a

 

given mean connectivity defines the Rigidity Percolation problem.

These two different systems are very different in terms of elastic

properties. The systems where the rigidity percolates are hard, resist

any external forces, and their elastic moduli and longitudinal and

transverse sound velocities are finite. Those systems where rigidity

does not percolate are soft, does not resist any external forces, i.e.

the system can be continuously deformed with no cost in energy, the

longitudinal and transverse sound velocities are zero (or very small in

a real situation).

Rigidity percolation is different from regular geometric

 

percolation in terms of Percolation Threshold.

One example is the central forces only model. The potential is

expressed:

1 + “ 2

V - 5’0 Z.( uij r13) (2.1.1)

1.3

Here rij is.unit vector along the bond (i,j) in the network, fiij-Ji-GJ

is relative displacement of the atom on the either side of the bond from

their equilibrium positions. Figure 2.5 (a) shows the situation when the

two rigid pieces are connected by a single bond, forming a free hinge.

Although the two rigid parts are connected geometrically, they are

elastically disconnected, since a free hinge can not resistIan external

stress. If there is a voltage imposed on the two sides and the system is

a resistor network the electrical current is certainly nonzero. But if a

stress is exerted on the two sides the system does not resist,implying
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(a) Rigid units connected by a single hinge.

/

(b) Rigid units connected by a single chain.

Figure 2.5
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that the elastic moduli are zero. The rigidity percolation threshold is
 

therefore different from the conductivity or geometrical percolation

threshold.

Another example is a chain-like structure in the bond stretching

plus bond bending forces model in three dimension (Figure 2.5(b)).

The potential energy can be written as

2 21 -> 1

v-—ai(u - )+—82(8<I>) (2.1.2)
2 1’3. 13 13 2 ijk ijk

”
3
+

When an external stress is imposed on the structure in question,

the system would try to relax to reach the minimum energy state. The

question is whether the five atoms connecting the two rigid pieces can

relax to the proper positions to make the strain energy zero.

Mathematically we have 5 x 3 = 15 unknowns and 6 (to fix six bond

lengths) plus 5 (to fix five angles in between) plus “ (to fix four

angles on the sides) - 15 equations, so that there is always a solution

in general. This structure therefore cannot resist an external stress.

Again we have the situation where the geometrically connected regions

are not necessarily elastically connected.

However, if we include more forces than we did in above two cases,

life can be quite different. For instance, if there are angle bending

forces in addition to the central forces in the two dimensional problem

or dihedral angle forces in addition to the bond stretching and bond

bending forces in the three dimensional problem above, these two systems

would become able to resist external forces. Their elasticity

percolation threshold would become identical to their conductivity

percolation threshold. In other words, whenever the parts of the
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networks are geometrically connected they are always elastically

connected as well.

In summary: when sufficient forces models are adopted, the

elasticity percolation problem becomes identical with the corresponding;

conductivity problem in regards to percolation threshold, and we call

 

this kind of elasticity percolation problem a class 1 problem.

Although for the class 1 problem, the elasticity percolation

systems and their conductivity percolation counterparts have identical

threshold, these two problems are different in physical nature (A

partial explanation of this difference is that conductivity is a tensor

of rank 2 in contrast to the elastic tensor which is a tensor of rank

‘1).

Various studies by a number of workers (References 2.3-2.6) suggest

that the elasticity percolation problem belongs to a different

universality class from the conductivity problem although they have the

same percolation threshold.

We define t as the critical exponent of conductivity

t

o c ( P - Pc) (2.1.3)

Here p is the fraction of bonds present.

We can also define the critical exponent for the elastic moduli as

follows:

c .1 1 p - PC)T (2.1.11)
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The coductivity exponent t has been found in various numerical and

real experiments to be approximately (References 2.3-2.6)

t . 1.2 - 1.3 for 20

t . 1.9 - 2.0 for 3D

The exponent T for the elastic moduli has been suggested to be

substantially higer than the above values for t (References 2.3-2.6):

T - 3.6 for 2D

T . 3.5 Ifor 3D

Insufficient force models make the elasticity percolation threshold

different from regular bond percolations. We call this class 2¢problem,

or Rigidity Percolation problem. J. C. Philips (Reference 2.7) and M. F.
 

Thorpe (Reference 2.8) have developed the constraint counting argument

to locate the rigidity percolation threshold. S. Feng, M. Thorpe and E.

Garboczi (Reference 2.9) have studied the central forces only model.

They developed an Effective Medium Theory and have done computer

simulations on various 20 and 3D networks. Effective medium theory,

constraint counting and computer simulations all agree that the rigidity

percolation threshold is very close to:

Pc-2d/Z (2.1.5)
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Where d is dimensionality, Z is coordination number. This is

substantially higher than the bond percolation threshold Pc~%:%

(Reference 2.2).

The aim of this research is to study the elastic properties of

glasses via computer simulations through a model which is much simpler

than the real glasses but we believe it captures the essential physics

(Reference 2.10). We use the Keating potential in three dimensions. The

Keating potential essentially includes the bond stretching and bond

angle bending forces. We neglect the dihedral angle forces at first.

This defines a class 2 problem, so that we expect a percolation

threshold that differs from geometrical percolation threshold. As we

will later on consider the effect of the introduction of the dihedral

angle forces. We know that the covalent glasses can be divided into two

classes, the amorphous solids with high mean coordination and polymeric

glasses with low mean coordination, we are led to study the transition

between these two classes of glasses by probing the behavior of two

physical quantities such as fraction of zero fraction modes and elastic

moduli which couple most directly to the phase transition. The rigidity

percolation threshold (class 2 problem), which is different from the

geometric percolation threshold, is not known exactly so far. The

numerical computation which involves a relaxation Of the system with

large floppy regions is also very difficult. We will not try to probe

the critical region in any detail.
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Section 2.2 Constraint Counting and Zero Frequency Modes

The notion of Overconstrained and Underconstrained glasses was
  

introduced by J. C. Phillips in 1979 (Reference 2.7). This idea was

later put on a firm foundation by M. F. Thorpe (Reference 2.8), who

envisaged a glass consisting of Rigid and Floppy regions and a phase

transition taking place as the mean coordination <r> is increased and

rigidity percolates through the network.

The number of zero frequency modes Mo is equal to the number of

ways in which the network can be continuously deformed with no cost in

energy. In general, M0 is given by the number of degrees Of freedom

minus the number of linearly independent constraints NC:

M =dN-N (2.2.1)

o c ,, ..

Here d is the dimensionality, N is the total number of atoms in the

system. One way of seeing the validity of equation (2.2.1) is that NO is

equal to the rank of the dynamical matrix D (R), so that the nullspace

of D(R) has just d N - Nc elements.

Mo should be non-negative from its physical meaning. When Mo = 0,

there is no way that the system can be continuously deformed with no

cost in energy, this is equivalent to the case when the rigid region

percolates through the system, so that the system is rigid, the

longitudinal and transverse sound velocities are finite, elastic moduli

are finite. 0n the other hand, however, if M() > 0, there are some ways
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in which the system can be deformed with no cost in energy. This case

corresponds to the situation when the rigid regions are isolated, system

can not resist any external forces, the elastic moduli are zero,

longitudinal and transverse sound velocities are zero.

Nc is the number of independent constraints. Nc depends upon the

choice of the elastic potential expression and the structure of the

network. One simple example is the central forces only model, where the

potential can be written as ( 2.2.2):

2

v -1/2 a Z (1 -1 ) (2.2.2)
1 i O

( all bonds )

Each bond gives rise to one constraint in the system. If we have a

lattice where each site has 2 nearest neighbors, there will be 2 x N/2

bonds altogether so Nc - Z x N / 2, from (2.2.1) the number of zero

frequency modes should be approximately (see below):

Mo = d N _ Z N / 2 (2.2.3)

We can define fo as the total number of zero frequency modes

divided by the total number of normal modes:

f .. .____9__
(2.2.“)
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The computations of various lattices of 2d and 3d systems show good

agreement with the above mean field estimates (E. J. Garboczi, Thesis

and Reference 2.9).

We now consider the model we are interested in. We consider a 3D

random network with N atoms in it, composed of a few different species

of different coordinations. We have up atoms having r bonds where r . 2,

3, or “ for covalent networks with the sum rule:

2 n - N (2.2.5)

We include both the bond stretching forces and angle bending

forces. So each bond gives rise to one constraint related to the bond

stretching. There are r/2 such constraints to each r coordinated atom,

with the factor 1/2 due to the sharing of the bonds with its nearest

neighbors. There is one angle for each two coordinated atom, three

angles for each three coordinated atom and five angles for each four

coordinated atom. There are five angles instead of six for a four

coordinated atom because the sixth one is no longer independent. In

general there are 2 r - 3 angular constraints for each r coordinated

atom.

The total number of constraints is then given by:

Nc - E nr [ r/2 + ( 2r —3) 1 (2.2.6)

The number of zero frequency modes is:

Mo . 3 N - Nos 3 N - 2 hr [ r/2 + (2r-3) ] (2.2.7)
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Define mean coordination as:

2 r nr

I"

< I" > - fi— (2.2.8)

r

r

The fraction of zero frequency mode will then be:

fo . Mo / 3 N . 2 - 5/6 < r > (2.2.9)

The transition should take place at Mo = 0, i. e. f}>- 0 which

implies that

< r > = 2.“ . (2.2.10)

The relationship (2.2.9) can be depicted as a straight line (Figure

2.6) where fo - 0 at <r> - 2.“ and fo - 1/3 at <r>-2. At <r> .. 2 every

atom is two coordinated so that the number of constraints for each atom

is 2 (one from bond stretching and one from the angle formed by the two

bonds). But as there are three degrees of freedom for each atom, that

implies that 1/3 of the total modes will have zero frequency.
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Figure 2.6

Fraction of zero fraction modes fo vs mean

coordination <r> from constraint counting.

Here we should notice that the expression (2.2.1) is exact as long

as NO is the number of independent constraints. However the expressions

(2.2.3) and (2.2.7) are not exact, because we did not consider the

effect of the formation of closed rings in the network on the number of

constraints. Actually, due to the existence of closed rings the

constraints we counted above are not all independent (Reference 2.8).

This kind of constraint counting is mean field like in nature.

One simple example to view the effect of the formation of the

closed ring to the number of independent constraints is the 2D network

with bond stretching forces plus angle bending forces (Reference 2.8).

Mean field like constraint counting would lead to count the number of
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bond lengths and the angles they formed (notice that the each r

coordinated site gives rise to only r-1 independent angle constraints

since the last angle is not independent of the others) in the network.

However, when the rings are formed, Figure 2.7 for example, the dashed

bond and angles indicate that these three constraints are unnecessary as

they are determined by specifying the other bond lengths and angles in

the ring (Reference 2.8).

 
Figure 2.7

Schematic view of the effect of the closed ring

on the number of independent constraints.

From above constraint counting argument, we can see that if we

neglect all weak forces, there will be a transition between the rigid

system where the rigidity percolates, and the floppy system where the

rigidity does not percolate. Transition takes place at < r > - 2.“. The

implication of this in the real glasses where there are always other

weak forces in addition to the covalent forces is: Systems with <r>>2.“

are amorphous solids, the elastic properties of these materials are

characrerized by strong covalent forces. Systems with

2 < <r> < 2.“ are polymeric glasses, the elastic properties of the

materials are characterized by weak van der Waals forces.
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Section 2.3 Model Description

Our aim is to develop a model to calculate some physical

quantities, such as the fraction of zero frequency modes and the

elastic moduli, to see if the mean coordination does play the decisive

role in determining those quatities and if a transition really takes

place at about <r> - 2.“, as predicted by the constraint counting
 

argument.

We choose Keating potential (Reference 2.10) for the ealstic

potential energy. The form of Keating potential is:

 

2 2 2
v- °‘ 2 (r -d)

T6d2 2,1 9.1

38 -> + 122
+ ------—- (r I" .+‘Td) (203-1)

8 (12 2.1.3 ii 13 3

DJ

Where :1.) is the vector from the ith atom to jth atom in equilibrium,

the d is the nearest neighbor distance in equilibrium.

This potential expression includes bond stretching forces and angle

bending forces but not the dihedral angle forces. The free choices of

dihedral angles make possible the existence of regions which may be

geometrically connected but elastically disconnected, i. e. this is a

class 2 problem.
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We choose our system to have periodic boundary conditions so that

we do not have surfaces and so that a relatively small unit cell can be

used to simulate the infinite system.

To choose the actual system on which to do computer simulations we

still need to take into account the following problems. Since elastic

energies are small deviations from the local minimum of the vibrational

potential, in order to calculate the elastic moduli we have to calculate

the small change in elastic energies between those before and after

external strains are imposed. In order to do this, we need to know the

energy of the local minimum to high accuracy.

Another factor we have to consider is that we must be able to

change the mean coordination <r> continuously over a wide range, so that

we can see if <r> is an important parameter, and if changing <r> does

lead to a phase transition at about <r> - 2.“. Also each time we change

the mean coordination we still need to know the energy Of local minimum

of vibrational potential to high accuracy.

With the above considerations in mind we chose to work on the

diamond lattice, where the the initial coordination is four. We then cut

bond at random, so that the mean coordination number decreases from four

and can be eventually be decreased to close to two when the network is

mainly polymer chain-like. We maintain the periodic boundary conditions

so that if a bond is removed in one supercell it is removed in all

supercells. At first only three-coordinated sites are created, but with

enough bonds removed, two coordinated sites are also created. Although

each atom may have different coordination number after the cutting, we

still suppose that they all have same position and same interatomic

force constants for the remaining bonds. Therefore, the vibrational

ground state energies are always zero for the bond-diluted network,
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implying that all atoms remain in their positions on the underlying

diamond lattice. Although this is not very realistic, we believe it can

capture the essential physics.

The potential energy can be written as follows after the above

simplifications.

V ' 76"E‘ 2 ( Iii ’ °2 )2 P21
._ d 1,1

38 2++122
+ ._.——— ( r . r , + — d ) P P (2.3-2)

8 d2 2,1,j ii 23 3 ti ij _ .

i>j

Where

P a { 1 if i , j are bonded

ij 0 otherwise

FTwnn potential (2.3.2), we can see that when a bond is removed, ii

for example, all the a and 8 terms associated with it are removed from

the potential (2.3.1).

We keep the minimum coordination to be two (we do not allow any

dangling bond or isolated atoms). so that we can mimic the

Gex Asy $61-x-y system. The size of the unit cell we use to calculate

the elastic moduli is 8 x 8 x 8 - 512 atoms.

After a certain number of bond are removed we have n two-

2

coordinated sites, n three-coordinated sites, and nu four-coordinated

3

sites, and

n + n + nu = N (2.3.3)
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+3n+“n)/N (2.3.5)Mean Coordination < r > - ( 2 n 3 “

2

Since the equation 2.3.3 has to be satisfied, we have only two

independent variables or we have one free parameter. For the same <r> we

can have different n2, n3, and nu values (two of them are independent).

In order to know if the physical properties concerned are decided by

and nonly the mean coordination or also the detail of the n n

2’ 3’ “

combinations, we developed three different samples with the same mean

coordination but different values of n2, n , and nu.

3

Figure 2.8 shows the differences between the three samples. The x

axis is mean coordination, the y axis is the fraction of 3-coordinated

sites n3/N. The first two samples are arrived at by totally random

cutting. We first pick a site at random, then choose one of its

neighbors at random. If we would create a dangling bond by cutting this

bond we do not cut it and just move to the next site; otherwise, we

always cut it. To get a sample which is substantially different from the

first two samples in terms of II (but with the same mean coordination) ,

3

we adopt a weighted cutting procedure. We deliberately picked one

configuration with an enhanced number Of two-coordinated sites n2,

thereby depressing n3, as shown by the circles in Figure 2.9. To do this

we first choose a bond at random, if both ends of the bond are 3-

coordinated already, we cut the bond always, if one end is 3-coordinated

we cut with probability 0.“, if both ends are “-coordinated we cut it

with probability only 0.1. This process enables us to create the third

sample which has a very different value of n3/N than the other two.
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Figure 2.8

Number of three coordinated sites vs mean

coordination for three samples, N-512.
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Section 2.“ Fraction of Zero Frequency Modes

We calculate the fraction of zero frequency modes by directly

diagonalizing the dynamical matrix.

The energy of vibrational motion of atoms in the solids can be

written as:

1 d 2 1 a a8 8
H - Z -—— P + — X Z u D ,u (2.“.1)

2 a 2 mg i 2 l a 2'8 t it 2'

Here, a, B = x, y, z and i = 1,2,3 . . . N, all atoms.

 

2

D°°,. .__§_I___ (2.“.2)

2“ an“ an“
i i'

The equation of motion is:

0d 3 H

P2 ' a ’ ml “2 (2'"*3)
3 u

i

d - i w t

For the normal modes uz ~ e

Substitute u: in the equation (2.“.3) we have:

2 a dB 8

It w ”I £18 D221 “2' (lfuf3)

Take mass of all atoms to be equal and equal to one for simplicity.

‘Now to get the frequencies of the normal modes, all we need to do is to
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(:8

2.2."

expression of dynamical matrix element as follows:

diagonize the matrix D From potential (2.3.2), we can write the

 Dm'“- 32"

2",!" Bumaun

l 2'

m n m n

' a I 6221 2 P21 r11 P21 rll'ril'Pil']

m m n n

+ 1/“ 8 62l'[ 2 ( rg11+ r11)(rli'+ r11) P11 P11.
1,i'¢l

m n

+ Z r. P P P ]
i,£*l 15 15 ii 15

+ 1/“ 8 [ Z ( rm + rm ) rr1 P P
1‘1, ii 211 It 21 22'

n n m

+ Z ( r I + r. I) r. I P ' P I ]tel I E It I E It i E

1 1’" 8 Z ’21 rTi'Pti P111 (quf‘)
1

Here i, 2' go over the atoms, and m,n go over the x,yn 2

directions (we use m,n other than a, B, because we have already used at

and B for the elastic force constant).

We have done this on systems smaller than those used for the

elastic moduli calculations. We used cells with 6 x 6 x 6 - 216 sites.

We developed three similar samples for the 216 atom system.
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Figure 2.9 (a) show the n3/N vs mean coordination relation for these

samples. The process of developing these samples was same as that for

512 atom system.

We directly diagonize the above dynamical matrices by using

existing subroutine in the library on the CYBER 205 supercomputer and

count the degeneracy of the eigenvalue m2- 0. We always subtract out the

three so-called Goldstone Modes which correspond to the translational

motions of the whole system .

Figure 2.9 (b) shows the results of three different samples. It is

clear that they are very close despite the large differences in n2, n3,

and nu values. From this we can say that the mean coordination does play

the decisive role in determining the fraction of zero frequency modes.

The constraint counting argument predicted such a result.

Figure 2.10 shows fo averaged over the three different samples vs

mean coordination. The straight line is drawn from 2.2.9 which is the

constraint counting prediction. The calculations show very good

agreement with the constraint counting. The small deviation from the

straight line when <r> is very close to 2.“ is due to the existence of

small isolated floppy regions which persists when the rigid regions

percolate and also to finite size effects.

As was mentioned before we do not expect the way we count the total

number of constraints to be completely accurate. In the network there

are always some closed rings, so that some constraints we count are not

independent. This is why floppy inclusions can still exist when

<r> > 2.“.
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Figure 2.10

Fraction of zero frequency modes vs mean

coordination, averaged over three samples.
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Section 2.5 Elastic Moduli

As we argued before, the system becomes soft when the mean

coordination decreases and it will undergo a phase transition when the

rigidity ceases to percolate through the system. We estimated this

threshold to be <r> = 2.14 for our systems using constraint counting

argument.

The system we start with is the diamond lattice. This is a cubic

system. There are three independent elastic moduli for a cubic system,

C11’ Ci

moduli from his potential. He writes down the form of the potential

2, and Cu“. Keating (Reference 2.11) has calculated these elastic

energy when a general external strain is imposed, assigns an internal

displacement u', v', w' between the two FCC sublattices along the x, y,

and 2 directions, respectively. He solves for the u', v', w' by

minimizng the strain energy with respect to these internal strains:

Then he substitutes the u', v', w' into the potential energy and

reads off the value of C C 2, and CM from the general expression

11' 1

for the strain energy of a cubic system (Reference 2.12):

1 2 2 2

V - 2 C11 ( exx + eyy + ezz ) + C12 ( exxeyy + exxezz + eyyezz )

1 2 2 2

+ 2 CH” ( exy + exz + eyz ) (2°5'1)

Keating's result for C11, C12, and Cu“ for the diamond lattice is:
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1

CH-Ta(a+38) (2.5.2)

1

C12 = r5 ( a "’ 8) (2.5.3)

(2 = “8 (2.5.1:)
414 a(c+8)

Here a / J3 is the nearest neighbor distance.

The bulk modulus can be obtained from C11 and C12:

C +2C

B- ”3 ""=(3a+s)/12a (2.5.5) 

When we remove the bonds so that the mean coordination is close tc>

the percolation threshold, some very floppy regions may occur, so that

it may take a long time to relax the system completely. We use trimming

process to save the computer costs. The trimming process is the

following We first identify the part of network, which we know will now

contribute to the strain energy, when the network is fully relaxed, in

other words we know we can always relax that part to a zero energy

state. Then we remove all the bonds in that part of the network when we

compute the elastic energy. The following structures can always be

trimmed:
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Figure 2.11

Chain-like local structure which can be trimmed.

1. Chain like structures (Figure 2.11). If there are five sites in

the middle part which are two coordinated, and both ends are three

coordinated, from the argument in section 2.1, all bond lengths and

bond angles in this part of system'can always be satisfied, so that the

elastic energy can be relaxed to zero exactly. The dashed curved bonds

can be all trimmed away.

2. All isolated clusters can certainly be trimmed, as they always

relax to zero energy.

3. After trimming of the chain-like structures some parts of the

network can be connected to the backbone through a single bond (Figure

2.12). This dangling part can be trimmed away as well.
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Figure 2.12

Singly connected cluster which can be trimmed.

When the mean coordination is sufficiently low, all bonds may be

trimmed, thus giving us a lower bound for the rigidity percolation

threshold. The Figure 2.13 shows us‘how many bonds are still present

after the trimming process. The y axis is the fraction of the bonds

present after trimming. The x axis is the mean coordination and the

curves stand for three different samples which we mentioned in the

section 2.3. We can immediately see that at about <r> - 2.2 all bonds

are gone through trimming, so that the elastic moduli are certainly zero

even without any calculations.
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Fraction of bonds present after trimming for

three samples.
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1k>calculate the elastic moduli we impose an external strain 6,

relax the system with the Keating's potential (for detail of the

relaxation see the Appendix (A)), and calculate the elastic energy after

the energy converges. The final energy can be written as:

2

C 6 (2.5.6)va- 13
N
I
—
b

C is the elastic modulus. The appropriate external stnahlis

iJ

imposed to extract the desired elastic modulus. Since C can not be

12

measured directly, we calculate C Cu“, and the bulk modulus and

11’

extract C12 via equation (2.5.5). 2

Unlike the crystalline cubic system, for the random system, C11and

can do rely on the choices of the external strains. To get C we take

11’

6 to be e , e , e in turn and do the average over these three

xx yy zz

directions to get better statistics. To get C1m we also do average over

three different directions.

The actual process is:

For C take x direction (exx - 6) for example, change the box

11’

length along x direction from L to L x (1 - 6) and change the x

coordinate proportionally:

x (i) - x (i) x ( 1 - 6 ) i - 1, 2, . . . N

Then relax the system and calculate the final energy to extract the

value of C11.

For CNH' also take the x direction for example, change the shape of

the box and change the coordinates proportionally:



SH

y (i) - y(i) + x(i) x 6 i - 1, 2, . . . N

Then relax the energy and get Cu”.

For the bulk modulus we change the box lenghth along all three

directions from L to L x (1 - 6) and change the coordinates accordingly:

x (i) - x (i) x (1 - 6)

y(i)-y(i)x(1—6)

z (i) - z (i) x (1 - 6) i - 1, 2, . . . N

After relaxation the bulk modulus can be obtained from:

V - 1/2 x B x 9 x 6 2

Small value of 6 was used to make the anharmonicity negligible,

6-10—5 was used throughout this work.

For the network whose mean coordination is close to the percolation

threshold the system becomes very floppy. To save the computer time we

used an extrapolation technique, which is described in Appendix B.

The size of our system was 8 x 8 x 8 - 512 atoms. The three samples

described in section 2.3 were used and periodic boundary conditions were

always carefully maintained.

Figure 2.1“ shows the result for C for three different samples.
11

B/a - 0.2 is adopted here. The three curves are very close to each

other. Similar results were obtained for the other elastic moduli,
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showing that the elastic moduli depend mainly on the mean coordination

instead of the details of the n2, n3, and nu distributions.

Figure 2.15 shows CH, C“, and bulk modulus which are averaged

over three samples for an... 0.2. All these curves go to almost zero at

about <r> - 2.11, implying that the rigidity percolation threshold must

be very close to the value 2.1-I, predicted by the constraint counting

argument.

We have calculated the elastic moduli for various B/c ratios.

Figures 2.16 shows the results for B/a equal to 0.02, 0.1, 0.5, and 1.0.

They all show that rigidity percolation threshold is near to <r> - 2.“.
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There is a recent report of the sound velocity measurement on

Se1_xGex glasses by J. Y. Duquesne and G. Bellessa (Reference 2.13).

They measured the sound velocity at h°K for Se1_x0ex glasses with x - 0,

0.1, 0.25, 0.4, and 1. They found (respectively): VT - 1.05; 1.2“; 1.HM

906910

(longitudinal waves); VR-3.2 in Ge (Rayleigh waves). The elastic modulus

in Se, Se7SGe25, SeGOGeno (shear waves); VL - 2.0; 2.10 in Se, Se

C1‘“ is pvi (p is the volumic mass).
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Figure 2.17

Cu” vs mean coordination from experiment

Squares are data from the experiment, the

full line is from our calculation (Reference 2.13).

The Figure 2.17, which is transplanted from their paper, shows the

experimental variation of can as function of the mean coordination

number <r> - 2 x + 2 of Se1_xGex glasses (in the case of Se Ge they

90 10
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assume: V - 1/2 VT L’ in the case of Ge, V - 1.11 VT is assumed,

R

Reference 2.13).

The overall agreement between the experiment and our calculations

is good. Unfortunately there were not any data available for the glasses

with mean coordination between 3 and ‘1. The elastic properties of the

glasses with mean coordination in this region should be best

characterized by the strong covalent forces. Below <r> . 2.”, the

elastic modulus is not zero, this is because the dihedral angle forces

and interchain interactions always exist in the real glasses but are not

considered in our calculations.
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Section 2.6 Mean Field Behavior

Because of the complexity of the system, we have not been able to

 

work out a proper theory, like Effective Medium Theory for example

adopted in a simpler cases (Reference 2.9 and 2.13). However, we have

analised our data and tried to extract the main features of the behavior

of the elastic moduli. We did not try to probe the region which is very

near the critical point, because the rigidity percolation threshold

(class two problem) is not known exactly and the data in the region

which is very close'to the critical point is not highly reliable due to

the existence of very floppy regions which give rise to relaxation

difficulties. Finite size effects are also a problem in this region.

We have analised the intermediate region, for <r> between 2.11 and

3.2, and found the data fits a power law fairly well. We can see this by

plotting the data on a log - log graph. Figure 2.18-2.21 (a) are log-log

curves for various B/a values; they all seem to be quite linear.

We have tried to extract the exponent from log - log curve, and get

the prefactor by using a least-square fit. Figures 2.18 - 2.21 (b) Show

the fit of the power law to our data. Table 2.1 is the list of the

exponent and the best power law fit for various B/a ratios and various

elastic moduli (Has1 is taken here, a/J3 is nearest neighbor distance).
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Table 2.1

Exponent and the best power law fit of elastic moduli.

B/a Cij Exponent Best Fit Curve

011 1.6 0.u x (r—2.u)15§

0.1 0,, 1.5 0.2 x (r-2.H)1'§

B 1.6 0.23 x (r-2.u)1°§

C11 1.5 0.69 x (r-2.l1)1°5

0.2 can 1.5 . 0.35 x (r—2.u)1'5

B 1.5 0.35 x (r-2.u)"5

c11 1.u 1.3M x (r-2.u)1f"

0.5 cu, 1.u 0.72 x (r-2.u)‘°”

B 1.u 0.65 x (r—2.N)1°u

011 1.3 2.15 x (r—2.N)1'3

' _ 1.3
1.0 can 1.3 1.13 x (r 2.u)..

B 1.2 0.88 x (r-2.u)1°2
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In the central force models (Reference 2.9), data were linear over

the whole range (corresponding to an exponent of 1) with a possibility

of a small "tail" near the phase transition corresponding to the

critical region. In our case this exponent is clearly not one. Although

we need to add an error bar of something like 0.1 - 0.2 to each

exponent, there is a clear tendency that the exponent does change with

the ratio of B/a, as B/a increases from 0.1 to 1.0 the exponent

decreases monotonically. However, the exponent of the different elastic

moduli (C C“, and B) are the same for the same ratio of B/c. When

11’

B/a - 1.0 the exponent for B is slightly different from the other two

(C11 and Cu“).

We now see a limiting case, 8/0 + 0:

This difference we believe is within the error bar.

08

C1111 -a(a+ B)
is zero even for diamond lattice, so we

expect C1111 to be zero for any <r>. The other elastic moduli go to zero

as soon as we cut one single bond. We can understand this in terms of

the trimming process. This is equivalent to the central forces only

model. When one bond is removed, the two sites on the both ends become

three coordinated. We can always adjust their positions to make all the

bonds have their equilibrium length. We therefore can trim them all.

Then the sites connected to those bonds which we Just trimmed away

become three coordinated and can be trimmed again. This chain reaction

makes the whole structure fall apart, so that the removal of a single

bond makes the whole network floppy.

The value of B/a - 0.02 is very close to this limiting case, (we

from Figure 2.16), Cij can not fitcan see this sudden drop of the C

13



98

the power law at all in the region we mentioned above. For very small

value of 8/0: (nonzero), the removal of first few bonds causes a large

drop of the elastic moduli C and bulk modulus. Thereafter they

11

decrease very slowly to zero at <r> - 2.”. Therefore in the whole region

<r> from u - e to 2.“, curves of elastic moduli vs mean coordination are

very flat, this correspons to very large exponent (0 in the limit).

For larger value of B/a, (B/a - 0.1 or 0.2), the first drop is less

dramatic, that will leave more dropping to occur when the mean

coordination is further decreased. This gives rise to smaller exponent.

This is consistent with the general trend that the exponent is

decreasing via an increase in the value of B/a.
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Section 2.7 Effective c and B

S. Feng, M. Thorpe and E. Garboczi developed an Effective Medium
 

Theory for the central forces only model and found a good agreement with

their computer simulation results (Reference 2.9). The Keating's

potential we have used is far more complicated and we have not been able

to work out a similar theory to understand the simulation results. But

the data we get clearly show that there are effective force constants

like 01* and 8* which govern the behavior of elastic moduli in analogy

with the 01* of the elastic moduli of the central forces only model. In

the nearest neighbor central forces only model, the elastic moduli can

be expressed in terms of a single parameter a (force constant) for the

pure crystal case. When a certain amount of bonds are removed, the

elastic moduli can be expressed with the same formalism, but the a

should be replaced by 01*. 01* can be expressed as a function of P (the

fraction of bonds present).

In our model, for the diamond lattice, we have three independent

elastic moduli C11, Cu”, and C but only two force constants c and 8.

12 ’

This implies that-there is an identity that the elastic moduli must

satisfy. This identity is found in Reference 2.10 to be the following:

A. 2C""(C”+C‘2) =1 (271)
(C11-C12)(CH+3C12) ,.
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Figure 2.22

A vs mean coordination for various values of B/a.
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‘We can replace a and 8 by a* and 6* to make (2.5.2 - 2.5.“) still

valid when <r> decreases if A-1 is still right when we remove the bonds.

This is indeed the case. Figure 2.22 shows the A value for different

values of <r> for various ratios of B/c. A is very close to 1 except in

the critical region near.<r> - 2.”.

Now we can write formulae 2.5.2 - 2.5.4 as follows:

 

 

 

 

< * + 3 3*)a

C11 u a (2.7.2)

5 8*

a

C1111 " a ( a . a) (2.7.3)

( * 3*)a +

C12 " u a , (27”)

and the bulk modulus can be expressed as:

.5 *

4.

Ba 3 °‘ 3 (2.7.5)

* x

The values of a and B can be formed from the computed quantities

C11 and B (h a . 1 is taken):

 

a - 8 1 (2.7.6)

 

B = 8‘ (2.7.7)

* x

We can get Cu" from a and B and compare this directly with the

simulation results. The two quantities agree very well for all different
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ratios of B/a. Figures 2.23 shows such agreement and the behavior of the

effective a and B as a function of <r>.

We found that when <r> is near the critical region, a fixed point

for the value of B*/ 0* is reached no matter what initial value of B/a

was chosen to be. This universal ratio is close to 0.5. Figure 2.211

shows this universal critical behavior quite clearly.
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Section 2.8 Flow Diagram

It was proposed that k/u (k is bulk modulus, 11 is shear modulus)

would approach a universal value at the depletion transition. This ratio

flows to a value that does not depend on the choice of the initial

parameters specifying a given model. But this fixed point depends on the

microscopic structure of the model (Reference 2.6, 2.1“ and 2.15).

For the nearest neighbor central forces only model, there is only

one elastic force constant, effective medium theory works very well all

the way towards the critical point, the elastic moduli can be expressed

in terms of single parameter (spring force constant a for pure system,

0* effective force constant for. random system). It is obvious that the

ratios of elastic moduli would be a constant value all the way to the

critical region (E. J. Garboczi, Thesis or Reference 2.9).

E. J. Garboczi and M. F. Thorpe have also studied this fixed point

problem for first and second neighbor central force model (Reference

2.111). They studied the 20 square lattice with the bonds cut at random

using the potential:

2

19+V - 1 (2.8.1)

N
I
—
‘

a 2 ( li - l
.l
2 1 1

2
1 E ( lj 12) PJ

Here 11 and 12 are are desired first and second neighbor distances,

respectively. a, Y are the force constants for first and second

neighbor, respectively (Figure 2.25).

_ { 1 if bond 1 present

- 0 otherwise
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Figure 2.25

Diagram of square net with first and second

neighbor springs (from E. Garboczi, Thesis).

They used P1 and P2 as independent probabilities of the first and

second neighbor bond present, respectively. They applied both effective

medium theory and numerical simulations to calculate the elastic moduli.

They agree very well and give the fixed point of C11/Can near the

critical region. This ratio does not depend on the choice of value Y/u ,

but only depends on the relative weightbf cutting first and second

neighbor bonds.
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D. J. Bergmann (Reference 2.6) has studied the fixed point probleul

for 2D honeycomb lattice with potential (2.8.2):

V .

N
I
-
I
I

2 1 2
kE(6bi) +-2-mE(6¢i) (2.8.2)

He used the trasfer matrix approach to arrive at the fixed point at

the critical point:

= 3.5 + 0.2

M. F. Thorpe and P. N. Sen (Reference 2.15) have studied a

continuum model of elliptical holes cut randomly in an isotropic elastic

continuum. They found the fixed point as:

__; . ______.. (2.8.4)

Here a, b are semi-axes of the ecllipses.

The fixed point behavior seems to be very general in the elasticity

percolation problems.

We have studied the fixed point problem on our model. Although

effective medium theory has not been able to apply to this particular

model. From the result shown on section 2.7 that the elastic moduli can

be expressed in terms of 01* and 8* using the expression for the pure

system. It was also shown that the value of ratio c*/B* goes to a

universal value at the critical point. It is obvious from above that the

ratios of elastic moduli must also flow to a fixed point in the critical
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region. Figure 2.26 shows these flow diagrams. These fixed points are

approximately:

 

We have also studied the bond-diluted 2D honeycomb lattice, with

the Keating-like potential:

 

1 a 2 2 2

V - ._ Z [-——— Z ( x - a ) P .
2 2 Za2 1 ii 11

B +.+ _1_22

+ 2 2 2.( r11 P23 + 2 a ) Piipzj] (2'8‘3)
a 1.3

Here a is desired nearest neighbor distance. P21 = 1 when the bond

ii present and 0 otherwise.

This is same percolation problem studied by B. J. Bergman

(Reference 2.6) except that he used the potential (2.8.2), we use

potential (2.8.3).



109

 
4111C“ mag

14

18..

  

  

-_ 9'..- 8 .4..-"

" .."=" “gag-cs1;

 8 I F I I  
 

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

PER! MIMTIM

(a) C11 / Cu“ vs mean coordination, 3D.

 
 

 

 
 

14 344.1 "-512

' I

12 -

nHuo awn/Moe 02

.mo sown-0.1

19 « 1.-.. enema-a 2

,mo saw-e s

BETWFLP'LB

a .1

6 .1

4 -

2 -

a I I 1 i I I T I T  
2 2.2 2.4 2.6 2.9 3 3.2 3.4 3.6 3.8 4

I‘m MMTIOI

(b) B / Cm4 vs mean coordination 3D.

Figure 2.26



110

We first calculte the elastic moduli for P-1 (with all bonds

present). We use the method by Keating in calculating the elastic moduli

for diamond lattice (Reference 2.11). Results are as follows:

1 M 02 + 13 c 8 + 82
 

 

 

1 9 c 8

CM ’ 14 J3 2 a + 3 (2.83.6)

2 2
_ 1 H a - 5 a B + 8

C12 ’ 11 I3— 2 a + B (2’8'7)

We can get bulk modulus B either from direct calculation of the

energy change when a hydrostatic pressure is imposed or from relation

(2.8.8):

B - ( C + C ) (2.8.8)
11 12N

I
—
b

Both give the expression:

1

Balm-(Zai’fi) (2.8.9)

Since this is an elastically isotropic lattice, the relationship

(2.8.10) must be satisfied:

- C + C - 0 (2.8.10)

This can be easily checked using equations (2.8.5-2.8.7).
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Then we cut the bond at random and impose the proper external

strain for desired elastic moduli, relax the system and calculate the

energy difference and extract the elastic moduli.

Since this is sufficient forces model for 2D network, it belongs to

class 1 problem, i. e. the elasticity percolation threshold is equal tc>

the geometric percolation threshold. For honeycomb lattice this is

exact:

Pc = 0.6473 (2.8.11)

We chose an 11148 atom honeycomb lattice and maintain the periodic

boundary when we cut the bonds.

We still use trimming process to remove the part of the network

which does not resist any external forces. Unlike the class two problem,

here all parts of structure which are geometrically connected are

elastically connected also. All we can trim are completely isolated

clusters and dangling clusters which are connected to the rigid backbond

by a single bond. The single dangling bond can not be trimmed due to the

existence of the angle bending forces.

We have developed an algorithm to identify and trim the isolated or

dangling clusters. Figure 2.27 shows one example of this trimming

process, here P - 0.69u9, (a) is the network before the trimming, (b) is

the network of the bonds present after the trimming.

We calculate two independent elastic moduli, B and Cu“. The C can

11

be obtained from:

+ B
(2.8.11)
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(2.8.11) can be obtained from (2.8.8) and (2.8.10)

We calculate these two elastic moduli for various value of ratio of

8/0. We averaged over 12 configurations to get final results. Figure

2.28 shows the results for two C1111 and B. The percolation threshold is

(r) . 3 x 0.6”73 ~ 1.9“.

Figure 2.29 shows C11 / C1111 vs mean coordination, this clearly

approaching a fixed point near the critical region inspite of the very

different values to start with due to the choices of the value of B/a.

This suggested the the fixed value to be approximately:

C
11

can

 

~ 3

This is similar to the value ( - 3.5 ) obtained by D. J. Bergman

with bond streching and bond bending forces model.



113

 

 
   
 \\I

I I I I I I 1 1'1

 

 

    
(b) P=0.695, bond present after trimming.

Figure 2.27



1111

 

 

  
  

“-5 4we was an: wank

I

“-4 ' 0H“ sum-1.0

.m‘.‘ cam-9.2

scrap-0.:
I

0.3 .

0.2 '

0.1 'l

a l

1.6 1.3 
(a) B vs mean coordination of 20 system.

 

 

  
  

8.5
4Wm N-448 CL

I

8.4 "
are [Tm-1.9

.___. sum-9.2

Elm-8.1

8.3 ..

8.2 ‘

0.: "I

8 l

1.6 1.8 
(b) can vs mean coordination for 2D system.

Figure 2.28



115

2D HONEYCONB N-448 C11/C44

§

~
\
.
4

 

12

18 ‘

aHufl satay-1.2 '

°_-_° BET/M'B.Z '

. h". BEHALF-8.1 ’1

8 - BET/RLP'B.GS (

- 1’
9 I

I

I

*

 

  

 

 

 
1.6 . 1.8

Figure 2.29

1/ Cu” vsFlow diagram of 20 system, C1

mean coordination.

 



116

Section 2.9 Introduction of Dihedral Angle Forces

As was mentioned before, the problem we have studied belongs to

class two, that is the rigidity percolation threshold is different from

the regular geometric percolation threshold. This is because of the free

choice of the dihedral angles, 1. e. we can twist a chain with no cost

in energy. What happens if we include the dihedral angle forces in

addition to the bond stretching and angle bending forces? All chain-like

structures will become rigid due to the extra constraints. There will

not be any continuous deformation that costs no energy.

We have studied the above model by computer simulation. We

introduce the dihedral angle forces in a way similar to how Keating did

for the angle bending forces, in the form of a dot product. The

potential is as follows:

 

3 a 2 2 2
v=————-—-2 (r -a > p

16 d2 1,1 ii ii

3 5 2 + + 1 2 2
+_____

(r! 'P,+-d)
P.

8 d2 1,1,1 13 £1 3 ii 13

(DJ)

+ §.Yn Z ( F . 3 - d2 C080 )2 P P P (2 9 1)
8 d2 i,i,j,k kJ ii n ii 13 jk .

n - 1, 2; n - 1 for angle 91: 60°, n . 2 for angle 0 = 180, ‘Y, and
2

Y2 should be different in general, but we will take them same for

simplicity.
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‘The third term corresponds to dihedral angle forces, where £,i,j,k

are connected by a path of bonds. This term is non-zero only if the all

bonds 1J1 between are present. Here P - 1 when the 1,3 are bonded, and

13

zero otherwise.

Introducing a general external strain, we can solve for the

internal displacement u', v', and w' between the two FCC sublattices by

minimizing potential energy (2.9.1). Then by substituting u', v', and w'

into expression (2.9.1), we can extract the independent elastic moduli

C11, C12, and C1‘” for diamond lattice. They are:

 

 

 

a + 3 8 + 9 Y

011 “a (2.9.2)

o - B + Y

C . 0(1“5)2+B(1+€)2+2Y(1+E)2+3Y(1-€)2
N” M a

 

(2.9.4)

a - 8 + 0.5 Y

where E c + B + 2.5 Y

The bulk modulus becomes:

1 1

B -‘§ ( C11 + 2 C12) ' T23 ( 3 G + B + 11 Y ) (2.9.5)

We calculated the elastic moduli in a same way we did before for

the network without the dihedral angle forces. Three same samples were

used to see the change in elastic moduli solely due to the introduction
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of the dihedral angle forces. Averaging was taken over three samples. We

did calculation for Y - 0.0” and 0.1 respectively. Figure 2.30-2.32 show

our data in comparison with previous data for Y-O, B/c - 0.2, B/as0.2 is

also used here. Figures 2.30-2.32 are just the blow up of the part(a) of

the Figures 2.30-2.32. We can see that the introduction of the dihedral

angle forces really washes out the transition at <r>-2.“. Elastic moduli

are not zero at <r>-2.11. This is because of the additional contraints

introduced by the dihedral angle forces.

But from the Figures 2.30-2.32 we can see that the elastic moduli

are very small when <r> is near two, this seems to suggest that the

elastic moduli may vanish at <r> . 2.

In the limiting case (r) - 2, the whole system will consistIof

disconnected chains in 3D space- Yacov Kantor and Itzhak Webman have

studied the elastic behavior of a single 2D chain formed by a set of N

vectors (Reference 2.5). They fix the one end of the chain, exert a

force on the other end, and minimize a function W:

w-n-fi-(fi -§) (2.9.6)

1

Where RN - fiN is displacement of the end point which is not fixed.

H is the potential:



(a) C1

8.25

8.2

8. 1S
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N N

H - “2 2 6b? +2 2 Mi (2.9.7)

2 a i=1 1 1

Where 31.nsiflth vector, ¢i is the i'th angle, and a is the

equilibrium length of each vector.

They solve for the 6b and “1 that minimize w, substitute them

1

into the H, and find the effective force constant of the system to be:

2 2

KRw B / a N (2.9.8)

aw here stands for the random walk.

This suggests the 1/N2 dependence of the elastic moduli for a

single 2D chain, clearly it will go to zero for long chain.

A.simtuu'argument can be used to study the chain made up of N

vectors in 3D space with dihedral angle forces in addition to the two

terms in the potential (2.9.7), which gives the behavior:

K ~ Y / a N

Y is the dihedral angle force constant, here we suppose that Y is

smaller than 8.

Therefore the elastic moduli should be very small when <r> - 22. We

may understand this in terms of constraint counting. There is one

constraint for bond stretching plus one constraint for angle bending

plus one constraint for dihedral angle changing per atom in the chain,

and this is equal to the number‘of degrees of freedom. The only



123

constraint which prohibits the system from relaxing to the zero energy

configuration is the boundary conditions.

We have actually done some computations on 30 random chains with

dihedral angle forces and found the elastic modulus to be very small

indeed. For 3D chains as short as N-20 will make the elastic modulus

less than 1 percent of the Y value. This result confirms the above

conjecture.

From above constraint counting we can also see that the N bond

lengths, N angles and N dihedral angles, these 3N variables can always

decide the whole structure of a 3D single chain made of N vectors. Any

form of inner chain interactions between any further neighbors will not

give rise to additional independent constraints. To make the chains

rigid in 30 networks the inter chain interactions are needed.

In the real polymeric glasses for <r> - 2 (Se for example), the

ielastic moduli are not zero. Figure 2.17 displays the result of elastic

modulus Cu" from sound velocity measurement. C1M of Se glasses is small

but not zero. This indicates that the inter chain interactions certainly

exist in the real glasses. These interactions may be due to the van der

Waals interactions.

Here we should also notice that this does not correspond to the 3D

bond percolation where the conductivity vanishes at about <r> - 1.5. The

difference is that we restrict the minimum coordination to be two and

do not allow dangling bonds or isolated sites. But for the bond

percolation problem we cut bonds at random with no restrictbon, so even

at <r> =- 1.5 on the average a long thin chain may still percolate to

make a nonzero contribution to the conductivity.
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Section 2.10 Conclusions

It is believed that covalent glasses can be divided into two

classes: those with high average coordination (amorphous solids) and

those with low average coordination (polymeric glasses). We give the

first conclusive evidence through this research that this is correct.

We have calculated the elastic properties of random networks with

different average coordinations <r>. Our results show that the elastic

moduli depend predominately on (r) and go to zero at <r> - 2.” when the

dihedral angle forces are not included.

We have also calculated the fraction of zero frequency modes for

random networks with different average coordinations. Our results show

that the fraction of zero frequency modes also depends predominately cu:

the average coordination and the results show a very good agreement with

constraint counting prediction.

The results of calculated elastic moduli and the fraction of zero

frequency modes suggest that there is a phase transition between two

classes of'covalent glasses. amorphous solids and the polymeric glasses

at a mean coordination close to 2.14, which is predicted by the

constraint counting argument.

The introduction of the dihedral angle forces which give additional

constraint to the random network washes out the transion at

<r> - 2.14. Interchain interactions are needed to stablize the random

network formed by isolated chains.



Apppendix A

Relaxation Process

We have used a local relaxation process to bring a network to a

minimum elastic energy state. We move only one site to a local minimum

of strain energy at a time with every other sites fixed. We do many

cycles to relax the system, here by one cycle we mean that every site

has been moved once. For a fairly rigid system as few as 50 cycles are

enough to bring the system to a minimum energy state. But for systems

with floppy regions, a few thousand cycles may not be enough to find the

minimum energy state. At this point we use an extrapolation technique to

save some relaxation steps (Appendix B).

The individual movement used to bring the given site to local

minimum is decided by following steps. First expand the potential,

keeping only up to quadratic terms. The energy can be written as

follows:

2

“(9.)” v0 + 2 ( 3" )oérm + 2 (—9-——Y-—-) arm 5r“ (3-1)
m m n o

m 3r 2 m,n argarl

 

Here a, B are the x, y, 2 directions, 2. is a given site, and we

take V -0.

o

The displacement needed to bring site 9. to a local minimum is

determined by the equation:

]25
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3 V m 3 V m n _
E(arm)°6rl+mzn( armarn)°6r9' 6r£=0 (82)

i ’ 2 2

3 V 32V n

( 3 rm )0 + E ( arm 3r“ )0 6 r1 : 0 (8-3)

2 2 2

( m ’ 19293 )

From these three equations ( m-1,2,3 ) we can solve for Grn ( n -

x,y,z ), then we take step

x + x + 6x

6x, 6y, 6z are solutions from equations ( B-3 ).

For potential (2.3.2), first and second derivatives are:

 

3 V _ 1 g 2 _ 2 m m

m ' 2 2 Z ( r21 d ) ’21 P21
3 r d i

2

__3_£ *." 1.2 m m
u d2 123 (rm1 r13 + 3 d ) ( r£J+ r21) Plipij

i>J

_.§§. *." 12‘“

u (12 izj ( r21 r31 + 3 d ) r31 Plipij
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2

3 V 2..E_ m n 2 _ 2

m n ' 2 2 Z [ 2 r21 r21 + 5 ( ”21 d ) P21]
Br Br d i

2 2

+ ;-E- 2 [(rn + rn )( rm rm ) + 26 (F - r d2)] P
u (121‘1 u 9.3 9.1 mm 9.1 9.3 3 9.1 9.3

i>J

_3__§_..

+ u d2 H2rm 13 P11 P23

j#2

For the potential (2.9.1), first and second derivatives are:
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A d2 i,J,k 12 kJ kJ 21 23 Jk
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m n 2 2 21 21 mn 21 21

Br Br d .
2 2

;‘_g_ m m n n . l 2
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Appendix B

Extrapolation of Elastic Energy Relaxation

Elastic energy relaxation is a very fast converging process for a

perfectly rigid system. But this converging is very slow for a system

with floppy inclusions when the mean coordination is very close to the

rigidity percolation threshold.

In order to save relaxation steps, we have studied the behavior of

elastic energy for a long term relaxation process.

We found the asymptotic form of elastic moduli near the final

convergent value can be written as:

- n
C - C + a b (B-H)

Where constant co is final value of elatic modulus C, n is the

number of large relaxation steps. By large relaxation step we usually

mean 50 relaxations per site. a > 0 , b > 1 , a, b are constant.

If N of these large relaxation steps are used at in relaxing a

system to the minimum energy state. Then by fitting the exponential form

(B-h) to last three steps, we can solve Co from Cn-2 , Cn-1’ and Cn

from: I

C C - C

C _ n n 2 n 1

o c - 2 cn_ + cn_

]29
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Co will only be an upper bound for the value of elastic modulus Ch

In effect, extrapolation is just a way to save some relaxation steps.

Table 2.2 gives a example where the extrapolated modulus can be compared

(x) fowith actual further relaxation steps. This data is taken from C11 r

Elm-0.2 and <r> - 2.u3.

Table 2.2 Extrapolation vs. Relaxation

Relaxation steps Before Relaxation Value After

2000 0.00558 0.00528

”000 0.00528 0.00513
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