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ABSTRACT

ON THE WEDDERBURN PRINCIPLE THEOREM FOR

COMMUTATIVE POWER-ASSOCIATIVE ALGEBRAS

by Robert Louis Hemminger

let A be a strictly power—associative algebra with

radical N and such that the difference algebra A - N

is separable. Then we say that A has a Wedderburn de-

composition if A has a subalgebra 8‘: A - N with

A = S + N (vector space direct sum).

The so—called Wedderburn Principle Theorem for

associative algebras can be stated as follows: If A - N

is separable for an associative algebra A then A has

a Wedderburn decomposition. The analogue of this theorem

for alternative and Jordan algebras has also been proved.

This thesis investigates this theorem for the commutative

strictly power-associative algebras.

Our first result of primary importance is an example

of a commutative power-associative algebra which does not

have a Wedderburn decomposition. Since the base field in

this example only has the restriction that it have char-

acteristic not 2, 3, 5 we cannot even hope to prove the

Wedderburn Principle Theorem.for commutative strictly

power-associative algebras by only restricting the base

field.

On the other hand we show that large classes of

commutative strictly power-associative algebras do have
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Wedderburn decompositions by proving the following two

‘theorems.

(a) If A is a commutative strictly power-associative

algebra of characteristic not 2 such that A - N'=

B1 ED ... @Bt is separable such that each B1 is simple

and has three pairwise orthogonal idempotents then A

has a Wedderburn decomposition.

(b) Let T be the class of commutative strictly

power-associative algebras of characteristic not 2 that

satisfy a property P such that A in p implies that

every subalgebra of A is in p. Then every algebra in

$ has a Wedderburn decomposition if and only if every

algebra in N that has at most two pairwise orthogonal

idempotents has a Wedderburn decomposition.

This last result is used to show that every stable

commutative power—associative algebra over an algebraically

closed field F of characteristic zero has a Wedderburn

decomposition.

In the associative, alternative, and Jordan cases

the proof was accomplished in two stages; namely, N2 = 0

and N2 % O. For N2 = 0 an actually Wedderburn de-

composition was constructed while for N2 # O a nil

ideal M with O C M C N was constructed in terms of

N and a Wedderburn decomposition was established by a

simple induction argument.
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In our case we didn't encounter the case N2 = 0

but our proofs did bear some resemblance to the case

N2 e o. This similarity is reflected in the following

result which was our basic tool in establishing (a) and

(b) above. If M is any ideal of A with M e o, N, A

then A has a Wedderburn decomposition. Using this

result repeatedly for various ideals we were able to re-

duce A sufficiently to be able to construct a Wedderburn

decomposition for it.
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1. Introduction
 

Let A be a strictly power-associative algebra with

radical N and such that the difference algebra A — N

is separable. Then we say that A has a Wedderburn

decomposition if A has a subalgebra S 3’A — N' with

A = S + N (vector space direct sum).

As a matter of terminology, by an algebra we shall

always mean a finite dimensional vector space on which

there is a multiplication defined which satisfies both

distributive laws. The radical of a strictly power-

associative algebra is the unique maximal nil ideal and

a non-nil algebra with zero radical is said to be semi-

simple. A simple algebra is a non-nil algebra with no

proper ideals. An algebra A is power-associative if

xaxB = xa+B for all positive integers a and B, and

every x in A. An algebra A over a base field F is

strictly power-associative if xa’xB = xa+B for all

positive integers a and B, and every x in AK where

K is any scalar extension of F. The characteristic of

an algebra is the characteristic of its base field. If

the characteristic is not 2, 3, or 5 then strict

power—associativity is equivalent to power-associativity

[7, pp. 36h]. An algebra is separable if it is semi-

simple over every scalar extension of the base field. The





elements of the difference algebra A - N are the classes

[a], defined for every a in A, where [a] = [b] if

and only if a — b is in N, [a] + [b] = [a + b], and

[allb] = [ab].

The basic structure theory of commutative power-

associative algebras of characteristic not 2, 3, or 5

was given by Albert in [A]. Most of these results were

carried over to commutative strictly power-associative

algebras of characteristics 3 and 5 by Kokoris in [7].

Any reference to [A] will thus be understood to imply a

reference to the corresponding result in [7].

Most of the results on commutative strictly power-

associative algebras depend on an idempotent decomposition

where an element e in A is idempotent if e2 = e # O.

For the idempotent e we have A = Ae(1) + Ae(1/2) + Ae(0)

where x is in Ae(l) if and only if ex = Xx for

x = O, 1/2, 1. Moreover Ae(1) and Ae(O) are orthogonal

subalgebras of A and for x = O, 1 we have

Ae(x)Ae(1/2) ; Ae(1/2) + Ae(1 - x)

and

Ae(1/2)Ae(1/2) g Ae(1) + Ae(o)

(the product BC of two subspaces B and C of the

algebra A is the set of all finite sums Ebc, b in

B and c in C; in particular B2 = BB and Bm = BB‘m"1





for m_2.2). For x in A we will frequently use this

idempotent decomposition of A to express x uniquely

in the form x = x1 + Xlfi3+ xO where x)V

for x = O, 1/2, 1. Every semi-simple commutative strictly

is in Ae(x)

power-associative algebra of characteristic not 2 has

a unity element and can be expressed uniquely as a direct

sum of simple algebras. These results are all contained

in [h].

The characterization of the simple, and hence semi-

simple, commutative strictly power-associative algebras

is now essentially complete [see'Hfl so it is desirable to

see if a Wedderburn decomposition can be given for them.

The example in §2 shows that this is not possible in

general. The purpose of this thesis is to show that a

large class of the commutative strictly power-associative

algebras do have Wedderburn decompositions and to point

out what one might expect in those that do not have a

Wedderburn decomposition.

In §h we show that if A is a commutative power-

associative algebra with characteristic not 2, A - N

is separable, and A - N = B1 @B2 (-9 ... @Bt where each

B1 is simple and contains three pairwise orthogonal

idempotents then A has a Wedderburn decomposition.

In §6 we show that if T is the class of commutative

strictly power-associative algebras having a property P





then every algebra in T has a Wedderburn decomposition if

and only if every algebra in T having at most two pairwise

orthogonal idempotents has a Wedderburn decomposition.

This result is applied in §7 to the class of stable

algebras over algebraically closed fields of characteristic

zero.

The so—called Wedderburn Principle Theorem for associ—

ative algebras can be stated as follows: If A - N is

separable for an associative algebra A then A has a

Wedderburn decomposition. A proof of this can be found

in [1, Theorem 23, pp. #7]. This theorem was generalized

to alternative algebras by Schafer [12] and its analogue

for Jordan algebras was proved by Penico [11]. Previous

to that Albert had proved it for an important class of

Jordan algebras [2]. In all of these cases the method

was basically the following. For N2 a O a subalgebra

isomorphic to A - N‘ was actually constructed and for

N2 i O a nil ideal M # O, N was constructed in terms

of N‘ and the theorem obtained by the induction argument

we have given for the proof of Lemma 2.1. In each case

the construction of M depended on knowing that an ideal

is nilpotent if and only if it is nil (M is nilpotent if

Mn = O for some positive integer n while M is nil

if each element of M is nilpotent, that is, for each

x in M there is a positive integer n, depending on





x, such that xn = 0). But it is unknown if this is the

case in commutative strictly power-associative algebras

or not. This difficulty is mainly circumvented by lemma

2.2 for according to that result if M is any ideal of

A we can assume M = O, N, or A. By repeated use of

lemma 2.2 we are able to reduce A sufficiently to

actually construct a Wedderburn decomposition for it.

This is done in the proof of Theorem 2. Since the latter

part of this proof requires some preliminary material and

is quite long we have put it in a separate section.

We will always let N represent the radical of the

algebra A and we assume N'# O, A since otherwise A

has a trivial Wedderburn decomposition. Unless otherwise

specified we will understand that the generic symbol A

represents a commutative strictly power-associative

algebra of characteristic not two with A - N separable.

2. Example

Let A be the 6-dimensional commutative algebra with

basis e11, e12, e21, e22, m, n and multiplication table

62 "' e e2

11 ‘ 11’ 22 922’ e11e12 = e22612 a 1/2e12’

e11e21 = e22821 = 1/2821’ e11n = e12m = n’ eaem = e21n = m,

= 1/2(e11 + e + m + n), and all other products
e12e21

zero.

22

The algebra A is commutative by definition. If we





restrict A to have a base field F of characteristic

not 2, 3, or 5 and let x be a general element of A

(expressed in terms of the basis elements) then by compu—

tation we find that x2x2 = (xex)x. So by [3, lemma A,

pp. 55h] A is power-associative.

For an algebra B of characteristic not 2, Bi is

the algebra with the same additive group as B but the

multiplication of Bi is defined by xy = 1/2(x o y + y o x)

where x o y is the product of x and y in B.

The radical N of A is spanned by m and n,

N2 = O, and in the notation of the last paragraph we see

that A - N': F: with basis [e11], [e12], [e21], [e22]

where F2 is the algebra of all 2 by 2 matrices over

F. Suppose A had a subalgebra S g A - N. Then 8

would have the usual matrix basis g11, g12, g21, g22

+

for F2 and there would be an automorphism o of A — N

such that o([e ]. But this is a change of

13]) = [$13

basis for the 2 by 2 matrices so there is a nonsingular

element [y]= d[e11] + ele121+ 7Ie21] + olegel in A - N,

with A = as - B7 # 0, such that [gij] = [y] 0 [e13] o [y]-1

(note that this multiplication takes place in F2). But

[y].1 = A-1(o[e11] - Ble12] - 7le21] + ale so
22])

.1 o [yl-l we havecomputing IgiJ] = [y] o [eiJ

-1
g11 = A (doe1 - dee12 + 78e2 - B7e22 + 61m + egn)

1 1





_ —1 2 _ 2

g12 ‘ A (’ “7811 + “ e12 7 e21 + “7822 + 91m + 92“)

g = A—1(a8e — B2e + 82e — Boe + x m + X n)

21 11 12 21 22 1 2

-1
g22 _ A (- B7e11 + doe12 - 75e21 + doe22 + r1m + w2n)

Equating coefficients of m and n in the products

(for example

1/2 8;12

yields equations in

gijgki

g11g12 and

which force A = O.

has no subalgebra S g A — N and hence

the coefficients of m and n in

are equal since gHg12 = 1/2 g12)

a, 5: 7: 5: €19 €21 00-: “1: “2

But this is a contradiction so A

A has no

Wedderburn decomposition.

This example of

Wedderburn Principle

commutative strictly

over it shows we can

restricting the base

course shows we can not prove the

Theorem for the class of all

power—associative algebras. More—

not even hope to prove it by only

field for in our example the base

field is arbitrary other than the restriction that the

characteristic not be 2, 3, or 5.

An algebra is called stable with respect to an

idempotent e if Ae(x)Ae(1/2)(; Ae(1/2) for i = o, 1

and it is called stable if it is stable with respect to

each of its idempotents.

From the multiplication table for A above

ne = m so A is not stable with respect to e
21 11





(or e22). Now by Theorem 2 of [9, pp. 698] if f is

any other idempotent of A (and f # 1 = 211 + e22)

then f = 1/2(1 + w) where w2 = 1 and

w = u(e - e22) + w1 + w + w2 where W12 # O is
11 2 1

in A (1/2) and w is in A (A) n N for

811 X e11

X a O, 1. Computing the general element w with these

properties we find that A is not stable with respect to

f = 1/2(1 + w) either. That is, our example is not stable

with respect to any idempotent.

Looking at the other side of the coin, we show in

§7 that A has a Wedderburn decomposition if it is stable

over an algebraically closed base field of characteristic

zero.

3. Pairwise orthogonal idempotents
 

In this section we will assume the algebra A has

the element 1 as a unity. Based upon and related to

the decomposition of A by a single idempotent Albert

has given in IL, §5l a decomposition of A relative to

a set of pairwise orthogonal idempotents e1, e2, ..., et

for which 1 = e + e + ... + e It is shown that we
1 2 t'

can write A in a vector space direct sum A =2 A13

153

for i, j = 1, 2, ..., t where Aii a Aei(1) and

A = A
13 31 Ae.(1/2) fl AeJ(1/2) When 1 ¥ J. Moreover

i

if g = ei + e.j for i # J then g is an idempotent





= All + A13 + A”, 1130/2) =Zkgéi,J(Aik 1' AJk)’

and A (O)==§: ‘ Akfl’ We will have occasion to use

95 kzgéi J

with A 1gm

these only for t = 3. In that case A = A11 + A22 +

A33 + A12 + A13 + A23 and with i, j k distinct and

g = e1 we have Ag(1) = All + A13 + AJJ’

eJ

Ag(1/2) = A1k+ AJk, and Ag(o) =

distinct we have

Akk' For i, J, k, E

2

Aiig Aii

AiiAiJ ; AM + AJ.J

AliAJJ = AijAkZ = A1iAk3 = 0

K
W

I
D

1
.
4
.

5
.
.AiJAjk

AEJQA +A

Since these relations are basic to much of our work

we will generally use them without specific reference.

Also related to pairwise orthogonal idempotents we

have the following lemma.

lemma 1: Let [u1], [u2], ..., [ut] be pairwise

orthogonal idempotents in A - M, M a nil ideal of A,

and let u = u1 + 112 + ... + ut. Then there exists an

idempotent e and pairwise orthogonal idempotents



 

i
l
l
.
A
l
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e1, e2, ..., et in Ae(1) such that e = e1 + e2 + ... + e

[e] = [u], and [e1] = [ui] for i = 1, 2, ..., t. More-

t,

over if A has 1 as a unity element and [1] = [u]

then e = 1.

P3993: The proof of the first part of the lemma is

by induction and the case t = 1 is Lemma 1 of [2, pp. 1].

Here u = u,. Now [u]k = [uk] = [u] so u cannot be

nilpotent. Hence the associative algebra of all poly-

nomials in u, denoted by Flu], is not nilpotent and

thus contains an idempotent e a f(u) for f in FIu].

Then [e] = [f(u)] = alu] where a = f(1) is in F.

Thus dIu] = [e] = [e]2 = d2lu12 = aglul. Since e is

an idempotent it is not in M so alu] # 0, d = 1,

and [u] = [e] as desired.

let w a u1 + u2 for t 2.2- Then u a w + u3 + ... + ut

for pairwise orthogonal idempotents [w], [u3], ..., [ut].

By the induction hypothesis there exists an idempotent e

and pairwise orthogonal idempotents f, e3, ..., et in

Ae(1) such that e = f + e3 + ... + et, [el = [u],

[f] = [w], and [e1] = [ui] for i = 3, ..., t. In

particular f is an idempotent of A such that

and u are
1 2

orthogonal idempotents (note that this is essentially

[f] = [w] with w = u1 + u2, where u

the case t = 2 only in that case f would have been

obtained from the case t = 1 rather than from the
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induction hypothesis). Then [f][u1l = [wllw — u2] =

[w] - [uel = [u1]. If [fllx] a [x] for x in A

we can write x a x + x1/2 + x and have
1 0

[x1] + [x1/2] + [x0] = [x] = [fllx] = [x1]+ 1/2[x1/2]

so [x] = [x1]. Now [f][u1] = [u1] so there is an

element x in Af(1) such that [x1] = [u1]. More-1

over x is not nilpotent since [u1] isn't. Hence the1

associative algebra F[x1] is not nilpotent and thus

contains an idempotent e which is in Af(1) since1

Af(1) is a subalgebra. Then Just as in the case t = 1

we have [e1] = [x1] and so [e1] = [u1]. Now

e2 = f - e1 is an idempotent in Af(1), e

(f - e1)e1 a e

2e1

- e = 0, [e2] a [f - e1] = If] - [e1] =
1 1

[w] - [u1] = [u2], and since e1 and e2 are in Af(1)

they are orthogonal to ei for i = 3, ..., t. Thus

e = f + e3 + ... + et a 21

the el are pairwise orthogonal idempotents with

+ e2 + e3 + ... + et where

[e] = [u] and lei] = [uil for i a 1, 2, ..., t.

Since f is in Ae(1) we have Af(1)gAe(1) so e1

and e2 are also in Ae(1) which completes the proof

of the first part of the lemma.

For 1 in A, 1 - (e + e2 + + e is either
1 t)

zero or an idempotent of A. But [1] = [u1] + ... +

[ut] = [e1] + ... + let] means that 1 - (e1 + ... + et) is

in M, so it is nilpotent. Hence it is zero and
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1=e1

As a consequence of Lemma 1 we immediately have

'l" 82 + co. 'l" et as deSiredo

Corollary 1.

Corollary 1: If M is a nil ideal of A then A
 

has t pairwise orthogonal idempotents if and only if

A - M has t pairwise orthogonal idempotents.

h. Classes of algebras with Wedderburn decompositions

Let a be the class of all commutative strictly

power-associative algebras A that have a Wedderburn

decomposition and for which A — N is simple.

We are using B + C to mean the vector space direct

sum of the subspaces B and C. In particular this means

that B n C = 0. If in addition B and C are sub~

algebras of A such that BC = 0 then we write l3C)Ch

This is called the direct sum of the subalgebras B and C.

Theorem 1: let A be a commutative strictly power-

associative algebra of characteristic not two. Then it

is known that A - N = B16) ... @Bt where Bi is

simple and has a unity element [ui]. Let ei be as in

lemma 1. Then A has a Wedderburn decomposition if

Ae (1) is in $1 for i =1, 2, .00, to

1

Proof: The proof is by induction on t. Let
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e = e1 + e2

A1 = Ae1(1), A12 = Ae1(1/2)’ and A2 = Ae1(0)° Also

= N n A1 for

+ ... + et as in lemma 1 and let

and Nlet R ibe the radical of A1

Remark: When B is a subspace of A then B - N

is the subspace of A - N consisting of all classes [b]

for b in B. When B is a subalgebra of A then

B - N is a subalgebra of A - N and is isomorphic to

B - Nb where N5 = N n B.

From the above we clearly have A1 - N': B1,

N

A12 - N = O, and A2 " N: B26)... @Bto SO A12 ; No

Let M = R1 + A12 + R By the definitions above R
2' i

is a nil ideal of A and NQ M so AM = (A1+ A12 + A2)
1

(R1+ A + R2) g A1R1+ A1A12 + A12M + A2A12 + A232 _C_ M
12

and M is an ideal of A. Moreover if x is in M

then x = a + n + b for a 6 R1, n e N, and b 6 R2.

2 2
So x is in a + b2 + N, x3 is in a3 + b3 + N, and

by induction, xk is in ak + bk 4- N for every positive

integer k. But a and b are nilpotent elements so

for k sufficiently large we have xk in N so xk is

nilpotent, x is nilpotent, and M is a nil ideal of

A. Thus MQN so M=N and Ri=Ni

2-N=O so A12+A2QN and

since A1 is in m it has a Wedderburn decomposition,

for 1:31:20

Now for t = 1, A





1h

say A1 = S1 + N1. Then A = S1 + N' is a Wedderburn

decomposition for A.

m N

If t>1 then A2—N=A2-N2=B2®...®Bt

where [ui] = [e1] is the unity element of Bi for

i = 2, ..., t. Moreover (A2)e (1) = A8 (1) is in m

i i

so by the induction hypothesis A2 has a Wedderburn

decomposition, say A2 = 82 + Né. Then A = (S1<:>S2) + N

is a Wedderburn decomposition of A.

Before we can put much confidence in the value of

Theorem 1 we must at least know that the class N is of

sufficient size to have some importance. That is the

purpose of the next two theorems.

Theorem 2: Let A be a commutative strictly power-

associative algebra with a unity element and of charac—

teristic not 2 such that A has three pairwise

orthogonal idempotents and A - N is simple. Then A

has a Wedderburn decomposition.

.Prggf: The proof is by induction on n, the

dimension of A. Then n.2 3 since A has three pairwise

orthogonal idempotents. The theorem is trivial if n = 3

so assume every algebra of dimension less than n and of

the type described in the theorem has a Wedderburn

decomposition.

Remark: For a nil ideal M of A, A - M is
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semi-simple if and only if M = N.

For M(; N since N is the maximal nil ideal of A.

Thus N - M is a nil ideal of A - M. So for A - M

semi-simple, N — M = O and N = M. Conversely if M‘

is a nil ideal of A - N then there is an ideal M in

A such that Mg; M and M - N'= M'. But if b is in

M then [b]S = O for some positive integer s so b

d
“

ois in N and (bs)t = O for some positive integer

Thus M is a nil ideal of A so M = N and M' = O

as desired.

The major tool in the proof of Theorem 2 is the

important Lemma 2.2. We first prove a special case of it.

lemma 2.1: If M is a nil ideal of A with M # o, N
 

then A has a Wedderburn decomposition.

.nggf: For convenience we will write d(B) for the

dimension of a subspace B.

By the homomorphism theorems A - N": (A — M) - (N - M)

so by the Remark above N - M is the radical of A - M.

Now (A — M) - (N - M) is simple since A - N is simple

and A — M has a unity element since A has one. And

by Corollary 1, A - M has three pairwise orthogonal

idempotents. But M is a proper ideal of A and we

have 3 g d(A - M)‘< n so by the induction hypothesis

A - M has a subalgebra CO such that
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CO 3 (A - M) — (N - M) g A - N. Again by the homomorphism

theorems A has a subalgebra C1 # O, A such that

. 2 _
MC C1 (that 18 Mgc1 and Mgé C1) and CO— 01 M.

Thus we have a proper subalgebra C1 of A such that

C1 - MI: A - N. Similar to the considerations for A - M

above we see that M is the radical of C1, C - M is1

simple, C1 has three pairwise orthogonal idempotents,

and 3 S_d(C1) < n. So by the induction hypothesis C1

C1 - M. Thus C is a subalgebra

A - N. But C n N is a nil ideal

“
2

has a subalgebra C

u
?

of A such that C

of C so C n N'= 0 since C 3 A - N' which is simple.

Therefore C + N is a subspace of A with d(C + N) =

d(C) + d(N) = d(A - N) + d(N) = d(A). So A = c + N

and this is a Wedderburn decomposition for A.

lemma 2.2: If M is any ideal of A with M % O, N,
 

or A then A has a Wedderburn decomposition.

_P_I_‘_o_o_f_: By lemma 2.1 we can assume Ml N and

NZ M since A - N is simple. If M n N 74 0 then it

is a nil ideal of A different from O and N so by

Lemma 2.1 A has a Wedderburn decomposition. If

M n N = 0 then M1+ N is an ideal of A and (M'+ N) - N

is a non—zero ideal of A - N. But A - N is simple so

A = M«+ N with M n N’= O. This is a Wedderburn

decomposition of A and completes the proof of lemma 2.2.
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The remainder of the proof of Theorem 2 involves

repeated applications of Lemma 2.2 to various ideals of

A. By this method we are able to reduce the algebra A

to one for which we can construct a Wedderburn decomposition.

This is done in the next section. But for the moment let

us assume that Theorem 2 is proved. We can then prove a

more general result.

Theorem 3: Let A be a commutative strictly power-
 

associative algebra of characteristic not two such that,

in the canonical representation, A - N = B1 6-) ... ®Bt

where each Bi has three pairwise orthogonal idempotents.

Then A has a Wedderburn decomposition.

33993: let [ui] be the unity element for Bi and

let e1 be the pairwise orthogonal idempotents in A

as in Lemma 1. Fix 1 and let f = e1. Then just as

was done for 21

Af(1) - N 2’ 131 where Nf = N n Af(1) is the radical of

in Theorem 1 we have Af(1) - Nf 2

Af(1). But f is the unity element for Af(1) and by

Corollary 1 Af(1) has three pairwise orthogonal

idempotents. So by Theorem 2, Af(1) is in m. But

this is true for each i = 1, 2, ..., t so by Theorem

1 A has a Wedderburn decomposition.
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5. Proof of Theorem 2

a. Preliminaries
 

Since A is strictly power-associative we have

x2x2 = (x2x)x for each x in A. The linearization of

this identity gives

h[(xy)(ZW) + (XZ)(YW) + (XW)(YZ)]

(1) = x[y(zw) + z(wy) + w(yz)l + y[x(zw) + z(wx) + w(xz)]

+ z[x(yw) + y(wx) + w(xy)] + w[x(yz) + y(zx) + z(xy)].

We will also make use of some of the results of Albert

on commutative strictly power—associative algebras; namely,

results (5) and (8) of IA, Pp. 505-506]. We state them

as

(2) [W1/2(X1y1)]1/2 a [(W1/2X1)y1 + (W1/2y1)x1]1/2

(3) [W1/2(X1y1)]o = 2[(W1/2X1)y1+ (W1/2y1)x1]o

(h) [(W1/2y1)xo]1 = 1/2[(W1/2Xo)y1]1

where 2%, A = O, 1/2, 1, is the Ae(x) component of z;

e an idempotent.

Before continuing we need to explain some new

notation we will use. We have already commented on the

vector space direct sum B + C. In the remainder of this
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thesis we will IN) longer require that B + C indicate

the direct sum of vector spaces; only the sum. That is

we will now use B + C on occasions where B n C # 0.

But in §7 we will sometimes want to explicitly indicate

that we are using the vector space direct sum. In that

case we will write B 4 C.

We have also used the product BC previously. But

it is too restrictive for our purposes now so we intro-

duce a new product, B o C, of the subspaces B and

G. Since A has a unity element, denoted by 1, and

three pairwise orthogonal idempotents we can write

1 = e1 + e2 + e3 where the ei are pairwise orthogonal

idempotents. Then as in §3 A has a corresponding de—

composition as A =Zi<JAiJ’ i, J = 1, 2, 3. We define

B o C =ZiSJ(BC)1J where x is in (BC)iJ if and

only if there exists an element y in BC,

37 =Zi<3yij’ such that x = yij' We write B o B = B(2).

Evidently BC g B . c but it may happen that B . c 1 BC.

But if BC is an ideal of A then BC = B o C (this

can easily be seen by making appropriate linear combinations

and multiplications by the e1; for example

e1(2e1y - y) = y11). Since we are only interested in

using the product of subspaces to construct ideals we will

use the product B o C since it is easier to work with
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and may in fact be an ideal even though BC isn't.

lemma 2: For i, J, k distinct we have

(a) A11(AiJ o Ajk) g (AiiAij) . AJk

(b) AikAii) g (AikAiJ) ° A13

(0) Aij(Aik . AJk) g Ag) + Agi)

(d) A11A§§)g (Aii 9 AM.) 0 A13. .

Proof: Let g = e + e . Then Ag(1) = A + A + A
i 3 ii 13

Ag(1/2) = A1k + Ajk, and Ag(0) = A1ch as in §3. By

33’

(2) we have [ij(xiiyij)]1/2 = [(xiiwjk)yij + X11(yijwjk)]1/2 =

[xii(yiijk)]1/2 since XiiWJk = O. From (3) we get

[ij(xiiyij)]o a 2[Xii(yijwjk)]o. SO Xli(yijWJk) =

+ 1/2[w
[WJk(XiiyiJ)]ik + [wjk(xiiyij)];1k Jk<xiiyijflkk

which is in A But AijAjkgA1k so

which proves (a).

Jk ° (AiiAiJ)'

AlJAJk = A1J o Ajk

We note that (AikAiJ)AiJ g AjkAiJ g Aik so using

(2) and (3) as before we have wik(xijyij) =

[(wikxijwiJ + (wikyij)xij]ik which is in (AikAiJ) 0 A13.

Moreover AikAii) = AikAiJ since Aijg; Aii + A33 and

AikAJJ = 0. That proves (b).

To prove (0) take x13, yik’ ij’ and eJ in (1)

to obtain Xij(yikWJk) I'W3k(xijyik) = yik(xijwjk) +

eJ[x13(yikak) + ij(xijyik)] as a result of simplifying
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and noting that ejtyik(xi3w3k)1 = o. Multiplying this

by ei gives eilxij(yikwjk)] = ei[yik(xijwjk)]‘ Inter—

changing the roles of i and J and of y and w in

this gives eJ[x13(yikak)] = ej[wjk(xijyik)]’ Adding

the last two equations we have XiJ(yiijk) =

ei[yik(xijwjk)] + e;[ka(xinik)] which is in

eiAik + ejAgk g A3); + Agfc). Now AikAJk g AiJ so

AikAjk = A1k o AJk and we have (c).

If we substitute Xii’ yij’ Wij’ and ei in (1)

we get Xii(yijwij) = — 1/2[yij(xiiwij) + Wij(xiiyij)] +

ei[yij(xiiwij) + wiJ(XiiyiJ)] + yij[ei(xiiwij)] +

wiJ[ei(Xiiyij)] which is in Aij o (Aii 0 A13). Now

Aingii + AJJ and A A
2

ii 33 ' 0 so AiiAij ’

2 _ (2)
Aii(AiJ)ii — AiiAiJ and we have proved (d).

Let e be an idempotent of A and define

(it in Ae(1) : er(1/2) g Ae(o)} and

{x in Ae(1) : er(1/2) = 0}. Obviously

Be

e

Ceg Beg Ae(1). Moreover by [11, lemma 1, pp. 506] Ce

2

is an ideal of A, Be is an ideal of Ae(1), Be(; Ce’

and Ae(1) — Be is a Jordan algebra.

let f = e1 + e2, h = e1 + e3, and k = e2 + e3.

These are idempotents and if g = el + eJ is one of

them then, as Just noted, B2 is an ideal of

A = A + A A A.g(1) ii 13 + 35 and Cg is an ideal of

We will use the notation Bgi = Bg n A11, Bgij = 13g 0 A13,
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C and C = C8 R A= Cg 0 A11, giJ 13'

Clearly CgiJ ; Bgij' On the other hand if b

gi

1.1

is in Bail g Ade then bijAg(1/2) e biJ(Aik + AJk) =

biink + biJAJk; Ag(1/2) so biJAg(1/2) = o and

B813 = 0813'

Let B1 = Bei and C1 = Cei for i = 1, 2, 3. We

now show that Bgij = 0 implies Bg = B1 + B3. First

we note that it is always true that B1 g Bg for if

x is in BigAii then X(AiJ+Aik)gAjJ+AJk+Akk'

Thus xAg(1/2) == x(A1k + Ajk) g Ag(0) since XAjk = 0

and so Bi g Bg. Now let x be in Bg = B + B and
2‘1 s3

write x = x1 + x3, x1 in Bgi’ X3 in ng. Then xi

ii such that Xi(Aik + Ajk) g Akk’ But BE

A A A o "is an ideal of g(1) so xi inggjg JJ (There

is in A

fore Ximij + Aik) Q AJJ + Akk and x1 is in B1.

Likewise is in B so Bg = B + B .

x3 J 1 J

b. Completion of the proof
 

Let B = E? + Eh + Bk’ We show B is an ideal of

A as in [A, pp. 510]. As noted in §5a the subalgebra

Ah(1) has the property that Ah(1) - Bh is a Jordan

algebra. Since a Jordan algebra is stable, it follows

that A11A13 g A13 + 13h. But arm13 g Af(0) = A33

and so B A gem. Evidently B 23 = 0. By

symmetry Bf2A23 Q Bk3 and so BfAf(1/2) g B. Now

f1 13 f1A

is an ideal of Af(1)BEAf(O) = O and since Bf
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we have BfAf(1) Q Bf. Therefore BfA Q B and by

symmetry BhA Q B and BkA Q B so B is an ideal

of A.

Remark: At the time [11] was published the simple

Jordan algebras of degree one and dimension greater than

one were unknown. In [6] Jacobson shows they are iso-

morphic to the base field. This completed the classi-

fication of the simple Jordan algebras and since no new

type appeared the proof in [11] is valid for all Jordan

algebras of characteristic not two.

By Lemma 2.2 we can assume B1: 0, N, or A. For

B = 0 Albert proved in [h, Theorem 1, pp. 512-51h] that

A is a Jordan algebra. So by the results of Penico in

[11] A has a Wedderburn decomposition.

Let B = A and suppose the ideals C C and
f’ h’

Ck are all nil. Then A11 = Bf1 + Bh1 since

Bk n A11 = 0. But we know that B is an ideal of
f1

A since B is an ideal of Af(1) and A11 Q Af(1).
11 f

Moreover 3:1 Q Bf. Q Cf so B is a nil ideal of
f1

A Likewise Bh1 is a nil ideal of A11. But then

11'

A11 = Bf1 + Bh1 is n11 which is a contradiction since

e1 is in A11.

Ck is a proper non-nil ideal of A and by Lemma 2.2

Thus one of the ideals Cf, Ch, or

A has a Wedderburn decomposition. Thus we can assume

B=No
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The above indicates our method of proof. Since we

will make a few more such reductions we will label some

of the cases to make it easier to follow the argument.

The following outline covers the remaining possi-

bilities.

(A) N'= Bf = Cf. This comes from assuming C # 0

g

where g is one of f, h, or k and without loss of

generality we assume g = f. Clearly Cf # A so by

lemma 2.2we canassume Cf=N. So N=CfQBfQB=N

and N = Bf = Cf as stated.

(B) C = C = C
f h k

Case (A) has two subcases

=O,B=No

(A.1) If=0 where If={Z(yOw1/2)1:yo in

Af(O) and w1/2 in Arm/2)}:

(A13A33)11 + (A23A33)22'

(A.2) If = N. This comes from If # O. For clearly

If $ A so by lemma 2.2 we can assume II. = N.

(A) N'= ET = Cf. Let I = If + N" where If is

defined in (A.1) above. If x1 is in If then by (h)

we have x1 (yOw1/2) 1 =[x1 (yOw1/2)]1 = 2[(x1w1/2)y0]1

2[(x1w1/2)1/2y0]1 which is in If so If is an ideal

of Af(1) and I is an ideal of Af(1). Since N = Cf

we have N'A13 = NA23 = O. Combining these results we
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get AI=Af(1)I+Af(1/2)I+Af(O)IQI+A I+A2 I=
13 3

I+A1If+AI NOWAI=AI +AI =
3 23 f' 13 f 13 f1 13 f2

A13If1 = A13(A13A33)11

Corollary 1 A - N has three pairwise orthogonal

where If1 = If n A11. By

idempotents since A has, so by [h, Theorem 1, pp. 512]

A - N is a Jordan algebra since A - N is simple.

Moreover N = Cf Q Af(1) so A13A33 Q A13 + N1. There-

fore A13(A13A33)11 Q A13N1 Q NQ I. In the same manner

we have Q I and I is an ideal of A.
A2311‘

But I # 0 since N'% O and I f A since e3

is not in I so by lemma 2.2 we can assume that

I=N=C Thus Ing and AI =Af(1)If.+
1" f

Af(1/2)If + Af(O)If Q If + Af(1/2)If = If + Af(1/2)Cf = If

so If is a nil ideal of A. This brings us to cases

(A.1) and (A.2).

(A.1) If = 0. Hence A33A13QA13 and

A33A23 Q A23. As noted in case (A), A - N is a Jordan

algebra and hence is stable. But N = Cf(; Af(1) so

we have A11A13 Q A13 and A22A23 Q A23. Since

A11A23 = A22A13 = O we can combine these results into

(5) AiiAJBQ; AJ3 for i = 1, 2, 3 and J = 1, 2 .

These relations enable us to construct another ideal.
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Let Hf = Af(1/2) + [Af(1/2)]<2) = A

(2) (2)
A13 3 + A13 + A23 .

show that the subspace Hf

Aii(A13 + A23) g A13 + A23 ; Hf by (5). By (5) and (a)

of lemma 2 we obtain A11(A13 0 A23) Q (A11A13) 0 A23 Q

A13 0 A23 Q Hf. By symmetry A22(A13 0 A23) Q H . Also

_. (2) . .

A33(A13 ° A23) C— A331x12 ‘ 0' NOW A1113‘13 g (A11 A13) A1

by (d) of lemma 2. But by (5) A11 0 A13 = A11A13QA13

(2) (2)
so A11A13 QHf. By the same argument A33A13 QHf,

(2) (2) (2) __
A22A23 g Hf, and A33A23 Q Hf. A22A13 ; A22(A11 + A33) .. o

(2) ._
and similarly A11A23 — 0. Thus we have Aiin Q Hf

for 1 = 1, 2, 3.

13+A23+

0 A2 Using (5) and Lemma 2 we now

is an ideal of A.

3

Now A12(A13 + A23) Q A23 + A13 Q HI. and by (c) of

. (2) (2)
Lemma 2, A12(A13 A23) g A13 + A23 C Hf. By (b) of

(2)
lemma 2, A12A13 ( (A12A13) 0 A13 (_ A23 o A13( Hf. and

(2)
by symmetry A12A23 QHf so A12HfQHf.

Clearly A13(A13 + A23) ; Hf( and A13(A13 . A23) Q

2

A13*“12 C- A23 Q Hr“ By (5), A13A13 g A13(A11+ A33) Q

(2)

A13 Q Hr and A13“‘23 C- A13(A22 + A33) C- A13 g Hr so

A13HfQHf. But Hf is symmetric in A1 and A2
3 3

so we also have A23Hf Q Hf.

Thus Hf is an ideal of A and by lemma 2.2 we can

assume Hf: O, N, or A. H = O or N implies that
f

Af(1/2)=O since NQAf(1). Thus A=Af(1)@Af(O),
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Af(0) is an ideal of A with Af(0) # O, N, or A, so

by Lemma 2.2 A has a Wedderburn decomposition.

Thus we can assume Hf = A. Then A11 = (A2 3)11

and A22 = (A23)22’ so N1A11 = N1(1'\‘123)11 Q N1A1(2) Q

(N1 0 A13) 0 A13 by (d) of lemma 2 where Ni = N n Aii

and N13 = N 0 A13 for i, J = 1, 2, 3. But N1 = Cf1

so by (5) N1 oA13=N1A13= 0. Thus N1A11 =0. But

e1 is in A11 so N1 = e1N1 = O. In the same manner

we obtain N2 = 0 so N = N12 Q A12. Then by (b) of

lemma 2’ N12AM11QN12A1(§);(N12A13) ° A13=0 again

because N'= Cf. But this gives N'= N12 = e1N12 = O

which is a contradiction. That completes the proof in

case (A.1).

Before taking up case (A.2) we need a lemma.

lemma 2.3: If N
 

B1 + B2 + B3 and Hg = Ag(1/2) +

[Ag(1/2)](2) where g=f, h, or k then Hg+N is

a non-zero ideal of A.

Proof: As noted in case (A) A - N is a Jordan

algebra and hence it is stable. This and having

NQ A11 + A22 + A33 gives

(6) A +B.fori%j;i,.j=1,2,3.
11A31 C A13

Without loss of generality we can assume g = f.

Then the proof that Hf + N is an ideal of A is
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essentially the same as the proof in case (A.1) that Hf

was an ideal of A. We only indicate this by considering

two of the relations that need to be checked.

By (6) and (a) of lemma 2 we have A11(A13 0 A23)(;

(A11A13) . A23Q (A13 + B3) . A23QA13 . A223 + Nng + N.

By (6) and (d) of Lemma 2 we have A11Asg) Q (A11 o A13) 0

A13Q(A13+B3) 0A13QA(2)+NQHf+N. Inthis

fashion we find that Hf + N is an ideal of A.

Corollary 2: If A = Hf + N= Hh + N: Hk + N' then
 

Hf is a subalgebra of A. If we also have C1 = C2 =

03 = 0 then A = Hf + N is a Wedderburn decomposition

for A.

Proof: From the hypothesis we immediately have

A = (A = (A = A A
ii iJ)ii+ Bi ik)ii i ij ik jk

for i, J, k distinct, i, J, k = 1, 2, 3. Hence

+ B and A

by (c) of lemma 2 (A13)33 = [A13(A12A23)]33

(A(2))33= (Ag3)33. Similarly (A23)33(; (A13)332so

(AA23)33 = (A13)33. Denote these as S3. By the same

type of argument we also have S2 = (A23)22 =

(A32)22 and S1 = (A32)11=(A13)11'

The proof that A12Hf. g Hf given in case (A.1) is

valid here since (5) wasn't used. Therefore (A13 o A23)Hf —

Hf. g Hf.
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Clearly A13(A13 + A23) Q Hf and A o A
1 1 13(213 23)
2

A13A12 = A23 Q Hf. Also A13A23 Q (A13A23) 0 A23 =

A12 0 A223 = A13 Q Hf by (b) of lemma 2. Similarly

(2)
A13A12 Q A13 Q Hf From these and the relations for

(2) _
S1 and S3 we have A13A13 — A13[(A213)33

A13[(A12)11+ (A23)33]Q A13(A(A12) + A(2)) Q Hf Thus

+(A ]=
13)11

A13Hf Q Hf and by symmetry A23Hf Q Hf.

By symmetry and what we have just checked of Hfo

A(2) (2) and A(2)A(2)
it remains to show that A11323 are

subsets of Hf. But2A(§)A(3))= A(2)[(:1:)11++

A$;)Aé§). These summands are handled in the same manner

so we will only consider the latter. We note that

A(2)A(2) = A2 A2
13 23 13 23 since AiiAJJ = O for i # 3. Taking

x13, y13, 223, w23 in (1) gives A(x13y13)(223w23) +

”(X13223)(y13w23) + 1+(2‘313‘”’23)(3’13223) = X13[y13(223w23) +

z23(y13w23) + W23(y13z23)] + y13[x13(223w23) +

223(x13w23) + w23(x13z23)] + Z23[x13(y13w23) +

y13(x13w23) + W23(x13y13)] + W23[x13(y13223) +

y13(X13223) + 223(x13y13)] which is in A13[A13A:3 +

231(A 3A23)] + A23[A13(A13A23) + A23A131Q A13Hf+

A23Hf Q Hf. by our previous results. Also

A(X13Z23)(Y13w23) + h(X13W23)(y13z23) is in

2 2 2 2

(A13A23) Q A12 Q Hf. So A( ) Aé3) = A13A23 Q Hf and
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H is a subalgebra of A.
f

Now assume we also have C1 = 02 = C3 0. Evidently

31212 = (212911212 Q 2122:?) C (212213) ° A13 Q

A23 0 A13 Q A12 by (b) of Lemma 2. Likewise S1A13 Q A13.

So for X in S1 we get X(A12 + A13) Q A12 + A13 while

x in B1 implies that x(A12 + A13) Q B2 + B3 Q A22 + A33.

Therefore S1 0 N = S1 0 B1 Q C1 = 0. Similarly S2 n N =

S3 n N = 0 so A 2 HI. + N is a Wedderburn decomposition

of A and that completes the proof of the corollary.

(A.2) If = N. Then N = Bf Q A11 + A22, Bf12 = O,

and N'= B1 + B2 as in §5a. So by Lemma 2.3 Hf + N,

Hh + N, and Hk + N are non-zero ideals of A. If

one of them, say H% + N for example, is N then

Hf Q N, Af(1/2) = o, A = Af(1) @Af(0), Af(o) is a

proper non-nil ideal of A and A has a Wedderburn

decomposition by Lemma 2.2. Thus we can assume

A=H +N=Hh+N==H +N.
f k

If C1 = 02 = O (we already have C3 Q B3 = 0)

then by Corollary 2 A has a Wedderburn decomposition.

Therefore we assume, without loss of generality, that

C1 # 0. Clearly C1 # A so by Lemma 2.2 we can further

assume that C1 = N.

f = Bf we notice that N2 = Ifo = O.

For if b1 is in BfQAfh) and (yOw1/2)1 is in

From N'= I

IfQAf(1) then b1w1/2 is in Af(0) so by (A)
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b1 (yoW1/2) 1 =[b1 (yoW1/2)]1 = 2[(b1w1/2)yo]1 = 0

But we also have N = C1 Q A11= (A2 + N. This
13)11

and (d) of lemma 2 give NA11 Q NA1(2) + N2 = NA1(2) Q

(N'o A 0. But e is in A so
13)° A13: 1 11

N = e1N = O which is a contradiction.

There remains case (B).

(B) Cf = Ch = Ck = O, B = N. We saw in §5a that

Bgij gij so BgiJ=O for g==f, h, k; 1143;

i, J = 1, 2, 3. This and the related results in §5a

C

give N = B1 + 132 + B3. In addition Ci Q Cg for if

X is in Ci then x(AiJ + Aik) a 0. But x is in

A = 0. Therefore xAg(1/2) = X(A1k + Ajk) = 0ii so xAJk

and X is in Cg. Thus C1 = C2 = C3 = 0. We then

proceed as in the first part of case (A.2) using Lemmas

2.2 and 2.3 and Corollary 2 to show that A has a

Wedderburn decomposition. That completes the proof of

case (B) and consequently of Theorem 2.

6. A reduction theorem
 

Theorem A is important not only because it simplifies

the problem of showing that each algebra of certain

classes of algebras has a Wedderburn decomposition, but

also because it suggests where we can expect difficulties

in general; namely, in the algebras with at most two

pairwise orthogonal idempotents.
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Let P be a property of algebras such that if A

has property P then each of its subalgebras has property

P. Let B be the class of all commutative strictly

power-associative algebras of characteristic not two

having property E’ with A - N separable for A in T.

Theorem A: Every algebra in T has a Wedderburn
 

decomposition if and only if every algebra in N that

has at most two pairwise orthogonal idempotents has a

Wedderburn decomposition.

133223: The necessity of the condition is obvious so

we assume that every algebra in B that has at most two

pairwise orthogonal idempotents has a Wedderburn de-

composition. Thus if A is in T and n = d(A) = 1

or 2 then A has at most two pairwise orthogonal

idempotents and hence A has a Wedderburn decomposition.

If n.2_3 then assume that every algebra of T with

dimension less than n has a Wedderburn decomposition.

Evidently we can assume A has three pairwise orthogonal

idempotents. If A - N is simple then A has a

Wedderburn decomposition by Theorem 3, so we only need

to show that we can assume A - N is simple. This

follows immediately from lemma h.1.

Lemma h.1: If D is a non-nil ideal of A with
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D ¥ 0, A then A has a Wedderburn decomposition.

13399:; D has an idempotent since it is non-nil.

It is also well-known that this implies D has a principle

idempotent, say e (e is principle if Ae(0) is nil).

Write D = 136(1) + De(1/2) + 138(0) and let M be the

radical of D. According to Albert [h, Theorem 7, pp. 52%]

De(1/2) + De(o) Q M since e is principle. We write

M = J + De(1/2) + De(O) where J = M n De(1). We may

also write A = Ae(1) + Ae(1/2) + Ae(0) and it should be

evident that De(x) = D n Ae(x). However e is in D

so xe = AX is in D for every x in Ae(x). By

taking A = 1 and 1/2 we see that Ae(1) + Ae(1/2)§; D,

A = 138(1) + De(1/2)+ Ae(0), and De(o) C Ae(0)

(De(0) # Ae(0) since D % A). Moreover De(o) is an

ideal of Ae(o) since D is an ideal of A and Ae(0)

is a subalgebra. Albert proceeded to show in [h, pp. 525]

that M is an ideal of A and his proof is valid here

since he did not use the simplicity of A for this result.

Thus MQQ N.

Now D # O, A so 0 < d(D) < n and by the induction

hypothesis D = T'+ M where T is a semi-simple sub-

algebra of D (and hence of A) and T n M = 0. Thus

TQ De(1) and De(1) = T + J is a Wedderburn decomposition

of De(1). likewise D $ 0, A means that O < d(Ae(o)) < n

so Ae(0) = S + Nb where S is a semi-simple subalgebra





3h

of Ae(o) (and hence of A), NO is the radical of Ae(o),

and S 11 No = 0. Note that De(0) Q No since De(0)

is a nil ideal of Ae(0). let Na = J + Ae(1/2) + NO.

Then NQ Na and Just as in the proof of Theorem 1

we find that Né is nil so N'= Na, J = N n Ae(1), and

N0 = N n Ae(0). But sQ Ae(0) and TQ Ae(1) are

semi—simple subalgebras of A so S®T is a semi-

simple subalgebra of A. Moreover (SQ-)T) n N = 0

since S n N'= S 0 N6 = O and T n N'= T n J’a 0. Hence

A = Ae(1) + Ae(1/2) + Ae(o) = T + (J + Ae(1/2) + NO) +

S = (S(:)T) + N' is our desired Wedderburn decomposition

of A.

7. An application
 

We are now able to apply Theorem A to the class of

stable algebras (defined in §2).

TheoremQQ: If A is a stable commutative power—
 

associative algebra over an algebraically closed field F

of characteristic zero then A has a Wedderburn

decomposition.

jggggk let P be the prOperty of being stable and

having an algebraically closed base field of characteristic

zero. Then by Theorem A we can assume A has at most two

pairwise orthogonal idempotents.
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Since A is non—nil it has at least one idempotent

and hence a principle idempotent, say e. Then by

[h, Theorem 7, pp. 52%] Ae(1/2)+ Ae(0)(; N. As in the

proof of Theorem 1 we have N1 = Ae(1) n N is the

radical of Ae(1). So if Ae(1) has a Wedderburn de-

composition, say Ae(1) = S + N1, then A = S + N is

a Wedderburn decomposition for A. So without loss of

generality we can assume A has a unity element 1 to

begin with.

Suppose that A does not have two orthogonal idem-

potents. Then 1 is a primitive idempotent (that is

1 % e1 + e for orthogonal idempotents e and e2).
2 1

For an algebraically closed field the degree of A is

the maximum number of pairwise orthogonal idempotents

whose sum is the unity element. Thus A is of degree

one. Then as in [h, proof of Theorem 9, pp. 526-527]

A = 1 - F + N which is a Wedderburn decomposition of A.

Thus we can assume A is of degree two. So

1 u + v for primitive orthogonal idempotents u and

v. Then A = A1 + A + A2 as in §3 where we are
12

letting A11 = A1 and A22 = A2.

are of degree one and as above A = uF + R1 and

Then A1 and A2

A2

N

VF + R2 where R1 is the radical of A1. Let

N n A1 and N12 = N 0 A12 as usual.
1

let x be an element of A12. If x2 is not
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in R1 + R2 then x is said to be non-singular and it

is known [A, lemma 10, pp. 517] that x2 a a + g

for g in R1 + R2 and d a non-zero element of F.

If x2 is in R1 + R2 then x is said to be singular.

Suppose every element in A12 is singular. If

x, y are in A12 then 2xy = x2 + y2 - (x - y)2 which

2

is in H1+H2 so A12QR1+R2. let M—R1+A12+R2.

Since A is stable we have AM = (A1 + A12 + A2)

2
(R1 + A12 + R2) Q A1R1 + A12 + A12 + A2R2QM. Moreover

M is nil for if not then M has an idempotent

f = f1 + f12 + f2 with fi in R1 and f12 in A12.

It is clear that £12 A 0. Computing f2 = r we obtain

2 2 2

f1 + £12 + £2 + (f1 + f2)f12 = f1 + £12 + f2. Equating

the components in A12 we get (f1 + f2)f12 = f12.

Let T be the linear transformation given by

T(x) = xf12 for all x in A1 + A2. Then it is known

[A. pp. 517] that T is nilpotent. But (f1 + r2)r12 = £12

means that Tk(f1 + f2) = f12 for every positive in—

teger k. Thus f12 = O which is a contradiction.

Therefore M is a nil ideal, M Q N, M = N, R1 =- N1,

A12 Q N, and A = (uF + vF) + N is a Wedderburn de-

composition of A.

Thus we can assume there is a non—singular element

x in A12. let M = R1 + R1A12 + R2A12 + R2. Then the
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proof by Kokoris in [8] that M is an ideal of A is

valid here since he only used the simplicity of A to

conclude that A12 had a non-singular element. More-

over the proof that M is nil is Just a duplication of

the argument in the last paragraph so M Q N, R1 Q Ni’

and hence R1 = Ni.

Before we continue with our argument we give two

lemmas. We need parts of lemmas 3 and 7 of [5] and we

state them here as lemma 5.1.

lemmaQ§.1: If x is a non~singular element of A12

then there exists a quantity 0 in F[x2] Q A1 + A2

such that W2 = 1 for w = cx in A12. Moreover

A12 = wB ; G where B = {b in A1 + A2 : w(wb) = b}

and G = [g in A12 : gw = 0}.

Remarks: There are several comments that need to

be made regarding lemma 5.1.

First we would like to indicate briefly how we in-

tend to use lemma 5.1 to construct a Wedderburn

decomposition for A. let w = w1. Then we will show

that we can keep "breaking elements wi out of G"

where win = 513 (the Kronecker delta) until what re-

mains of G is a set of singular elements G011) Q N12.

From this we see that A = (uF +‘W1F + ... + me + VF) + N

is a Wedderburn decomposition of A.
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Next we note that B {a + b : d in F and b in

N1 + N2 such that w(wb) = b}. For if x is in B

then x = du + 6v + b with a, 6 in F and b in

N1 + Né. Thus x = w(wx) = w[w(au + Bv + b)] =

w[1/2(c + B)w + wb] = 1/2(d + s) + w(wb) so

a = B = 1/2(d + B), b = w(wb), and x = a + b. Con-

versely if x = d + b as above it is clear that

w(wx) = x so x is in B. In particular this means

that wB = {aw + wb : a in F and b in N1 + Né such

that w(wb) = b]. The importance in this for us is that

wB Q wF 4- N12.

Lemma 5.1 holds for any stable idempotent u % 1.

But we are assuming A is stable so lemma 5.1 holds for

any idempotent u # 1.

Let e = 1/2(1 + w). Then e is an idempotent and

for x in A, ex = 1/2(1 + w)x = 1/2x if and only if

wx = 0. Therefore w is in the annihilator of Ae(1/2).

In particular, taking x in A12 gives G = A12 0 Ae(1/2).

And since A is stable it is evident that [Af(1/2)]2m'1 Q

Af(1/2) for any idempotent f and every positive in-

G2m-1

teger 111. Thus Q G for every positive integer m.

If 2 is a non-singular element in G then according

to Lemma 5.1 there is a quantity 0 in F[z2] such that

y2 = 1 for y = cz. But then y = a z + a Z3
1 2

2k-1 2m-1
dkz and by the last paragraph z is in G for

+ 0.. +
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every positive integer m so y is in G and wy = 0.

Applying lemma 5.1 with respect to u and then with

respect to e we can write A12 = yB ; G and

y y

Ae(1/2) = yBy1 2 Gy1 where By = {b in A1 + A2 :

y(yb) = b}, Gy = {g in A12 : gy = O},

By1 = {b in Ae(1) + Ae(0) : y(yb) = b}, and

Gy1 = {g in Ae(1/2) : gy = O}.

lemma 5.2: For y in G with ye = 1 we know
 

that every element h in Ae(1/2) has a unique repre-

sentation in the form h = yb + g for yb in yBy1 and

g in Gy1. But for h in G we also have yb in

B d i G .y y an a n n Gy

Proof: Gy1 Q Ae(1/2) so gw = O as noted above.

But we have h in A12 so (yb)1 + (yb)2 + g1 + g2 = 0

where the subscripts refer to the subspaces A1, A2, and

A12. Examining the A1 + A2 component of the equation

0 = wg = w(g1 + g2) + wg12 we have wg12 = 0 since A

is stable. Similarly yg12 = 0. Thus g12 is in

G G .

n y

Since A is stable (yb)12 = [y(b1 + b12 + b2)]12 =

y(b1 + be). Thus b1 + b2 is in (A1 + A2) n (Ae(1) +

Ae(0)) such that y[y(b1 + b2)] = b1 + be, so

y(b1 + b2) is in yBy fl yBy1. Therefore h = (yb)12 +

g12 where (yb)12 is in yBy1 and g12 is in Gy1.
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But h has a unique representation in that form; namely,

h = yb + g so we must have yb = (yb)12 in yBy and

g = g12 in G 0 Gy which proves the lemma.

Previous to lemma 5.1 we had gotten to the point

where A12 had a non-singular element and Ni

can now put the intermediate pieces together by in—

: Ri' We

duction to give a Wedderburn decomposition for A.

By Lemma 5.1 A12 contains an element w1 such

2 0

that w1 — 1 and A12 — w1B1 + G1 where B1 — {a +‘b .

a. in F and b in N1+N2 such that w1(w1b) =b)

and G1 = [g in A12 : gw1 = 0}.

If every element of G1 is singular then let

M1 = N'+ G1. For x = n + g in M1, x2 = n2 + 2ng + g2

which is in N so x2 is nilpotent, x is nilpotent,

and M1 is nil. In particular for x, y in G1 we

have 2xy==x2+y2-(x-y)2 in N so GfigN.

Thus A12M1= A12(N+ G1) Q N+ A12G1

N+ G‘12QNQM1 and A1M1Qu(N+ G1) +N1(N+ G1);

N + G1 = M1. Likewise A2M1 Q M1 so M1 is a nil

ideal of A. Hence G1 ; N and A = (uF + w1F + vF) + N

QN+ (w1F+N+G1)G1Q_

is a Wedderburn decomposition of A. Thus we can continue

by assuming G1 has a non—singular element.

For notation in the general case we will have wi

2

in A12 with wi = 1 and will write A12 = WiBi 4 G1

by lemma 5.1 where Bi and G1 are defined in terms
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of wi as in the case i = 1 above. Let ei = 1/2(1 + Wi)°

Assume that A = w1F + ... + wm_1F + N32 + G(m-1)
12

-1
where G(m_1) = fl?=1Gi, G(m_1) has a non-singular ele-

ment x, and win = 5iJ for i, J = 1, 2, ..., m — 1.

From.lemma 5.1 as before there is an element wm

2

in G(m-1) such that wm = 1 and wmwi = O for

i =1, 2’ .00, m "' 10 1.61: G(m) a Gm n G(m_1)o Then

we wish to show that we can write A12 = w1F + ... +

let h be in G(m-1)° Then h is in G1 for

each i = 1, 2, ..., m - 1 so taking G a G1 and

y = wm in Lemma 5.2 the element h has a unique repre-

sentation in the form h = wmbi + g1, i = 1, 2, ..., m - 1,

where wmb1 is in WmBm and g1 is in G1 0 Gm. But

by lemma 5.1 h also has the unique representation

h = wmb + g for wmb in WmBm and g in Gm. Thus

gi = g for i = 1, 2, ..., m - 1 so g is in G(m)

as desired. For if a is in A12 we have

a=aW+...+a +

1 1 m-1wm-1 nm-1

in N12 and h is in G(m-1)' But by our last result

+ h where nm_1 is

we can write this as a = a1w1 + ... + am_1wm_1 +

r511-1 + (0”me + nm + g) = CL1W1 + + 0Lm-1Wm--1 +

umwm + n + g, with n in N and g in G(m) as

desired.

This inductive process cannot continue indefinitely
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since d(G(m)) < d(G(m_1)) so for some m, G(m) must

consist of singular elements. Then as before G(m) Q N

and A = (uF + w1F + ... + me + VF) + N is a

Wedderburn decomposition of A.
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