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ABSTRACT

POLARON EFFECTS IN THE OPTICAL PROPERTIES

OF POLAR SEMI-CONDUCTORS

V"

by Robert Ji Heck

The optical absorption coefficient of a polar

semi-conductor is calculated for light energies comparable

to the width of the forbidden energy gap of the material

in an effort to determine some effects of the electron—

phonon interaction. It is eXpected that the effects will

be significant in polar materials because of the strength

of the interaction. A simplified version of the Kubo

Formula is used which reduces the problem to the calcula-

tion of the one-particle electron Green's function. A

perturbation approximation is made to determine this

function. The result is an absorption coefficient that

has anomalous structure occurring at an energy of one

phonon above the band edge and a "tail" region of states

to which electrons can be excited below the band edge.

An improvement is made on the perturbation eXpansion for

the Green's function which results in the appearance of

structure at energies of two phonons above the band edge.
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I. Introduction

The use of Green's function techniques for perform-

ing calculations of the preperties of many-body systems

is now almost standard. The Green's function formalism has

the advantage that it does not require finding the wave

functions of the system, which in themselves are rarely of

interest anyway.

The one-particle Green's function1’2’3’4’5 yields

information about quantities such as the free energy and

density of states of a system and the self-energies and life-

times of its quasi-particles, and the two-particle Green's

1,2,33435

, p information about transport properties asfunction

well as the ground state energy. In this paper we apply

Green's function techniques to the calculation of the inter-

band optical absorption coefficient of a polar semi-conducting

crystal for photon energies comparable to the band gap. This

problem is of interest because the interaction between electrons

and longitudinal optica1«phonons is significant in these

materials and might be expected to lead to observable anomalies

in the absorption Spectrum.



II. The System Hamiltonian

Associated with the optical-phonon modes in a polar

crystal is a dynamic field of dipoles with which the electrons

interact. A measure of the strength of this interaction is

the coupling constant

©(Zflé4(i _._‘_ Y.“— ”a.

1: 2J3) 659° 6:5‘)(fhmtbda) D

, where m is the free electron mass, mz is the effective mass

of a carrier in band I (In our investigation we are interested

in transitions from the valence band to the conduction band

so the subscript 5 will refer either to the conduction band,

£=c, or to the valence band, £=v.), e0° and es are the high fre-

quency and static dielectric constants reSpectively, and mo is

a phonon frequency. Values of the coupling constant for various

polar substances are shown below.

Table I

LiF 5.2 KCl 5.6 Cu20 2.5 PbS 2.5

NaF 6.3 KBr 5.7 MgO 2.3 InSb .014

NaCl 5.5 KI 4.6 ZnO .85 GaAs .06

NaBr 5.0 AgCl 1.7 CdS 1.2

NaI 4.8 AgBr 1.6 ZnS 1.3



The interaction energy between an electron and a di-

pole field is

> >

Hm.‘ ”f0” Dm'PW .

>

where D is the electric displacement vector of the electron

and P is the dipole moment per unit volume of the field.

From this expression we can see why it is the longitudinal

mode rather than a transverse one which interacts most

strongly with the electron: integration by parts gives

/0 Pd’rz—e/QE VP/V‘ 3

where D=eE=-eV @. But VP=O for a pure transverse mode.

The D(r) field of a system of electrons having the wave

function w(r') is.

+ 3 ’

C 9/0“) WI“)/ ,0”

> ' ‘1”! 0 ~ >

For longitudinal phonons vxP = 0 so that in this case P

may be written as the gradient of a scalar potential field

>

m(r), P = vn(r)/4w. Therefore

HM.: e, M? d'r’v.(9’(rgzr-/vj WW0»
477' Ir—r/



= - 6%” 43rd?“PM?“ WI“) WI“)

/ r47

=/a/3r’ )Vffl") WI”) 790’“) . (2-1)

The first step was an integration by parts; in the last

step we used the fact that

l

-v,3 773;,- CIN‘I‘OL/W' .

The dipole field is related to the longitudinal optical

phonons by

> = 1, 4.19.)“ Her

PM (2.37%)2 dE/P7/?!(bis +648 )’

where bk’bk respectively create and annihilate a phonon of

>

momentum k, and since 4vP = Wm,

”(Wm)"? ; 7t (

M: 5’7} (6.565):_:fl Q

where

 

We



Inserting the expression for m in equation (2.1) we obtain

the interaction term in the Frohlich Hamiltonian6

HM; 9776 w. J. <13!“ 9V2}? Wr)

(77?”if“2,3 He/ f

x (516%,: 5/. 8“")?
(2.2)

The total Frohlich Hamiltonian is

kinetic energy of electrons + kinetic energy of phonons

+ [WM [/09 51,0743, + Hm.

(2.3)

where V(r) is the periodic potential of the crystal lattice

when the ions or atomic cores are in their equilibrium pos-

itions. If we consider the system to have only one mobile

electron, the linear combinations of products of electron

wave functions with phonon wave functions which make up the

eigenfunctions of this system are said to describe "polarons"

The eigenstates (Bloch states) of the electrons for

the Hamiltonian without the interaction term (2.2) are

determined, of course, by the structure of the crystal. For



convenience we consider a simple structure like a cubic

crystal so that quantities like the conductivity will be a

constant times the unit tensor. This isotropy implies that

the surfaces of constant energy in k Space are Spherical.

We further assume that the electrons in the conduction and

valence bands have the energy dependence on k, the quasi-

momentum, shown in figure one, i.e., we assume parabolic dis-

persion curves with the minimum of the conduction band and

) 2 2

the maximum of the valence band at k = 0. So E(k) = $55-

2 2

and E(k) ='EEE— + A for valence and conduction electrons

c

respectively, where mv and mc are the band masses of the

electrons, and A is the forbidden energy gap width (note

that mv is negative).

But what are the energy levels of the interacting

system? If we assume H int. can be treated as'a perturba-

tion then the energy levels will be those of the phonons

plus the band electrons plus correction terms obtainable

from perturbation theory which are presumably small com-

pared to the first two terms. In addition the Hamiltonian

will not mix states of electrons from differentbands except

in very high orders of perturbation theory. So we can still

talk about bands, but of polarons not electrons, and the

density of energy states will resemble the non-interacting

density of states for electrons in having a forbidden gap.



However the band gap will be "fuzzed out" by the interaction,

and the density in the bands will be changed. In the calcula-

tion of Optical prOperties of the system, this difference

turns out to be important.

III. The Formula for Absorption

To perform the standard calculation for the absorp-

tion7 one takes the first order, time dependent perturbation

theory result8 for the probability of a harmonic external

potential of frequency‘m to cause a transition in the system

from the state J to the state m after a time t:

9 > r 2 I 1 __L .

/<m/A-7b/?)/ 43w (2/sz‘WN)

(t(wmé-w>)°‘ x
where hth = Em - E3, the energy difference between the

> .

upper and lower states A is the external light potential,

>

and p is the momentum Operator. To get the total rate one

 

multiplies the above by the probability that in thermal.

'equilibrium m is unoccupied and J is occupied, Nchn) - NF(EJ)

and sums over m and J. Instead of summing one could intro-

duce density of states functions and integrate. This would

be a difficult procedure in our case because we would have

to calculate the matrix elements and energy levels of the



interacting system. Instead we will use a more direct and

more exact formal procedure which will require us to find

only the one-particle Green's function of the interacting

system (but without the exciting light's potential in the

Hamiltonian). This formalism due to Kubo9 is described

below.

Our Specific goal is to calculate the interband absorp-

tion of light by a semi-conducting polar crystal having the

previously mentioned simple structure. The absorption

coefficient is defined by the equation I = Ioe'“x which

relates the intensity I at a distance x into the material

to the intensity Just inside the surface 10' Since the

absorbed light energy is being taken up by an increase in

the kinetic energy of the charge carriers it is not sur-

prising that the absorption is related to the in-phase part

of the conductivity; the relation is: ($747269, Re g-Igo

e is the real part of the dielectric constant which can be

related to the imaginary part of 0. So if we know 00») we

can find all the optical propertiesll.

The Kubo formula for conductivity is:

61-90%») = 470816.23; +#w/di/d’rd3r”



41(wt—le-l"+/e’-l") g ,> I

x 6 9%) (f 9.160,}? (ng} 9

(3.1)

where t = x - x ', N is the average electron density, 9(t)
O O

is a step function, < > means averaging over a grand canonical

Tre'p(H ' “N)o
ensemble i.e. (O) = and

Tre-R(H - UN)

 

>

I ’ (x) = .t’. x- f * — 7‘y :71 Z(V W») Va) Wx) WM}

2.

/m

)

Am Wm KW) ;

R(x) is the vector potential of the light.

The Kubo formula can be regarded as a consequence of

9, which relates generalthe fluctuation-dissipation theorem

susceptibilities to correlation functions of the related

physical response. In this case 0 is the susceptibility and

5(x) is the response. Actually the fluctuation-dissipation

theorem can be proved by a generalization of the following

derivation of Kubo's formula:



lO

"' >

One begins by calculating J = Ter, where o is the

12
density matrix , to first order in the external field,

using O = it [H + AH, o] where AH is the external field part

Of the Hamiltonian i.e. AH = - %-5 dx A(x) - jkx). The origin

of the two 3's in <F3(x)3(x')]> in the Kubo Formula is clear

at this stage.

It is important to mention that the 3(x) and 5(x')

Operators in the Kubo formula are Heisenberg Operators which

are developing in time under the full Hamiltonian Of the

system but without the externally applied field Of the exciting

light. It is then physically reasonable that <5Ix)3(x')>,

which is a measure Of the system's ability to sustain a

current without a driving field, should be related to the

conductivity.

net
The quantity I 9(t)<r31x), 3(x')]_> e dt can be

related to a two-particle Green's function as follows:

«Ark. I" ogk" V,> .

fed/(Eganfix’fl > 6”": c C o/z‘oz’rd’r’

.— '1- ‘- ' —.¢:(90V‘ 4:16;,“

" "($773): 43rd3r’dt ea) amte c
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x < { Ev; who)Wat, W9)Wx’21

- [View MAM $0M)Wxfl - [(774 WWW). W? 72‘ WW].

f [Mmza sum) W7x917j‘/’(XZ7}>

> (3.2)

We have neglected the terms containing A in the definition

>

of 3 since the Kubo formula only takes the first power Of

>

A into account. Also, using the long-wave length approxi-

ik'r

mation, we have replaced e by 1. We can do an inte-

gration by parts on each one Of the last three commutators

which makes it equal to the first. The quantity (3.2)

becomes

--e__at“L/a!r dr’a/r exam? WHW’KXMV,W)W)

We choose for our representation of the wave functions the

>

Bloch functions Mk £(x) Of the non-interacting Hamiltonian

1.2.3.4,5
(this gives the zero order Green's functions



12

a ver 8 m e orm .e. _
+y 1 pl f )1 Myrggakflfffl>917?” 121016?)

where a+ (a ) is an Operator in the second—quantized
k,£ 14,2

representation which creates (annihilates) an electron Of

>

momentum k in band E. Equation (3.2) then becomes,

)
>

«:57- fdtezt) i no: (whit) when)
777" hh,K2

.Jhflg

x (magnateaé‘ifcfi.m)l\/

“(16.91/39 =f ‘1 fig/(X) f2? 43X E ”‘<’“'I’°‘I"'lfi‘)‘3*rfz

The delta—function indicates that we are neglecting Umklapp

processes.

The quantity

+ + but

/6d) ([6113)den/:31, 0149/. akgogylye cit:K#203

can be Obtained by calculating the two-particle Green's

function
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Ms) =-‘-’<7‘<a,5) CWago)a (o3%)) .

where T is an operator which orders the a's and aI's from left

to right so that those with the latest time arguments are on

the left. Time-ordered functions like this one are the Green's

functions one calculates by the Matsubara methodl’s (where the

diagram technique is applicable) for imaginary times. It turns

out that these imaginary-time functions are periodic along the

imaginary axis with period i/TsiP, where T is now temperature,

so that

*‘r .

flaw»): J5. f 7%1‘) wahtalt 9 wn=@h+l)n’T ,

-'+
(K(t) is an Odd function). Then the function we ultimately need,

Kr’ is related to Main) by Kr(ia)n)=K (mn) for wn>0. So if we can

construct a function which is analytic in the upper half Of the

complex (ii-plane and which takes (on the values K(O)n) at the

points imn, we have found Kr(m). The above remarks apply to any

double-time functions defined analogously tO K and Kr’ e.g.,

consider

G0; to); am 3’3“”? [(226%) >Quail > dt‘
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I

and II,

fi(h,w,,_)= e‘“"’<7(94.ma;(a))>dr

~t
\~

then (Mk, icon )=b. (Ran) .

Now we have transformed the problem to the calculation

Of a two-particle Green's function, but we will go further

and reduce the two-particle function to a product of one—

particle functions by an approximation which is valid for our

13’1”. The reason for this step is that betterparticular system

techniques are available for calculating one-particle functions

than for two-particle functions. TO perform this reduction we

note first that transitions in which £1=£2 and/or £3=£4 refer

to intra-band transitions which we are not considering. Then

the diagrams for K(t) take the form

 

  

 

 
 

 

 
 

 

  

f I I 1

0 t +- 5
+ /"‘\ '

e— 4V 1 x I

knit ,. [731,3 - ..

I - ~ '1‘ on ’p q ‘

’0' s I s , Q ’l a \

1 I o \ L _1/ \ g ‘ It i

' l

,' t

+ ,- ,. + ’,- I ,.~ + \

a c I ‘. ll ‘ .

4 _4_ ‘. I 1 11 L_i ‘

V \‘ ,

+ - fl- .-

where the solid lines are electron propagators, the dotted

lines are phonon propagators, and the vertices are interact-
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ions in which R and Z are conserved, i.e.

3 ,//

‘ k)-1 ’///3

 

Also the propagators are diagonal in k and fl i.e.

<T< cable) a,“#0)» ,= 0. (Apt) J 1., i.‘ 59.1,

so zl=£47é£2=£3. Then the diagrams show an electron in one band

going from O to t and a second electron in the other band gO-

ing from t to 0, or equivalently, a hole in this band going

from O to t. Both electrons have interactions with themselves

and each other via the phonons. Consider the simplest process

in which the two electrons interact with each other i.e. one

in which they exchange a single phonon as denoted by this

diagram:

 

< v

The "asymptotic theorem" due to Bonch-Bruevich

 

13,14 states

that in the set Of all diagrams which must be summed to find

the two-particle Green's function, the sum of those diagrams,

such as the above, which contain phonon propagators connect-

ing the propagators for the two distinct electrons, is
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negligible if the band-gap energy is much greater than the

energy Of a phonon, A>nbo. The proof Of the theorem apparent-

ly depends on showing that matrix elements of interactions

such as the one taking place in our simple diagram are small.

According to the Feynman rulesl’5 for evaluating this dia-

gram, the following factor enters into the amplitude for

this process:

2 d”: dfi + r. f a kl (h‘HG.)

Ir. 91!”) “13¢ 91v”) gift} 1:!“

t“ +

-~ /Win 82:9» it!» a, we
[’7‘er

(We have chosen the electron at r1 to be in the conduction

band and the electron at r2 to be in the valence band).

Due to the fact that electrons in the valence band are pre—

dominantly closer to the ions or atomic cores than electrons

in the conduction hand, there may be some basis for saying

this integral is smaller than one like

\///22;:f77 zigkéig) zz:;}<>ségl£;:2’/¢<
7/‘ril7“2%dH7C1%rl

which is a factor in a diagram such as
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since there should be_more overlap Of the functions in the

integrand Of the latter expression. However, I know Of no con-

vincing general proof Of the inequality, so that the "asymptotic

theorem" may not really be a theorem, although I expect it to

be valid in many cases and as we shall see later, it leads to

a reasonable result. If we follow Bonch-Bruevich and assume

the "asymptotic theorem",.we see that in the set Of diagrams

for K0») we can neglect those which connect the two solid

electron propagator lines with a dotted phonon propagator

line. Then K(md becomes the Green's function for independent

propagation Of an electron in band £1 from O to t and an

electron in band £2 from t to O, i.e. K(t)"’>b‘ (k1,£1,t)

{fl (k1,£2,-t) or

t .

m.) = i e‘“”247 (A 2.7:) /J (t .12. :t) «if
/T

.. L Lao-r: o’th-’ "t
- a e " 7“; g3<t,e,A/)0/ne.,w.oc 6"” st

)1



l8

3 T )zy/Pogxiwn’) @(2511,w,{’) J(%*°Jn"“’n”)
ngn”

: 7—3, fl(k’[/’wfl’) &(&)13/ Mir-#0)“)

To do this summation we take advantage of the residue theorem

in the theory of complex variables, using the fact that the

function 1/eRm'+l has singularities at wfl=(2n+l)in and residues

at these points equal to l/TEO. To apply this method we must

know what the continuation Of )3. is in the complex «3' space.

(As explained already for double-time Green's functions, there

exists a function Gr(a)) such that Gr(1wn)=:b (can), mn>0 where

Gr (f) “*3 (szs),s”?o>]_> 5W) .

Similarly there exists a function Ga(w) such that Ga(imn)=

)3 (an), mn>0, where

6.6:) = 2'. < ELI/(t), Wool) 8(—t) .

Gr(a)) is analytic in the upper half-plane; Ga(cn) is analytic

in the lower half-plane; so the summation becomes:
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T; b ([0. ,fl/lwnyflOQ/LIWNI‘UM)

-—> [Gr/“(Apnea 6%(t,,/z,ni;n1; dw’

65%:

where the integration is over this contour:

 

 

 

 r Mod—=0

\ + 7 W),
fi

U
The contour avoids all the singularities of the integrand

:‘Lwh

except those at w=(2n+l)imT (there are other singularities

since the first function in the integrand changes from Gr to

Ga at the line Im mfl=0, and the second function in the inte—

grand changes from Gr to Ga at the line Im.wfl=-iwh); so the

residue theorem assures us that the integral equals the sum-

mation. Since the contributions to the integral associated

with the arcs at infinity are zero, the four horiaontal lines

are the only part Of the contour that require consideration.



2O

, 4e

K(W)~ fdw’ Gr (higw’u'wn)

‘°‘ 6"“.1/

X [Gr(él)lll WI) " GA (knll; “9].!- QL(b'J (U waxed")

€fl(w’—xlwn)+’

X [Gr(k.,12,w’)- Ga (6%., 601)]; :

fifth/{Gr (leuizingiwh) tame-rUQ/Uw’j

"PO emu)!

+1

+ Ga(kul,)w’v£wn) sow 6;.(12UZi/w’)

9’5“»),- £Nn)+/

4(-

(We have used the fact that Gr(‘°)=Ga(‘°) which follows from the

definitions of Gr(t) and Ga(t).) Since

/

“(w/'véwn) e oo’-.C(2n+’)“ '. 13°"

'7 C < " aC’

k (W) -" Q/dw/{Q—r—Qfiiiz.’ WiiWn> Q'M Gk (kn/UN)

°° 636011;
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f

+ Ca (h,l,,w{-£wn) flm Grféuzzl 0),) j 0

6%(wl-ZWn)+I

Then since Im Kr(imn)=1m K(mn) we find:

«D’mkflufi = 2/ {flmGr(b,l,,t«/j 'QmGrap'll’zww’)

I 9M. Gr(h,l,)w4%0r “Puke/j} ’

Bw’

6 H

and finally letting (n+(D'--->a)' in the first term we Obtain:

M Kf‘ad) .':' afz’w/ 9m Gr(’?u11)w9 J'WuG‘f‘ (kill!) “(.09

Y (”Hui-afi-‘nflwlfl ’

where nf (60' )=1/e”'+l .
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Thus the Kubo Formula (3.1) becomes

«(do -= 4.1.7, Pa and) = 91%" d3/e 015 2

66¢ ce 1 firm .efc v

1.13%

Nz(i,l.13na(/$,2,¢J Jim 6,031. E-w)(n.(E-w)—n.(£))

33310:,41‘3; fd’kdEgfim Gr(/;,ClE-w)

Rw€€lfifrm

x 41m. GJLME) + MGJEEW) 41% 6,0299}

( mas—w) 47,452) .

The first term will give practically no contribution because

Im Gr(fi,c,E-m) is peaked at a distance 2A—u from Im Gr(1%,v,E),

as we will see later when we get an explicit expression for

Gr'
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At this time we make the replacement V1VJ"'>1/3

x81 I<l|vill'>lellv(k)|2, which is valid for a cubic crystal.

Also we assume that v(k) is slowly varying with k so we can

take it_out of the integrand. Then we obtain the final form

of the expression for a:

an); .-..— ge‘/Uct’)/" oz’le d5 .0... Grays-i9

cebwmw

XJ’M (#0295) (he (E'“)‘nF (5))

(3-4)

In the limit as the electron-lattice interaction goes to zero,

AMGJEJH 72'3” {(E-éié: —a at; +4.) ,

and the eXpression becomes the one which is well-known for

inter-band absorptionls: a(m)~(hm~A)l/2. Less trivially the

formula for a begins to look like the one described earlier as

the "standard approach" if one Observes that Im Gr(l,k.m) is

the density of states for a given k and m.in band Z. In that

formulation one has a product of a squared matrix element be-

tween initial and final states, the density of states at the

initial state, the density of states at the final state, and

the thermal probability that the initial state is occupied and

the final state is unoccupied. Then one sums this quantity over



24

all initial and final states€o is the density of states):

3

«a.» “Z/dlf; 0/31, 0/5.- 45; H2P(k‘.)EA:) 200v. 5X77, (OW/(0)

Conservation of energy and momentum causes the above to re-

duce to:

and) «fa/’1» 0/5 M‘POQE) P(l;,E-w)(>7,=(£)- Fm]

which agrees with our final form of the Kubo Formula after the

substitution of p(§,E) for Im Gr(fi,E). It is shown in text-

books On Green's functionsl’e’3 that Im Gr is indeed the den»

sity of states of the normal modes of an interacting system.

IV. The One-Particle Green's Function

The main task left is to calculate the one—particle

Green's function. It is the sum of all the connected selfe

energy diagramsl’S; it is impossible to sum all the diagrams,

but it is possible to sum this subset:

  

> + ' ' >

  

+ 00......
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where the solid lines are electron propagators, dotted lines

are phonon propagators, and the vertices are interactions

as in the two particle diagrams. To generate this subset one

calculates the self energy, 2(kyw) corresponding to this

diagram:

 

v

and inserts it into the Dyson' equation

laminar i/A'Mcrzfl’vww) >

where?) o is the free electron propagator Fax—ELF! (k I) + ,1

O ’ '

 

and Eo(k,£) is the energy Of a free electron in the lth band.

The Dyson equation can be written alternatively as

fl : Ao+b92b , which can be solved for a given 21

in a perturbation sense by iteration, giving:

fi‘rfla‘fflojnod’hoffioz 230+" '3

which explains how our subset is generated by Dyson's equa-

tion. According to the Feynman rules

2(1th =<£_%T #3 Quiz. _ . . ,.

’w") qu‘tc‘ 4;. 7723’- ’4””"“’")D “9“") .
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if we let temperature be low,

T. “Mfg/w Emmi)»:cfi; fldw’

W M

§(__J___ _ _I__ 2

1 54.342? w’réwo .

AAWJn’w) *JP‘Q’I- Achi-M

:Zth,

gg"integration:
 

The poles of the integrand are at w’: 1'in

and ’

'10“th +4.; IP-M" +4231c—Mu)
Zrng

The last pole is in upper (lower) half-plane if 2 = c(v),

whichever is the case we close the contour to include only

one pole as in the diagram.

 
 

 

 

Ar—V

‘Cdo

/ M. ‘ €164” tifigliklijkiu

.— 4 . a ‘Lflwn +LK19-klz’c'a

'A‘UQ$ K 2WW

=<3
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Z ’ " -((8.1,6A943“<EBOUO qféfi> / ‘

3- "E; , _ 1 ’ ’ 7- '777' e (H ¢tM+Awf§§anHflJLC+M

IL

(upper sign for 2:0, lower for £=v). Introducing spherical

coordinates and letting the polar axis lie along the p vector

we Obtain,

Z=§:3_Jo‘/:clkc(6.oén9

‘I1T is" .c' 1: wk 1 A- w. “A M... + or}: (193. 13-24% m9)
ZJML

 

“

 

= 6.22.2. as fee a sass-n4aM—t‘cmzxfi/etft’
We #1: to 451m: two-451,cm{tgm)(1o,gjfpk)j

erZZfEO’lZFZ u/KEZé!égl/«CJhthEX1obf21cfln=+llfegafigxafiflur

‘7‘17’6- fi' 6’ o I? I 4'. tat/hTde‘AJ‘CICI'M'fiéthf‘k)

~f“2(_/g A A-(fibz/
o ’2 ,4-[7?p.i£fl
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’4 = 3% (Atwnlhwo ‘AJ.€,C+M)

Since the integrand is Odd, the above integral equals

/e(.ék/ A—(‘P+k)/“
fi
x

\
8

a
l
l
‘

\
s

a
h
.

7%
it

52
.5
;
T

h
t

\ «
F
I
R
?

+ g,M +(7'+1’)/‘ AM Mr-U/ - 4W3 “(W0

 

. .\/7x+’P

vat—40

o . "JA— 4"?

_\Jz.n1y

(position of poles in complex k-plane) 
If we close the contour in the upper plane the first and

third terms in the above integrand have singularities that

must be avoided. For the first term the contour is:
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   n“ <
-Q-----.o---{/

t.‘

0

We always aVOid the k = O pole because our derivation Of the

interaction Hamiltonian implicitly assumed that the summation

> >

over k did not include k = G. Since the integrand vanishes

on the arc and is analytic inside the contour the first term

equals:

M =6->c> W

M

x Afiff‘g‘w + are
>06 ’7 ‘Hffl—‘fp o

r . mJ

Moor/M) +1». ‘2 Mega)“

Fe Wan-70 9" m eéfifi-P

where Miisbthekkeyhhole—like part Of the above contour.

.c' {oi—77')
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The last integral has a uniformly continuous integrand so we

can exchange the order Of the integration and taking the limit

ase—> O. The only part that may give trouble is

Meet) 6,0.“68‘9 seams-w €£hé€w

 

V3'7°+€e‘9 \IX-p

But .amm 6M:Oso the last integral is zero. The first

6-?0

two integrals add up to

52f 6”?de 2 a save/0

° Pecfl+fl1o O “Pin/74'"?

ranch/h—M‘Ur-2°//,°° warm/M40/

+11TLzéw/t/ZHD/

A similar calculation shows that the singularity at

JA'+ «9 in the third term Of 2 gives

’(‘PVfiJQNZWW +QTI’4'..@.\ NIH?!) ;
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SO

5We< wasMei—£1)
The last term approaches the log of unity, which is zero,

so that

2 (70,1, («t/h)’ A. C__:__Nom2 fin/(:£¥(Afiwi+twp-A62
(+14)) 31$

at“?7° (2W(Ltwn+1wo‘ArSIL+M)YZ-I-
P

Letiel-JoMI-4.7% , then

21335

”(1):!1w“): VJNvfifP“A Skull. ’Z(7;.fi,wn)ZYHL

and

C (£1w)-t/Xw-L19-AJQC+M-L(1‘1,-iw)

12Yfl4

forwin the upper half complexw—plane. Note that Gr(l'.ldn):)j(wh)

as required.
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V. The Absorption Curve

At low temperatures the factor Nf(E4&))-Nf(E) in the

Kubo Formula equals unity'ii'ku)is of the order of the band-

gap. The Kubo Formula for the absorption (3.4) is now,

«(w/ -= eel/Um/z'l/fl‘ d? ész

C6"2mw

l

A-kw-ggv +M +1.:’93h,®n;'§"£=(E-m+twom))z+£

.
I
l
m
i
n

.

 

2E; n ‘”§-45

"I

2'{z-‘(Ech‘A'f“)1+

( ., )"2~£

‘(5.1)

We have gone to Spherical coordinates and integrated over

 

 

9'1 [/15 ‘r‘zléz- A'+M. +41%? 1%

 

the angles. This merely introduced a factor of 4Tr,since

the integrand did not depend on the angles. If E>Rw-KWsM

the log in the first term in d has the form

gm ia+b/
’

LCI- £>

 
where a,b are real.
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f

&/ 1:25:33] : 2w(a3'+ b1) +LW'a/b- kph-g)

11326-075) -= nib/“"04 .

Then the first factor in a( is,

9m |

/E hW+4€‘t—:é1—9~?vt,taw|((2m"(E-(-Fw+tu-B+M))J5)

2m, 1% i

The 1L6 factoriis there because Gr is the analytic continuation

 

cfifllb irnthe upper half of the complexcu —plane. Using the fact i

that I

-= P"' +¢TTJ(X)

6+0 X+k5

where P means Cauchy principal value we find the above factor

is

116 (Em- 6..”1e 4%? MY3.1%:FwMWo-I-M»
va k

By a similar analysis we find that the second factor becomes
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17' JG?ILhz-A+%‘?ck “WK“;-‘?<<E’1\wo-A+M))1)).
ZWH,  

when E <'A+’Rwo-M

So

[db 4E ear“ Gr(|:a,V)E-hw)Jm GAEC, E)

 

tad-Xmas

~77 JAJE kzfim ‘

a 5-4(0-L“?«33M3MP--’an+wo+MD‘+|e

M,

 

 

x J (Efilly-A4033 QW‘((—1%(E‘pwo'A+UDg-))
‘ k T

ZYVN

A-FRM:

+ WI dkdf k c5(E104-t}--9____31:1kHfl‘l—WE1mm+M))L))

509400 k

x 0%?-t:§L-A+M-13ct tam [<6 2%(E‘J—woA-m»L2» '
2m;
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HT 5(PM» 1:53: flit-9.33 542K '1$”(E-1\w+1m+m))

2m k T

“Owl

91))

 

E- KJz-A+M+Lc¢;~_:fln‘Nmfl{-5 tapo-A+M))"-+k L

~ )‘i-H

The first term is zero unless

twfiw.‘u>4+t_‘_h‘—M+g.:'¢_‘e"ta.&m( Z—Vflgfiwna-EWU

i—WM ‘2

The second term is zero unless

W. 21% - ' .5mmMAi—fxw >licu+13mv «+11%;tom(Qfiw—F )))

:7R0J-R&Ub<AA.

and

I

 

A+Awo-M> £12“ +A-M Zita/«((‘QWAWOT5W»)

2"": Ire

;>'hflkr‘kfiuo‘14. .

The third term is zero unless

”>300 +2.15M44 33%}- tam< zmv< kw‘E‘KaJo 74))?

V
T
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>A+1Rw°"M .

The above restrictions determine the k limits after the E

integration is done, however, it is necessary to simplify

the above expressions to determine these limits so we will

neglect the terms which are small because they contain gV

and go. This causes a small error in the determination of

the ranges over which the three terms in the eXpression for

the absorption are non—zero. The integral becomes

“Malta”

17" @219 Jfli’f-fiA-tw-av-aggfififlngj

la
27m,

(1,37tw-A—Xwovz

2mg

- 13% &m(h(2-0.3 (kw"We51/2)37 )

Ia

(-2_Yl"V( t w 1V1: 010))»:

+ CUQ A?" x

2%(tw-A-twofi‘a—

L
?
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2m 1m u )L k
 

 

 

+iafg‘x L/(zfl‘(kw+52_‘12:—twe—A));:+/e‘
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Q //

(Z-M‘(}§w-A- half)

db k$m I 2 ‘L 1';

+ W/R‘DM
Jaw -A-’a_lg“3%:Lnggnfzmv(t%+%:));7+
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+ Qm I

g +Atwig?+~ vino,“ (2%«fl+AFed-+11%» 2+Ie+

2. ( ,. We

I.

m
 

 

+kflgj £<qjthwovv:)|)/2+k

Q ~ )‘a-ue

 

(5-2)

To perform these integrals we need to make use of the follow-

ng’ J<€OOFJTd/dx
) where {0(0) : 0 .

Also the last two integrands can be rationalized. In the

C; (X’Xo)

denominator of each we will then have the sum of the squares

of the real part of the denominator and the imaginary part.

The former is much greater than the latter for all values

of k except where it goes to zero at

le:: (74%%:( F§%é:4.£3.7RL~L+¢§0J¢>)J3-

Neglecting the smaller term will then cause unphysical be-

havior when the values ci'a)are such that this value of k

is in the range of integration of k. This happens at

Kw = A and kw: 4“ MLvnm‘ “do '
C

I
I
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These integrals will then have the form:

 

dx x A/(Aw’)+x I ; -_'_ nah/{mmk‘m
% (A+6><‘)"=——-x 3‘ (mar-fix]

(Ck+D)"- (KM-D

 

 

 

 

 

+8 W! C‘ I W'%é«"-”;(

“8D‘M) M (90‘A/B)/ (WA/:3“)

I

—-A-' _._L_ 7W «an
'7» ‘/ ——-— I

B 2 ("'13) z (WA/3W ‘

Considering the first term of (5.2) again, we need to know

the zero of the function in the argument. To find it approx-

imately, we expand the tan.1 terms around

‘2‘: (Whine. “WNWa s
which is the zero of the algebraic part of the argument, and

take only the first term. With these approximations, which

take advantage of the smallness of gV and go, we can evaluate

all the integrals and get the absorption explicitly, but first

we examine the form of Im Gr to see what the analysis says about

"
Q
l
fl
'
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the density of states. Only the delta-function term is non-zero

below E=A+ two . If we neglect the tan":L terms, we would

have the density of states of the free particle,

d( E“ ”Sam 'A 0(1,C+M)

and we would have reached the familiar result for the absorption

that «~(tUJ‘A)I/a' 3,5

This tells us there are no states below E=A ford/ac and no ‘~—«

absorption untilthA, both of which we knew. But the tan-1

terms cause this edge to have a tail i.e. states below the edge, “

which is the fuzzing out we eXpected. As we shall see later,

this allows absorption at energies less than fiW—‘T—‘A .

At kw:A+T\UJO the other two terms in the expression for the

absorption become non-zero. This is the energy at which real

phonon emission is possible. Below this energy only virtual

phonon states exist so the quasi-particle (dressed electron)

is stable; above this energy the quasi—particle can decay,

so that its lifetime is finite. In Green's function analysis

this finite lifetime is associated with a complex self-

energy which is Just what appeared in our analysis, i.e. 2

went from a real to an imaginary quantity at Rwi'A-FRWO.

The reason something similar to this does not occur at multiple

phonon emission energies, e.g.Fw3A-i-QIWD, is that the dia-

grams we summed only contained one phonon intermediate states.

Carrying out the integrations one obtains forCX I
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+2 3.21”. pm"(PM WMVW‘AFKMW'
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(1 WE.” AW “ MM“ )

 

(5-3)

when 13w.) < 13+“ (dc

As stated this is real for values less than kw=A because

the tan"1 factors are positive and real quantities for AuKA.

2two+a>tw>kwo+A,

4
“

,
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‘+ ( Sla) (5-4)

VI. A Two—Phonon Diagram Correction

Our previous results for the inter-band absorption have

been derived using an approximation in which processes having

more than one phonon "dressing" the electron at one time are

not included. These processes should affect the self-energy

of the polaron and show structure at multiples of phonon energies

above the band-gdge because of the possibility of real multiple

phonon emission at those energies. To investigate the way

multiple phonon processes affect the absorption calculation

and results we will calculate the Green's function for a two-

phonon process as an example. The process correSponds to the

following diagram:



According to the Feynman rules, the self-energy corresponding

to this diagram is

25:: gilt3’fJAO’L?C!:fK¢Xhh£:k01. CU»(200124@;¢qv++QJO‘.TU”4qu -

(2") mm»72/ (zm‘fi‘ 4.JL.<-+M)
/ 2W

X C(wo+L(W/’W3-) 4— wo-ri-(wrwz

Lth‘ mt—AJQIC'fM

2-“

 

 

The poles in the complex baa-plane are at flak-fa), and

_ _l_ I ' 1. 1.. .

" 1:“th ‘AmV-A J“)
The last pole is in the lower half plane for i=0 and the upper

half plane for £=v. If we close the contour in the upper half

plane for £=c and in the lower for £=v, the result of the

integration is:

3 3 —-—'——-— + --’-—-' 1,

Z N dpdfa.dW, (W0+L(W‘Uq) WO‘MW‘M) 27,200

lr’F/‘L/f f/16"“)! UL1MC+M)(x‘02,”.+ x0)!" EFL“.

2MC
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(upper sign is for i=0, lower for £=v). The poles in thegh -

o __ . o 1 '1. '

plane are at (M: (Hf-4WD 'L' (4- okwo‘~k_Pa—«Ac5£.<+lu)
’ tfi ‘2vnA ,

. 1. 'L
.

HEC— 4* fi/zmc-LA 51,C44.M) .

The last two poles are in the lower half (~a-plane if £=c,

and the upper for E=v. Once again we close the contour in the

upper half-plane for E=c, and the lower half-plane for £=v.

The result of the Q5 integration is:

2 ~W {@3123}

170—- mem‘ (ztw:two-§§A;2,<m)‘x

 

 

X (l twatwndw-i‘flkmyz:Jim +M)

Going over to spherical coordinates and taking the polar axis

> >

to lie along thegpfdirection for the pgintegration and along

>

p for the pl integration we see that the above becomes!

2 ~am; 791722,?dflm <9,Metc/9’ 49...

(fitiarfimeom‘whmw9») X
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The p2 integration has the form

“1"X)</36Jén/’?1‘x

o (IE-(X1)

It is even in x so we can write it as:

 

-51} J 'dx x(&lX+fiI-flmlx’9/)

we (x-fBZXXNEZ)
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The integrand vanishes at infinity sufficiently fast so that

the integral along an are at infinity gives no contribution,

hence the integral equals the contour integral

 

“'ch dx x£&1x+wI-m1x—fi()

A g‘fi/cxx'Cfl—k) I

whereA is

The pole enclosed is at X=(B/C)l/2, so the value of the integral

is

.5; (magma-wane!)

Thus

.0

2 ~ #Swo‘m‘g a“

o 379%"
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This integrand is also even so it is of the form

5L? fix_(En/A+Xl-,Zn/4-!/)(Cw/f+)</'lm/T‘XD .

-9. WEB/c);

Here the poles are at x=fA, f p, f(B/C)l/2. We use the

 

following contour to avoid all singularities except the one

at x=(B/C)l/22
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Since the integral along the semi-circular part of the contour

 

is zero, the only difference between the integral over this

contour and the integral from-go to go is the key-hole-like

part that avoids the branch out of the log function, so we

must subtract its contribution.
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The last term goes to zero asé"0 ,L and the first two

add
up

to:
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The last four integrals look deceptively simple, however,

there appears to be no anti-derivative involving only ele-

mentary functions for this type of integral. What we can do

is to expand ln(p+x) through the linear term in p; then we

can integrate, but our answer is good only for small p

'(the polaron momentum). The integralsbbeommei

3.11 .. o. d9
I ((A’HCA'V'é/c‘”) (AfiANE-fl)

=940(a€w/A--)P Ian—[A Vac:-PI+IMML/MAH/EPl)H:

\/—>2_ Vfiit.

= 91(AA’CM/A-VE/chfiw4fln/Mfad)

J3:
So the total contribution from the key-hole part of the

contour is:

I, “g“ gnu 47:3,:

m new sac) #2gm
6" 79.. 3,6



+%G%,4AIA«IA‘=B/cl] ‘

Them

5%; cmCw:+x/—/:4/A-xl)(Cgl’/a+xlwen/7m!)
 

  

    

w (“EB/cf.

=93" L/A+__/_3é
8%... [AW 111—52 fifljggc

wAflefi -

)A'V'Br 30fix: PA/E’fi [(754J

   

2m¢
A"(—kffiiw IIIND‘A6£)Q+M))P
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I3: (ttwo“tw+A 6.0,( 4M) ’C'fi Z): .

ZMJ

Consider the term

~

 

MA+_JE/C\_1M(:§’“(tw:ntwo-A5e,¢+u))i+

A‘fir— ( II )%—+

+(M3(4-Mo‘tx (41+A5%C+M))/1’/

"( I/ )4, 9

we have a situation here similar to that which we found in

the study of the one-phonon diagrams when kWZA-k-‘ROOO'M

i.e. the log function causes 2 to become complex above

and real below that value.-This indicates we have sucessfully

taken account of the possibility of double phonon emission

by the inclusion of our two-phonon diagram.
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VII. Conclusion

What do the previously described calculations signify?

Let us review the principal assumptions which went into the

calculations we have described and the results to which they

led.

It was assumed that the only interaction taking place

in the system was between electrons and longitudinal Optical-

phonons and that the interaction was weak enough so that a

perturbation calculation was possible. This means we neglected

the effects of impurities, otherttypeSprophonpnsnoand.fihe

coloumb interaction between electrons.

It was found that the absorption curve near the absorp-

tion edge has a parabolic component (kw-AV; (as is the

case in a simple independent electron band model) with some

complicated additive corrections which have the following

characteristics. Below the band edge we find a tail region

of absorption,;equation (5.3), like an Urbach taill6. At

energies of one and two phonons above the edge we find there

should be an onset of structure, equations (5.4) and (6.1),

such that the absorption curve has discontinuous derivatives

correSponding to absorption due to creation of phonons. A

calculation of the size of the effect gives a magnitude in
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the neighborhood of .01 inverse centimeters for a material

like InSb at an energy of A+gtw°. This is near the limits

of resolution, although at that energy the parabolic part has

a magnitude of 2 inverse centimeters. The physical arguments

presented make these features appear plausible, and the set

of one phonon diagrams should give us a very accurate descrip-

tion of the structure betweenwt‘uoand A+1fiw°since we have

included every process that could give an imaginary Z in this

range of energies.

There are reports in the literature of experimental

findings that support our results. Structure has been found

at longitudinal Optical phonon energy intervals above the

17’18 and radiativeband edge energy in photoconductivity

recombinationlgemeasuremeats. Such structure has also been

2

reported in actual absorption spectra by Ascarelli O and

Larsen and Johnson2l. The former found it in AgBr and the

latter in InSb.
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Figure One The Band-Scheme
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