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ABSTRACT

A problem of major concern to the electrical utility industry is

that of specifying for an operating power system the generating station

power outputs so as to supply the load requirements at the lowest

possible production costs to the system. Two primary factors which

influence the production costs are the variations in generating costs at

the different stations in the system and the variations in losses occur-

ring as energy is transferred from the different stations to the loads over

the transmission system. In this thesis a new approach to the solution

of this problem is set forth. This approach is new in terms of the vari-

ables used and in terms of the application of a minimizing process

directly to the production cost function while maintaining the identity of

the individual loads. The node (bus)voltage phase angles are utilized as

the controlling variables in the theoretical development and the required

generating station power outputs are then determined in terms of these

phase angles and other previously specified variables. While it is required

that a certain set of system operating data be supplied for each compu-

tation, changes in these data are allowable as system operating conditions

change; assumptions regarding certain variables remaining constant at

their base load values, as are involved in the developments of some

other methods, are not included.

Chapter 1 includes a general discussion of the problem considered

and a summary of some of the techniques previously developed for its

solution. In Chapter II the new sets of equations are established in terms

of the new variables; the solutions of these equations specify values of

the variables which satisfy necessary conditions for minimum system
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production cost. The sets of resulting equations are non-linear involv-

ing products of variables and trigonometric functions of other variables.

In Chapter III it is shown that the Newton-Raphson iterative technique

for obtaining solutions to systems of non-linear equations is applicable

to this problem and the sets of linear equations which are required to

be “solved successively as specified by the NewtonuRaphson technique

are then established. Use of a digital computer in the successive solu-

tion of these equations is next considered and a general computer flow

diagram is indicated.

The general technique is applied to a particular example problem

in Chapter IV. Results obtained on the MISTIC (Michigan State University

Digital Computer) in determining solutions to the equations for this

example system using a set of initial approximations to the variables

(the voltage phase angles), computing new approximations to these vari-

ables, and continuing the successive solution process are shown for

various system operating conditions. The generating station output

powers, station production costs, and system production costs corres-

ponding to the computed values of the phase angles are also calculated.

Finally, verification of the determination of a minimum of the production

cost function by the method of this thesis is shown by curves in which

the system production cost for this example is plotted as a function of

the phase angles, the phase angles being determined such that the

specified individual load power requirements are satisfied.
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CHAPTER I

INTRODUCTION

1. 1 The Problem in General Terms
 

A primary axiom of electrical power system operation is that

the combined outputs of the generating stations be such as to supply

the total load power requirements plus the losses in the system.

However, whenever these total load requirements including the losses

are less than the total capacity of the generating stations in operation,

some choice exists as to how the load is to be divided among the

various stations. The resulting problem, one of major importance to

the Operators of a power system, is that of specifying the individual

generating station power outputs so as to minimize the overall system

production costs under the Specified load conditions. This is the so-

called economic dispatch problem. In this thesis a method different

from the methods used heretofore for solution of this problem is set

forth. The method is different in terms of the variables used and in

terms of the application of a minimizing process directly to the pro-

duction cost function while maintaining the identity of the individual

loads. The variables determined, with other previously specified

variables, are sufficient to determine the required generating station

power outputs. The general method is developed in detail with a

selected set of Specified parameters, a technique for solving the result—

ing system of non-linear equations is presented, and the method is then

applied 'to a particular example system. Specifically, the procedure

developed applies to systems in which it is desired to control on an

economical basis, the Operation of thermal (fuel-burning) generating

stations; scheduling of hydroelectric plants and tie-lines is not considered.
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The major items contributing to the system production cost

include the costs of fuel, labor, maintenance, supplies, and water.

By means of measurements made on the boiler, turbine, and generator

units at a thermal generating station its fuel cost in dollars per hour

can be reasonably accurately determined as a function of station power

output. However, it is usually not possible to express the costs of

labor, maintenance, and supplies at a station as functions of the power

output of the station; these may, in some applications, be included as

a fixed percentage of the fuel costs. Depending primarily on the geo-

graphic location Of the generating stations, water may or may not

constitute a significant part of the production costs. On the basis of

these and other considerations, the production costs are, for purposes

of specifying station power outputs, in many cases represented by only

the fuel costs. Herein, the term system production cost is used to

designate all parts of the total production cost which can be expressed

as a function of the power outputs of the various generating stations.

While these parts are made up primarily of fuel costs, inclusion of

other costs is entirely possible if these costs can be expressed as

functions of the generating station output powers.

The general economic dispatch problem can be stated in more

detail as follows: given information concerning an electrical power

system including the transmission lines in operation, the generating

stations in operation, various characteristics of theSe lines and

stations, and certain Specifications regarding the loads on the system,

determine how the required total generated power should be allocated

among the various generating stations so as to minimize the overall

system production cost.

At this point it should be noted that there are other considerations

in the operation of a power system, related to Operation at minimum

production costs, but of equal or greater importance. These basic

system requirements include:



(1) Provisions that the total capacity of the generating units in

operation is greater than the sum of the load requirements

plus the system losses.

(2) Provisions that the units in operation are operating at a

level equal to the sum of the load requirements plus the

system losses, whether or not the distribution of load is

on an economic basis.

(3) Provisions for maintaining the system frequency at a

specified value.

(4) Provisions for maintaining specified voltage levels at various

points in the system.

The first item above is a matter of scheduling; once a set of

generating units are selected, certain of the production cost parameters

are then established. ' Establishment and regulation of the total generated

power level and maintenance of the system frequency are controlled by

a so—called load frequency control system. In general, this system

Operates in re8ponse to changes in system frequency and to changes in

tie-line power measurements so as to adjust the total generating station

power output to match the total load requirement and maintain a constant

frequency; it is in conjunction with such a load frequency control system

that a unit for determining conditions for economic operation performs.

Information relative to load changes is operated on in such a way as to

determine how the load changes should be allocated among the various

stations so as to minimize the system production cost.

While papers were published relating to the general subject of

economic operation of power systems as early as 1922 [1], it is only in

recent years that effects of transmission system losses and other factors

have been included and more nearly correct results obtained.

In order to provide background for the method presented in this

thesis, some of the important work done previously on this subject is

considered next with particular reference to the assumptions made in

the development s .



l. 2 Summary of Previous Work
 

1. 2. 1 Coordination Equations and Transmission Loss

Formula with B Constants

 

 

For many years the scheduling of generating station power out-

puts was carried out on a so-called equal incremental rate basis in

which the transmission losses were neglected, at least analytically.

While an approximate consideration of these losses was sometimes

included in the actual practical scheduling of station power outputs, no

method was available which allowed their inclusion in an at all accurate

manner, particularly on systems involving a transmission network

interconnecting several generating stations. The book by Steinberg and

Smith [2] published in 1943 considers much of the theory developed up

to that time.

The general economic dispatch problem, with or without trans-

mission losses included, is one which can be classified as a problem in

Constrained Minima since it involves determination of values of variables

so as to minimize a function while simultaneously satisfying at least

one auxiliary equation. The classical method for solution of such prob-

lems is that of Lagrangian multipliers [3]. The first paper in which

the Lagrangian multiplier method was applied to this problem was

published in 1949 [4]. Previously, another method had been used for

systems in which the transmission losses were neglected; the same

conclusions were reached by application of this method as by application

of the Lagrangian multiplier method. The expressions resulting from

applying the Lagrangian multiplier method to a system in which the

individual loads are combined into a single equivalent load are developed

by Kirchmayer [5]. The development shows that if transmission losses

are neglected, solution of the following simultaneous equations (1. Z. 1)

and (1. 2. 2) for P1, P2, . . . , PN yield values which satisfy necessary

conditions for a minimum of Ft, the total input to the system in dollars

per hour.
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de

=).x=1,2,...,N (1.2.1)

dPx

N

E Px+PR= 0 (1.2.2)

x=1

In equations (1. 2.1) and (1.2.2)

Fx = fX (Px) 2 input to station x in dollars per hour.

x output power of station x.

a specified total load power.

2
1

P

P

X a Lagrangian multiplier.

N = the total number of generating stations.

If transmission losses are included, the equations take the following

form,

 

dPx an

=x,x=1,2,...,N (1.2.3)

I

O

N

E Px+PL+PR- (1.2.4)

where PL = total transmission system losses.

This last set of equations has been given the name Economic

Coordination Equations, to indicate that the production costs and trans-

mission losses are both being considered, hence "coordinated. "

In order to utilize these'EOOnomic Coordination Equations in the form

shown above it is necessary to have a relation expressing the trans-

mission system losses in terms of the generator station power outputs.

The first relation which expressed the transmission system losses in

this way was proposed by George in 1943 [6]. It was in a quadratic form

as Shown in equations (1. 2. 5) and (1. 2.6) below. The constants in the



equation have Since become known as B constants and the methods

based on use of this type of equation as B constant methods. The total

transmission loss, PL’ is given as

1314233.? Pm an Pn (1.2.5)

or, in matrix form,

P =03 T6 43 (1 2 6)
L G mn G ' '

Pl B11 B12 B13 0 . o Bln

P2 Bat 522

. B31

Where “Dc: . 3 Emn .3

LPnJ - Bnl . . .......... Bnnd    
and flmn is symmetric.

In order to determine a formula of this form, a number of

assumptions are necessary. A primary requirement is that the individual

loads be replaced by a single load which can be Shown to be equivalent

to the individual loads under certain assumed conditions. Many develop-

ments [7, 8, 9, 10, 11, 12] of such a formula have involved essentially

the following assumptions.

1. Each equivalent load current is under all operating conditions

a constant complex fraction of the total load current, i. e. ,

Ik = mk IL, where 1k is an equivalent load current and IL

is the total equivalent load current. The equivalent load

current at a bus is defined as the sum of the line-charging,

synchronous condenser, and load currents at that bus.



The fraction mk is determined from a load flow study of a

"base case" for which the loads are near the average of

the expected range for the system.

2. The voltage magnitudes and angles at each generator bus

are constant at their values as determined in the base case.

3. The generator Q/P ratios remain constant at their values

determined in the base case.

If, as indicated above, the B constants are determined for only

one base case condition and then applied for conditions which are

different than for this base case, some errors are inherent in all further

calculations which utilize these data. In an attempt to decrease this

error, B constants are sometimes calculated for two or more different

loading conditions and an average of the constants computed for each

different condition is used in the final lOss formula.

In any case, once some set of B constants are established and

thereby a relation for the power'loss in the transmission system in

terms of the generating station outputs, these station power outputs can

then be determined by solution of the set of N. + l non-linear equations

(1. 2. 3) and (1. 2.4) with the expression in (1. 2. 5) substituted for PL in

(1. 2. 3) and (1. 2.4). If values of x are Specified, equations (1. 2. 3) can

be solved for P1, P2, . . . PN and then the corre5ponding total load

power, PR, calculated from (1. 2. 4). This method has been used to pre-

calculate station power output curves as functions of the total load

[13,14]. Also, analog computers have been constructed to solve the

non-linear equations on a real time basis simultaneously with changes

in. load [15, 16]. More recently, digital computers have been used to

solve the equations [5].

Loss formulas including additional terms, as shown in equation

'(1. 2. 7) below, have also been developed [17]. This form of the loss



formula permits more flexibility in the manner in which the loads are

assumed to vary.

PL=rznr>r31P B Pn+EPanO+B (1.2.7)
m mn 00

The constants of this type of equation have been determined empirically

from data obtained from a number of load flow studies at both peak

load and minimum load conditions each with different distributions of

generating station power outputs. The assumptions used in this develop-

ment are as follows:

1. Each load varies between its peak and minimum values

linearly with total system load.

2. Each source bus voltage magnitude varies between its value

at peak load and its value at minimum load linearly with

total system load.

3. The power factor of each load varies from its value at

system peak load to its value at system minimum load

linearly with total system load.

4. The generation of reactive power at each source is that

required to supply the load and maintain the source bus

voltages.

In a later paper [18], another development of this expanded form

of aloss formula was presented along with a method of determining its

constants which requires less network analyzer data than in the previous

development. The assumptions used in this deve10pment are the same

as those used in the development of the shorter form of the loss formula

except for a change in the assumption regarding the load currents.

In this case it is assumed that the individual load currents are linear

complex functions of the total load current, as given by

1.:1.°+m.1 1.2.8
1 J J LT ( )

where Ijo = value of jth load current when IL = 0.

T

1LT = total load current

mj = complex rate of change of jth load current

With respect to 1LT



1. 2. 2 Another Set of Coordination Equations and the Brownle_e_

Phase Angle Method for Losses

As shown by Ward [19] and others [5, 20], an alternate form

of Coordination Equations can be written as

  

 

 

 

 

 

de 1 ___ dFref (1.2.9)

dPx ( 1 dPI4x, ref dpref

‘ dPx I

F

where ref : incremental production cost at a reference station.

dPref

dF . . .

21-53— : incremental production cost at station x.

x

dPL

x, ref , . . .

dP 2 rate of change of transmissmn loss With respect

x to the output of station x when changes in power

output are made only by the reference station and

station x. dP

Use of equation (1. 2. 9) requires an expression for X. TEf-

dPx

Glimm (it a_._l. [14] developed an expression for this term using some of

the same approximations as used in development of the loss formula

in terms of B constants. Another expression for this term was developed

in terms of voltage phase angles by Brownlee [20]. The assumptions

inherent in the use of this latter expression are as follows:

1. The voltage magnitude at each bus remains constant.

2. The reactive power over the system is such as to maintain

the constant voltages.

The relation for a two machine system without intermediate loads or

generating stations can then be written as

dPLx, ref 2 tan 6x, ref

dP : K + tan ex,
  (1.2.10)

x ref
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difference in voltage phase angle between bus x and

the reference.

where 9x ref

K ratio of reactance to resistance of impedance between

bus x and the reference bus with all other sources and

loads open circuited.

Brownlee also proposed that the effect of generating stations located

between bus x and the reference bus could be approximated by the

expression

dPLx, ref __ 4K tan}!— Qx‘lef

dPx [K + uni-9x, ref 1’-

  (1.2.11)

Cahn [21] developed further the approximate relations presented

by Brownlee, investigated the errors involved and showed that these

errors are small in many practical systems. Using the relations in

terms of phase angles, Cahn developed formulae for both incremental

losses and total losses in terms of the generating station power outputs.

The incremental loss formula, which is the one used in economic

scheduling studies, required further assumptions. These are as follows:

1. Each load power remains a fixed fraction of the total load

power.

2. Q/P ratio of each load remains fixed.

1. 2. 3 Calvert and Sze Approach to Loss Minimization
 

. In 1958 [22] Calvert and Sze presented a new approach to loss

minimization in electrical power systems and in 1959 [23] presented

some applications of this technique. The technique starts with a set of

data Specifying the load conditions and determines corresponding gen-

erator operating conditions so as to satisfy necessary conditions for

minimizing a defined total loss function without requiring further

approximations. The total loss function is the sum of a set of loss

functions of which there is one for each element representing a generator

or a load. The loss function for each element representing a generator
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is an expression which is used to relate the losses in the generating

stations to losses in the transmission network; for each element

representing a load, the loss function is equal to the power function

of that element (a specified parameter) and is of opposite sign to the

power function of a generator element. In detail, these relations are

given by Sze and Calvert [22] as

"13(1le = actual loss at station x, watts

Fx(Px) = C XX(PX) = equivalent loss at station x: the

network watts costing the same amount

per hour as does Xx; hence Cx is an

adjustable constant.

e : Px + Fx(Px) 2 equivalent primary power input for

station x.

n

50: E 03x = total equivalent loss in all generating stations

x = 1 plus network loss. Note that at loads Fx(Px)

is zero and Px is negative. "

In the paper from which the above quotation is taken, Px desig-

nates the power input to the network at node x and the nodes of the

network are numbered 1 through '11 , hence the last summation above

is taken over all nodes. The final function, P, is the one which is

minimized. It is asserted that conditions so determined as to satisfy

requirements for minimization of the total "equivalent" loss expression

are identical with conditions for minimum cost.

In the Calvert and Sze technique, the operating conditions

(restrictions) required at the beginning of the problem are, in general,

the real and reactive power and either the voltage or current in both

magnitude and relative phase angle at all loads. The variables de-

termined in the solution of the problem are the voltages (or currents)

at the generator bus ses, these variables being determined both in

magnitude and phase angle. The generator real and reactive power



outputs are then determined as supplementary data. The Lagrangian

multiplier technique is used to determine the necessary conditions for

a minimum of the total loss function.

12



CHAPTER II

DEVELOPMENT OF CRITERIA FOR ECONOMIC

SYSTEM OPERATION

2 . 1 Introduction
 

Consideration of the presently used and the proposed methods

directed toward solution of the problem of determining conditions for

economic Operation of a power system, as summarized in Section 1. 2,

makes apparent the almost universal use of considerable numbers of

approximations and assumptions in the developments. For example,

the B constants used in the relation for power loss in a transmission

system (Equation (1. 2. 5)) are determined from sets of data from

particular base (average) system operating conditions but the formula

for power loss is used in the Economic Coordination equations over wide

ranges of system operating conditions. The Coordination equations are

then not entirely accurate when used under conditions different from the

base conditions. Several of the other procedures utilize similar

assumptions.

In the method proposed by Calvert and Sze [22], discussed in

Section 1. 5, a loss function is defined which, it is asserted, allows the

losses in the generating stations to be replaced by network losses.

This is accomplished for each generating station by multiplying its loss

expressed in terms of the power output of the station by a constant equal

to the ratio of the cost per kilowatt hour lost in the station to the cost

per kilowatt hour lost in the network. The minimizing process is then

applied to this so-called "equivalent" loss function rather than to the

actual system production cost function. In every method approximations

13
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are used in some aspects, as for example, the generating station input-

output curves are assumed to be of such a nature that they can be

adequately approximated by polynomials, and, in all practical appli-

cations, these polynomials are taken to be of the second degree so that

their derivatives are linear functions.

Although pr0ponents of the general methods utilizing B constants

in determining expressions for transmission system power loss assert

that those methods give results which lead to significant savings in the

production costs as compared withmethods in which transmission losses

are not considered, the need still exists for a more precise method and

one which is more readily adaptable to changing conditions in the power

transmission system. - In this thesis the technique develoPed (is such that

after a set of Specifications are given for certain of the variables of the

system, as for example, power at each load, bus voltage magnitudes,

etc. , another set of variables are selected so as to satisfy necessary

conditions for minimization of the production cost for the system.

Assumptions regarding polynomial approximation of the generating station

input-output curves of other methods are retained here; however, assump-

tions regarding certain variables remaining constant over wide ranges

of system Operation are not required, nor are "equivalent" loss functions

involved. The development is new in the choice of variables used (the

voltage phase angles) and in application of the Lagrangian multiplier

method to the cost function while maintaining the identity of the individual

loads.

In the sections following, the general procedure used in establish-

ing the desired set of equations is outlined, followed by a discussion of

possible sets of Specified variables. Sets of equations are then developed

for two different sets of specified variables. In the first case, the

specified variables are the voltage magnitudes at the nodes (busses) in

the system and the power of each of the elements representing the loads.
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The node voltage relative phase angles are utilized as the controlling

variables for which values are to be determined. In the second case

for which equations are developed, the Specified variables are the real

and reactive power for each of the load elements and the magnitudes of

the voltages at the generators. The controlling variables are the node

voltage phase angles and the magnitudes of the voltages at the loads.

In each case the resulting equations are non-linear involving products

of variables and trigonometric functions of other variables. Because of

these non-linearities, an iterative method of solution is necessary; the

Newton-Raphson technique [24] is shown to be applicable to the problem,

the relations required in the solution by this method are developed, and

a suitable flow diagram for a digital computer for use in obtaining solu-

tions to the set of non-linear equations is Shown. The equations derived

for the general case with the voltage phase angles as the controlling

variables are then applied to a particular example problem. Results

obtained using the MISTIC (Michigan State University Digital Computer)

for carrying out the computations for this example for several Specified

load conditions are shown. Finally, effects on the system costs of

variations in the phase angles while each load power is maintained at its

Specified value are investigated. Curves are shown which verify the

existence of minimum production cost at the values of the phase angles

determined by the method developed herein with the other parameters as

specified.

2. 2 A Summary of Steps Involved in Development of Equations
 

In brief form, the steps involved in this method of establishing a

system of equations which upon solution determine a set of necessary

conditions for economic Operation of the power system are:

1. A power system network diagram is constructed in which

the transmission system is represented by an equivalent

n + 1 vertex network in which one vertex (the ground vertex)
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is a reference and each other vertex corresponds to a bus at

which either a load or a generating station is connected.

A network junction at which neither a load nor a generating

station is connected is included as a load vertex at which

the load power is zero. The elements of the transmission

system network are determined using the equivalent 1T

representations of the transmission lines. The generators

and loads of the power system are represented by corres-

ponding elements on the network diagram.

2. The total production cost for the system is represented by a

function designated as Ft. This Ft function is the sum of

each of the cost per hour versus power output functions of

the various generating stations.

3. The power functions of the elements representing the generat-

ing stations are expressed in terms of some desired set of

interdependent variables.

4. A set of auxiliary equations are written, corresponding to

specified load conditions.

5. The Lagrangian multiplier method is used to establish a sys-

tem of equations, the solution of which determines values of

the variables which correspond to necessary conditions for a

minimum of Ft and which also satisfy the auxiliary equations.

2. 3 Specified Variables
 

Factors to be considered in a study of sets of specified variables

are: (1), the number of equations and number of unknowns for various

possible sets of specified variables such that solutions are not made

impossible due to excessive numbers of specified variables; (2), the

topological aspects of the network graph which affect the allowable

numbers and kinds of specified variables; (3), the directly related desir-

able practical requirements in actual power systems; and (4), the

relative complexity of the resulting systems of equations which are to

be solved. These factors are considered in this section. As an aid in

referring to different types of variables, it is convenient to make the

following definitions:
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Possible Variables: The possible variables of a problem

include all parameters which appear in the equations relating

to the problem and which are not fixed by some previously

specified set of conditions.

 

In the problem considered in this thesis, Possible Variables include

real powers, reactive powers, voltage magnitudes, and voltage phase

angles. Parameters which are fixed by some previously Specified set

of conditions are the adinittances of the network elements representing

the transmission lines of the power system.

Specified Variables: The specified variables are those

variables of the set of Possible Variables for which values

are assigned rather than determined by calculation.

 

TO-be-determined Variables: The to-be-determined variables

are those variables of the set of Possible Variables not included

in the set of Specified Variables.

 

Control Variables: The control variables are those variables of

the set of To-be-determined Variables which are evaluated so

as to satisfy necessary conditions for minimizing the system

production cost.

 

The equations involved in this problem (Equations (2. 3. 3) following)

are of a form such that the real power, P, and reactive power Q, of the

elements representing generators and loads are expressed as explicit

functions of the voltage magnitudes and angles. Moreover, the equations

cannot be solved directly for the voltage magnitudes and angles in terms

of the P and Q functions. Because of these facts, and Since the production

costs are expressed explicitly in terms of the power functions, the

. Control Variables are selected from among the voltage magnitudes and

angles.

Next, consider in detail the general 11 + 1 vertex network (repre-

senting the power system) and equations which relate the Possible

Variables of certain elements of this network. The transmission lines

of the power system are represented by their equivalent 1T networks and

these are interconnected as the system is interconnected so as to form
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a basic n + 1 vertex network in which the vertices are numbered 1 through

n + 1 as follows. The vertices which correspond to busses at which loads

are connected are numbered 1, 2, . . . , a - 1 and are designated as

load vertices; the vertices which correspond to busses at which generators

are connected are numbered a, a + 1, . . . , n and are designated as

generator vertices; the reference vertex (ground) is numbered n + 1.

A network junction at which neither a load or a generating station is con-

nected is represented as a load vertex and the corresponding load power

(a Specified Variable) is specified as zero. Network elements represent-

ing loads are inserted between each load vertex and the reference and

elements representing generators are inserted between each generator

vertex and the reference. Node equations [25] for these elements repre-

senting the loads and generators can be written as

   

F11 Y11 Y12 - ~ - Yin E1

_ 12 = Y21 Yzz - - - Y2n E2

. . . . . (2.3.1)

LIn. _Yn, Ynz. . . Ynnd _En   
where Ek is the voltage of the generator or load element incident to

vertex k, the element being oriented toward the reference

vertex.

1k is the current of the same element

Ykkis the sum of the admittances of the network elements

(other than the element representing the load or generator)

incident to vertex k.

ij is the negative of the sum of the admittances of the network

elements incident to both vertex k and vertex j.

*

Then, since Pk + ij 1‘ Eka

where Pk it the real power function of element k

Qk is the reactive power function of element k

and I}: is the conjugate of IR,
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equations for the real and reactive power of all the elements represent—

ing generators or loads can be written as follows:

P1 + .101

P2 +1Qz

  an + lej

I- ‘D

E1

0

0 

0

E2

. O

' =1:

Y11

a:

Y21

Ym  L

>;.

Y1: -

...Ynn

o Yln

=’.< 1

 

p.

 _

.1

>3

E:

E2

:9:

E  In

(2.3.3)

If equations (2. 3. 3) are separated into their real and imaginary

parts there are then a total of Zn non-linear equations and the complete

set of Possible Variables are the P's and Q's, each n in number, the

voltage magnitude 8 ,

¢'S, n - 1 in number, one being Specified as a reference angle.

IEI 's, n in number, and the voltage phase angles,

The Y's,

the admittances of the network elements representing the transmission

system, are assumed to be previously specified and hence are not a part

of the set of Possible Variables.

is then 4n - 1.

The total number of Possible Variables

It is to be noted that because of the form of the equations,

upon Specification or calculation of all the voltage magnitudes and phase

angles, each of the P's and Q's is then uniquely determined.

The Lagrangian multiplier method is herein used to determine

values for certain variables such that necessary conditions for a minimum

of the system production cost function are Satisfied; this method allows

determination of the values of these variables so as to satisfy simul-

taneously a set of auxiliary equations.

specify power functions of the load elements.

In this case the auxiliary equations

Although criteria are not

available for general systems of non-linear equations which allow one to

specify which variables of a set of Possible Variables can be uniquely

determined in terms of the remaining variables, or even that a solution

will always be possible, some observations can be made in this regard

for Equations (2. 3. 3) as follows:
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(1) In any one equation of the set, the number of Specified

Variables must be at least one less than the number of

Possible Variables in that equation. In this regard, proper

consideration must be given to the effect of any zero terms

in the admittance matrix in essentially removing Possible

Variables from the equation.

(2) In order to exclude possible multiple solutions after apply-

ing the Lagrangian multiplier method, the total number of

variables for which values are still to be determined cannot

exceed the total number of equations remaining.

Other factors which affect the placement of variables in the various

categories are the factors related directly to the operation of the actual

power system. In all power system Operation, it is axiomatic that the

generating system supply the power as required by the loads. In addition,

it is often the case that the bus voltage magnitudes are regulated. With

the condition of regulated voltage magnitudes in mind, the investigations

of this thesis are centered about utilization of relative voltage phase

angles as criteria for specification of generating station power outputs

for minimum production cost. That is, the bus voltage phase angles

relative to a reference are in the set of Control Variables. Correspond-

ingly, two possible sets of Specified Variables are as follows:

(1) The voltage magnitude, IEI, at each vertex (bus) in the

system and the real power, P, for each element represent-

ing a load.

(2) The voltage magnitude, IEI , at each generator vertex (bus)

and both the real power P and reactive power Q for each

element representing a load.

Consider further the immediately preceding set (1). As reference

to equations (2. 3. 3) indicates, the Q values, n in number, are uniquely

determined once all the node voltages are determined in both magnitude

and phase. Use of this set of Specified Variables then requires the

assumption that on the actual power system, reactive power capacity

is such as to establish the computed values. However, with the voltage

magnitudes in the set of Specified Variables and the voltage phase
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angles constituting the Control Variables, and since Q values are not

specified, in this case only the n equations for the P's, the real parts

of (2. 3. 3), need be examined in regard to numbers of variables and

equations. In these n equations for the real powers, the To-be-

determined Variables include the generator element P values, n-a+1

in number, and the phase angles of the bus voltages, n-l in number,

making a total of 2n-a To-be-determined Variables and n equations.

Since n > a and hence 2n-a > n in all cases of interest (i. e. there is

always more than one generator), there are always more unknowns than

equations at this point. If the n-l phase angles are determined such

that necessary conditions for a minimum of the system production cost

function are satisfied and SO as to satisfy simultaneously the a-l

equations for the P's of the elements representing the loads, there

remain n-a+l equations and n-a-I-l unknown variables, the P's of the

elements representing the generators, and values for these P's are

uniquely determined in terms of the now known voltagermagnitudes and

angles.

In certain systems, it is possible to Specify additional variables

and thereby reduce the number Of equations to be solved; however this

reduction in number of equations may be accompanied by an increased

system production cost as compared with the condition in which all

equations are considered, so Should be considered carefully in any

practical application. However, as an example, consider the voltage

phase angles at theload vertices. If it is assumed that one of these

angles is the reference angle for the system, there remain a-2 others.

If these a-2 phase angles are added to the set of Specified Variables,

the To-be-determined Variables are reduced from 2n-a to 2(n-a+1) and

the number of unknowns is still greater than the number of equations as

long as 2(n-a+1) > n. This expression can be simplified to n >‘ 2(a-1).

In words, then, if the total number of vertices (not including the
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reference vertex) is greater than twice the number of load vertices, the

voltage phase angles at the load vertices can be specified in addition to

the variables of set (1) and the number of unknowns is still greater than

the number of equations SO that, from this aspect at least, some choice

exists as to the values of the remaining unknowns. In the example con-

sidered in Section 4. 2, there are [a total of 5 vertices of which two are

load vertices, hence it is possible to include the phase angles at the

load vertices in the set of Specified Variables.

Now consider set (2), a second possible set of Specified Variables,

similarly. In this case all 2n equations (both real and imaginary parts)

of (2. 3. 3) must be included, since both the Pand the Q values for the

elements representing loads are among the Specified Variables. The

To-be-determined Variables include the generator element P values,

n-a+1 in number, the generator element Q values, n-a+1 in number, the

phase angles of the bus voltages, n-l in number, and the magnitudes of

the voltages at the load vertices, a-1 in number, making a total of 3n-a

To-be-determined Variables. Again, since n > a in all cases of interest,

there are always more unknowns than equations at this point. If the

phase angles, n-l in number, and the voltages at the load vertices, a-l

in number, are determined such that necessary conditions for a minimum

of the system operating cost function are satisfied and so as to simul-

taneously satisfy the 2(a- 1) equations for the real and reactive power of

the elements representing the loads, there remain 2(n-a+1) equations

and the same number of unknowns so that all unknowns can be determined

with this possible set of Specified Variables also.

A third consideration in selecting sets of Specified Variables is the

relative complexity of the systems of equations which result when the

Lagrangian multiplier method is applied. The equations which result

under the conditions of the Specified Variables being those of Set (1) are

developed in Section 2. 4. 1 following; those which result under the
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conditions of the Specified Variables being those of Set (2) are developed

in Section 2. 4. 2. The equations corresponding to Set (1) are significantly

less in number and of less complexity than those correSponding to Set (2).

2.4 Development of Equations
 

In this section sets of equations are developed, the solution of which

determines values of the Control Variables corresponding to necessary

conditions for a minimum of the function representing the system pro-

duction cost. The two possible sets of Specified Variables discussed in

Section 2. 3 are considered separately.

2.4. 1 Development of Equations, Case 1
 

Consider the case in which the set of Specified Variables consists

of the voltage magnitude, IEI , at each bus in the system, and the real

power, P, for each element which represents a load, and in which the

Control Variables are the relative phase angles of the bus voltages.

The power system is represented by the n +. 1 vertex network discussed

in Section 2. 3. It is to be noted again that use of this set of Specified

Variables requires the assumption that on the actual power system,

the reactive power capacity is such as to establish the values for reactive

power Q, resulting from solution of equations (2. 3. 3) with the node voltage

magnitudes as specified and the phase angles as determined.

First, let the production cost at generating station x be represented

by a function Fx as

F ==fx(Px) for a_<_x_<_n (2.4.1.1)
X

where Fx is the input to generating station x in dollars per hour and PK

is the power output of generating station x. Then, Ft’ the total input

to the system in dollars per hour, can be written as

n 11

Ft: >3 Fx= z fx(Px) (2.4.1.2)

:a X38.
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With the voltage magnitude at each vertex in the set of Specified

Variables , each Pi: and hence Ft can be expressed as a f":_:1.r.ct:1cn Of

the (bx's (x 2: 1, 2, . . . , n) where ¢x is the relative phase angle of the

voltage between vertex x and the reference vertex. The problem then

is to determine the set of ¢x's which correspond to a minimum Ft

subject to certain restrictions on the ox's. That is, since Px is to be

specified for the elements representing loads (where 1 : x_<_ a - l) and

since Px is a function of the Ox's, the Ox's must satisfy a set of auxiliary

equations. The method of Lagrangian multipliers can be applied to this

problem as follows.

First, consider expressing the Px functions for each of the gen-

erator and load elements in terms of the ‘I’x variables. Using the notation

of Section 2. 3, the Px function for each of these elements can be written

as

*- *

13x 2 i—(EXIX + Ex 1,.) (2.4.1.3)

From the node equations (2. 3. 1),

n

1X: - >3 ny Ey. (2.4.1.4)

Y = 1

But EY: IEYIE 1413', where IEYI is specified, (2.4.1.5)

and ny = (nyle 3°30! (2.4.1.6)

“ m + ) (2 4 1 7)0. o . 0

so that Ix: . z 'nyl IEer Y XY

1' = 1

n '(¢ ¢ )- - 0.
then, Px = ”H 2 IEXI lEyl )nyleJ X Y XV

Y = 1

n .

.. (d) -4) -Q ]. (2.4.1.8)

+ z IEXI lEy) Inyle 3 x Y Xy)

Y= 1
n

or, PX: - (Exl yZ: 1|EYI leyl cos (ox - (by _ axy) (2.4.1.9)

for all l<x<n.
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The auxiliary equations can be written as

wx=o l<x<a-1 (2.4.1.10)

where Wx: sz - Px (4)1, ((13, . . . , ¢nl (2.4.1.11)

and sz is specified. Substituting (2.4.1. 9) in (2.4.1.11), wx can be

written as

n

Wx = sz + IExI 23 IEyI InyI we (tbx - ¢y — axy) (2.4.1.12)

Y = 1

The Lagrangian function L can then be written as

a - 1

L=Ft+ 23 xx \Px (2.4.1.13)

x = 1

and at a minimum value of FT, if it is assumed that 4), is the reference

phase angle, the following equations must be satisfied.

 

 

th d a -l o

+ :-

ac). art. x2311" 11)..

(2.4.1.14)

6F, TA 2' 1 x - o
d¢n ¢n X -1 X Wx

“’1 = 0

(£4 =‘o (2.4.1.15)

Note that (2.4. 1.14) is a set of n - 1 equations and (2.4.1.15) is a set

of a - 1 equations. In total there are n + a - 2 equations in the same

number of unknowns, the unknowns being (1);, O3, . . . , ¢n and

XI, XZ, O I I ’ Xaqio



 

- ‘

F'h‘.

“Q
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In order to examine these equations in more detail, consider the follow-

ing. Using (2.4. 1. 2) and (2.4. 1.1),

 

5F n n

7—); 39— 2 Ex: 2 dF" 5P? (2.4.1.16)

¢J ¢sza xza dPx d(1).]

since each Fx is a function only of its own Px. There is then introduced

(IF I

into the e uations another set of n- a-1 = n-a+1 variables, the x Sq ( ) .31.)?

where a _<_ x_<_ n. The evaluation of these variables is discussed following

de

dPx

 

equation (2.4. 1. 28) of this section. Now, let

(2.4.1.16) is

:' Fx', then

an

deb-
.) x

be

a¢j

  

n

= 2 Fx' (2.4.1.17)

a

Since )‘x is a constant, the other terms in (2.4.1.14) can be written as

 

 

-1 a -1

b a a Wx
7;:- 2 xx (PX: 2 xx a ¢° . (2.4.1.18)

J x: 1 x =1 J

P

Now consider the terms £35 , 2:j_<_ n. Using Px as in (2.4.1. 9),

J'

be _ .
W5- j*X_ '[Ex] IEJI [ij] 81n(¢x-¢j-ij) (2.4.1.19)

be n
and a4) = IExI Z) lEY' ley' sin (ox - (by -O.xy) (2.4.1.20)

X :1
Y

y=i=x

Also, using Wx as in (2.4. 1.12),

bWx

 

and,

3W): n .

y :
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The jth equation of set (2.4.1.14) is then

n

.. 2 FX' |Exl IEjI Iijl sin (cpx- ¢j - axj)

x=a

x¢j

n

+ Fj' IEjl Z IEYI [ijl 8111 NH - ¢Y - ij)

y=1

YH

a-l

+ 2 xx lExl IEjI Iijl 51n(¢x' ¢j " QXj)

x=1

X j

n

- xj IEjI Z‘. IEYI IYjYI Sln (cpj - ¢Y - ajy) = O (2.4.1.23)

Y=1

1'71

where the last term occurs only for 1_<_ j _<_ a-l.

Since Gmn is a constant in each case, (2. 4. 1. 23) can be rewritten

using the following

sin (om - on - amn) = cos an sin(<)>l,n - ¢n) - sin cmn cos (om - on)

(2.4.1.24)

costs... - s. - smn) = cos am. cos (4»... - «1.9 + sin amn sin 14>... - sn)

(2.4.1.25)

and IYmnI cos amn = gmn (2.4.1. 26)

IYmnI sin amn = bmn (2.4.1.27)

Then, (2.4.1. 23), the jth equation of set (2.4.1.14), can be written as

I1

— 2 FX' lExl IEjI [ng81n(<]>x ' ¢j) ' ij COS (433‘ " ¢j)]

X: a

x#j

n

+ Fj' lEjl VI; 1 IEYI [gjy Sin ((bj - (by) " bjy C05 (¢j ’ ¢Y)]

Y*j
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a -1

+ E )‘x IExI lEjl [ng 5111(49}; - ij) - bxj cos (¢x — ¢j)]

x=1

x#j

n

.. )‘j IEJI YZE-l IEYI [gjy Sln (cpj - (by) - bjy cos (cpj - ¢y)]: 0

vii (2.4.1.28)

Another form results if substitutions are made as

sin (‘I’m - on) = sin 45m cos cpn - cos cpm sin 9n (2.4.1. 29)

cos (Om - ¢n) = cos ¢m cos ¢n + Sin ¢m sin ¢n (2.4.1. 30)

Then, (2.4.1.28), the 3th equation of set (2.4.1.14) is

n

i

- 2 FX' IEXI IEjl [ng (sin <I>x C05 4’3 ' COS ¢x Sin 4’1"

4t
: I - bxj(C°S 9x cos ¢j + Sin 9x Sin ¢j)]

n

+ Fj' IE3] 2— 1 IEyI [ng (sin cpj cos (by - cos ¢j sin ¢y)

Y* .1 - bjy (COS ¢j COS cpy + sin ¢j Sin 43y)

a - l

+ x2 1 )‘x [Exl IEj' [ng (sin ‘px COS ¢j " COS 9x sin (I’j)

x *3 - bxj (cos ¢x cos ¢j + sin ¢x Sin ¢j)]

n

- xj IEjI VE: 1 IEYI [ng (sin cpj cos ¢y - cos ¢j Sin (by)

Y j - bjy (cos cpj cos (by + sin cpj sin ¢y)] = 0

(2.4.1.31)

Px and “IX can be written in similar forms. Considering Px as in

(2.4.1. 9) and making use of (2.4.1. 24), (2.4. 1. 25), (2.4.1. 26), and

(2.4.1. 27), Px can be written as:

n

Y = 1

(2.4.1.32)
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or, using (2.4.1. 29) and (2.4.1.30)

1'1

PX : - |EXI Z 1 IEY| [gXY(COS ¢X COS ¢Y + Sin ¢x Sin (by)

y Z

+ bxy (sin (bx cos (by - cos 9x sin $3,) I

(2.4.1.33)

And, considering Wx as in (2.4.1.12) and making use of the same

relations as used for PX, Wx can be written as

n

sz + IEXI E IEYI [gxy COS (¢x - $3,) How sin (45; - ¢YI I

Y = 1

Wx

(2.4.1.34)

or,

Wx

n

pXS + IEXI 2 Us)" [gxy(cos ox cos (by + sin ¢x sin (by)

Y
1

+ bxy (sin ¢x cos (by - cos ‘I’x sin (by) ]

(2.4.1.35)

In certain cases of interest, it is possible to include additional

variables in the set of Specified Variables. For example, as discussed

in Section 2. 3, it may be possible to specify (bx for each load element

(1 _<_ x: a-l). Then, in set (2.4.1.14) the number of equations and Oj

variables is reduced from (n-l) to (n-a+1). Under such conditions,

(2.4. 1. 31) the jth equation of set (2.4.1.14), can be written as, where

a_<.1'_<_ n.

Fx' IEXI IEjI [ng(sin ¢x cos ¢j - cos ¢x Sln cpj)

#
1
1
5
1
5

x a

x j -bxj(cos (bx cos ¢j + sin (bx sin ¢j)]

a - 1

.t . . ' , _ , . _ . .+ FJ IEJI y? 1 [gJy(Ery 8111 ch) E1y cos OJ) bjy(Ery cos 4))

n

y Sin ¢j) ] + th |Ej| yE: a IEyl [gjy(sin ¢j cos 45y - cos 4’3 Sin (by)

Y *J’

+E.
1
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-bjy(cos ¢j cos ¢Y + Sin ¢j 5111 (by) 1

a - 1

+ Z 1 XX IEjl [:ng (EIX COS ¢j - Erx sin ¢j) (2.4.1.36)

x r:

- bxy(Erx cos ¢j + Eix sin ¢j) = 0

J4?
where Erx — We Ex 6 1px

_ J
Eix .. gm Exe x

Similarly, PX, from (2.4. 1. 33),1 for a < x < n, if ‘I’j is specified for

. a - _ .-

1_<_ j i a- 1, IS PX = 'lExl z [gxy(ErY COS ¢x + Ely Sin ¢x)

v = 1

+ bXY (Ery sin ¢x - Eiy cos 9x11

n

_ |Ex| 2 'Eyl [gxy(cos ex cos oy + sin 43,, sin ey)

y=a

yix

. . 2
+ bxy(51n 9x cos 91y - cos ‘l’x $111 (by) ]-gxx lExl

(2.4.1. 37)

And Wx' from (2.4.1. 35), if ¢j is specified for lfij: a-1, is

a - 1

Wx = PXS + gXX IEXI 2 + Z 1 [gXY (Erx Ery + Eix EiY)

y 2

Y I X

n

+ be(Eix Ery - Erx Eiy) ] +y23 a IEYI [gxy(Erx cos ¢y + Eix sin (by)

+ bxy(Eix cos (by - Erx sin (by) ] (2.4.1. 38)

Immediately preceding equation (2. 4. 1. 17) it is noted that an

additional set of n-a+1 variables, denoted as Fx' (a: x: n), had been intro-

duced into the equations. Simultaneous evaluation of these variables,

along with the others, is required. Consider Fx = x(Px)' the input to

station x in dollars per hour as a function of the output power of that

station. In general, this function can be adequately approximated over
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various ranges by appropriately chosen polynomials. For any particular

case, this function would be so chosen as to approximate measured

values to a desired degree of accuracy. Here, for purposes of avoiding

further complication, it is assumed that an equation of the second degree

is satisfactory. That is, let

Fx = kox + klex + kzxpx" (2.4.1.39)

and then

de

FX' 2 a-P—g = klx ‘I' ZkZXPX (2.4.1.40)

It is to be noted that because of the use of the convention of orienting both

E and I in the Same direction for each generator element and each load

element, Px will be a negative number for elements representing generat-

ing stations (and a positive number for the elements representing loads).

Then, in (2.4.1.39), if k0 > o, k, < o, and k2 > 0, FX is positive but Fx'

(as given by (2.4.1.40) is negative.

Another set of n-a+1 equations can then be added to the previous

sets (2.4.1.14) and (2.4. 1.15) making a total, in the general case, of

2n-1 equations in the same number of unknowns, or, if the phase angles

at the load vertices are included in the set of Specified Variables, there

are a total Of 2n-a+1 equations in the same number of unknowns. Each

of these added equations is of the form

FX' - k,x - Zkszx= o (2.4.1.41)

where Px is as given by (2.4.1. 33).

In summary then, in this case in which the set of Specified Variables

consists of the voltage magnitudes at each bus in the power system and

the power for each element representing a load, the equations to be solved

are as follows:



32

 

 

n bpx a-l wa

E F' + X —— 0

x=a x O¢z x=1 X 34>;

n 3px a-l bWx .

23 F ' —— + E X = ‘0 (2.4.1.42)

x=a x a¢n x=1 x ad)“

“(1192: 4’3: ---2¢n): 0

“Ia-1 ((1)2: <193’ ° ° . 9 ¢n):0

Fa"k1a' Zkzapa -.- 0

I

OFn' - kin - Zan Pn

There are n-l equations of the first form, a-l equations of the

second form and n-a+1 equations of the third form. The unknowns are as

follows:

¢j 2:j5_n atotalofn-l

)‘x 1_<_x:a-1 atotal ofa-l

Fy' a_<_y_<_n atotal Of n-a+1.

The jth equation of the first form is indicated in detail in (2. 4. 1. 31),

or, if ¢j is Specified for 1_<_j :a-l, in (2.4.1. 36). A typical equation of

the second form is indicated in (2.4. 1. 35), or, if ¢j is specified for

l<_j _<_a-l, in (2.4. 1. 38). The form of Px useful in the last set of

equations is indicated in (2.4.1. 33), or, if ¢j is specified for 1_<_jf_ a-l,

in (2.4.1.37).
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2. 4. 2 Development of Equations, Case 2
 

Another set of equations results if the Specified Variables are those

of Set (2) of Section 2. 3. The development of these equations is presented

here, primarily as an illustration of an alternate approach; solution of the

equations or further investigation of this case is not included.

This case is one in which the set of Specified Variables includes

the real power, P, and reactive power, Q, for each element which repre-

sents a load, and the voltage magnitude, IEI , at each generator vertex

and in which the set of Control Variables is made up of the relative phase

angles of the bus voltages, except for the one designated as reference,

and the voltage magnitudes at the load vertices.

Some of the relations of the previous section apply here as well,

however those necessary to this development are repeated here for

completeness. The relation which it is desired to minimize is again

n n

Ft 2' Z [Fx: 2 fx (Px) (2.4.2.1)

x = a x = a

where the symbols have the same meaning as previously.

Also, the PK function can be expressed again as

1 >:< 4

PK = 2- (Exlx + Ex Ix) (2.4. 2.2)

or, as in (2.4.1. 9), as

n

Px : - IEXI 2‘. 1[Eyl leyI cos (9x - (by "ny1 (2.4.2.3)

Y :

Also, Qx, the reactive power function for each of the generator and load

elements can be written as

. -1 :1:

0,533— (Ex Ix-Exlx) (2.4.2.4)

and, using (2.4.1.4) through (2.4.1. 7), this can be written as

n

Qx=-IEXI z 113,.) IYXYI sinux- s - Oxy) (2.4.2.5)

y 1

Y
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The equations of constraint can be written as

pr= 0 and qu=0. 1§x_<_a--1 (2.4.2.6)

where

pr= sz - Px(¢1. 4m. - . ‘I’nl (2.4.2.7)

and

(2.4.2.8)
I’qx = .st - 0.. (s1. s... . , <1.)

where sz and QXS are Specified.

Then, substituting (2.4. 2. 3) in (2.4. 2.7) and (2.4. 2. 5) in (2.4. 28), the

last two relations can be written as

n

WPX: sz + [Ex] 23 IEYI Inyl cos (ox - (by - dxy) (2.4.2.9)

)7 = 1

and

n

qu= st + IEXI Z lEyl InyI sin (sx — ¢y - axy) (2.4.2.10)

Y = 1

The Lagrangian function for this case can be written as

a -1 a -1

L=Ft+ Z )tpx \[Jpx+ E 1 qu qu (2.4.2.11)

x :x=1

Then, at an extreme value of Ft, the following equations must be

satisfied

th
-—- + Z X ———*—- + Z qu W

Z

a-l a‘Vpx aZ-l avqx _



 

aFt +az-1 )‘P bWPx+a

x

81E.) x=1 112.1 x

aFt + 322: 1 X awpx

[Pm-'0

\vpa-l:o

35

1 X qux __ O

, qx alEn

(2.4.2.12)

X: 1 ‘1}; a [Ea-1|

LV91 - 0

‘1’an : 0

In total, the above consists of 3a+n-4 equations in the same nmnber

of unknowns, the unknowns being 4),, (b3,

1E1111EZ|9 ° ° 0 :1Ea_11:)‘P19 I‘Pz,

. , an_,.

The partial derivatives are as follows:

Using (2.4. 2.1)

 

 

 

9Ft 5 n n
‘-‘ . E F = E

5 . 3 x

¢J ‘1’sz a x:

and

th _ 2 de a 1?x

A b f .. de

s e ore, writing dPx -

OFt : % Fx' be

5% x=a ah

3F. n

= E F'

311331 x=a x alE-I

 

0s¢n9

, , Xpa-1’ and Xqi, Xq‘,

dFX a PX

dPx 53? (2.4.2.13)

(2.4.2.14)

Fx', these equations can be written as

(2.4.2.15)

(2.4.2.16)
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Further relations required are

 

 

 

 

 

 

 

 

 

 

be = - IExl |E,~( )ij) sin (4.x - s3. '8ij (2,402.17,

2 <I>j j * x

DPX n .

a ¢x 2 (Ex! VB: 1 IEyI Inyl sm (ex — s3. .. axy) (2.4.2.18)

y 1t x

an

a”; I * :- IEXI Iijl cos(¢x-¢j-axj) (2.4.2.19)

J j x

6%

b 4:: : 'EX' 1331' 'ijl Sin (<I>x - ¢j - sxj) (2.4.2.20)

3 j# x

avpx n .

a ¢x = - IEXI yr: 1Hayl IYXYI sm (ex - ¢y - o‘xy) (2.4.2.21)

yzt x

Oqu

a o,- '1: s-IExl IEJ-I leyl cos (ctx - c),- - axy) (2.4.2.22)

j x

6‘qu n

T = + IExl z lEyl Inyl cos (ex — <I>y — uxy) (2.4.2.23)

q>X y : l

y i x

aVPx
6 IE I = IExI IYxJ-l cos (sx - <15— 0ij (2.4.2.24)

j J# x

8pr n

T—IEXI Z 1 IEYI leyl cos (ox - cpy “axyl + 2 |Ex| lexl cos “xx

Y:

Y * x
(2.4.2.25)

6 q

Ellis?) 3 'Ex' lejl sin (<15. - s, - ij) (2.4.2.26)

J j* x

8 <1 n
————;[)l;x|: Z) lEyl ley] sin (([DX — (by — axy)-2 IEXI IYXX' sin an

=1

Y* x
(2.4.2.27)
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Combining these relations as required, the jth equation of the first form

of set (2.4. 2.12) is

n

I1

x: a
Yzl

x=I=j
3. Ij

Sin (“Pj ‘ 9‘1." " 81$!)

a -1
n

+ z xpx lExI 112,-: IYXJ-I sm<¢x- s.- 'ijI _ 1p; lEj' Z "W ”334
x=1 37:1

x j Yi‘j

sin (([Dj - ¢y' ij)

a- 1
n

- z qu IEXI IEJI lejl cos(¢x- <I>j -<1xj) - M) “311 2 1E)" 'ij|
x=1

y: 1

x4=j ys'J'

cos (¢j - ¢y - aJ-Y) == 0

(2.4.2.28)

where xpj and xqj occur only for 1_<_ j _<_ a—l.

Similarly, the mth equation of the second form of set (2.4. 2. 12) is

a-ln

"' E Fx' [Ex] IYxrnl C°S(¢x ‘ ¢m ‘ 0txrn) +x2=:1 kpx IExI IYxrnI

x: a x=tm

cos (4),, - ¢m - axm)

n

+ )‘pm 2 1 lEY‘ [mel cos(¢m - ¢y - uxy) + )‘Prn 2 IEml IYmmI cos “mm

y:

y# m

a -1 n

2 qu [Ex] IYxml 5111(‘13x ’ ¢m " otxrn) +Xq1n 2 [Eyl lmel

x =1 y=1

xrtm 37* m

sin Wm - 43y - me) - )‘Qm 2 .IEmI IYmml sin 9mm: 0

(2.4. 2. 29)



38

These last two equations can be written in forms similar to those

of Section (2.4.1) using (2.4.1. 24) through (2.4.1. 27) and (2.4.1. 29)

and (2.4.1. 30).

Then, (2.4. 2. 28), the jth equation of the first form of set (2.4.2.12), is

n

_ IEjl 2 FX' IEXI [ng(51n 45x COS qu - COS ([Dx sin 43.1)

X = a

x =1 '
‘ '

J -bXJ-(cos 9x cos ¢j + 8111 ‘px Sln oj)]

n

.t . - . ' - - ' ’+ F, 113,1 2_ llEyl [g,y(sm o, cos o, cos 4,8111 sy)

y*j -b' (cos ¢°cos + sin¢' 51114) I]N J ¢Y - J y‘

a - l

+ lEjl z: xpx IEXI [ng(sin 45. cos ¢j - COS <I>x sin 45')

x = 1

xi j
. .

-bxj(cos ¢x cos oj + 8111 TX 5111 ¢j11

n

_ )‘Pj 1Ej1 z lEy| [gjy(31n cpj cos ¢y - cos ¢js1n (by)

Y = 1

Y*1 -b- (eose-eoso +sin¢-sin¢I]
JY J Y J y

a - 1

_ IEJI z qu [Ex] [ng(cos (bx cos ¢j + sin ¢x sin cbj)

x = 1

x # ' - °3 + bxj(51n (bx cos ¢j - cos ¢x 3111 ¢j11

n

+ )‘Qj IEjI z 'Ey' [gjy (cos OJ cos (by + Sln ¢j Sln ¢y1

Y = 1

y *1’
+bjy(sin ¢j cos ¢y - cos ¢j sin ¢y1 ] .2 0

(2.4.2. 30)

and (2.4. 2. 29), the mth equation of the second form of set (2.4. 2.12),

is



3 ’7

n

.. 2 FX' IEXI [gmucs sx cos 4... + sin on sin on.)

x a

+ blm(sin ¢x cos (I’m — COS (bx 5111 41m) 1

a — 1

+ Z 1 )‘px1Exl [gxrn(C05 ‘1’): C05 43m 1" sin ¢x sin (pm)

x _.

x m + bm(Sin 41x cos ¢m -- cos 9x Sin ¢m)]

n

+ )‘Pm z; ”33" [gmy(cos om cos (by. + sin ¢m sin $31)

Y = 1

Y‘ m + bmy(sin 43m cos ¢Y - cos ‘I’m Sin (by) ]

a - 1

+ E qu [Ex] [gm(sin 9x COS 49m " COS ¢x sin <pm)

x a l

x m . .
- b,m1 (cos ¢x cos ¢m + 5111 (bx 3111 (19m)]

n

+ xqm z 1 [EYI [gm.y(sin (I’m cos ‘1’")7 - cos ¢m sin dpy)

Y Z

Y m - bmy(cos (pm cos (by + sin (Pm sin (by) 1 '

+ 2 IEml [1pm,8mm - xqm bmm] = 0 (2.4.2.31)

Px' WRX' Qx’ \qu can all be written in forms Similar to the last

two equations. That is,

n

Px : - IEXI Z 1[EYJ [gxy(cos ¢x cos ¢y + sin 9x sin (by)

y '2

+ bxy(sin ¢x cos ¢y - cos ¢x sin ¢y11 (2.4. 2. 32)

n

Qx :-|EX| Z“ IEYI [gxy(sin 43x cos (by - cos ‘I’x sin (by)

y 1

.- bxy(cos 49x cos (by + sin ¢x sin oy)] (2.4. 2. 33)

n

pr = sz + IEXI Z IEYI [gxflcos 49x cos cpy + sin ox sin ¢V)

Y = 1 ‘

+ bxy(sin ¢x cos (jay — cos 49x sin ey.)] (2.4. 2. 34)
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n

qu : st + IEXI '23 'E‘j'l [gxygfsin ¢x cos (by - cos ‘3’); sin (by)

Y = 1

- bxy-(cos ¢x cos 4:}, + sin 45;): sin 451)] (2.4. 2. 35)

It is noted that the equations of this section, as compared with

those of Section (2.4.1), are of equal or greater complexity and are

greater in number. Since the formulation offers no distinct advantage

in terms of requirements on the power system or otherwise, and, as a

practical matter it is usually necessary that the magnitude of the voltages

at the loads be at a Specified level and not varied over wide ranges as could

be required here, the remainder of this thesis is devoted to further

investigation of the developments of Section (2. 4. 1).

Z. 5 Conditions Sufficient for Minimum of Ft
 

Returning to the conditions considered in Section 2.4. l, in this

section sets of conditions sufficient for a minimum of the production cost

function, Ft, are determined. First, this function, Ft, is expanded by

Taylor's theorem [25] about the point at which the necessary conditions

for a minimum are met. In terms of the node voltage phase angles,

which are subject to the restrictions of equations (2.4. 1. 15), this expansion

can be written as follows:

Ft<¢l + A491: $2 + A¢2: ° ° ° 2 4311 + A¢n) : Ft(¢l9 (bl: ° ° ' ’ ‘i’n’

+dFt(¢1, 432, . . . , Cbn) +113.- szt(¢19 452: 0 0 0 a 4511)

1
+. . .+ :— ant(¢1,¢z, . . . , 4am) + Rn (2.5.1)

At the point at which the necessary conditions for a minimum are met,

dram. (pg, . . . , (tn) = 0 (2.5.2)

and, with the remainder of the third order,
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Ft“)! + A431: 432 + A432: 0 0 ° 9 4311+ A¢n) " Fti¢1s (b2: ' ° ° ! 4’11)

= 7‘; <12]?th cpz, . . . , 4>n) +6 p2 (2.5.3)

where p2 = (dcbl)z + (d¢2)2 + . . . + (d¢n)2 and 6 tends to zero with p.

Hence the sign of the functional difference is determined essentially by

the sign of dZFt and the problem is to determine conditions such that

szt is positive in a neighborhood of the point at which the necessary

conditions for a minimum are met. In order to determine an expression

for dZFt(¢1, (pa, . . . , 4m), Ft, from (2.4. 1. 2), is written as

n n

Ft: 2- F = 2: fx(Px) (2.5.4)
X

X a X533.

then, in terms of the dependent variable Px’

 

n dF n

_. X -.
dFt— E dp dPx— 2 FX' dPx (2.5.5)

x = a x x 2 a

and [27],

n n

dZF - 2 F ' dZP + 2 F "(dP )2 (2 5 6)
t " x x x x ' °

x = a x :z a

where

F H_ dZFx

X ‘ dsz

Under the assumption that each Fx can be adequately represented by a

polynomial of the second degree as

sz ko+1<., Px+k2sz (2.5.7)

where k0, k2 > 0, kl < 0 and Px < 0, then

Fx' = kl+ 2k2Px<0 (2.5.8)

and

n

F = 2k2>0 (3-5-9)X
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The second summation of (Z. 5. 6) is then always positive since each

term is a product of two positive terms, one being a squared term.

In order to determine the signs of the terms in the fir st summation

of (2. 5. 6), it is necessary to obtain an expression for dz'Px. Symbolically,

in terms of the node voltage phase angles,

 

Px W1: 41;. . - . , <bn) (2.5.10)

Then, 11

an
dP z ..._.. d¢k (2.5.11)

x k: 1 aq’k

and

n n n

all: azp

dZP = 2: -——’§ ((1.1))2 + z z . X. d¢- (14). (2.5.12)

x 1:1 aq>1 l i=1j21a¢1a¢J 1 J

i i J

Now, to obtain the partial derivatives needed, using Px as in (2.4. 1. 33),

rewritten here for convenience,

 

 

n

Px : - |Exly21 1[Eyl [gxy(cos ¢x cos ¢y + sin (bx sin ¢y)

+ bXY (sin 49x cos ¢y - cos ¢x sin ¢‘y)] (Z. 5.13)

3px _ . .
3491 14 x— - IEXI lEil [gxi(-cos (bx Sln (bi + Sin ¢x cos chi)

+ bxi(-sin ¢x sin ¢i - cos 41x cos 411)] (2. 5.14)

3px n
a (bx 2. - (Exl y? 1 IEyl [gxy(-sm (bx cos ¢y + cos ¢x Sln (by)

Y i x

+ bxy(C°S ¢x cos cpy + sin ‘i’x sin ¢Y)] (2. 5.15)

a2PX _. E E. . ° ' °& 4’12 .1 — - I xI l 1I [gx1(-cos (bx cos ¢i - Sln ¢x 811] (pl)

1

+ bxi(—sin ox cos (bi + cos ‘i’x sin 491)] (Z. 5.16)
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521: n . .
W? :: _ IEXI vi 1 [EV] [gxy(-—cos 45x cos (by - Sin ‘i’x Sin (by)

y '1 x

+ bxy(-sin cpx cos (by + cos ¢x sin ¢Y)] (Z. 5.17)

all: .
____x. = 0

a¢z¢>¢j :ii (2.5.18)

32? MP . .
W): = a¢x3x¢i = - IEXI IEiI [gxi(sm 45x Sln ¢i + cos ¢k

cos (pi) +bxi(—cos ¢x sin ‘i’i + sin ¢x cos 491)] (2. 5.19)

Then, substituting these relations into (2. 5. 12), the result is

n

dZPx : 2 1 lEx) lEYI [gxy(cos ¢x cos (by + sin ¢xs in (by)

y 2

y 1) x

+ bxy-(sin 41x cos (by - cos ¢x sin (by) ] (d¢y)z

n

+ IEXI. E IEyl [gxy(cos ¢x cos 4)}, + sin ¢x sin (by)

v = 1

y =1 x

+ bxy(sin ox cos (by - cos 41x sin (by) ] (d¢x)2

n

.. )3 IEXI- lEyl [gxy(sin ¢x sin day + cos 41x cos ¢Y)

Y = 1

Y =1 x
+ bxy("'c°s ¢x sin ¢Y + sin 4’}: cos (by) ] (d¢x)(d¢y)

n

_ 2, [Ex] [Eyl [gxy(sin ¢x sin (by + cos ¢x cos (by)

Y = 1

:t . .
V x + bxyi'cos ¢x Sln (by + $111 (bx COS (by) ] (doy) (d¢x)

(2.5. 20)

or
n

dZPx = IExl z 1 IEYI [gxy1cos 45. cos W + sin 45. sin 45)
y :

y i x

+ bxy(sin ¢x cos (by - cos ¢x sin ¢y) ] (d4)x - d¢y)2 (2. 5. 21)
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or, in another form,

n

dsz = lEx| yz: 1|12:y| [gxycos(¢x - 41y) + bxy sin(<1>X - ¢y) ](d¢x - d¢y12

1"” x (2.5.22)

In order that szt (as given by (2. 5. 6)) be positive, a sufficient condition

is that for a_<_ x_<_ n, dsz (as given by 2. 5. 22)) be negative for all d431,

i = 1, 2, . . . , 11, since in the expression for szt’ (2.5.6), dsz is

multiplied by a negative quantity, Fx' and, as is noted immediately follow-

ing (2. 5. 9), the second summation of (2. 5. 6) is always positive. The

expression for dsz as given by (2. 5. 22) is a quadratic form which can be

written as

(1sz = a'nx (d¢1)2+ a122}; ((1412)?‘ + . - - +axxx (d¢x)z + - - . +

annx (d¢n)z + zaxzx d¢1d¢z + 2313;; d¢1d¢3 + - - - +

Zaxxx d¢1d¢x + . . . + Zamxdcpldcpn + 2a23xd¢zd¢3+

. + ZazXx d¢zd¢x + . . . + 23'an d¢zd¢n + . . . +

2an_l, nx d¢n-1 d¢n (2. 5. 23)

where

aiix i 4. x = 13x1 ”31' [3x1 cos (4%; ' 4’1) +in sin (45; - 411) ]

n

axxx = IEXI Z— 1IEYI [gxy COS (cpx - (by) + bxy sin (cpx - ¢y)]

$1..

aijx:0 i¥x,j#x

and

aixx = - IEXI IEiI [gxi cos (ox - (:1) + bxi(sin (bx - 43)]

A quadratic form which is negative for all values of the variables,

as is desired here, is said to be negative definite. A necessary and
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sufficient condition for (2. 5. 23) to be a negative definite quadratic form

is that [29]

  

aux 312}; aux

a11x a11.2); a~21x a22.x azax

a~21); a2.7.x 6131x 332x assx

Where

a - = a

1.3x 31x

Hence, a set of conditions which are sufficient for a minimum of

Ft at the point at which the necessary conditions are met, with Fx' given

as in (2. 5. 8) and Ex" as in (2. 5. 9), are that (2. 5. 24) be satisfied at this

point. It is to be noted that these conditions, while sufficient, are con-

siderably stronger than is necessary; the conditions are such as to make

each term in the first summation of (2. 5. 6) be positive, while the actual

requirement is rather that the sum be positive. This sum can be written

as in (2. 5. 25) below, using (2. 5. 23) and combining the corresponding

coefficients

n

z Fx'dsz = (Fa'ana+ FaH' an,“l +. . . + Fn' aun)(d¢1)z

x = a i

+ (Fa'aZZa + Fah' a32a+1 + . . . + Fn' aZZn) (d¢2)2

+ . . . + (Fn'anna + Fn'annaH + . . . + Fn'annn) (dsn)z

+ 2(Fa'alza + Fa-H' + . . . + Fn'a’lzn) d¢1d¢z

a"‘2a+1

+ 2(Fa'a13a + Fa+,' a13a+1 + . . . + Fn'al3n) d¢1d¢3

+ . . . + 2(Fa'an-l,na + Fa“. an_l,na+l + . . . + Fn'an_l,nn)

d¢n_l d¢n (2.5.25)
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or,

n

>3 I'rx'dzpx = b11(d¢1)z + 1322 (d¢2)2+ . . .+ bnn(d¢n)&+ bez d¢1d¢2

X = a

+ 2b,, d¢,d¢, +. . . + med¢ld¢n + 2b,,3 d¢zd¢3 +. . . + 21sZn d¢zd¢n

+ . . . + 215,14,n d¢n_l d¢n (2.5.26)

where

b-- = (Fa'aiia + F

'

11 +'°’+Fnaiin)
I

ah a11a+1

ll

'

bij bji - (Fa aija + Fa+l'aija+1 + . . . + Fn'aijn)

The requirement is now that (2. 5. 26) be a positive definite quadratic

form which will be true if [29]

  

bll bIZ b13

bu blz _ b b i

b: .

bu > o, > o, “1 7‘" 33 > 0, etc. (2.5.27)

bZl 1322 b31 b32 b33

Hence a second set of conditions which if satisfied are sufficient to

insure a iminimum of Ft at the point at which the necessary conditions

are met are that (2. 5. 27) be satisfied at this point. These conditions are

somewhat less strict than those given by (2. 5. 24), however, there are a

number of further calculations required in determining the coefficients of

the quadratic form in this second case. In a practical application of this

method of determining conditions for economic operation of a power

system, it is likely that prior results on an operating system along with

variations in generating station power outputs, if necessary, would serve

to assure that the determined operating condition is a minimum as readily

as would determination of the computations Specified by (2. 5. 24) or

(2.5.27).



CHAPTER III

A METHOD OF SOLUTION OF THE EQUATIONS;

USE OF A DIGITAL COMPUTER

3 . 1 Introduction
 

The equations to be solved, represented symbolically in (2.4. 1. 42),

are non-linear involving products of variables and trigonometric func-

tions of other variables. There are several important considerations

relative to obtaining solutions to such a system of equations. These con-

siderations include: (1), conditions as to whether or not a solution exists;

(2), choice of iterative technique of solution; (3), conditions on convergence

of the iterative technique; (4), determination of a set of initial approxi-

mations; and (5), possibilities of multiple solutions. These considerations

are examined in order in the following.

Under the assumption that the function representing the system

production cost, Ft’ has a minimum, the existence of a solution to the

equations (2.4. 1.42) is assured since by the Lagrangian multiplier rule

[37] these equations, (2. 4. 1.42), must be satisfied at any minimum value

of Ft (more generally, at any extreme value). The choice of a general

technique of solution lies between a Seidel-type method in which each

equation is solved for one of the unknowns in terms of functions of the

variables involved in the equation and a method of functional iteration

which involves partial derivatives of the equations considered as functions

of the variables. Since these equations involve trigonometric functions

of some of the unknowns, solution for these unknowns in terms of the

others is not readily possible, hence a method of functional iteration,

the Newton-Raphson method [24], was selected. This method consists of

47
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the following steps: (1), each equation, considered as a function of

the variables involved, is expanded in a truncated Taylor's series in

which the second and higher order terms are neglected; (2), using a

set of initial approximations to the desired values of the variables,

the set of linear equations in incremental values for the variables

resulting from the Taylor's series expansions are solved; (3), the

incremental values so found are added to the initial approximations to

obtain a new set of approximations and the process is repeated until

successively computed values of the variables differ by less than some

selected precision index. The iteration converges, provided primarily

that the initial approximations are sufficiently close to the desired

values. However, it is not possible to define the limits on the region of

n- Space in which the initial approximation must be located so as to

guarantee convergence. Faced with such a condition, a reasonable

approach is to select the set of initial approximations based on physical

aspects of the problem such that engineering judgment indicates that the

initial approximations are sufficiently close to the desired values.

This point is discussed further with respect to this particular problem

in Section 3. 2, following deve10pment of the required system of linear

equations. In regard to the possibilities of multiple solutions similar

considerations apply. That is, criteria are not available which allow

one to state whether or not a general system of non-linear equations

possesses a unique solution or multiple solutions. Directly related is

the accompanying problem that if multiple solutions do exist, how is one

assured that a solution obtained (by any method) is the desired solution?

One method of obtaining such assurance in the problem of this thesis is

to require satisfaction of a set of sufficient conditions for minimization

of the production cost function as well as satisfaction of the necessary

conditions. Development of a set of sufficient conditions is the subject

of Section 2. 5.
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It is interesting to note that solutions to the so—called power flow

problem of electric power systems which is directly concerned with

obtaining a solution to a system of non-linear equations (Equations 2. 3. 3

of this thesis, in fact) in which certain variables are Specified and others

are to be found, repeatedly have been determined and" the methods dis-

cussed, in the literature, without, as far as this writer can determine,

criteria which Specify allowable regions for a set of initial approximations

or which exclude possible solutions other than the desired one. Further

reference is made to this point in Section 5. 2.

Before investigating the equations of Section 2. 4 it is desirable to

consider the Newton-Raphson technique for the case of two equations in

two unknowns. Let the equations be written in functional form as

f(X.Y)= 0 (3.1.1)

g(x,y) = 0 (3.1.2)

Assume that values x0 + Ax and yo + Ay satisfy these equations, where

x0 and yo are a set of initial approximations. Then the functions f(x, y)

and g(x, y) can be expanded using Taylor's Theorem as

51

f(Xo + Ax. Yo + Av) = 0 = f(Xo. Yo) + 3; (Xo.Yo) Ax

f

+ 3y (xo.yO)Ay+0(Az> (3.1.3) 

g(Xo + Ax. Yo + AV) = 0 = g(Xo. Yo) + g-E (310.3%le

a g
+ aY (xo,yo)Ay+ 0 (AZ) (3.1.4)
 

where 0(Az) indicates the higher order terms in the series. If these

higher order terms are neglected, the resulting linear equations may

be solved for Ax and Ay. Then a second set of approximations to the

desired values can be found as
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m+Ax (aLm

Yo+ AV (3.1.6)

H

X1

Y1

and the process repeated until successive values of x and y differ by

less than some prescribed precision index.

3. 2 Equations for this Problem‘ Using the Newton-Raphson

Technique

Referring to (2.4.1. 31),- (2.4.1. 35), (2.4.1.41), and (2.4.1. 33),

 

 

upon application of the Newton-Raphson technique, the linear equations

in the incremental values of the variables are as follows, where each

partial derivative and the function is to be evaluated at the values corres-

ponding to the set of initial approximations. Consider (2. 4. 1. 31) first

and let this be represented as follows.

£j(¢z, 63, . . . , ¢m Fa', Fawn . . . ,. Fn', x1, x2,

., X =0 (3.2.1)
a-1)

The corresponding linear equation in the incremental values is

11 Of’ r = n 31' m=a-1 af‘

2 72- A¢k+ 2 —-?Jr AFr' + 2 TL Akm

k = 2 (pk r = a a r m = 1 x1“

+ fj = 0 (3. 2. 2)

The individual terms in this equation are

a fj

—— = -F' E E. - cos cos - + sin sin -

- bkj (cos 4), sin cpj - sin ¢k cos ¢j1l

- Fj' IEjI IEkI [gjk (sin ¢j sin 41k + cos ¢j cos (pk)

+ bjk(sin ¢j cos ¢k - cos 4’.) sin ¢k)]

+ M, lEkl lEjl [gkj(cos cpk cos cpj + sin ¢k sin cpj)

- bkj (cos ¢k sin ¢j - sin 45k cos‘ ¢j)]

+ xj IEjl )Ekl [gjk (sin ¢j sin cpk + cos ‘i’j cos 41k)

+ bjk (sin ¢j cos ¢k - cos cpj sin ¢k)] (3. 2. 3)



 

a f- nJ .__
. . . .

,‘.

a 4:. - 2 1‘38 1Ex' ”51" [ng(3m ¢x 31“ ‘1’) + COS ¢x COS 4’11
J x = a

x =t ' . .
J +bxj(sm 49x cos ¢j - cos ‘i’x Sln ¢j)]

I1

J . . . i - '+ 13‘J IEJI E lEy-l [gJy(C°S 4’) C05 ‘19,, + “I 4’1 51“ W)

y = 1

Y 1=J'

- bJ-y(cos ¢j Sin ¢y - sin ¢j cos ¢'y)]

a - 1

+ Z )‘x IExl IEjl [ng(sin ¢x Sin ¢j + cos ¢x cos ¢j)

x = 1

+bxj(sin ¢x cos ¢j - cos ¢x sin ¢j)]

 

 

 

n

.. >‘j lEjl YE" 1IEYI [gJ-y(cos ¢j cos ¢y - Sln ¢j Sin (by)

t ' . .
Y J .. bjy(cos ¢j Sln ¢y - Sln ¢j cos oy)] (3.2.4)

3 £3 , . .
W t '= -|Er| IEjl [grj(sm ¢r cos 413- cos ¢r Sln cpj)

1' J

- brj (cos ¢r cos (pj + sin ¢r sin (6.1)] (3.2.5)

3 f) n . .
aFj' = (Ejl yZfl 1IEYI [gjy(sm ¢j cos day - cos ¢j51n (by)

Y *J'

- bjy(cos ¢j cos (by + sin ¢j sin ¢Y)] (3.2.6)

2 i,- |
7— : IE I lE-l [st-(sin om cos o- - oos om sin o1

Km m t j m J J J

- bmy(cos ¢m cos ¢j + sin ¢m sin ¢j) ] (3.2.7)

and

a fj n

a Xj = — )Ejl VI)“ 1 IEYI [gjy(51n cpj cos ¢y - cos ¢j31n (by)

Y * '
- bjy(cos cpj cos ¢y + sin ¢j Sin ¢y)] (3.2.8)

Now consider (2.4.1. 35). If this is represented as

51



WK: gx(¢29 3: ° - ° : 4’11) (3°Z° 9)

The corresponding linear equation in the incremental values is

 

‘1 a gx _

k: 2 W1: A¢k + gX «b2: ¢32 0 ° 0 9 (pm) " 0 (3°Z° 10)

Where

a gk
'2 - IExl IEkI [gxk(cos ¢x sin ‘i’k + sin ox cos ¢kl

‘3 (bk k i: x

— bxk(sin 45x sin ¢k + cos ‘l’x cos ¢k)] (3. 2.11)

and

c) gx n . .
7.3; :- |Ex| YE 1 IEyl [gxy(cos (bx Sln (by - Sln ¢x cos ¢y)

y i: x

+ bxy(cos 49x cos (by + Sin ¢x sin cpy)] (3. 2.12)

Finally, let (2.4.1.41) be represented as

hX(Fx'a ¢29 3: 0 - . o 4311): 0 (3.2.13)

and the corresponding linear equation in the incremental values is

a hx A . n ahx + h t " 0

“SE. Fx 1.327;; “is X‘FX'4’2’ ' ' "“’“"
' (3.2.14)

Where

a 11,,

anr = 1 (3'2'15)

ahx
--—- = IEXI IEkl [gxkiéfin ¢x COS ‘i’k " COS ¢x sin ¢k)

- bxk(sin ¢x sin ¢k + cos (bx cos (bk) ] (3. 2.16)
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b
.
)

 

and

b 31,, n . .
a 42x :-_- IEXI yZi 1 (By) [gxyl‘cos ‘i’x 8111 (by - Sln ¢x cos (by)

y i x

+ bxy-(CCS ¢x cos (by - Sin ¢x sin (by) ] (3. 2. 17)

In summary, the complete set of linear equations in the incremental

values consists of equations of the form of (3. 2. 2), (3. 2.10) and (3. 2.14).

These equations can be written as

  

 

 

 

 

n n a~1

. d1“). bf; af.

2 A¢k+ E ,AFr'+ 2: ——é—A).m+f,_so

k.:2 acpk- 1":3a aFr
. :1 axm

n afn n afn a-l afn

A¢k+ Z ,AFr'+ Z Axm+fn=o

k.2 as a as. m_lai

n

E abs: A4) +g1-O

k:2 4’

(3.2.18)

n dga-i

z . A¢k+ga.-1 O

kzz as].

n aha aha,

Z A$k""‘_""fAFa'i'ha: 0

k=2 a¢k aFa

:3: ans 11..
 

A '1' AF ' +h =0
a¢k (pk ;Fn' n n
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AS discussed in the Introduction to this Chapter, one of the major

problems in connection with solving a system of non-linear equations

is that of determining a satisfactory set of initial approximations. For

the problem of this thesis it is expected that for any particular operat-

ing system the voltage phase angles existing on the system would serve

as a satisfactory set of initial approximations. That is, it would be

assumed that the system is operating under conditions sufficiently close

to those specified for economic dispatch by the criteria of this thesis

that the bus voltage phase angles existing on the system could be used

as a set of initial approximations to the desired values. As an alternative

it may be possible in many cases simply to use zero degrees as the

initial approximation for each phase angle, since it is often true that the

variations in phase angles over a system are relatively small. As a

matter of interest, the power flow problem is ordinarily solved starting

with zero degrees as the initial approximation for each bus voltage phase

angle. In the particular example considered in Chapter 4, the equations

are of such a form that approximations to the angles can be made from

other considerations, as explained there. For this example computations

were carried out with angles determined both from these other consider-

ations and with each angle assumed initially as zero degrees. The results

are exactly the same.

In any case, once a set of initial approximations are decided on

for the phase angles, initial approximations for the other variables can

be found as follows. The last n-a+l equations of set (2. 4. 1.42) can be

Fsolved explicitly for values for Fao', F using the set
I

no 0

of initial approximations for the phase angles. The zero subscripts

0

, o o o ,

a+10

are used to denote the initial approximations. Values for 1.10, kzo, . . . ,

xa_l can be found in turn by solution of sets of a-l equations from the

0

first n-l equations of set (2. 4. 1.42) using the initial approximations for

the phase angles and for the Fx' parameters.
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Another way of determining initial approximfle values for the

Fx' variables is as follows [23]. . Each of the last n-a-l-l equations of set

(2.4. 1.42) can be written in the form Fx' - klx - kzx Px == 0. Then if

the approximation is made that the losses in the transmission system

are some small percentage, say five per cent, of the total load, another

equation can be written as

Pa0+ Pa+lo+ . . . + P110: 1.05 Pload (3.2.19)

If, in addition, it is assumed that

Fao' :- Faflo' = . . . 2 FC' (3.2.20)

which would be the condition for economic dispatch if transmission

losses were negligible, the resulting set of (n-a+2) linear equations can

be solved for F0' for any Specified total load.

Assuming that a satisfactory set of initial approximations has been

determined, the Newton-Raphson iteration can then be carried out in the

following sequence. Each of the coefficients in (3. 2. 18) is evaluated

using the set of initial approximations and the resulting linear equations

solved for the incremental values of the variables. The incremental

value for each variable is then added to the corresponding initial approxi-

mation value, the coefficients in (3. 2. 18) re-evaluated using the new

approximations, and the linear equations solved for new incremental

values. This process is repeated until some convergence criteria is

satisfied. In the example problem considered in Chapter 4, the iteration

was terminated when differences between successively computed values

of the variables were less than a specified precision index.

3. 3 Application of a Digital Computer
 

Successive solution of a system of equations such as (3. 2. 18), each

solution being followed by calculations for new values of the variables,
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is practical only if done with automatic computing equipment. A flow

diagram for carrying out these calculations on a digital computer is

shown in Figure 3. 3. 1. This is the basic flow diagram used in solving

the equations for the particular example system considered in Chapter 4.
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Fig. 3. 3. 1 Digital Computer Flow Diagram

It is to be noted that a major portion of the actual computations indicated

in this flow diagram are those having to do with solution of the system

of linear equations in the incremental values. It is expected that in any
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computing facility upon which solution of this problem were to be

attempted, complete routines for obtaining solutions to such systems

of equations would be readily available. The major sections remain-

ing are those for calculating the coefficients and performing the con-

vergence check with the calculation of coefficients involving routines

which determine the sine and cosines of angles and the convergence

check based on differences in the magnitudes of successively computed

values of the variables being small.



CHAPTER IV

APPLICATION TO A SPECIFIC POWER SYSTEM

4 . 1 Introduction
 

In this section, in order to illustrate the computations required,

the new method is applied to a particular power system and results

are obtained under various operating conditions.

4. 2 Power System Considered and Results Obtained
 

A network diagram of the power system chosen for the example

is shown in Figure 4. Z. 1. Load flow study data for a base case were

reported for this system by Dandeno [28]. The system was also con-

sidered in terms of a loss function and with different specified para-

meters by Sze, Garnett, and Calvert [23]. The system is one in which

the total number of vertices (other than the reference vertex) is greater

than twice the number of load vertices, hence, as discussed in Section

2. 3, it is possible to include the phase angles of the voltages at the

load vertices in the set of Specified Variables. If this is done, and

equations (2.4.1. 36), (2.4.1. 38), (2.4.1.41) and (2.4.1. 37) are used,

the set of equations for this example are as follows:

' F3'IE311g3z (Era Sin ¢3 ' Eiz COS ¢3) - b32052“ COS 4’3 ‘1'. Eiz Sin 4’3”

+|E3| {Migza (E12 C05 ¢3 ' Erz Sin 4%) " b23(Erz C03 ¢3 + Eiz Sin 4’3”} 1' O

' F4'IE4|[g41(Em Sin 4% " E11 COS 4’4) " b41(Er1 C03 4’4 + Eil sin 4’4)

+ 342(Er2 sin 434 ‘ Eiz COS 4’4) " b4z(Erz COS 4’4 *7 Eiz sin 4’41]

+ ”34' {ngldEil COS (P4 "Er: sin 4%) " b14(Er1 C05 4% + Eix sin 4%)]

+ X2[gz4(Eiz C05 4% ‘ Erz sin 4’4) " b24(Erz COS 4’4 + Eiz sin 430]} = O

58
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1. 2407-j6. 2035 1. 2407-3‘6. 2035

5 1 4

Gen. Gen

. +j0. 0257 .

+j0.0175 +30 198
O. 2491

+30. 0370

3.7263'3j11.6262

Gen. .

. +j0. 0254

Fig. 4. 2. 1 Network Diagram of Example Power System with Admittances

inper unit on 100 MVA. , 110 KV. Base. (Data from Dandeno

[28]).
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“ F5'1Es‘ [851(Er, sin 4’5 " Eil COS 4’5) ' b51(Er1 C03 4’5 4' Ei, sin 4’5)

‘1" g52(Er2 Sin ((95 "' E12 C03 435) "' bsz(Erz COS ¢5 ‘1" E12 Sin ¢5) ]

+ ”551 {M[g15(Eil C05 4’5 " Er, sin 4’5) ' 1315(153r, COS 4’5 + E11 Sin 4’51]

+)\z[gzs(Eiz C05 4’5 " Er; Sin 4’5) " b25(Erz C05 4’5 + E12 Sin 4’5”}: 0

P1 + ”5112 311 + IE4IIg14(Er1 COS 4’4 + Eil sin 4’4) + I314(1‘3i1 C03 4’4 ' Er! Sin 4’4) I

+ IESI [g15(Er, C03 4’5 ‘l' Ei, sin 4’5) + b15(Ei1 C05 4’5 " Er! Sin 4’5) 1 = 0

P2 + lEztzgzz 4' 1E51[gz3(Erz COS 4’3 + E12 sin 4’3) + b23(Eiz C05 4’3 ' Er; sin 4’3”

+ IE4! [gzMEr2 C03 4’4 + E12 sin 4’4) + b24(Eiz C03 4’4 " Er; sin 4’4”

4” IE51[gzs(ErZ COS 4’5 + Eiz Sin 4’5) 4' b25(Eiz C05 45 " Er; sin 4’51] = 0

F3' ’ 1‘13 ' Zkz3 {lEsl [g23(Er2 COS 4’3 + Eiz sin 4’3)

+b23<ErZ Sin 433 - EiZ COS (b3) ] - )E3)z g33} = 0

F4' " 1‘14 ‘ 2kz4 { IE4| [841(Er1 C05 4’4 4' Eil sin 4’4) +b41(Er1 Sin 4’4 ' EiICOS 4’4)

+ g4z(Erz cos ¢4 + E12 sin 4’4) + b4z(Er2 sin 4)., - E12 cos 4),,” -|E4|z g“) = 0

Fs' " kls ' Zk25 { IE5|[851(Er1 COS 4’5 + Eil Sin 4’5) + b51(Erl Sin 4’5 ' Ei‘ COS 4’5)

‘4' g52(Er2 C05 435 + Eiz Sin ¢5) + b52(Erz Sin (1)5 - Eiz COS (1)5) ] - IESIZ gSS} : 0

(4. 2. 1)

This set of equations was solved using the Newton-Raphson iterative

method, as discussed in Chapter III, for several conditions of specified

load variables. In order to accomplish the calculations required, a

program was written corresponding to the general Computer Flow Diagram

of Figure 3. 3. 1 and the computations carried out on the MISTIC (Michigan

State University Digital Computer). Certain of the assmned values for

load variables as used by Sze, Garnett and Calvert [23] were also used
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in this investigation. These conditions are given below where the

voltage magnitudes and power values are in per unit.

Total

System 100% base load 80% 60% 40% 20%

Load

(p.u.) 5.2190 4.1752 3.1314 2.0876 1.0438

Infadl 1.156 318'80 1.155315“O40 1.15.5311'3O 1.15.23'7'50 1.156j3°80

Er1 1.0886 1.1107 1.1278 1.1401 1.1476

E11 0. 3706 0. 2984 0. 2249 0.1505 0. 0754

P‘ 1.0560 0.8448 0.6336 0.4224 0.2112

Load 2

E2 1. 026300 1. 02900 1. 02€j00 1. 0263.00 1. 025joo

‘Erz 1.02 1.02 1.02 1.02 1.02

E12 0 0 0 0 0

P; 4.1630 3.3304 2.4978 1.16652 0.8326

The expressions given by Sze, Garnett, and Calvert [23] for the equivalent

primary power input for stations 3, 4, and 5 (033, 034, and @5) were here

assumed as F3, F4, and F5. That is, the station production costs as

functions of their power outputs were assumed as

F3 = 0.6 — 1.5?3 + 0.55133?- (4.2.2)

F4 = 0.7 - 1.8134 + 0.4013,?- (4.2.3)

F5 = 0.8 - 2.1135 + 0.3013,,2 (4.2.4)

In these equations, the- variables are both in p.u. on 100 unit bases

where the base for Fx is 100$/hr and for Px is 100 mws. For this

example, it was assumed that these relations held over the ranges of

station operation involved; it is noted that changes in the values of the

coefficients over different ranges of operation and also minimum and

maximum operating limits would necessarily have to be included in a

complete practical application of this technique.
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Then,

F3'12-1.5+ 1.1P3 (4.2.5)

Ff: —1.8+0.8P4 (4.2.6)

175' = ~2. 1 + 0.6P5 (4.2.7)

Additionally it was assumed that the generator voltage magnitudes were

to be held at their value in the load flow study of Dandeno[28], that is,

1E3) : 1.16, 1E41=1.18, and 1E5) = 1.19.

For the 100% base load case, the numerical form of equations (4. 2.1)

is, where fj, gj, hj correspond to the notation of Section 3. 2,

F3’(4.4090 sin 4’3 + 13.7561 cos o3)+kz(l3.7561cos (p3 - 4.4090 sin ((13) = f3 = 0

F4'(ll.0177 cos 4’4 +4.7527 sin 4’4)+ M(8.5111cos ¢4+1. 1191 sin 4’41

+ x2(3.5917 cos (1),, - 0.4463 sin (04) = f‘ = 0

F5'(9. 9032 cos 425 + 4.6453 sin (05) + x, (8.5833 cos ¢5 + 1.1286 sin 4:5)

‘1” Xa(2.4143 C05 035 "' O. 3023 Sin ks) : f5 = 0

4.3376 + 1.1191 cos .5, - 8.5111 sin 8., + 1.1286 cos 4:,

- 8.5833 sin 85: g1: 0

8.6847 — 4.4090 cos 4’3 - 13.7561 sin 4’3 - 0.4463 cos 494

- 3.5917 sin (1)4 - 0.3023 cos (1)5 - 2.4143 sin 4’5 = g; = 0

F3' +1.5 -1.1(4.409o cos 93 - 13.7561 sin .5, - 5.0141) = h3 0

131+ 1.8 - 0.8(4.7527 cos c), - 11.0179 sin 94 - 2.2439) = h, 0

F5' + 2.1 - 0.6(4.6459 cos 4:, - 9.9030 sin 95 _ 2.1097) = h5 = 0 (4.2.8)

The system of linear equations to be solved successively for the

incremental values of the variables for this example, corresponding to

equations (3. 2. 18), are shown as equations (4. 2. 9) below.
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[F3'(4.4090 cos 6, — 13.7561 sin o3) - iz(13.7561 sin 93 +4.4090

COS 433)] A433 '1' (4.4090 Sin 433 '1' 13.7561 COS ¢3) AF3'

+ (13.7561 cos (1)3 - 4.4090 sino3) AX; +f3 = 0

[F,'(4.7527 cos c), - 11.0177 sin¢4) +x, (1.1191 cos 6, - 8.5111 sin in)

- m3. 5916 sin 494 + .4463 cos 4’41] 234).; + (11.0177 cos 434

+ 4.7527 sin 4),) AF; + (8.5111 cos 644+ 1.1191 sin 4),) Ax,

+ (3.5916 cos (1)4 - 0.4463 sin (04) AK; +f‘ = 0

[F5'(4.6453 cos 4);, - 9. 9032_sin 4’5) + x1 (1.1286 cos 4’s - 8.5833 sin 4’5)

— Xz(2.4143 sin 4’5 + 0. 3023 cos 4’51] A¢5 + (9. 9032 cos (55

+ 4. 6453 sin 65) A F5' + (8.5833 cos <1>5 + 1.1286 sin 65) AM

+ (2.4143 COS (1)5 - 0.3023 sin $5) AX; +f5 '-' 0

- (1.1191 sin 64 +8.5111 cos 4’41 Ada - (1.1286 sin (p5 -8.5823 cos 4’5)

A4’5 + 81 = 0

(4.4090 sin 4’3 - 13. 7561 cos 413) A¢3 + (0.4463 sin 4’4 - 3.5916

cos ((14) A434 + (0. 3023 sin 4’5 - 2.4143 cos 415) A¢5 + g; = 0

(4.8499 sin 63 + 15.1317 cos 6,) as, + AF3'+ h3 = 0

(3.8022 sin 94 +8.8143 cos (3,) A6, +AF,'+ h, = 0

(2.7872 sin ¢5+ 5.9418 cos <05) A¢5 +AF5'+ h5 = 0 (4.2.9)

As noted in Section 3. 2, solutions to the equations for this example

were obtained using two different sets of initial approximations. The

first set used were obtained using the last method considered in Section

3. 2. That is, equations (4. 2.5),) (4. 2.6) and (4. 2.7) were written as

F01+ 1.5 - 1.1133: 0

F0'+1.8 - 0.813,: 0 (4.2.10)

Fo'+ 2.1- 0.6P5': 0
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where F3', F4’ and F5' have each been replaced by a common value Fo'.

Also, it was assumed that

p3+P4+p5:-1.05PL (4.2.11)

where PL represents the total load power.

Then, for a specified total load, equations (4. 2. 10) and (4. 2. 11)

were solved for initial approximations for each F', as represented by

Fo', and for P3, P4, and P5. Since in this particular example, with

the load variables as specified, P3 is a function only of 4’3. P4 is a

function only of 4:4, and P5 only of (1)5, initial approximations to the phase

angles were then obtained corresponding to the initial approximations

for P3, P4 and P5. Initial approximations for x, and i; were found from

the first three of the equations of set (4. 2. 8).

In the second set of initial approximations used, the phase angles

were all taken as being zero degrees and then with the value for F0' as

found from equations (4. 2. 10) and (4. 2. 11), initial approximations for

M and i; were found as in the previous set, from the first three equations

of set (4. 2. 8). Use of either set of initial approximations in the Newton-

Raphson technique resulted in exactly the same answers.

Table 4. 2. 1 shows the results from the computer solution of

equations (4. 2. 8) obtained using the second set of initial approximations.

The results shown are for the full load case and it is noted that converg-

ence to the selected degree of accuracy (change no greater than 1 in the

fifth decimal place) was obtained in four iterations. Such convergence

was obtained in 3 or 4 iterations in all cases considered. Equations

for the generating station output powers for the case of 100% base load

are given in (4. 2.12) below. .These relations are derived from (2.4.1. 37)

with the proper values substituted for the specified variables.

P3 = 4.4090 cos 4’3 - 13.7561 sin 4’3 - 5.0141

P4: 4.7527 cos (b4 - 11.0179 sin :64 - 2.2439 (4.2.12)

P5 = 4.6459 cos 415 - 9.9030 sin (1)5 - 2.1097
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The generating station power outputs calculated from these equations

and the similar ones for the other load conditions using the voltage

phase angles determined from the computer solution of equations (4. 2. 8)

are shown in Table 4. 2. 2, and the corresponding production costs as

calculated from equations (4. 2. 2), (4. 2. 3), and (4. 2.4) are shown in

Table 4. 2. 3.

TABLE 4. 2.1

SOLUTIONS FOR VARIABLES FOR 100% BASE LOAD CASE

 

 

 

Initial After first After 2nd After 3rd After 4th

Approx. Iteration Iteration Iteration Iteration

((23 0. 00 0.08961 0.09952 0.09954 0.09954

4’4 0.00 0. 36927 0. 36739 0.36741 0.36741

4’5 0. 00 0.40106 0.40264 0.40262 0.40262

M 2.9 2.97904 3.11043 3.10986 3.10986

kg 3.3 3.71060 3.93562 3.93752 3.93752

F3' —3. 28 -3.52161 -3.69280 -2.69327 -3.69327

F.,' —3.28 -3.04784 -3.21252 -3.21272 -3.21272

F5' -3.28 -2.96163 -2.12987 -3.12974 ~3.12974

 

TABLE 4. 2. 2

GENERATING STATION POWER OUTPUTS FOR

EXAMPLE PROBLEM

Load in ‘70 of

 

Base Load 100% 80% 60% 40% 20%

Gen. Station

Outputs

P3 -1.9939 -l.5549 -1.1393 -0.7434 -0.3656

P4 -1.7659 -1.4491 -1. 1342 -O.8212 -0.5013

p, -1.7162 -1.3600 -0.9992 -0.6343 -0.2826

 



TABLE 4. 2. 3

GENERATING STATION AND SYSTEM PRODUCTION COSTS

FOR EXAMPLE PROBLEM

 

Load in % of

Base Load 100%

Station

Production

Costs in

100$/hr

F3 5.7774

F, 5.1189

80%

4.2621

4.1423

4. 2109

60%

3.0229

3. 2561

3.1978

40%

2. 0191

2.4479

2.2527

20%

1. 2219

1.2219

1.4174

66

F5 5. 2923

System

Production

Cost in 16.1886

100$/hr

12.6153 9.4768 6.7197 4.3422

 

4. 3 Results With Other Phase Angles
 

In order to examine further the effects of variations in the voltage

phase angles on the system production costs and to demonstrate that the

method developed herein does in fact determine values of the variables

which correspond to minimum production costs with the other parameters

as specified, a number of further calculations were carried out on the

digital computer for the example power system. First, combinations of

phase angles were determined which, along with the Specified voltage

magnitudes, are such as to satisfy the specified load power requirements.

Using these computed phase angles, the corresponding generator output

powers and system costs were then calculated and plotted as functions

of the phase angles.

The voltage phase angles were determined using the fourth and fifth

equations of set (4. 2. 8). Symbolically, these equations can be written as
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P15” P1i4’4, 4’5): 0 (4.3.1)

P25”P2(3, 4’4, 4’5130 (4.3.2)

where P‘s and P25 represent the specified powers for loads 1 and 2

respectively. With all specified parameters replaced by their values

for 100% base load, the equations are as given in (4. 3. 3) and (4. 3.4)

below which are the same as in set (4.2. 8).

4.3376 + 1.1191 cos 4’4 - 8.5111 sin (p4 + 1.1286 cos 4’5

- 8.5833 sin 65 = 0 (4.3.3)

8.6847 ~ 4.4090 cos (b3 - 13.7561 sin 4’3 - 0.4463 cos <5,

- 3.5917 sin ((34 - 0.3023 cos <65 - 2.4143 sin ¢5 = 0 (4.3.4)

Values of the three variables (63, (b4, and 4’5 which satisfy these

two equations were found by assigning values for one of the variables

and then solving for the other two. Hence the values obtained are sets

of voltage phase angles which, with the voltage magnitudes as previously

specified, result in the load powers being as required. In the case for

which values are assigned to (1)3, there remain two simultaneous non-

linear equations in the two variables 4’4 and ¢5. These two equations

were solved using the Newton-Raphson iterative technique as was also

used for the set of 8 non-linear equations considered in Section 4. 2.

In the other two cases, for which values were assigned for 4)., and (1)5,

it was necessary to solve only one equation at a time. That is, with an

assigned value for either 4’4 or 4’5» equation (4. 3. 3) was solved for the

one of these two not assigned and then both of these values used in

(4. 3. 4) to determine (p3.

These computations were carried out over the range of each vari-

able for which eash of the generator power outputs was of the proper sign;

possible station operating limits were neglected. Outside the range
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covered, at least one of the power functions changes Sign; that is, the

element appears as a load rather than as a generator. Accordingly,

(63 was varied from 0. 089 to 0. 109 radians in steps of 0. 001 radians

and 4’4 and 4)., were varied from 0. 25 to 0. 55 radians in steps of 0. 01

radians. For each case the corresponding generating station output

powers, station production costs and system production costs were

then calculated, using respectively (4. 2.12) and (4. 2. 2), (4. 2. 3), and

(4. 2. 4).

The results of these computations are shown in Figures (4. 3. l),

(4. 3. 2), and (4. 3. 3‘) in which the power output of each generating station

and the system production cost are shown as functions of 4’3» 4’4: and 4’5

respectively. For any values of the phase angles shown, the equations

for the Specified load powers, equations (4. 3. 3) and (4. 3.4), are

satisfied. It is noted that the phase angles have an important effect

on the system production cost and a definite minimum value of the pro-

duction cost function is apparent in each of the figures. The values of

the phase angles correSponding to the minimum point as read from the

curves are shown in Table 4. 3. 1 along with the values computed in

Section 4. 2 for this 100% base load case. Taking into account the

accuracy with which the values from the curves can be obtained the

values are essentially the same, thereby confirming that the results

obtained in Section 4. 2 do correSpond to a minimum of the production

cost function.
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TABLE 4. 3.1

PHASE ANGLES AT MINIMUM SYSTEM PRODUCTION COST AS

DETERMINED BY METHOD OF THESIS AND BY VARYING

THE ANGLES AND COMPUTING THE COST

m

 
 

 

Angle By Method of Thesis By Varying the Angles

63 0.0995 , 0.0997

6, 0.3674 0.368

is 0.4026 0.404
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CHAPTER V

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

5. 1 Summary

A new method in terms of utilizing node (bus) voltage phase angles

as the controlling variables and in terms of application of a minimizing

process to the production cost function while maintaining the identify of

the individualloads is herein developed for determining a solution to the

power system economic disPatch problem. A solution to the economic

dispatch problem consists of a set of generating station power outputs  

'
(
I

t
'

'
I
-
L
.
‘
l
a
d
‘
-

1

which correspond to minimum system production cost for each specified

load and accompanying set of system Operating conditions. In themethod

deveIOped in this thesis, because of the specified variables used, the

generating station power outputs are uniquely determined once the phase

angles are found.

A method used at the present time on certain power systems for

determining optimum generating station power outputs involves an

expression for power loss in the transmission system in terms of the so—

called B constants. The usefulness of this technique is a matter of dis-

agreement among various groups in the power industry. While the ; .‘

proponents of the method assert that significant savings result from its

use as compared with methods in which transmission losses are not

considered, others have not adopted the method primarily because of

reservations in regard to its accuracy and lack of adaptability to changing

conditions in the power system. A Specific assumption generally made in

determining the expression for power loss in terms of the B constants is

73
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that each "equivalent" load current remains under all operating conditions

a constant complex fraction of the total "equivalent" load current, where

the equivalent load current at a bus is defined as the sum of the line-

charging, synchronous condenser, and load currents at that bus. This

assumption is made so as to eliminate the individual load currents as

variables of the problem and thereby to allow the individual loads to be

represented by a single load. If the assumed proportional variation between

each individual equivalent load current and the total equivalent load current

is not maintained, some errors are introduced in all subsequent calcu-

lations using this single load representation. -A number of other similar

assumptions are also involved. In addition, determination of the B

constants for a particular configuration of a transmission system is a

considerable computational problem in itself, and is one which must be

repeated in full in order to account for any significant changes occurring

in the transmission system. There is then a definite need for a method of

solution of the power system economic dispatch problem which first of all

does not involve in its development assumptions which may not be realized

in actual system operation, and secondly which is more easily adaptable to

changes in the power transmission system.

' Considered as a whole, the economic di3patchiproblem involves

three different sets of equations; viz. , (1), equations relating the currents

and voltages of the system, e. g. , the node system of equations;

(2),auxi1iary equations expressing specified restrictions on certain vari-

ables, e. g. , the real power and/or reactive power for each'load; and

(3), the function which is to be minimized, the system production cost

expressed as a function of the generating station power outputs. The prob-

lem is one of determining values of the variables which not only minimize

the production cost function but which also satisfy the auxiliary equations;

that is, the variables are not independent. A method of determining a
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solution for a problem of this nature is the method of Lagrangian multi-

pliers. In the Lagrangian multiplier method additional variables are

introduced in a manner such that the previously dependent variables can

be considered to be independent variables in determining the desired

solution.

The method first proposed by Brownlee [20] for determining incre-

mental losses in a transmission system, summarized in Section 1. 2. 2 of

this thesis, involves phase angles but in an entirely different manner from

that considered herein. The method proposed by Calvert and Sze [23],

summarized in Section 1. 2. 3 of this thesis, involves variation of generator

voltage magnitudes as well as phase angles; also, in that method the

minimization process is applied to a defined loss function rather than

directly to the production cost function. The method of this thesis is new

in the choice of the variables, relative phase angles of the node voltages,

as well as in application of the Lagrangian multiplier method to the minimi-

zation of the production cost function while maintaining the identity of the

individual load nodes. As developed herein, solution of the equations

established by means of the Lagrangian multiplier method yields values

of the phase angles which satisfy both the necessary conditions for a

minimum of the production cost function and also the auxiliary equations

which correspond to the specified load conditions. The phase angles have

not been considered in this way in previously reported research. Also

developed are a set of conditions, which, if satisfied at the point at which

the necessary conditions are met, are sufficient to insure that the point

so found is a minimum.

Since the magnitudes of the node voltages are specified at the

beginning of the problem in addition to the admittances of the elements

representing the transmission system, and the phase angles are determined

as a part of the solution, the generating station power outputs are thereby

uniquely determined. In addition, the reactive power functions for each
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of the elements representing the generating stations and loads are likewise

determined. Hence, the assumption that the so-determined reactive

power capacity is available is required. The results are then exact under

the restrictions that the Specified and computed values for the variables

are‘maintained for a Specified load condition. ' Changes in the power trans-

mission system can more readily be entered into this method than in the B

constant method. Since the node equations and hence the admittance matrix

for the transmission system is involved directly in the equations to be

solved, the entries in this admittance matrix are those of the transmission

system at the corresponding time and can be changed from one computation

to another by changing certain constants in the computations.

The equations established and for which a solution is required are

non—linear but of a type to which the Newton- Raphson iterative technique

can be applied. The corresponding system of linear equations in the incre-

mental values of the variables is established in this thesis and methods of

selecting initial approximations to the desired values of the variables are

discussed. Use of a digital computer in the successive solution of the

system of linear equations is a necessary part of the method presented

here and an applicable computer flow diagram is shown. In order to

illustrate the steps involved, the new method is applied to a particular

power system and the node voltage phase angles are determined for this

system so as to minimize the system production cost for several Specified

load conditions. The corresponding generating station power outputs and

costs are also calculated. Finally, the effects on the system costs of

variations in the phase angles while each load power and the voltage

magnitudes are maintained at their Specified values are investigated.

It is shown that the phase angles are significant factors in the system

production cost and also that the method developed herein does in fact

determine the values of the phase angles which correspond to minimum

cost with the other parameters as specified.
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In conclusion, it can be stated that the method deveIOped in this

thesis results in determination of a set of conditions for the variables

of the equations relating to a power system so as to minimize the system

production cost without resort to extensive simplifying assumptions;

rather, the results are exact under the restrictions imposed, these

restrictions being that the Specified and computed values for the variables

are-maintained for a specified load condition. The identity of the individual

loads is maintained and equations specifying the power for each load are

satisfied. Also, changes in the transmission system can be more readily

accommodated than in most previously developed methods and, in any

event, as readily as in any of the methods.

5. 2 Suggestions for Further Research
 

‘ The following topics related to the work reported in this thesis are

suggested as being worthy of further investigation:

1. Possible integration of the power flow problem and the economic

dispatch problem so as to obtain a common solution. Both of these prob--

lems start with much the same basic data, the major difference being

that in the power flow problem the generating station power outputs are

Specified whereas in the economic dispatch problem this is the primary

information to be determined. It appears reasonable to propose that,

with further development, the general method set forth in this thesis for

solution of the economic dispatch problem might be combined with a

method for solution of the power flow problem so as to result in simul-

taneous solution of both problems. In terms of a digital computer solution

such a combination might involve iterations on voltages as in the power

flow problem, in inner computation loops, in addition to the iterative

computations required in the method set forth herein.

2. Investigation of the possibilities of simplification of the method

and the calculations required in the economic dispatch problem through
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use of an all-vertex equivalent tree representation of the transmission

system as developed by Reed e_t a_._l. [30].

3. Application of the method set forth in this thesis to a larger

example system so as to obtain further evaluation of its usefulness.

In conjunction with such a study it would be desirable also to make eco-

nomic dispatch calculations based on the B constant. methods of determin-

ing transmission losses and then to compare the results, taking into

account in both methods changes in all variables of the System.

4. Investigation of the development of useful criteria which for a

system of non-linear equations would insure the existence of a solution

and would yield information as to the existence of multiple solutions.

In particular, the equations which arise in both the power flow and

economic dispatch problems (Equations 2. 3. 3 of this thesis) should be

investigated. First consideration might be given to the possibilities of

multiple solutions and the resulting non~uniqueness of answers obtained

in the usual power flow problems.
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