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ABSTRACT

ON THE WEDDERBURN PRINCIPLE THEOREM FOR
COMMUTATIVE POWER-ASSOCIATIVE ALGEBRAS

by Robert Louils Hemminger

Iet A ©be a strictly power-assoclative algebra with
radical N and such that the difference algebra A - N
is separable. Then we say that A has a Wedderburn de-
composition if A has a subalgebra S 2 A - N with
A =S+ N (vector space direct sum).

The so-called Wedderburn Principle Theorem for
assoclative algebras can be stated as follows: If A - N
1s separable for an assoclative algebra A then A has
a Wedderburn decomposition. The analogue of thils theorem
for alternative and Jordan algebras has also been proved.
This thesls investlgates this theorem for the commutative
strictly power-assoclative algebras.

Our flrst result of primary lmportance 1ls an example
of a commutative power-assoclative algebra which does not
have a Wedderburn decomposition. Since the base fileld in
this example only has the restrictlon that 1t have char-
acteristic not 2, 3, 5 we cannot even hope to prove the
Wedderburn Principle Theorem for commutative strictly
power-assoclative algebras by only restrlicting the base
field.

On the other hand we show that large classes of

commutative strictly power-assoclatlve algebras do have
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Wedderburn decompositions by proving the following two
‘theorems.

(a) If A 1s a commutative strictly power-associative
algebra of characteristlic not 2 such that A - N =
B, @ ees @Bt 1s separable such that each By 1s simple
and has three palrwlise orthogonal idempotents then A
has a Wedderburn decomposition.

(b) Iet B Dbe the class of commutative strictly
power-assoclative algebras of characteristic not 2 that
satlsfy a property P such that A 1In P implies that
every subalgebra of A 1s in P. Then every algebra 1n
P has a Wedderburn decomposition if and only 1f every
algebra In P that has at most two palrwise orthogonal
idempotents has a Wedderburn decomposition.

This last result 1s used to show that every stable
commutatlive power-assoclative algebra over an algebraically
closed field F of characteristlc zero has a Wedderburn
decomposition.

In the associative, alternative, and Jordan cases
the proof was accomplished in two stages; namely, N2 = 0
and N° # 0. For N° =0 an actually Wedderburn de-
composition was constructed whille for N2 # 0 a nil
1deal M with o0 C MC N was constructed in terms of
N and a Wedderburn decomposition was established by a

simple induction argument.
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In our case we didn't encounter the case N2 =0
but our proofs did bear some resemblance to the case
N2 # 0. This similarity 1is reflected in the following
result which was our basic tool in establishing (a) and
(b) above. If M is any ideal of A with M #£ o, N, A
then A has a Wedderburn decomposition. Using this
result repeatedly for various ideals we were able to re-
duce A suffilclently to be able to construct a Wedderburn

decomposition for 1t.
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1« Introduction

Iet A be a strictly power-assoclative algebra with
radical N and such that the difference algebra A - N
1s separable. Then we say that A has a Wedderburn
decomposition if A has a subalgebra S = A - N with
A =3+ N (vector space direct sum).

As a matter of terminology, by an algebra we shall
always mean a finite dimensional vector space on which
there 1s a multipllicatlon defined which satisfies both
distributive laws. The radical of a strictly power-
assoclatlve algebra is the unique maximal nil ideal and
a non-nll algebra with zero radlcal 1s sald to be seml-
simple. A simple algebra 1s a non-nil algebra with no
proper 1deals. An algebra A 1s power-associlative if
xaxB = xa+B for all positive integers o and B, and
every X 1In A. An algebra A over a base field F 1s
strictly power-associative if xaxB = xa+B for all
positive integers o and B, and every x in AK where
K 1s any scalar extension of F. The characteristic of
an algebra 1s the characteristic of 1ts base field. If
the characteristic 1s not 2, 3, or 5 then strict
power-assoclativity 1s equivalent to power-associativity
[7, pp. 364]. An algebra is separable if 1t is semi-

simple over every scalar extension of the base fileld. The






elements of the difference algebra A - N are the classes
[al, defined for every a in A, where [al = [p] 1if
and only 1f a - b is in N, [a]l + [b] = [a + b], and
[allp] = [abp].

The baslc structure theory of commutative power-
assoclative algebras of characteristic not 2, 3, or 5
was given by Albert in [4]. Most of these results were
carried over to commutative strictly power-associlative
algebras of characteristics 3 and 5 by Kokoris in [7].
Any reference to [4] will thus be understood to imply a
reference to the corresponding result in [71].

Most of the results on commutative strictly power-
assoclatlve algebras depend on an idempotent decomposition
where an element e 1in A 1is 1dempotent if e2 =e ¢ 0,
For the idempotent e we have A = Ae(1) + Ae(1/2) + Ae(o)
where x 1s in Ae(x) if and only if ex = Ax for
A= 0, 1/2, 1. Moreover Ae(1) and Ae(o) are orthogonal

subalgebras of A and for A = 0, 1 we have

Ae(x)Ae(1/2) C Ae(1/2) + Ae(1 - )
and

Ae(1/2)Ae(1/2) C Ae(1) + Ae(o)

(the product BC of two subspaces B and C of the
algebra A 1s the set of all finite sums }thu b 1n
B and ¢ in C; i1n particular B° = BB and E" = g™’






for m 2_2). For x 1In A we wilill frequently use this
idempotent decomposition of A to express x unlquely
in the form x = X, + x1ﬁ3+ Xq where Xy
for A =0, 1/2, 1. Every semi-simple commutative strictly

is in Ae(x)

power-assoclative algebra of characteristic not 2 has

a unity element and can be expressed uniquely as a direct
sum of simple algebras. These results are all contailned
in [4].

The characterization of the simple, and hence semi-
simple, commutative strictly power-associative algebras
1s now essentially complete [see 10l so 1t 1s desirable to
see 1f a Wedderburn decomposition can be given for them.
The example in §2 shows that this 1s not possible in
general, The purpose of this theslis 1s to show that a
large class of the commutatlve strictly power-assoclative
algebras do have Wedderburn decompositions and to point
out what one might expect 1n those that do not have a
Wedderburn decomposition.

In §4 we show that if A 1s a commutative power-
assoclative algebra with characteristlic not 2, A - N
is separable, and A - N = B, @B, D eee ®Bt where each
Bi is simple and contalns three pairwise orthogonal
idempotents then A has a Wedderburn decomposition.

In §6 we show that 1f P 1is the class of commutative

strictly power-assoclative algebras having a property P






then every algebra in P has a Wedderburn decomposition if
and only if every algebra in P having at most two palrwilse
orthogonal ldempotents has a Wedderburn decomposition.

This result 1s applied in §7 to the class of stable
algebras over algebraically closed filields of characteristic
Zero,

The so-called Wedderburn Principle Theorem for associ-
ative algebras can be stated as follows: If A - N 1is
separable for an assoclative algebra A then A has a
Wedderburn decomposition. A proof of this can be found
in [1, Theorem 23, pp. 47]. This theorem was generalized
to alternative algebras by Schafer [12] and 1ts analogue
for Jordan algebras was proved by Penico [11]. Previous
to that Albert had proved 1t for an Important class of
Jordan algebras [2]. In all of these cases the method
was basically the following. For N2 = 0 a subalgebra
isomorphic to A - N was actually constructed and for
N° # 0 a nil ideal M ¢ 0, N was constructed in terms
of N and the theorem obtalned by the induction argument
we have given for the proof of Lemma 2.1. In each case
the construction of M depended on knowing that an ideal
is nilpotent if and only if it is nil (M 1s nilpotent if
M® = 0 for some positive integer n while M 1s nil
if each element of M 1s nilpotent, that 1s, for each

X 1In M there 1s a positive integer n, depending on






x, such that x™ = 0). But it is unknown if this 1is the

case 1n commutative strictly power-associative algebras
or not. This difficulty 1s mainly circumvented by ILemma
2.2 for according to that result if M 1s any ideal of

A we can assume M = 0, N, or A. By repeated use of
Iemma 2.2 we are able to reduce A sufficlently to
actually construct a Wedderburn decomposition for it.
This 1s done in the proof of Theorem 2., Since the latter
part of this proof requlres some preliminary material and
1s quite long we have put it in a separate sectlon.

We will always let N represent the radical of the
algebra A and we assume N £ 0, A since otherwise A
has a trivial Wedderburn decomposition. Unless otherwise
specifled we will understand that the generic symbol A
represents a commutative strictly power-assoclative

algebra of characteristic not two with A - N separable,

2, Example
Iet A be the 6-dimensional commutative algebra with

basis €19 €05 €595 €55, My N and multiplication table
2 =e e2 = e e,.e., =¢e,.e.,, = 1/2e
11 112 “22 © T227 T11712 T T22712 129

= e = 1/2e m=n, e,;m = e,n =m,

€11€21 2221 212 €111 = €4 o2
€1085¢ = 1/2(e11 4 €sp + m+ n), and all other products
ZEXY 0,

The algebra A 1s commutative by definition. If we






restrict A to have a base fleld F of characteristic
not 2, 3, or 5 and let x Dbe a general element of A
(expressed in terms of the basis elements) then by compu-
tation we find that x°x° = (x°x)x. So by [3, Lemma k,
pp. 554] A is power-associlative.

For an algebra B of characteristic not 2, B+

is
the algebra with the same additive group as B but the
multiplication of BY 1s defined by xy =1/2(x e y +y o x)
where x o y 1s the product of x and y 1in B.

The radical N of A 1is spanned by m and n,
N2 = 0, and in the notation of the last paragraph we see
that A - N = FZ with basis [e11], [e12], [e21], le,,]
where F2 1s the algebra of all 2 by 2 matrices over
F. Suppose A had a subalgebra S 2 A - N. Then S
would have the usual matrix basis 8112 8109 Boqs Bop

for F;

and there would be an automorphism o of A - N
such that 0([6131) = [giJ]' But this is a change of
basls for the 2 by 2 matrices so there is a nonsingular

element [yl= a[e11] + B[e12]+ rle,, 1 + 8le,,)]1 in A - N,

21
with A = ab - p7 # 0, such that [g,,] = [y] o [ey,] o [y1~?

(note that this multiplication takes place in F2). But

S0 A
[y17' = A (8[e11] - B[e12] - 7[e21] + a[e22]) SO
computing [giJ] = [y] o [eij] o [y1™7 we have

g1 = A'1(a8e11 - ape,, + 78e21 - Bre,, + em + egn)






- 2 2
g1p = & (- are;, +a%e;, - 7Te,y +oare,, + 6,m + Oon)
= A ' (pse,, - p%e.. + B,.. - Bde.. + A,m + A.n)
€21 11 12 21 22 1 2
-1
Bop = A (- Bre,, + ape,, - 78e,, + ade,, + mm + m,n) .

Equating coefficients of m and n 1in the products
gijgkﬂ (for example the coefficlents of m and n in
8,18, and 1/2 g,, are equal since g,.8,, = 1/2 g,5)
ylelds equations in «, B, 7, 9, €19 €p9 eeey Ty T,
which force A = 0, But this 1s a contradiction so A
has no subalgebra S = A - N and hence A has no
Wedderburn decomposition.

This example of course shows we can not prove the
Wedderburn Principle Theorem for the class of all
commutative strictly power-associatlive algebras. More-
over 1t shows we can not even hope to prove 1t by only
restricting the base field for in our example the base
field 1s arbitrary other than the restriction that the
characteristic not be 2, 3, or 5.

An algebra 1s called stable with respect to an
idemﬁotent e 1f A (M)A (1/2) C A (1/2) for 1= 0,1
and 1t 1s called stable if 1t is stable with respect to
each of 1ts l1dempotents.

From the multiplication table for A above

ne =m so A 1is not stable with respect to e

21 11






(or e,,). Now by Theorem 2 of [9, pp. 6981 1f f is

any other ildempotent of A (and f #£ 1 = e, + eyn)

n

then f = 1/2(1 + w) where w° =1 and

W= p(e11 - ey,) W, +w, +w, where w., £ 0 1is

1

in A (1/2) and w, is in A () AN for
€11 A €11

M= 0, 1. Computing the general element w wilth these
properties we find that A 1s not stable with respect to
f =1/2(1 + w) either. That is, our example 1s not stable
with respect to any ldempotent.

Lookling at the other side of the coln, we show 1n
§7 that A has a Wedderburn decomposition i1f it is stable
over an algebralcally closed base field of characteristic

ZET O,

3. Palrwise orthogonal ldempotents

In thls sectlion we wlll assume the algebra A has
the element 1 as a unity. Based upon and related to
the decomposition of A by a single idempotent Albert
has given in [4%, §5] a decomposition of A relative to
a set of palrwlse orthogonal idempotents €19 €53 oo,y €4

for which 1 =e, + e

1 5 + cee + €re It is shown that we

can write A 1n a vector space direct sum A.==§: Aij
1<J
for 1, j =1, 2, ees, t where Ay, = A (1) and
i
Aij = Aji = Aei(1/2) n AeJ(1/2) when 1 # j. Moreover

if g=e, +e, for 14 J then g 1s an idempotent

i J






= Ayt Ayt Bygs A(1/2) =zk¢i’J(Aik * A
and A _(0) =
& zk,/&#i,a

Akﬂ’ We wlll have occasion to use
these only for t = 3. In that case A = A11 + A22 +

ith A _(1
w g()

A, + A1 + A . + A and with 1, j k distinct and

33 2 13 23
g =¢e; +ey we have Ag(1) = Ayt AiJ + AJJ’
Ag (1/2) = Ay + Ay, and Ag(o) = A, For 1, J, k, &
distinct we have
2
A7y C Ayy
AiiAiJ C Aij + AJJ
Aighyy = Byghyp = Bgqhypp = O
Ayghge C Ay
A, CA,, +A
ij = "11 JJ -

Since these relations are basic to much of our work
we will generally use them wlithout speciflc reference.
Also related to palrwise orthogonal ldempotents we

have the followlng lemma.

Lemma 1: Iet [u,], [u,], «eey [u ]l De pairwise
orthogonal idempotents in A - M, M 2a nil ideal of A,
and let u = u, + u, + cee + Uy Then there exlsts an

ldempotent e and pairwise orthogonal idempotents
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€15 €55 eeey € 1In Ae(1) such that e = e, + e, + «o0 + e,
[e]l = [ul, and [ei] = [uy] for 1=1,2, «u., t. More-
over 1f A has 1 as a unity element and [1] = [ul
then e = 1,

Proof: The proof of the flrst part of the lemma 1s
by induction and the case t =1 1s Iemma 1 of [2, pp. 1].
Here u = u,. Now [ul¥ = [u¥] = [u]l so u cannot be
nilpotent, Hence the assoclatlve algebra of all poly-
nomials in u, denoted by Flul, 1s not nilpotent and
thus contains an idempotent e = f(u) for f in Flul.
Then [e]l = [f(u)] = alul where o = f£(1) is in F.
Thus olul = [e] = [e]® = o®[ul® = a®[ul. Since e is
an idempotent i1t is not in M so «alul # 0, « = 1,
and [ul = [e] as desired.

1
for pailrwlse orthogonal idempotents [w], [u3], coey [ut].

Iet w=u, +u, for t2>2. Then u=w+ Ug + ees + Uy

By the inductlon hypothesls there exists an idempotent e
and palrwise orthogonal ldempotents £, e3, seey €4 in

A (1) such that e =f + e; + o0e + e, [e]l = [ul,

3
[£] = [w]l, and [e4] = [u;] for 1 =3, 0o, t. In

particular f 1s an idempotent of A such that

[f] = [w] with w = u, + u,, where u, and u, are

orthogonal idempotents (note that this 1s essentially

the case t = 2 only in that case f would have been

obtalned from the case t = 1 rather than from the
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induction hypothesis). Then [f][u1] = [wllw - u,l =
[w]l - [u2] = [u1]. Ir [fllx] = [x] for x 1in A

we can wrilte x = x, + x1/2 + Xo and have

:
[x,1 + [x1/2] + [x 1 = [x] = [£]llx] = [x I+ 1/2[x1/2]

so [x] = [x1]. Now [f][u1] = [u1] so there 1s an

element x, in Af(1) such that [x1] = [u1]. More-

1

over Xx 1s not nilpotent since [u1] i1snt't. Hence the

1
assoclative algebra F[x1] i1s not nilpotent and thus

contains an ldempotent e which is in Af(1) since

1
Af(1) is a subalgebra. Then Just as in the case t =1

we have [e1] = [x1] and so [e1] = [u1]. Now

e, =f - e, 1s an ldempotent in Af(1), e

(f - 81)81 = e

21

-e, =0, [e,] =1[f -e1=1If] - [e1] =

1 1

[w]l - [u1] = [u2], and since e, and e, are in Af(1)

they are orthogonal to ey for 1 = 3, eeey te Thus

e = f + e3 + cee + et = e1

the ey are palrwise orthogonal idempotents with

+ e, + e3 + cee + et where

[e]l = [u]l and [ei] = [ui] for 1= 1, 2, eeey Lo

Since f 1s 1n Ae(1) we have Af(1)§; Ae(1) so e,

and e are also in Ae(1) which completes the proof

2
of the flirst part of the lemma,

For 1 in A, 1 - (e, + e, + e0s + e 1s elther

1 t)
zero or an idempotent of A, But [1] = [u1] + ees +
[ut] = [e1] + eee + [et] means that 1 - (e1 + oo + o) 1s

in M, so it i1s nllpotent. Hence 1t 1s zero and
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1 =e, t e, + oo + ey as deslired.
As a consequence of Lemma 1 we lmmediately have

Corollary 1.

Corollary 1¢ If M 1s a nll 1deal of A then A

has t palrwise orthogonal idempotents 1f and only if

A - M has t pairwise orthogonal idempotents.

k, Classes of algebras with Wedderburn decompositions

Iet U be the class of all commutative strictly
power-assoclative algebras A that have a Wedderburn
decomposition and for which A - N 1is simple.

We are using B + C to mean the vector space direct
sum of the subspaces B and C. In particular thilis means
that BN C = 0. If in addition B and C are sub-
algebras of A such that BC = 0 then we write B®& C.
This 1s called the direct sum of the subalgebras B and C.

Theorem 1: Iet A be a commutatlive strictly power-
associative algebra of characterlstic not two. Then 1t

1s known that A - N = B, @ eee @Bt where B, 1is

1
simple and has a unity element [ui]. Iet e; De as in
Iemma 1. Then A has a Wedderburn decompositlon if
Ae (1) 1s 1n ) for 1= 1, 2, eoeoy to

1

Proof: The proof is by induction on t. Let
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e = e, + e, + eee + et as in Iemma 1 and let

A, = Ae1(1), A, = Ae1(1/2), and A, = Ae1(0). Also
let R1 be the radical of Ai and Ni = N Ai for
i=1,20

Remark: When B 1s a subspace of A then B - N
is the subspace of A - N consisting of all classes [b]
for b in B. When B 1is a subalgebra of A then
B - N 1s a subalgebra of A - N and 1s isomorphic to
B - N, where N =N N B.

From the above we clearly have A1 - N= B1,

~
A12 - N= O, and A2 -N=B2@ooo @Bto So A12CN.

Iet M= R1 + A12 + R2. By the definitions above Ri

1s a nil ideal of A, and NCM so AM= (A, + A, + A))

i
(Ry + Aj, + R C AR, + AJA , + A M+ A, + AR CNM
and M is an ideal of A. Moreover if x is in M

then x=a+n+Db for a e R1, neN, and b € R2.

2 2

So x° 4sin a® + b2 + N, x5 1s in a> + b3 + N, and

by induction, xk is in ak + bk + N for every positive

integer k. But a and b are nilpotent elements so

for k suffilclently large we have xk in N so xk is

nilpotent, x 1is nilpotent, and M 1s a nil ideal of
A, Thus M(C N so M=DN and Ry =N,
-N=0 so A,+ACN and

for 1 =1, 2,

Now for t =1, A,

since A1 1s in ¥ 1t has a Wedderburn decomposition,
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say A1 = S1 + N1. Then A = S1 + N 1s a Wedderburn
decomposition for A.
~N N
If t> 1 then A2—N=A2—N2=B2@...@Bt

where [ui] = [ei] is the unity element of B, for

i
1 =2, eeey, te Moreover (A2)e (1) = A, (1) is in 4«
1 i

so by the inductlion hypothesis A2 has a Wedderburn
decomposition, say A, = S, + N,. Then A= (S1 C)SQ) + N
is a Wedderburn decomposition of A,

Before we can put much confidence in the value of
Theorem 1 we must at least know that the class 9 1s of
sufficlient size to have some importance. That is the

purpose of the next two theorems.

Theorem 2: Iet A be a commutatlve strictly power-
assoclative algebra with a unity element and of charac-
teristic not 2 such that A has three pairwise
orthogonal 1ldempotents and A - N 1s slimple. Then A
has a Wedderburn decomposition.

Proof: The proof 1s by induction on n, the
dimension of A. Then n 2 3 since A has three palrwise
orthogonal idempotents. The theorem is trivial if n = 3
so assume every algebra of dimension less than n and of
the type described in the theorem has a Wedderburn

decomposition.

Remark: For a nil ideal M of A, A - M 1s
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semi-simple if and only if M = N.

For MC N since N 1s the maximal nil ideal of A.
Thus N - M 1is a nil ideal of A - M. So for A - M
semi-simple, N - M= 0 and N = M. Conversely if M!
1s a nil ideal of A - N then there 1s an 1deal M in
A such that NCM and M- N=M!, But if b 1is in
M then [b]® = 0 for some positive integer s so b°
is in N and (bs)t = 0 for some positive Integer ¢.
Thus M 1s a nil 1deal of A so M=N and M! =0
as desilred.

The major tool in the proof of Theorem 2 is the

Important Lemma 2.2. We first prove a speclal case of 1it.

Iemma 2,1t If M is a nil ideal of A with M # 0, N
then A has a Wedderburn decomposition.

Proof: For convenlence we will write d(B) for the
dimension of a subspace B.

By the homomorphism theorems A - N= (A - M) - (N - M)
so by the Remark above N - M 1s the radical of A - M,
Now (A - M) - (N - M) is simple since A - N 1s simple
and A - M has a unity element since A has one. And
by Corollary 1, A - M has three palrwlise orthogonal
idempotents. But M 1s a proper 1deal of A and we
have 3 < d(A - M) < n so by the induction hypothesis
A - M has a subalgebra CO such that
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c, 2(A-M) - (N-M) =A - N. Agailn by the homomorphism

theorems A has a subalgebra C1 # 0, A such that

MCc, (that s MC C, and M# C;) and C, = Cy - M

1
Thus we have a proper subalgebra C1 of A such that

C, - M A - N. Similar to the considerations for A - M

1

above we see that M 1s the radical of C1, C, - M 1is

1

simple, C1 has three pairwise orthogonal lidempotents,

and 3 < d(C1) < n. So by the induction hypothesis C,

C1 - M. Thus C 1s a subalgebra

A -N., But C NN 1is a nil ideal

ne

has a subalgebra C

ne

of A such that C
of C so CAN=0 since C=A - N which 1s simple.
Therefore C 4+ N 1s a subspace of A with d(C + N) =
da(c) + a(N) = d(A - N) + a(N) = d(A)s So A=C+ N

and thils 1s a Wedderburn decomposition for A.

Iemma 2,2: If M 1s any ideal of A with M # o, N,
or A then A has a Wedderburn decomposition.

Proof: By Lemma 2.1 we can assume M N and
N M since A - N is simple., If M N N # 0 then it
1s a nil ideal of A different from O and N so by
Iemma 2.1 A has a Wedderburn decomposition. If
MNN=0 then M+ N 1s an ideal of A and (M + N) - N
1s a non-zero ideal of A - N. But A - N i1is simple so
A=M+ N with M N N= 0. This is a Wedderburn

decomposition of A and completes the proof of Lemma 2.2,
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The remainder of the proof of Theorem 2 involves
repeated applications of Lemma 2,2 to various ideals of
A. By thls method we are able to reduce the algebra A
to one for which we can construct a Wedderburn decomposition.
This 1s done in the next section. But for the moment let
us assume that Theorem 2 1s proved. We can then prove a

more general result.

Theorem 3: ILet A be a commutative strictly power-
assoclative algebra of characteristic not two such that,
in the canonical representation, A - N = B1 @ eeo @Bt
where each Bi has three palrwlse orthogonal idempotents.
Then A has a Wedderburn decomposition.

Proof: Iet [u;] be the unity element for B, and
let ey be the palrwise orthogonal idempotents in A
as in Iemma 1, Fix 1 and let f = ey Then Just as
was done for e, in Theorem 1 we have Af(1) - Nf =
Af(1) - NZ B, where N, =N n Af(1) is the radical of
Af(1). But f 1s the unity element for Af(1) and by
Corollary 1 Af(1) has three pairwise orthogonal
idempotents. So by Theorem 2, Af(1) is in 9. But

this 1s true for each 1 = 1, 2, ¢eey £t so0 by Theorem

1 A has a Wedderburn decomposition.
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5« Proof of Theorem 2

ae Preliminaries

Since A 1s strictly power-associatlive we have

x2x2 = (x2x)x for each x 1In A, The linearization of

this identity gilves
L (xy) (zw) + (x2)(yw) + (xw)(yz)]
(1) = xly(zw) + z(wy) + w(yz)] + ylx(zw) + z(wx) + w(xz)]

+ zlx(yw) + y(wx) + wixy)] + wlx(yz) + y(zx) + z(xy)].

We willl also make use of some of the results of Albert
on commutatlve strictly power-assoclatlve algebras; namely,
results (5) and (8) of [4%, pp. 505-506]. We state them

as
(2)  Twyaey )]y e = LOn px )y, + Gn 1905, 1,
(3) Loy jo Gy Mg = 2b(wy pox vt (o oy dx, 1,
(u) [Gry g7, )51, = 1/20 00, 1% o)y, 1,

where z,, A = 0, 1/2, 1, 1is the A (2) component of z;
e an ldempotent.

Before contlnulng we need to explaln some new
notation we wlll use. We have already commented on the

vector space dlrect sum B + C. In the remainder of this
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thesis we will no longer require that B + C 1ndicate
the direct sum of vector spaces; only the sum. That is
we will now use B + C on occasions where B I C # o.
But in §7 we will sometimes want to explicitly indicate
that we are using the vector space direct sum. In that
case we will write B + C,

We have also used the product BC previously. But
1t 1s too restrictive for our purposes now so we intro-
duce a new product, B e C, of the subspaces B and
Ce Since A has a unlty element, denoted by 1, and
three palrwise orthogonal ldempotents we can write
1= e, t+ e, + e where the ey are palrwlise orthogonal
idempotents. Then as in §3 A has a corresponding de-
composition as A =ZiﬁJAiJ’ 1, J =1, 2, 3« We define

B o c=zi_<_‘_](13c)_,uj where x i1s in (BC)ij if and

only 1f there exists an element y in BC,

= (2)
y =Zi_<_;]yij’ such that x = yij' We write B e B= B .

Evidently BC(C B o C but it may happen that B e C { EC.
But 1f BC 1s an ideal of A then BC = B o C (this

can easlly be seen by making appropriate linear combinations
and multiplicatlions by the €45 for example

e1(2e1y -y) = y11). Since we are only interested in

usling the product of subspaces to construct ldeals we will

use the product B e C since it 1s easler to work with
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and may 1in fact be an ideal even though BC 1isntt.

lemma 2: For 1, j, k distinct we have
(a) Aii(AiJ ° Ajk) C (AiiAij) ° Ajk

(b) AikAS) C(Agyhyg) o Ay

(c) Ay (hyy o Ag) C A§i) + Agi)

() AiiA:,Eg) C (Ayy o Ayg) o Ay

Proof: Iet g = e, + e,s Then Ag(1) = A,, + A, , + A

i 3 i1 13
Ag(1/2) = Ay Ayys and Ag(o) = A, as in §3. By

JJ’

(2) we have [ij(xiiyij)]1/2 = [(Xiiwjk)yij + xii(yijwjk)]1/2 =
[xii(yijwjk)]1/2 since XyqWyp = Oe From (3) we get

[ij(xiiyij)]o = 2[xii(yijwjk)]o' So Xii(yiJWJk) =
Lo g (x99 P gg0 + Dwgp Gy ywy Pl + 1720w Gy gy 13
which i1s in A But A

g © (Ayqhg4)e 19P C Agye S0
AiJAJk = Aij ° AJk which proves (a).

We note that (AikAiJ)AiJ C A g g C Ay so using
(2) and (3) as before we have wik(xijyij) =

[(Wikxij)yij + (WikyiJ)XiJ]ik which is in (AikAiJ) ° Agqe

Moreover AikAig) = AikAiJ since Aijg; Ajq + AJj and
AikAJJ = 0, That proves (b).

To prove (c) take Xyg9 Yigs Wygo and ey in (1)
to obtaln xij(yikWJk) + wjk(xijyik) = yik(xijwjk) +

eJ[xiJ(yikak) + ij(xijyik)] as a result of simplifying
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and noting that ej[yik(xijwjk)] = 0, Multiplying this
by e; glves ei[xij(yikwjk)] = ei[yik(xijwjk)]‘ Inter-
changing the roles of 1 and J and of y and w 1n
this gilves ej[xij(yikwjk)] = eJ[WJk(xinik)]‘ Adding
the last two equations we have xij(yikwjk) =
ei[yik(xijwjk)] + eg[wjk(xijyik)] which is in
ej_ﬁ\.:‘?_k + eJAgk C A:'(lec + A;(]I2c)° Now AgA gy C Ayy sO
AjAy = Ayy © Ay and we have (c)e

If we substitute x,,, Yyg0 Wygo and e; 1in (1)
we get xii(yijwij) = - 1/2[yij(xiiwij) + wij(xiiyij)] +
ei[yij(xiiwij) + Wij(xiiyij)] + yij[ei(xiiwij)] +
wij[ei(xiiyij)] which 1s in AiJ o (Agy © Aij)‘ Now

2 2 _
Il.j_‘jg.lxii+!\.JJ and  AyjyjAqy =0 so Ayj4Afy =

2 (2)
Aii(Aij)ii = AiiAiJ and we have proved (d).
Iet e ©be an idempotent of A and defilne

B, = {x in Ae(1) : er(1/2) gAe(o)} and

c, = {x in A (1)

xA (1/2) = o}, Obviously
Ce(; B, C Ae(1). Moreover by [4, Iemma 1, pp. 506] Cy
1s an 1deal of A, B, 1s an ideal of A_(1), B C C_,
and Ae(1) - B, 1s a Jordan algebra,

Iet f = e, + e, h = e, + €35 and k = e, + e
These are ldempotents and 1f g = ei + eJ is one of

3.

them then, as Just noted, Bg i1s an 1deal of

Ag(1)=A + A, , + A

i1 1] JJ

We will use the notation Bgi = Bg na

and Cg is an ideal of A,

110 Bg13 = By N Ayge
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C d C = C A
an gﬂ

= Cg N Ayys g1 13°
Clearly Cyy C B,y On the other hand if by,

gl

is in B,y C Ay4 then biJAg(1/2) = biJ(Aik + Ajk) =
by Ay + biJAJkg Ag(1/2) SO biJAg(1/2)

B = C
glj

0 and

glJ°®
Let B1=Bei and Ci=Cei for 1 =1, 2, 3. We

now show that Bgij = 0 I1mplies Bg = B1 e

we note that 1t is always true that By C B, for if

+ B First

Ik + Akk'

Thus xAg(1/2) = x(Aik + Ajk) C Ag(o) since xAjk = 0

x 1s in B; C A,y then x(AiJ+Aik)gAJJ+A

and so By C Bye Now let x be in B, = By,

write x=x1+xj, Xy in Bgi’ xJ in ng. Then Xy

414 Such that =x, (4, + Ajk) C Ape But B,

A A,.. -
1s an ideal of Ag(1) 50 XAy C B,y C jg+ There

4+ B
o 9 and
is in A

fore Xi(AiJ + Aik) C AJJ + A, and x; 1s in B,.

Iikewlse XJ is in BJ so Bg = B1+BJ.

b. Completion of the proof

Iet B = Bp * Bh + B. We show B 1s an ideal of
A as in [4, pp. 510]. As noted in §5a the subalgebra
Ah(1) has the property that Ah(1) - B, 1s a Jordan
algebra. Since a Jordan algebra 1s stable, it follows
that A, Ao CA s+ B. But By Ao C A(0) = A,
and so B. A gBh3. Evidently B 53 = 0e By
symmetry BpoA,s C B,; and so BfAf(1/2) C B. Now

183 rq
is an ideal of Af(1)

BfAf(O) = 0 and since B,
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we have BpAn(1) ( Bp. Therefore BpA(C B and by

symmetry B AC B and BAC B so B 1is an ideal
of A,

Remark: At the time [11] was published the simple
Jordan algebras of degree one and dimenslon greater than
one were unknown. In [6] Jacobson shows they are iso-
morphic to the base field. Thilis completed the classi-
fication of the simple Jordan algebras and since no new
type appeared the proof in [11] is valid for all Jordan
algebras of characteristic not two.

By Iemma 2,2 we can assume B= 0, N, or A, For
B = 0 Albert proved in [4, Theorem 1, pp. 512-514] that
A 1s a Jordan algebra. So by the results of Penlco in
[11] A has a Wedderburn decomposition.

Let B = A and suppose the ideals Cf, Ch’ and
Ck are all nil., Then A11 = Bf1 + Bh1 since

B, n A11 = 0, But we know that B is an ideal of

1

A since B, 1s an ideal of An(1) and A, C Aq(1).

11 f

2 2
Moreover Bz, C B C Cp so B 1s a nil ideal of

A11. Likewilse Bh1 is a nil ideal of A11. But then
A11 = Bf1 + Bh1 is nil which 1s a contradlction since
e, is 1n A11. Thus one of the ideals Cf, Ch’ or

Ck is a proper non-nil 1deal of A and by Lemma 2,2
A has a Wedderburn decomposition. Thus we can assume

B=No
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The above indicates our method of proof. Since we
willl make a few more such reductlons we will label some
of the cases to make 1t easler to follow the argument.

The following outline covers the remalning possi-

bilities.

(A) N=B.=2C This comes from assuming Cg £ 0

f bl
where g 1s one of f, h, or k and without loss of

generality we assume g = f. Clearly C, # A so by
Lemma 2.2 we can assume Cp=0N. So N=C,C B, CB=N

and N = Bf = Cf as stated.,

(B) c.=¢_=2C

£ h k
Case (A) has two subcases

(A.1) If = 0 where If = {Z (yow1/2)1 e yo in
Ap(0) and Wy o in Af(1/2)} =

(A13A33)11 + (A23A33)22‘

(A.2) I.= N. This comes from I, # 0. For clearly

i
I, # A so by Lemma 2.2 we can assume I, = N

(A) N = Bf = Cpe Iet I= If + N where If is

defined in (A.1) above. If x, 1s in I, then by (%)

we have x, (y o1 /2); =[x (y W1/2)] = 2[(x W1/2)yo]1
2[(x1w1/2 1/2yo ; Wwhich is in I, so I, 1is an ideal
of An(1) and I is an ideal of Ap(1). Since N = C,

we have NA13 = NA23 = 0, Combining these results we
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get AT = A (1)I+ A (1/2)T + A(0)IC I+ A, I+ A, I=

13 3

I+ A1 If + A, I.. Now A = A, I,  +A I, =

3 237f 13If 13711 137f2

A13If1 = A13(A13A33)11 where I, = I, n Ajqe By
Corollary 1 A - N has three pairwlse orthogonal
idempotents since A has, so by [4, Theorem 1, DPDe 512]
A - N 1is a Jordan algebra since A - N is simple.
Moreover N = Cp C An(1) so L P C A;3 + N;. There-
fore 1\13(1\.13!&33)11 C A, 3N, C NC I. In the same manner
we have A3, CI and I is an ideal of A.

But I# 0 since N#£ 0 and I # A since ey
1s not in I so by ILemma 2.2 we can assume that
I=N= Cp. Thus Ifg N and AI; = Af(1)If +
Af(1/2)If + Ap(0)I, C I, + Af(1/2)If. = I, + Af(1/2)Cf = I,
so If is a nil ideal of A. This brings us to cases
(A.1) and (A.2).

(A.1) I, = 0. Hence Ag3h g g.A13 and
A33A23 C A23. As noted in case (A), A - N is a Jordan
algebra and hence 1is stable. But N = C; C Af(1) so
we have A A, C Aj; and Ay An, C A,5. Since
A11A23 = A22A13 = 0 we can comblne these results into

(5) AiiAJ3g AJ3 for 1i=1,2, 3and =1, 2 ,

These relations enable us to construct another ideal.
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Iet Hp = Af(1/2) + [Af(1/2)](2) = A+ Ayt

(2) (2)
Ajg e Ayg + AjS + A%, Using (5) and Lemma 2 we now

show that the subspace H is an i1ideal of A.

f
Ayq(Ayg + Ay0) CAjg+ Ay CH by (5)s By (5) and (a)
of ILemma 2 we obtain A”(A13 ° A23) C (A11A13) ° Ayg C
Az Ay C H.. By symmetry !1.22(1\13 ° A23) C H.. Also
Az3(Ay3 o Ay3) C AggA,, = 0. Now A11A1(§) C (A ° Apg) o Ay
by (d) of Lemma 2., But by (5) A,, ¢ A , = A”A13QA13

11 13
so A A(g) C H.. By the same argument A33A1(§) C H.,

3

11713
(2) (2) (2) -
AypAss" C Hpy and As3h53 C Hpe AA 57 CAL(A L +Az) =0

(2) _
and similarly A, A;3° = 0. Thus we have A, H, C Hp

for 1= 1, 2’ 3.
Now A12(A13 + A23) C A23 + A13 C Hy and by (¢) of

Lemma 2, A12(A13 ° A23) C A%) + Aég) C Hp. By (D) of

(2) o
Lemma 2, A, A3 C (A12A13) ° Ajj C LY A13Q He and

by symmetry A12Aé§) C H, so A H.C H.
Clearly 11‘13(1&13 + A23) C He and A13(A13 ° A23) C

(2)
Aighip C A3 CHee By (5), AjgArs” CA (A +A55) C

(2)
Apg QHp and Ajghsg” C Ay3(Ay, + Agg) C A CHy O

A13HfQHf. But Hp 1s symmetric in A,, and A,

3 3

so we also have A, H, C H..
Thus Hf 1s an 1deal of A and by Iemma 2.2 we can
assume Hf = 0, N, or A, Hf = 0 or N Implies that

Af(1/2)=0 since NC Af(1). Thus A=Af(1)@Af(o),
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Ap(0) 1s an ideal of A with A,(0) £ 0, N, or A, so
by ILemma 2.2 A has a Wedderburn decomposition.
Thus we can assume H, = A, Then A , = (A13)11

and Ay, = (A so NA ., = N1(A )11 QN1A g

23)22’

(N1 ° A13) o A5 by (d) of Lemma 2 where Ny, =N N Ay y
and Nij =N Aij for 1, J =1, 2, 3. But N, = Cg,
soby (5) N, o Ay =DNA,=0. Thus NA, =0. But
e, is in A11 SO0 N1 = e1N1 = 0., In the same manner
we obtain N, = 0 so N=N, C A,,. Then by (b) of
Lemma 2, N, A 11QN12A1(§)§(N12 Ay3)  Aj3 =0 again

because N = Cf. But thils gives N = N12 = e1N12 =0
which is a contradiction. That completes the proof 1n
case (A.1).

Before taklng up case (A.2) we need a lemma.

Lemma 2,3: If N =3B + B, + By and H, = Ag(1/2) +
[Ag(1/2)](2) where g =f, h, or k then Hy+ N is
a non-zero lideal of A.

Proof: As noted in case (A) A - N 1s a Jordan
algebra and hence 1t 1s stable. This and having

N C By, + Ayy + Ags glves

(6) xs‘iiAL\_,LJ(__'Aij+13:I for 1 4 j; i, J =1, 2,3 .

Without loss of generality we can assume g = f.

Then the proof that Hf + N 1s an ideal of A is
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essentlially the same as the proof in case (As1) that Hf
was an ideal of A. We only indicate this by considering
two of the relations that need to be checked.

By (6) and (a) of Lemma 2 we have A”(A13 ° A23)§;
(A,,A 13) ° A23g (A13 + By) o A23QA13 o Ayy + NC Hp + N
By (6) and (d) of Iemma 2 we have A”Agg) C (A11 ° A13) °

A3 C (Ay5 + By) oA13gA(2)+Nng+N. In this
fashion we find that Hf + N 1s an 1deal of A.

Corollary 2: If A = H + N = Hh + N = H 4+ N then

H 1s a subalgebra of A. If we also have C, = C, =

T 1 2
C3 =0 then A= Hf + N 1is a Wedderburn decomposition
for A.

Proof: From the hypothesis we immediately have
Ayg = (Afp)yy + By = (Af))gg + By and Ajy = Aphg

for 1, jJ, k distinet, 1, j, k=1, 2, 3. Hence

by (c) of Lemma 2 (A® = [a,5(a C (A(Q) A(e))33

13)33 12 23)]33

(A(E’))33 (A2 Similarly (A23)33Q(A13)33 s0

23)33'
(A 23)33 = (A13)33 Denote these as S;. By the same

type of argument we also have S, = (1&23)22 =
2

12)22 13)11
The proof that A, Hp C He glven in case (A.1) is

(a and S, = (A? )i = (a2

valid here since (5) wasn't used. Therefore

A, Hp C Heo

(A13 ° A23)Hf =
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Clearly A13( 13+ A23) C He and A13(A13 o A 3) =

- (2)
Aizhyp = A23 C H.. Also A 3A53 C (A13 53) © Apg =

Ajp o Ay = Agq C Hp by (b) of Lemma 2. Similarly

(2)
A13A12 C A13 C Hp. From these and the relatlons for

S. and S, we have A A(g) = A [(A

1 3 13713 13)11 ] =

+ (A7)

(2) (2)
[(Am)” + (A )33] C A13(A + A357) C Hpe Thus
Hp C Hp and by symmetry A,,Ha, C Hf.
By symmetry and what we have just checked of Hfo
1t remains to show that A(2) (2) and A(Q)A(Q) are

13 713 13 23
subsets of H,. But A(g) (g) = (2)[(A13)11 +
(2) (2) (2)
Asg)Agg). These summands are handled 1n the same manner

so we will only consider the latter. We note that

A(2)A(2) = A A since

13 823 13853 A11A33=o for 1 # j. Taking
X133 Yq32 Zp3s Wpo3 in (1) gives h(x13y13)(223w23) +
h(x13z23)(y13w23) + h(x13w23)(y13223) = x13[y13(223w23) +

223(y13w23) + w23(y13223)] + y13[x13(223w23) +

223(x13w23) + w23(x13z23)] + z23[x13(y13w23) +

y13(x13w23) + w23(x13y13)] + w23[x13(y13223) +

) + 223(x which is in A, [A AS. %

¥13(Xq13253 139130 13723

A23(A13A23)] + A23[A13(A13 23) + AygA 13] C A13 e+

1&23Hf g Hf by our previous results. Also
4(x13223)(y13w23) + h(x13 23)(Y13 23) is in

2 2 (2) (2)
(A13A23) C A7, C Hee So 3 Ap3 = A13 23 C Hp and
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H 1s a subalgebra of A.

f

Now assume we also have C1 = 02 = C3 0. Evidently

3,8, = (A7) 1,8, C Aiphts) (A 5) @ A C

By © Agg C A, by (b) of Lemma 2. ILikewlse 8,43 C A, 3.
So for x in S, we get x(A12 + A13) C A, + A13 while
x in B, implies that x(A , + A,3) C B, + By C A+ Byse
Therefore S, N N=S 0N B, C C, = 0. Similarly S, I N=
S3 NN=0 so A= Hf 4+ N 1s a Wedderburn decomposition

of A and that completes the proof of the corollary.

(A.2) I, =N. Then N = B, C Ay + Ay Bpyp, =0,
and N =B + B, as in §5a. So by ILemma 2.3 He + N,
Hh + N, and H + N are non-zero ideals of A. If

one of them, say Hf + N for example, is N then
He C N, Af(1/2) =0, A= A.(1) @Af(o), Ap(0) is a
proper non-nil 1deal of A and A has a Wedderburn
decomposition by Lemma 2.2. Thus we can assume
A=H,+N=H +N=H_ + N

If C, =C, =0 (we already have Cq C By = 0)
then by Corollary 2 A has a Wedderburn decomposition.
Therefore we assume, wlthout loss of generality, that
c, # 0. Clearly c, # A so by Lemma 2,2 we can further
assume that C1 = N.

From N= I, =B

f f
For if Db, 1s in Bngfﬁ) and (yow1/2)1 is in

we notice that N2 = Ifo = 0.

I, C Ap(1) then bW/, 1s in Ap(0) so by (k)
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b, (y w1/2 : [b (y w1/2)] = 2[ (b w1/2)y0]1 = 0.

But we also have N = C, C A, = (a2 + N. This

13)11
and (d) of Lemma 2 give MNA.. C NA(2) + N° = NA(Q) C
(N o A13) o Aj;=0. But e, isin A, so
N = e1N = 0 which is a contradiction.

There remains case (B).

(B) Cf = Ch = Ck
Byyy = Cgyy S0 Byyy=0 for g=£, h, k 1 ¢ J;
i, J =1, 2, 3. This and the related results in §5a

= 0, B=N. We saw in §5a that

give N =B + B, + B;. In addition C, C C, for if

x 1s in Ci then x(AiJ + Aik) = 0, But x 1s in

Ayy sO XAJk = 0. Therefore xAg(1/2) = x(Aik + Ajk) =0
and x 1s 1n Cg. Thus C1 = 02 = C3
proceed as in the first part of case (A.2) using Iemmas

= 0, We then
2.2 and 2,3 and Corollary 2 to show that A has a
Wedderburn decomposition. That completes the proof of

case (B) and consequently of Theorem 2,

6. A reduction theorem

Theorem 4 is important not only because i1t simplifies
the problem of showlng that each algebra of certailn
classes of algebras has a Wedderburn decomposition, but
also because 1t suggests where we can expect diffilculties
in general; namely, in the algebras with at most two

pairwise orthogonal ldempotents.
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Iet P ©be a property of algebras such that 1f A
has property P then each of 1ts subalgebras has property
P. Iet P Dbe the class of all commutative strictly
power-assoclative algebras of characteristic not two

having property P with A - N separable for A 1in .

Theorem 4: Every algebra in P has a Wedderburn
decomposition 1f and only 1f every algebra in P that
has at most two pairwilise orthogonal idempotents has a
Wedderburn decomposition.

Proof: The necesslity of the condition 1s obvious so
we assume that every algebra in P that has at most two
palrwise orthogonal ldempotents has a Wedderburn de-
composition. Thus if A i1s in P and n = d(A) = 1
or 2 then A has at most two palrwlse orthogonal
idempotents and hence A has a Wedderburn decomposition,
If n 2> 3 then assume that every algebra of P with
dimension less than n has a Wedderburn decomposition.
Evidently we can assume A has three palrwise orthogonal
ldempotentss If A - N 1s simple then A has a
Wedderburn decomposition by Theorem 3, so we only need
to show that we can assume A - N 1is simple. This

follows Ilmmediately from Iemma L4.1.

Iemma 4.,1: If D 1s a non-nil ideal of A with
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D#£ 0, A then A has a Wedderburn decomposition.

Proof: D has an idempotent since 1t is non-nil.

It i1s also well-known that thls implies D has a principle
idempotent, say e (e 1is principle if Ae(o) is nil).
Write D = De(1) + De(1/2) + De(O) and let M Dbe the
radical of D. According to Albert [4, Theorem 7, pp. 524]
De(1/2) + De(o) C M since e 1s principle. We write
M=J+ De(1/2) + De(o) where J =M De(1). We may
also write A = Ae(1) + Ae(1/2) + Ae(o) and 1t should be
evident that De(x) =D Ae(x). However e 1s in D

so xe = Ax d1is in D for every x in Ae(x). By

taking A =1 and 1/2 we see that Ae(1) + Ae(1/2) C o,
A=D(1) + De(1/2) + A_(0), and D (o) C A (0)

(De(o) ¢ A (0) since D £ A). Moreover D,(0) 1is an
ideal of Ae(o) since D 1is an ideal of A and Ae(o)

is a subalgebra. Albert proceeded to show in [4%, pp. 525]
that M 1s an 1deal of A and hls proof 1s valild here
since he dld not use the simplicity of A for this result.
Thus MC N.

Now D¢ O, A so 0<d(D) < n and by the induction
hypothesis D =T+ M where T 1s a semli-simple sub-
algebra of D (and hence of A) and T AN M= 0, Thus
ﬂ?g_De(1) and De(1) = T+ J 1s a Wedderburn decomposition
of D.(1). ILikewise D # O, A means that 0 < d(A (0)) < n

So Ae(o) = S 4+ N6 where S 1s a seml-simple subalgebra
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of Ae(o) (and hence of A), N, 1s the radical of Ae(o),
and S N N, = 0. Note that De(o) C N, since De(o)

1s a nil ideal of A_(0). Iet N, = J+ Ae(1/2) + N_.
Then Ng Na and Jjust as 1n the proof of Theorem 1

we find that N, is nilso N= N, J=NMNA (1), and
N,=NNA( (o). But SCA (o) and TC A (1) are
seml-simple subalgebras of A so S@T 1s a semi-
simple subalgebra of A. Moreover (S@T) NN =0
since SAN=SAN =0 and TNN=TMNJ=0. Hence
A= Ae(1) + Ae(1/2) + Ae(o) =T+ (J + Ae(1/2) + N,) +
S=(S@ET) + N is our desired Wedderburn decomposition
of A,

T« An application

We are now able to apply Theorem 4 to the class of

stable algebras (defined in §2).

Theorem 5: If A 1s a stable commutative power-
assoclative algebra over an algebralically closed fileld F
of characteristilc zero then A has a Wedderburn
decomposition.

Proof: Iet P be the property of being stable and
having an algebralcally closed base field of characteristic
zero. Then by Theorem 4 we can assume A has at most two

palrwise orthogonal ldempotents.
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Since A 1s non-nil it has at least one l1dempotent
and hence a principle idempotent, say e. Then by
(4, Theorem 7, pp. 524] Ae(1/2)+ Ae(o) C N. As in the
proof of Theorem 1 we have N, = Ae(1) N N is the
radical of Ae(1). So if Ae(1) has a Wedderburn de-
composition, say Ae(l) = S + N1, then A =S+ N is
a Wedderburn decomposition for A. So without loss of
generality we can assume A has a unity element 1 to
begin with.

Suppose that A does not have two orthogonal idem-
potents., Then 1 1is a primitive idempotent (that is

1 % e, + e for orthogonal idempotents e and eg).

2 1

For an algebralically closed field the degree of A 1is

the maximum number of palrwise orthogonal idempotents

whose sum 1s the unity element. Thus A 1is of degree

one. Then as in [4, proof of Theorem 9, pp. 526-527]

A =1+ F 4+ N which 1s a Wedderburn decomposition of A.
Thus we can assume A 1s of degree two. So

1 u + v for primitive orthogonal ldempotents u and

Ve Then A = A1 + A + A2 as in §3 where we are

12

letting A11 = A and A22 = A2. Then A1 and A2

1
are of degree one and as above A = uF + R1 and

Ao

Ny

vE + R2 where R is the radical of A,. Iet

i 1
NN Ai and N12 = NN A12 as usual.

Iet x Dbe an element of A12. If x2 is not
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in R1 + R2 then x 1s said to be non-singular and it

is known [4, ILemma 10, pp. 517] that %2 = a + g

for g i1n R1 + R2 and o a non-zero element of F.

If x2 is 1n R1 + R2 then x 1s sald to be singular,
Suppose every element in A12 1s singular. If

x, y are iIn A,, then 2xy = x° + y2 - (x - y)2 which

2
is 1n R1+R2 S0 A12QR1+R2. ILet M=R1+A12+R2.

Since A is stable we have AM = (A1 + A, + A2)
2
(R, + A, +R,) C AR + A, + Al, + AR, C M. Moreover

M 1s nil for if not then M has an idempotent

f = f1 + f12 + f2 wilth fi in Ri and f12 in A12.
It is clear that f,, # 0. Computing £2 = £ we obtain
2 2 2

£5 4+ £0, 4+ 2 4 (£, + £,)f , = f +f .+ f,. Equating

the components in A., we get (f1 + f2)f12 =f 5.
Iet T be the linear transformation glven by

T(x) = xf,, forall x in A, + A,. Then 1t is known

[4, pp. 517) that T 1is nilpotent. But (f1 + £)f, =f,
means that Tk(f1 + f2) = f,, for every positive in-
teger k. Thus f12 = 0 which is a contradiction.
Therefore M 1s a nil ideal, M(C N, M = N, Ry = N,
L CN, and A = (uF + vF) + N 1s a Wedderburn de-
composition of A.

Thus we can assume there 1s a non-singular element
x 1n A12. Iet M= R1 + R + R2A + Re. Then the

1A12 12
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proof by Kokoris in [8] that M 1s an ideal of A is
valid here since he only used the simplicity of A to
conclude that A12 had a non-singular element. More-
over the proof that M 1s nil 1s Just a duplication of
the argument in the last paragraph so M (C N, Ri C Ni’
and hence Ri = Ny.

Before we contlnue with our argument we give two
lemmas. We need parts of Lemmas 3 and 7 of [5] and we

state them here as ILemma 5.1.

Iemma 5.1: If x 1s a non-singular element of A12
then there exists a quantity c¢ in F[x°] C A, + A,
such that w- = 1 for w = cx in A12. Moreover
A,, = wB + G where B= {b in A, + A, e w(wb) = bl
and G ={g in A,, : gw = 0J,

Remarks: There are several comments that need to
be made regarding ILemma 5.1,

Filrst we would like to indlicate briefly how we in-
tend to use Iemma 5.1 to construct a Wedderburn
decomposlition for A. Iet w = Wie Then we wlll show
that we can keep "breaking elements w, out of Gg"
where Wiwj = Sij (the Kronecker delta) until what re-
mains of G 1s a set of singular elements G C N,
From this we see that A = (uF + W .F + ... + w F + vF) + N

is a Wedderburn decomposition of A,
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Next we note that B = {a + b :t o in F and b in
N, + N, such that w(wb) = b}, For if x 1s in B
then x = au+gv+Db with a, 8 iIn F and b in
N, + N,o Thus x = w(wx) = wlw(au + pv + b)] =

wl1/2(a + B)w + wb]l = 1/2(a + B) + w(wb) so

a=p8=1/2(a +B), b = w(wb), and x = a + b. Con-
versely 1f x = a + b as above 1t 1s clear that
w(wx) = x so x is in B. In particular this means
that wB= {aw + wb : @ in F and b in N + N, such
that w(wb) = b}, The importance in this for us is that
wB C wF + N, ,.
Iemma 5.1 holds for any stable 1dempotent u # Te
But we are assuming A 1s stable so Iemma 5.1 holds for
any ldempotent u * 1e
Iet e =1/2(1 + w)e Then e 1s an idempotent and
for x in A, ex = 1/2(1 + w)x = 1/2x 1if and only if
wx = 0, Therefore w 1s in the annihilator of Ae(1/2).
In particular, taking x in A, gives G= A, N Ae(1/2).
And since A 1s stable 1t is evident that [A.(1/2)12™" C
Af(1/2) for any idempotent f and every positive in-
teger m. Thus G2m—1 g G for every positive integer m.
If z 1s a non-singular element in G then accordlng
to Iemma 5.1 there 1s a quantity ¢ in F[Z2] such that

3

y2 =1 for y = cz. But then y = a,z + ayZ + see +

ak22k-1 and by the last paragraph sz-1 is In G for
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every positive integer m so y 1is In G and wy = O.
Applying ILemma 5.1 with respect to u and then with

respect to e we can write A12 = yB e and

A (1]2) = yBy, + Gy, where B, = {b Zn A1y+ A, :
y(yb) = bl, Gy = {g in A, :ey= o},

By1 = (b in Ae(1) + Ae(O) : y(yb) = b}, and

Gy1 = {g in Ae(1/2) : gy = 0},

Iemma 5.2¢ For y 1n G with y2 = 1 we know
that every element h in Ae(1/2) has a unique repre-
sentation in the form h =yb + g for yb i1n yBy1 and

g in Gy1. But for h iIn G we also have yb in
yBy and g in G N Gy.

Proof: Gy1 C Ae(1/2) so gw = 0 as noted above.
But we have h 1n A , so (yb)1 + (yb)2 +g, +tg,=0

where the subscripts refer to the subspaces A A and

1, 2,

A Examining the A1 + A2 component of the equation

12°
0 = wg = w(g1 + ge) + wg,, we have wg,, = 0 since A

i1s stable. Similarly V8o = O. Thus 845 is in
G G .
f y
Since A 1s stable (yb)12 = [y(b1 + b, + b2)]12 =

y(b1 + b2)° Thus b, + b, 1s in (A1 + A2) n (Ae(1) +
A,(0)) such that y[y(b1 + Db,)] = b, + b,, so

y(b1 + b2) is in yBy n yBy Therefore h = (yb)12 +

1.

g,, where (yb)12 is in yBy1 and g,, 1s in Gy1.
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But h has a unlque representation in that form; namely,

h=yb+ g so we must have yb = (yb)12 in yBy and

g =28,, in &N Gy which proves the lemma.
Previous to Iemma 5.1 we had gotten to the point

where A12 had a non-singular element and Ni = Ri' We

can now put the Intermedlate pileces together by in-
duction to glve a Wedderburn decomposltion for A,

By Iemma 5.1 A12 contalins an element w1 such
2 °
that w) =1 and A, = w1B1 + G1 where B, = {o + b :

« in F and b in N, + N, such that w1(w1b) = b}

and G, = {g in A, . : gw, = ol}.

12
If every element of G1 1s singular then let

M1 = N + G1. For x=n+g 1in M1, x2 = n2 + 2ng + g2

which 1s in N so x° 1s nilpotent, x 1s nilpotent,
and M1 1s nil., In particular for x, y 1n G1 we
have 2xy=x2+y2—(x-y)2 in N so GfCN.
Thus A M =A (N+G)CN+A G CN+ WF+N+G)G C
N+ CNCM and AM CulN+6)+N(N+6)C
N+ G =M. Likewise A2M1QM1 so M, is a nil
ideal of A. Hence G1QN and A= (uF + w.F + vF) + N
1s a Wedderburn decomposition of A. Thus we can continue
by assuming G1 has a non-singular element.

For notatlion 1n the general case we will have Wy
in A,, with wi = 1 and will write A,, = w;B, + Gy
by Lemma 5.1 where Bi and Gi are defined in terms
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of wy; as In the case 1 =1 above. Iet e; = 1/2(1 + wy)e

i

Assume that A,, = w,F + oo +w ,F+ N, + G(m-1)
-1

where G(m—1) = ﬂ?=1Gi, G(m_1) has a non-singular ele-

ment x, and win = Sij for 1, J=1, 2, eeey m - 1,
From Iemma 5.1 as before there 1is an element W

2

in G(m—1) such that W= 1 and W Wy o= 0 for

i= 1, 2, XX¥) me- 1, Iet G(m) = G’m n G’(m_.l)o Then

we wilsh to show that we can wrilte A12 = w1F + eee +

me + N12 + G(m)'
Iet h be in G(m-1)' Then h 1is in Gy for

each 1 =1, 2, esey m - 1 so taklng G = G1 and

y =W, in Iemma 5.2 the element h has a unlque repre-

sentation in the form h = wmbi + 84 1 =1, 2y e0ey m -1,

where w b, 1s in WmBm and gy 1s in Gy n Gpe But

by Lemma 5.1 h also has the unique representation

h = wmb + g for wmb in WmBm and g 1n Gm. Thus

gy = 8 for 1 =1, 2y eeey m =1 so g 1s in G(m)

as desired, For if a 1s in A12 we have

a =a,W, + ¢ + +

1" m-1"m-1
in N,, and h 1s in G(m—1)’ But by our last result

ny.q +h where n . 1is

we can wrlte this as a = a, W, + eee + @ +

11 m-1"m-1
g (o g+ ) = agwy e oy Wyt
aw. +n+ g, with n in N and g in G(m) as
desired.

This inductive process cannot contilnue indefinitely
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since d(G(m)) < d(G(m_1)) so for some m, Gy must
consist of singular elements. Then as before G(m) Q N
and A=(uF+w1F+...+me+vF)+N is a

Wedderburn decomposition of A.
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