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ABSTRACT

POLARON EFFECTS IN THE OPTICAL PROPERTIES
OF POLAR SEMI-CONDUCTORS

by Robert J. Heck

The optical absorption coefficient of a polar
semi-conductor is calculated for light energies comparable
to the width of the forbldden energy gap of the material
in an effort to determine some effects of the electron-
phonon interaction. It 1s expected that the effects will
be significant in polar materials because of the strength
of the interaction. A simplified version of the Kubo
Formula is used which reduces the problem to the calcula-
tion of the one-particle electron Green's function. A
perturbation approximation is made to determine this
function. The result is an absorption coefficient that
has anomalous structure occurring ;t an energy of one
phonon above the band edge and a "tail" region of states
to which electrons can be exclted below the band edge.

An improvement is made on the perturbation expansion for
the Green's function which results in the appearance of

structure at energies of two phonons above the band edge.
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I. Introduction

The use of Green's function techniques for perform-
ing calculations of the properties of many-body systems
is now almost standard. The Green's function formalism has
the advantage that i1t does not require finding the wave
functions of the system, which in themselves are rarely of
interest anyway.

The one-particle Green's function1’2’3’4’5 yields
information about quantities such as the free energy and
density of states of a system and the self-energies and life-

times of its quasi-particles, and the two-particle Green's
1,2,3,4,5

function,

information about transport properties as

well as the ground state energy. In this paper we apply

Green's function techniques to the calculation of the inter-
band optical absorption coefficlient of a polar semli-conducting
crystal for photon energies comparable to the band gap. This
problem 1s of interest because the interaction between electrons
and longitudinal optical«phonons 1s significant in these

materials and might be expected to lead to observable anomalies

in the absorption spectrum.



II. The System Hamiltonian

Assoclated with the optical«~phonon modes in a polar
crystal is a dynamic field of dipoles with which the electrons
interact. A measure of the strength of this interaction is

the coupling constant

¢, (7_’1';-%(_'_ Ly m &
R 217() € oo 65)(WL¢L00) ’
» where m 1s the free electron mass, my is the effective mass
of a carrier in band £ (In our investigation we are interested
in transitions from the valence band to the conduction band
80 the subscript £ will refer either to the conduction band,

f=c, or to the valence band, #=v.), €_ and €, are the high fre-

s
quency and static dielectric constants respectively, and @ is
a phonon frequency. Values of the coupling constant for various

polar substances are shown below.

Table I
LiF 5.2 KC1 5.6 Cu20 2.5 PbS 2.5
NaF 6.3 KBr 5.7 Mg0 2.3 InSb .01k
NaCl 5.5 KI 4.6 Zn0 .85 GaAs .06
NaBr 5.0 AgCl 1.7 cdas 1.2
Nal 4.8 AgBr 1.6 ZnsS 1.3



The interaction energy between an electron and a di-

pole field is
> >
Hut, = = J&r By
>

where D is the electric displacement vector of the electron
and ; is the dipole moment per unit volume of the field.
From this expression we can see why 1t is the longitudinal
mode rather than a transverse one which interacts most

strongly with the electron: integration by parts gives

JB-Barz-c [ vpar

> > >
where D=€E=-¢V @ . But v:P=0 for a pure transverse mode.

The D(r) field of a system of electrons having the wave

function #(r') is

+ 3p’/

-V [e Wiy 4T

N "l"l ) >

For longitudinal phonons vxP == O so that in this case P

may be written as the gradient of a scalar potential field

>
m(r), P = vn(r)/4r. Therefore

Hit. = €, od’r d'r’ V,(W_z_%’_r’ (o ) » V% Prr)
Yr | P-F
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The first step was an integration by parts; 1n the last
step we used the fact that

J
=V} T T S (rryuT

The dipole field is related to the longitudinal optical

phonons by
2 Yy N oy X
Pr) =(1\'_ )52 ( bke +b4 € )
LMY uh T //el s
where b:’bk respectively create and annihilate a phonon of

>
momentum k, and since 4P = v,




Inserting the expression for ® in equation (2.1) we obtain

the interactlon term in the Frohlich Hamiltonian6

His. = gre/busYar < L / & Wiry Yo
pre Z,e kel prr

« (b * " bué M?

(2.2)

The total Frohlich Hamlltonian is

kinetic energy of electrons + kinetic energy of phonons

* f Wir) ViR Y o3 + Hint.

(2.3)

where V(r) is the periodic potential of the crystal lattice
when the lons or atomic cores are in theilr equilibrium pos-
itions. If we consider the system to have only one moblle
electron, the linear combinations of products of electron
wave functions with phonon wave functions which make up the
elgenfunctions of this system are said to describe '"polarons".

The eigenstates (Bloch states) of the electrons for
the Hamiltonian without the interaction term (2.2) are

determined, of course, by the structure of the crystal. For



convenlence we conslider a simple structure like a cubic
crystal so that quantitles like the conductivity will be a
constant times the unit tensor. This isotropy implies that
the surfaces of constant energy in ; space are spherical.
We further assume that the electrons in the conduction and
valence bands have the energy dependence on ;, the quasi-

momentum, shown in figure one, 1.e., we assume parabolic dis-

persion curves with the minimum of the conduction band and

> 2,2
the maximum of the valence band at k = 0. So E(k) = gﬁs—

2,2
and E(k) = gﬁﬁ_ + A for valence and conduction electrons
c

respectively, where m, and m, are the band masses of the
electrons, and A is the forbidden energy gap width (note
that m 1s negative).

But what are the energy levels of the interacting
system? If we assume H int. can be treated as'a perturba-
tion then the energy levels will be those of the phonons
plus the band electrons plus correction terms obtainable
from perturbation theory which are presumably small com-
pared to the first two terms. In addition the Hamiltonian
will not mix states of electrons from different bands except
in very high orders of perturbation theory. So we can still
talk about bands, but of polarons not electrons, and the

denslity of energy states will resemble the non-interacting

density of states for electrons in having a forbidden gap.



However the band gap will be "fuzzed out" by the interaction,
and the density 1n the bands will be changed. In the calcula-
tion of optical properties of the system, this difference

turns out to be important.
III. The Formula for Absorption

To perform the standard calculation for the absorp-
tion7 one takes the first order, time dependent perturbation
theory result8 for the probability of a harmonic external
potentlal of frequency w to cause a transition in the system

from the state J to the state m after a time t:

> >, 2 .
[<mlAPlF>] wim (F(Wmi-w)t)
(h(Lomi—w))>
where hth = Em - EJ, t?e energy difference between the

upper and lqwer states A 1s the external light potential,

and ; is the momentum operator. To get the total rate one
multiplies the above by the probability that in thermal.
equilibrium m 1s unoccupied and j 1s occupied, Np(Ey) - NF(EJ)
and sums over m and J. Instead of summing one could intro-
duce density of states functions and integrate. This would

be a difficult procedure in our case because we would have

to calculate the matrix elements and energy levels of the



interacting system. Instead we will use a more direct and
more exact formal procedure which will require us to find
only the one-particle Green's function of the interacting
system (but without the exciting light's potential in the
Hamiltonian). This formalism due to Kub09 is described
below.

Our specific goal is to calculate the interband absorp-
tion of light by a semli-conducting polar crystal having the
previously mentioned simple structure. The absorption
coefficient 1s defined by the equation I = Ioe""(x which
relates the intensity I at a distance x into the material
to the intensity Just 1nside the surface Io. Since the
absorbed light energy is being taken up by an increase 1in
the kinetic energy of the charge carriers it is not sur-
prising that the absorption 1is related to the in-phase part
of the conductivity; the relation is: &X= ‘”’ée'/z Re o-’;o
€ 18 the real part of the dielectric constant which can be
related to the imaginary part of o. So if we know o(w) we
can find all the optical propertiesll.

The Kubo formula for conductivity is:

0o
b (k,u) = £0€*8iy + L [dt [ara’t”
m w hw

—0o



Llwt=ker+ker)

x C Gct) ([93()(),}3’&22) .
(3.1)

where t = Xy - xo', N is the average electron density, a(t)

is a step function, < > means averaging over a grand canonical
pre=” (H - 1N), and
Tre-R(H - uN)y

ensemble 1.e. <0O> =

>
L x) = Let §fow? - Wt
2 x.a_m Z(V 9’/1)) W) = Yex) \730{)(4){2

2
“m

>
A Wiy W

R(x) 1s the vector potential of the 1light.
The Kubo formula can be regarded as a consequence of

the fluctuation-dissipation theorem9

s which relates general
susceptibilities to correlation functions of the related
physical response. In this case o 18 the susceptibillity and
5(x) is the response. Actually the fluctuation-dissipation
theorem can be proved by a generalization of the following

derivation of Kubo's formula:
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- >
One begins by calculating j = TroJj, where o is the

12

density matrix™™, to first order in the external field,

using 5 = 1t [H + AH, p] where AH is the external field part
of the Hamiltonian i.e. AH = - % 'f dx K(x) . J>(x). The origin
of the two 3'3 in <F3(x)3(x')]> in the Kubo Formula is clear
at this stage.

It is important to mention that the 3(x) and ;Cx')
operators in the Kubo formula are Heisenberg operators which
are developing in time under the full Hamiltonian of the
system but without the externally applied field of the exciting
light. It is then physically reasonable that <;kx)5(x')>,
which 1s a measure of the system's ability to sustain a
current without a driving field, should be related to the
conductivity.

The quantity r P(t)(rftx), 5(x')]_> e1®t3t can be

related to a two-particle Green's function as follows:
—abir_ v

> '
/ o(t) ([ém, %{x’)l Yewte® e N otdrdr’

- 22 ! ~d b .éb:/"/
= ‘(g—-y} Lradrdt o) e TEN e
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x< { [(7: Yox)P)os V)]
= [Wtxws weo [ Y 1) Y] - e $hlven, i vy i)

+ LY ove fon, Vi) % wory] f) )

(3.2)
>

We have neglected the terms containing A in the definition
>

of J since the Kubo formula only takes the first power of
>

A into account. Also, using the long-wave length approxi-

mation, we have replaced eik'r

by 1. We can do an inte-
gration by parts on each one of the last three commutators
which makes 1t equal to the first. The quantity (3.2)

becomes
—e“t‘ / ol °r &rat Ge v Yan Yy Y0 ved)

We choose for our representation of the wave functions the
> .
Bloch functions " z(x) of the non-interacting Hamiltonilan

(this gives the zero order Green's functions 1,2,3,4,5
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a very simple form .e. - y
 stmpie form) L ‘7"0()‘%gak,fff")>WX):%G.({{X)

where a' , (a ) is an operator in the second-quantized
k, *"k,l

representation which creates (annihilates) an electron of

>
momentum k in band £. Equation (3.2) then becomes,

me

> 2
—c_"tl’“ fdt o) i e (e 8y, da) Uy (e, 23, 0y)

k, . ke,
Q.ﬁuly
« {[a g)am Okﬁ?fcﬁei?& 1> ’

M:(k,“ a.) /._ .2 X) P(X)C( /U'A(k,,k:.,ﬂ,,gz)ék,!?z

The delta-functlon indicates that we are neglecting Umklapp
processes.

The quantity

f o ([ (00, 090,91 Y& 'de 2K (u)

(3.3)
can be obtalned by calculating the two-particle Green's

function
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ﬁ(ﬁ/ <T<a )Q{t/aé@)a( ,

where T 1s an operator which orders the a's and a*;s from left
to right so that those with the latest time arguments are on

the left. Time-ordered functions like this one are the Green's
functions one calculates by the Matsubara methodl’5 (where the
diagram technique is applicable) for imaginary times. It turns
out that these imaginary-time functions are periodic along the
imaginary axis with period 1/T=ir, where T is now temperature,

so that

% .
Hlen)= 2 f Kre)Celt ) wnn)irT
"%

(x(t) is an odd function). Then the function we ultimately need,
K., 1s related to k(o ) by Kr(imn)=K(mh) for m >0. So if we can
construct a function which is analytic in the upper half of the
complex w-plane and which takes.on the values K(mn) at the
points 1mn, we have found Kr(m). The above remarks apply to any
double~time functlions defined analogously to K and Kr’ e.g.,

consider

G(I:, W)= ot 6""'”( Ca:(t-))ak(o)]_ ) dt
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and %% ,
Blrwy= | S Tavinimpar

v

then G(ﬁ,imn)azl(ﬁ,wh).

Now we have transformed the problem to the calculation
of a two-particle Green's function, but we will go further
and reduce the two-particle function to a product of one-
particle functions by an approximation which is valid for our

particular systemD’14

. The reason for this step 18 that better
technlques are avallable for calculating one-particle functions
than for two-particle functions. To perform this reduction we
note first that transitions in which £,=%, and/or z3=zu refer
to intra-band transitions which we are not considering. Then

the diagrams for «(t) take the form

/P;,-'e' >/P:;p9 —> T
(7] t !
+ - + |
P // i '
‘)zz - - ,’3 PR
- - ‘i - - P , C o N
) 'l'o \\ N !” \\ L, ‘\ LL/ SN
I' !
+ | :
+ o~ -~ %" a | e “\ + "
g 4’ V o' - l'»’ Ao L]
M N o ¢
+ - - e - =

where the so0lid lines are electron propagators, the dotted

lines are phonon propagators, and the vertices are interact-
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ions in which ﬁ and £ are conserved, 1.e.

2
By j/‘/
L k2 -
- >
B,
>

Also the propagators are diagonal in ﬁ and £ 1.e.

{T( Q’,; 2t O,h 0.(")» = G, ( 5,, L)k k. 04, 4,
S0 21=24¢12=£3. Then the diagrams show an electron in one band
going from O to t and a second electron in the other band go-
ing from t to O, or equivalently, a hole in this band going
from O to t. Both electrons have interactlions with themselves
and each other via the phonons. Consider the simplest process
in which the two electrons interact with each other 1.e. one
in which they exchange a single phonon as denoted by this

dlagram:

< |
The "asymptotic theorem" due to Bonch-Bruevich

13,14 states

that in the set of all diagrams which must be summed to find
the two-particle Green's function, the sum of those diagrams,
such as the above, which contain phonon propagators connect-

ing the propagators for the two distinct electrons, 1is
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negligible if the band-gap energy 1s much greater than the
energy of a phonon, A>hm°. The proof of the theorem apparent-
ly depends on showling that matrix elements of interactions
such as the one taking place in our simple diagram are small.
According to the Feynman rulesl’5 for evaluating this dila-
gram, the following factor enters into the amplitude for

this process:

2 |ardk Yim¥a ¥ g-keth-n)
k. (}/) k n) (l/,V ykl‘l‘b’)v ,k’?.

Lg +
—~ [ KDYl
/ n-r: z’

(We have chosen the electron at ry to be in the conduction
band and the electron at ry to be in the valence band).

Due to the fact that electrons 1n the valence band are pre-
domlinantly closer to the lons or atomlc cores than electrons
in the conduction band, there may be some basis for saying

this integral 1s smaller than one like

/ (?;: ) oyl %Tgr’) ¥, £y / tr= N)d‘rd’r’

which 1s a factor in a dlagram such as
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.
...

since there should be more overlap of the functions in the
integrand of the latter expression. However, I know of no con-
vineing general proof of the inequality, so that the "asymptotic
theorem" may not really be a theorem, although I expect it to
be valld in many cases and as we shall see later, it leads to
a reasonable result. If we follow Bonch-Bruevich and assume
the "asymptotic theorem", we see that in the set of diagrams
for k(w) we can neglect those which connect the two solid
electron propagator lines with a dotted phonon propagator
line. Then k(w) becomes the Green's function for independent
propagation of an electron in band Zl from O to t and an

electron in band 4, from t to O, i.e. K(t)---))tl(ﬁl,ll,t)

)(g, (%1,32,-1:) or

'y
Klom)= 5| T Ytk 8,t) Dlh 4,70 dt
i

P>

(: C (: '
f = 7"‘;”;3 (k4 w) Dk, pr)C et EZI 4
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=T 2, 0,4 0n) Ol foos) Horsg o)

oY/}
,n

} 7—%, (k4 wn) /3(19,,13/ Wintth)

To do this summation we take advantage of the residue theorem

in the theory of complex variables, using the fact that the
function 1/eRm'+l has singularities at w'=(2n+l1)inT and residues
at these points equal to 1/T=°. To apply this method we must
know what the continuation of )@ is in the complex w' space.

As explained already for double-time Green's functlions, there

exists a function Gr(co) such that Gr(iwn)=b (w ), ® >0 where

_ +
Gy (8) -2 L), Yool ) 6¢¢) .
Similarly there exists a function G, (w) such that G (1o )=

jj an), ® >0, where

Gat) = - L&), Yhol] Y 6¢-t) .

Grﬁn) is analytic in the upper half-plane; Ga(m) is analytic

in the lower half-plane; so the summation becomes:
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Tg, & (o, 4, 0n7) ) (b, Ao, cont i)

— f Gty k4,005 Gy oy by g ity) A 0°
CP%

where the integration 1s over this contour:

= Im w'=0
\ / Im w'=-Lwn

N

The contour avoids all the singularities of the integrand

except those at w=(2n+1)imT (there are other singularities
since the first function in the integrand changes from Gr to
Ga at the line Im w'=0, and the second function in the inte-
grand changes from G, to G, at the line Im w'=-1mn); so the
residue theorem assures us that the integral equals the sum-
mation. Since the contributions to the integral associlated
with the arcs at infinity are zero, the four horiéontal lines

are the only part of the contour that require consideration.
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| to
ﬁ(w) ~ f dw’ C_:"_ri/ﬁ,jz) w’u'w,‘)
"o e

X [G'F(énli,w’) - G,q (/P:;Il, w’jj"' G’L(ku, fc, W,"(:wn)
eﬁ(w'—xﬁwn)_,_’

X [G'r (kul?-,w’) - G‘Q (kn [7-1 NI)J} =

Q/Jw’ {G,,. Ck, £, o't o) samc-r(/?,)f,/w//

e®wy

+ G-a(kuﬁ,)w'-,éwn) Dom G‘,,(k,,éa./ w’)
e’b(k)"- LWn)_’_/

(We have used the fact that G_(w)=G, () which follows from the
definitions of Gr(t) and Ga(t).) Since

4

c

Alw’-Lwn) Bl -Lan+)TT_ W
= e ( - @

Klw)= 2 [ dw’ SC (b8, wiiun) b Gk, £,0)
—_Fr_ "%

ve ePel
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+_€a_._{"uluw{"‘:wn) Im Gll,, L2, W) f .
ee(w’-lwn)+l

Then since Im Kr(imn)-—-Im K(con) we find:

I K ) = 2/ {-:Om@,.(b,l,,w') ﬁm@,(b.,l,l whw')

CPW|

- %Gr(b.,ﬁ,)wi_%&‘(h)p%wl)} >

Bw’
E T+l
and finally letting w+®w'--->w' in the first term we obtain:

‘OM\ Kf(“) = Q\[;w/ cp”“ Gr(’?ulﬁ/wy oo‘w\.G‘r‘ (’Pu[u w,.@

¥ (Yh: (in%nF(“')) >

where ng (o )=1/e"°'+1 .
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Thus the Kubo Formula (3.1) becomes

w) = 4T, Ke ow) = 2E %k dE 5
ce? Ce2Tm L7¢v
whtod

i o, 44350k, 2,8) Don, G, (k4 E-) (Mg (e-ep-y E)

=2c* U vy /d’kdE{uﬂm Gr.(/;,C,E-w)
FLU(?édifryn

x Jon GolloyE) + Dn G (B E-c) Do G (R, ,E)S

(ne(E-w) - Ne(E)) .

The first term will give practically no contribution because
Im Gr(ﬁ,c,E-m) is peaked at a distance 2A-u from Im Gr(ﬁ,v,E),

as we will see later when we get an explicit expression for

Gr-
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At this time we make the replacement vivJ--->1/3
xZ, |<£|vi|£'>|2!|v(ﬁ)|2, which 1s valid for a cubic crystal.
Also we assume that v(ﬁ) is slowly varying with R so we can
take it out of the integrand. Then we obtain the final form

of the expression for a:

()= 2 V) [ o'k dE Do G (kv E-w)
CerTMw
X\hm\ G'r\(r?,C,E) (hF(E’w)-nF (E))

(3.4)

In the 1limit as the electron-lattice interaction goes to zero,

m

and the expression becomes the one which is well-known for

I G- (b 4,¢) —.(n'— J(g-gé;-A Sac + )

inter-band absorptionlsz a(m)~(hm-A)1/2. Less trivially the
formula for a begins to look like the one described earlier as
the "standard approach" if one observes that Im Gr(l,ﬁ,m) is
the density of states for a given 3 and w in band £. In that
formulation one has a product of a squared matrix_element be-
tween inltial and flnal states, the density of states at the
initial state, the density of states at the final state, and
the thermal probability that the initial state 1s occupied and

the final state 1s unoccupied. Then one sums this quantity over
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all initial and final states{o 1s the density of states):

3
() ~ ‘/m;. dd, dE. dE, M PCR,E) Plke, Ex)(, ) W5t8)

Conservation of energy and momentum causes the above to re-

duce to:
(W) ~/d% dE M“P(kE) P(l;,E-w)(nF ($)-Y.(¢)

which agrees with our final form of the Kubo Formula after the
substitution of p(ﬁ,E) for Im Gr(ﬁ,E). It is shown in text-
books on Green's functionsl’a’3 that Im Gr is 1ndeed the den-

sity of states of the normal modes of an interacting system.
IV. The One-Particle Green's Function

The maln task left 1s to calculate the one-particle

Green's function. It is the sum of all the connected self-

energy diagramsl’s; it is impossible to sum all the dilagrams,

but 1t 1s possible to sum this subset:

+ ® @ 0 0 0 0 o o0
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where the s0lid lines are electron propagators, dotted lines
are phonon propagators, and the vertices are interactions

as in the two particle dilagrams. To generate this subset one
calculates the self energy, =(k,w) corresponding to this

diagram:

v

and inserts 1t into the Dyson' equation

Dkgw)y= 1 G bgw)-2 (ki) |

h
where?j o 18 the free electron propagator ym—r Z) + 0

and Eo(k,l) is the energy of a free electron in the £th band.

The Dyson equation can be written alternatively as

= )J°+b02b , which can be solved for a given =

in a perturbation sense by iteration, giving:

X2 Ne+ N2 Nea N2 M2 Wos- -,

which explains how our subset is generated by Dyson's equa-

tion. According to the Feynman rules

2 Bty = vw;cT ,’A G ( Bk i) Delloanry
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if we let temperature be low,

Tz"";{‘,}jdw’ , (P ey Cwe k[ % dw’
- K J Tkl

a I_' wl owo .

At (wmew) - RP-RI% AdL 4
2L

' l1ntegration:

The poles of the integrand are at w’'= f}..b.)o

)

and ’= ' » |} > » “‘“ »
w % (fw, +4 4| P-h| +A.Aé£,<.—LM)
2my
The last pole 1s in upper (lower) half-plane if g = c(v),

whichever is the case we close the contour to include only

one pole as 1n the dlagram.

o LW
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St oG (2
(P4, cm)=- EWo /4% J |
3‘ ,>z '
fme ) |y* L;%;ﬁwo-_é%l@-k(-a&,mu
L
(upper sign for f=c, lower for f=v). Introducing spherical

coordinates and letting the polar axis lie along the p vector

we obtain,

2 = e'wo fou- A6 4

4re ) LRwWnThwe-A8le + u_—?__t;; (P K-2pk cow®)
P

= Cue e f dbe Mo |<Bwn Thodsda, cha-(6eme) (PikFIPR)|
MTE w4 ko Chwns Fwe-4Ad L, cm-(*‘zm) (P k’}jﬂ)/

et me f Ak B | tuop ot Sty b asSimi
ok I, CunFtws AJ—C/C*'M'(%m)(&"k)

,\.f“egg /é,\//l-(f/-é)y
0 }% ,4-(7?:.;%]:
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A = .2%5 (ARwnFhwo A T4 +m)

Since the integrand 1s odd, the above integral equals

o ( o VA~ (Prh)|

N
‘\’g
e
>
NN
NE
T
T
L
T~
>NTY

+ on VA + (k)] = L | J7 +(3-0)] = Dof VA ~(p-k)])

. NAtP
VA =P
[ ¢ -\/—A. +P
_\ﬁi-nfy
(position of poles in [complex k-plane)

If we close the contour in the upper plane the first and
third terms in the above 1ntegrand have singularities that

must be avolded. For the first term the contour 1is:
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We always avold the k = O pole because our derivation of the

interaction Hamliltonian implicitly assumed that the summation
> >

over k did not include k = 0. Since the integrand vanlshes

on the arc and is analytic inside the contour the first term

equals:
.0 :
die LofUi-p-k] = bim. [a € (-4
ko 50
M o
¥ Lo P14 (17-6) + [ yp E,AI(J—TT')

70 e":(ﬂ'-;# ‘/-/4—_49 A
- md
x»&vP;;(J-ﬂ') + Ao | Lo (ne+io)d8
Pet' My a-p €0 & €eCr/A-p

where Mits the kgy-hote-like part of the above contour.

b
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The last 1ntegral has a uniformly continuous integrand so we
can exchange the order of the integration and taking the limit

as € —> 0. The only part that may glve trouble 1s

. ) , v
.ﬁw»\e»o éﬁr\.fe . =¢evw\-5-’o 6—6\»\56
VA -70463‘9 Ja-p
But ..awv\ 6,@«( Oso the last integral is zero. The first

€%
two 1Integrals add up to

f Temar - af <Tap
o PETIR-p o ~PHAP

= -ami Lz -, = L LnlopF]
+ o b | VAP

A similar calculation shows that the singularity at
VE + € in the third term of S gives

(3T Lo DA+ ppl + 2T A VAP
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SO

> ~a114£.m ( '&\/wf‘w/ M/V\C__%L;])

The last term approaches the log of unity, which 1s zero,

so that

2 (o4 ) = 4 € 1doMNe /(2?*(4kaln+twp-zs62c+u -f
arTEp T (ChmThwo DSt m)erp

Let,.e‘woml. % , then
Q‘P\‘

PAP ) = B ihun-Bp -2 S dersn= 5 (0,0

2me

and
5 S
G, (£ Lw) =" kuw- B o e tuum 2 (Fidrin)
£

’
forwin the upper half complexw-plane. Note that G'\(La)n)-‘)_j(wn)

as required.
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V. The Absorption Curve

At low temperatures the factor Nf(E-tw)-Nf(E) in the
Kubo Formula equals unity 1i‘ﬁu;is of the order of the band-

gap. The Kubo Formula for the absorption (3.4) is now,

<(w) = oUWy [db kb~ dE
cemw

0 a——

(/E ke - L@ +M 4+ A 9%5,0”.{ a'(E-tw+iiwo*M))‘+£‘

"

@M( |/E ’“g-'é:'— A+t

(E “hwi At “))

%( ( " )’2-&
H(5.1)

We have gone to spherical coordinates and integrated over

the angles. This merely introduced a factor of ¥T ,since
the integrand did not depend on the angles. If E>hw-hwsi
the log in the first term in ek has the form

O £a+b/

iLa-b

where a,b are real.
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n——

b2 eyt e

Lt -9p) = actanloy .

Then the first factor in &£ 1is,

Qon |
7 E-Ruwsietid 2kt ((RE- kwnmu))’&)

2my :E !

The A € factortis there because Gr is the analytic continuation

of #) 1in the upper half of the complexw -plane. Using the fact

that '

s m‘e P +¢'ITJ(X)

where P means Cauchy principal value we find the above factor

is ‘

md (E hea-A Ax ‘a?'vk ,fam'( Qm"(t ﬁwi—tu),,«ru)) '
e

By a simllar analysis we find that the second factor becomes
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T d (e- 'l?"hz—A-l-bL‘?ck faM'(( (E-wo'AfM))L’)).

2Me¢
k.

when E <'A+T\w°-M

[db dE dm Gr(L,V)E-ﬁw)JM é,(E,C, E)

hw-kwas
wnfd/z dEh dm | \
E-hu-£ kf,, g_uﬂ I (E-Furfhustad)

( "

x § (E-BR' A-%trf au‘((_l%(E-uwo-Aw))k‘))

2m¢
le

A+iwo

d

i f cliede K S(EHurih - g7ta tod (R1E Huiun) )
R Wo le

X J(E-tfk"-.a-m-agct tam '(( ?};V."(E"\M Atu)) ))

2M ¢
k

i
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w1 (b BB -2 gik b;‘(('"‘{é”(E-mﬁmm))'ﬂ))
; £ hut

My ‘Q

XD |

E- *\ Kok A+M+».o¢ 'R,Q.\‘(z""'(E huwdo -A+~L))’5-+k |
v )h-k |

The first term 1is zero unless

i\w-t\wo-u>4+7'i§‘—u +9,<ta,tm ((2 (t.:o‘i’A-E‘M)))

The second term is zero unless

-~ 2B - I ~AA
A +hwo >kw+§‘y:v +:l9__ttw( ('FM’QEW )))

> t\w“ t\U)o‘AA.

and

]

Athugr i > BB +am wtm ((M(Mwo ‘M)))

2m

> t\w-t\wo'ﬁ'_ .

The third term 1s zero unless

0o >hw +X; 'ﬁt—u#&a&' &w( m'"( kw:'-l{wo ) )

i 4
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SA+Rhwe— AN .
The above restrictions determine the k limits after the E
integration is done, however, it is necessary to simplify
the above expressions to determine these limits so we will
neglect the terms which are small because they contain 8y
and gc. Thls causes a small error in the determination of
the ranges over which the three terms in the expression for

the absorption are non-zero. The integral becomes

(zmct.w)

7 et sl
k

(2—,?:"( tw—A—Rwo))’a

2m,

ok JCM\( 209 koot hub-Kk ))'7 )
Tk

(_?.Yﬂv( Rw-a-t U)o)) '/2.
+ [ dk /9 X

i (hw-a%ws)) s

7

M
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fe.
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(Zﬁc(};wA tw)
rr/dk Ridwm |

v( tw +tz kL )
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My 2Mm
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r Om I
;r: +A- t\w't‘ vk K M} vh (2 tl-h A hw+Rws)) 2-]-}9
( n )/2 ’2

.J.AM ,QA ( U:\wo >7'+lq
( D P

(5.2)

To perform these integrals we need to make use of the follow-

J<€(X)): al:‘-/:“xc; (x-xo) where ‘((Xo) =0

Also the last two integrands can be rationalized. In the

ing,

denominator of each we will then have the sum of the squares
of the real part of the denominator and the imaginary part.
The former is much greater than the latter for all values

of k except where 1t goes to zero at

l? (7- ( F\z‘el.,.A-’RoJ-f-Rwo))J/

Neglecting the smaller term willl then cause unphysical be-
havior when the values of W are such that this value of k

is 1n the range of integration of k. Thils happens at

Aw=Aa and  Rw= A= mﬁ%’-ﬁ‘ R
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These 1ntegrals will them have the form:

d X ¥ ,&/@mx’) +X l - -1 ,a“/‘(max‘)"#x
(A+8X)4 - x 2 lavemEx |
(Cx*+D)*> Cx*+D

+ B
c

(T fp—— (TR

B<-D(A")/| DVB (C/D-A/BYZ

|
— a1 1 taald (5)%

BR¥ (_L A AV
8™ (-h)% (144") ‘

Considering the first term of (5.2) again, we need to know
the zero of the function 1n the argument. To find 1t approx-
imately, we expand the tan"l terms around

k= ( m t(*’w‘A\))/a' y
which 1s the zero of the algebraic part of the argument, and
take only the first term. With these approximations, which
take advantage of bhe smallness of 8, and 8., We can evaluate
all the integrals and get the absorption explicitly, but first

we examine the form of Im Gr to see what the analysis says about

i r N1 28
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the density of states. Only the delta-function term 1s non-zero
below E=A+ Awo . If we neglect the tan_l terms, we would
have the denslty of states of the free particle,
d(E- K1b73m4 A ;Z,C-I-M)
and we would have reached the famillar result for the absorption
that dN(ﬁw—A)ya- ’
This tells us there are no states below E=A for.f=c and no iy
absorption untilk ¢y= A , both of which we knew. But the tan™?
terms cause this edge to have a tail 1l.e. states below the edge, o
which is the fuzzing out we expected. As we shall see later,
this allows absorption at energies less than Aw=4 .
At kquzy+Iuk the other two terms in the expression for the
absorption become non-zero. This 1s the energy at which real
phonon emission is possible. Below this energy only virtual
phonon states exist so the quasi-particle (dressed electron)
is stable; above this energy the quasi-particle can decay,
so that 1ts lifetime is finite. In Greents function analysis
this finite lifetime 1s assoclated with a complex self-
energy which 1s Jjust what appeared in our analysis, i.e. Z
went from a real to an imaginary qQuantity at 'RUJ-'-‘ A+‘F\WO.
The reason something similar to this does not occur at multiple
phonon emission energies, e.g.‘F\bﬁA-}Qpr, is that the dia-
grams we summed only contained one phonon intermediate states.

Carrying out the integrations one obtains for & .
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« = et k)| 1’ < Rw-A +29%

o Y Me-M, 7- WMy -
Cerymmw Ly (% T A))

<ol ((-zm‘ (e (o) o)

(% 42 W\cmv (R 'A)>

2

N\

X

+2e5k oo (( (B ’F\U'A)"T\WJ)

( 1{ %ﬁt\w-zx)) ANV z.my‘y\"_/\;% <(’F\w A))

(5.3)
when f—\w < A+‘F\w°

As stated this 1s real for values less than A_w =A because

the tan'1 factors are positive and real quantities for tw(A.
For Qhwota >heod> Kwo+ A,
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+ (5.3) (5.4)

VI. A Two-Phonon Diagram Correction

Our previous results for the inter-band absorption have
been derlved using an approximation 1n which processes having
more than one phonon "dressing" the electron at one time are
not included. These processes should affect the self-energy
of the polaron and show structure at multiples of phonon energles
above the band-gdge because of the possilbility of real multiple
phonon emlssion at those energles. To 1nvestigate the way
multliple phonon processes affect the absorption calculation
and results we will calculate the Green's function for a two-
phonon process as an example. The process corresponds to the

following dlagram.



N

N
'I
P4

4

According to the Feynman rules, the self-energy corresponding

to thils diagram 1is

|
2= lt:’ Id’ﬁ‘ d>A dw de w?(c?lo'-ﬁ(w-uf'-wo’i(wﬁ _
(2m) /Pﬁ/l/ﬁ'ﬁ/L (&'ﬁwz’f‘t >, JL,C.+M)7'
e , 2me
¢ (Gariwrin) * Gorilegrn)

Llwa- KA Adl ctmn
2,

L
The poles in the complex (ug -plane are at hwd-u, and
-4 L S . Ny ’
Wa= (La-<EYBLL =L A <)
The last pole 1s 1n the lower half plane for f=c and the upper
half plane for f=v. If we close the contour in the upper half
plane for f=c and in the lower for f=v, the result of the

integration is:

[ J L
S~ \dB L dw, (wo+£.(w-u4) T oom i) )2l

/r’ﬁ/t/ﬁ‘ f;/,-(ljkh). b %}Aée:C'rM)‘Zx '.',\ 0!e+ jgﬁW" t_‘:lpt \

M

X (£ho, Fhuo- BT - AdLctu)
2mA
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(upper sign 1is for f=c, lower for f=v). The poles in the @, -
(= CRRT '
+ Lhiv,~ A ___P‘& - cs <

N (-l- k o T A A l?n "’AM))

' T '
|- AR amg -l A SR, chdan)
The last two poles are in the lower half (»)' -plane 1if f=c,

plane are at (y,= (Juﬁ,('_uuo

and the upper for [=v. Once agaln we close the contour in the
upper half-plane for f=c, and the lower half-plane for f=v.

The result of the w' integration is.

S ~ b | SBPLE, W
[0 PRl (orhs —g'?;m,cm ) x

X (3 tuwatwetchw-HBkh me-2d 4, c +M0)

Golng over to spherical coordinates and taking the polar axis
> >
to lie along the; p,directlion for the pgintegration and along

>
P for the Py Integration we see that the above becomes:

S ~G@mfwd R R AP AL, 2on 8, 2 6246, B
(P32 arReoes (F+R2AR orbs) X

X (A:tw 2tw,~R B - A deu)”(a.fw-?'.’.fu)o—t:ﬁ."-asl,c+,ﬁ

amy 2ml
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=)o (dB AR 1o bo| B3P 2 Hen6)]
(kw3 Fwe BB 2 54,cr00*
2md

X /Q\n/’/?l:f'ﬁ:—.'lﬁﬂaﬂezl ™
(dtwlzhwo‘?_ﬁz:zxél,c-m) 0

- am) s /a(f,d;o,/gv/ j/m/f;ﬁ/

1hr (Shorston - Agz,cw)mwaw. EEAd i)

The p, integration has the form

o
(¢ on | 12X
joa(x .w@n/r?_x
(B-<cx?)

It 1s even 1n x so we can write it as.:

_2_'C j A% X (Il x+R] -fon|x-P)
“os (X-VE ) (X B )
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The 1ntegbtand vanishes at inflinity sufficiently fast so that
the 1Integral along an arc at infinity gives no contribution,

hence the integral equals the contour Integral

_ij dX X (D |xtB[-Lulv-£])
A Q<‘\/§/¢)(X+\/T§/c) [

where f) 1s

The pole enclosed is at x=(B/C)1/2, so the value of the integral

is

T (GalV +l Lol B~ )

Thus

L

S ~ | Tiwtme,
6 AP A

( L"lf(étw:zzwo—aéa,cw))"w/a,!

v

( 0 )g._ﬁ

X (A«/ %//(AI Ewi o -?j»mf-A Jﬁ,c.-n-m)“) d?¥
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This integrand is also even so it 1s of the form

il /dx (Do A+K] = Ln A X))l [ex] ~Anbex])
-po (XL_B/C)Z
Here the poles are at x=fA, f D, f(B/C)l/2. We use the

following contour to avoid all singularities except the one

at x=(B/C)l/2I

%2

Then x:,P )Z:{”P
f L (On[A+v]-Infh=3] )(dnfPox) -l p-x1)
(XL’ ,3/( )1_
I

- / o (o 421l 41) U] -5 1A 1)
r

2R?

x(__t___ TR N _a_-_)
(X-VB)™  (x+/B)* (K= 8)
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=(’;”,;‘3,_}:% AP | LA VE |

)(r e t@)

(7, + 27, ) (o Bl - o )

~ (b A+ VB |4 IA-@/)(ﬁn/ﬂf%l‘ﬁw/?’—\/%/ﬂ
s .

Since the integral along the seml-circular part of the contour
is zero, the only difference between the 1ntegral over this
contour and the integral from-eo to e@ 1s the key-hole-1like
part that avoilds the branch cut of the log function, so we

must subtract i1ts contribution.
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d-m

| p-A-€ £°9)).

The last term goes to zero asé"’o seand the first two

add up to.
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The last four integrals look deceptlvely slmple, however,
there appears to be no anti-derivative involving only ele-
mentary functions for this type of integral. What we can do
is to expand 1n(p+x) through the linear term in p;, then we
can integrate, but our answer 1s good only for small p

(the polaron momentum). The integralsbbecems:

2P -2 AP
fe [ Gartien m?f?mle-m )

= 0 (Ll ] -Vl el bl eV
\/—/c_ V&,

- o (AAA/A-\/%;]J«A Do|p+/B))
VB
So the total contribution from the key-hole part of the

contour is.

[ 28, ) Hhl ) |2
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-A)Ai@e
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where

A= (ML k3 des-Adher )
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3= (Thws-kw+Aa S0 =) ,C= K .
2m4

Consider the term

—

A+\)B/C\ D (222 (% 2hwe-a S, chur)) X 1

AnVe — )%+

+ (PR s bt b3 erm)f> ]
- ( I )"1, 9

we have a situation here similar to that which we found 1n

the study of the one-phonon dlagrams when ‘k(,uz_ A-\-T\(A)Q‘M

l.e. the log functlon causes ¥ to become complex above

and real below that value. This indicates we have sucessfully

taken account of the possibility of double phonon emlission

by the 1inclusion of our two-phonon diagram.
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VII. Conclusion

What do the previously described calculations signify?
Let us review the principal assumptions which went into the
calculations we have described and the results to which they
led.

It was assumed that the only interaction taking place
in the system was between electrons and longitudinal optical=
phonons and that the 1lnteraction was weak enough so that a
perturbation calculation was possible. This means we neglected
the effects of 1mpuritiles, bthevitypes of . phdnonsguand f£he
coloumb interaction between electrons.

It was found that the absorption curve near the absorp-
tion edge has a parabolic component (tKUJ'AS)%L (as 1is the
case in a simple independent electron band model) with some
complicated additive corrections which have the following
characteristics. Below the band edge we find a taill region
of absorption,.équation (5.3), like an Urbach ta1116. At
energles of one and two phonons above the edge we find there
should be an onset of structure, equations (5.4) and (6.1),
such that the absorption curve has discontinuous derivatives
corresponding to absorption due to creation of phonons. A

calculation of the size of the effect gives a magnitude in
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the neighborhood of .01 1nverse centimeters for a material
like InSb at an energy of A"‘%two- This is near the limits
of resolution, although at that energy the parabolic part has
a magnlitude of 2 1nverse centimeters. The physical arguments
presented make these features appear plausible, and the set
of one phonon dlagrams should give us a very accurate descrip-
tion of the structure betweenA.\.t\woand A-i-l‘kwosince we have
included every process that could give an lmaginary = in this
range of energiles.

There are reports 1in the literature of experimental
findings that support our results. Structure has been found
at longitudinal optical phonon energy intervals above the

17,18

band edge energy 1in photoconductivity and radiative

recombinationlgemeasuremeats. Such structure has also been
2

reported in actual absorption spectra by Ascarellil 0 and

Larsen and Johnsonzl. The former found 1t in AgBr and the

latter 1n InShb.
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Figurq One
The Band Scheme
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