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ABSTRACT

ON THE DETERMINATION OF TIME OPTIMAL
CONTROLS FOR LINEAR STATIONARY SYSTEMS

by Norbert Bernard Hemesath

The last decade has witnessed an intense interest 1in
time optimal control, i.e., the minimum time transfer of the
nth order system

X = AX + BU(t)
from an arbitrary initial state to an arbitrary terminal
state, subject only to the constraint that the components of
the control vector, U(t), be bounded and measurable. The
optimal control, when it exists, is known to have components
which are piecewise continuocus and assume only their extreme
values. Furthermore, when A has real, distinct, non-positive
eigenvalues, each control component has (n-1) or less discon-
tinuous points. The optimal control is uniquely determined
when the (n-1) discontinuous points or ''switching times" and
the initial sign of each of its components are known

This thesis develops nonlinear equations which the
optimal control satisfies and some techniques for solving
these equations. The special case in which U(t) is a scalar
is analyzed separately, and it is shown that the optimal con-

th

trol is the solution of an n order transcendental set 1n

the (n-1) switching times and the minimum control time, t,.
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I. INTRODUCTION

Any realistic design of a physical system imposes
constraints on some if not all of the system parameters.
Voltages, currents, forces, displacements, torques, veloc-
ities are all limited in magnitude. System designs ignor-
ing such restrictions are often trivial and physically mean-
ingless. A realistic design involves choosing components
and parameters from within a given set of constraints such
that "acceptable'" performance is achieved as measured by
some predetermined criterion. Optimization theory is con-
cerned with the question: '"Given a performance index, what
is the 'best' design within the framework of the constraints
imposed on the parameters?" If the physical system is des-

cribed by the state model™
X = F [X(t),U(t)] (1-1)

then an important class of optimal problems involves choos-

ing the vector U such that the scalar integral

* . . A
In this thesis upper case letters indicate vectors
and matrices, lower case letters are scalars.






ty

m = [h[X(t),U(t)]dt (1-2)

to

is minimum, where X(ty) and X(tj) are the initial and termi-

th order

nal states, respectively, of (1-1), and U is an r
excitation vector constrained to lie within a compact region
R of the r-dimensional space.

Typical problems in this class are: 'What control
function, subject to magnitude constraints, will transfer a
system from one state to another in minimum time?'" '"What
control will transfer a system from one state to another
with minimum energy expenditure?' These and many similar
questions have been investigated in recent years.

Time optimal control, the problem of taking a system
from one state to another in minimum time, represents one of
the most widely discussed optimization problems. It had its
genesis in the efforts of researchers to determine when a
relay controller should be switched to simultaneously reduce
the error and its derivative to zero in minimum time follow-
ing a step input.

The relay controller (also called bang-bang because
of its on-off nature) is a simple, economical approach to
closed loop control and is therefore attractive in many ap-
plications [1],[2]. Figure 1.1 below is a simple position
servo using a DC motor whose armature voltage is applied

discontinuously (off-full on) by the relay.



INPUT + ERROR OUTPUT

1 RELAY MOTOR

Figure 1.1 Relay controller.

The operation may be briefly described as follows: If the
input and output positions differ, the relay applies arma-
ture voltage of the proper polarity to the motor to reduce
the error. When the error changes sign the relay reverses
the armature voltage. The system response finally depends
upon the characteristics of the motor and its load. For no
damping the system oscillates with constant amplitude; a
damped system oscillates with decreasing amplitude and in-
creasing frequency [1].

Reversing the relay before the error reaches zero
reduces the "hunting'" and shortens the settling time. Sys-
tem design procedures incorporating linear anticipatory
switching, wherein the relay is reversed as some linear
function of fhe error and its derivative before the error
reaches zero, have been developed in the phase plane for
second order systems such as that of Figure 1.1 [3],[4].

The concept of optimum performance is a natural out-

growth of the more sophisticated relay controller with antic-

\f

ipatory switching. Hopkin in 1950 defined optimum performance

as '"that behavior in which the system returns to rest with



zero error in the shortest time following a step input' [5].
Hopkin and McDonald both demonstrated with heuristic proofs
in the phase plane that a second order system with real
characteristic roots and a bounded forcing function achieves
zero error in minimum time when the forcing function assumes
only its extreme values and reverses sign at a critical
boundary which is a nonlinear function of error and error
rate [5],[6].

In 1954 Bogner and Kazda, considering higher order
systems with real roots, attempted to extend the phase plane
concepts to a phase space [4]. In the case where the number
of relay reversals is one less than the order of the system,
their results indicate that a unique path exists from an
arbitrary initial point in the phase space to the origin.
Bushaw in 1952 discussed the second order system with com-
plex roots as an abstract mathematical problem [7].

Bellman, Glicksberg and Gross in 1956 '"'imbedded"
the optimum relay controller problem in a more general,
precisely stated mathematical problem, and gave the first
rigorous proof that for a rather general class of systems
there exists an optimal controller and it is ''‘bang-bang' in
character [8]. LaSalle further generalized the theory to
include time varying linear systems [9]. Concurrently sev-
eral Russian authors, working independently, developed sim-
ilar results. The approach of Bellman and LaSalle is topo-

logical; Desoer arrived at many of their conclusions using



variational calculus [10]. Finally, the Russian mathemati-
cian, L. S. Pontryagin, devised a '"maximum principle" which
is applicable to a very broad class of systems and problems
[11]. It too can be used to derive properties of the time

optimal controller.

Thus, a distinguished body of theory relevant to the
bang-bang control problem has been developed with the mathe-
matical form of the control firmly established for systems
of arbitrary order with both real and complex eigenvalues.

Although the form (bang-bang) of the control func-
tion is well known, the problem which has not been satisfac-
torily solved is this: '"'Given a system with an initial

state, X for which a time optimal control exists, how is

(o R
that control found?" If this question has no reasonable

answer, then optimal control remains a mathematician's game.
The object of this dissertation is to derive sets of

conditions which the time optimal control for linear, con-

stant coefficient systems necessarily satisfies, and to show

that the equations representing these conditions can be
solved by numerical techniques.

The body of this thesis contains six sections fol-
lowed by three appendices. Section two is devoted exclusive-
ly to developing the mathematical theory of the time optimal
problem considered in this thesis. Important properties of

the controlled system and of the control itself are discussed.



Section three deals with the scalar control problem and
develops the equations which the scalar control must satisfy.
Section four introduces the vector control concept and devel-
ops the necessary optimization equations. A modified
Lagrange multiplier method is used to obtain a solution to
the resulting equations of optimization. Two sections on
examples and conclusions complete the main body of the
thesis.

Appendix A includes a new method for solving non-
linear equations by transforming the algebraic equations
into differential equations whose solution at one endpoint
represents the solution to the nonlinear algebraic equations.
Appendix B contains standard material on numerical techniques
and is included primarily for continuity. Appendix C gives
some computer programs used to solve the optimization equa-

tions set down in sections three and four.



II. MATHEMATICAL THEORY

Statement of the Problem

The physical systems considered in this thesis can
be described by a system of linear, constant coefficient,

ordinary differential equations

n r
X, = zg: aijxj + ZE: bikuk(t) (2-1)
j=1 k=1
i=1, 2, ---, n

where x x are the state variables which completely

1’ “T %

define the system, and X; indicates differentiation of x;
with respect to the independent variable, t. Equation

(2-1) may be written in the vector notation
X = AX + BU(t) (2-2)

where X is an n-component column vector, A is an nxn con-
stant matrix, B is an nxr constant matrix, U 1s an r-compo-
nent column vector.

The trajectory X(t) of (2-2), as a function of t, is
uniquely determined on an interval 0 < t < t; when the con-
trol, U(t), and the initial condition X(0) = X,, are spec-

ified. The ability to control the system lies in the freedom



to choose U(t), the entries of which are assumed to satisfy

the inequality
|uk(t)l <1 Kk =1, -—--, r. (2-3)

Suppose also that the controls, uk(t), are piecewise con-
tinuous, i.e., continuous for all t, 0 <t < t;, except at a
finite set of points t; at which the controls may have finite
discontinuities. Any control, U(t), whose components satisfy

these two conditions is called an admissible control.

The time optimal control problem may now be stated as
follows:

Given two points X, and X; in the state space,

among all admissible controls, U(t), which trans-

fer the state point from X, to X3 (if such con-

trols exist), find one which minimizes the time,

t) - to [11].

Here X(t,) = X, and X(t;) = X3, and X(t) is the solution to
(2-2) corresponding to control U(t).

The maximum principle as given by Pontryagin, can be
used to establish some of the mathematical properties of the

control which is the solution to the prcblem posed above . *

*The development of this chapter is not intended to
present any new material, and therefore theorem proofs,
readily available from such sources as Bellman, LaSalle, and
Pontryagin, are omitted [8],[9],[10],[11].



Pontryagin's Maximum Principle

The maximum principle developed by Pontryagin and

his associates states a necessary condition which an optimal

control and the associated optimal trajectory of a system
must satisfy. The process to be controlled is assumed to

have a state model of the form
X = F (X,U) (2-4)

where: X is an n-component vector (state vector)
U is an r-component vector

F and its partials with respect to x:;, 1 = 1,
2,---,n, are continuous on the direct product
of the control space and the state space.

The performance is to be measured by the functional
t1

J = _ffo[X(t),U(t)]dt (2-5)

to
where fO(X,U) together with its partial derivatives is de-

fined and continuous on the direct product of the control
and state space. Then the fundamental problem of optimal
control is stated as follows:

Given any two points X, and Xj in the phase space,

select from among all admissible controls, U(t),

which transfer the phase point from X, to X; (if

such controls exist), the one which minimizes the

functional, J,

where X(t,) = X, and X(tq) = X;, and X(t) is the solution

to (2-4) associated with control U(t).
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Application of the maximum principle requires:

1.

Augmentation of system (2-4) with the equation

xg = £,(X,U) (2-6)

Introduction of the adjoint set of equations

= -JT'gj (2-7)
where [ = QUi Yy, - W)

A scalar function H relating the augmented sys-

tem and the adjoint system.

The augmented system is

where

X = F(X,U) (2-8)
F = (f,, £y, ---, £) = (fg, F)
X = (%, X v ===a Xp) = (Xg, X).

The matrix J of (2-7) is the Jacobian of F(X,U), i.e.,

J=(a;) i=0,1, ---, n
J = 07 17 ---, I
(2-9)
Ajj = afi(X,U)/axj.

Observe thatlﬁ; F, and X are all (n+l)-component vectors and

that F(X,U) is not a function of x,. The scalar function H
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relating (2-7) and (2-8) is defined

H =WT F(X,U). (2-10)

Systems (2-7) and (2-8) are obtainable from (2-10) as

.
]

i H/ Y, i=0,1, ---, n
Wi

Note that for constant values of X amig7the function H de-

1]
o
[

1

|

|
=]

pends only upon the vector parameter U. The maximum prin-

ciple may now be stated as follows.

Maximum Principle

Let U(t), t, =t < t;, be an admissible control such
that the corresponding trajectory, X(t), beginning at X, at
time t, passes through X; at time t;. If X(t) and U(t) are
optimal it is necessary that:
1. There exist a non-zero continuous vector func-
tion Y(t) = Yo(t), Y (), ---, YL(t) corre-
sponding to U(t) and X(t).
2. For every t, to <t < t1, the function H of the

variable U attains its maximum at U = U(t).

The maximum principle stated above is a necessary

condition for optimality, but the fact that it has been

satisfied does not assure the existence of an optimal con-

trol. Mathematical questions concerning the existence and
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uniqueness of optimal controls are very important and dif-
ficult. The following sections deal with some of these
questions in the particular case of time optimal, linear,

stationary systems.

Properties of the Optimal Control

For the time optimal problem stated in the first

section of this chapter the functional, J, is

Y
J = j}O(X,U)dt = ty-ty (2-11)
to
which implies
f,(X,U) = 1. (2-12)

The augmented system (2-7) is

x. =1
© (2-13)
X = AX + BU
and the adjoint system (2-7) defined in terms of
w:wl’wz’ -—-,llfn is
/=0
Vo (2-14)
T,



13

The function H can be written as
T T
HA,X,U) =Y, +Y AX +V/ BU (2-15)

The maximum principle states that if U(t) is optimal then H,
considered as a function of U alone, assumes its maximum at
U = U(t). Since (2-15) is linear in U this implies that each
component of U assumes its greatest magnitude and the sign of
its coefficient. Since from (2-3) Iuil: 1, the control U(t)

may be written
u(t) = sgnufrB (2-16)

where for r-dimensional vectors A and B, A = sgn B means
that a; = sign of b, i =1, ---, r. This result may be

formally stated as

Theorem 2-1

If an optimal control function for the time optimal

problem exists it is of the form
- T
u(t) = sgny/ B
where Yf(t) is a non-zero solution of the adjoint* system

Y= ATy

. T . . °
*The system Y = -A'Y is called the adjoint to X = AX.
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Therefore the form of the optimal control, if it
exists, is established as piecewise constant or 'bang-bang",
and each component of the control switches sign at the zeros
of the corresponding component qujrB.

Perhaps a logical question at this point is: "Under
what conditions does an optimal control exist, and is it
unique?'" A simple example may provide some insight into this

problem. Consider the scalar equation

X = ax + bu (2-17)

By the maximum principle u *+ 1 and never switches sign since

e—at

the adjoint solution, y(t) Yo, has no zeros. Thus the

solution to (2-17) 1is

at
x(t) = e>"(x_+ Buy _bu
o a a

and if the desired terminal state is x(t) = 0, the optimal

solution, if it exists, must satisfy

1 _ at
axg = e t>0 (2-18)

+1
bu

Whether or not (2-18) has a solution depends upon the values
of the parameters, a and b, and the sign of u. There are

three cases of interest.
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Case 1: a <0, b #0

An optimal solution exists for arbitrary x, since

o}

the left hand side is always less than one if u = sgn (aljo),

while the right side approaches zero as t grows large.

Case 2: a >0, b #0

No solution exists for values of X5 such that ‘

> 2. Under this condition the left hand side is always less

than one while the right hand side exceeds unity.

Case 3: a arbitrary, b = 0

. . . at
No solution exists since x(t) = e X, never reaches

the origin.

The behavior in case three above is related to the

concept of controllability as introduced by R. E. Kalman [12].

He defines a system to be completely controllable if for

arbitrary states X  and X;, and times t, and t;, there exists
a control which transfers the system from state X, at time t g
to state X; at time t;. Kalman has also stated the follow-

ing [13]

Theorem 2-2

The system described by (2-2) is completely control-

n-lp AP-%g ___ AB, B]

lable if and only if the matrix [A
has maximum rank.
The system described in case three does not satisfy

this theorem, and is, therefore, not controllable., It is
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apparent that a system which is to be optimally transferred
from an arbitrary initial state to the origin must be neces-
sarily completely controllable.

However complete controllability is not sufficient

for optimal control of a system with arbitrary initial state.
Consider case two; the system is completely controllable by
theorem 2-2, yet for certain initial states there is no
optimal control.

On the other hand the system of case one is complete-
ly controllable and always has an optimal control. This
leads to the final factor affecting the existence of optimal
controls, stability. System one has a stable characteristic
root while system two has an unstable characteristic root,
where a stable root is defined as an eigenvalue of the matrix
A in (2-2) with non-positive real part. The intuitive evi-
dence might lead one to expect that which the following the-

orem states [11]

Theorem 2-3

If the matrix A has stable eigenvalues and if the
system (2-2) is completely controllable, then there exists
an optimal control which transfers an arbitrary initial

phase point, Xb, to the origin.
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The previous theorem establishes the existence of
an optimal control under certain conditions. Another very
important property of the control is its uniqueness which

is assured by

Theorem 2-4

Let Ul(t) and U,(t) be two optimal controls (defined
on the intervals t, <t < t; and t; <t < t) respectively)
which transfer the phase point X, to X;. Then these controls
coincide, i.e., t; = t3 and Uj(t) = Uy(t).

In systems which have real eigenvalues the optimal
control has an especially significant property wherein the
number of switchings of each control component is related

to the order of the system.

Theorem 2-5

If the matrix A of (2-2) has real, non-positive

roots, then each component, u i=1, ---, r, of the op-

P )
timal control will switch not more than (n-1) times where

n is the order of the system.

The property stated in theorem 2-5 above is exploited
in the following chapters of this thesis to develop sets of
equations which the optimal control must satisfy. Henceforth,
unless otherwise stated, the system under consideration is

that characterized by (2-2) with the additional restrictions
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that the eigenvalues of A are real, non-positive and simple
(non-repeated), and that the system is completely control-
lable, i.e., all subsequent development is concerned with
linear, stationary systems for which a unique, time optimal

control always exists.



III. SCALAR CONTROL PROBLEM

The time optimal control of physical systems governed
by a single control variable is perhaps the most significant
of the class of time optimal problems in applications. In-
deed, all single input, single output, linear control sys-
tems currently designed with s-domain techniques fall into
this class. For these systems usually (but not necessarily)
the error and its first (n-1) derivatives are reduced to
zero. Because of its importance and its mathematical trac-
tability, the scalar control problem is considered first as

a special case.

The Switching Equations

Many of the early efforts to determine time optimal
controls were based on the phase space, a generalization of
the phase plane which is so useful for second-order systems
[4],[16]. The approach is that of establishing switching
surfaces in the phase space, i.e., surfaces at which the
control function changes sign. However, as the order of the
system increases the problem of eliminating the time variable
from the system equations becomes very difficult. Recently
several authors have suggested techniques for determining
the control as a function of switching times rather than as

a function of the system state [17],[18]. This approach will

19
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be used here.

Consider the completely controllable system
X = AX + Bu(t) (3-1)

where A is a square matrix with simple, real, non-positive
eigenvalues, B is a column vector and u(t) is a scalar con-
trol function. The theorems of the previous section guar-
antee the existence of a unique control function which will
transfer the solution of (3-1) from an arbitrary initial
state to the origin in minimum time.

The equations of optimal control are simplified if
the system (3-1) is reduced to principal coordinates, i.e.,
A is diagonalized. Defining the nonsingular linear transfor-

mation

X = PY (3-2)
equation (3-1) becomes
Yy = (p~tap)y + P 1Bu(t) (3-3)
where [14],[15]
P lAP = D = diag( A Ags === A (3-4)

and the ‘Kiare the eigenvalues of A. If we let zi=yi/(P'lB)i
-1 . .th -1
where (P "B); is the i component of the vector P "B then

(3-3) reduces to
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Z = DZ + Tu(t) (3-5)

where 1 is a column vector of ones.

The solution to (3-5) is [19]

t
Z(t) = eDtZO + j[?D(t_r)Iu(r)dr (3-9)

o

If tn represents the time required for an optimal control to

transfer ZO to the origin, then the optimal solution is

t

n

2(t,)) = 0 = e’tnz_ 4 J/-eD(tn_r)Iu(r)dr. (3-10)
o

-1 -D .
Multiplying both sides of (3-10) by (e Dtn) = e tn gives
th
-D
-z = J(e "Tu(r)dr. (3-11)

o

Since u(t) is piecewise constant and reverses sign at most
(n-1) times on the interval [0,t, ], (3-11) may be written as

the sum of n integrals of alternating sign

tl t2 tn

- -D n-1 -Dr
-Z_ = u e DrIdr- e rIdr+---+(—1)( ) J/'e Idr) (3-12)

t
1 tn—l

where u = + 1 and t;, ---, t;, ; are the (n-1) switching times

which must satisfy the ordering constraints
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0 <t; <ty =<---<t,1=t,. (3-13)

I1f none of the Ai = 0 integration of (3-12) gives n equations

“A:t -A . “A:t -A:t
Az, =u [l-2e Aﬁ l+2eA'1t2— e =(-1)"2e Aﬂ n-lic_1)"% 11q
iio
i =1, -==, n  (3-14)

where z.. is the ith element of the vector Z_ . The modifica-
tion required where some Aﬁ = 0 is obvious.
To find the unique optimal control it is necessary to

find the ordered set

0O0<t <t < --- < t < t

1 2 n-1 — 'n

with minimum t, which satisfies the n transcendental equa-

tions in (3-14) and to find the correct sign for u.

Bounds on the Control Time

Systems bf transcendental equations, in general,
cannot be solved analytically and the solutions are not
unique. However, any solution of (3-14) which simultaneously
satisfies (3-13) is unique [4]. Since numerical methods are
required to solve (3-14), a 'good" first approximation to the
desired solution is necessary if an iterative procedure is
to prove successful. Initial estimates must be made for t,,

t,, ---, t_ as well as the sign of u. The switching times,
2 n
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of course, must be positive and must satisfy the ordering
constraints (3-13). However, the ordering constraints con-
tain no information about the magnitudes of these switching
times. Intuitively one might expect that the control time
required to bring a system to the origin is a function of
the system initial state and the eigenvalues. The following
theorem shows that this is, indeed, true, and provides a
useful basis for choosing the initial vector with which to

begin an iterative solution technique.

Theorem 3-1

If the eigenvalues are all distinct from zero, the

minimum time T, required to transfer the normalized system

z. = \.z: + u(t) i (3-15)

1 1l 1

1]
[
\S]

|

|

|
=

from an arbitrary initial state, Z to the origin satisfies

0’

the inequality
T > max t.
o - i
where:

t, = —Fizrlog( Lliziol+l) i=1, ---, n (3-16)

Proof:
Since the minimum time solution requires the simulta-
neous transfer to the origin of all states, the minimum time

solution, To’ must equal or exceed the maximum of the set
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ty, ty, ---, t,, where t; is the minimum time required to
transfer the initial state, Z o0 to zero. From (3-14) the
control which transfers z. to the origin in minimum time is

10

the solution to

A.z. = u(1-e”xiti), t; > 0. (3-17)
1 10

The solution to (3-17) 1is

. = L on(l i%io
i~ -'in og - -
.Z.
and since t; > 0 it follows that (1 + ——3359)> 1
and
u = sgn ( Adzio)' (3-18)
It follows, therefore, that
t; = TX;T og ( iZiol) (3-19)

and the theorem is proved.

In case one of the Aﬁ

i T 0, say,ll = 0, the solution

corresponding to (3-17) is
0 = ut + z,, (3-20)
and the corresponding t; is

t; = |z19| - (3-21)
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Hence for a system with )Ll =0

T0 > max [|210| ,ti] (3-22)

where t; = l—izl- log (l+|/\izi0| ).



where:

-|u-

IV. THE VECTOR CONTROL PROBLEM
Consider the linear system

X = AX + BU(t) (4-1)

X is the n component state vector

A is an nxn matrix with real, non-positive, simple
eigenvalues

B is an nxr matrix
U is the r-component control vector

ll: 1i=1,2, ---, r 2 <r <n.

From the results of the previous section and other

investigators the control vector, Uj, which transfers an

arbitrary initial state, X

is known
only its
not more

lish the

o» to the origin in minimum time
to be unique. Further, each component of UO assumes
extreme values, is piecewise constant, and switches

than (n-1) times. The set of equations which estab-

switching times on the components of Uo is obtained

by extending the development of the previous section.

The Switching Equations

Let the system in (4-1) be transformed to principal

coordinates by the linear transformation X = PY so that

26
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Y = DY + CU(t) (4-2)
where
D = diag (};---A,) = P AP
-1
C =P B

Since the linear, constant coefficient differential
equation (4-2) has the vector solution

t

Y(t) = eDtyo + feD(t‘T)CU(T)dT (4-3)
0

the optimal control vector, U(t), must satisfy the relation

th
D D(t,-
-e tnYo = fe (tn T)CU(T)dT (4-4)
o
or
th
-DT
Y = je cu(MaT (4-5)
o
th th
-DT [ DT
Y = ‘[e ClulCT)d7'+ -+ , e CrurCT)dT' (4-6)
o o
where the C;, i =1, 2, ---, r, represent the columns of C.
The fact that Iuil = 1 for all t on the interval

(0, tpy) with (n-1) switchings or less, makes the integration

of (4-6) elementary when it is written as n scalar equations



AT AT
= - =i
-Yio = _/; ciluldT? --- er CirurdT . (4-7)

Now each of the r integrals in (4-7) can be written as n

integrals so that (4-7) becomes

t t
11 12
) T T
“Yio T cilul n[e dl{ - j’e d ---
(o) tll
B A
-1 A4 AT
+ (-l)(n ) _[e T ATy —oo + Ci Uy _[e 4T
tl,n—l o)
tri tn/1
AT 1 AT
- j; VAT 4 e r (cn)™D _[e T ar
tri1 tr,n-l
i=1,2, ---, n (4-8)
where the tij’ i=1, ---, r, j =1, ---, (n-1) are the (n-1)

switching times associated with u; and satisfy the inequal-

ities

OstjyStjps---=t; g =tpi=1, ---,r. (4-9)
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Assuming Ai # 0 (4-8) reduces to

-Ast At ).
€i1%1 1 - 2e Aa 11 4 g AdM12 | ___ 4 ()" e,lltn

, Sia%a |1 - 2e Fooee 4+ (- e
X
. A
o -A:t n t
. CirYr 1 - 2e T 4 peMTI2 -+ (-1) 1°n
Ad
i=1,2, -=—=, n (4-10)

The result for a particular 'li = 0 calls for a trivial mod-
ification,

The optimal control vector U0 is completely specified
by the solution to (4-10) for minimum t  subject to the con-
straints in (4-9). Since u; may be * 1 (4-10) is actually 27T
distinct sets of n equations, and each of these sets involves
r(n-1) + 1 variables. Since 2 < r < n the number of unknowns
exceeds the number of equations. If such a system has one
solution it has an infinity of solutions each of which is
obtained by arbitrarily specifying r(n-1) + 1 - n of the
variables and solving the resulting normal* set. However

the problem of finding the unique time optimal control remains.

* . . .
A normal set is one with the same number of equations
as unknowns.
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Constrained Minimum Problem

Finding the time optimal control from set (4-10) may
be viewed as a constrained minimization problem [17]. Since

t, appears in each equation of (4-10) only once, in a term

-A:t
of the form, K.e = n’ it is possible to solve explicitl
, K y

for t, in terms of the remaining r(n-1) switching times,

thus

t = f(t

0 110 t1pr —m-s ¢ ). (4-11)

12 r,n-1

Substitution of (4-11) into the remaining (n-1) equations of
(4-10) gives a set of n-1 equations which is independent of

th

gi(t117t127_'-7tr n-l) =0 i= 1727""_’(n'1)- (4-12)

The optimal time solution is now obtained by minimizing

f(t -,t ) subject to the constraint equations of the

11777
form given in (4-12), and the ordering constraints, (4-9).

r,n-1

Using Lagrange multipliers to find the minimum, form

the scalar function [20],[21],[25]

HOt ooty oo ol =8t )
(4-13)

* T8 (tyqommmoty nog) ==t 18y 1 (ygs-m=oty 1)

where the TG are constant multipliers. Consider now the
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problem of locating the extrema of H. A necessary condition

is that all its partial derivatives vanish

'Sfi—j =0 1 =1, ---, r j=1, ---, n-1
(4-14)
2H - o k=1, ==, n-1

Set (4-14) contains (r+1)(n-1) equations in the same
number of unknowns, and its solutions are the stationary
points* of H. Among its solutions are the minima of the
original function, f, subject to the constraints, g. = 0.

Two difficulties arise:

1. The solutions obtained are minima satisfying the
constraint set, g, = 0, yet they may not satisfy
the inequality constraints, (4-9), which order
the switching times.

2. The desired minimum time solution may be on the
boundary of the closed constraint set defined by

inequalities (4-9), in which case it is not nec-

essarily a stationary point of H, i.e.,
# 0 for some t: . (4-15)
tij |, 1)

where To represents the time optimal solution

vector.

*A stationary point of a function is one at which
all its partials vanish.
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As a simple example illustrating the second point,
consider the extreme values of f(x) = (x-1)3, 0 <x =< 2.
Figure 4.1 below shows the minimum at x = 0 and the maximum

at x = 2. The only stationary point is x = 1,

f(x)

Figure 4.1 f(x) = (X-l)3

The two difficulties discussed above impair the use-
fulness of the classical Lagrange technique; in the first
case undesired solutions are obtained while in the second
the minimum time solution cannot be found because it is not
a stationary point. A method which permits use of the con-
straints, g; = O, as well as the ordering constraints in

(4-9) is given next.

Modified Lagrange Technique

Several authors have extended the Lagrange multiplier
technique so that inequality as well as equality constraints
may be handled [22],[23],[24]. This is done by observing

that an inequality can be transformed into an equality by
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introducing a variable parameter s such that
f(x) > 0 implies f(x) = 52; (4-16)

Thus the inequality constraints in (4-9) can be re-

written as

tj17 20
tio 2 ti1
: i=1,---,r (4-17)
|
|
th 2 ti,n—l

and replaced by the following set of equalities

2
ti1 T Sia

>
= +
tio T ti1%Sio

Sucessive substitution of each member of (4-18) into the

following one yields each tij defined in terms of the sij

alone
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_ 2

ti1 7 %01
2 2

tio T Si17Si2

n

i 1,2,---,r (4-19)

e a S Ateetg .
th 5j17%i2 Sin

Now finding the minimum time solution requires minimizing

ty T f(tll’“_—’tr,n-l)
subject to the constraints
gi(tyy,--=»t, . 4) =0 i =1l---,n-1
t = 2
i1 T Si1
2 2 .
t. = s% +s i=1,2,---,r (4-20)
i2 i1 iz n
t
[}
]
}
)
t = + 2 + + 2
n - Si178i2"" 77784y

Observe that by substituting into f and g; the relations
from (4-20) defining the tij the remaining constraints in
(4-20) are r in number. Thus, the problem becomes one of

minimizing

t = f(s..) i=1,---,r (4-21)

j = 17"‘7“"1
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subject to the constraints

gj(sij) =0 1=1,---,r j=1,---,n-1 (4-22)
2
h, = -f(s, )+s _+s _+---+*s =0
k 1) kn
k =1,---,r (4-23)
i=1,---,r
j = 17""7n-1

Now f(sij) may be minimized by the usual Lagrange technique

of forming

H(Sij,m,ui) = f+n;{gk+uihi

i=1,---,r (4-24)
j = l""an
k = 1,---,n-1

and setting partials with respect to all variables equal to

zero
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r
dH . a k dhy —
2S. . as 3 k :r—‘
ij
m=1
i=1,---,r
aH = g = 0
o, K j=1,---,n (4-25)
k =1,---,n-1

I
=
]
(@)

H
ug i

This is a set of nr + n-1 + r = (r+l) (n+l)-2 equations in
the same number of variables. However, in practice, r of
these equations may be eliminated immediately. None of the

functions, f and g;, contain variables s s ---, s,

1n’ “2n " “rn
since tn does not appear in them and Sin» ~~7» Srn do not

appear in the equations defining the tij (see (4-20)).

Therefore
n-1 T
QM. T 9%k 5gk + ) u, Mg =0
Sin 2s; Sin Sin
k=1 m=1
i=1,---,r
=0+ 0 + 2u;s =0
aH = = =
Fin 2u Sln 0 1 1,2,---,r (4-26)
and it is necessary that either u; = 0 or Sin 0. In the

usual case where each control component switches (n-1)
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distinct times, all Si; # 0. The conclusion is that u; = ou,

= --- =u,. =0, thus reducing the number of equations and the
number of unknowns in set (4-25) by r, and leaving n(r+1)-1
equations in n(r+1)-1 variables. The cases in which some or
all of the S,, are zero can also be handled by the '"either-or"

rule. Therefore, the system to be solved is always the fol-

lowing normal one of dimension n(r+l)-1

n-1 r
h
)H=Df+ZTTkagk+ A
9S. . 9S . . Ss. . m 3s. .
ij ij i) 1)
k=1 m=1
i=1,---,r
j=1,---,n-1 (4-27)
OH _ k =1,---,n-1

Among the solutions to this set will be the unique
time optimal solution. Furthermore, the two difficulties
encountered in the classical Lagrange development have been
eliminated:

1. Every solution (only real solutions are con-
sidered) is a realizable control since, by
virtue of (4-20), all the switching times are
positive and ordered.

2. The minimum will always occur at a stationary
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point of H since the variables sij’nL’ u_are

all unrestricted in range.

Bounds of the Control Time

The system of equations in (4-27) is highly nonlinear
in the variables, sij’ and therefore not amenable to analytic
solution. More often than not the convergence of numerical
methods of solution is dependent critically upon a '‘good"
first approximation to the solution. The motivation for the
following two theorems is the establishment of upper and
lower bounds on the optimal control time, t,, as an aid in

choosing an approximate solution vector.

Theorem 4-1

The time, t representing the time optimal solution

n’

to (4-1) with the origin as terminal state satisfies

> .
tn > max P1

where
P, = —L log (-sgn xjo)(|by1] *---+Ibi | )+Aix;, (4-28)
| Adl (-sgn x;)C|byq|*-=-+|bin])
i=1,---,n

Proof: Completely analogous to the proof of theorem 3-1.
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If each entry uy --- U of the control vector, U,

is chosen to be #* u;, i.e.,

u; = Fouy i=2,---,r

then the vector control problem becomes a scalar control

problem, for a typical equation from the set (4-1) is

% .
I

i AjXj*biqup * bioup * bjzu; * --- * bjug
or

x; = Agxi*(byp £ biy #o--- 2 by duy (4-29)

i=1,---,n.

Evidently the set (4-29) can be written in 2(r-1)

ways since each of the last (r-1) columns of B may assume

either the plus or minus sign. Thus (4-29) represents Z(r_l)

different scalar control problems.  Let

T k=1, 2, --—, 2(r-1)

. . . . th
be the optimal control time associated with the k control
problem, and consider the minimum of the set Tk’ say TO.

T, is the time required to reduce an arbitrary initial

state, X to the origin under the influence of a particular

o’

control vector, U in which each entry is some specific

o.'

choice of * uj. Either Uj is the optimal control vector or

it isn't; in either case



and we have:

Theorem 4-2

1. Let tn be the optimal solution to the vector

control problem
X = AX + BU

2. Define 2(r-1) gcatar control problems by

= +tu i =2,---,1

u. 1

1

3. Define the set T, k = 1,---,2(r'1), where
T, is the optimal solution, if it exists, to
the kth scalar control problem.

4. Define TO = min Tk
then

t =< T

n (0]

Theorems 4-1 and 4-2, taken together, establish
both a lower and an upper bound on the optimal control time,
tnn These bounds are very useful for choosing an approximate
solution vector with which to initiate an iterative numerical
scheme. In most cases the bounds are reasonably ''sharp'; the
lower bound always exists, while in certain cases the upper

one may not exist. Consider the example
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M F,\ o | [x] (1 1] [u

1 1 1 1
= + (4-30)

X 0 A x 1 -1 u

-ZJ — 2& - 2-J — J d 2

This is a well-defined seccnd-order vector centrol problem.

Since r = 2, there are two derived scalar problems.

First Scalar Problem, up = uj

xlw A& 0 X4 1 1 ul
= +
x2 i 0 AQ- x2 1 -1 ul
)i 0 xl 2
= -+ ul
| 0 AQ ) 0
Second Scalar Problem, u, = -uy
X /\1 0 X 1 1 uy
= +
X5 i 0 )2 X, 1 -1 -uy
B
A; O x4 0
= + ul
K A X, 2




Neither of the two problems has a time optimal control since
neither system is controllable. Therefore, theorem 4-2 can-
nct be used to establish an upper bound on the optimal solu-
tion to the vector problem. However, this difficulty arises

if and only if each of the (-1

derived scalar systems is
not controllable.
Most of the effort in this section has been directed

toward deriving a set of equations, (4-27), which the time

optimal solution to the vector control problem necessarily

satisfies. A generalization of Lagrange's multiplier tech-
nique was used to handle the inequality constraints on the
switching times. Two theorems bounding the control time,
tn’ above and below were stated.

Finally, the results of this section hold also for

th order

the scalar problem (r=1), but, in practice, the n
set, (3-14), of the previous section iS easier to usSe Since

its dimension 1s (n-1) less than that of (4-27),



V. EXAMPLES

The previous sections have been devoted to develop-
ing the theory of time optimal control. Equations for which
the optimal control is a solution have been derived. 1In
this section application of the theory developed above to

several simple, physical systems is considered.

Scalar Control Problems

BxamEle 1

Consider the simple R-L-C system shown in Figure 5 1(a).

; 2
2< R
4
e(t) fgl 3L 1Y Y3
a==c 4
(a) (b)

Figure 5.1 Simple R-L-C System.

A state model of the system based on the linear graph of

Figure 5.1(b) is [26]
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— I~ ] r ] — -
] 1
v4(t) 0 c v4(t) 0
d _
I = + (5-1)
, 1 R _ e(t)
i(t) L L i3(t) L

The second-order system in (5-1) has eigenvalues

S RO \[RZ -1
! 2L - (5-2)

>
[y

¥
I

I1f R, L, and C are positive, and if

RS _ 1

— D> e

412 LC

the theorems of Chapter II establish the existence of a
unique, bang-bang control which switches once, and reduces
both the initial voltage, v,(0), and the initial current,
i3(0), to zero in minimum time. Since the equations which
must be solved to yield the optimal control are derived from
a state model written in princaipal coordinates, the coeffi-
cient matrix in (5-1) must be diagonalized. The nonsingular

linear transformation which does this is

Va

Ql~
Qlr

(5-3)
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and the transformed system is

—

R —_—
yl 2L 4 LC Y1

4 -
dt 5
v, 0 S ECHRN ) [
2L 4L LC
_
e(t)
oL\ [/ R2 _ 1
4L2 LC
+ (5-4)
- e(t)
2L RZ 1
4L2 LC

4 Yy -1 0 Y1 1
It e(t) (5-5)
Y2 O "2 Y2 -1

1]
+

One more linear transformation

= (5-6)

reduces (5-5) to the normalized form of (3-8)
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eq' = + e(t) (5-7)

The nonlinear switching equations corresponding to (3-14)
from which the optimal soluticn is obtained are
t t
jllzlo = e(t)(1-2e l+e 2)
(5-8)

2t 2t

where le and 220 are initial conditions related to v4(0)

and i3(0), respectively, by the product of the linear trans-

formations (5-6) and (5-3). Since e(t) assumes only the
values +1 and -1, (5-8) may be solved for both cases, and the
results in Chapter III indicate the optimal solution is the
one which satisfies 0 < t; < t;. Indeed, the control is now
uniquely specified: (1) the sign of e(t) is the sign of the
control for O <t < t;, (2) t; is the time at which the con-
trol switches, (3) t, is the time at which the control is
removed and at which the system state is zero.

Table 1 below lists the optimal solution of equations

(5-8) for eight different sets of initial conditions,.
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Table 1. Optimal Solutions for R-L-C System

z,(0) z,(0) v,(0) i,(0) e(t) ty t,
2 3 -2 4 -1 1.3863 1.6094
3 2 2 1 -1 1.8477 2.1622
-5 9 -28 23 1 2.4112 2.7909
37 25 24 13 -1 4.1650 4.5085
-20 -12 -16 -4 1 3.7739 4.2212
-12 -20 16 -28 1 3.0445 3.3673
5 87 -164 169 1 1.7442 2.7371
-75 17 -184 109 1 4.8667 5.2138

The above data were obtained using Program I of
Appendix C. This program solves the second order set (5-8),
using the technique of Appendix A; i.e., the nonlinear alge-
braic set is transformed into an equivalent differential
set which is solved by a Runge-Kutta method. Theorems (3-1)
and (3-2) guide the choice of an approximate solution vector
with which to begin the numerical process. The results ob-
tained indicate that it is rather easy to choose an initial

approximation which will converge to the desired solution.

Example 2

A higher order system shown schematically in Figure

5.2(a) consists of two masses interconnected with springs
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and dashpots and excited by the force driver, f(t). The
springs and dashpots are described by linear terminal rela-

tions.

My

My=M,=1
Ks By
K3=Ks=4
f(t)Qﬁ/
B,=B. =1 7
4
M, 6

L1177 7777777777777

(a) (b)

Figure 5.2 Mechanical System

A state model of this system based on the linear graph of

Figure 5.2(b) is

_ - 4 . A _ -
xl -8 4 2 1 x1 0
X 4 -4 1 -1 X -f(t)

L2 - 21 . (5-9)
x1 1 0 0 O Xy 0
X, 0O 1 0 O x2 0 |
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where Xy and X, are the displacements of masses Ml and M2,
respectively, from the equilibrium position while §1 and kz
are the corresponding velocities.

The coefficient matrix in (5-9) has real, simple,

negative eigenvalues, and the linear transformation which

diagonalizes the system is

— _ - - -
X, 0.1315 0.3103 -0.6319 0.8673 ¥
X, -0.0813 0.5021 -1.0224 -0.5360 Y5
= (5-10)
X, -0.5131 -0.9854 0.5209 -0.0849 y3
X, 0.3171 -1.5943 0.8429 0.0525 Ya
L - L - — -
And (5-9) written in principal coordinates becomes
ylw -0.2563 © 0 0 Yy
d Yo ) 0 -0.3149 O 0 )
dt
0 0 -1.2130 O
Y3 ¥3
Y4 0 0 0 -10.2159 Ya
- - L - - -
r— —
-0.0875
0.5054
+ f(t) (5-11)
0.9559
0.5289
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The linear transformation

[y, | [-0.0875 o 0
v, | | o 0.5054 0
vi | | o 0 0.9559
V4 0 0 0

reduces (5-11) to the normalized form

— - [

z, -0.2563 0 0

alz]. 0 -0.3149 0

dt zg 0 0 -1.2130
z4 0 0 0

0
0

.5289

-10.2159

(5-13)

1
1
f(t)
1
(5-13)
1
-

From (3-14) the nonlinear switching equations from which the

optimal solution is obtained are

Az, = £(D)(1-2e

Aoz = f(t)(1-2e”l2t1+2e”Kztz-ze”k2t3+e”12t4)
3%30 ~ ey (120 NS Lo Ast2 5 Asta, Asta,

Ay240 = f(t)(1-2e4l4t1+2eﬂl4t2-2e”A4t3+e”A4t4)

where the Ai

”llt1+2e'Aﬂtz-ze')4t3+e')4t4)

are the diagonal entries of (5-13).

(5-14)

Table 2 below lists the optimal time solution of

equations (5-14) for two different sets of initial displace-

ments and initial velocities of the masses, M; and M,.
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Table 2. Optimal Solutions for Mechanical System

X4 X5 Xq X5 Sign ty ts ts ty

1.533 -2.596 -0.633 -0.722 1 2.6299 5.4552 6.0723 6.1399

1.700 -4.405 0.229 0.971 1 3.1660 5.7931 6.4022 6.4699

The column labeled ''sign' indicates the value of f(t),
0=t =<ty, and the t, are the successive times at which f(t)
reverses sign. Program II of Appendix C was used to solve
(5-14) for the optimal controls of Table 2. The choice of
the initial, approximate solution was based upon theorems
(3-1) and (3-2). As one might expect, the choice of an
initial approximation which converges to the desired solu-
tion is somewhat more critical for the fourth-order system

than it is for second order-systems.

Vector Control Problem

A simple example of a physical system whose mathe-
matical model fits the structure of the vector control prob-

lem is the R-L-C system of Figure 5.3(a).
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(a) (b)

Figure 5.3 Two driver R-L-C systemn.

A state model of the system, formulated from the linear

graph 5.3(b) is [26]

B v, ) 0 2 v, 2 0 15(t)
1T = + (5-15)
The diagonalized system becomes
Y1 -1 0 Y1 4 2 ig(t)
d -
I + (5-16)

¥a 0 -2 ) 2 2 e; (t)
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where

\% 1 -1 y
.2 =l 1 (5-17)
14 —5 1 Y2

Application of the extended Lagrange method to (5-15) leads
to the following fifth-order system corresponding to (4-27),

which must be solved to obtain the optimal control

af_+zéL:0
9s, 0sy;

2 , ;9% -

8521 8521
g =0 (5-18)
f-52 —52 =0

11 12

where
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2 2

S S
11 21

“Y a0t - + -
f(s ,S ) - 1og Ylo 4ul(l 26 ) 2112(1 Ze )
117721 -4u,-2u
1 2
2 2

2s 2s
g(sll,521) = -2y20+2ul(1-2e 11)+2u2(l—2e 21y

2 2
S S
+4ul(1-2e ll)+2u2(l-26 21)

+(2ul+2u2) Y10
—4u1—2u2

If t11 and t21 represent, respectively, the times at which the
first and the second controls switch and t, is the time at
which control is removed, then the following equations relate

the tij and the si.

j
2
t11 T S11
2
thy T S5
. (5-19)
= +
t 5117%12
b= &2 .2

o S217S55

Program III of Appendix C was used to solve (5-18) for the
variables, sij and Z. Equation (5-19) was used to determine
the switching times of the optimal control. Table 3 below
lists the solutions for several different sets of initial

conditions.
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Table 3. Optimal Solutions for Two Control R-L-C System

v2(0) i4(0) i5 el tll t21 to
-14 11.5 -1 1 0.8765 1.1616 2.1810
12 6.5 1 -1 0 1.3013 2.6498
-8 -2.0 -1 1 0 0.9729 2.0423
-82 84.5 1 1 1.6468 1.2030 2.1943

The columns labeled i5 and e
i5 and e, on the intervals, 0 <t <t

respectively,

110 0=t =t

indicate the sign of



VI. CONCLUSION

The time optimal control of physical systems des-
cribed by a set of first-order linear, constant coefficient
differential equations has been extensively discussed in
the literature during the past few years. Most researchers
have been concerned with establishing the salient mathemat-
ical features of the optimal control, a.e., existence and
uniqueness, while only a handful have studied techniques for
finding the control. This thesis has developed and extended
techniques for determining the optimal control for that class
of systems which is completely controllable and which has
simple, real eigenvalues.

The introduction traces the history of the time
optimal problem from its genesis in the relay controller up
through the rigorous analysis in a precise mathematical form,
Sectién two contains a precise mathematical statement of the
time optimal problem. Pontryagin's maximum principle is
used to show the bang-bang nature of the optimal control,
and a theorem relating the number of switchings of each con-
trol component to the order of the system is stated.

The scalar control problem is discussed extensively,
and a transcendental set of equations in the switching times

which the optimal control must satisfy is developed.
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Theorems bounding the optimal time are stated and proved.

The vector control problem is considered separately
since it is considerably more complex than the scalar case.
The equations which the vector control must satisfy contain
more unknowns than equations, and consequently the set has
infinitely many solutions. The problem is reformulated as
a minimization of the final control time, t,. subject to a
set of equality constraints and a set of inequality con-
straints. Simple extensions of the Lagrange multipliers
permit handling the inequalities, and a normal set which the
optimal vector satisfies is derived. Again, theorems bound-
ing the optimal control time are given.

In Appendix A a numerical technique for solving
nonlinear algebraic equations is developed. This procedure,
based upon some of Wirth's work [26], transforms the alge-
braic set into a differential set whose solution at one end-
point of the interval, [0, 1], is a root of the algebraic
set. Other methods applicable to the solution of nonlinear
equations are included in Appendix B.

Several examples of physical systems are analyzed.
The state models and the transcendental equations in the
switching times are developed. The results of numerical
solutions carried out on a digital computer are listed in

tabular form for both the scalar and the vector control.



APPENDIX A

NUMERICAL SOLUTION OF NONLINEAR

ALGEBRAIC EQUATIONS

The analysis of many engineering problems has been
hindered by systems of nonlinear algebraic equations. Very
little is known about the properties of the solutions of
such systems. Indeed, the very question of the existence of
solutions to such a set can be fully answered only for very
special subclasses such as polynomials.

Wirth gives sufficient conditions for the existence

of a unique solution to such a set and devised an algorithm

for obtaining the solution [26]. His theorem is stated
below.
Theorem

Let G(T,X) = 0 be an n-dimensional vector function

of the n-dimensional vector, T, and the r-dimensional para-
meter vector, X. For every X such that:
1. The entries of gg exist, are bounded for all T
and satisfy a Lipschitz condition on T for all T

2. >k > 0 for all T, k a constant,

SF
det ==
“t 3T

Then there exists a unique T such that G(T,X) = 0.
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The hypotheses of this theorem are necessarily quite
restrictive since a unique solution is required. Thus, for
example, a single polynomial equation of degree two or higher
will not satisfy the hypotheses.

Therefore, while the theorem is extremely useful for
a narrow class of systems, it is not applicable to a broad
class of problems of engineering interest.

In practice, existence alone may be the significant
property of the system of equations, i.e., even though a
set may have many, even infinitely many, solutions one par-

ticular solution may provide an acceptable result.

Algebraic Systems

The theorem stated and proved below is an extension
of Wirth's work. It lists sufficient conditions for the
existence of a solution to a nonlinear equation set, G(T,X)
= 0, in some compact region, R. Perhaps more significant
is the fact that an algorithm for obtaining a solution is

contained in the proof.

Theorem A
Given:
1. G(T,X) = 0, an n-dimensional vector function of
the n-dimensional vector, T, and the r-dimensional
vector, X.

2. A compact region, R, in the (n+r) space defined
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by:

A
@]

”T B TOH

“X - x0” =D

3. For all TgR, Xe¢R the entries of g% exist, are

bounded and satisfy a Lipschitz condition with

respect to T.

4. det—?r,? >k >0 in R
S ”G(TO,X)” < % where M = m;x QQSI;El “

and X is a particular X £ R

then:
1. There exists T € R such that G(T,X) = 0
2. T = T(0)
where
ar _  [36(T X) —lG(T X)  T(1)=T (A-1)
dt ~ 2T o’ “to N
Proof:

1. Consider T as a function of a scalar independent

variable t so that we have
G(T(t),X = 0

2. Define a function H(T(t),t) = G(T(t),X)-tG(T,,X)

and differentiate with respect to t:
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dH _ DG(T(t),X) . dT _ -
3t 3T 3T G(T,,XD (A-2)
Note that g% exists and is nonsignular every-
where in R by hypothesis.
Now assume S8 = 0 which implies that

dt
daT >G(T(£) X <

-1
Each entry in [g%] satisfies a Lipschitz condi-

tion with respect to T. This holds because

2G
det ST

functions are again Lipschitz functions from

> k and sums and products of Lipschitz

Lemma 2.

The right hand side of (A-3) also satisfies

aG'l

max ﬁ G(Toi)

T

<

-1
aG v C = -
oT ” ”G(To”” <Moo TC (A

from the hypothesis.

Thus the differential equation (A-3) satisties
all the hypotheses of Lemma 1; therefore, it has
a unique solution, T(t), such that T(t) is in-
terior to R for tg[0,1] and T(1) = T,.
Substituting (A-3) into (A-2) shows that

o1a

i
i
o

Integrating we have
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0 0

Jﬂ;; H(T(t),X,t)dt = 0=H(T(t),X,t)

Therefore

"
(]

H(T(0),X,0)-H(T(1),X,1)
and
G(T(0),X)-G(T(1),X)*G(T4,X) = 0 (A-6)

8. Since the initial condition for the differential
equation (A-3) is chosen such that T(1) = T,
(A-6) above becomes
G(T(0),X) = 0 (A-7)
and T(0), the solution of (A-3) evaluated at

t = 0, is a solution to the algebraic set,

G(T,X) = 0.

Mixed Algebraic and Differential Systems

In formulating nonlinear mathematical models of
physical systems using linear graph techniques, the final

representation is often of the form

X = F(X,Y,E(t)) X(0) = C (A-8)

G(X,Y) =0
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where E(t) is a known function of time. If G(X,Y) =0
can be solved analytically for Y = H(X), the solution can

be substituted in the differential set to yield
X = F(X,H(X),E(t))  X(0) = C (A-9)

and this equation can then be solved for X(t). Hence the
statement that the system has a unique solution. Wirth, in
the theorem previously mentioned, stated conditions suffi-
cient for the existence of a unique solution to G(X,Y) = 0,
and, therefore, also to the whole system (A-8). However,
this result includes a rather limited subclass of the total-
ity of functions, G(X,Y) = 0. For example, the polynomial

glx,y) = yz-xz

= 0 has two well-behaved solutions yl(x) =
X, yz(x) = -x. It does not satisfy the hypotheses of Wirth's
theorem because it does not have a unique solution; neverthe-
less in this case a non-unique complete solution to (A-8) can
be obtained.

Therefore, it appears that in some cases sufficient
conditions for the existence of a complete solution to (A-8)

are desirable even though that solution is non-unique. The

following theorem is addressed to this problem.

Theorem B

Given:
1. X = F(X,Y,E(£)) X(0) = X,
(A-10)
G(X,Y) = 0
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defined on

where

Proof
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F continuous in X, Y and E for X, Y £ R defined
by X% =Dy [¥-vg|| = c.
G satisfies all hypotheses of theorem A, and in

B -1
addition %g] satisfies a Lispschitz condition

with resﬁect to X as well as Y for all X, Y in R.

E(t) is piecewise continuous.

exists a continuous solution, X(t), to (A-10)

0 <t <t, satisfying X(0) =X

2 o

2
is first t such that |X(t)) - X.|| =D,
is first t such that "Y(to) - Yo“ = C.

By Theorem A there exists Y, such that G(YO,XO)
= 0 and Yo is interior to R.
Y is determined as the solution of the differen-

tial equation

ay - »6(y,x)!

gl S2 G(Y,X) Y(1) = Y (A-11)

Q.

evaluated at S = O, Y(0). But since the right
hand side of (A-11) satisfies a Lipschitz condi-
tion with respect to both X and Y, by Lemma 4

the solution vector Y(S,X) is a continuous
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function of the parameter vector, X, so that

| ¥€0,%)-¥(0, %) <€ if onty[x;-x[|< & (A-12)

Thus applying a numerical solution technique to
X = F(X,Y,E)

gives

X, = X +F;(X_,Y_,E) where ”Fl(xo,YO,E)H<:J (A-13)

by taking a suitably small step size.
Using Xl and Y0 in (A-11) a new solution Y, is

determined, which by (A-12) satisfies
”Yl - Yo” <&
Repeating the above procedure a sequence
V(X ), Y (X)), ==Y (X ),---
is generated where

<€for all i

Y; - Y

Using this sequence of Yi's a numerical solution

to (A-10) is obtained over range

D

I A

1l
1 (0]

"Yi - Yo

1

1A
@
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Lemma 1

Given:

1. 2 = £(2) Z(1) = C (A-14)

2. A closed region, R, defined by ”Z - C” =C

3. There exists C, such that for all Z,, 2

3 in R:

2

Jceisce] =, 25

4. C, = mgx ”f(Z)“ , C5, < Cy

Then there exists a unique solution, Z(t), for t € [0,1]

such that 2(t) € R and 2(1) = C.

Proof (Existence)
1. The following integral equation is completely

equivalent to the initial value problem (A-14):
1

Z(t) = C - jf[Z(tl)]dtl (A-15)
t
2. Define a sequence of functions {Zn(t)> as follows:

Zo =C

|
' 1
I
I

_ 1 1
Z 4, =C - ff[zn(t ) ldt
t

Note that we know about the existence of the

above integral only if Z €R for all n.
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Assertion: 2Z_ € R for all n, all t € [0,1]

By induction

a) Z,=CER
b) Assume Z (t) € R

c¢) Then: 1

_ 1 1
Z. ,,(t) =C - j;[zn(t ) 1dt

t
1

”znﬂ-cng ﬁ,f(zn)” atl < c,(1-t) < ¢, for tglo,1]
t

Hence:

Z

n+1'C”§ C, < C; for tg[0,1], for all n (A-16)

from hypothesis. Hence we restrict t, 0 <t < 1.
Note the strict inequality implies Z is an
interior point of R,

Now consider:

1
2, - 24 = - ff(Zo)dtl
t
1
Jos - 2l flrczofiont = cyin0
t
1

”22 - 21“5 ﬁ,f(zl)-f(zo)’l att
t
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6.

68

And by hypothesis (Lipschitz condition):

1 1
z z.ll < ¢ z. - z|lat! < c.c (1-t1ydat?!
2 - 21|l = C3 1 o = GG,
t t
CoC3(1-t)2
= 2

By induction for any n:

n n+l
< C,C (1-t) (A-17)
273 n+l)!

Z Z

n+l “n

Hence it follows that [Zn] converges uniformly

for any interval [O,tOJ, t, <=1, to a limit func-
tion,
1
1 1
Z(t) = C - jf flz(t7)]dt (A-18)
t

which satisfies the integral equation and hence

the differential equation (A-14).

It remains to show that the solution, Z(t),
derived by successive approximations is, under

our hypotheses, the only solution of
z = £(z2) 2(1) =C

on the interval 0 <t =<1
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Assume there exists a second solution, Y(t),

such that Y(1) C. Since Y is continuous and

in R at time t = 1, it is in R for 0 < tl <t <1
Let t, = max [0,t;], then we have for t, =t =1:
1
Y(t)-2(t) = - [[f(Y)—f(Z)] at’
t
1 1
1 1
Y(t)-2(t)|| = Cq Y-Zl dt”™ < £+ C, |¥-z|lat? (a-19)
t t
where £1is constant > 0
By Gronwall's Lemma [28)]
”Y(t)—Z(t)“ < gef3(i-t) (A-20)
Hence Y(t) = Z(t), t2 <t=<1,
since £ is arbitrarily small.
1f t2 = 0 the proof is complete; if t2 = t1 >0
we have a contradiction since t_ was chosen so

1
that Y(tl) was on the boundary of R. But

Y(tl) = Z(tl) (A-21)

which implies Z(tl) is on the boundary of R also.
However by equation (A-16) Z(t;) is an interior

point of R. Hence for 0 <t < 1, Y(t) = Z(¢t).
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Lemma 2

Given:

1. |£e0-£()

1A

Ky | x-y|
'g(x)-g(y)( < K| x-y|
2. x, y ER, some compact region

Then:

1. |[£G0+gGa-£(y)-g(9)] = Ky|x-y

2. |f(X)g(X)-f(Y)g(y)| = K4IX-yl
1 1 .
Proof
1 [fea+se-£(n)-g(y)]| = |E0-£(y)]

* e - | = k| xey] + Ky [x-y ]
hence:
1

|f(x)+g(X)-f(y)-g(y)| = k3|x-y| , kg = kgt

hence assertion 1.

2. If(X)g(X)-f(y)g(y)

f(x)g(x)-£f(x)gly)+f(x)g(y)

-£(y)ey) | = f(x)g(x)-f(x)g(y>\+|-f<y>g<y>

£0g | = [E00 [ex-g0y) | fey|[eo-£0y)

But since f(x) and g(x) are continuous on a compact
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region they have maxima, Ml and M2, respectively

in R so that

|f<x>g(x>-f<y>g(y>|

1A

M].KZ‘X-YI +M2Kl ,X-Y] = K4|X-Y|
If(x)g(x)-f(y)g(y)' = K4|x‘y|

hence assertion 2.

1 1 |- 1 1
3. - = -
£(x) f(y)\ F00 fyy EY f(X)J'
S U O I O | ! ,Kl ,x_y\
f(x) £ |~ £CO £y
1 1 Ky -
- -1 |- = K_|x-
ey iies) Ml and IR ol

hence assertion 3.

Lemma 3 (Gronwall's Lemma)

Given:
1. u, v >0, Cl’ a positive constant
t
2. u=¢C+¢ j’u v dt1 (A-22)
o}
Then: t

u=<¢C;e (A-23)
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Proof

1. From (1):

<1
" =

C| + j-u v dt1

o

v
< v -
T = (A-24)

Cl+ fuvdtl

o)

2. Integrate over 0 to t:

t t

u(S)v(sS ds

)S ') =< ‘/;(S)ds (A-25)
Cl+ .jﬁ(sl)v(sl)dsl
o o
note:
S
(syv(sy = = [c, + (S,)v(S,) dS
u das | "1 ut=) 1 1
o

Thus:

_ S t t
log Cl + .]L(Sl)v(sl)dSJ < j;(S)dS

! o o o

( t \

C,+ fu(S dv(S. )dS
log { Lo L' L7 1 h< | ws)ds (A-26)
¢ "o




73

And:

t
t ]V(S)ds
(o]

C, +ofu(51)v(sl)dsl =C, e

3. Finally using the second hypothe%is:
t fV(S)dS
o
u=<¢C; + ‘j;(S)v(S)dS =C, e
o

t

j;(S)dS

Lemma 4

Given:

1. X = B(X,%)  X(0) = X, (A-27)
where X is an n-vector, % an r-vector

2. P(X,«) satisfies a Lipschitz condition with
respect to both X and X in some compact (n+r)
-space, R.

Then:

the solution, X(t,X), given by:

t
X(t,%) = X+ fF[X(tl),°(]dt1

(o)

is a continuous function of the vector

parameter, .
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Proof
1. Define:
- . [—._ F u
X1 X1 £,0C0
]
] M -—
X} xn then: X, fn(X)
X = °( =l a, X =|0 =|0 =G(X) (A-28)
|
|
|
a. 0 0 _J
where:
r— —
Tl(O)
|
a,l ' X
] - ! o)
=1 X(0) = x_(0)| =
! %
ar ?1
I
|
|
2. Now we have the system:
Xo
X = G(X) X(0) = |« (A-29)

where G(X) now satisfies a Lipschitz condition
with respect to X in R.

3. Solution to (2) is:

t
X(t) = X(0) + j::(i)dtl (A-30)
(o]
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4. Consider two solutions at time t, X;(t) and

X,(t), with different initial conditions

22<t>-¥l<t> = X2<o>-Kl<o)
t
t ﬁc(xz<t>)-c(il<t))]dtl

o

t
[EAGE AT I | % ¢0> X0 + ["G(fz)-c(xl)“dtl
o

And by Lipschitz condition:

t

o

[%.c0% 0 < [[Ryc00% 00

- - 1
X2(t)-Xl(t)“dt

o
Now by Lemma 3, Gronwall's Lemma:
||3c‘2<t)-il(ﬂ”:”Yz(m-Yl(o>” Kt
1f “Xz(o)-il(o)“ < 4 (A-31)
Then:
”Kz(t)-il(t) < det = € (A-32)

Hence

”Xz(t)-fl(t)”<£if only “22(0)-)-('1(0). <d (A-33)

and the conclusion that X(t) is a continuous func-

tion of its initial conditions.
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In particular if Xl(O) = X2(O) then
X,(0) - X, (0) =<, -, (A-34)
From the definition of X in (A-28)
”Xz(t, o,)-X, (t, °(l)“ :||x2(t)-x1(t>“ (A-35)
Using (A-33), (A-34), (A-35)

“Xz(t, ()X (t, L) <d (A-36)

<€ if only “o(z- o(l

But (A-36) is precisely the statement that X(t,«)

is a continuous function of the parameter,of .



APPENDIX B

NUMERICAL METHODS

This section briefly describes two of the standard
techniques, Newton's method and the gradient method, which
may be employed to generate numerical solutions to any set
of n equations in n unknowns. In particular, these algo-
rithms are applicable to the time optimal control equations

of Chapter III, (3-14), and Chapter IV, (4-27).

Newton's Method

The n equations
fi(yl’YZ"-_’yn) =0 i= 1721"'7n

in the n unknowns Y1,Y2:---,¥n €an be written in vector

form as
F(Y) =0 (B-1)

If each of the functions, f;(y;) = 0, can be expanded in a

Taylor series in n variables about some n-dimensional point,

yl(O) yz(O) —= v, (9, we nave
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n af‘(Y]_(O)__-y (O))
2 ) Gy -y on 2O

J J y
j=1 %3
n n
2
1 (0 (0), __9
+ =5 - )(y .-y
2 (Y=Y Y5y ) ST
k=1 j=1
T i=1,2, ---, n (B-2)

Discarding the second and higher order terms fi(Y) can be

approximated by

n
_ (0) % (0) D) (0)
fi(Y) = fi(Y )+ (Yj'Yj ) 5;3 fi(Y ) (B-3)
Jj=1
i=1, 2, ---, n

Rewriting the system (B-3) in vector form we have

(0) (0)

F(Y) = B(Y 7Y + J(Y (0)

)(Y-Y ) (B-4)

where J(Y) is the usual Jacobian matrix defined by

(V)
) A, = ——

(0)

J(Y) = (A;

If the vector, Y , 1s an approximate solution to (B-1),

and if the matrix J(Y(O)) is nonsingular, then we would

(0) (0)
£i0y, 9y O
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expect the vector

Y =Y JE(Y (B-5)

to be a more accurate approximate solution. This concept
leads naturally to the following algorithm by which, hope-

fully, we are able to generate a sequence of successively

closer approximations, Y(n), given by
y(P) = y(n-1)_p1y(n-1ypy(n-1, (B-6)
. -1, (k) .
provided that J (Y ) exists for each k = 0, 1, 2, ---.

This is Newton's Method for solution of the system, (B-1)

(31],033].

The sequence Y(O),Y(l),---,Y(n)

(0)

,--- beginning with
an arbitrary Y may not always converge to a solution of

(B-1). Sufficient conditions for the convergence of Newton's

Method to a solution were published by L. V. Kantorovich in

1937 [30],[31]. His theorem gives conditions under which the

1
Y(O),Y( ),-——,Y(n),---, converges to a solution,

sequence,
without assuming the existence of a solution a priori. His

theorem is stated below.

Kantorovich's Theorem

Given:

1. The normal set, F(Y) = 0, where for Y = Y(O) the

Y(O)

. . -1 . . o
Jacobian inverse, J " ( ), exists and satisfies
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[ v,

HJ'l(Y(O))F(Y(O))

o’ o @ positive constant.

=D,, D, a positive constant,

In the region defined by (B-7) below, F(Y) is
twice continuously differentiable with respect

to the components of Y and

n

2f
ik S PANE 1, 2, --=, n

j,k=1
The constants B_, D, K satisfy

h =BDK<1/2
(o] O O -

F(Y) = 0 has a solution Y which is located in

the region

”Y_Y(oﬁ

(B-7)

\/1-2h0}
D, .

1-
< N(h)D_ = [ oo

(n)

The successive approximations, Y , defined by

y(m) = y(n-1)_y-1ly(n-1)yp y(n-1),

exist and converge to Y, and the speed of con-

vergence may be estimated by the inequality

n-
= Zii-li (2‘ho)(2 l)DO°

Y(n)-Y|
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Gradient Method

The gradient method (also called steepest descent)
generates solutions to the nth order normal set, F(Y) = 0,

by minimizing the scalar function
(2= FIMF (B-8)

where M is a positive definite matrix, usually but not neces-
sarily the unit matrix. Since M is positive definite f}takes
its absolute minimum if and only if F = 0. Thus every solu-
tion of F(Y) = 0 is an absolute minimum of () , and every
absolute minimum of () corresponds to a solution of F(Y) = 0.
The technique used to find the minimum of §2depends
upon its geometry in hyperspace [33],[34]. For any partic-

ular value of K

Q=x (B-9)

is an n-dimensional surface in hyperspace. For the two-
dimensional case a contour map such as Figure 1 may be found.
Here C is the point at which §2= 0, and the contour lines are

constant values of ().
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%
Figure B.1 Contour map of §2= constant.
We seek a method of progressing from a vector point
Y, = (Y10, Yo0, -=-» Y.,) to another vector point, Y, = Y *KZ,

where k is a scalar and Z is an arbitrary vector, such that
QY+k2) < QUY). (B-10)
Thus we minimize the function
Yk) = QY +k2Z) (B-11)

of the single variable k by setting its derivative equal to

Zero:
d T _
d;Y(k) =z (?Y(Yo+k2) =0 (B-12)

Since condition (B-10) requires k # O we exclude this possi-

bility by further specifying that

T
22 Q) # 0 (B-13)
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where {)Y, commonly called the gradient, is the column vector
whose entries are

Q. = )

i ayi

(B-14)

Condition (B-13) states that the line in the Z direction
through Y  may not be orthogonal to the gradient at that

point, and hence not tangent to the surface
Q) = K.

Similarly, (B-12) says the line in the Z direction through

Y, is tangent to the surface

(o}
(UY) = Ky K, <K

at Y; as shown in Figure B.l.
At Yl we choose a new direction, Z, and proceed as
before. In this way a monotonically decreasing sequence,
g}(Yi), is obtained which is bounded below by the minimum
of g}(Y) and therefore has a limit which is the minimum.
In the method of steepest descent the vector, Z, is

always chosen as the gradient
z = Q) (B-15)

since g)Yis the direction of most rapid variation of ().
However, each step involves many calculations, and a variety

of simpler choices of z can be used.
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Since solving (B-12) for the minimizing k may be
exceedingly difficult, an approximate solution which sim-
plifies the calculation is highly desirable. Consider the
Maclaurin series expansion of\*kk), the function to be

minimized:

WYik) = Yoy +yr(odk + Y2, (B-16)

2 1
If we assume the second order approximation and minimize we

have:

"(K) =y (0) +\yt'(0)k =0
Y Y Y | (B-17)
k — - W(O)

\y:|(0)

And from (B-12)

T
Yoy =2 QY(YO)
(B-18)
o) = ZTJ(YO)Z
where
)2
J(Y ) = (A..) = —— Qv
S 77 Q) o

Therefore, in the steepest descent method where
z =§?Y(YO)

an approximate solution for the scalar, k, at the nth step

of the process is
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T
“Qyy) gy
k= (B-19)
n Q{{(Yn)J(yn)Qy(yn)

and the iterates are defined by

Yo=Y,k Qdy(vn). (B-20)

The gradient method, by its very nature, always con-
verges, yet there are some difficulties. These stem from the
fact that the method converges to a stationary point of the
surface,gz. However, in general, the surface may have maxima,
minima or saddle points all of which are stationary points.
Therefore each '"solution'" obtained must be carefully examined
to see if it is a true minimum. When a machine is used for
solution this is readily accomplished by substituting the
"solution' in the set, F(Y) = 0, to see if it checks.

In the case where J(Yi), i=1, 2, ---, is positive
definite we see from (B-19) that k  is always negative.
Therefore, the descent direction is that of the negative

gradient and the sequence (B-20) always converges to a min-

imum though it may be a relative minimum.



APPENDIX C

This section contains a brief description of the
digital computer programs used to obtain the numerical solu-
tions tabulated in the examples. A complete listing of the
programs is included after the program descriptions. All

programs are written in the Fortran language.

Program I--Kurung

This program determines the unique time optimal con-

trol for the second order system

. 7 — -1 - 7 ]
x1 P O xl bl

= + u(t) (C‘l)
X, i 0 Q.— _x%J _sz

It may be used exactly as listed provided a data deck, as
outlined below, is inserted at the end of the program.

The first data card contains a single integer N,
the number of initial conditions for which optimal solutions
are desired, located on the card by statement 12. The second

card contains the parameters P, Q, b and b, in the format

l)
of statement 10. The N remaining data cards contain the

initial conditions and the associated approximate switching
times for which optimal solutions are desired. The initial

conditions are x and X, while tl is the estimated switch-

10 0
ing time and t, is the final control time.

86
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The output consists of ten numbers: X107 X200 P, Q,
U, SlO’ 520’ tl’ t,, ERROR. The value of U(t), t] =t =ty
is given by U while t; and t, are the switching time and the
final control time, respectively. The ERROR is the norm of
the state vector at time t = t,. The approximate switching
times, S;, and S,,, are included for reference.

This program uses the numerical solution technique

of Appendix A, and the differential set is solved by the

fourth-order Runge-Kutta method.

Program II--Optima

This program solves the optimization equations which

yield the time optimal control for the fourth-order system

x] [. o 0o o] [x] [1]

Xl rl Xl

x 0r, 0 0] [x 1

SE 2 21+ uCt) (c-2)
x3 0O O r.3 0 x3 1
xa| |00 0xg| x| |1]

It may be used as tabulated with the addition of a data deck.
The first data card, in the format of statement 25,
contains a single integer N, the number of points for which
optimal solutions are desired. The second card contains the
four eigenvalues in order of increasing magnitude in the
format of statement 15. The N remaining cards each contain

the coordinates of an initial point and the approximate
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switching times associated with that point in the order:
X100 X200 X307 X40° t1, to, t3, ty where 0 < ty < t2 < t3
< t4. Format statement 20 describes the field on the card.
The output consists of the initial conditions X0
the value of U(t), 0 <t < t;, the switching

*207 *30" *a0’
times t1, to, t3, ta, and the norm of the state vector at
time t = tgs E.

This program alsoc uses the numerical technique of
Appendix A employing the fourth-order Runge-Kutta method for
solving the differential equations. The step size may be
changed by replacing the statement H = -0.005 by one which
reads the desired size. If this is done the 200 in the

statement, DO 75, must be replaced with an integer K such

such that HK = -1.0.

Program III--Inequa

This program determines the time optimal control

vector for the system

x1 _ P O xl , b1l bl2

by boo || Up(td

U,(t)
1 (C-3)

If a data deck is supplied it may be used as listed.
The first data card, in the format of statement 14,
contains an integer N which is the number of initial points

for which solutions are desired. Card two, in the format of
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statement 12, contains the numbers P, Q, b;;, bjp, bp1, boo
in that order. The N remaining cards each contain a set of
numbers Xlo, Xzo, Sll, 521, 512’ 522 in the format of state-

ment 10. The numbers xlo and x20 are initial conditions

while the Sij are related to the switching times tl, t2 and to

by

‘—f
]
wn

2 2 (C-4)
o = S11*S12

2 2
ty =55 * 5,

where t. and t, are the switching times of the first and

1 2
second controls, respectively, and to is the final control
time. The initial choices of the Sij are made by assuming
initial values for the switching times and then solving
equations (C-4).

The output consists of U; and U,, the values of the
controls U;(t) and Uy(t) initially and the switching times
t

t t . The norm of the state vector at t = ts is given

1> "2’ "o
by E while F is a measure of the error in the solution of
the set corresponding to (4-27). A desired solution is one

in which both F and E approach zero. The quantity D is the

determinant of the Jacobian matrix which must be inverted
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at each iteration. Its value is significant only if it
approaches zero, in which case the solution obtained is of
questionable value.

Newton's method is used to solve the minimization
equations in this program. In the event that the successive
iterates do not converge to the desired solution a message

to that effect is printed out.
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Program Kurung

PROGRAM KURUNG

S FORMAT(1H! ¢34HN B HEMESATH RUNGE KUTTA SOLUTION)

10 FORMAT(A4(F10e62))

12 FORMAT(13)

15 FORMAT (1 MHO«3HX]106¢ 77X e3MX20¢7X e 1HP ¢OX e 1HQeOX e 1HU«OX s 3HS10e7Xe3HS20
17X e2HT1 e8X ¢e2HT2¢8X ¢+ SHERROR)

20 FORMAT(IHO+7(F1042)493(E1548))
PRINT S
PRINT 1S
READ 12 M1
READ 10 P.Q¢B1 B2
DO 25 1=1.M1

35 READ 10 X10¢X204S104+s520
Hz=—-0e04
N=2S%
DO 25 1=1,2
Y1=S10
Y2=S20
Us(=1e60)%%]
Fl=((X102#P#U)/Bl«1e¢0)4+2,0#EXPF (—~P*Y1)-EXPF (—-P#*Y2)
F2=((X20%Q*#U) /B2~1e0)+2, 0XEXPF (~Q*Y1)-EXPF (-Q%*Y2)
DO 30 JU=1..N
D=2 0ORPHQREXPF (—PRY 1 =Q#Y2 )X (EXPF ((Q=-P)#(Y2-Y1))=~160)
Pl1=(Q®*EXPF (-Q%*Y2))/D
P12=2(-PREXPF (-P#*Y2))/D
P21 =(2.0%Q*EXPF (=-Q#*Y1) ) /D
P22z2( =20 ¥PREXPF (-P#*#Y1))/D
Gl12P11I#F1+P12%F2
G2=P21%#F 1 +P22%F2
R11=H®G1
R12=H®G2
Tl=Y1405#R11
T2xY24+05%R12
D=2 OXPRQIEXPF (-PET 1 -QXT2 ) ¥ (EXPF((Q-P)I)RX(T2-T1))-10)
R21=HX*(QREXPF (~QR#T2)%F 1 ~PHEXPF (-P#T2)%F2) /D
R22=H# (2 ¢ ORQREXPF (~Q#T1 ) AF 1 -2+ OXPXEXPF (~PXT1)%#F2)1/D
TizY14+0.5%#R21
T2=2Y24+0.5#R22
D=2 OXPRQREXPF (~PRT 1 =QRT2)H(EXPF ((Q-P)*(T2-T1))=-140)
R31=HR# (QREXPF (—Q#T2)#F ] «PHEXPF (-P*T2) ¥F2) /D
R32=sHR# (2 ORQREXPF (—=QRT 1 I RF 1 -2 0PREXPF (—-P*T1)%F2) /D
TleY1+R31
T2=2Y24R32
Dx2 s ORPRQREXPF (—PHT1<-QXT2 )R (EXPF((Q=PI®(T2-T1))=160)
R41aHR(QREXPF (~Q¥T2)RF 1 -PXEXPF (—-P#T2)#F2)/D
RA2zHR (2 OXQAEXPF (—=QRT1 ) RF 1| ~2 ORPREXPF (-PXT1)%F2) /D
Yi=zY14(R1142.0#R214+2.0#R31+R41) /60
Y2=Y24+(R12+20%R22+2¢0%#R32+R42) /660
IF(YIRY1+Y2RY2-10.0%#%540) 30+¢45445
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25

S

10

11

12
13
15
17
20
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CONTINVE

CONT INUE
X1=2(X10-(B1/P)RU)FEXPF (P¥*Y2)+ (2 OXEXPF (P2#(Y2~Y1))=1.0)%(B1l/P)*U
X2=z(X20~(B2/Q)%#U) *EXPF (Q¥*Y2)+ (2. OREXPF (Q#(Y2-Y1))=~1.0)#(B2/Q) *U
ERROR=SQRTF (X1 #X1 +X2%#X2)

PRINT 20¢ X10¢X204PesQeUe¢S106S204T1+4T2¢ERROR

sSTOP

END

END

Progam Optima

PROGRAM OPTIMA

FORMAT(1H1 «65SHTIME OPTIMAL SOLUTION FOR FOURTH ORDER SYSTEM WITH S
1CALAR CONTROL)
FORMAT(1HO«3X¢e3HX1045X e 3HX20¢5X ¢ 3HX30eSXe3HXA04a4X ¢ 1HUIOXe2HT1 013X
12HT 24 13X42HT3 413X e2HTA4 013X e 1HE)

FORMAT(1HO«67THJUACOBIAN DETERMINANT APPROACHING ZERO. TRY NEW APPRO
IXIMATE SOLUTION)

FORMAT(1HO +39HSOME SWITCHING TIME HAS BECOME NEGATIVE)
FORMAT(1HO +33HPRODUCT OF R4 AND T4 1S TOO LARGE)
FORMAT(4F10,42)

FORMAT (1HO+4F B8e2¢FS5Se1¢5E1548)

FORMAT(8F10,42)

FORMAT(I1I3)

PRINT S

PRINT 10

DIMENSION A(444)sR(4)eP(4¢4)sT(A)eY(4)F(8)4sG(8)S(4)
H=2-0.005

Nl =4

D=140

E=z060

J1=1

READ 25 M1

READ 15 (R(K) K=1,4)

DO 100 I=z=1.M1

READ 20 X10¢X20eX309X40¢ (SiK)eK=1¢4)

DO 100 JU=1,2

U=(=10)%%(J+1)
G(1)1=U*R(1)1%X1041e0=-2,0%#EXPF(~R(1)%S(1))+2.0%2EXPF(-R(1)%25(2))
1 -2+ OREXPF(-R(1)#S(3))I+EXPF(-R(1)*S(4))
G(2)1=URR(2)I#X20+1 ¢ 0«2 OXEXPF (~R(2)1%S(1))420XEXPF(-R(2)25(2))
1=20#EXPF (=R (2)%#S(3))+EXPF(-R(2)#S(4))
G(3)=URR(3INXI0+1 e0=2, OREXPF (~R(3)I%S(1))+2.0%EXPF(-R(3)%5(2))
1-2+0#EXPF (-R(3)%S(3)I)+EXPF(-R(3)%S(4))

G(A)zURR (A ) EXE0+1 ¢0=2 4 OXEXPF(-R(AI*S(1))+42.0*EXPF (-R(4)¥S(2))
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1-2+0#EXPF (=R(4)#S(3))+EXPF(~R(4)%#S(4))
DO 30 K=i,4
30 Y(K)=S(K)
DO 75 L=1,200
DO 35 K=1,.4
35 T(K)=Y(K)
DO 70 M=1,4
DO 40 K=1,4
DO 40 N=1,4
IF(N=4) 37.38.38
37 A(KoN)= (=1 ORRE(N=-1))I)#2,0#R(K)REXPF(-R(K)I®#T(N))
GO TO 40
38 A(KN)Z (=1 40RR(N=1)IXR(K)REXPF(-R(K)*T(N))
40 CONTINUE
CALL INVERT (A¢Ni+DeJ1)
IF(D#D=(10,0%%(-40))) 42,42.41
41 CONTINUE
DO 45 K=14.4
F(K)=0e0
DO 4S5 N=1,4
4% FIK)I=F(K)+A(KNIRGIN)
DO S0 K=1,44
SO PI(KsM)=HEF (K)
IF(M=3) 55:65:65
5SS DO 70 Kz ,.4
TIIK)=Y(K)4+P (K M) /2.0
GO TO 70
65 DO 70 Nz=1,4
TI(N)Y=Y(N)+P (N M)
70 CONTINUE
DO 80 K=144
80 Y(K)zY(K)+(160/6e0)#(P(Ke1)I+2e0%P(Ko2)42:0#P (K31 4+P(K44))
IF(Y(1)) 4306767
67 IF(Y(2)) 43,68,68
68 IF(Y(3)) 43,69,69
69 IF(Y(4)) 43,72,72
72 IF(-R(4)XT(4)=100,0) 75.,44444
75 CONTINUE
GII)ZEXPF(R(1)IRY(8)IR(UNR (1) #¥X10+1e0-2,0REXPF(=-R(1)%Y (1) )+2.0%EXPF
1(=RE1IIEY(2)) =2 0#EXPF(~-R(1)XY(3))I+EXPF(-R(1)%#Y(4)))
G(2)1=zEXPF(R(2)#Y(4) )X (URR(2) ¥X20+1 6 0=20REXPF (=R (2)I%#Y (1) )+2.0*EXPF
1(-R(2)%¥Y(2))=2.0REXPF(-R(2)*Y(3))I+EXPF(~R(2)#Y(4)))
G(3)=EXPF(R(3)®Y(Q) )N (UXR(3) #X30+1 e 0-2.0%EXPF(-R(3)IXY (1) )+2,0%EXPF
1(=R(3)IXY (2)) =2 0*EXPF(-R(3)¥Y(3)I)I+EXPF(~R(3)%2Y(4)))
G(3)=EXPF(R(Q)RY(Q4)) R (UXR(QIHX40+1 ¢0-2.,0#EXPF(-R(AIXRY(1))+2,0REXPF
1(-RAIRY (2))=20%EXPF (~R(4)%®#Y(3)Y+EXPF(-R(4)*Y(4)))
El1=2G(1)RG(1)+4G(2)%#G(2)+G(3IRC(3)1+G(4) %G (4)
E=SQRTF (E1)
PRINT 17 X10eX20e¢X30¢X80sUslYIN)Nxz14¢4)E
GO YO 100
42 PRINT 11
GO TO 100
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43 PRINT 12
GO TO 100
44 PRINT 13
100 CONTINUE
sSToP
END
SUBROUTINE INVERT (BeNDETWJ)
THIS SUBROUTINE INVERTS AN ARBITRARY MATRIX BY THE GAUSS
ELIMINATION METHOD
DIMENSION B(444)¢A(44:8)
IF DIVIDE CHECK 26426
26 IF ACCUMULATOR OVERFLOW 254:25
25 DET=1.0
N2 =N+N
L=N-1
DO 10 I=1.N
DO 10 JU=14N
10 A(l4J¥=B(I40)
K=N+1
DO 11 I=1,N
DO 12 JU=K N2
12 A(14J)=0,0
M=N+1
11 A(leM)=1,0
DO 6 J=1l.L
M=J+1
IFCA(J9J)) 10201
2 DO 3 1=M,N
IFCA(TWJ)) 4,34
3 CONTINUE
24 DET=0,0
{F ACCUMULATOR OVERFLOW 28¢:30
30 IF DIVIDE CHECK 28427
DO 5 K=1.N2
A(JeKIZA(JKI+A(T oK)
DO 6 1=M¢N
IF(AC(]«J))Be68
8 X=A(lesJ)/A(Je))
DO 9 K=J¢N2
9 A(TeK)IZA(TK)=X*A(J oK)
6 CONTINUE
IF(A(NGN)Y) 23¢24,23
23 DO 13 KX=1,4L
M=N=KX
J=M+1
DO 13 IX=l M
I =M= X+1
IFCAC(TIWJ)) 15413615
15 XzA(1eJ)/ZA(JeJ)
DO 14 K=1,N2
14 A(TIoK)I=ZA(] oK)=X#*A(JvK)
13 CONTINUE

[ S P -
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DO 16 I=1,4N

X=A(141)

DET=DET#¥X

DO 16 J=1.N2
16 A(T4J)=A(T4J)/X

DO 18 I=ioN

DO 18 J=1.N

L=J+N
18 B(1e,J)=A¢TI,L)

IF ACCUMULATOR OVERFLOW 28429
29 IF DIVIDE CHECK 28427
27 J=1

RETURN
28 J=«i

RETURN

END

END

Program Inequa

PROGRAM INEQUA
S FORMAT(1H1+.47HN B HEMESATH LAGRANGE MULTIPLIER SOLUTION WITH,
1234 INEQUALITY CONSTRAINTS)
10 FORMAT(6(F1062))
12 FORMAT(6F1246)
14 FORMAT(13)
15 FORMAT(1HO2FB8e¢2¢4E15¢8¢4E10.3)
20 FORMAT(I1HO 45X e2HUL ¢ 6Xe2HU2 ¢ 7Xe2HT 113X e2HT2¢13Xe2HTO0014Xe1HT 12X
11HZ 910X e 1HF 4 10X« 1HE 210X ¢ 1HD)
35 FORMAT(1HO25SHLOGF ARGUMENT IS NEGATIVE+S5X+3HTO0=E15.8)
PRINT S
PRINT 20
DIMENSION A(S+5)
N=S
D=1.0
J=1
READ 14 M1
READ 12 PsQeB11,B12,8B21,B22
DO S0 1=1.M1
READ 10 X104X204T11e¢T216T12eT22
DO 80 K=1,2
Ul=(-1.0) %K
DO 80 L=1.2
U2=(=1e¢0) ®¥L
M=0
S11=2T11
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sS21=T21

Sl2:Tl§

s22=7122 :
Uz1e0/¢-Bl112U1+B12%U2)

B=B21#U1+B22*0U2
D1=P#¥X104+B11#UI#(1e¢0-2,0%EXPF (~P#S11#511))
148 2#U2% (1 40-2,0%EXPF (~PX*S21%#S21))
Bl1z4,0*U]1 #P%B] 1 ¥EXPF (-P#S]11%S11)
B2zae0RU2#PXRB 2%#S21 #EXPF (-P*S21%#S21)
B3z440%U1%Q%B212#S1 1 #EXPF (-Q#S11%#S11)
B4=4,0%U2#Q*B22#S21 #EXPF (~-Q*S21#S521)
IF(D1%#J) 40,40,30

Hl1=(~10/P)%(B1/D1)
H2=(~-1¢0/P)®(B2/D1)
G1=B34(Q/P)#BaBI#UR ((D1#U)##(Q/P=1,0))
G2=B4+(Q/P)*BRB2XUR ((D1#U) %% (Q/P-140))
Z=(-HI*G1-H2#G2)/(G1#G1+G2%#G2)

25 D1=PXX10+B11#ULI1%#(1e0-2,0*EXPF(-P%#S11%#S11))

14B12#U2% (1 e0=2,0REXPF (—~P%#521%#S21))

Blzq,0%U 1 #¥P%#B1 1 #EXPF(-P%#S11#S11)
B2=Q,0%U2#PRB12%S21 #EXPF (-P*#S21%#S521)

B3=4,0%U 1 #QXB21#S1 1 *EXPF(-Q#*S11%511)
Ba=4,0%U2%Q%B22#S21 #EXPF (~Q*S21%#521)

IF(DI#U) 40,480,432

Hl=(-1¢C/P)%(B1/D1)

H2=(-10/P)%(B2/D1)
G1=B3+(Q/P)*Bx*B1#UR((DI1#U)) XX (Q/P-1,0))
G2=Ba+(Q/P ) #BRB2¥UR ((D1#U)Y**(Q/P—-1,4,0))

H11=(=-1e0/P )R ((D1#(-2,0¥P%S5]11%#B1+B1/5S11)-B1#81)/¢(D1%*#D )
H12=z(=~1e0/P) % ((-B1%¥B2)/(D1#01))

H22=2(=1e¢0/P) R ((D1#(-2,08#P%521%B24+B2/521)~B2%¥B82)/(D1#D1))
H21e=H12
Gl1==2.0%Q*S11%#B34+B3/S114+(Q/PYXBRUR(((DI#U) XX (Q/P=1,0))1%(-2,5%P*
1S11#B14B1/S1 1)+ (Q/P-1,0)R2UXBIXB1I X ((D1#U)EX(Q/P~-2¢0)))
Gl12=(Q/P)ABXUR(B1¥B2RUR(Q/P~10)1#((D1 XU XX (Q/P-2¢0)))
G21=Gli2
G22=z-2+.0#Q%S212Ba4+BA/S21+(Q/P)RBRUR(((DIRUIRR(Q/P=1e0) )% -2, 0¥P*
1S21#B24B2/S21 )14+ (Q/P~10)#URB2%B2%((D1#U)%#X(Q/P-2e0)))
A(le1)=HI1+Z%G11

A(142)=0,0

A(l ¢3)=H12+22G12

A(144)=0,0

A(145)=G1

A(24¢1)=H21+7Z%G21

A(202’=OQO

A(2¢3)=H22+2%G22

At24,8)=0,0

A(2+5)=G2

A(341)=G1

A(342)=040

A(343)=G2

A{34,4)=0,0
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A(3.51=0,0

A(d,1)=H1-2,0%S811

ACa,2)=-20%512

A(8,4,3)=H2

A(44,4)=0,0

A(QQS)“0.0

A(S,1)=H1

A(5+2)=060

A(54¢3)=H2-2,02821

A(S,4)=-2,08522

A(5:5)=0,0

Fl=H]14Z%*G1

F2=H2+Z2G2

F3zQ¥X204B21#U1%#(1e0-20%EXPF (~Q%#S11#S11))+B22#U2%(1,0-20%
IEXPF(~Q%S21%#S21))+BR((DI1*UIR*(Q/P))
Fa=(~-1e0/P)#LOGF(D1%*%U)~-S11%#S1]1-S12#S12
FS5=(=1e60/P)*LOGF(D1#U)-S21%#S21-S22#522

M=M41

CALL INVERT (AWN¢D+J)
S11=S11-A(141)%F1-A(1¢2)%¥F2-A(1+¢3)%F3-A(1+4)YRFQ-A(115)#F5
S12=S12-A(2+1)1%#F1-A(2+2)¥F2=A(2¢3)IXF3-A(2+4)RFA-A(2:.5)%FS
S212S21-A(341)%F1-A(3+2)#F2-A(3,3)%#F3-A(344)%F4-A{3+5D*F5
S22:=522~A(8,1)¥F 1 =A(442)%#F2=A(443)#F3-A(484,4)%¥F4-A(4+5D*FS
Z=Z--A(Se 1 )%F1-A(S:2)%¥F2-A(S5¢3)%F3-A(Se4)%FA-A(S5+S)#F5
T12S11%#S11

T2=521*521

TO=T1+S12%S12

T=T2+522%S22

IF(-Q#T0~40,0) 55440440

IF{(+-Q#T-a0,0) 60440440

E1=EXPF (P*TO)R#(X10-(Bl1#U1/P)R(2.0%EXPF («PRT1)-EXPF(-PETO)~140)
1-(B12%¥U2/P )% (2 0%EXPF (~P®T2)-EXPF (-P#T0)=1,0))

E2=EXPF (Q#TO) #(X20-(B21#U1/7Q)1 ¥ (2. O*EXPF («Q*#T1 )-EXPF (-Q*TO)~140)
1-(B22%¥U2/Q) R (2, 0X¥EXPF (~Q*T2)-EXPF (-Q#T0)~1e0))

E=SQRYF (E1*E1+E2*E2)

F=F1#F 1 +F2%F2+F3#F3+F4*F 3 +F5*F5

ORINT 195 UL sU24T1+T2:TOsTaZsFeELD

IF{M-30) 45,45,50

IF(F-00001) S50¢50:25S

PRINT 35

CONT INUE

STOP

END

SUBROUTINE INVERYT (BeNsDET.J)

THIS SUBROUTINE INVERTS AN ARBITRARY MATRIX BY THE GAQSS
ELIMINATION METHOD

DIMENSION B(S5:5)4¢A(5410)

IF DIVIDE CHECK 26426

I1F ACCUMULATOR OVERFLOW 25,25

CET=1.0

N2 =N+N

L=N-1
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DO 10 I=1sN

DO 10 JU=1sN
A(T,0)=B(1,0)

KN+l

DO i1 I=14N

DO 12 J=K4N2
A(T4J)=0,0

M=N+1

A(lM)=1,0

DO 6 J=1.4L

MzJ+1

IF(ACJeJ)) 14241

CO 3 I1=M,N

IF(AC(IeJ)Y)) 4,:3,4

CONT INUE

DET=0,0

IF ACCUMULATOR OVERFLOW 28430
IF DIVIDE CHECK 28.27
DO S K=14¢N2
ACJKIZA(IIKI+A(] oK)
DO 6 [=MyN
IF(A(]14J))B6,8
X=A(1 . JY/A(Je)

DO 9 K=J¢N2
A(TK)I=A(]K)=X*A(JsK)
CONT INUE

IF(A(NWN)Y)) 23,24,23
DO 13 KX=1,L

M=N-K X

J=M+1

DO 13 IX=21M

I =M-Ix+1

IFtA{TIJ)) 150134615
X=A(I4JI/A(JsI)

DO 14 K=14N2

AT oK)=A(T sK)=XRA(JoK)
CONT INUE

DO 16 I=1N

X=A(le¢l)

DET=DET #x

DO 16 J=1+N2

ArY Jy=A(lsJ)rXx

DO 18 I=1.N

DO 18 J=1.N

L=J+N

B(leJ)=A(1.L)

IF ACCUMULATOR OVERFLOW 28429
IF DIVIDE CHECK 28B+.27
J=1

RETURN

J==1

RETURN

END

END
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