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ABSTRACT

ON THE DETERMINATION OF TIME OPTIMAL

CONTROLS FOR LINEAR STATIONARY SYSTEMS

by Norbert Bernard Hemesath

The last decade has witnessed an intense interest in

time optimal control, i.e., the minimum time transfer of the

nth order system

it =AX + BU(t)

from an arbitrary initial state to an arbitrary terminal

state, subject only to the constraint that the components of

the control vector, U(t), be bounded and measurable, The

optimal control, when it exists, is known to have components

which are piecewise continuous and assume only their extreme

values. Furthermore, when A has real, distinct, non-positive

eigenvalues, each control component has (n-l) or less discon-

tinuous points. The optimal control is uniquely determined

when the (n-l) discontinuous points or ”switching times” and

the initial sign of each of its components are known;

This thesis develops nonlinear equations which the

optimal control satisfies and some techniques for solving

these equations. The special case in which U(t) is a scalar

is analyzed separately, and it is shown that the optimal con-

th
trol is the solution of an n order transcendental set in

the (n-l) switching times and the minimum control time, tn,
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I. INTRODUCTION

Any realistic design of a physical system imposes

constraints on some if not all of the system parameters.

Voltages, currents, forces, diSplacements, torques, veloc-

ities are all limited in magnitude. System designs ignor-

ing such restrictions are often trivial and physically mean—

ingless. A realistic design involves choosing components

and parameters from within a given set of constraints such

that "acceptable" performance is achieved as measured by

some predetermined criterion. Optimization theory is con—

cerned with the question: "Given a performance index, what

is the 'best' design within the framework of the constraints

imposed on the parameters?” If the physical system is des-

cribed by the state model*

x = P [x<t),U<t>] (1-1)-

then an important class of optimal problems involves choos-

ing the vector U such that the scalar integral

 

* . . . .

In this thes1s upper case letters indicate vectors

and matrices, lower case letters are scalars.



   



ti

m = h[X(t),U(t)]dt (1—2)

to

is minimum, where X(t0) and X(ti) are the initial and termi-

th ordernal states, reSpectively, of (1-1), and U is an r

excitation vector constrained to lie within a compact region

R of the r-dimensional Space.

Typical problems in this class are: ”What control

function, subject to magnitude constraints, will transfer a

system from one state to another in minimum time?” ”What

control will transfer a system from one state to another

with minimum energy expenditure?” These and many similar

questions have been investigated in recent years.

Time optimal control, the problem of taking a system

from one state to another in minimum time, represents one of

the most widely discussed optimization problems. It had its

genesis in the efforts of researchers to determine when a

relay controller should be switched to simultaneously reduce

the error and its derivative to zero in minimum time follow—

ing a step input.

The relay controller (also called bang-bang because

of its on-off nature) is a simple, economical approach to

closed loop control and is therefore attractive in many ap-

plications [1],[2]. Figure 1.1 below is a simple position

servo using a DC motor whose armature voltage is applied

discontinuously (off-full on) by the relay.



  

INPUT + ERROR OUTPUT

  VRELAY .__. MOTOR

ei(t) ' E(t) eon)     
 

  

Figure 1.1 Relay controller.

The operation may be briefly described as follows: If the

input and output positions differ, the relay applies arma-

ture voltage of the proper polarity to the motor to reduce

the error. When the error changes sign the relay reverses

the armature voltage. The system reSponse finally depends

upon the characteristics of the motor and its load. For no

damping the system oscillates with constant amplitude; a

damped system oscillates with decreasing amplitude and in-

creasing frequency [1].

Reversing the relay before the error reaches zero

reduces the "hunting” and shortens the settling time. Sys-

tem design procedures incorporating linear anticipatory

switching, wherein the relay is reversed as some linear

function of the error and its derivative before the error

reaches zero, have been developed in the phase plane for

second order systems such as that of Figure 1.1 [3],[4].

The concept of optimum performance is a natural out-

growth of the more SOphisticated relay controller with antic-

ipatory switching. Hopkin in 1950 defined Optimum performance

as ”that behavior in which the system returns to rest with



zero error in the shortest time following a step input” [5].

Hopkin and McDonald both demonstrated with heuristic proofs

in the phase plane that a second order system with real

characteristic roots and a bounded forcing function achieves

zero error in minimum time when the forcing function assumes

only its extreme values and reverses sign at a critical

boundary which is a nonlinear function of error and error

rate [5],[6].

In 1954 Bogner and Kazda, considering higher order

systems with real roots, attempted to extend the phase plane

concepts to a phase space [4]. In the case where the number

of relay reversals is one less than the order of the system,

their results indicate that a unique path exists from an

arbitrary initial point in the phase Space to the origin.

Bushaw in 1952 discussed the second order system with com-

plex roots as an abstract mathematical problem [7].

Bellman, Glicksberg and Gross in 1956 ”imbedded”

the Optimum relay controller problem in a more general,

precisely stated mathematical problem, and gave the first

rigorous proof that for a rather general class of systems

there exists an optimal controller and it is "bang—bang" in

character [8]. LaSalle further generalized the theory to

include time varying linear systems [9]. Concurrently sev-

eral Russian authors, working independently, developed sim—

ilar results. The approach of Bellman and LaSalle is topo—

logical; Desoer arrived at many of their conclusions using



variational calculus [10]. Finally, the Russian mathemati-

cian, L. S. Pontryagin, devised a ”maximum principle” which

is applicable to a very broad class of systems and problems

[11]. It too can be used to derive properties of the time

optimal controller.

Thus, a distinguished body of theory relevant to the

bang-bang control problem has been developed with the mathe-

matical form of the control firmly established for systems

of arbitrary order with both real and complex eigenvalues.

Although the form (bang-bang) of the control func-

tion is well known, the problem which has not been satisfac-

torily solved is this: ”Given a system with an initial

state, X for which a time optimal control exists, how is
O,

that control found?” If this question has no reasonable

answer, then optimal control remains a mathematician‘s game.

The object of this dissertation is to derive sets Of

conditions which the time optimal control for linear, con—

stant coefficient systems necessarily satisfies, and to show
 

that the equations representing these conditions can be

solved by numerical techniques.

The body of this thesis contains six sections fol-

lowed by three appendices. Section two is devoted exclusive-

ly to developing the mathematical theory of the time optimal

problem considered in this thesis. Important properties of

the controlled system and of the control itself are discussed.



Section three deals with the scalar control problem and

develops the equations which the scalar control must satisfy.

Section four introduces the vector control concept and devel-

ops the necessary optimization equations. A modified

Lagrange multiplier method is used to obtain a solution to

the resulting equations of Optimization. Two sections on

examples and conclusions complete the main body of the

thesis.

Appendix A includes a new method for solving non—

linear equations by transforming the algebraic equations

into differential equations whose solution at one endpoint

represents the solution to the nonlinear algebraic equations.

Appendix B contains standard material on numerical techniques

and is included primarily for continuity. Appendix C gives

some computer programs used to solve the optimization equa—

tions set down in sections three and four.



II. MATHEMATICAL THEORY

Statement of the Problem
 

The physical systems considered in this thesis can

be described by a system of linear, constant coefficient,

ordinary differential equations

n r

Xi = z aijxj * z bikuk(t) (2—1)

j=1 k=1

1 = l, 2, --—, n

where x , ---, x are the state variables which completely
1 n

define the system, and xi indicates differentiation of Xi

with reSpect to the independent variable, t. Equation

(2-1) may be written in the vector notation

X = AX + BUCt) (2—2)

where X is an n-component column vector, A is an nxn con-

stant matrix, B is an nxr constant matrix, U is an r—compo—

nent column vector.

The trajectory X(t) of (2-2), as a function of t, is

uniquely determined on an interval 0 j t 5 t1 when the con-

trol, U(t), and the initial condition X(O) = X0, are Spec-

ified. The ability to control the system lies in the freedom



to choose U(t), the entries of which are assumed to satisfy

the inequality

luk(t)l _<_ 1 k = 1, —-—, r. (2-3)

Suppose also that the controls, uk(t), are piecewise con-

tinuous, i.e., continuous for all t, 0 j t 5 t1, except at a

finite set of points ti at which the controls may have finite

discontinuities. Any control, U(t), whose components satisfy

these two conditions is called an admissible control.
 

The time optimal control problem may now be stated as

follows:

Given two points X0 and Xlin the state Space,
 

among all admissible controls, U(t), which trans—

fer the state point from XO to X1 (if such con-
 

trols exist), find one which minimizes the time,

Here X(to) = X0 and X(tl) = X1, and X(t) is the solution to

(2-2) correSponding to control U(t).

The maximum principle as given by Pontryagin, can be

used to establish some of the mathematical properties of the

control which is the solution to the problem posed above.*

 

*The development of this chapter is not intended to

present any new material, and therefore theorem proofs,

readily available from such sources as Bellman, LaSalle, and

Pontryagin, are omitted [8],[9],[10],[ll].



Pontryagin's Maximum Principle

The maximum principle developed by Pontryagin and

his associates states a necessary condition which an optimal

control and the associated Optimal trajectory Of a System

must satisfy. The process to be controlled is assumed to

have a state model of the form

x = F (X,U) <2-4)

where: X is an n-component vector (state vector)

U is an r-component vector

F and its partials with respect to x-, i = l,

2,---,n, are continuous on the direct product

of the control Space and the state Space.

The performance is to be measured by the functional

t1

J z 'fTO[X(t),U(t)]dt (2-5)

to

where fo(X,U) together with its partial derivatives is de—

fined and continuous on the direct product of the control

and state Space. Then the fundamental problem of optimal

control is stated as follows:

Given any two points X0 and X1 in the phase Space,

 

select from among all admissible controls, U(t),

which transfer the phase point from XO to X1 (if

 

such controls exist), the one which minimizes the

functional, J,

where X(to) = X0 and X(tl) = X1, and X(t) is the solution

to (2-4) associated with control U(t).
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Application of the maximum principle requires:

1. Augmentation of system (2-4) with the equation

i0 = fO(X,U) (2-6)

Introduction of the adjoint set of equations

W: UTE] (2-7)

where II/ = (1,10, l/jl, ---, Mn)

A scalar function H relating the augmented sys-

tem and the adjoint System.

The augmented system is

where

T = P(X,U) (2-8)

R - (f0, f1, -——, fn) = (f0, F)

X = (x0, x1, ---, xn) = (x0, X).

(2-9)

A .13 afi(X,U)/axj.

Observe thatlflfi F, and X are all (n+l)-component vectors and

that F(X,U) is not a function of x0. The scalar function H



ll

relating (2-7) and (2-8) is defined

_T _ .

H =11” F(X,U). (av-10)

Systems (2-7) and (2-8) are obtainable from (2-10) as
x

0

ll

i 9H/ 3 WI i

WI

Note that for constant values of X andl/T/ the function H de-

II

0 I
—
‘

I I I

:
3

“3H/ aXi H

ll

0 l
—
‘

I l I

:
3

pends only upon the vector parameter U. The maximum prin-

ciple may now be stated as follows.

Maximum Principle
 

Let U(t), t0 5 t 5 t1, be an admissible control Such

that the correSponding trajectory, X(t), beginning at XO at

time tO passes through X1 at time t1. If X(t) and U(t) are

optimal it is necessary that:

1. There exist a non-zero continuous vector func-

tionlflkt) = lpg(t),lp&(t), ---,lph(t) corre-

Sponding to U(t) and X(t).

2. For every t, t0 5 t 5 t1, the function H of the

variable U attains its maximum at U = U(t).

The maximum principle stated above is a necessary
 

condition for optimality, but the fact that it has been

satisfied does not assure the existence of an optimal con-

trol. Mathematical questions concerning the existence and
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uniqueness of optimal controls are very important and dif-
 

ficult. The following sections deal with some of these

questions in the particular case of time optimal, linear,

stationary Systems.

Properties of the Optimal Control
 

For the time Optimal problem stated in the first

section of this chapter the functional, J, is

t1

J = .jTO(X,U)dt = tl-tO (2-11)

to

which implies

fO(X,U) = 1. (2-12)

The augmented system (2-7) is

x0 = 1

(2—13)

x = AX + BU

and the adjoint system (2-7) defined in terms of

wle/ltl/jzv "'"9 W11 is

7 = 0

V0 (2-14)
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The function H can be written as

_ T .T

H(l/f,X,U) 3W0 «Ly! AX +15] BU (2-15)

The maximum principle states that if U(t) is optimal then H,

considered as a function of U alone, assumes its maximum at

U = U(t). Since (2-15) is linear in U this implies that each

component of U assumes its greatest magnitude and the Sign of

its coefficient. Since from (2-3) IuiI: l, the control U(t)

may be written

T

U(t) = Sgnyy B (2-16)

where for r—dimensional vectors A and B, A = sgn B means

that ai = Sign of bi’ i = l, ---, r. This result may be

formally stated as

Theorem 2-1
 

If an Optimal control function for the time optimal

problem exists it is of the form

_ T

U(t) - sgnyy B

wherelflKt) is a non-zero solution of the adjoint* system

11/ = fw-

 

' T . . °

*The system Y = -A Y 15 called the adj01nt to x = AX.
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Therefore the form of the optimal control, if it

exists, is established as piecewise constant or "bang-bang”,

and each component of the control switches Sign at the zeros

Of the corresponding component oft/1TB.

Perhaps a logical question at this point is: "Under

what conditions does an Optimal control exist, and is it

unique?” A simple example may provide some insight into this

problem. Consider the scalar equation

x = ax + bu (2—17)

By the maximum principle u i l and never switches Sign Since

the adjoint solution, y(t) = e-atyo, has no zeros. Thus the

solution to (2-17) is

at

x(t)=e (x+_b_u -22.

0 a a

and if the desired terminal state is X(t) = O, the optimal

solution, if it exists, must satisfy

1 _ at

axO — e t 3 0 (2—18)

+1

bu

 

Whether or not (2-18) has a solution depends upon the values

of the parameters, a and b, and the sign of u. There are

three cases of interest.
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Case 1: a < O, b f 0

An optimal solution exists for arbitrary x Since
0

the left hand Side is always less than one if u = sgn (a X0 D, 

while the right Side approaches zero as t grows large.

Case 2: a > O, b # O

. . a x

NO solution eXists for values of xO such that .7;2

 

> 2. Under this condition the left hand Side is always less

than one while the right hand side exceeds unity.

Case 3: a arbitrary, b = O

. . . at

No solution ex1sts Since X(t) = e x never reaches
0

the origin.

The behavior in case three above is related to the

concept of controllability as introduced by R. E. Kalman [l2].
 

He defines a System to be completely controllable if for
 

arbitrary states X0 and X1, and times t0 and t1, there exists

a control which transfers the system from state XO at time tO

to state Xl at time t1. Kalman has also stated the follow-

ing [13]

Theorem 2-2
 

The system described by (2-2) is completely control-

n‘lB, An-ZB, ---, AB, B]lable if and only if the matrix [A

has maximum rank.

The system described in case three does not satisfy

this theorem, and is, therefore, not controllable. It is
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apparent that a system which is to be optimally transferred

from an arbitrary initial State to the origin must be neces-

sarily completely controllable.

However complete controllability is not sufficient
 

for optimal control of a System with arbitrary initial state.

Consider case two; the system is completely controllable by

theorem 2-2, yet for certain initial states there is no

optimal control.

On the other hand the system of case one is complete-

ly controllable and always has an Optimal control. This

leads to the final factor affecting the existence of optimal

controls, stability. System one has a stable characteristic
 

root while system two has an unstable characteristic root,

where a stable root is defined as an eigenvalue Of the matrix

A in (2-2) with non-positive real part. The intuitive evi-

dence might lead one to expect that which the following the-

orem states [11]

Theorem 2-3
 

If the matrix A has stable eigenvalues and if the

system (2-2) is completely controllable, then there exists

an optimal control which transfers an arbitrary initial

phase point, X. to the origin.
0’
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The previous theorem establishes the existence Of

an optimal control under certain conditions. Another very

important property of the control is its uniqueness which

is assured by

Theorem 2-4
 

Let U1(t) and U2(t) be two Optimal controls (defined

on the intervals t0 5 t 5 t1 and t0 5 t 5 t2 respectively)

which transfer the phase point XO to X1. Then these controls

coincide, i.e., t1 = t2 and Ul(t) = U2(t).

In systems which have real eigenvalues the optimal

control has an especially significant property wherein the

number of switchings of each control component is related

to the order of the System.

Theorem 2-5

If the matrix A of (2-2) has real, non-positive

roots, then each component, u- i = 1, ---, r, of the op—
17

timal control will switch not more than (n-l) times where

n is the order of the system.

The property stated in theorem 2-5 above is exploited

in the following chapters of this thesis to develop sets of

equations which the optimal control must satisfy. Henceforth,

unless otherwise stated, the system under consideration is

that characterized by (2-2) with the additional restrictions
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that the eigenvalues of A are real, non-positive and simple

(non-repeated), and that the System is completely control-

lable, i.e., all subsequent development is concerned with

linear, stationary systems for which a unique, time optimal

control always exists.



III. SCALAR CONTROL PROBLEM

The time Optimal control of physical systems governed

by a single control variable is perhaps the most Significant

of the class of time optimal problems in applications. In~

deed, all single input, Single output, linear control sys-

tems currently designed with s—domain techniques fall into

this class. For these systems usually (but not necessarily)

the error and its first (n-l) derivatives are reduced to

zero. Because of its importance and its mathematical trac-

tability, the scalar control problem is considered first as

a Special case.

The Switching Equations
 

Many of the early efforts to determine time Optimal

controls were based on the phase Space, a generalization Of

the phase plane which is SO useful for second—order systems

[4],[lO]. The approach is that of establishing switching

surfaces in the phase Space, i.e., surfaces at which the

control function changes Sign. However, as the order of the

system increases the problem of eliminating the time variable

from the system equations becomes very difficult. Recently

several authors have suggested techniques for determining

the control as a function of switching times rather than as

a function of the system state [17],[l8]. This approach will

19
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be used here.

Consider the completely controllable System

x = AX + Bu(t) (3-1)

where A is a Square matrix with simple, real, non-positive

eigenvalues, B is a column vector and u(t) is a scalar con-

trol function. The theorems of the previous section guar-

antee the existence of a unique control function which will

transfer the solution of (3-1) from an arbitrary initial

state to the origin in minimum time.

The equations of optimal control are simplified if

the system (3-1) is reduced to principal coordinates, i.e.,

A is diagonalized. Defining the nonsingular linear transfor-

mation

X = PY (3-2)

equation (3-1) becomes

9 = (P'lAP)Y + P—lBu(t) (3-3)

where [14],[15]

P—lAP = D = diag(/\1,A2, ---, An) (3-4)

and the ,Kiare the eigenvalues of A. If we let Zi2yi/(P-1B)i

_1 . .th -1

where (P B)i is the 1 component of the vector P B then

(3-3) reduces to
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z = D2 + Iu(t) (3-5)

where I is a column vector of ones.

The solution to (3-5) is [19]

t

Dt D(t-r)

‘I' eZ(t) = e Z Iu(r)dr (3—9)

If tn represents the time required for an Optimal control to

transfer ZO to the origin, then the optimal solution is

tn

Z(tn) = O = eDthO + J/geD(tn-r)lu(r)dr. (3-10)

0

Multiplying both sides of (3-10) by (e Dtn)-l = e_Dtn gives

tn

-ZO = J[e_DrIu(r)dr. (3-11)

0

Since u(t) iS piecewise constant and reverses Sign at most

(n-l) times on the interval [0,tn], (3—11) may be written as

the sum of n integrals of alternating Sign

  

/ t1 t2 tn \

_ —D n-l —Dr

-ZO = u( e DrIdr- e rIdr+---+(-l)( ) e 1dr? (3—12)

t

x l tn‘1 1

where u = i l and t1, --—, tn—l are the (n-l) switching times

which must satisfy the ordering constraints
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< t2 < ___ < t -l j t . (3—13)

If none of the Ad.: 0 integration of (3-12) gives n equations

_ ~t - -t - -t - -t

71.2. = u [l—2e A1 1+2e)Ll 2— ——- -(-l)n2e A1 r1'14-(_1)ne 1 n]
l .10

i : 1: —--i n (3‘14)

where zi0 is the ith element of the vector Z0. The modifica—

tion required where some Ad.= O is Obvious.

TO find the unique optimal control it is necessary to

find the ordered set

0 < t < t < ___ < t < t

1 2 n-l - n

with minimum tn which satisfies the n transcendental equa-

tions in (3-14) and to find the correct Sign for u.

Bounds on the Control Time
 

Systems Of transcendental equations, in general,

cannot be solved analytically and the solutions are not

unique. However, any solution of (3-14) which simultaneously

satisfies (3-13) is unique [4]. Since numerical methods are

required to solve (3-14), a ”good" first approximation to the

desired solution is necessary if an iterative procedure is

to prove successful. Initial estimates must be made for t1,

t —--, tn as well as the Sign of u. The switching times,
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of course, must be positive and must satisfy the ordering

constraints (3—13). However, the ordering constraints con-

tain no information about the magnitudes of these switching

times. Intuitively one might expect that the control time

required to bring a system to the origin is a function of

the System initial state and the eigenvalues. The following

theorem shows that this is, indeed, true, and provides a

useful basis for choosing the initial vector with which to

begin an iterative solution technique.

Theorem 3-1

If the eigenvalues are all distinct from zero, the

minimum time T0 required to transfer the normalized system

z. = -z- + u(t) i (3—15)
1 11

II

[
.
1

N

l I I

D

from an arbitrary initial state, Z to the origin satisfies
0,

the inequality

T > max t.

o — i

where:

ti ='17%;rlog( Lliziol+l) i = l, --—, n (3-16)

Proof:

Since the minimum time solution requires the Simulta-

neous transfer to the origin of all states, the minimum time

solution, To’ must equal or exceed the maximum of the Set



24

t1, t2, ---, tn, where ti is the minimum time required to

transfer the initial state, Zio’ to zero. From (3-14) the

control which transfers 2- to the origin in minimum time is
10

the solution to

alizio = u(l-eflliti) t. > 0. (3-17)

The solution to (3-17) is

_ 1 i 10

ti — - Ai log(l + u ).

. . i io

and Since ti > 0 it follows that (l + u )> 1

and

u = sgn ( Aizio). (3—18)

It follows, therefore, that

t. = 1' lo (1 +IAgz- I) (3-19)
1 IiiI g 1 10

and the theorem is proved.

In case one of theA.i = O, say,l1 = O, the solution

corresponding to (3—17) is

O = ut + 210 (3-20)

and the corresponding ti is

t1 = 'leI . (3-21)
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Hence for a system with A1 = 0

TO _>_ max ”210' ,ti] (3-22)

where ti = 7171' log (1+lAiziol ).



where:

.lu

IV. THE VECTOR CONTROL PROBLEM

Consider the linear system

x = AX + BU(t) (4-1)

X is the n component state vector

A is an nxn matrix with real, non-positive, Simple

eigenvalues

B is an nxr matrix

U is the r-component control vector

il: l i = l, 2, ---, r 2 j r j n.

From the results of the previous section and other

investigators the control vector, U0, which transfers an

arbitrary initial state, X

is known

only its

not more

lish the

o’ to the origin in minimum time

to be unique. Further, each component of U0 assumes

extreme values, is piecewise constant, and switches

than (n—l) times. The set Of equations which estab-

switching times on the components of U0 is Obtained

by extending the development of the previous section.

The Switching Equations
 

Let the System in (4-1) be transformed to principal

coordinates by the linear transformation X = PY so that

26



 

 

‘IJ



27

I = DY + CU(t) (4-2)

where

_ - - —l
D — diag (Ad-~7Kn) 1 P AP

--1
C = P B

Since the linear, constant coefficient differential

equation (4-2) has the vector solution

t

Y(t) = eDtYO + -[eD(tJT)CUCT)dT’ (4-3)

0

the Optimal control vector, U(t), must satisfy the relation

tn

D D t -

—e tnY0 : je ( n T>CU<T>C1T (4-4)

0

or

tn

-D7'

“Y0 = er CUCT)d7' (4—5)

0

tn tn

-DT' [ -D7’
-Yo — dfe ClulCr)dT + -—- + J e CrurCT)d7’ (4-6)

0 0

where the Ci, i = l, 2, ---, r, represent the columns of C.

The fact that luil = l for all t on the interval

(0, tn) with (n-l) switchings or less, makes the integration

of (4-6) elementary when it is written as n Scalar equations



_A-T .T
-y, = J[; l eiluldi --- + jfe'A“ c. urdT’. (4-7)

Now each of the r integrals in (4-7) can be written as n

integrals SO that (4-7) becomes

 

 

tii t12

_AiT _AiT
-yi0 = Cilu1< fife d7’- JIe d7’+ --—

O tll

\

tn ( trl

_ _l-T A-T
+ (-l)(n l) ’[e l dT'+ -—- + cirur '[e- 1 d7,

tl,n-1 O

tri T tnA T N_ ' -1 _ '

- -je l d7'+ --- + (-1)(n ) fife l d7’>

tr1 tr,n-l /

i = l, 2, ---, n (4-8)

where the tij’ i = 1, ---, r, j = l, --—, (n-l) are the (n-l)

switching times associated with ui and satisfy the inequal-

ities

O 5 till: ti2 : --- : ti,n-l : tn 1 = l, --- r. (4-9)
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Assuming ’li # 0 (4-8) reduces to

_ .t — .t — .

Cilul l _ 28 A1 11 + 2e 1 12 _ ___ + (_l)n e Altn

i0 :1

 

 

Ci2u2 l _ 28-Ait21 + ___ + (-l)n e'Aitn

+ .

A}

I A A A‘ Cir r 1 _ 2e- itri + 2e- itr2 ___ + (_1)n e- 'tn

+

Ii

i = 1, 2, ---, n (4-10)

The result for a particular ’Xi = 0 calls for a trivial mod-

ification.

The optimal control vector U0 is completely specified

by the solution to (4-10) for minimum tn subject to the con-

straints in (4-9). Since ui may be i 1 (4-10) is actually 2r

distinct sets of n equations, and each of these sets involves

r(n-1) + 1 variables. Since 2 j r j n the number of unknowns

exceeds the number of equations. If such a system has one

solution it has an infinity of solutions each of which is

Obtained by arbitrarily Specifying r(n-l) + l - n of the

variables and solving the resulting normal* set. However

the problem of finding the unique time optimal control remains.

 

* . . .

A normal set is one With the same number of equations

as unknowns.
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Constrained Minimum Problem

Finding the time optimal control from set (4-10) may

be viewed as a constrained minimization problem [17]. Since

tn appears in each equation of (4-10) only once, in a term

_ -t

of the form, Kie 1 n, it is possible to solve explicitly

for tn in terms of the remaining r(n-l) switching times,

thus

t = f(tn 11’ t --—, t ). (4—11)

Substitution Of (4—11) into the remaining (n-l) equations of

(4-10) gives a set of n-l equations which is independent Of

tn

gi(tllyt127__-7tr n-l) : O i = 1,27_--$(n-1)° (4-12)

The optimal time solution is now obtained by minimizing

f(t -,t n 1) Subject to the constraint equations of the
11""

form given in (4-12), and the ordering constraints, (4—9).

Using Lagrange multipliers to find the minimum, form

the Scalar function [20],[2l],[25]

H<tii’""’tr,n-iJTGfl'"““TChi):f(tii’""tr,n—i)

(4-13)

*'7581(tii""’tr,n-i)*"'In;—1gn-i(tii’""tr,n—i)

where the TG are constant multipliers. Consider now the



1.51

(0.1.
.+..

4,!1...!

l,
((l
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problem of locating the extrema of H. A necessary condition

is that all its partial derivatives vanish

3H 2 _ ._
SE-i—j O .‘L - l, ---, r J - l, --- n-l

(4-14)

3H = 0 k - l, ——— n-l
5TH.

Set (4-14) contains (r+1)(n-l) equations in the same

number of unknowns, and its solutions are the stationary

points* of H. Among its solutions are the minima of the

original function, f, subject to the constraints, gi = 0.

Two difficulties arise:

l. The solutions Obtained are minima satisfying the

constraint set, gi = 0, yet they may not satisfy

the inequality constraints, (4-9), which order

the switching times.

2. The desired minimum time solution may be on the

boundary of the closed constraint set defined by

inequalities (4-9), in which case it is not nec-

essarily a stationary point of H, i.e.,

3H
zfifj' To # O for some tij (4—15)

lJ

where TO represents the time optimal solution

vector.

 

*A stationary point of a function is one at which

all its partials vanish.



 

 

.iu.
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As a simple example illustrating the second point,

consider the extreme values of f(x) = (x-l)3, O f x j 2.

Figure 4.1 below shows the minimum at x = O and the maximum

at x = 2. The only stationary point is x = 1.

f(x)

 

 
Figure 4.1 f(x) = (x-l)3

The two difficulties discussed above impair the use—

fulness of the classical Lagrange technique; in the first

case undesired solutions are Obtained while in the second

the minimum time solution cannot be found because it is not

a stationary point. A method which permits use of the con—

straints, gi = O, as well as the ordering constraints in

(4-9) is given next.

Modified Lagrange Technique
 

Several authors have extended the Lagrange multiplier

technique so that inequality as well as equality constraints

may be handled [22],[23],[24]. This is done by observing

that an inequality can be transformed into an equality by
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introducing a variable parameter s such that

f(x) 2 0 implies f(x) = 52. (4-16)

Thus the inequality constraints in (4-9) can be re—

written as

tii : 0

tiz 3 til

: 1 = 1,---,r (4-17)

I

I

tn 3 ti,n-l

and replaced by the following set of equalities

_ 2

til ‘ 511

2

. = +
t12 til 512

t. +5.
n i,n-1 in

Sucessive substitution of each member of (4—18) into the

following one yields each tij defined in terms of the Sij

alone
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_ 2

1:ii ‘ sil

_ 2 2

ti2 ‘ si1+si2

: i = l,2,—--,r (4-19)

I

I

I

tn = 511*Si2*"'*sin

Now finding the minimum time solution requires minimizing

tn : f(tll""-’tr,n-1)

subject to the constraints

gi(t11,---,tr n-l) = O i = l---,n-l

t _ 2

il ‘ Sii

t, = s? +52 1 = 1,2,---,r (4-20)
12 11 12

I

I

I

I

I

t = 52 +5 +---+s2
n 11 12 in

Observe that by substituting into f and gi the relations

from (4-20) defining the tij the remaining constraints in

(4-20) are r in number. Thus, the problem becomes one of

minimizing

t = f(s-.) i = 1,---,r (4-21)

1,--—,n—l

Q
.
.
.

I
I
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subject to the constraints

gj(sij) = O i = 1,---,r j = 1,---,n-l (4-22)

2 2 2

h = -f S. +5 +5 +---+S = O

k ( 13) kl k2 kn

k = l,---,r (4-23)

1 = l,-—-,r

j : l,---,n-1

Now f(sij) may be minimized by the usual Lagrange technique

of forming

.. . = + . +

m<rr> f Re.

1 ‘ l,—--,r (4-24)

J - 17_--)n

k = l,---,n-1

and setting partials with respect to all variables equal to

ZEIO



3O

n-l r

3H - af TT agk + th': O

s.. + k35.. um 55..

1J 1J 1J 1J

k=1 m=l

i = l,---,r

3H 2 g : O

371: k j = l,-—-,n (4—25)

k - 1,---,n-1

.13 = .=
Bu. hi 0

1

This is a set of nr + n-l + r = (r+l) (n+l)-2 equations in

the same number of variables. However, in practice, r of

these equations may be eliminated immediately. None Of the

functions, f and gi, contain variables S S -—- S
1n? 2n 3 In,

since tn does not appear in them and Sin, ---, Srn do not

appear in the equations defining the tij (see (4-20)).

 

Therefore

n-

2H 2 at , n’k agk, um ahm_0

Esin sin 3sin 2sin

k=1 m=

i = 1,---,r

= O + O + Zuisin = 0

3H : = ' :
35E ZUiSin O 1 1,2,---,r (4-26)

and it is necessary that either ui = O or Sin = O. In the

usual case where each control component switches (n-l)
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distinct times, all Sij # O. The conclusion is that u1 = u2

- --- = ur = 0, thus reducing the number of equations and the

number of unknowns in set (4-25) by r, and leaving n(r+1)-l

equations in n(r+l)-l variables. The cases in which some or

all of the Sin are zero can also be handled by the ”either-or”

rule. Therefore, the system to be solved iS always the fol-

lowing normal one Of dimension n(r+1)-1

n-l r

h

—>-I;I—=bf+ZTTk agk‘t- u amzo

35.. 55.. 35.. m 35..

ij ij ij lJ

k=1 m=1

i = 1,---,r

j = 1,---,n-1 (4—27)

_ k = 1,--—, -12H _ gk : O n

gjht

3H : _

Eui hl - 0

Among the solutions to this Set will be the unique

time optimal solution. Furthermore, the two difficulties

encountered in the classical Lagrange development have been

eliminated:

1. Every solution (only real solutions are con-

sidered) is a realizable control since, by

virtue of (4-20), all the switching times are

positive and ordered.

2. The minimum will always occur at a Stationary



38

. . . 1 ‘.
p01nt of H Since the variab es le,fl&, um are

all unrestricted in range.

Bounds of the Control Time
 

The System of equations in (4-27) is highly nonlinear

in the variables, sij’ and therefore not amenable to analytic

solution. More Often than not the convergence of numerical

methods of solution is dependent critically upon a ”good”

first approximation to the solution. The motivation for the

following two theorems is the establishment of upper and

lower bounds on the optimal control time, tn, as an aid in

choosing an approximate solution vector.

Theorem 4-1
 

The time, t representing the time optimal solution
n,

to (4-1) with the origin as terminal state satisfies

> .tn _ max Pl

 

 

where

Pi ___ 1. log (-Sgn Xio)(IbilI+”‘+IbirI )+41Xio (448,

IAlI ("sgn Xio)( Ibiil*‘"*IbInI>

i = 1,—--,n

Proof: Completely analogous to the proof of theorem 3-1.
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If each entry u2 --- ur of the control vector, U,

is chosen to be 1 ul, i.e.
’

ui = 1 ul 1 = 2,—-—,r

then the vector control problem becomes a Scalar control

problem, for a typical equation from the set (4-1) is

Xi = Aixi+bilul 1 b312111 I b13111 I “‘ : birul

OI'

Xi -_— Aixifibil i biz .1 --- _t birDul (4—29)

1 = l,---,n

Evidently the Set (4-29) can be written in 2(r'1)

ways since each of the last (r-l) columns of B may assume

either the plus or minus Sign. Thus (4-29) represents 2(r-l)

different scalar control problems. Let

2(r—l)

7 _T-a

. . . . th

be the Optimal control time assoc1ated With the k control

problem, and consider the minimum of the set Tk’ say T

T0 is the time required to reduce an arbitrary initial

state, X

0'

o’ to the origin under the influence of a particular
 

control vector, U in which each entry is some Specific
0?

choice of 1 ul. Either U0 is the Optimal control vector or

it isn't; in either case
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and we have:

Theorem 4-2
 

1. Let tn be the Optimal solution to the vector

control problem

X=AX+BU

. (r-1)
2. Define 2 scalar control problems by

ui = 1 ul 1 = 2,---,r

3. Define the set Tk’ k = 1 ___ Z(r-l)
7 7

, where

Tk is the optimal solution, if it exists, to

the kth scalar control problem.

4. Define T0 = min Tk

then

tn 5 TO

Theorems 4—1 and 4—2, taken together, establish

both a lower and an upper bound on the optimal control time,

tn. These bounds are very useful for choosing an approximate

solution vector with which to initiate an iterative numerical

scheme. In most cases the bounds are reasonably ”Sharp”; the

lower bound always exists, while in certain cases the upper

one may not exist. Consider the example
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(4-30)

This is a well-defined second—order vector control problem.

Since r = 2, there are two derived

 

First Scalar Problem, u2 = ul

r-" j r- -1 7

x1 A1 0 le

x O x

2 .. A2- L. 2-    

  

  

  

 

    

  

  

  

scalar problems.

    

  

    

I' ‘ F 7

1 1

U1

+

l -1

— _I _uld

I2”

2‘ ul

0

_ 1 17 I u1_

+-

_ l ’1‘ --ul‘

0

1‘ ul

2i  



Neither of the two problems has a time Optimal control Since

neither system is controllable. Therefore, theorem 4—2 can-

not be used to establish an upper bound on the optimal solu-

tion to the vector problem. However, this difficulty arises

if and only if each of the 2(r‘l) derived Scalar systems is

not controllable.

Most of the effort in this section has been directed

toward deriving a set of equations, (4-27), which the time

optimal solution to the vector control problem necessarily
 

satisfies. A generalization of Lagrange's multiplier tech-

nique was used to handle the inequality constraints on the

switching times. Two theorems bounding the control time,

tn, above and below were stated.

Finally, the results of this section hold also for

the scalar problem (r=l), but, in practice, the nth order

set, (3-14), of the previous section is easier to use Since

its dimension is (n-l) less than that of (4-27).



V. EXAMPLES

The previous sections have been devoted to develop-

ing the theory of time optimal control. Equations for which

the optimal control is a solution have been derived. In

this section application of the theory developed above to

several Simple, physical Systems is considered.

Scalar Control Problems
 

Example 1
 

Consider the Simple R-L-C system Shown in Figure 5_l(a).

 

 

 

   
  

; 2

2 R

4.

e(t) ’91 3 L lI'I V 3

4:-;.-.-c if

(a) (b)

Figure 5.1 Simple R-L—C System.

A state model of the system based on the linear graph of

Figure 5.1(b) is [20]
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,— — _

r— —1 1 I— I— T

V4(t) O E V4(t) 0

d _

a - + (5-1)

, 21 mg , e(t)

13(t) L L 13(t) L

I—. ._ R— .A _ _ _I        
The second-order system in (5-1) has eigenvalues

2
A. _ __ R R - 1

1’2 ‘ *2L:\/_ _ <5—2)
4L2 LC

 

If R, L, and C are positive, and if

R2 1
_>_—

4L2 LC

the theorems of Chapter II establish the existence of a

unique, bang-bang control which Switches once, and reduces

both the initial voltage, v4(O), and the initial current,

13(0), to zero in minimum time. Since the equations which

must be solved to yield the optimal control are derived from

a state model written in prinCipal coordinates, the coeffi-

cient matrix in (5-1) must be diagonalized- The nonsingular

linear transformation which does this is

(5-3)
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and the transformed system is

 

  

 

 

 

 

LR.¥-1. 7
2L 4L2 LC 0

Y1 y1

£L =

dt 2

,2 o -E.-JL-i ,2
2

2L 4L Lcj

F e(t)

2L iii - EL

V 4L2 LC

+ (5-4)

- e(t)

2
2L E__ _ JL

4L2 LC j  

d y1 = -l O yl + 1

a? e(t) (5-5)

y2 O -2 y2 -1

One more linear transformation

2
(5-6)

      

reduces (5-5) to the normalized form of (3-8)
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Ed? : t e(t) (5-7)

        

The nonlinear switching equations corresponding to (3-14)

from which the optimal solution is obtained are

t t

A1210 = e(t)(1-2e l+e 2)

(5-8)

2t1 2t2
712220 = e(t)(l-2e +e )

where 210 and 220 are initial conditions related to v4(O)

and i3(O), respectively, by the product Of the linear trans-

formations (5-6) and (5-3). Since e(t) assumes only the

values +1 and -1, (5-8) may be solved for both cases, and the

results in Chapter III indicate the optimal solution is the

one which satisfies 0 5 t1 5 t2. Indeed, the control is now

uniquely Specified: (1) the sign of e(t) is the Sign of the

control for 0 j t 5 t1, (2) t1 is the time at which the con-

trol switches, (3) t2 is the time at which the control is

removed and at which the System state is zero.

Table 1 below lists the optimal solution of equations

(5-8) for eight different Sets of initial conditions.
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Table 1. Optimal Solutions for R-L-C System

 

 

 

 

21(0) 22(0) v4(0) i3(0) e(t) t1 t2

2 3 -2 4 —1 .3863 .6094

3 2 2 1 -1 .8477 .1622

-5 9 -28 23 1 .4112 .7909

37 25 24 13 -1 .1650 .5085

-20 —12 -16 -4 1 .7739 .2212

—12 -20 16 -28 l .0445 .3673

5 87 -l64 169 l .7442 .7371

-75 17 —184 109 1 .8667 .2138

The above data were obtained using Program I of

Appendix C. This program solves the second order set (5-8),

using the

braic set

set which

and (3-2)

with which to begin the numerical process.

is solved by a Runge-Kutta method.

iS transformed into an equivalent differential

technique of Appendix A; i.e., the nonlinear alge-

Theorems (3-1)

guide the choice of an approximate solution vector

The results ob-

tained indicate that it is rather easy to choose an initial

approximation which will converge to the desired solution.

Example 2
 

A higher order system Shown schematically in Figure

5.2(a) consists of two masses interconnected with Springs



and dashpots and excited by the force driver, f(t).

Springs and dashpots are

tions.

 

 

 

 

  
 

 

  
 

4

Mle

B4=B

48

2

K3=K5=4

 

//// ///////////////

(a)

Figure 5.2 Mechanical

=1

=1

System

  

The

described by-linear terminal rela-

A state model of this system based on the linear graph of

Figure 5.2(b) is

_

 

"I

  

_

-8 4

4 —4

l o

o l

L—      

(5—9)
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where x1 and x2 are the diSplacements of masses M1 and M2,

respectively, from the equilibrium position while x1 and x2

are the correSponding velocities.

The coefficient matrix in (5-9) has real, simple,

negative eigenvalues, and the linear transformation which

diagonalizes the system is

      

      

F'. q, -- -—r r- —

x1 0.1315 0.3103 -0.6319 0.8673 yl

R2 -0.0813 0 5021 -1.o224 -0.5360 y2

= (5-10)

xl —0.5131 —0.9854 0.5209 —0.0849 y3

x2 0.3171 —l.5943 0.8429 0.0525 y4

._ ... _ _J _. A

And (5-9) written in principal coordinates becomes

r- ], ’- _ F— —'

y1 -0.2563 0 0 0 yl

dt y3 o o -l.2l30 0 y3

y4 0 0 0 -10.2159 y4

._ _ _. _J I.— J

F _

-0.0875

0.5054

+ f(t) (5-11)

0.9559

0.5289  
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The linear transformation

      

_ 1 F .1 _ _

Y1 -0.0875 0 0 0 21

y 0 0.5054 0 O 22

2 = (5—13)

y3 0 0 0.9559 0 23

y4 0 0 0 0.5289 24

reduces (5-11) to the normalized form

P z '1 F 0 2563 0 0 0 “72 — 51'
1 ° 1

z 0 -0.3l49 0 0 z 1

6%- 2 = 2 + f(t)

23 0 0 -1.2130 0 Z3 1

(5-13)

24 0 0 0 -10.2159 24 1

— .— — —. _I h -.I        

From (3-14) the nonlinear switching equations from which the

optimal solution is obtained are

~A1t1+2€-Ait2_2€-Ait3+e-Adt4)
”A1210 = f(t)(l-2e

- t — t - t _

”K2220 = f(t)(l-ZeA2 1+2eA2 2-2e/\‘2 3+e A2t4)

(5-14)

-A.t - t - t -
3230 = f(t)(l-2e 3 l+2e A3 2-2e 3 3+e A~3t4)

- t 4A t 4A t 4A
- 4240 = f(t)(l-2e 4 1+2e 4 2-2e 4 3+e 4t4)

where the A-1 are the diagonal entries of (5-13).

Table 2 below lists the optimal time solution of

equations (5-14) for two different sets of initial diSplace-

ments and initial velocities of the masses, M1 and M2.



51

Table 2. Optimal Solutions for Mechanical System

 

 

x1 x2 x1 x2 Sign t1 t2 t3 t4

 

1.533 -2.596 —0.633 -0.722 1 2.6299 5.4552 6.0723 6.1399

1.700 -4.405 0.229 0.971 1 3.1660 5.7931 6.4022 6.4699

 

The column labeled ”Sign” indicates the value of f(t),

0 j t 5 t1, and the ti are the successive times at which f(t)

reverses Sign. Program II of Appendix C was used to solve

(5-14) for the optimal controls of Table 2. The choice of

the initial, approximate solution was based upon theorems

(3-1) and (3-2). As one might expect, the choice of an

initial approximation which converges to the desired solu-

tion is somewhat more critical for the fourth—order system

than it is for second order-Systems.

Vector Control Problem
 

A Simple example of a physical System whose mathe-

matical model fits the structure of the vector control prob-

lem is the R-L—C system of Figure 5.3(a).
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+
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O 5
+ O
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91(t) N O 1 V

: «4
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(a) (b)

Figure 5.3 CDMDdriverR-L-C System.

A state model of the system, formulated from the linear

graph 5.3(b) is [26]

_v N _0 ZIP-Vfl F2 0-1-i(tf

d 2 - 2 + 5 (5 15)
HT — I

14 —1 -3 14 o 1 ei(t)

h— ...I ._ _ _. __I ___. _J L— _I

The diagonalized System becomes

Fyl‘ -_1 O“ 7y: 74 7 350:)—

d
a? + (5-16)

YZ O ‘2 Y2 2 €~(t)

— _I _— J». _J h. — 1 —I.          
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where

= 1 (5-17)

Application of the extended Lagrange method to (5-15) leads

to the following fifth-order System correSponding to (4-27),

which must be solved to obtain the optimal control

éf__.z§_g_

as11 asii

I
I

0

 

3521 3521

f-52 ~52 = 0

ll 12

2 2
f_ _ :

s21 S22 0

where
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2 2

5
s

_ + 1_ 11 + 1_. 21

11 21
-4u -2u

1 2

2 2

g(511’521) _ _ y20 ”1(1' e ) u2( — e )

2 2

s11 521
+ 2 +2 -y10+4ul(1-2e )+2u2(l-2e )

( ul ”2)

-4u1-2u2

If t11 and t21 represent, respectively, the times at which the

first and the second controls switch and t0 is the time at

which control is removed, then the following equations relate

the tij and the Si.

J

_ 2

t11 ‘ S11

_ 2

t21 ‘ S21

2 2 (5-19)

= +

to S11 S12

_ 2 2
t0 — 521+522

Program III of Appendix C was used to solve (5-18) for the

variables, Sij and 2. Equation (5-19) was used to determine

the switching times of the optimal control. Table 3 below

lists the solutions for several different sets of initial

conditions.



 

 

 

Table 3. Optimal Solutions for Two Control R-L—C System

V2(O) i4(0) i5 ei t11 t21 to

-14 11.5 -1 1 0.8765 .1616 2.1810

12 6.5 l -l 0 .3013 2 6498

-8 -2.0 -1 l 0 .9729 2.0423

-82 84.5 1 1 1.6468 .2030 2.1943

 

i and e

5

reSpectively.

The columns labeled i5 and e

on the intervals, 0 j t j

1

t
11’ O E t i t21’

indicate the Sign of



VI. CONCLUSION

The time Optimal control of physical systems des-

cribed by a set of first-order linear, constant coefficient

differential equations has been extensively discussed in

the literature during the past few years. Most researchers

have been concerned with establishing the salient mathemat-

ical features of the Optimal control, a.e., existence and

uniqueness, while only a handful have studied techniques for

finding the control. This thesis has developed and extended

techniques for determining the optimal control for that class

of systems which is completely controllable and which has

simple, real eigenvalues.

The introduction traces the history of the time

Optimal problem from its genesis in the relay controller up

through the rigorous analysis in a precise mathematical form.

SectiOn two contains a precise mathematical statement of the

time optimal problem. Pontryagin's maximum principle is

used to show the bang-bang nature of the optimal control,

and a theorem relating the number of switchings of each con-

trol component to the order of the system is stated,

The scalar control problem is discussed extensively,

and a transcendental set of equations in the switching times

which the optimal control must satisfy is developed-

56
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Theorems bounding the optimal time are stated and proved,

The vector control problem is considered separately

since it is considerably more complex than the scalar case,

The equations which the vector control must satisfy contain

more unknowns than equations, and consequently the set has

infinitely many solutions, The problem is reformulated as

a minimization of the final control time, tn. subject to a

set of equality constraints and a set of inequality con-

straints, Simple extensions of the Lagrange multipliers

permit handling the inequalities, and a normal set which the

optimal vector satisfies is derived, Again, theorems bound-

ing the optimal control time are given.

In Appendix A a numerical technique for solving

nonlinear algebraic equations is developed. This procedure,

based upon some of Wirth's work [26], transforms the alge-

braic set into a differential set whose solution at one end-

point of the interval, [0, l], is a root of the algebraic

set, Other methods applicable to the solution of nonlinear

equations are included in Appendix B.

Several examples of physical systems are analyzed,

The state models and the transcendental equations in the

switching times are developed, The results of numerical

solutions carried out on a digital computer are listed in

tabular form for both the scalar and the vector control,



APPENDIX A

NUMERICAL SOLUTION OF NONLINEAR

ALGEBRAIC EQUATIONS

The analysis of many engineering problems has been

hindered by systems Of nonlinear algebraic equations. Very

little is known about the properties of the solutions of

such systems. Indeed, the very question of the existence Of

solutions to such a set can be fully answered only for very

special subclasses such as polynomials.

Wirth gives sufficient conditions for the existence
 

of a unique solution to such a set and devised an algorithm

for obtaining the solution [26]. His theorem is stated

below.

Theorem

Let G(T,X) = 0 be an n—dimensional vector function

of the n-dimensional vector, T, and the r—dimensional para~

meter vector. X. For every X such that:

l. The entries of g; exist, are bounded for all T

and satisfy a Lipschitz condition on T for all T.

2. det §£,: k > O for all T, k a constant.

T   

Then there exists a unique T such that G(T,X) = O.

58
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The hypotheses of this theorem are necessarily quite

restrictive since a unique solution is required. Thus, for

example, a single polynomial equation of degree two or higher

will not satisfy the hypotheses.

Therefore, while the theorem is extremely useful for

a narrow class of systems, it is not applicable to a broad

class Of problems Of engineering interest.

In practice, existence alone may be the significant

property of the system Of equations, i.e., even though a

set may have many, even infinitely many, solutions one par-

ticular solution may provide an acceptable result.

Algebraic Systems

The theorem stated and proved below is an extension

of Wirth's work. It lists sufficient conditions for the

existence of a solution to a nonlinear equation set, G(T,X)

= O, in some compact region, R. Perhaps more significant

is the fact that an algorithm for Obtaining a solution is

contained in the proof.

Theorem A
 

Given:

1. G(T,X) = 0, an n-dimensional vector function of

the n-dimensional vector, T, and the r-dimensional

vector, X.

2. A compact region, R, in the (n+r) Space defined



then:

Proof:
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by:

I
A C
)

“T ’ T0”

”X - XO” < Dl

For all TER, XER the entries Of 3% exist, are

bounded and satisfy a Lipschitz condition with

reSpect to T.

det-figg ,3 k > 0 in R

    

_-l

_ C __ max BG(T X)
|G(TO,X)' < M where M - R ——:;;—-

  

and X is a particular X.5 R

There exists T 8.R such that G(T,X) = O

T = T(O)

where

— —l
dT _ 3G(T X) ,

“a? — [WT-2F] G(TO,X) T<l>=TO (A-l)

Consider T as a function of a scalar independent

variable t so that we have

G(T(t),X = 0

Define a function H(T(t),t) = G(T(t),X)-tG(TO,Y)

and differentiate with reSpect to t:



bl

 3% = BGgétLX) . .3; — G(TO,X) (A-2)

NOte that 3% exists and is nonsignular every-

where in R by hypothesis.

Now assume g? = O which implies that

 

8? 3T

dT :(3G(T(t),i)

3G ‘1 . . . .
Each entry in ST satisfies a Lipschitz condi-

r1 —.
I G(Toyx) (A‘3)

tion with reSpect to T. This holds because

gg
det 3T

functions are again Lipschitz functions from

3 k and sums and products Of Lipschitz

 

 

Lemma 2.

The right hand side of (A—3) also satisfies

éG—lmax fi G(TOE)

T

<

 

 

-1

3G _ C : _.

ST N “G(TO’X) < M ' M C (A 4)      

from the hypothesis.

Thus the differential equation (A-3) satisfies

all the hypotheses of Lemma 1; therefore, it has

a unique solution, T(t), such that T(t) is in-

terior to R for t£[0,l] and T(l) = To“

Substituting (A—3) into (A-2) shows that

a
l
o
—

«
+
2

m 0

Integrating we have
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O O

'/%% H(T(t),i,t)dt _ O=H(T(t),i,t)

 

Therefore

H(T(0),X,0)-H(T(1),x,i) H

O

and

G(T(0),i)—G(T(1),i)+G(TO,x) a o (A—O)

8. Since the initial condition for the differential

equation (A-3) is chosen such that T(l) = To,

(A-O) above becomes

G(TCO),X) a O (A-7)

and T(O), the solution of (A-3) evaluated at

t = O, is a solution to the algebraic set,

G(T,X) = 0.

Mixed Algebraic and Differential Systems
 

In formulating nonlinear mathematical models Of

physical systems using linear graph techniques, the final

representation is Often Of the form

x = F(X,Y.E(t)) x<o> = c (A-8)

G(X,Y) = O
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where E(t) is a known function Of time. If G(X,Y) = O

can be solved analytically for Y = H(X), the solution can

be substituted in the differential set to yield

x = F(X,H(X),E(t)) X(O) = C (A—9)

and this equation can then be solved for X(t). Hence the

statement that the system has a unique solution. Wirth, in

the theorem previously mentioned, stated conditions suffi-

cient for the existence Of a unique solution to G(X,Y) = O,

and, therefore, also to the whole system (A-8). However,

this result includes a rather limited subclass of the total-

ity of functions, G(X,Y) = O. For example, the polynomial

g(x,y) = yZ-x2 = O has two well-behaved solutions yl(x) =

x, y2(x) = -x. It does not satisfy the hypotheses of Wirth's

theorem because it does not have a unique solution; neverthe—

less in this case arunhunique complete solution to (A-8) can

be Obtained.

Therefore, it appears that in some cases sufficient

conditions for the existence of a complete solution to (A-8)

are desirable even though that solution is non-unique. The

following theorem is addressed to this problem.

Theorem B
 

Given:

1. x = F(X,Y,E(t)) X(O) = x0

(A—lO)

G(X,Y) = O



Then there

defined on

where

Proof

0 5 t,: t
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F continuous in X, Y and E for X, Y £‘R defined

by “x—XO”,: D1, “Y-YO“ 5 c.

G satisfies all hypotheses Of theorem A, and in

—1

addition[%$] satisfies a LiSpschitz condition

with reSpect to X as well as Y for all X, Y in R.

E(t) is piecewise continuous.

exists a continuous solution, X(t), to (A-lO)

satisfying X(O) = X
2 O

t = min [t ,t ]
2 1

is first t such that "X(tl) - x0“ - D1

is first t such that "Y(to) - Y0“ = C.

By Theorem A there exists YO such that G(YO,XO)
 

= O and Y0 is interior to R.

Y is determined as the solution Of the differen—

tial equation

—1
dY = bG(Y X) = -_§ T G(X,X) Y(l) X (A 11)

Q
.

evaluated at S = O, Y(O). But since the right

hand side of (A-ll) satisfies a Lipschitz condi-

tion with reSpect to both X and Xsby Lemma 4

the solution vector Y(S,X) is a continuous
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function of the parameter vector, X, so that

HY(O,XO)-Y(O,Xl)“ <5 if onlyHXl-XO”< 0’ (PL—12)

Thus applying a numerical solution technique to

x = F(X,Y,E)

gives

 

X1 = XO+F1(XO,YO,E) where ,Fl(xO,YO,Ejl<<{ (A—l3)

by taking a suitably small step size.

Using X1 and Y0 in (A-ll) a new solution Yl is

determined, which by (A-l2) satisfies

”Y1 - YO

  

Repeating the above procedure a sequence

Y(XO),Y1(X1),---Yn(Xn),---

is generated where

Using this sequence of Yi's a numerical solution

<€for all i

  
Yi ‘ Yi-J

to (A—lO) is obtained over range

1

 

 

X. - X l < D
O —

Y. — Y
1 o    

 



66

Lemma 1

Given:

1. i = f(Z) 2(1) = c (A-14)

2. A closed region, R, defined by “Z - C” : Cl

3. There exists C such that for all 23 Z in R:

1 ’ 2

u)...” : cue-21H
4. C2 = max “f(Z)H , C2 < Cl

Then there exists a unique solution, Z(t), for t 8 [0,1]

such that Z(t) E‘R and 2(1) = C.

Proof (Existence)

1. The following integral equation is completely

equivalent to the initial value problem (A-14):

1

Z(t) = c - J[f[2(tl)]dt1 (A-15)

t

2. Define a sequence of functions <2n(t) as follows:

20 = C

I

' l

l

l

_ 1 1
Zn+1 — c - ‘/;[Zn<t )]dt

t

Note that we know about the existence Of the

above integral only if ZnER for all n.
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3. Assertion: Zn_E R for all n, all t 6 [0,1]

By induction

a) 20 = C 8.R

b) Assume Zn(t) E R

c) Then: 1

_ 1 1
Zn+1(t) — C - j’flznu )]dt

t

l

”Zn'tl-C”: fl'f(2n)”dtl 5 C2(l—t) 5 c2 for t$[0,l]

t

Hence:

  

Zn+1-C”: C2 < Cl for t€[0,1], for all n (A-lO)

from hypothesis. Hence we restrict t, O f t j 1.

Note the strict inequality implies Zn is an

interior point Of R.

4. Now consider:

1

z1 — 20 = — jf(ZO)dtl

t

1

“21 — ZONE. lif<zojldtl : C2(l-t)

t
1

”22 — 21“: fl'f(zl)-f(zo)”dtl

t



Uniqueness:
 

6.
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And by hypothesis (Lipschitz condition):

 

1 1

z z < C 2 — 2 dtl < C C (l-tl)dtl
2 ' 1 _ 3 I 1 o” — 2 3

t t

C203(1-t)2

= 2

By induction for any n:

n n+1

< C C (l-t) (A-17)Z

— 2 3 (n+1)!
n+l-zn    

Hence it follows that [Zn] converges uniformly

for any interval [0,t0], t j l, tO a limit func-
O

tion,

1

Z(t) = C - f[Z(tl)]dt1 (A—18)

t

which satisfies the integral equation and hence

the differential equation (A-l4).

It remains to show that the solution, Z(t),

derived by successive approximations is, under

our hypotheses, the only solution Of

2 = f(2) 2(1) = C

on the interval 0 j t j l.
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Assume there exists a second solution, Y(t),

such that Y(l) = C. Since Y is continuous and

in R at time t = 1, it is in R for O 5 t1 5 t j 1.

Let t2 = max [0,tl], then we have for t2 5 t j l:

l

Y(t)-Z(t) = - [f(Y)—f(Z)] dtl

t

1 1

1 1
”Y(t)-Z(t)” _<_ C3 fllY—ledt < 6+ C3 flY-ledt (A—19)

t t

whereEis constant > 0

By Gronwall's Lemma [28]

“y(t)-Z(t)” _<_ seC3(1-t> (11-20)

Hence Y(t) = Z(t), t2 5 t j 1,

since E'is arbitrarily small.

If t2 = O the proof is complete; if t2 = t1 > O

we have a contradiction since tl was chosen so

that Y(tl) was on the boundary Of R. But

Y(tl) = Z(tl) (A—Zl)

which implies Z(tl) is on the boundary of R also.

However by equation (A—16) Z(tl) is an interior

point Of R. Hence for 0 j t j l, Y(t) = Z(t).
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Lemma 2

Given:

1. |f(x)—f(y)

I
A

Kllx'yl

 |g(X>-g<y) < KZIX-yl

2. x, y ER, some compact region

Then:

H . |f(x)+g<x)-f<y>-g<y>| 5 K3lx-yl

 

2. |f(X)gCX)-f(y)g(y)| : K4IX-y'

l l .

3. 'm‘mstlx-ylif f(Z)_>_k>O, ZER

Proof

1. |f(X)+g(X)-f(y)-g(y)| :If(X)-f(y)|

+|g(x)'g(y)| 5 kllx'yl+ kzlx‘yl

hence:

If(x)+g(x)—f(y)-g(y) : k3'x-yl , k3 = k +k2

l 

hence assertion l.

2. lf(x)g(x)-f(y)g(y)| |f(x>g(x)—f(x)g(y)+f(x)g(y)

-f(y)g(y)| 5 f(X)g(X)—f(x)g(y)|+ -f(y)g(y)
 

 +f(x>g(y)| : f(x)Hg<x)-g(y)|4g(y)Hf(x)-f(y)

9

But since f(x) and g(x) are continuous on a compact



region they ha

in R so that
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ve maxima, M1 and M2, reSpectively

 

 

 

 

 

 

 

  

|f(x)g(x)-f(y)g(y)l : Mlelx—yl+M2Kl'x-y]: K4lx-yl

lf<x>g(x)-f<y)g<y)| : K4IX—yl

hence assertion 2.

1 l _. 1 1

3- ----‘ f -f

f(x) f(y) f(x) f(y) [ (y) (X)]l

1 ___;L_ < 1 | 1 K1 lx—yl

f(x) f(y) - f(x)|f(y)

1 1 K1
___... _ _ =K _

|f(X) f(y) 5 k2 ]X VI SIX Vi

hence assertion 3.

 

Lemma 3 (Gronwall's Lemma)

Given:

1. u, V’: 0, Cl’ a positive constant

t

2. u 5 C1 + j’u v dtl (A-22)

0

Then: 1:

IV dtl

u 5 C1 e 0 (A-23)



Proof
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From (1):

I
A H

 

 : v (A—24)

Integrate over 0 to t:

t t

 

S

Cl+ .]u(Sl)v(Sl)dSl

O

5 d5u( )V($) j ‘/;(S)dS (A-25)

note:

S

O

Thus:

S t t

log [C1 + fu(51)v(Sl)d51:| : fv(S)dS

O O o

f t \

t

C + Iu(S )v(S )dS

log< 1 ° 2; 1 1 )5 fv(S)dS (A-26)

l O
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And:

t

t J[V(S)d5

0

Cl +Ofu(51)v(51)d5l : Cl e

3. Finally using the second hypothesis:

t j;(S)dS

O

u :yCl + .]u(S)v(S)dS : C1 e~

O

t

jv(S)dS

O

u : Cle

Lemma 4

Given:

1. i = F(X,-() X(O) = x (A—27)
O

where X is an n-vector, ‘( an r-vector

2. P(X,o() satisfies a Lipschitz condition with

reSpect to both X and °(in some compact (n+r)

-Space, R.

Then:

the solution, X(t,°(), given by:

t

X(t.°<) = XO + fP[X(t1),°(]dt1

O

is a continuous function Of the vector

parameter, 6( .



Proof
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Define:

s -‘ I‘ ‘

F’f1 Fxl f1(X)i

X x'n then: in fn(Y)

X: °< = a1 X: 0 = O =G(X) (A-28)

l

I

' O Oa

_ Ii _ 1 _ J

where:

rxl(0)

Fa}; : x

l — ' O

°<= I X(O) = Xn(0) =

. °<

(“*1 t1

1

.355 J

Now we have the system:

XO

'1? = G(X) 36(0) = a( (A—29)

where G(X) now satisfies a Lipschitz condition

with reSpect to X in R.

Solution to (2) is:

t

X(t) = X(o) + fGGDdtl (A-30)

O
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Consider two solutions at time t, Xl(t) and

X2(t), with different initial conditions

X2(t)-Xl(t) = 562(0)-R'1(0)

t

+ j’[G(X'2(t))-G(Xl(t))Jdtl

O

t

Hun-mu : IIY2<0>-i1<o>ll+ fl,...2._...-1.”..1
0

And by Lipschitz condition:

t

.K]
0

  

“Y2(t)-Xl(t)” 5 X2(0)-‘X1(0)

    

- - 1
X2(t)-X1(t4ldt

Now by Lemma 3, Gronwall's Lemma:
 

  

”X2(t)-Xl(t)“_<_“X2(O)-X1(O) eKt

1f ll¥2(O)-Yl(0)” < J (A-31)

Then:

_ Kt

”X2(t)-Xl(t) <Je = E (A—32)

 

 

Hence

”gut-x1... < J (A-..)
 

|<£if only “22(0)-rl<0).
 

and the conclusion that X(t) is a continuous func-

tion of its initial conditions.
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In particular if Xl(O) = X2(O) then

x2(o) - x1(o) =o(2 -o(1 (A-34)

From the definition Of X in (A—28)

“X2(t, 0(2)—Xl(t, Kl)“ :"x2(t)-X1(t)” (A-35)

Using (A-33), (A—34), (A-35)

“X2(t, «(2)—wt, e(1) <J(A—36)
 

<6 if only ”0(2— °<l

   

But (A—36) is precisely the statement that X(t,°()

is a continuous function of the parameter,fi’.



APPENDIX B

NUMERICAL METHODS

This section briefly describes two of the standard

techniques, Newton's method and the gradient method, which

may be employed to generate numerical solutions to any set

Of n equations in n unknowns. In particular, these algo-

rithms are applicable to the time Optimal control equations

of Chapter III, (3-14), and Chapter IV, (4-27).

Newton's Method
 

The n equations

fi(yl,y2,---,yn) = O i = l,2,--—,n

in the n unknowns yl,y2,---,yn can be written in vector

form as

F(Y) = 0 (B-l)

If each of the functions, fi(yi) = O, can be expanded in a

Taylor series in n variables about some n-dimensional point,

Y1(O) Y2(O) --- yn(0), we have

77



f1<yl,y2,---,yn)
f1(yl y2< >__ yn< ))

n

(O) (o)

+ (y _ y (0) 3f1<Y1 —-yn )

- j J BYj

i=1

n n

2

l
(O) (0) a (O) (O)

+ 2 (YR-YR )(Yj—yj ) S;33§; fi(y1 ___yn )

k=1 321

+ —'_ i 2 1, 2, ---, n (B-2)

Discarding the second and higher order terms fi(Y) can be

approximated by

n

_ (o) (0) a (O)
fi(Y) - fi(Y )+' E (yj-yj ) 5?; fi(Y ) (B-3)

i=1

1 = l 2 --- n

Rewriting the system (B-3) in vector form we have

(0) (O)
F(Y) = F(Y ) + J(Y )(Y-Y(O) ) (B-4)

where J(Y) is the usual Jacobian matrix defined by

3fi<y>

J(Y) = (A -) A-- = ----
13 1 .

J éayj

If the vector, Y(O), is an approximate solution to (B-l),

and if the matrix J(Y(O)) is nonsingular, then we would



79

expect the vector

(O)-J'1(Y(O) (0))
Y = Y )F(Y (B—S)

to be a more accurate approximate solution. This concept

leads naturally to the following algorithm by which, hope-

fully, we are able to generate a sequence Of successively

Y(n)
closer approximations, , given by

Y(n) : Y(n-1)_J-1(Y(n-l))F(Y(n-l)) (B-O)

(k). -l .

prov1ded that J (Y ) ex1sts for each k = O, l, 2, ~--.

This is Newton's Method for solution of the system, (B-l)
 

[311,[33].

The sequence Y(O),Y(l),___,y(n)

(O)

,--- beginning with

an arbitrary Y may not always converge to a solution Of

(B-l). Sufficient conditions for the convergence of Newton‘s
 

Method to a solution were published by L. V. Kantorovich in
 

1937 [30],[31]. His theorem gives conditions under which the

l

Y(O),Y( ),--—,Y(n),---, converges to a solution,sequence,

without assuming the existence of a solution a priori. His

theorem is stated below.

Kantorovich's Theorem
 

Given:

1. The normal set, F(Y) = 0, where for Y = Y(O) the

-l(Y(O)
Jacobian inverse, J ), exists and satisfies
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-l

I‘J (y(0))” : Bo’ BO a positive constant.

  

2. HJ-1(Y(O))F(Y(O)) : D D a positive constant,
0’ O

3. In the region defined by (B-7) below, F(Y) is

twice continuously differentiable with reSpect

to the components of Y and

n

32fi
———————-< K ' z 1, 2, --- n

j,k=l

4. The constants BO, DO, K satisfy

h = B D K < 1/2
0 OO '—

Then:

1. F(Y) = O has a solution Y which is located in

the region

 

 
”Y—Y 5 N(hO)DO — to DO. (B-7)

. . . (n) .
2. The succe551ve approx1mat1ons, Y , def1ned by

Y(n) - Y(“'l)-J'1(Y(n’l))F(Y(n'l))

exist and converge to Y, and the Speed of con-

vergence may be estimated by the inequality

n-

””0“?” 5- 2011—4) (2%)” 1)DO°
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Gradient Method
 

The gradient method (also called steepest descent)

. th

generates solutions to the n order normal set, F(Y) = O,

by minimizing the scalar function

C): FTMF (B-8)

where M is a positive definite matrix, usually but not neces-

sarily the unit matrix. Since M is positive definite Q takes

its absolute minimum if and only if F = 0. Thus every solu-

tion Of F(Y) = O is an absolute minimum of §) , and every

absolute minimum of {? correSponds to a solution of F(Y) = O.

The technique used tO find the minimum of Qdepends

upon its geometry in hyperSpace [33],[34]. For any partic-

ular value Of K

{)2 K (3-9)

is an n-dimensional surface in hyperSpace. For the two—

dimensional case a contour map such as Figure 1 may be found.

Here C is the point at which {)2 O, and the contour lines are

constant values Of f}.
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1%

Figure B.l Contour map of ()= constant.

We seek a method of progressing from a vector point

Y0 = (Ylo, YZO’ ---, Yno) to another vector point, Y1 = YO+kZ,

where k is a scalar and Z is an arbitrary vector, such that

()(YO+kZ) < {)(YO). (B-lO)

Thus we minimize the function

Y(k) = Q<y0+kz) (13-11)

of the single variable k by setting its derivative equal to

zero:

d _ T _
d£Y(k) — z §2Y(Yo+k2) - 0 (B-l2)

Since condition (B-lO) requires k # O we exclude this possi-

bility by further specifying that

T
2 C)Y(YO) # 0 (B-13)
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where {)Y, commonly called the gradient, is the column vector

whose entries are

 

bQ
(2y. = (B—l4)

.1 ayi

Condition (B-13) states that the line in the 2 direction

through YO may not be orthogonal to the gradient at that

point, and hence not tangent to the surface

§7<YO) = Ko'

Similarly, (B-12) says the line in the Z direction through

Y is tangent to the surface
0

Q(Yl) 2 K1 K1 < K

at Y1 as shown in Figure B.1.

At Yl we choose a new direction, Z, and proceed as

before. In this way a monotonically decreasing sequence,

{2(Yi)’ is obtained which is bounded below by the minimum

of {3(Y) and therefore has a limit which is the minimum.

In the method Of steepest descent the vector, 2, is

always chosen as the gradient

2 = Q (13-15)

since (YYis the direction of most rapid variation Of {2.

However, each step involves many calculations, and a variety

of simpler choices of 2 can be used.
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Since solving (B-12) for the minimizing k may be

exceedingly difficult, an approximate solution which sim-

plifies the calculation is highly desirable. Consider the

Maclaurin series expansion of‘fkk), the function to be

minimized:

Wot) = Y(O) +\ij’(0)k + ESQ) k2 + (B—lO)

If we assume the second order approximation and minimize we

have:

'00 = '(O) + "(O)k = O

k : - Y(O)

\J-JII(O)

And from (B-12)

T

z f)y(YO)(111(0)

(pm)

(B—l8)
T

Z J(YO)Z

where

32

J(YO) = (A..) = ——————-§?(Y)
l . .J aylay, Y 2 Yo

Therefore, in the steepest descent method where

z =§)Y(YO)

an approximate solution for the scalar, k, at the nth step

of the process is
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T

—()Y(Yn) §2Y(Yn)

k = (B-19)

n §)$(Yn)i(yn)§)y(yn)

 

and the iterates are defined by

Yn+1 : Yn + knCZY(Yn)° (B-ZO)

The gradient method, by its very nature, always con-

verges, yet there are some difficulties. These stem from the

fact that the method converges to a stationary point of the

surface,§). However, in general, the surface may have maxima,

minima or saddle points all of which are stationary points.

Therefore each "solution" obtained must be carefully examined

to see if it is a true minimum. When a machine is used for

solution this is readily accomplished by substituting the

"solution” in the set, F(Y) = O, to see if it Checks.

In the case where J(Yi), i = 1, 2, ---, is positive

definite we see from (B-19) that kn is always negative.

Therefore, the descent direction is that Of the negative

gradient and the sequence (B—20) always converges to a min—

imum though it may be a relative minimum.



APPENDIX C

This section contains a brief description Of the

digital computer programs used to Obtain the numerical solu-

tions tabulated in the examples. A complete listing of the

programs is included after the program descriptions. All

programs are written in the Fortran language.

Program I-—Kurung
 

This program determines the unique time optimal con-

trol for the second order system

 

r- —

. —' " F '- r —

x1 P 0 x1 b1

:
+ U(t) (C’l)

       

It may be used exactly as listed provided a data deck, as

outlined below, is inserted at the end of the program.

The first data card contains a single integer N,

the number of initial conditions for which optimal solutions

are desired, located on the card by statement 12. The second

card contains the parameters P, Q, b and b2 in the format1,

Of statement 10. The N remaining data cards contain the

initial conditions and the associated approximate switching

times for which optimal solutions are desired. The initial

conditions are x10 and x20 while tl is the estimated switch-

ing time and t2 is the final control time.

86
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The output consists of ten numbers: x10, x20, P, Q,

U’ 510’ 520’ t1’ t2’

is given by U while t1 and t2 are the switching time and the

ERROR. The value of U(t), t1 5 t 5 t2,

final control time, reSpectively. The ERROR is the norm of

the state vector at time t = t2. The approximate switching

times, S10 and 520, are included for reference.

This program uses the numerical solution technique

Of Appendix A, and the differential set is solved by the

fourth-order Runge—Kutta method.

Program II——Optima
 

This program solves the optimization equations which

yield the time Optimal control for the fourth-order system

 

T-" P O 0 O—‘ 7 _ F1.“X1 r1 X1

x o r O 0 x 1

2 = 2 2 + U(t) (c-2)
x3 0 0 r3 0 x3 1

_x4d _ O O O r4J __X4j _l_i       

It may be used as tabulated with the addition of a data deck.

The first data card, in the format of statement 25,

contains a single integer N, the number of points for which

optimal solutions are desired. The second card contains the

four eigenvalues in order Of increasing magnitude in the

format of statement 15. The N remaining cards each contain

the coordinates of an initial point and the approximate
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switching times associated with that point in the order:

x10, x20, x30, x40, t1, t2, t3, t4 where O < tl < t2 < t3

< t4. Format statement 20 describes the field on the card.

The output consists of the initial conditions x10,

the value Of U(t), O f t 5 t1, the switching

x20’ X30’ X40’

times t1, t2, t3, t4, and the norm of the state vector at

time t = t4, E.

This program also uses the numerical technique Of

Appendix A employing the fourth—order Runge-Kutta method for

solving the differential equations. The step size may be

changed by replacing the statement H = -0.00S by one which

reads the desired size. If this is done the 200 in the

statement, DO 75, must be replaced with an integer K such

such that HK = -l.O.

Program III--Inequa
 

This program determines the time Optimal control

vector for the system

   

- - r—

x1 = P 0 x1 + bll h12 Ul(t) (C_3)

x2 0 Q x2 b21 b22 U2(t)

b _J ._

If a data deck is supplied it may be used as listed.

The first data card, in the format of statement 14,

contains an integer N which is the number of initial points

for which solutions are desired. Card two, in the format of
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statement 12, contains the numbers P, Q, bll, b12, P21: b22

in that order. The N remaining cards each contain a set Of

numbers X10, X20, 811’ $21, $12, $22 in the format Of State-

ment 10. The numbers x10 and x20 are initial conditions

while the Sij are related to the switching times t1, t2 and t0

by

_ 2

t1 S11

_ 2

t2 ‘ S21

2 2 (C—4)

to ‘ S11 + S12

2 2

to 2 S21 + S22

where t1 and t2 are the switching times of the first and

second controls, respectively, and t0 is the final control

time. The initial choices of the Sij are made by assuming

initial values for the switching times and then solving

equations (C-4).

The output consists of U1 and U2, the values Of the

controls U1(t) and U2(t) initially and the switching times

t1, t t . The norm Of the state vector at t = t0 is given
2’ O

by E while F is a measure Of the error in the solution of

the set correSponding to (4-27). A desired solution is one

in which both P and E approach zero. The quantity D is the

determinant of the Jacobian matrix which must be inverted
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at each iteration. Its value is significant only if it

approaches zero, in which case the solution Obtained is Of

questionable value.

Newton's method is used to solve the minimization

equations in this program. In the event that the successive

iterates do not converge to the desired solution a message

to that effect is printed out.
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3O CONTINUE

45 CONTINUE

X1=(X10‘IBI/P)*U)*EXPF(P*Y2)+(2.0*EXRF(P*(Y2~YI)1*loO)*(BI/P)*U

X2=(X20“(82/Q)*U)*EXPFIQiY2)+(2.0*EXPF(O*IY2-Yl33-100)*(82/03*U

ERROR=SORTFIX1§XI+X2*X2)

25 PRINT 209 XIOOXZOOPQQQUOSIOOSZOOTIOTEQERROR

STOP

END

END

Progam Optima
 

PROGRAM OPTIMA

5 FORMATIlHloésHTIME OPTIMAL SOLUTION FOR FOURTH ORDER SYSTEM WITH 5

ICALAR CONTROL)

10 FORMAT(IHOQ3X93HX10oSXOBHXZO95X93HX3095X93HX4094X0lHUo9X92HTIOIBXQ

12HT2913X02HT3913X02HT4913X01HE)

ll FORMATIIHOQ67HJACOBIAN DETERMINANT APPROACHING ZERO. TRY NEW APPRO

IXIMATE SOLUTION)

12 FORMATIIHOv39HSOME SWITCHING TIME HAS BECOME NEGATIVE)

13 FORMATI1H0033HPRODUCT OF R4 AND T4 IS TOO LARGE)

15 FORMATI4F1092)

17 FORMAT! IHOI4F8029F501 0551508)

20 FORMATIBFIOoz)

25 FORMAT(I3)

PRINT 5

PRINT 10

DIMENSION AI4§4IQR(4)OPI494)OTI4)OY(4)QFI4’96(4)9$(4)

H3-00005

N124

D3100

E3000

J13!

READ 25 M1

READ 15 (R(K)0K=lo4)

DO 100 Ifllqu

READ 20 XIOOXZOOX30¢X409 (SCK)OK=194)

DO 100 J2102

U=(-100)**IJ+I)

G(l)=U*R(l)*X10+100-2004EXPF(-R(I)*S(l))+200*EXRF(-R(1)*S(2))

1-200*EXPF(“R(1)*$(3’)+EXPF(-R(I)*SI4J3

G(Z)=U*R(2)*XZO+I00*200*EXPFI~R(2)*SII))+200*EXPF(*R(2)*S(23)

1-2.0*EXPF(-R(2)*S(3))+EXPF(-R(2)*S(4))

G(3)=U*R(3)*X30+loO-ZOO*EXPF(‘R(3)*S(I))+2.O*EXPF(-R(3)*S(2))

1‘290*EXPF(-R(3)*$(3)’+EXRF(~RI3)*S(4)I

6(4)=U*R(4)*X40+1oO~2¢O*EXRF(-R(4)*S(I))+2.0*EXPF(-R<4)*S(2)3



OO~OF00

«aFZHQQ

00—0%0O

MoaconuzoaZu>~oDoO¢XoOMXoONXoO«XbuFZHEQ

nqmvkkflomuw

A¢.0*~¢VO+amthanv0+anwt“Nv0+auv0*.-0fl~w

«aa¢.>*.¢~fllwmflxm+nam.>*a¢valvl&XM#OoN|.nmv>tncualv~

uQXU*OoN+naav>*acvaivm0xm*OoNOOo~+O¢X*AQVQ*D.*.a¢v>ta¢vUUEQXMHAQOO

ana¢~>tamufliguflxw+aamv>knnvfliuuaxw*OoNia5N~>*AMCQ!.H

mflxmkooN+~a->¥~Mvfll~kflXU¥OoNlOoH+OMX*AMVQ*Du*aA¢~>tamVayknxwuamVO

a.~¢E>tanfllumaxm+aanw>*amvfll~uflxw*OoNla~N~>tnNualva

kQXN*OoN+.a~v>*.N.alvtaxw*OoNlOo~+ONX*AN~Q¢D.*nA¢v>tanawuaxwuanw

e.a¢~>#.~valwkflxw+..0.>*aavalumnxm*OoN|A.N~>*A«vaiyw

unxm¢oom+..->*.nufliauflxm*OoNlOo~+O~X*5-U*Dv*n.¢.>*.Hwavuaxmua«.0

wDZ~FZOU

¢¢o¢¢omF“Ooocancvh*.¢~al~k~

NboNhoflc~a¢y>gu~

OOoOOofl¢“any>.&~

mooQOoflcaamv>ul~

FOoFQoM¢Aa~v>ylu

Aa¢o¥vfl+~no¥vatooN+ANo¥~Q$OoN+ano¥~0v*5000\00~v+a¥v>ua¥v>

¢ouu¥0000

wDZ~FZOU

aiozva+azv>ua2~k

couuzOF00

orCF00

OoN\a£o¥~Q+~¥.>fl.¥.P

¢o~a¥OF00

MOomOommantivmh

a¥vu*Iu.Zo¥.Q

¢.~u¥0m00

Azywtnzo¥~<+a¥ukua¥vk

GowuZPG00

OoOun¥vu

¢o~fl¥W¢00

MDZEPZOU

n¢oN¢oN¢.aa0¢!v**000~vlo*0vu~

aufioOouzodvFflm>2~JJ<U

wDZ~FZOU

a“Z.F#.¥.&l~kflxm*a¥~fl*aaulZv#*Oo—lvn.2o¥.<

O¢OF00

aszbtaXvalvuflxwta¥vfl*OoN*aa~02~$t00~IvuaZo¥v<

mnomnohnA¢l2vk~

do—lzO¢OD

¢o~n¥OQ00

countOF00

a¥v>ua¥vh

¢.—n¥mm00

OONoouMb00

«quu—¥v>

¢oul¥on00

aAQVW*A¢v&lvk&xm+aamvmta¢vflluunxm*OoNln

mo

N6

Wk

NF

00

we

#0

cm

or

m0

mm

0m

m6

"Q

06

mm

hm

mm

on



03

Du UD~24 “N

00 40 ~00

OD «Unmzifl ~U

~00 OOZfiuZCN

M4OU

MZU

MCWDOC4~ZN —Z<mDfi «WelcomdoLv

41am MCGDOCAnZN ~Z<mnfim >2 Dnmufinbn< 3bfln~x 0* 41m QDCMM

mr~3~2>4~02 3m4100

O~3NZM~OZ mabobvobabomv

ufl 0~<m0m OINOK N09N0

NO an Dfificzcrbdon O<MDWFO£ Nmon

NW omfilnoo

ZNHZ+Z

PNZIn

00 uO munoZ

00 no Lfl—oz

no DamoLvumamoL.

KHZ+E

00 mm "unoz

00 "N quozm

um bauoLvuOOO

3nz+u

an DA—ozvfluoo

00 0 Lauor

3nL+~

“WaDALova nomou

N 00 U ~n3¢Z

unabauova boUob

U 0024~ZCM

Nb ON4fl000

a“ DOOczcrbfion 0<mnflr0£ NmoUO

U0 «1 U~<~0m OIMOK NmoN4

00 m Kuuozm

baLoKuflanoKv+DAnofiv

00 O uflzgz

Nflabauokvvmoaom

ana~oLw\)aLoLv

00 0 KuLoZN

0 Dauoxvubamoxle*>ALoKv

0 OOZfiuZCM

HWADAZoZvV NUoNboNU

NU 00 aw Kquor

IHZIKX

Lfl3+~

00 ~U ”leoz

«I3I~X+~

«WabamoLu. wmo~Uaum

am XubauoLv\baLoLv

00 “a Kunozm

Hb banoxvflbauoKvIX*ancKu

uU OOZfimzcm

”
0
1
9

c
u



95

DO 16 ISIQN

X=A(Iol)

DET:DET*X

DO 16 J=10N2

16 A(I9J)=A(I1J)/X

DO 18 I=IoN

DO 18 leoN

L=J+N

18 BIIQJI=AII9LI

IF ACCUMULATOR OVERFLOW 28029

29 IF DIVIDE CHECK 28.27

27 J81

RETURN

28 J=“I

RETURN

END

END

Program Inequa
 

PROGRAM INEOUA

S FORMATIIH1947HN B HEMESATH LAGRANGE MULTIPLIER SOLUTION WITH.

123H INEQUALITY CONSTRAINTS)

IO FORMAT(6(FIO.2))

12 FORMATI6F1206)

I4 FORMATII3)

15 FORMATIIHOQZFaozoAE15.804E1003)

20 FORMATI IHOOSXQEHUI QGXOZHUZOTXOZHTI913X92HT2913X12HTOO IQXQIHTO IZXQ

IIHZQIOXOIHFOIOXQIHEOIOXOIHD’

35 FORMAT(IH0025HLOGF ARGUMENT IS NEGATIVEQSXOBHTO=E1508I

RRINT 5

PRINT 20

DIMENSION ACSOSI

N25

0:100

J=I

READ 14 M1

READ 12 POQOBIIOBIZOBEIOBZZ

DO 50 I=IQMI

READ IO XIOOXZOQTIIOTZIOTIZOTZZ

DO 50 K3102

U13(*IOO)**K

DO 50 L=IQZ

U2=(-IOO)**L

M=O

SIIeTII
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521=T21

5122112

522:722 -

u=1.O/(-BII*UI«812*UZI

3:521*Ul+822*02

DI:P*X10+BII*U1*(100*2oO*EXPF(‘P*SI1*511))

1+Bl2*U2*(1.0-2.0*EXPF(~P*521*521)1

Bl=4oO*Ul*P*BI1*EXPFK-P*Sl1*511)

82:4.O*u2*9*812*521*EXPF(—P*521*821)

83:4.0*U1*O*821*Sll*EXPF(—O*Sl1*511I

84:4.0*U2*Q*822*521*EXPF(~O*521*S21)

IFIDI*U) 40940.30

30 Hl=(~loO/P)*(Bl/Dl)

H2=(*IoO/P)*(B2/DI)

Gl:83+(0/P)*B*BI*U*((01*U)**(0/P~1.0))

GZ=B4+(O/P)*B*82*U*((DI*U)**(Q/P~100))

Z:(*H1*Gl-H2*GZ)/(GI*GI+G2*62)

25 DI=P*XIO+BII*U1*(1.0-2.0*EXPF(-P*Sll*511))

1+812*U2*<1.0-2o0*EXPF(~P*521*521))

BI:4.0*U1*P*BI1*EXPFI-P*SII*SIII

BE:4.0*UE*P*BI2*521*EXPF(-P*521*521)

83=4oO*U1*G*B21*SI1*EXPF(«Q*SII*SIII

84:4.0*U2*Q*822*521*EXPF{—O*521*521)

IF<DI*U> 40940.32

32 H1=(*loO/P)*(Bl/Dli

H2=I~1oO/P)*(Ba/Dl)

GI=BB+(Q/P)*B*BI*U*((DI*U)**(O/P—l.0))

GZ=BQ+(O/P)*B*82*U*((DIiU)**(O/P~100))

HII=(“1oO/p)*IIDI*I‘200*p*SII*BI+BI/SIII’BI*BII/IDI*D )3

H12=(*loO/P)*((-Bl*82)/(DI*DIl)

H22:(-1.0/P)*((Dl*(~2o0*P*521*82+82/521)~82*82)/(DI*013)

H21=H12

511=-2.0*o*511283+83/511+(G/P)*B*U*(t(DI*U)**(Q/P-I.O))*<-2o3*p*

1511*Bl+Bl/Sll)+(O/P~1o0)*U*81*Bl*((D1*U)**(Q/P-2o0)I)

612:(O/P)*8*U*(Bl*82*U*(0/P-1o0)*((Dl*U)**(O/P~200)))

621:612

622=~200*0*S21*84+84/521+(O/P)*B*U*(t(DI*U)**(O/P-100))*€«2.O*P*

1521*82+82/521)+(Q/P*1o0)*U*82*82*((01*U)**(O/P*2o0)))

A(Io1)=H!1+Z*GII

AIIQZ)=OOO

AIIQ3)=H12+Z*GIZ

AIIQ4I=OOO

.A(195)=Gl

A(2¢1)=H21+Z*621

A(202)=OOO

A(2¢3)=H22+Z*622

AIZQQI=OOO

At2¢53=62

A(301 9361

AI302)3000

AI393)362

AI3OQI=OOO
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AI3QSI:OOO

A(4¢l)=HI*ZoO*SII

A‘492)3“200*512

AI403I=H2

A(404)=OOO

A(495)=0.0

AISOI’ZHI

A15o2)=0.0

AI503I=H2-ZOO*SEI

AI504)=-200*522

AISOSI=OOO

FI=HI+Z*GI

F2=H2+Z*GZ

F3=O*X20+BZI*UI*I100‘200*EXPFI-O*SII*SII)3+822*U2*(100*200*

IEXPF(‘O*521*S21))+B*((DI*UI**(Q/P))

F4=(“loO/P)*LOGFIDI*U)‘SII*SII“SIZ*SIZ

F5=€*loO/P)*LOGFCDI*U)”521*SZI~522*522

M=M+l

CALL INVERT (AoNoDoJ)

SII=SII‘A(IOI)*FI*AI102)*F2“A(I93)*F3‘A(I04)*F4“A(I05)*F5

SIESSIE’A(291)*FIHA(292)*F2“A(203)*F3-A(204)*F4~A(205)*F5

$213521"A(301)*FI~A(392)*F2'A(3e3)*F3-A(304)*F4~A<305D*F5

522:522“A(4¢1)*F1*A(492)*F2“A(493)*F3-A(494)*F4-A(4050*F5

Z=Z~Af5vl)*F1~A(592)*F2-A(5.3)*F3~A(504)*F4~A(595)*F5

T1=SII*SII

T2=SZI*SZI

TO=TI+SIE*SIZ

T=T2+522*522

IFC~Q*TO~QOOO) 55940940

55 IFIwO*T-40o0) 60940040

60 EI=EXPFIP*TO)*IXlO-IBII*UI/P)*(200*EXPF(*P*TI)“EXPFI-P5T03-IOO)

l~{832*U2/P)*(290*EXPFI-P*T2)~EXPFI~P*TO)‘I.0)I

E2=EXPF(0*TO)*(X20-(BZI*U1/Q)*I2.0*EXPF(¢Q*TI)-EXPF(-Q*TOI~I.OI

1~(822*U2/O)*I200*EXPF(*Q*T2)~EXPFI~O*TO)~IoO)I

E=SORTF(EI*EI+E2*E2)

F:F1*F1+F2*F2+F3*F3+F4*F4+F5*F5

PRINT 15 UIQUEOTIOTEOTOOTQZQFQEQD

IF<M~30) 45045950

45 IF(F~0.000II 50050025

40 PRINT 35

50 CONTINUE

STOP

END

SUBROUTINE INVERT (BONODETQJ)

THIS SUBROUTINE INVERTS AN ARBITRARY MATRIX BY THE GAOSS

ELIMINATION METHOD

DIMENSION BI505)0A(5910)

IF DIVIDE CHECK 26v26

26 IF ACCUMULATOR OVERFLOW 25.25

25 DET=IOO

N2=N+N

L=N~I



HO

Hm

HE

UO

H
m
p

C
D

NU

Em

Eb

Hm

HO

m
m

‘
1

‘
0

N C
O

pm

00 HO uumoz

OO ”0 LuwoZ

DaqoLuflmmmoL.

KnZ+H

00 an Nunez

00 “N LHKoZN

DA—oLvuOoO

3nZ+~

Dn~03vfluoo

DO 0 Luncr

ZHL+~

”fiaanoLwV ~oMo~

00 Q mnzcz

~RabamoLvu bow.»

0024~ZCW

0m4u000

«W DOOCZCFDAOD O<MDWFO£ Nmouo

~W O~<~Um OIWOK Nmomd

00 m KunoZN

baCoflvnbaL¢Ku+>a~oKv

00 0 ~u3.Z

Hfifibm~cCuvmomem

Xubnmch\DaLoLv

DO 0 KHLQZN

bnmcxun>a~qflle*>aLaKu

nOZ+~ZCN

aflabazozv- NUoNbaNU

00 “U KXRpor

ZHZIKX

Lu3+_

DO “U ~XM~43

~u31~X+~

HW~DA~¢LVV umoauoum

XflbamoLv\>~LoLO

00 ab KanoZN

Damexvnbauoxvix*baLoKv

OOZ4~ZCW

00 no ufl—oz

Xflbamomv

0m4u0m4*x

DO "0 LuquN

>s~.c3n>._.cc\x

00 um “final

00 um Lflnoz

FHL+Z

mauoLvnbaquv

a“ bfinczcrbfion O<mnflr0£ Nmomfl

«W O~<m0m OIWOK Nmomfl

Cu~

Dmficnz

CHI“

Dm4CDZ

mZO

MZO
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