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ABSTRACT

SPECTRUM CHARACHTERIZATION OF AC/AC POWER CONVERSNOSYSTEM
By

Emad Eldin Fathi Sherif

This Thesis proposes an analytical method baselrea-dimensional Fourier integral to
obtain accurate spectra of both the switching fionstand the synthesized output voltages and
input currents of matrix converter. The principfdalas analytical is carried out in two steps. The
first step is that the spectra of the switchingctions are derived based on three-dimensional
Fourier integral. The second step is that the sp&dtthe output voltages and input currents are

evaluated using a convolution operation in thedssgpy domain.

The challenges associated with the spectral asabtysnatrix converter waveforms are
twofold. On one hand, the modulation signal corgdiath the input and output frequencies.
Unlike the third harmonic injection in the modutatifunctions, the input frequency and the
output frequency are typically independent fromheather and will not form an integer ratio. On
the other hand, it is very common that the switgtinequency or the carrier frequency is not
rational multiple of either the input frequencytbe output frequency. These aforementioned
challenges make it a very challenge task to acelyraharacterize the spectra of matrix
converter waveforms through commonly resorted nigakmethods such as fast Fourier
transform (FFT). The proposed analytical approadtich is an extension of the double Fourier
series expansion for the pulse width modulated veawes of voltage source inverter will

provide an accurate solution to spectral analylsieairix converters.
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CHAPTER 1

| ntroduction

1.1 Background of AC/AC Power Conversion

The family of AC/AC power converters can be categgt into two types which are AC-to-
AC converters without DC-link (direct matrix conten) and AC-to-AC converters with DC-link

(indirect matrix converter).

a) AC-to- AC converter without DC-link:
This type of converter uses only one conversiogestin other word, input AC voltages
are connected directly into output AC voltages tigto proper operation of four-quadrant
or voltage-and-current bidirectional switches.

b) AC-to- AC converter with DC-link:
This type of converter uses two conversion stalgest, the input AC voltages are
converted into intermediate DC voltage and thigesia called rectifier stage. Then, the
intermediate DC voltages are converted into ouffilitvoltages and this stages is called

inverter stage.

Each converter topology has its own advantagesiaadivantages and the choice of the

converter depends on the requirement of the apjica



1.2 Matrix Converter Concept

The matrix converter that was first introduced direct AC/AC power converter. It consists
of nine four-quadrant or bidirectional switches @hare used to connect directly the three-phase
power supply to a three-phase load without usiregggnstorage elements or DC-link as shown
in Figure 1.1. Each four-quadrant switch employethe matrix converter is typically

implemented from two two-quadrant switches astitated in Figure 1.2.
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Figure 1.1 Schematic of direct matrix converter.



Figure 1.2 Four-quadrant switch.

The nine bidirectional switches are modulated toegate the desired output waveform based on

the input supply voltages and the demanded ouigtdges.

The matrix converter is usually fed on the inpdesby a three-phase voltage source. Each
phase is connected with an input filter capacibogrisure continuous input voltage waveforms.
In addition, the matrix converter is connectedraraluctive load which leads to continuous

output current waveforms.

The matrix converter has received an increased ahajunterest in the last three decades.
Furthermore, it has been considered intensely adtamative to conventional indirect power

converter systems due to its several desirableressuch as:

¢ Sinusoidal input and output current waveforms

e Generation of load voltage with variable magnitadd frequency
e Controllable input power factor for any load

e Simple and compact power circuit

¢ Inherent regeneration capability



Despite these advantages, there are some reasopgefding the matrix converter in
industrial applications. The major disadvantagakedimitation of the voltage gain ratio up to
0.866. Consequently, electrical motors or any steshdevice connected as load to the matrix
converter do not operate at their nominal rateag@t Another drawback is that the number of
the semiconductor switches is more than the numéed in a dc-link converter. Therefore, the
cost will be more expensive. In addition, with #iesence of the dc-link, there is no decoupling
between the input and output sides. Hence, andrtigat in the input voltage is reflected in the
output voltage at different frequencies. As a cqasace, sub-harmonics can be generated.
Furthermore, the control of the bidirectional s\wés of the matrix converter is very

complicated.
1.3 Modulation Techniques

Pulse width modulation (PWM) strategies for mataverters have received significant
research effort recenthLJ [23]. The modulation research on matrix converternstaith the
work of Venturini and Alesina3]. The authors provided a mathematical approactesaribe
how the low frequency behaviors of the voltages @mdents are generated at the load and the
input. This strategy allows the full control of tbetput voltages and input power factor. This
approach is also known as a direct matrix convéR&tC). Unfortunately, the drawback of this
strategy is that the maximum voltage transfer r@)ovhich is known as the ratio of the
magnitude of the output voltage to the magnitudiefinput voltage, was limited to one half.
Later, the same authors proposed an improved matht@B9 which increased the voltage

transfer ratio to 0.866 by utilizing the third hamic injection technique in the input and output



voltage waveforms. The third harmonic injection baen extended with the input power factor

control which leading to a very powerful modulatstnategy (optimum AV method}.

A well-known technique for controlling the fictitis rectifier and inverter was proposed in
[8], [24]. The authors split the matrix converter into @tstage system, namely a three-phase
rectifier and a three-phase inverter connectedthegehrough a fictitious DC-link as shown in
Figure 1.3. First, the input voltage rectified teate a fictitious DC-link. Then, inverted at the

required output frequency. This technique was eeffias indirect matrix converter (IMC).

Rectifier ) Inverter
Stage DC-link Stage

**********************************************************************************

Three Phase Load

Figure 1.3 Schematic of indirect matrix converter.

Space vector modulation (SVM) approach for matarwerters is another technique which
was first proposed by Huber et al in 198%][ [26] to control only the output voltages. The
space vector modulation technique was adaptedetmttrix converter by employing a basic

concept of indirect method. This technique was ssgively developed in order to achieve the



full control of the input power factor, to fullyilize the input voltages and to improve the

modulation performance. Furthermore, it allowsrieximum gain ratio of 0.866.

A general solution of the modulation problem fortrixaconverters based on the concept of
Duty-Cycle Space Vectaovas presented inl9]. This method simplifies the study of the
modulation strategy. In addition, it has been destrated that three degrees of freedom are
available in defining the modulation strategy, ailag for the control of the instantaneous values
of the output voltages and input power factor t@bwined. Thus, this technique has been

considered as the best solution for achieving thledst voltage gain ratio.

In principle, the main task of PWM schemes is &ate trains of switched pulses. The major
problem with these trains of switched pulses is thay have unwanted harmonic components
which should be reduced. Hence, for any PWM schémeemain objective which can be
identified is to determine the most effective wéwoanging the switching processes to reduce

unwanted harmonic distortion, switching lossesaroy other performance criterion.

The analysis of PWM schemes has been the sulfjedeasive research for several
decades. Some of this work has investigated thadr@c components which are produced from
the modulation process. It is quite complex to aai@ly determine the spectrum of PWM
waveforms that are typically present in any coreseaind it is often resorted to a fast Fourier
transform (FFT) analysis. It is known that this eggzh does not yield accurate results if the
ratio between the switching frequency to fundarmleinéquency is not integer. In contrast, a
theoretical analysis which identifies the exaciniamic components when various PWM

strategies are compared against each other wasnpedsn B3]. This analysis is based on



double Fourier integral analysis in two variabldésgh frequency carrier signal with low

frequency sinusoidal signal ) has been well dewadadp [L6], [29]- [31].

The challenges associated with the spectral asatysnatrix converter waveforms are
twofold. On one hand, the modulation signal corgamput and output frequencies. Unlike the
intentional third harmonic injection in the modudatt functions of voltage source inverters
(VSI), the input and output frequencies in the matonverter are typically independent from
each other and will not form an integer ratio. @a tther hand, it is very common that the
switching frequency or the carrier frequency is radional multiple of either the input frequency
or output frequency33]. These aforementioned challenges make it a viigudt task to obtain
an accurate spectrum of the matrix converter wawesdahrough commonly resorted numerical

methods such as fast Fourier transform (FFT).

Thus, the research work here proposes a new atadlytiethod based on three dimensional
Fourier integral which exactly identifies accurapectra of the switching functions and
synthesized terminal quantities of the matrix cotere The proposed method is an extension of
the double Fourier integral analysis of the outmitage waveforms of the voltage source

inverter B3]. The scope of the thesis is organized as follows:

e Chapter 2, presents the concept of the existemsztifun and summarizes the most
important modulation strategies for matrix converte

e In chapter 3, a general review of Fourier seriedyais is given first. Then, the
formulation of double Fourier integral analysipiesented. Finally, the triple Fourier
integral analysis has been explained follow bypplication to the pulse width

modulation.



In chapter 4, detailed spectral analysis of therimnabnverter based on three
dimensional Fourier integral to characterize theusate spectra of the switching
functions and synthesized output voltages and inputnts of matrix converter which
was proposed by Alesina and Venturini in 198]Jlgnd verified with FFT.

In chapter 5, the work presented in this thesssimmarized. Topics for further

investigation are suggested as future work.



CHAPTER 2

Matrix Converter Modulation Strategies

In this chapter, a brief introduction to the exigte function which used to provide a
mathematical form for expression switching functisgiven first. Then, the main modulation
strategies which used in matrix converters areidensd (the Alesina and Venturini modulation
methods are reviewed, SVM algorithm for matrix cener is presented and the concept of duty

cycle space vector is considered).
2.1 Existence Function

The existence functions which was proposed by W88l provides a mathematical
expression for describing the switching patterrige &xistence function for a single switch when
it is closed, the existence function has a valaed when it is opened, the existence function has

a value 0.

For the matrix converter which is shownhkrgure 1.1, the existence functi&), (t fo) each

of the switches can be expressed as follows:

1 when §,,(t) isclosed

: (2.3
0 when S,,(t) isopened

Suv(t) :{

whereu e {123} ,ve {123} .



In order to prevent the short circuit in the capeeiinput as well as the open circuit in the

inductive output, only one switch on each outpuagghmust be closed. Therefore,

3 3 3

Zslv:ZSZv:ZSszl (2.2)
v=1 v=1 v=1

In Figure 1.1, the input voltagé4, (t and output currents,,(t are assumed three-phase

balanced with peak vallg and |, respectively as follows:

Va®) | [cos(art)

Viu(®) =[Via(®) |=V; | cos(ayt - 27/3) (2.3)
Vi) | [cos(ajt+27/3)]
a®]  [costogt)

lov(®) =| T02(t) | = 1o | cos(@ot —27/3) (2.4)
o3ty | [cos(wgt+27/3)

where ; is the angular frequency of the input voltages agds the angular frequency of the

output currents.

The instantaneous voltage and current relationshipselated to the state of the nine switches

and can be written in a matrix form as:

10



Vo) | [Su®  Sia®)  Sia®) T [Via(® |

Vo) | =] S21(t)  Spa(t)  Spa(t) | | Via(®) (2.5)

Vosry | [Ssa®)  Szat)  Sga(t) | | Vi) |

Ha® ] S Su®  Sa® ] [1a) ]

lio®) |=]Si2(t)  Spa(t)  Sza(t) | | 1o2(t) (2.6)

iz | [S13(t)  Soa(t)  Sza(®) ] | losq) |

Equations (2.5) and (2.6) are the basic of all moduiatiethods which consist in selecting

appropriate combinations of switches to generate thieedeoutput voltages.
2.2 Alesinaand Venturini Method

Alesina and Venturini first proposed the high frequesyythesis technique for direct matrix
converter 8], [4]. The high frequency technique allows the utiliaatof low frequency to
calculate the existence functions for each switclhénnbatrix converter. Therefore, the aim of
using Alesina and Venturini methods is to find thedwlation matrix which satisfies the

following equations:

Vor ) | [mya®)  mo®)  mya® ] [Via(®) |

Voo () |=] mpa(t)  mpp(t)  mpa(t) | | Via(t) (2.7)

NVozr) | [ Mea(t)  maa(t)  mea(t) | | Vigg) |

11



i@ ] [mug®  mpg®)  meg® ] [T ]

lio(t) |=] mo(t)  mpa(t)  mep(t) | | 1o2(1) (2.8)

lisy | LMs(®  mpa(t)  mes() | | loag) |
where m,, (t )s the duty cycle of the nine switch&g, (t wjth 0<m,,(t)<1.

In order to prevent a short circuit from the input sitie,duty cycles matrixn,, (t must

satisfy the three following conditions:
My (t) + myo () + myz(t) =1 qp

Alesina and Venturini proposed a control method foma+switch DMC using a
mathematical approach to generate the desired owgudform. In B], the first modulation
strategy allows the control of the output voltaged iaput power factor. This strategy can be

summarized in the following equation
myy(t) = %{H 2q cos(a)ot —(u —1)%} cos[a)it —-(v-1) %)} (2.10)

where q is the voltage transfer ratio. The solution give2iri0) is valid for unity input power

factor and the maximum output to input voltage ragibmited to one half. This value represents

the major drawback of this modulation strategy.

In later work by the same authod,[it was shown that the maximum voltage transfer
ratio increased up to 0.866 by the third harmonic tigedechniques. This value represents an

intrinsic limitation of three-phase to three-phase matoinverters balanced supply voltages. The

12



modulation strategy in this case is valid for unitguhpower factor and can be described in the

following relationship:

myy(t) = %_1+ 2q cos(wlt - (v—1)2?ﬂJ COSK%'E —(u-1 %zj —%cosGa;Ot) + 2—\1/§cos(3a>it)ﬂ
- % _% q{cos{%t - (v—l)z?”j - cos(Zwlt +(v-1) %Tjﬂ (2.11)

2.3 SpaceVector Modulation Method

The first matrix converter using SVM technique was prepddsy Huber et al in 1989 to
control three-phase to three-phase matrix convast, [26]. These methods divided the matrix
converter into two fictitious converters (rectifier and inge) as shown in Figure 1.3. The
rectifier section is controlled as a full-bridge diodeifestand the space vector modulation is
applied only to inverter section to control the outpoitages. The application of space vector
modulation is presented in the literatui2/][ [28]. The space vector modulation shows a better
performance than the carried-based PWM control methtatnms of output voltage harmonic

distortion.

The instantaneous space vecforepresentation of output voltage and input currentoean

expressed as follows:
izé x| + X 12713 4 % 014713 (2.12)

where X, Xoand X3 are three time-varying variables which represent theubygthase voltages

and input line currents.

13



The zero space vectog can be determined by the following relationship:

Xo :%(x1+x2+x3) (2.13)
The inverse transformation of (2.12) and (2.13) can beenrés follows:

X, = % + xel (U-127/3 (2.14)

whereu € {123} .

In three-phase matrix converters, there are twenty ggyssible switching configurations
and only twenty one can be applied in the spactovetodulation algorithm as shown in Table

2.1 which can be categorized into three groups:

Group |. consists of eighteen switching combinations wliietermine the output voltage and
input current vectors that have fixed directions. Thgmtade of these vectors depend on the
instantaneous values of input line-to-line voltages @mput currents. These switching

combinations are called active configurations.

Group I1. consists of three switching combinations which etee zero output voltage and
input current vectors. The three output phases aneected to the same input phase. These

switching combinations are named zero configurations.

Croup I11. Consists of six switching combinations which haaeh output phase is connected to
a different input phase . The output voltage andticpurent vectors have variable directions,

but cannot be used to synthesis the reference vectors.

14



Table 2.1 Switching configuration for three-phase matrix converters.

Switching Switches On Vo o i i
configuration

+1 Si1 S Sz | 2vy/3 0 2ig1//3 ~7/6
-1 Si2 Sp1 Sz | —2vy/3 0 —2ig1//3 - /6
+2 Siz2 Sz Szz | 2v3/3 0 2ig1 /3 /2
-2 Si3 Sy Sz | —2v3/3 0 —2ig1//3 /2
+3 Sz S Sz | 2vzg/3 0 2ig1/~/3 77/6
-3 Si1 Sz Szz | —2vz5/3 0 —2ig1//3 77/6
+4 Sz S1 Sz | 2vy/3 273 2igp//3 - /6
-4 Si1 S Ss1 | —2vy/3 273 ~2igp/+/3 - /6
+5 Siz3 S Ssz | 2w3/3 273 2igp//3 /2
-5 Si2  Spz Sz2 | —2vp3/3 273 —2igp//3 /2
+6 St Sz Sz | 2vzg/3 273 2ig2/+/3 77/6
-6 Si3 Sp1 Szz | —2va5/3 273 ~2igp/+/3 77/6
+7 Si2 S S| 2vy/3 4r/3 2i3//3 ~7/6
-7 Si1 S Ss2 | —2via/3 47/3 —2i3//3 - /6
+8 Si3 Sz Sz | 2vp3/3 473 2i3//3 72
-8 Si2 S Sgz | —2v3/3 47/3 —2i3//3 /2
+9 St S1 Sz | 2vzg/3 4r/3 2i3//3 77/6
-9 Siz Sz S | —2va5/3 43 —2i3//3 77/6
0 Si S Sa 0 0

02 Sz S22 S 0 0

03 Si3 S23 Ss3 0 0

15




2.4 Duty-Cycle Space Vector Modulation M ethod

A general solution to the modulation problem for mataxiverters based on the concept of
Duty Cycle Space Vector, was presentedlBj.[The duty-cycle space vector can be developed
by utilizing space vector modulation. This methadlifies the study of the modulation
strategy. In addition, it has been demonstratedtkinaé degrees of freedom are available in
defining the modulation strategy, allowing for the cohof the instantaneous values of the
output voltages and input power factor. Thus, thebégue has been considered as the best

solution for achieving the highest voltage gain ratio

The nine duty cyclem,, can be represented by the duty cycle space vﬁoby the

following transformation:

— 2 j 2 j4r
My =7 ma + mze’? 1B rmgel /3 (2.15)

Taking into account conditions in (2.9), the inverses$formation of the equation (2.15) is:

My = %+Eej("_1)2”/ 3 (2.16)

By considering the constraints of the modulation fiomc0 < my,, < 1, the duty cycle space

vectorﬁis a geometrically illustrated ih-g plane and is always inside the equilateral triangle

which represents in Figure 2.1.

16
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N
/ m,3=0
my =1 Y2
my; =0
< 12
/ 2= °
ma=1 |~
~13 2/3

Figure 2.1 Geometrical representation for the validity i?{, .

The position of the duty cycle space veatqyinside the triangle is determined by the switching

commutations ofS,,, in a cycle period.

It is noted that the output voltage and input cursgrace vector can be written by using the

equation (2.12) as follows:
v_ozé[voﬁvozej 2”/3+v03ej4”/3] (2.17)
ﬁ=%[iiﬁiizej2”/3+ii39j4”/3] (2.18)

By substituting the equations (2.7), (2.8) and (2.1&) {8t17) and (2.18), the output voltage and

input current space vector can be rewritten as follows:

17



Vo = [m1+m2e12”/3+m e14”/3] [rrh+mze12”/3+rrp,ej4”/3] (2.19)

[ml+ m, el 473 mgel 2”/3] %[r_ni+ m5el 473 m3el 2”/3] (2.20)

Equations (2.19) and (2.20) suggest three new variahjesm and my, which can be defined

as:
—_1[— — 273 — j47z/3]

My = [m +mpel 2% 1 mge (2.21)
m = [rr_1l+@ej4”/3+rrge12”/3] (2.22)
- 1= — —

mO::—g[rrh+mz+rrg (2.23)

whereﬂ , my and m are considered as direct, inverse and zero componeifits dfity cycle

space vectors respectively.
The inverse transformation of (2.21), (2.22) and (2.23)eaexpressed by:

j(1-u)27/3

my =mg e +m elU-D27/3 o (2.24)

By substituting (2.24) into (2.19) and (2.20), the outmitage and input current space vectors

can be defined as:

vozg Vi xmj + Vixmy (2.25)

18



iizg IoX M+ 1 gxMy (2.26)

Equations (2.25) and (2.26) represent the output vollagdanput current space vector of three-

phase matrix converters in a compact form.
25 Summary

This chapter has reviewed the concept of the existeimaion and described the modulation

strategies of three-phase matrix converters.

Alesina and Venturini approach presented a genenatfwem synthesis technique i8]]
The major drawback of this approach is the maximumudutpinput voltages ratio was only
limited to one half. Later work by the same authocseased the ratio to 0.866 which is the
maximum theoretical limit using high frequency sysisd4]. In addition, the space vector
modulation approach is based on the instantanedpsitotoltage and input current space
vectors. By using this approach, the switching patielibe defined by the switching
configuration sequence. This approach was developgthtmoduced a new concept of duty
cycle space vector, which simplifies the study of mation strategies of three-phase matrix

converters.
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CHAPTER 3

Analytical Approach to Characterize Spectral

Performance of Matrix Converters

PWM is one of the cornerstone of switched converter systin addition, it has been
become the subject of intensive research for sevecad@s. A vital part of this work has

investigated the harmonics that are inevitably prodwasepart of the modulation process.

In general, the harmonic frequency components of W&IPwaveforms is quite
complex to characterize and it is often obtained lyguSFT analysis to identify their
magnitudes. However, it is known that this appradmbs not yield accurate results if the ratio
between the fundamental frequency and carrier frequenugtiinteger. In contrast, to
characterize the exact harmonic components of the RV&E&&forms without relying on the
numerical method, an analytical approach has beesidened in 3]. This approach is termed
double Fourier integral analysis, which exactly idéegithe correct harmonics magnitude when

various PWM strategies are compared against each other.

A new analytical approach for identifying the harmotaenponents of PWM waveforms
for AC/AC converters has been proposed. This analyajgpioach is termed triple Fourier
integral analysis, which is a natural extension efdbuble Fourier integral analysis that has

been developed for VSI waveforn33]. However, in this chapter, the Fourier series analgsis
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reviewed first. Then, the formulation of the double Fauaigalysis is presented. Finally, the

triple Fourier analysis is proposed follow by its apgiicn to the pulse width modulation.
3.1 Fourier Series Analysis

The principle of Fourier series is that any periodic fiomctf(t) can be expressed as an

infinite summation of sinusoidal harmonic componestsodows:

f(t) =%+ i[an cosfit) + by sin(egt)] (3.1)
n=1

whereag, a,and by, are called the Fourier coefficients ang is the fundamental frequency of

the periodic function.

The Fourier coefficients can be found as:

T
an _1 jf(t)cos(na)ot) do,t for n=0,1,2,3... (3.2)
7[—72'
1 T
by =— j f(t)sin(nwgt) dogt  for n=1,2,3... (3.3)
T
-7

The cosine and sine functions in (3.2) and (3.3) caexpeessed in Euler formula as follows:

jn a)ot — jna)ot
coshagt) = © +2e (3.4)

] ejn(l)ot _e—jna)ot
sin(Nwgt) = 3] (3.5)
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By substituting (3.4) and (3.5) into (3.2) and j3@&spectively, the Fourier series can be

expressed in a complex form as follows:

f(t) = icn x gneot (3.6)

N=—o0

The complex coefficients are then given by:

1 % iNwat
_ - — JNw,
e =" [ ft)yxeIneo (3.7)
-
The complex coefficient, is related to the real-numbereg and by, as the following:

_ap—jby

Ch 5 (3.8)
OR

% =8+ &n)

by = j(Bn ~Bn)) (3.9)

3.2 DoubleFourier Integral Analysis

The challenge associated with the non-periodidity\& M waveform was solved by the
mathematical approach called double Fourier integgralysis. The double Fourier integral
analysis is utilized as an analytical approachdémtify the harmonic components of carrier-
based PWM. This analytical approach was originattyposed for communication system by

Bennet B4] and Black B5], later by Bowes and Birdf] for power converters.
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The analysis process assumes the existence ofrheovariables as follows:

X(t) = ot + 6,

y(t) = oot + G, (3.10)

where Xx(t) andy(t) being defined as the time variation of the higlyérency carrier waveform
and low-frequency reference waveforms respectivelyis the angular frequency of the carrier
signal while wg is the angular frequency of the low-frequency nation signal.6; and 6, are

the phase angles of the carrier and low-frequeignats respectively and are assumed to be
zero.
Let us assume that the triangular sige(@) is considered for this analysis. Then, the

mathematical expression for the carrier sigia) is:
1

c(x) = —arccos(cax)) (3.11)
T

Furthermore, the modulation functian(y)is defined by

_ 1+ M cos(y)

m(y) 5

(3.12)

whereM is the modulation index with rande< M <1. Then, the switching functiori (x,y) can

be determined by the comparison of modulation fienan(y) against carrier signalx) as

follows:

f(x,y) = ®[m(y) - c(x)] (3.13)

where ®(-) is defined by:
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1 if u>0
d(u) = 3.14
(“) {o if u<o (3:19)

It can be seen from (3.14) that the switching fiorctf (X, y) takes values of 1 or O for any

combination ofx andy.

Let a double variable functio (X, y) be periodic in bottxk and y directions. It is

further assumed that and y are phase-angle variables and the period in boglstibns is2r .

f(xy)=f(x+27,y)= (X y+2r) (3.15)

The Fourier expansion can be conducted in two stéipst, the functionf (x,y) is expanded in

X direction whiley being kept a constant. In complex form, the Fawezies with coefficients

being functions ofy will read

)= 3 [Fn(y) <™ (3.16)

M=—oc0
where the complex coefficients are determined by

Fn) =5 | [ f(xy)xe ™ix (3.17)

- =7

It is obvious thatF,(Y) is periodic sincef (x, y) is periodic in direction.

72. .
Fr(y+27) = 1 j f(x,y+27)xe IM™dx
2 o

7[ -
Fin(y+27) == [ £ (x,y)xe~ I™dlx
2 e
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Fm(y+27) =Fn(y) (3.18)

Hence, the complex coefficiemli,(y) can be expanded into

Fn(y) = Z[anx el (Mxny) (3.19)
N=—0o0
where
1% -
an=2_7z IFm(y)Xe_ NYdy (3.20)

-7

Substituting the equation (3.19) into (3.16), tlhelle function variablef (x,y) can be rewritten

as following:
fy)= Y Z[anxei(mx+”y) (3.21)
M=—ocoN=—00
where
T T ]
an=4—12 [ [ y)yxe 1 MMdxdy (3.22)
T
—TT—7T

Consequently, the double Fourier can be expressezhl-numbered coefficients as following:

f(x) =20+ Y [Agn cosy) + Bop sin(ny)]
n=1

0

+ > [Ano cosmx) + Bg sin(mx)]

m=1
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- i i[ﬁmncos(nm ny) + Bppsinmx-+ ny)] (3.22)

m=1l n=—o
n=0

where the Fourier coefficientd,, and By, are determined by the following double integral

n T
Ann= iz I _[ f (X, y) cosfmx+ ny)dxdy (3.23)
2r
- =7
V/
Bmn = ;12 I j f (X, y)sin(mx+ ny)dxdy (3.24)
-T-7

The complex coefficienty,, is related to the real-numberdg,, and B, as the following

F~Aon~ 1Bmn
mn

> (3.25)
OR

Amn = Fmn+ F-m)(-n)

Bmn=J (Fmn— F_m(n)) (3.26)

Replacingx by act +6.and y by ot +6,, the equation (3.22) can be expressed in the time-

varying form as:

()= 290+ " [Aon COSO(0et + )+ BonSin(i(et + o))
n=1
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+ > [Anp cos(ct + 6;)) + Brg sin(m(agt + 6))]
m=1

» | Amn cosfM(act + 6.)) + N(wet + 6p))

+ i > (3.27)

m=1 "= 5 L+ Brnsintm(act + 0c) + n(agt + 65))

wherem and n are the carrier and baseband index variable résphc

In (3.27), the first term represents the dc comptsef PWM waveform.The first
summation term defines the output fundamentalfi@guency waveform and it is called
baseband harmonics. The second summation termsporrds to the carrier waveform
harmonics and it is called carrier harmonics. Tihalfdouble summation term defines the

sideband harmonics around the carrier harmonic coemts.
3.3 TripleFourier Integral Analysis

The triple Fourier integral analysis is a naturdkasion of the double Fourier integral
analysis that can accurately characterize the gpaaf the PWM waveforms for the matrix
converters. Without loss of generality, the sinarigle naturally sampled modulation is
considered for this analysis as well. The analgsi€ess assumes the existence of three time

variables:

X(t) = ot + 6,

y(t) = ot + 6,

Z(t) = wot + 192 (3.28)

27



where x(t), y(t) and z(t) being defined as the time variation of the higlyfrency carrier
waveform and two low-frequency reference waveforespectively.« is the angular
frequency of the carrier signal whereasand @, are two independent angular frequencies of
the two low-frequency modulation signal%, is the phase angle of the carrier frequency while

¢y and 6, are the phase angles of the two low-frequency fatida signals and all the phase

angles are assumed to be zero.

Let a triple variable functiorf (X, y, zZ) be periodic inx, y and z directions. It is further
assumed thax, y and z are phase-angle variables and the period indttions is2r .

Consequently,

f(Xy,2)=f(X+27,y,2) = T(X,y+27,2) = (X, y,2+ 27) (3.29)

With reference to the double Fourier expansiontipée Fourier expansion is possible. Since
the assumption of (X, Y, z) be periodic inx, y and z directions, the triple Fourier expansion

can be written as the following:

fxy,2= > > Z[kanxej(kx+my+”z) (3.30)
k=—-com=-oon=-w
where
1 T T T .
Fann=——5 [ [ [ T(xy,2)xe 1M gy (3.31)
87[ - —7T—7T

Therefore, the triple Fourier can be expresseeahtmumbered coefficients as following:
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f(%,2) =220+ [ Ao c05Y) + Bomo Sin(my)]
m=1

+ " [Aoon cos12) + Bogn sin(n2)]
n=1

0

+ > [Acpocoskx) + Bygosinkx)]

k=1

o0 o0 o0
+y > Z[Akmncos{(x+ My+ N2) + BymnSinkx+ my+ n2)] (3.32)
k=1 m=—oon=-c0
m=0 nz0

where the Fourier coefficientdmn, and Bymn are determined by the following triple integral

V/
A = is j j f (X, y, Z) coskx+ my+ nz)dxdydz (3.33)
8z~

ﬁ'-—aﬁ

T T T
Bxmn = % I I _f f (X, Y, 2)sin(kx+ my+ nz)dxdydz (3.34)
- —7T—7

The real coefficientsyyn and Bymnare related to the complex coefficieRty, as the
following:

Acmn= Fkmn* Fk)(=m)(=n)

Bkmn=1(Fkmn— F—k)(-m)(-n)) (3.35)

Akmn— jBkmn (3.36)

Fon =
kmn 2
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Replacingx by act+6:, y by ot + 6, and z by wot + &, the equation (3.32) can be expressed

in the time-varying form as:

£(0) =900+ Y [Agmg cosEn(ent + 6) + Bomo sinict + 61)]
m=1

0

+ " [Agon cosh(@at + 65)) + Boon Sin((ast + 6))]
n=1

0

+ > [Aoocosk(@ct + ;) + Brgosink(wct + ;)]
k=1

" AcmnCosk(act + ;) + m(ant + 61) + n(wot + 65))

+§ i 2 (3.37)

ket mon—| 4 Bnsin®(at + ) + Mt + ) + (gt + )

wherek is the carrier index variable whil® and n are two baseband index variables.

The first term of the equation (3.37) represengsdt components of PWM waveform.The
first and second summation terms define the twpuwuundamental low-frequency waveforms
and they are called baseband harmonics. The thirohstion term corresponds to the carrier
waveform harmonics and it is called carrier harmsnihe final triple summation term defines

the sideband harmonics around the carrier harmmigonents.
3.4 Application of Triple Fourier Integral Analysisto PWM

For the PWM process in matrix converters, them@is high-frequency signal calledrrier
signaland two low-frequency components are namediulation signalsThe analysis process

assumes the existence of three time variables:
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X(t) = ot + 6,
y(t) = a)mlt + 9m1_

where x(t), y(t) and z(t) being defined as the time variation of the higlyfrency carrier
waveform and two low-frequency reference waveforespectively.« is the angular

frequency of the carrier signal wheregg; and ayp are two independent angular frequencies
of the two low-frequency modulation signat%, is the phase angle of the carrier frequency

while G,qand 6o are the phase angles of the two low-frequency fadida signals and all the
phase angles are assumed to be zero.

The comparison between the carrier sige(&) and modulation functiom(y, z) will
give rise to theswitching functionThe switching functioh(x, y, z) takes the value one when

the modulation signal is greater than the cariggmad while it takes the value zero when the
modulation signal is less than the carrier sighbhke mathematical description of the modulation

process can be written as follows:

h(x, y, z) = ®(M(y, ) — (X)) (3.39)
1 if u>0
()= {o if u<o (3.40)

The triple Fourier series expansion of the ningavimg functions can be given in the

complex form by the following expression:
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h(x, y, Z) = z z z[Hkmnxej(kx+my+nz) (3.41)

k=—com=—con=—w

T T T .
Hign=—5 | | [hxy.2)xe 1K mndgygyg, (3.42)
873 g

-7 -7

If the modulation signal consists of two sinusoidamponents of two independent
frequencies and the carrier signal is triangutentthe three-dimensional integral in (3.42) will

be conducted within the unit cube with each edgdefength of2r as illustrated in Figure 3.1.

Figure 3.1 lllustration of the unit cube. For interpretatiohthe references to color in this and all

other figures, the reader is refered to the eleatreersion of this thesis.
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where X—axis represents the phase angle of the carriealsighereasy —axis andz —axis

represent the phase angles of the two componettg imodulation function.

Within the unit cube, the switching functidi{x, y, z) is non-zero only in the space

between the two surfaces that are defined by (3.43)
m(y,z)—c(x) =0 (3.43)

In addition, the line which illustrated in Figurel3is defined as follows:

y=“’—”‘1x+{9m—”—”‘19¢} (3.44)
¢ ¢
z=9m2 y {emz — Zm2 ec} (3.45)

The intersections of the line defined by (3.44)483 and the surfaces defined by (3.43)
determine the instants when the value of the switcfunction h(x, y, z) switches from 0 to 1

and vice versus.

Once the integration boundaries of the above eguoatie defined, the procedure of carrying out
the integration will be straightforward processdafined in B3]. This will be clearly explained

in the next chapter.

3.5 Summary

A new analytical approach has been presentedsrctiapter for identifying the harmonic
components of PWM waveforms for AC/AC converterswidver, the analytical method based

on three-dimensional Fourier integral will be expéal in detail for obtaining accurate spectra

33



of the switching functions and synthesized termmadntities of the matrix converter in the next

chapter.
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CHAPTER 4

Spectral Analysisof Matrix Converter Waveforms

This chapter presents an analytical approach basédree-dimensional Fourier integral to
characterize the accurate spectra of the switchingtions and synthesized output voltages and
input currents of matrix converter which was praggbby Alesina and Venturini 1983[ The
principle of this analysis is carried out in twess$. The first step is that the spectra of the
switching functions are derived based on three-dsimmal Fourier integral. The second step is
that the spectra of the output voltages and inpureats are evaluated using a convolution
operation in the frequency domain. The analytipaicsra have been compared with the
numerical spectra that are obtained from FFT. bhtawh, the total harmonic distortion (THD)
and weighted total harmonic distortion (WTHD) oétsynthesized output voltages and input

currents matrix converter are considered.
4.1 Modulation Process

Even though the modulation process of the matriweder is well understood, the purpose
of the section is just to introduce some notatiwhgh will be utilized in the subsequent

sections.

The modulation function proposed 8],[which is defined in (2.10), can be rewritterthe

following general form:
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1+ qco{a)mlt —(u+v+ 1)2;1 + qco{a)mzt —(u-v) Z‘rﬂ

va(t) = 3 (4-1)

where 0<q< 05, wyg and wyyp are related to the input frequeney and output frequency

@, as follows:
Oy = G + g (4.2)
Om2 = & — @o (4.3)

However, in order to prevent a short circuit onitifgut side and ensure uninterrupted

load current flow, the switching functiom,, (X, y, z) which is determined by (3.39), must satisfy

the following constraint condition:

3
> [hw(xy.2)]=1 for ue{123} (4.4)

v=1
With 0<hy, (X Y,2) <1 for ue{1,23},ve{1,23}.

The switching functions are generated in the folfgexpression:

DMy (Y, 2) - c(x)] if v=1
M (%, Y, 2) =S B[ (¥, 2) + M2 (¥, 2) - ()] - (x, y,2)  if v=2 (4.5)
1-hp(xy,2)—-hyo(xy,2) if v=3
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The synthesized output voltages (phase-to-newral)input currents can be determined by the

following expression:

3
Vou=2" [huw(x ¥, 2)xVy] for ue {123} (4.6)
v=1
3
ly =2, [huv (X Y, 2) x 1 6] for ve{123} (4.7)
u=1

4.2 Analytical Solution to the Spectra of Switching Functions

The triple Fourier expansion of the switching fuans given by (4.5) can be written in

complex form as follows:

w6y D= 3 3 S [Hymn(uy) < el (xmyend 4.8)

k=—0c0 M=—oon=—c0

where

VA .
Hkmn(u,v):sisj j jhuv(x,y,z)xe_J(kXJ“mW”Z)dxdydz (4.9)
R i

-

Equation (4.9) can be proceed with consideratiof8@f3), (4.1) and (4.5). Hence, the spectrum

of the nine switching functions can be determinmethree different cases:

1) Whenv =1, by substituting (4.5) into (4.9), this will leéaol

T T .
Hinn(ud) = ig [ ] [olma(y,2-ct]xe 1™+ gyayqy
- =T =7
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1 = Z a
== [ [] e~ 1 (0EMyEN2) 4y vz (4.10)
T =7 —a

wherea=zxmyu(Y,2).

If k=0, equation (4.10) will become as:

1 T

T a
HOmn(u,l): 3 J'J'e J(MYN2) gy dydz
- —

-

} for m=n=0
3
ge_j(“_z)z”/‘? form=1n=0
Homn(ul) = (4.11)
ge_j(“_l)z”/g’ for m=0,n=1
0 form,n=0

If k=0, the equation (4.10) will become as:

1 T xa k
Hkmn(u;L)——sj j je_J( XMYEN2) gy dydz
T —7—a

[(k m+ nj }
2sin T
3 2 XJm(kﬂs'CIjXJn(kﬂ:g‘CIJXe—j[m(u+2)+n(u—1)]27r/3 (4.12)
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where Jm(-) and Jn(-) are them-th andn-th order Bessel functions of the first kind
respectively.

2) Whenv =2, by substituting (4.5) into (4.9), this will leadl two steps:

e The first step is;

T T T .
Hian(@2) =— [ | [@[mua(y.2)+ mua(y,2) - c0olx e 10 ™ dxayaz
LR

3
8 .

1 % x b
[ [ [eltoemyinaaxdydz (4.13)
7T =TT

-b

87[3

whereb = z(my (Y, 2) + my2(y, 2)) .

If k=0, the equation (4.13) will become as:

, 1 %% b
HOmn(u,Z):—BI _[ J'e_l(my“L”Z)dxdydz
87 - —m—b

Z for m=n=0
3

“9ei@2e3 formo1 n=0

3
Homn(u,2) = (4.14)
_—3qe_j(”)2”/3 for m=0,n=1
0 formn=0
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If k=0, the equation (4.13) will become as:

()
2sinf| — — pa
3 2 XJm(kﬂ:s-QJxJn(k”_s'cljxe—j[m(u+1)+n(u)]2n/3

e The second step is;

Himn(U,2) = Himn(U,2) = Himn(u)

The equation (4.16) is valid when= 0. If k =0, the equation (4.16) will become:

E for m=n=0

3

%e‘j(“)Z”/3 form=1n=0
Homn(u,2) =

%e‘j(“_l)z”/s for m=0,n=1

0 form,n=0

3) Whenv =3, by substituting (4.5) into (4.9), this will leal

1 TETC
Hkmn(u,B):—sj j je‘J(kXJ’my*”Z)dxdydz
87” p n e

wherec=7zxmy3(y,2).

40

(4.15)

(4.16)

(4.17)

(4.18)



If k=0, equation (4.18) will become:

Cc
j e~ 1 (MYN2) gy dydz

T T
HOmn(U,3):—3_[ _[
—rw - —C

1
8r

1 form=n=0
3
%e‘j(“”)z”/?’ form=14,n=0
Homn(u.3) = (4.19)
%e‘j(“)z”/3 form=0,n=1
0 formn=0

If k=0, equation (4.18) will become:

1 T xC »
Hmn(u,3) =_3J‘ _[ _fe_l( XFMYHN2) gy dydz
87 - -7

—C

. Kk L m+ njﬂ}
3 2 x Jm(MJX Jn(k”—éqjxe_j[m(u+1)+n(u)]2”/3 (4.20)

Equations (4.11), (4.12), (4.16), (4.17), (4.199 &h.20) can be rearranged to formulate the

general form of the switching functions based aedkdimensional Fourier integral in (4.21),

(4.22) and (4.23).
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If k=0,

l for m=n=0
3
Hkmn(U,v) = (4.21)
%e‘j(“_v)z”/3 for m=0,n=1
0 form,n=0

If k=0,
Whenv=13
ZsinK (Bv-Dk  m+ njﬂ}
H grm(UsV) = 6 2 Jm[kﬂ . qj‘Jn[kﬂ : QJe—j[m(u+v+1)+n(u—v)]27z/3 (4.22)
kz 3 3
Whenv =2
Himn(U:V) = Hignn(U:2) = Himn(u ) (4.23)

Hence, the Fourier harmonic component forms ofl(4.@.22) and (4.23) can be developed for

a triple variable controlled waveforms in time-viay h,,(t) as four different cases:

1) Whenv=1, ue{l123}

h(t) = % + i {AOmO CO{”(a’mﬂ -(u+2 2—;[)}}

m=1
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+ il/’om Co{n(wmt —(u+2) %”m (4.24)

* i i i {Akmnco{ka’ct + ”"(a’mat -(u+2) Z—ﬂj + n[a)mzt -(u+2) Z—EJH
k=1 m= 3 3

—00N=—00
m=0 n=0

2) Whenv=2, ue{l3}

hyo(t) = A000+ Zl%mo co{rr(a)mt (u) _)ﬂ

+ i Aoon Co{n(a)mt —(u+d %rjﬂ (4.25)

Ai;mnco{ka’ct + ”’(a’mlt - (U)%{j + n[a’mZt —-(u+1 %D

m=0 n=0 | 4 BI;mnSin( Kot + H{a)mlt —(u) 2?”) + n(a’mzt —(u+1) Z_;ID

3) Whenv=2, ue{2}

|

+ i Aoon Co{n[a)mt (u+1) z?ﬂjﬂ (4.26)
n=
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A&mnCO{kwct + ”'(a’mlt —(u) 2—3ﬂj + n(a’mzt -(u+1) Z—;ID
M=—coN=—00

m=0 n=0 | 4 Bl:mnSin(ka’ct + rr(a)mlt - (u)%zj + n(a)mzt —(u+ 1)2?7[))

4) Whenv=3,ue{123}

)

m=1

+ i Aoon CO{n(a)m —(u) %ZJH (4.27)

n=1

£ £ 5 oo

k=1 m=—oon=—w
mz0 n=z0

Where the spectral coefficients are defined bypdetiFourier integral analysis as follows:

2 g
Aooo =73 Ag1o = Aoor=73

Bll(mn = Acmn® sin[(—m— n) 2?71 X {sin[(z—; —g— g)ﬂj + sin[(% + m; njﬂﬂ
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A;mn = Akmn{sin((z—sk - g - g}zj X co{(m+ n) 4?”} - sin((g + m;r n}[] X co{(m+ n) 2—3”)}
" . ((2k m n . Az [k m+n , 2r
Bxmn= Akm{—sm([?—a—z}z)xsm[(—m—n)?jJrsm([ng > jﬂjxsm((—m—n)?ﬂ

4.3 Analytical Spectra of Output Voltages and Input Currents

Let fi(t) and fy(t) be two functions ot . The product of the two time-domain functions is

denoted by
f(t) = fq(t) x fo(t) (4.28)

The convolution process can be illustrated by fiansing the product defined in (4.28) into
frequency domairf (@), which can be obtained to a convolution integfahdividual spectrum

in the frequency domain as follows

F(0) = Fi(0) ® Fz(0)

= OJ?Fl(O')x Fro(w—-o)do (4.29)

where F; (w) and F» (w) are Fourier transforms ofy(t) and f,(t), respectively.

This principle can be applied to obtain the speafrhe synthesized output voltages due
to the fact that they are the summation of the petsiof the time-domain switching functions
and the input voltages as described in (4.6).dimalar manner, the spectra of the synthesized

input currents as described in (4.7) can be detexdi
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For the case where the input voltage waveformsiatesoid defined by (2.3), the

corresponding spectrum can be calculated by
Viy (@) :%i[e—i(“—l)z”/ 35(w—a) +el U D2735(0 + ay) (4.30)

1 if =0

) (4.31)
0 otherwise

where 6(w) :{

Also, the spectrum of the switching functiohg,(X, Yy, z) that is defined by (4.8), can be
represented as a function of.

Huw@ = > > > [Himru,v) x (o — (K + Moy + o)) (4.32)

K=—00 m=—oon=—ow0

where HmAU, V) is defined by (4.21), (4.22) and (4.23).

Therefore, the spectra of the synthesized outpitagesV, (®) can be easily determined

since the spectrum of the input voltages switclitmgtions and switching functions are known

in (4.30) and (4.32) respectively.

3| ©
Vou(@) = z‘{ [Huu(0)xViy (@ —0)do

V=l —o

- 3T ,
= lzl > [e_ (273 w(@— o) +e! (U=D27/3yy u(@+ @)
v=1

(4.33)

Since the output current waveforms are sinusoithddfby (2.4), the spectra of the synthesized

input currents as described in (4.7) can be detexdhas follows:
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U=l —xo

3[ w
liy (@) = Z‘{ J.Huv(a)>< lov(w—0o)do

lo
2

[e_ 02731 (o - wp) +eIVD2BY (0 + a,)
1

Mes

(4.34)

u

It can be seen that the equations (4.33) and (4@4yery important results because they
illustrate the spectral of the synthesized outlitages and input currents that are simply the

superposition of the nine switching functions spautwith frequency shifts ote; .
4.4 Analytical and Numerical Results

The analytical results have been verified agamstiumerical simulation based on FFT.

Table 4.1 illustrates the list of parameters usetthé simulation.

Table 4.1 lllustration multiple unit-cube for one switchiegcle.

Input frequency f, | 60 Hz

Output frequency fo | 90 Hz

Input voltage amplitude v | 100V

Output current amplitude 1, | 50 A

Carrier frequency fo | 1260 Hz

Voltage gain ratio q 0.5

The analytical spectra of the nine switching fuoics have been compared with the
numerical spectra that obtained from FFT in Figudgo Figure 4.3, which clearly show a very

good agreement between the analytical and numesdsalts.
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Figure 4.1 Analytical and numerical spectra of switching ftioes h;,, h,and h;5.
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Figure 4.4 illustrates the analytical and numersgctra of phase-to- neutral output
voltages whereas the analytical and numerical spettsynthesized input currents shows in
Figure 4.5. Again, a very good agreement betweafyical and numerical spectra has been

observed for both the synthesized output voltagesigput currents.
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Figure 4.4 Analytical and numerical spectra of switching ftiags v,, ,V,,andV,;.
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Figure 4.4 (cont'd)
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Figure 4.5 Analytical and numerical spectra of switching ftioes 1,;,1;,and I;5.
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45 Total Harmonic Distortion (THD) and Weighted Total

Har monic Distortion (WTHD)

THD is the summation of all the harmonic componeitfhe voltage or current waveform
compared against the fundamental components ofal@ge or current waveform which can be

obtained as follows:

THD =+ iﬁ/nz] (4.35)

1\n=23..

On the other hand¥VTHDis needed to compare harmonic distortions thatezhosainly

by lower order harmonics and it is defined as fwHo

o0 2
WTHD= = > {V—”] (4.36)

2
Vi n=23,... N

The two formula above show the calculation for Teiil WTHD on a voltage waveform
whereV] is the amplitude of fundamental components the order of harmonic, and, is the

amplitude ofnth harmonic components. Equations (4.35) and (4.86)be also utilized to

calculate THD and WTHD for a input current waveform

Figure 4.6 and Figure 4.7 show thelDversus the voltage gain ratio of output voltages
and input currents respectively. It can be seem footh figures how the harmonic significance

reduces with increasing the voltage ratio gainbfath output voltages and input currents.
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Table 4.2 and Table 4.3 describe the THD magnitod&sgure 4.6 and Figure 4.7

respectively. It can be noted from both tables #sathe voltage gain increases, the of the output

voltages and input currents will decrease.

Table 4.2 THD magnitudes of three phase output voltages.

Voltagegainratioq THD (PhasesA - C) THD (Phase B)
0.1 22.242 22.353
0.2 11.339 11.514
0.3 7.701 7.879
0.4 5.837 5.982
0.5 4.683 4,793

Table 4.3 THD magnitudes of three phase input currents.

Voltagegainratioq THD (PhasesA - C) THD (Phase B)
0.1 36.973 32.446
0.2 18.415 15.337
0.3 12.118 9.38
0.4 8.877 6.355
0.5 6.899 4.633

The WTHD versus the voltage ratio are summarizedhf®e output voltages and input

currents in Figure 4.8 and Figure 4.9, respectivélyan also be noted that the harmonic

presented in Figure 4.8 and Figure 4.9 reducelseagditage rati¢q) increases for both output

voltages and input currents.
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Figure 4.8 (a) WTHD versus voltage gain of output voltagdsage A-C), (b) (phase B).
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Table 4.4 describes the WTHD magnitudes of FiguBe l4 can be seen that the output
voltages decrease as the voltage gain decreasesedéh Table 4.5 represents the WTHD

magnitudes of Figure 4.9. The input currents alsorehse with increasing in voltage gain.

Table 4.4 WTHD magnitudes of three phase output voltages.

Voltagegainratioq WTHD (PhasesA - C) WTHD (Phase B)
0.1 0.876 0.878
0.2 0.436 0.439
0.3 0.288 0.292
0.4 0.213 0.218
0.5 0.168 0.174

Table 4.5 WTHD magnitudes of three phase input currents.

Voltagegainratioq WTHD (PhasesA - C) WTHD (Phase B)
0.1 1.62 0.773
0.2 0.802 0.365
0.3 0.525 0.224
0.4 0.385 0.151
0.5 0.3 0.11
46 Summary

This chapter has presented an analytical approasédoon three-dimensional Fourier
integral for characterizing the spectra of the Bgsized output voltages and input currents of the
matrix converter which was proposed by Alesina ¥edturini 1981 B]. The analytical spectra

of the synthesized output voltages and input cisreas been observed a very good agreement
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with the numerical spectra obtained from FFT. Thalygtical and numerical spectra of the nine

switching functions has been shown a very goodtasuvell.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

This thesis has presented an analytical methoddb@séhree-dimensional Fourier integral to
obtain accurate spectra of the switching functiamd synthesized terminal qualities of matrix

converters.

The high frequency modulation of the matrix congewhich was proposed by Alesina and
Venturini 1981 has been considered in this anal\gisThe analytical spectra of the nine
switching functions have been compared first with mumerical spectra obtained from FFT. The
results shows very good agreement between andlgticenumerical spectra for each switching
functions. Then, the spectra of the synthesizeduwtoltages and input currents have been
verified against the numerical spectra based on Rigain, a very good agreement between the
analytical and numerical spectra has been obsdovdabth the synthesized output voltages and

input currents.

5.2 FutureWork

PWM strategies for matrix converters have beenivedencreasing attention recently. The

analytical approach of the three-dimensional Founiegral which is presented in this thesis, is
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demonstrated through the carrier based pulse widithulation of a conventional matrix

converter.

It is worth nothing that the analytical approacledually applicable to space vector based
modulation once the equivalent modulation functiaresdetermined. In addition, the modulation
process of indirect matrix converters can alsoriaygically characterized using the proposed

approach in this thesis.
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