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ABSTRACT

EXPRESSIVE COMPLETENESS

by Herbert E. Hendry

In this essay an attempt is made to explicate a

concept of expressive completeness for first-order exten-

sional languages. The explication is intended to fill a

gap in our present understanding of such systems. We are

often concerned to determine whether a system is consistent,

is complete (in some definite sense), or has an independent

set of axioms. These concepts as they are usually under-

stood are all explained with reference to certain relevant

features of statements of the system. But with regard to

the terms of a system we have only a well-defined notion of

independence. Certain symmetries between statements on the

assertory side of a system and terms on its conceptual side

suggest that we look for corresponding concepts of consis-

tency and completeness. Expressive completeness, as it is

here explained, is intended to be a candidate for the latter.

The locus of this explication is an axiom system. Very

roughly, a first-order extensional language is said to be

expressively complete if it can define terms whose extensions

exhaust the subclasses of, and relations on, its universe.

The bulk of the work is devoted to refining and Justifying

this account and to developing its consequences. Among the
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more interesting results are that for any finite universe an

expressively complete first-order extensional language can

be constructed, that no language is expressively complete

if its universe is infinite, and that no language, whether

its universe be finite or infinite, is complete if every—

thing is in its universe.

Expressive completeness is compared with a number of

other completeness concepts. They are all found to differ

in rather essential ways. All, save one, are obviously

unsuitable to fill the above-mentioned gap in our under—

standing. The exception is Tarski's notion of the complete—

ness of concepts. A close examination of Tarski's develop—

ment of this notion shows that although it isolates an

important concept, it cannot be regarded as an acceptable

analysis of expressive completeness. Relating these two

concepts, it is shown that under certain minimal conditions

any system that is expressively complete contains a set of

sentences that is complete in the sense of Tarski. It is

observed that the converse does not hold. That is, there

are first-order extensional languages that are complete in

the sense of Tarski but not expressively complete.
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1. INTRODUCTION

There is, in one important respect, a striking

similarity between the roles played by the terms and

statements of an axiomatic language.1 We distinguish the

primitive (undefined) terms of such a language from its

derivative (defined) terms. Similarly, we distinguish

between primitive statements (axioms or postulates) and

derivative statements (theorems). These distinctions are

vital for the study of axiomatic languages. For system-

aticity is of the very nature of such languages; and these

 

lI distinguish between axiomatic systems and axio-

matic languages. An axiomatic language is one kind of

axiomatic system. An axiomatic system, of course, is

axiomatic. It is a system of signs or expressions

governed by syntactical rules. An axiomatic system, how—

ever, need not be interpreted. A language, and hence an

axiomatic language, must be interpreted to the extent of

having terms and statements. The fundamentum divisionis

here is their mode of meaning. To be a term is to have

an extension. To be a statement is to have truth value.

The taxonomy of systems is presently not very well

developed. Consequently, the above pronouncements must

be regarded with considerable caution. My sole motive

for including them is to make it clear that only such

systems as are languages are under consideration. Cf.

Church, sec. 07.



distinctions point to two important sources of system~

aticity: definition and implication.2

The concepts of independence, consistency, and

completeness have received much deserved attention in the

field of axiomatics. They are well understood. Yet,

ordinarily understood, these concepts are explained with

reference to Statements. The parallel roles of terms and

statements suggest that we look for corresponding concepts

whose explanation would involve reference to terms.

Indeed, we do not have to look far to find a corresponding

3
notion of independence. It is now commonplace to inquire

whether a set of terms is independent, that is, whether

any one of them is definable in terms of the others.“ But

 

2Frege wrote that the "aim of proof is, in fact, not

merely to place the truth of a proposition beyond all

doubt, but also to afford us insight into the dependence

of truths upon one another. . . . The further we pursue

these enquiries [into the foundations of arithmetic], the

fewer become the primitive truths to which we reduce

every thing; and this simplification is in itself a goal

worth pursuing." Frege, p. 2. But Frege does not tell

us why simplification is worth pursuing. Perhaps, in line

with the doctrines of neo—pragmatism, it is that simplicity

(as a measure of systematicity) is in part constitutive of

truth.

3For relevant literature by Padoa, Beth, Tarski, and

Lindenbaum see Tarski(1).

“The importance of independence should not be minim-

ized. In the extreme case every accepted statement of an

axiomatic language might be counted as one of its axioms.

Here there is no systematicity. If, on this intuitive

level, we may speak of degrees of independence, we might

consider it to be a law that, other things being equal,

systematicity varies directly in prOportion to degree of

independence.



corresponding concepts of consistency and completeness do

not seem to have received careful attention.

The primary aim of this essay is to provide an ex—

plication of expressive completeness for first-order

extensional languages. Expressive completeness, as it is

here explicated, is intended to be a property a language

has (or fails to have) in virtue of certain relevant

features of its terms. If successful, then, the essay

will constitute a significant first step towards filling a

lacuna in semantic theory.



2. A CRITERION FOR ADEQUACY

Antecedent to the explication of a concept it is

desirable to have some relatively clear and objective

criterion by which to determine whether the proposed

explication is adequate. Subject to explanation and

Justification in the next section the criterion adopted

in this essay is the following. An explication of ex-

pressive completeness will be considered adequate if,

and only if, it fulfills the condition that:

A language L is expressively complete if, and

only if, theie is no language L such that (i)

Lland L2 have the same universe of discourse,

Iii) L1 and L2 have the same meaning base, and

(iii) there is a term T2 of L2 and there is no

term Tl such that Tl 1E defihable in L1 and Tl

has the same meaning as 12.

 

1The criterion is that it fulfills this condition.

The formulation of the condition might be regarded as a

defintion, albeit a very poor one. Here I speak of a

criterion for adequacy not in the sense of Tarski(l),

Tarski(2) and Carnap(l) but in the sense of Carnap(S).

In the latter we find Carnap writing of a similar formu-

lation (for an explication of L—truth) that "it is an

informal formulation of a condition which any proposed

definition of L-truth must fulfill in order to be ade-

quate as an explication for our explicandum." He adds

that it has "merely an explanatory and heuristic func-

tion." Carnap(S), p. 10.



3. EXPLANATION AND JUSTIFICATION OF THE

CRITERION

In reverse order, each of the three parts of the

criterion will be explained and justified.

Although a precise formulation of (iii) is diffi-

cult, its intent is relatively clear. The point is that

a language is expressively complete if any term added to

its base would be synonymous with some term already de-

finable in the language. Any term added to an express-

ively complete language is redundant in the language.

And to an expressively incomplete language there is always

a term which could be added without redundancy. Were this

part of the criterion violated, one of two absurd conse-

quences would follow. Either (a) a language could at once

be expressively complete and yet unable to formulate every-

thing that there is to formulate about its subject matter,

or (b) a language could be expressively incomplete even

though it could formulate everything there is to formulate

about its subject matter.

By the very nature of the case, the sort of justifi-

cation just outlined suffers from crudeness. Its crudeness

issues from its lack of precision. But imprecision always

accompanies criteria for an adequate explication. (This



is especially true when the concept to be explicated—-

expressive completeness in this instance-~is not firmly

entrenched in pre-existent usage.) A demand for complete

precision is a demand that the concept to be explicated

be precise. Were this the case there would be no need

for analysis.

There are, however, several further difficulties

with the formulation. But their resolution would demand

the solution to a host of rather difficult problems.

Among these are the problems associated with the nature

of language and the disposition of definability. In con—

nection with the first difficulty it will be noticed that

the ensuing analysis relies on an uncritical quantifica—

tion over first-order extensional languages. Thus it is

committed to their existence. If it be asked what pre-

cisely are the values of these variables, that is, what

sort of thing is such a language, the honest reply is that

there is no fully acceptable answer.1 I am inclined to

 

lQuine's "Language is a social art" (Quine(5), p. ix.)

and its ilk are of little help in this connection, nor,

perhaps, are they intended to be. Yet even less pictur—

esque accounts are only a little more satisfactory. Mates,

for example, writes that "by 'language', in its most general

sense, I wish to denote any aggregate of objects which are

themselves meaningful or else are such that certain combin-

ations of them are meaningful." Mates, p. 201. And Chomsky

writes in the same vein that he considers "a language to be

a set (finite or infinite) of sentences, each finite in

length and constructed out of a finite set of elements."

Chomsky, p. 13. But both of these understandings have the

somewhat awkward consequence that the unit set of

any sentence is a language and that any set of



identify two languages only if (a) they have the same

expressions, (b) they have the same meaningful expressions,

and (c) a meaningful expression of one language has the

same meaning in the other language.2 But entities that

satisfy such conditions are not easily found.

 

sentences, even from diverse languages, is a language.

Carnap is a little more helpful. He writes that a language

is a "system of signs, or rather of the habits of producing

them, for the purposes of communicating with other persons,

i.e., of influencing their actions, thoughts, etc." Carnap

(l), p. 3. Elsewhere he gives a set—theoretical analysis

of language. There a language is taken to be an ordered

pair <a,2> where a is the set of signs of the language and

2 is the set of its sentences. Contrary to the position of

section 1, this account allows for uninterpreted languages.

In the same place Carnap offers an analysis of an inter-

preted language which seems to me to be more appropriate as

an analysis of language. He construes an interpreted

language as an ordered triple <a,Z,D> where a and 2 are as

before and D is the relation which assigns values to the

sentences of the language. Carnap(2), pp. 102 f.

2These conditions, of course, are not sufficient.

Throughout the unaxiomatized portions of the analysis further

conditions are supposed. For example, in section 1 it is

supposed that languages have terms and statements, and in

section 17 it is supposed that the alphabet of a language is

countable.

What conditions must be satisfied if a language is to

be a first-order language is still another question. Un—

fortunately, I cannot provide a precise answer. The only

thing that seems clear is that quantification is restricted to

"individual variables." I do not require that such languages

have statement connectives, singular terms, or functors.

Apparatus for quantification seems to be essential, but I

think that good arguments to the contrary could probably be

advanced. In any event we shall assume an infinite stock of

variables and the apparatus for both universal and existen—

tial quantification. For a discussion of first-order lan—

guages and their classification see Church, sec. 30.

What it means for a language to be extensional is

explained in n. A of this section.



The second difficulty is in part the quite general

problem of dispositional concepts. But it is not merely

that some languages leave undefined some of the terms that

they could define. The more specific and, for present

purposes, crucial difficulty is that there are languages

that do not even have the apparatus for constructing de-

finitions. Moreover, the terms that are said to be de-

finable in such languages may not even occur among their

well-formed expressions. One might say that a term is

definable in such a language if its addition to the

language would occasion a redundancy. But it is unclear

what it means to say that a term is added to a language.

It is for this reason that the above criterion for

adequacy is formulated comparatively. It is designed to

take into account the quite plausible claim that if there

is a new term there is a new language.3 This whole matter

is one that the analysis will have to skirt carefully.

Its further consideration will be postponed for section 6.

When it is said, as in (ii), that two languages have

the same meaning base it is intended that they are both

extensional, or both intensional, or etc.)4 The expression

 

30f. Church, p. A8, n. 111 and p. 50, n. 118.

“Roughly, a language is extensional if its coexten-

sive expressions can be interchanged salva veritate. A

langmage is intensional if (1) it is not extensional, and

its cointensive expressions can be interchanged salva

verdgtate. For a fuller and more precise account see

Carnap 5), secs. ll-l6.



"or etc." is intended to take into account languages whose

strongest meaning relation is such that they are neither

extensional nor intensional. We might count Lewis'

5
equivalence in analytic meaning or Carnap's intensional

isomorphism6 as such meaning relations. It is even con-

ceivable that there be languages with other kinds of "ultra-

intensional" bases. But it is presumed that an explication

of expressive completeness for any of these sorts of

languages would have to satisfy the above criterion for

adequacy if it is to be acceptable. Thus, although the

concept to be explicated in this essay is quite narrow in

scope, the criterion for adequacy is quite general.

The point of (ii), then, is this. We can compare

two languages with respect to expressive completeness

only if they are comparable. By the nature of the case,

an intensional language will have terms for which an

extensional language can provide no intensional synonym.
 

Similarly, a hyper—intensional language will have terms for

which an intensional language can provide no hyper-

intensional synonym. There is, perhaps, a sense in which
 

an intensional (or hyper-intensional) language is expres—

sively more powerful than an extensional language. (This

‘

5Lewis, pp. 245 f.

6Carnap(5), secs. 13-16.
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added power, of course, has its cost in point of economy

and ontology.) But further consideration of this topic

would involve an extended study of the issues between

extensionalism and intensionalism.

It is perhaps now relatively clear what is intended

by 'has the same meaning' as it occurs in (iii). Two

terms have the same meaning if either they have the same

extension and belong to some language or other which has

an extensional base, or they have the same intension and

belong to some language or other which has an intensional

base, or etc.7 This is not intended to throw light on the

difficult and interesting problem of synonymy for linguis-

tic forms of ordinary language. But it has, I fear, con-

sequences which would revolt the mildest of intension-

alists. For example, in many languages for arithmetic

the terms '5-1' and '6-2' are (as are other coextensive

pairs of terms) interchangeable salva veritate. Such

languages are, of course, extensional. It follows from

the above understanding that they have the same meaning.

7I regard terms within the same language as having

the same meaning if and only if they are interchangeable

SEilva veritate. I find such terms semantically indis-

tinmguishable. So to speak, terms which are indistin-

guishable insofar as they affect the truth values of

Statements in which they occur are indistinguishable in

point of meaning. The above interlinguistic concept of

Syncwwrw is intended as a natural extension of this

int ralinguistic conception.
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But the intensionalist will deny that they are synonymous

and reject the account. He errs, however. His mistake is,

I suspect, that he misidentifies terms and languages. In

English the terms '5-1' and '6-2' are not interchangeable

salva veritate. But this simply shows that we have a dif-
 

ferent pair of terms and that these terms are not

synonymous.8 Since they have the same extension (for

English), it also shows that English is not an extensional

language. The source of this confusion is, one might

speculate, twofold. First, although we have only one pair

of "types," we have two pairs of terms. That is, '5-1'

and '6-2' are ambiguous. Second, we often do arithmetic

in two languages, English and some one or another of

several formal languages, never keeping clearly in mind

just which language is being used.

The rationale of (i) parallels that of (ii). We can

compare two languages with respect to expressive complete—

ness only if they are comparable. There is no basis for

so comparing two languages unless their subject matter is

the same. It may be anticipated, however, that there are

conditions under which two languages offer interesting

comparisons (with respect to expressive power) even though

‘

8Occurrences of terms of the same language are counted

as occurrences of the same term if they are of the same type

and have the same meaning. Cf. Leonard, sec. 17.1.
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their universes are nonidentical. Such comparisons will be

considered in detail in section 1A.

Despite the shortcomings of the criterion's formula-

tion, it will prove to be serviceable. Moreover, the

ensuing analysis should shed considerable light on the

sources of its defects.



A. AN INFORMAL SKETCH OF THE ANALYSIS

The universe of discourse (or as we shall say the

primitive domain) of a language is constituted by the
 

things about which the language has something to say.

This universe uniquely determines certain classes. First,

it determines those classes which are members of its

power set. These are the primitive selection classes of
 

the language. It is among these classes that an absolute

term for the language will find its extension. Second,

the universe determines ordered n-ads of its members and

thereby classes of such n—ads. A class of ordered n-ads

whose members are all of the same degree is an auxiliary
 

selection class of the language. It is among these classes
 

that the extension of a relative term for the language will

be found. A class which is either a primitive selection

class or an auxiliary selection class is said to be a

selection class of the language. Thus, the extension of
 

any term for the language will be one of its selection

classes.

The following account of expressive completeness

quite naturally suggests itself. A first-order extensional

language is expressively complete if, and only if, it can

define terms whose extensions exhaust its selection classes.

13
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In the next section it will be shown that if the analysis

just outlined can be effected, it will satisfy the

criterion for adequacy. Subsequent sections fill in the

details of the outline and develop some of its more impor-

tant consequences.

The ensuing analysis of expressive completeness is

intended to be axiomatic. That is, its locus is an axio-

matic system. Unfortunately, this system is set-

theoretical. A more satisfactory analysis would be con-

ducted with greater parsimony. It would be developed

within a metalanguage whose structure does not drag along

a commitment to the rather "unlovely" ontology of classes.

The theory of virtual classes seems to offer an avenue of

escape. But, because of special difficulties (which will

not be discussed here) in formulating an adequate theory

of relations within such a rubric, this avenue has not

been pursued.

Another misfortune of the metalanguage--a misfortune

which besets all languages of its type——is that it is not

known to be consistent. To steer clear of this latter dif-

ficulity, I have tried to confine the exposition to set-

theoretical concepts and principles whose credentials are,

as much as can be hoped, of established repute.

The metalanguage is many-sorted, but it is not type-

theoretical. It employs three sorts of variables. The

variables 'm', 'n', etc. are to take natural numbers as
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their values. The variables 'L', 'Ll', etc. are to take

first-order extensional languages as their values. And,

finally, the variables 'x', 'y', 'z', 'u', 'v', 'w',

'xl', etc. are to take as their values the following

sorts of things: (i) expressions of first—order exten-

sional languages, (ii) members of the universes of such

languages, and (iii) classes of these objects, classes of

such classes, etc.1

The analysis will use but a single2 primitive seman-

tical concept, that of being an extension. This is under—

stood as a triadic relation obtaining between a referring

expression, a class, and a language. (See sections 6 and

7.) It also employs a primitive syntactical concept, that

of being a relative referring expression. *(See section 9.)

Besides these a number of mathematical or logical concepts

are used. These, however, are not formally examined.

The analysis is built upon three axioms. Roughly,

they are the following. (1) Something has at most one

extension for a language (see section 7). (ii) A relative

referring expression for a language has an extension for

 

lHereafter, unless context dictates otherwise, 'lan-

guage' is to be regarded as short for 'first—order exten-

sional language'. Similar adjustments are required for

other terms. For example, by 'expressively complete' will

usually be intended 'expressively complete first—order

extensional language'.

2Unless we count the use of 'L', 'L '. etc. as sur—

rogate for a second semantical primitive. But, cf. sec.

7, n. l.
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that language (see section 9). And (iii) the coordinates

_of the members of the extension of a relative referring

eXpression for a language are members of the extension

of some absolute referring expression for the language

(see section 10). In addition to these a number of math-

ematical or logical principles are used without being

formally examined.



5. ADEQUACY OF THE PROPOSED ANALYSIS

If the analysis just outlined can be effected, it

can be readily seen to satisfy the criterion for adequacy.

First, if L1 is expressively complete in the above

sense, then for any L if the primitive domain (i.e.,
2

universe of discourse) of L is the same as that of L
2

there is no term of L2 for which Ll does not have a

synonym. Suppose that L1 is expressively complete. Then

1’

the terms (or referring expressions) of L1 have extensions

which exhaust its selection classes. Let L2 have the same

1' It follows that L1 and L2 have

the same selection classes. But the extension of any term

primitive domain as L

for L2 is a selection class of L1' Hence, for any term of

L2 there is a term of L1

is, there is no term of L2 for which Ll does not have a

with which it is synonymous. That

synonym.

Second, if L1 is expressively incomplete, then

such that the primitive domain of L2 is

for

there is some L2

the same as that of LI’ and there is a term of L2

which L has no synonym. Suppose that L is expressively
l l

incomplete. Then there is at least one of its selection

classes (say) x which is the extension of none of its

terms. Consider, then, L2 which is to be constructed in

17
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the following way. L2 is to have but two terms in its base,

T1 and T2. T1 is to be explained in such a way that (a) it

is a universal term of L and (b) it is true of just those
2,

things in the primitive domain of L 1‘ This guarantees that

L1 and L2 have the same primitive domain. Thus x is also a

selection class of L2. T2 can now be explained as having x

as its extension. But L then, has no term which is a
l,

synonym of T Hence, L has the same primitive domain as
2' 2

L1 and a term for which Ll

Subsequent sections fill in the details of the out-

has no synonym.

lined analysis. Hence, they provide an adequate explication

of expressive completeness.



6. THE SEMANTICAL PRIMITIVE

The sole semantical primitive concept of the

analysis is that of being an extension of a referring

expression for a language.1 Expressions of the sort 'x

is an extension of y for L' will often be abbreviated by

corresponding expressions of the sort 'Ext(L,x,y)'o The

concept of being a referring expression can be explained

directly in terms of the primitive. A referring expres-
 

ngn is simply something that has an extension. It will

thus prove useful to make reference to both of these

notions in the extrasystematic explanation of the primi-

tive. (Axioms will shortly guarantee that each referring

expression has exactly one extension; hence, we are justi—

fied in speaking of Eng extension of a referring expression.)

The notion of a referring expression approximates

quite closely the ordinary understanding of 'term'. Like

terms, referring expressions have exactly one extension.

And, like terms, referring eXpressions can be classified in

traditional ways as being either general or singular and

either relative or absolute.

 

lUnless confusion threatens, we will often speak

simply of the extension of a referring expression, omitting

the strictly required reference to its language.

19
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The extension of an absolute referring expression

(general or singular) is to be understood as the class of

all and only those things of which it is true (or to which

it refers). Thus, the extension of a singular referring

expression is always either a unit class or the null class.

The extension of a general (absolute) referring expression

may have any number of members. It is to be understood,

of course, that a member of the extension of an absolute

referring expression for a language is also a member of the

primitive domain of the language.

The extension of a relative referring expression is

to be taken as a class of ordered n—ads. It will have as

members all and only those ordered n—ads for which the

referring expression holds true. It is to be understood

that each member of the extension of an n—place (l<n)

referring expression is an ordered n-ad. (This will be

elaborated in section 8.)

There are only two departures from apparently popular

conventions in the way in which the primitive is to be

understood. First, some reputable authors understand 'ex-

tension' in such a way that sentences or statements have

extensions. This understanding is not adopted in the

present essay. (As a consequence of this decision, state-

ments will not be regarded as terms.)

A second departure from convention relates to the

notion of a predicate that Quine develops in his Methods
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_£ ngLg.2 Closed (quinean) predicates will be regarded as

referring eXpressions of a language even though they may

not be the result of concatenating atomic expressions (or

signs) of the language. Thus a referring expression of a

language need not be one of its expressions.

Roughly, closed quinean predicates are to be con-

ceived as images of open sentences. They differ from

Open sentences only in having occurrences of circled

numerals '<:)', '<:)', etc. for occurrences of free vari-

ables. For example, if '(Ex)nyz' is an open sentence of

L, then '(Ex)Fx@@', '(Ex)Fx®@', and '(Ex)Fx@@'

are to be regarded as referring expressions for L. The

extension of the first is to be the class of all ordered

pairs <u,v> such that (Ex)quv. The extension of the

second is to be the class of all ordered pairs <u,v> such

that (Ex)vau. And the extension of the third is to be

the class of all things u such that (Ex)quu.

In general, if a circled numeral '(:)' occurs in a

predicate each circled numeral '<:)' such that O<m<g occurs

in the predicate. But they may occur in any order. Circled

' numerals can be thought of as being (or representing) the

places of a predicate in which they occur. Then, an nfplace

predicate will have n circled numerals (to any number of

occurrences). The extension of a 1-p1ace closed predicate

 

2Quine(3), secs. 23 and 25.
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'. . . <:) . . .' is the class of all things u such that

. . .u. . ..Where n>1, the extension of an nrplace closed

predicate,

is the class of all ordered grads <ul,u2,...,un> such that

3
ul. 20 O O, I O 0’ O O 0 E.

The reason behind this second departure is that the

. .u .u

predicates of a language far outstrip its terms. If one

attended solely to the terms of a language in assessing its

expressive power, he would be woefully misled. Consider,

for example, two languages, L1 and L2. Suppose that L1

counts only 'F' and 'G' among its terms. Suppose, further,

that L is like L except for having the term 'H' where:
2 l

Hx ++. Fx v Gx

defines 'H' in L2. Clearly, L2 does not have an advantage

over L1 in point of expressive power. The advantage of

L if any, is its greater notational convenience. Thus,2,

in assessing the expressive power of a language we want to

attend to both its terms and its predicates. Thus we will

want to count

ZF<:) v G(:>

among the referring expressions of L1°

The notion of a predicate affords a partial inroad

on one of the earlier mentioned problems of definability.

 

3See Quine's Methods of Logic for a fuller treatment.

Ibid.
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We can safely say that a term is definable within a language

if, and only if, the language has a referring expression

which is synonymous with that term.



7. REFERRING EXPRESSIONS AND EXTENSIONS

As anticipated, it is assumed that something has at

most one extension for a language. That is,

Al Ext(L,y,x).Ext(L,z,x).+ y=z.

It was also anticipated that the concept of being a refer-

ring expression would be explained directly in terms of the

semantical primitive. A referring expression for a lan-

guage is simply something which has an extension for that

language. Thus, where 'RefExp(L,x)' abbreviates 'x is a

referring expression for L'.

D1 RefExp(L,x) ++ (Ey)Ext(L,y,x).l

An almost immediate consequence of D1 and A1 is that a

referring expression has exactly one extension, and con-

versely. That is,

Tl RefExp(L,x) ++ (Ey)[Ext(L,y,x).(z)(Ext(L,z,x) + z=y)].

Thus, we are justified in speaking of Lhe extension of a

referring expression for a language. Accordingly, we con—

textually introduce the functor 'ext'. Where 'ext(L,x)'

 

1It is tempting at this point to explain a language

as something which has something with an extension. Thus

(where 'L' abbreviates 'language')

Lx ++ (Ey)(Ez)Ext(x,y,z).

But rather than clarify the concept of language, this would

only serve to emphasize the vagueness of our primitive.

2A
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may be read as 'the extension of x for L':

D2 ...ext(L,x)... ++ (EY)(Ext(L,y,x)....y...).

In D2 '...y...' represents any sentence which contains at

least one free occurrence of 'y' and no bound occurrences

of 'x'; and '...ext(L,x)...' represents the result of re-

placing each free occurrence of 'y' by 'ext(L,x)' in such

sentences.

Since we have from Dl that:

RefExp(L,x) ++ (Ey)(EZ)(Ext(L,y,x).y=z),

we have by D2 that:

T2 RefExp(L,x) ++ (Ez)z=ext(L,x).

D2 and T2 will later allow for a simple statement of other-

wise cumbersome definitions and theorems.

We will sometimes find it convenient to speak of the

extensions of a language without explicit reference to the

referring expressions of the language of which they are

extensions. The justification for such talk is D3. Where

'Exten(L,x)' abbreviates 'x is an extension for L':

D3 Exten(L,x) ++ (Ey)Ext(L,x,y).



8. ORDERED n—ads

Although the proposed analysis will employ but a

single semantical primitive, it will use several extra—

semantical concepts which will not be formally examined.

These concepts, germane though they be, are not peculiar

to the present subject matter. They belong more properly

to the province of mathematics or logic. In this section

we digress to informally discuss one of the more important

of these concepts, the concept of an ordered head.

The expression '{xl,x2,...,x }' will be used to
1'1

refer to the class whose members are x1, x2, . . ., and xn.

The expression '<xl,x2,...,xn>' will be used to refer to

the ordered head whose first coordinate is x1, whose

second coordinate is x2, . . ., and whose nth coordinate

is xn. The motive for speaking of x1, x2, , and xn

as coordinates rather than as members of <xl,x2,...,xn>

should be obvious. Under standard accounts the members of

an ordered head are not to be found among its coordinates.

The primary aim of this section is to explain what

might be meant by 'ordered nead' where '2' is a genuine

variable. The standard accounts are of little avail; they

end too soon. Rather than providing a definition of

'ordered nfad' they give us a recipe for constructing

26
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infinitely many definitions, a definition of 'ordered 2-ad',

a definition of 'ordered 3—ad', and so on, but not a defini—

tion of 'ordered n—ad' where 'n' is a genuine variable. All

too frequently discussions of this concept and related ones

conclude with the words 'and so on'- Quine's discussion in

Mathematical Logic is paradigmatic. In connection with the
 

theory of relations he writes:

Relations in the sense here considered are known,

more particularly, as dyadic relations; they

relate elements in pairs. The relation of giving

(y gives 2 to w) or betweeness (y is between L and

w on the other hand, is triadic; and the relation

of paying (x pays 1 to z for w) is tetradic. But

the theory of dyadic relations provides a convenient

basis also for the treatment of such polyadic cases.

A triadic relation among elements y, g, and w might

be conceived as a dyadic relation borne by y to

g;w. . . . Tetradic relations could be handled on

the basis of triadic relations in a similar fashion,

. . . Similarly for pentadic relations, hexadic

ones, and so on.

Thus Quine gives us a recipe for constructing definitions

for 'n—adic relation' where '3' has a definite value but no

definition of 'n-adic relation' where 'Q' is a variable.

The difficulty in explaining 'ordered n-ad' is

specifying what the values of 'n' are numbers of. For the

number of coordinates of an ordered n-ad may be m (l<m<n).

For example, <al,al,a > is an ordered triad with but one
1

coordinate, its first, second, and third coordinates being

 

lQuine(2), p. 201.
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identical. It is sometimes said that n is the number of

"positions” or "places" of an ordered n—ad. But this is

simply to provide a name for the problem. For we want,

then, to know what positions or places are.

The following paragraphs (which rely heavily on

standard accounts) provide a recursive definition of

'ordered head'and outline definitions of 'position' and

'coordinate'.

First, we introduce the (binary) operator '< , >'.

DA <x,y> = {{x},{x,y}}

This definition is due to Kuratowski. It can be shown

to satisfy the condition that

<x,y> = <u,v> +. x=u.y=v.

Thus '<x,y>' can be regarded as referring to the ordered

dyad whose first coordinate is x and whose second coor-

dinate is y, and we can define 'ordered 2—ad' (abbreviated

'Ord2-ad') by:

DS Ord2-ad(x,y) ++ (Eu)(Ev)(x=<u,v>.y={u,v}).

It is to be noticed that being an ordered dyad (2-ad) and,

shortly, being an ordered head (for some n) are here con-

strued as binary relations obtaining between two classes.2

The reason for this is that an ordered n—ad (for some n)

 

2Thus, being an ordered . . .—ad is a ternary rela-

tion obtaining between a number and two classes. When

this relational character becomes important we will use

such locations as 'is an ordered n—ad of' or 'is an

ordered head relative to
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is generally explained as an ordered dyad in accordance

with the schema:

S <x x x > = <x <x ... x >>.

1’ n 1’ 2’ ’ n

2,...,

Thus (e.g.) <al,a2,a3,au> is an ordered dyad relative to

{al,<a2,a3,au>}, an ordered triad relative to {al,a2,<a3,au>}

and an ordered tetrad relative to {al,a2,a3,au}.

We have in S the makings of a recursive definition of

'ordered n-ad'. For, a few moments reflection on S in con-

junction with D5 is enough to convince us that

Ordn-ad(x,y).(Ez)(u=<z,x>.v=yLHz}):+

Ordn+1-ad(u,v),

and where 2<n that

Ordnrad(u,v)-+(Ex)(Ey)(Ez)(Ordn—l-ad(x,y).

u=<z,x>.v=yU{z}).

But the conjunction of these two truths yields the equiva-

lence that where 2<h

D5' Ordn-ad(u,v) ++ (Ex)(Ey)(Ez)(Ordn-l-ad(x,y).

u=<z,x>.v=yU{z}).

We can then take D5 and D5' as jointly constituting a

recursive definition for 'Ordn-ad'; for together they lay

down a necessary and sufficient condition for determining

whether one class is an ordered head of another.

We turn now to a consideration of what might be

meant when we speak of the positions and coordinates of

an ordered n-ad. The coordinates of an ordered head

relative to a class are, of course, simply the members of
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that class. But we want to know more than this. Just as

we want to be able to explain 'jth position of the ordered

head x of y' so we want to be able to explain 'jth coordi-

nate of the ordered grad x of y'.

A few preliminary definitions will prove useful. The

concept of being an ordered dyad has been explained as a

binary relation. At this point it is necessary to make use

of a related (absolute) concept. For this concept we adopt

the term 'ordered pair' (abbreviated 'OrdPr'). It is to be

explained as follows:

D6 OrdPr(x) ++ (Ey)Ord2-ad(x,y).

That is, an ordered pair is an ordered dyad of some class

or other. Notice now that we can easily explain what is

intended by the first coordinate of an ordered pair.

D7 FirstCoord(x,y) ++ (Eu)(EV)(y=<u,v>.x=u).3

Similarly we can explain what is to be understood by the

second coordinate of an ordered pair.

D8 SecndCoord(x,y) ++ (Eu)(Ev)(y=<u,v>.x=v)

One further definition is needed. We will understand by

the ancestors of a class all of the entities generated from

that class by the ancestral of classial membership. Thus,

the ancestors of a class will include the class itself, its

 

3Strictly, this explains 'a first coordinate of'.

But uniqueness is easily established. A similar remark

also holds for D8.
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members, members of its members, and so on.

D9 Ancestor(x,y) ++ (z)[yez.(u)(v)(uez.veu.+ Vez).+ Xaz]

Let A, <al,a2,...,an>, be an ordered n—ad of B,

{al,a2,...,an}. Consider then the following m (m=n—l)

ancestors of A.“

2,...,an>

<a2,...,an>

<al,a

;an-l,an>

Let the class whose members are these m ancestors of A be

C. Notice that C's members are all ordered pairs. We can

uniquely arrange these members of C in such a way that one

succeeds another only if the former is the second coordinate

of the latter. Above, C's members are exhibited as arranged

by this rule. Clearly we can speak in this special sense

of the first member of C, the second member of C, . . . ,

and the mth member of C. Now, we can easily explain what

is meant by the first coordinate of A. It is the first

coordinate of the first member of C. Similarly, the jth

(l<m) coordinate of A (relative to B) is the first coordin-

ate of the jth member of C. The nth coordinate of A (rela-

tive to B) can be explained as the second coordinate of

the mth member of C.

 

”See n. 6 of this section.
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We can identify the positions of A relative to B as

follows. Its first position is the first member of C,

its second position is the second member of C, . . . , and

its nth position is C. An explanation of ”occupying" a

position is also forthcoming. For, x occupies the jth

position of an ordered n—ad y of 2 if, and only if, x is

the jth coordinate of y of 2.

We have been rather dogmatic in the last several

paragraphs. The account stands in need of both refinement

and justification.5 But since the proposed analysis of

expressive completeness can be eXposited without reference

to the coordinates and positions of ordered neads, this

task will be postponed.

In this same dogmatic vein we list without justifica-

tion some relevant truths which are consequences of the

above definitions.

 

5The only difficult problem is to define a predicate

which will isolate the n members of C. If we assume that

no member of B is a class, we can say that x is a member of

C if, and only if, x is an ancestor of A and x is an

ordered pair. But there are good reasons for not making

this assumption. A more adequate account would make use

of the ancestral of being the second coordinate of an

ordered pair. For this relation let us adOpt the term

'second coordinate ancestor'. Now C can be explained as

follows: x is a member of C if, and only if, x is a second

coordinate ancestor of A and x is not a (membership)

ancestor of B. Here, the only assumption required is that

A itself is not an ancestor of B. This assumption seems

plausible, but its appraisal requires a more careful exam-

ination of the set-theoretical structure of our metalan-

guage than is here appropriate.
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Ordnead(x,y) + (Ez)zex

Ordn—ad(x,y)+ (Ez)Ord2-ad(x,z)

(Ey)Ordn—ad(x,y) ++ OrdPr(x)

Ordn-ad(x,y).Ordn—ad(u,v).x=u.y=v:+ n=n

Ordn:ad(x,y).Ordn—ad(u,v).x=u.n=n:+ y=v

Ordn-ad(x,y).Ordn—ad(u,v).x=u:+.y=v++n=n



9. ABSOLUTE AND RELATIVE REFERRING

EXPRESSIONS

The syntactical primitive adopted for the analysis

is the concept of being a relative referring expression

for a language. It is to be understood in such a way that

all n-place (n>1) predicates and all relative terms are

relative referring expressions, and nothing else is. It

is, of course, assumed that all relative referring expres-

sions have an extension. This assumption is made explicit

in the axiom:

A2 RelRefExp(L,x) + (Ey)Ext(L,y,x)

where 'RelRefExp(L,x)' is short for 'x is a relative

referring expression of L'-

A2 connects the syntactical and semantical primitives.

In conjunction with D1 it allows us to infer that:

T3 RelRefExp(L,x) + RefExp(L,x),

that is, that all relative referring expressions are refer-

ring expressions. From T2 and T3 we have that:

TA RelRefExp(L,x) + (Ey)y=ext(L,x)

that is, something is identical with the extension of a

relative referring expression for a language.

In terms of the syntactical primitive we can explain

the concept of being an absolute referring expression for a

3A



35

language. Where 'AbsRefExp(L,x)' abbreviates vx is an

absolute referring expression for L',

D10 AbsRefExp(L,x) ++.RefExp(L,x).mRelRefExp(L,x).

That is, an absolute referring expression is a referring

expression which is not a relative referring expression.l

From D7 and T2 we have that:

T5 AbsRefExp(L,x) + (Ey)y=ext(L,x).

That is, something is identical with the extension of an

absolute referring expression. And from T3 and D7 it

follows that:

T6 RefExp(L,x) ++. AbsRefExp(L,x) v RelRefExp(L,x),

That is, something is a referring expression if, and only

if, it is either an absolute or a relative referring expres-

sion. From T6 and D1 it follows that:

T7 (Ey)Ext(L,y,x) ++. AbsRefExp(L,x) v RelRefExp(L,x),

That is, something has an extension if, and only if, it is

either an absolute or relative referring expression.

It might be thought that the syntactical primitive

could be done away with. For the members of the extension

of a relative referring expression are (as we shall later

make explicit) all ordered n-ads. Thus, one might suppose,

a relative referring expression can be explained as a refer-

ring expression whose extension has only ordered n—ads as

 

1Where there is no danger of ambiguity the strictly

required reference to the language for which a referring

expression is a referring expression will be omitted.
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members. This suggestion, however, is not viable; for, it

has unwanted consequences. First, it would count some

referring expressions which are ordinarily thought of as

absolute as relative. Any term with a null extension would

be relative. Second, there is no guarantee that some of the

languages we are considering do not have ordered n—ads

within their primitive domain. Thus, even on this score we

would be forced to call absolute terms relative.



lO. PRIMITIVE DOMAINS AND PRIMITIVE

SELECTION CLASSES

We associate two domains with a language, its primi—

tive domain (more commonly, its universe of discourse) and

its auxiliary domain. The primitive domain of a language

is the class of all objects which are members of the exten-

sion of any of the absolute referring expressions for the

language.1 Thus, where 'PrimDom(L)' is short for 'the

primitive domain of L',

Dll PrimDom(L)=X(Ey)(AbsRefExp(L,y).xeext(L,y).

As an immediate consequence we have that

T8 x PrimDom(L) ++ (Ey)(AbsRefExp(L,y).x:ext(L,y).

Perhaps a word of justification is needed. One

might argue that the universe of a language has as its

members all those objects which satisfy at least one

place of at least one of the language's referring

 

11 am fully aware that this imposes restrictions under

which we can say things like 'Let the universe of L be the

class of F's'. One must first establish that each F is a

member of the extension of some absolute referring expres-

sion or other of L. There is no problem if L has a universal

predicate whose extension is the class of F's. But there

are difficult cases. G. J. Massey has suggested the follow-

ing one. The universe of L is to be the set of natural

numbers. L is to have variables, grouping indicators, quan—

tifers, one connecti e (for conjunction), and one predicate,

'P' understood as ' is a prime'. Thus, only prime

numbers are members of extensions for L. (And '(x)Px' is

a true sentenCe of L.) But here I would want to say that

we cannot Ln: the universe of L be the class of natural

numbers.

37
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expressions.2 This is correct, but it would be a mistake

to conclude that 'RefExp' need replace 'AbsRefExp' in D8

and T8. For, it can easily be seen that if an object n

satisfies the Lth place of an n—place referring expres-

sion L of L, there is some absolute referring expression

L' of L which has n as a member of its extension. If

n=1, we can let L' be L. If n>l, then L is either (i)

an n—place predicate or (ii) a relative term.

(i) L is an n—place predicate. Construct L'l as

follows. Replace all except the Lth numeral of L by

distinct variables (not occurring in L); and replace

the Lth circled numeral by '(:)'. Then let L' be any of

the existential closures of L'l. L', then, is an absolute

referring expression of L which has n as a member of its

extension.

(ii) L is a relative term. There is an n-place

predicate L" which has the same extension as E. (Example:

 

2In The Structure 93 Appearance Goodman writes: ”In

founding a system, we must not only choose the primitives

but also determine the range of individual variables--the

realm of individuals recognized by the system. . . . The

individuals recognized include all that satisfy at least

one place of at least one of these primitive predicates,

and in addition . . . all sums of such individuals.”

Goodman(2), pp. 85-86. (Goodman is here concerned with

systems which incorporate the "logic" of the part-whole

relation; this accounts for the addition of all sums of

such individuals.) I would prefer this sort of treatment.

But although satisfaction is an intuitively straightforward

concept, it does impose rather difficult theoretical prob—

lems. Cf. Tarski(l), p. 371, n. 15 and Tarski(2), pp. 190-

I93.
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if L is 'between', L" is '<:> is between <:) and <:)'.)

But L' can be obtained from L" as it was obtained from

L'l in (i). Thus L' is an absolute referring expression

with n as a member of its extension.3

The effect of the above argument is that:

T9 RelRefExp(L,x).yeext(L,x) .+ (En)(Eu)

{Ordn-ad(y,u).(z)[2cu + (Ew)(AbsRefExp(L,w).

zeext(L,w))]}.

But this rather cumbersome statement is not derivable

from the foregoing axioms. Let us supplement our axioms

so that it is.

We will assume, roughly, that the members of the

extension of a relative referring expression are all

ordered n—ads of some subclass or other of the primitive

domain of its language. More precisely,

A3 RelRefExp(L,x).y=ext(L,x):+ (En)(u)[uey + (Ev)

(Ordn-ad(u,v).VcPrimDom(L))].

This is a rather prodigal axiom. And in a less inelegant

formalization it would appear as a derivative statement.

The difficulty here is that we have not made a fine

enough analysis of semantical and syntactical distinctions.

Such an account should probably find it advantageous to

 

3The argument requires that first-order extensional

languages have the apparatus for universal quantification

and at least as many variables as places in any of its

referring expressions.
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take as its primitive concept satisfaction understood as

relation between an n-place referring expression and an

"nfplace" sequence of objects. Being the extension of a

referring expression would then be a derivative concept.

But this strategy has difficulties of its own, and their

resolution seems rather remote from the concerns of this

essay.

It should be noted in passing that D8 is not

intended to correspond to the way we ordinarily determine

the primitive domain of a language, Generally the

universe of a language is most conveniently specified by

a metalinguistic statement, e.g., 'The universe of dis-

course for L is . . . .', or 'The values of L's variables

are . . . .', or 'T is a universal term for L'. But this

in no way conflicts with the definition. For the aim of

the definition is to explain what the universe of a

language is, not how we might most conveniently determine

what it is.“

We shall speak of subclasses of the primitive

domain of a language as primitive selection classes of

the language. Thus (where 'PrimSel(L,x)' abbreviates

'x is a primitive selection class of L'):

D12 PrimSel(L,x) ++ xcPrimDom(L).

 

“See n. l of this section.
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Obviously, the extension of any absolute referring expres—

sion for a language is a primitive selection class of the

language. That is,

T10 AbsRefExp(L,y).x=ext(L,y) .+ PrimSel(L,x).

But we cannot make the broader claim that the extension

of a referring expression for a language is a primitive

selection class of the language. For, generally, the

extension of a relative referring expression is not a prim-

itive selection class of its language. Nor do we have the

converse of T10. The primitive selection classes of a

language need not be exhausted by the extensions of its

absolute referring expressions. When they are not so

exhausted, we have seen, the language is expressively in-

complete. But it would be premature to explain expressive

completeness at this point, for not enough has been said

about relative referring expressions.



ll. AUXILIARY DOMAINS AND AUXILIARY

SELECTION CLASSES

Suppose we were to understand by the auxiliary

domain (or AuxDom) of a language the class all of whose

members are ordered n—ads of some one or another of the

primitive selection classes of the language. That is,

AuxDom(L)=x(EY)(En)(PrimSel(L,y).Ordn-ad(X,y)).

As an immediate consequence we should then have that:

(l) XeAuxDom(L) ++ (Ey)(En)(PrimSel(L,y).Ordn—ad(x,y)).

We should also have that the extension of any relative

referring expression for a language is a subclass of the

auxiliary domain of the language. That is,

(2) RelRefExp(L,x) + ext(L,x)cAuxDom(L).

We would not have, however, that the subclasses of the

auxiliary domain of a language are all extensions of rela-

tive referring expressions for the language. There are

two reasons. First, the language may fail to be expres-

sively complete. Second, some of these subclasses cannot

even be appropriately regarded as extensions of relative

referring expressions. These are classes whose members

(relative to the primitive selection classes of which they

are ordered n—ads) do not have the same number of positions.

That is, these are classes that are not "relations" of

A2
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members of the primitive domain of the language. Conse-

quently, the explanation of 'auxiliary selection class'

cannot be modeled after the explanation of 'primitive

selection class'. A better course is to first introduce

the concept of an auxiliary selection class and, then,

explain the auxiliary domain of a language as the class

of all its auxiliary selection classes.

The auxiliary selection classes of a language are

those classes all of whose members are, for some n,

ordered n—ads relative to some primitive selection class

or other of the language. Or, where 'AuxSel(L,x)' is

short for 'x is an auxiliary selection class for L',

D13 AuxSel(L,x) ++ (En)(u)[u€x + (Ev)(PrimSel(L,v).

Ordn—ad(u,v))].

In analogy to (2), then, we have as a theorem that:

Tll RelRefExp(L,x) + AuxSel(L,ext(L,x)).

We can now explain the auxiliary domain of a language as

the class of all its auxiliary selection classes. That

is,

D14 AuxDom(L)=xAuxSel(L,x).

The relation between an auxiliary selection class of a

language and the auxiliary domain of the language does

not correspond to the relation between primitive selec-

tion classes and primitive domains. The former is the

class membership relation; the latter is the relation of

classial inclusion.
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As an immediate consequence of Dll we have that:

T12 xeAuxDom(L) ++ AuxSel(L,x).

Hence we have that:

T13 RelRefExp(L,x) + ext(L,x)eAuxDom(L),

that is, that the extension of a relative referring ex-

pression for a language is a member of its auxiliary

domain. We do not have, however, that the members of

the auxiliary domain of a language (i.e., its auxiliary

selection classes) are all extensions of some relative

referring expression or other of the language. The

reason, of course, is just that the language may be expres-

sively incomplete.

We will understand by a selection class of a language

any class which is either a primitive or auxiliary selection

class of the language. Thus, where 'Sel' is short for

'selection class',

D15 Sel(L,x) ++. PrimSel(L,x) v AuxSel(L,x).

We have as a theorem, then, that:

TlA RefExp(L,x).y=ext(L,x) .+ Sel(L,y).

That is, the extension of a referring expression for a

language is a selection class for the language.

The domain (abbreviated 'Dom') of a language can now

be explained as the class whose members are the selection

classes of the language.

D16 Dom(L)=XSel(L,x).

As an immediate consequence we have that:
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T15 XeDom(L) ++ Sel(L,x).

Thus we have that the extension of a referring expression

for a language is a member of the domain of the language.

That is,

T16 RefExp(L,x).y=ext(L,x) .+ yeDom(L).

Parallel to T14 and T16 we have, of course, that

extensions for a language are selection classes for the

language and members of its domain. That is,

T17 Exten(L,x) + Sel(L,x),

and

T18 Exten(L,x) + xeDom(L).

It will be observed that the converses of TlA, T16, T17,

and T18 do not hold. It is just in this case that we want

to say that a language is expressively incomplete.

We are now in a position to explain expressive com—

pleteness. But before doing so, let us note a few conse-

quences of A3 and the chain of definitions leading to the

introduction of 'Dom(L)'. One such consequence is that two

languages with the same auxiliary domain have the same

primitive domain. That is,

T19 AuxDom(Ll)=AuxDom(L2) + PrimDom(Ll)=PrimDom(L2).

The converse of T19 holds as a matter of set theory (and

defintions). Hence, we have that

T20 AuxDom(Ll)=AuxDom(L2) ++ PrimDom(Ll)=PrimDom(L2).

We also have that languages with the same primitive domain

have the same domain.
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T21 PrimDom(Ll)=PrimDom(L2) + Dom(Ll)=Dom(L2)

I have a strong suspicion, but as yet have been unable to

prove, that the converse of T21 is a theorem. That is, that

T22* Dom(Ll)=Dom(L2) + PrimDom(Ll)=PrimDom(L2)

is a theorm. T22* can be shown to hold, however, provided

L and L
l 2

that both languages have finite primitive domains. The

satisfy either of three conditions. The first is

second is that no relation (i.e., set of ordered ngads) is

a member of either of their primitive domains. The third

is that neither has a class as a member of their primitive

domain. The second condition is a consequence of the third

and is, of course, weaker. The first condition is indepen-

dent of the others. Under either of these conditions we

also have that

T23* PrimDom(Ll)=PrimDom(L2) ++ Dom(Ll)=Dom(L2).

An asterisk following a theorem name is to be taken as a

signal that something less than theoremhood is claimed for

the formulas they precede. For T22* and T23* the theorems

in question are conditionals with suitable formulations of

either one of the three conditions or their alternation.

But from the standpoint of this essay the third, and

possibly strongest, condition isolates an interesting class

of languages. In section 1“ a number of claims for such

languages will be made. Since these claims cannot be made

for languages which satisfy only the first or second, the

antecedent of those theorems is to be some suitable formu—

lation of the third condition.



12. EXPRESSIVE COMPLETENESS

The explanation of expressive completeness is now

quite simple. A language is expressively complete if its

extensions exhaust its selection classes. That is, where

'ExpComp(L)' is short for 'L is expressively complete',

D17 ExpComp(L) ++ (y)(Sel(L,y) + Exten(L,y)).

We then have as theorems that:

T24 ExpComp(L) ++ (y)(Sel(L,y) ++ Exten(L,y)),

and

T25 ExpComp(L) ++ (y)(yeDom(L) ++ Exten(L,y)).

(We also have as corollaries of T17 and T18 the results of

replacing their occurrence of 'Exten(L,y)' by occurrences

of '(Ez)Ext(L,yz)'.)

We have often had occasion to use the expression

'expressively incomplete.’ It was used in the sense that

a language is expressively incomplete if it is not expres-

sively complete. Thus, where 'EprnComp(L)' is short for

'L is expressively incomplete',

D18 EprnComp(L) ++ mExpComp(L).

Then, as theorems, perhaps too obvious to mention, we have:

T26 EprnComp(L) ++ (Ey)(Sel(L,Y).NExten(L,y)),

and

T27 EprnComp(L) ++ (Ey)(ysDom(L).mExten(L,y)).

A7
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(Again we have as corollaries the result of replacing

'Exten(L,y)' by '(Ez)Ext(L,y,z)'.)



13. AN APPARENT ANOMALY

There is a consequence of the preceeding analysis

which may appear to be anomalous. This apparent anomaly

can be presented and dispelled informally.

Consider, for example, a language whose primitive

domain is mankind. Suppose that the language is expres-

sively complete. None of the statements which can be

formulated within this language should, from the vantage

point of semantics, be surprising. It can say that

Socrates married Xanthippe, that Socrates is a bachelor,

that Xanthippe is a shrew, etc. What is surprising,

perhaps, are some of the things which the language cannot

formulate. It cannot say, for example, that Socrates drank

hemlock, that Socrates lived in Egypt, that Socrates is

mortal and that Socrates is not an elephant. The explana-

tion is quite simple. These latter statements, normally

understood, concern (among other things) not only men but

also hemlock, Egypt, mortals and elephants. Each statement

has in the extension of one of its terms something which is

not a man and, hence, something which does not belong to

the primitive domain of the language under consideration.

The source of the apparent anomaly is now clear. Objects

“9
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within the primitive domain of a language may belong to

classes which are not included in that domain.1

There are three points which tend to mitigate the

force of the anomaly.

Note, first, that we are not distressed by the fact

that a formal language whose primitive domain is the class

of all numbers cannot formulate such statements as '5 is

blue', '3 is colorless', etc. Yet we would not, at least

on this account, condemn such languages to expressive in-

completeness. I am aware that there are those who would

regard such statements as meaningless. But this is simply

not the case. Take as a typical example Russell's familiar

'Laziness drinks procrastination'. Consider then the

following argument.

Only animate objects drink anything.

Laziness is an abstract object.

No abstract object is a concrete object.

Animate objects are all concrete.

Therefore, laziness does not drink procrastination.

 

1This paragraph requires a much more careful formu-

lation than I am now able to give. For example, I do not

mean that such a language could formulate a statement

synonymous with 'Socrates is a bachelor' in the sense of

Trexpressing the same proposition." That is, the synonymy

is not intensional but rather extensional. But by the

extensional synonymy of statements I do not understand mere

agreement of truth value. I think a concept of extensional

isomorphism would provide a good avenue of approach to the

solution of this problem. This concept would be explained

in a manner parallel to Carnap's notion of intensional

isomorphism. Carnap(5), secs. lA-15.
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The premises of this argument are meaningful. Further,

they are true. Since the argument is valid, its conclu-

sion is also true. But the conclusion is the negation of

'Laziness drinks procrastination'. Hence, the latter

statement is false. Hence it is meaningful. We might

speculate that what seems "funny” about statements of this

type is that they are patently false. Given any such

statement it seems that one can always construct an agru—

ment whose premises are incontrovertibly true and whose

conclusion is the negation of that statement.

The above discussion must be regarded with a proper

air of suspicion. For surely the semantical and logical

paradoxes have their origin (in part) in an overeagerness

to grant meaningfulness to linguistic forms. Yet the

examples2 with which I have been concerned do not appear

to be of the type which so readily lend themselves to the

 

2I would be hard put to specify principles which

would isolate the cases I have in mind. It is not simply

that they are patently false; for 'Cats are all dogs' is

patently false and patently not a case in point. As

further examples I would count Chomsky's 'Colorless green

ideas sleep furiously', 'Sincerity admires John', and

'John frightens sincerity'. Chomsky, p. 15 and p. 42.

Ryle's 'There exist prime numbers and Wednesdays and public

opinions and navies' (Ryle, p. 23) is problematic; for if

it is false, it is not patently false. Cf. White, c. IV.

But I would definitely want to exclude Carnap's 'Pirots

karulize elatically' (Carnap(3), p. 2) and Lewis Carroll's

familiar 'Twas brillig, and the slithy toves did gyre and

gimble in the wabe'. These latter examples contain pur-

ported terms which are in themselves meaningless. Whether

Hempel's 'The Absolute is perfect' (Hempel, p. 51) is in

this category is, of course, a matter of some debate.
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paradoxes. That is, none of the terms employed need be

explained impredicatively.

Second, it is only in an intensional sense that the

above language cannot formulate the statements that

Socrates drank hemlock, that Socrates lived in Egypt, etc.

It can formulate, for example, the statement that Socrates

is a man-who-drank-hemlock. And this statement is equiva-

lent to the statement that Socrates drank hemlock. Clearly,

if Socrates is a man-who-drank—hemlock, he drank hemlock.

And if Socrates drank hemlock, since he is by hypothesis

a man, he is a man-who-drank-hemlock. Thus, Socrates is a

man-who—drank-hemlock if, and only if, he drank hemlock.

This argument is easily generalized.

Third, to say that a language such as the one contem-

plated above is expressively incomplete is to condemn every

language to expressive incompleteness. The source of the

supposed expressive incompleteness was that things in the

primitive domain of the language were members of classes

which are not subclasses of that domain. An expressively

complete language would have to have the universal class as

its primitive domain. But, as will be shown in section 16,

such a language cannot be expressively complete.

If the reader is not convinced that the paradox is

dispelled, all is not lost. He can take expressive com-

pleteness to be what we shall shortly call 'universal ex-

pressive completeness.’ There are two noteworthy
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consequences of this move. The first has already been

noted. No language will be expressively complete. The

second consequence is that the criterion of adequacy

formulated in section 2 and defended in section 3 must be

rejected.



14. EXPRESSIVE POWER

One outcome of the analysis of expressive complete-

ness is that languages can be compared with respect to

their expressive power.

A language will be said to be expressively complete

relative to another if the selection classes of the latter

are all extensions of the former. Where 'ExpCompRel(Ll,L2)'

is short for 'L1 is expressively complete relative to L2',

D19 ExpCompRel(Ll,L2) ++ (x)(Sel(L2,x) + Exten(Ll,x)).

It is a theorem, then, that:

T28 ExpCompRel(Ll,L2).ExpCompRel(L2,L3) .+

ExpCompRel(Ll,L3).

That is, the relation is transitive. If it is granted that

(ELl)(EL2)(ExpComp(Ll).EprnComp(L2).

Dom(Ll)=Dom(L2)),l

the relation is readily seen to be nonsymmetrical and non—

reflexive. It is provable that two languages which stand

in this relation to one another are both expressively com-

plete. That is,

T29 ExpCompRel(Ll,L2).ExpCompRel(L2,Ll) .v.

ExpComp(Ll).ExpComp(L2),

 

lSuch languages are easily "constructed"; but this

statement does not follow from our axioms.
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The converse is not provable. But we do have that:

T30 ExpCompRel(Ll,L2).ExpCompRel(L2,Ll) .++.

ExpComp(Ll).ExpComp(L2).Dom(Ll)=Dom(L2).

That is, languages with the same domain are expressively

complete if, and only if, they are expressively complete

relative to one another. Consequently,

T31 ExpComp(L) ++ ExpCompRel(L,L).

That is, a language is expressively complete if, and only

if, it is expressively complete relative to itself.

A language is said to be as expressively powerful as

another if all of the extensions of the latter are also

extensions of the former. Where 'AsExpPow(Ll,L2)' abbre-

viates 'L1 is as expressively powerful as L2',

D20 AsExpPow(Ll,L2) ++ (x)(Exten(L2,x) + Exten(Ll,x)).

This relation is transitive and reflexive. That is,

T32 AsExpPow(Ll,L2).AsExpPow(L2,L3) .+ AsExpPow(Ll,L3),

and

T33 AsExpPow(L,L).

But the relation is nonsymmetrical.2 It is provable that

if the domain of a language is included within the domain

of an expressively complete language, then the former

language is expressively complete if it is as expressively

powerful as the latter. That is,

 

2That this is so is not a theorem; but languages can

be constructed which show that 'AsExpPow' is neither sym-

metrical nor asymmetrical.
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T34 Dom(Ll)cDom(L2).ExpComp(L2).AsExpPow(Ll,L2) .+

ExpComp(Ll).

A language is said to have greater expressive power

than another just in case it is as expressively powerful

as the other, and the other is not as expressively power-

ful as it. Thus, where 'GrExpPow(Ll,L2)' abbreviates 'Ll

has greater expressive power than L2',

D21 GrExpPow(Ll,L2) ++. AsExpPow(Ll,L2).xAsExpPow(L2,Ll).

This relation is transitive, irreflexive and asymmetrical.

That is,

T35 GrExpPow(Ll,L2).GrExpPow(L2,L3) .+ GrExpPow(Ll,L3),

and

T36 mGrExpPow(L,L),

and

T37 GrExpPow(Ll,L2) + mGrExpPow(L2,Ll).

It is provable that a language whose domain includes the

domain of a language with greater expressive power is

expressively incomplete. That is,

T38 Dom(Ll)aDom(L2).GrExpPow(Ll,L2) .+ EprnComp(L2).

A language is said to have less expressive power

than another if the other has greater expressive power

than it. Thus, where 'LsExpPow(Ll,L2)' is short for 'L1

has less expressive power than L2',

D22 LsExpPow(Ll,L2) ++ GrExpPow(L2,L1).

This relation is also transitive, irreflexive and asym-

metrical. That is,
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T39 LsExpPow(L L2).LsExpPow(L2,L3) .+ LsExpPow(Ll,L3)1’

and

T40 mLsExpPow(L,L),

and

T41 LsExpPow(Ll,L2) + mLsExpPow(L2,Ll).

Languages which have as much expressive power as

one another are said to have equivalent expressive power.

Where, 'EqupPow(Ll,L2)' abbreviates 'L1 and L2 have

equivalent expressive power',

D23 EqupPow(Ll,L2) ++. AsExpPow(Ll,L2).AsExpPow(L2,Ll).

This relation is transitive, reflexive and symmetrical.

Thus,

T42 EqupPow(L L2).EqupPow(L2L3) .+ EqupPow(L1,L3),l’

and

T43 EqupPow(L,L)

and

T44 EqupPow(Ll,L2) + EqupPow(L2,Ll).

It is provable that if two languages with the same

domain are equivalent in expressive power, then either

both or neither are expressively complete (or incomplete)_

That is,

T45 Dom(Ll)=Dom(L2).EqupPow(Ll,L2) .+. ExpComp(Ll) ++

ExpComp(L2),

and

T46 Dom(Ll)=Dom(L2).EqupPow(Ll,L2) .+. EprnComp(Ll) ++

EprnComp(L2).
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We also have that if two languages are equivalent

in expressive power, they have the same extensions, the

same selection classes, and the same domain. That is,

T47 EqupPow(Ll,L2) + (x)(Exten(Ll,x) ++ Exten(L2,x)),

T48* EqupPow(Ll,L2) + (x)(Sel(Ll,x) ++ Sel(L2,x)),

and

T49* EqupPow(Ll,L2) + Dom(Ll)=Dom(L2).3

Of these, only the converse of T47 holds. Thus,

T50* EqupPow(LlL2) ++ (x)(Exten(Ll,x) ++ Exten(L ,x)).

Further, if a language is equivalent in expressive

power to an expressively complete language, then it is

itself expressively complete.

T51* EqupPow(Ll,L2).ExpComp(L2) .+ ExpComp(Ll)

Similarly, a language equivalent in expressive power to

an expressively incomplete language is expressively in-

complete.

T52* EqupPow(Ll,L2).EprnComp(L2) .+ EprnComp(Ll).

Two expressively complete languages are equivalent

in expressive power if, and only if, they have the same

selection classes and the same domain. That is,

T53* ExpComp(Ll).ExpComp(L2) .+. EqupPow(Ll,L2) ++

(x)(Sel(Ll,x) ++ Sel(L2,x)),

T54* ExpComp(Ll).ExpComp(L2) .+. EqupPow(Ll,L2) ++

Dom(Ll)=Dom(L2).

The converses of T54* and T55* do not hold.

 

3See the last paragraph of section 11.
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Given two languages, it may be the case that neither

stands in any of the above relations to the other. For

this reason it is desirable to be able to speak of a lan-

guage as being expressively complete (or incomplete) with

respect to a class of objects regardless of whether the

class is identical with the primitive domain of the lan-

guage. The remainder of this section is devoted to showing

how this is possible.

Just as we can speak of the domain of the universe of

a language so we can speak of the domain of any class of

objects. Here we give an analogous, if condensed, explana-

tion of this broader concept. Where, 'dom(x)' is short for

'the domain of x',

D24 dom(x)=y{ycx v (En) (u)[uey + (Ev)(v:x.0rdnead(u,v))1}.

Then, a language is expressively complete with respect to a

class (ExpComRes) just in case the extensions of the language

exhaust the members of the domain of that class. That is,

D25 ExpCompResp(L,x) ++ (y)(yedom(x) + Exten(L,y)).

It is a theorem that:

T55 ExpCompResp(L,PrimDom(L)) +v ExpComp(L).

That is, a language is complete with respect to its primi—

tive domain if, and only if, it is eXpressively complete.

Also, a language is expressively complete if, and only if,

it is expressively complete with respect to all of its

primitive selection classes. That is,
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T56 ExpComp(L) ++ (x)(PrimSel(L,x) + ExpCompResp(L,x)).

And in general,

T57 ExpCompResp(L,x) ++ (y)(y:x + ExpCompResp(L,y)).

That is, a language is expressively complete with respect

1 I
J?

(
I
)

to a class of objects if, and only if, it is expressiv

complete with respect to all of its subclasses.

It would perhaps be even more desirable to develcp

a metrical concept of expressive power. Such a concept

would assign a numerical value to each language; this value

would be its degree of expressive power. A concept of this

sort would allow for the comparison of any two languages

with respect to their expressive capacity. But how this

concept is to be explicated is by no means evident. Per-

haps the most natural attack is to assign each language a

simple proportion, the ratio of the number of its exten-

sions to the number of its selection classes. But this

is not viable; for any language with a non-null domain has

an infinite number of auxiliary selection classes and,

hence, an infinite number of selection classes.

Further exploration of this material concept and the

difficulties which are occasioned by its analysis fall out-

side the scope of the present essay.

We conclude by noting that there is a class with

respect to which every language having at least one

referring expression is expressively complete.
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T58 (Ex)(L)[(Ey)RefExp(L,y) + ExpCompResp(L,x)].

The case in point is, of course, the null class. (The

assumption that every language has at least one referring

expression is rather modest. But to my knowledge it does

not follow from the above axioms.)



15. THE ELIMINATION OF GENERAL TERMS

In this section it is shown that for any language L

with a finite primitive domain, there is a language L*

which (a) has the same primitive domain as L, (b) is as

expressively powerful as L, and (c) has no extralogical

general terms.1

Let the primitive domain of L and L* be {al,...,an}.

Thus, both L and L* have the same finite primitive domain.

Let 'al', . . . , and 'an' be singular terms of L* whose

respective extensions are the unit classes of al, . . . ,

and an. Let 'F' be any general term of L. Then 'F' is

either an absolute or a relative term.

(i) 'F' is an absolute term. The extension of 'F'

is either the null class, a unit class of either a1, . . .,

or an, (say {ai}), or an n—membered (l<ngn) subclass of

{al,...,an} (say {ai ,....,ai 1). If the extension of 'F'

1 m

is the null class, then 'Fx' can be explained as:

(Ey)(yfiy.x=y).

If the extension of 'F' is {a1}, then 'Fx' can be explained

: x=a .as l

 

lThis proof, as will be obvious, requires principles

which are not guaranteed by the above axioms.
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And if the extension of 'F' is {a1 ,...,a1 }, then 'Fx' can

1 m

be explained as:

x=a v ... v x=a .

11 im

(ii) 'F' is an Laplace relative term. The extension

of 'F' is either the null class, one of L's l—membered

auxiliary selection classes (say {<a >}), or one,...,a

11 1k

of L's mrmembered (l<n) auxiliary selection classes (say

1 l m
{<al,...,ak>,...,<al,..

is the null class, then 'Fx

.,a$>}). If the extension of 'F'

l...x ' can be explained as:
n

(EY)(y#y.xl=y. ... .xk=y).

If the extension of 'F' is kai ,...,ai >}, then 'Fx ...

can be explained as

xl=ail . ... . x =a

If the extension of 'F' is

l l m m

1,..O’am>,000’<a ,.OO’ak>},

then 'Fxl...xn' may be explained as

{<a

x=a

l l'

The justification in each case is obvious.

There are several points that are worth making. (1)

Unless L is expressively complete, L and L’ are not equiva-

lent in expressive power. For, L* is expressively complete;

and according to T39 a language which is equivalent in

expressive power to an expressively complete language is

itself expressively complete.

(2) That L* is expressively complete is evident. In

the proof that L* is as expressively powerful as L, (i) and
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(ii) show that L* has referring expressions whose extensions

exhaust the domain of {al,...,an}. Hence, where x is a

finite class, we may assert:

(EL)ExpCompResp(L,x).

That x is finite is essential. For, if x were infinite,

it would have proper subclasses which are infinite. If

such subclasses were to be extensions for L*, then, in the

absence of extralogical general terms, L* would have to have

referring expressions of infinite "length." (The class x

offers no difficulties, for it is the extension of

'<:) = (:)' for L*.) Indeed, as already anticipated, it

will be shown in section 17 that where x is infinite:

~(EL)ExpCompResp(L,x).

(3) It might be suggested by (2) that where x is

finite, we can assert:

xePrimDom(L) + Exten(L,{x}) .+ ExpComp(L).

That is, if the unit class of each member of the primitive

domain of a language is an extension for the language, then

the language is expressively complete. But this is not the

case. It may fail for any of several reasons. For example,

the language may not have a synonym for '='. Or it may not

have suitable truth—functional apparatus for constructing

the appropriate compound sentences.

(4) The above shows how the general Lnnnn of a

language may be reduced to one, viz., '='. Such a

"reduced" language still has a full range of general
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referring enpressions, absolute and relative. '<:)=ai',
 

for example, is an absolute referring expression of L*,

and it was required for the proof of L*'s expressive com—

pleteness. Whether it is a logical or an extralogical

referring expression, I must confess, I do not know.

Indeed, even '=' has been spoken of as a logical term only

through courtesy, not through understanding.

(5) In many instances the analogue in L* of a

synthetic sentence of L is analytic for L*. Suppose that

'(x)(Fx + Gx)’ is a true synthetic sentence of L. Suppose

further that the extension of 'F' is {al,...,a }, and

J

that the extension of 'G' is {al,...,aJ,...,am}. Then,

the analogue in L* of '(x)(Fx-+Gx)‘ is the sentence:

lv... vx=ajv

.. v x=a )
m

V ... V x=a .'*. x=a

J
(X)(x=al

which is analytic for L*. There are those for whom this

will impugn the claim that L* is as expressively powerful

as L. But there are also those for whom this will make

the analytic and the synthetic all the more puzzling.

(6) Quine2 has shown that the general terms of the

vocabulary of language (or theory) can be replaced by a

single dyadic predicate without loss of expressive power.

Quine's reduction, however, requires (in many cases) that

 

2Quine(4). Quine's results are not restricted to

theories with finite universes.
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the primitive domain of the language be extended to include

3
a "modest fund of classes." But, as Goodman has shown,

these classes are "modest neither in number nor in com-

plexity" and, consequently, Quine's reduction "effects no

genuine gain in simplicity." The reduction of this section

also shows that the general terms of a vocabulary can be

replaced by a single dyadic predicate. And it does so

without imposing an unwanted extension of the primitive

domain. Yet, again, no claim to simplicity can be made.

For what is gained by the elimination of general terms is

lost by the introduction of singular terms.

 

3Goodman(l).



16. UNIVERSAL EXPRESSIVE COMPLETENESS

The foregoing analysis allows for a precise statement

of what it means to say of a language that it has universal

expressive completeness. We should expect of such a lan-

guage that it could formulate anything that is formulable

in any (extensional) language. But to say this is simply

to say that it is expressively complete and that its primi-

tive domain is the universal class. Accordingly, where

'UniverExpComp(L)' is short for 'L has universal expressive

completeness',

D26 UniverExpComp(L) ++. ExpComp(L).(x)xaPrimDom(L).

Quinel has shown that no language can have universal

expressive completeness. His argument runs somewhat as

follows. Suppose that L has universal expressive complete-

ness. Then everything is a member of its primitive domain.

Hence, its referring expressions are members of its primi-

tive domain. Consider, then, the class of L's referring

expressions which are not members of their own extension.

Let this class be n. Then n is one of L's selection classes.

Since L is expressively complete there is a referring

expression of L which has n as its extension. Let b be

 

lQuine(5), pp. 331-332. Of the argument Quine writes

that it "is in principle Cantor's. The form I have given it

is reminisent also of Grelling' paradox, and the use made of

it is reminisent of Tarski." Quine(5), p. 332, n. 6.
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such a referring expression. Then n is a member of n if,

and only if, n is not a member of n. For, if n is a member

of n, then, since no member of n is a member of its own ex-

tension, n is not a member of n. And if n is not a member

of n, then, since n is not a member of its OWN GXtGNSiOU, 9

is a member of n. But this is a contradiction. Hence, L

does not have universal expressive completeness. That is,

T59 mUniverExpComp(L).

There are two comments which, perhaps, go without

saying. First, the above argument establishes that L

does not have universal expressive completeness, not that

L has universal expressive completeness only on pain of

inconsistency. The inconsistency arises in the metalan-

guaguage, not in L. Second, the argument is not a banner

for mysticism. It does not establish something to be in—

effable. Every language must leave something unsaid. But

this is not to say that there is something which cannot be

said in any language.

Quine's argument may be broadened. The argument

suffices to show that no language is expressively complete

if all of its referring expressions are members of its prim—

itive domain. This shows that the difficulty is not that

a language with universal expressive completeness must have

everything in its primitive domain. Rather it is that all

of its referring expressions are members of its primitive

domain. And this is not peculiar to languages with univer—

sal primitive domains.



17. INFINITE PRIMITIVE DOMAINS

In this section it is shown that a language whose

primitive domain is infinite is not expressively com-

plete.1

Let us understand by the alphabet of a language the

class of all its atomic expressions. These atomic expres—

sions, the members of an alphabet, will be referred to as

letters of the alphabet. The enpressions of a language
 

can be understood as finite sequences of letters of its

alphabet. Let us say that an alphabet a is richer than an

alphabet 8 just in case the cardinal number of the class

of expressions generated by concatenation from a is greater

than the cardinal number of the class of expressions gen-

erated by concatentation from 8. Let the class whose two

members are the numerals '0' and '1' be called the standard

alphabet.

Lemma 1: No alphabet is richer than the standard alphabet.

Proof: Let a be any alphabet, and let £1, £2,... be the

letters of a. Then the role of t in a is to be played by
l

 

1Once again principles are assumed which are not

guaranteed by our axioms. The most important assumption is

that the alphabet of a language is countable, i.e., either

finite or denumerable.
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'101' in the standard alphabet; the role of 2 is to be
2

played by '1001'; and, generally, the role of ii is to be

played by '10...01' where there are L occurrences of '0'

in '0...0'. Expressions generated from the standard

alphabet can thus be mirrored after expressions generated

from a.

Expressions generated from the standard alphabet as

above ('101', '1001', etc., but not '011', '100', etc.)

and sequences of such expressions will be referred to as

standard expressions.
 

Lemma 2: The set of standard expressions has a cardinal

number less than or equal to that of the set

of natural numbers.

Proof: With each standard expression a unique natural

number can be correlated. Associate with each standard

expression the natural number to which it conventionally

refers. For example, associate with the standard expres-

sion '101' the number 101; associate with '1000001100110001'

the number 1,000,001,1oo,11o,001.

Lemma 3: The cardinal number of the set of natural numbers

is less than or equal to that of the set of stan-

dard expressions.

Proof: It is well known that we have several alphabets

rich enough to generate names for each of the natural numbers.

(E.g., the alphabet whose only letters are the first ten

numerals, or the alphabet whose only letters are the accent

and '0' are sufficient.) But these alphabets, in accordance
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with Lemma 1, are no richer than the standard alphabet.

From this and the fact that each expression generated from

the standard alphabet can be represented by a standard

expression the lemma follows.

Lemma 4: The set of standard expressions and the set of

of natural numbers are equinumerous.

Proof: This follows immediately from lemma 2 and lemma

3zh1 accordance with the well—known Schrcder-Bernstein

theorem.2

Theorem: If the primitive domain of L is infinite, then

L is expressively incomplete.

Proof: Suppose that the primitive domain of L is

infinite. Then the domain of L is nondenumerable, for a

subset (e.g., the power set of L's primitive domain) of

that domain is nondenumerable. Hence, L has nondenumerably

many selection classes. But from lemma 1 and lemma 4 it

follows that L has at most denumerably many expressions.

Hence, there are selection classes of L for which there

are no referring expressions.

It is perhaps of some interest that an almost im-

mediate consequence of the above theorem is that any lan-

guage for arithmetic is expressively incomplete.

 

2Actually something stronger has been shown. Notice

that nny non empty alphabet can generate denumerably many

expressions. Thus we might take the unit set of '1' to be

our standard alphabet. Then 'l...1' (with L occurrences

of '1') could be paired with 2 . But this account would

tend to blur certain distinctihns. For example, there is

no way to reflect the distinction between the letter 22 and

the result of concatenating £1 with itself.



18. OTHER CONCEPTS OF COMPLETENESS

In this section we briefly explain several important

concepts of completeness that are frequently encountered T .

in the literature. They are compared with the concept of _]

expressive completeness and are found to differ in essen-

tial ways. Further, we observe that although allusions l

 to expressive completeness and related concepts are not (J

uncommon in the literature, these concepts do not appear

to have received careful analysis.

The following four concepts of completeness are

isolated as being especially important and typical.

(i) A system is complete if for every sentence S

either f—S or f—n(S).l

(ii) A system 8 is absolutely complete if for every

sentence S either l-S or 8+{S} is absolutely inconsistent.2

(A system is said to be absolutely inconsistent if for

every sentence S, f—S.)

 

lRead 't—S' as 'S is a theorem', and read 'n(S)' as

'the negation of 8'. These notions as well as the notion

of a sentence are, of course, relative to a system in ques-

tion. But for ease of exposition we leave this implicit.

2I follow Church, sec. 18 and Tarski(l), chap. v in

this terminology. 8+{S} is to be understood as the result

of adding the sentence S as an axiom to 8.
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(iii) A system 8 is negation-complete if for every
 

sentence S either L-S or 8+{S} is negation-inconsistent.

(And a system is negation-inconsistent if there is a
 

sentence S such that k-S and }-—n(S).)3

(iv) A system is complete relative to a class of

sentences 2 if for any sentence S if 852 then f—S.“

Obviously completeness in the sense of either (ii)

or (iv) has a more general character than in the sense of

either (i) or (iii). For completeness in the latter

senses presupposes a concept of negation and is non-

vacuously applicable only to those systems to which the

concept applies. But completness in the former senses makes

no reference to negation and has no such limitation on its

applicability.

Earlier it was claimed that completness concepts as

they are ordinarily explained have received much attention

 

3Church formulates an interesting generalization of

this concept of completeness: completeness with respect

to a transformation. A system 8 is Lecomplete if for every

sentence S either f—S or 8+{S} is n-inconsistent. And a

system is Erinconsistent if there is a sentence S such that

l—S and FMS).

”Alternatively, but certainly not equivalently, we

might say that a system is complete relative to a class of

sentences 2 if for every sentence S if 862 then f—S or F-n(S).

Still other concepts of completeness might be introduced.

For example, Church (sec. 18) introduces completeness in

the sense of Post. A system 8 is com lete Ln the sense 93

Post if for every sentence S either F98 or 8+{S} is incon—

sistent in the sense of Post. A system is inconsistent in

the sense of Post if there is some "propositional variable"

8 such that }-S.
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and are well understood.5 This is certainly evidenced by

the solid knowledge that is available concerning their

applicability to various sorts of systems. For example,

standard systems of the sentential calculus are known to

be complete in senses (ii) and (iii) if they employ a

rule of substitution (rather than axiom schemata). Further

they are known to be complete in sense (iv) if E is the

class of truth-functionally valid sentences (i.e., tauto-

logies). (This holds whether or not a rule of substitution

is employed.) But they are not complete in sense (i).6

Concerning standard systems of first-order logic we know

that they are complete in neither sense (i), (ii), nor (iii).

But they are complete in sense (iv) if 2 is the class of

valid sentences (i.e., sentences true under every interpre-

tation of their nonlogical signs in every non empty uni—

verse).7

We also have in our possession fundamental knowledge

concerning the applicability of these concepts to first-

order theories.8 For example, Lindenbaum has proved that

 

5Sec. 1.

6For justification and valuable historical informa-

tion see Church secs. 18 and 29.

7For justification see Church secs. 32 and 44.

8By a first-order theory is understood a theory whose

"underlying logic" is a first-order logic. Here for the

sake of convenience we shall assume that the logic is stan-

dard. In this case the first three senses of completeness
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if 8 is a consistent first-order theory, 2 is the set of

sentences of 8 , and Z is finitely axiomatizable, then

there exists a consistent complete extension of 8.9 And,

of course, it would be unforgivable if we failed to mention

Gddel's famous incompleteness theorem (as it applies to

first-order arithmetic): If 8 is a first-order arithmetic,

then 8 is complete if, and only if, 8 is inconsistent.

(This result may also be stated in the terminology of (iv).

Let 8 be a first-order arithmetic, let 21 be the set of

theorems of 8. Then Gddel's theorem says, in effect, that

Zl#z2.) If we accept that arithmetic can be translated into

the notation of set theory, then, of course, the correspond—

ing result holds for first—order set theory.

Clearly our knowledge of these several completeness

concepts is extensive. Unfortunately this claim cannot be

extended to cover expressive completeness. For, as should

be quite clear, expressive completeness is to be sharply

distinguished from these other concepts.

There are at least two important points of differ-

ence. For one thing these other concepts all make an

essential reference to theoremhood. And they are related

 

become coextensive. We shall also assume that only

formulas without free variables are counted as sentences.

Otherwise the explanation of completeness in senses (i)

and (iii) would have to be modified.

9For a proof see Tarski(l) chap. v.



76

in important ways only to those systems to which that con-

cept applies, that is, to deductive systems. But whether a

system is expressively complete is a matter wholly indepen-

dent of the character of its theorems. Indeed a system may

be expressively complete even though it has no theorems.

And this is fully in accord with the motivation of the

present study. We wanted to explicate a concept of complete-

ness that could be explained not with reference to the

sentences (or theorems) of a system but with reference to

its terms.

There is another difference between the concept of

expressive completeness and these other concepts. Expres-

sive completeness is clearly a semantical concept. And

it is applicable only to interpreted systems (i.e., to

languages). Now it is by no means clear whether these

other concepts are (or are not) semantical. But it is

evident that they are applicable to uninterpreted as well

as interpreted systems.

The question as to whether the above concepts of

completeness are semantical can be resolved only after a

careful classification of the concepts of sentence, nega-

tion of a sentence and theorem as semantical or syntactical.

The classification is by no means an easy one. For

although these concepts are usually explained syntactically

they are susceptible to rather straightforward semantical

explanations: to be a sentence is to have truth value;
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to be a theorem of a system is to be a consequence of its

axioms,lo and to be a negation of a sentence is to be

counted as true just in case it is counted as false. More-

over, the usual syntactical explanations of these concepts

belong to special syntax not to general syntax. But these

explanations are of little help in this present matter for

we are concerned with (first-order) systems in general not

with this or that system.11

In any event this much seems perfectly clear. Com-

pleteness as usually explained is applicable only to deduc-

tive systems. And it may be applicable whether or not they

are interpreted. Expressive completeness, on the other

hand, is applicable only to interpreted systems. And it

may be applicable whether or not they are deductive.

 

10A sentence is a consequence of a set of sentences

if it is true in every model of that set of sentences.

11The above point is somewhat different from Church's

when he writes ". . . the notion of completeness of a log-

istic system has a semantical motivation, consisting roughly

in the intention that the system shall have all possible

theorems not in conflict with the interpretation." (Church,

p. 109.) The distinction between general and special

branches of semiotic is from Carnap(l). The best essay

with which I am acquainted that deals with these matters in

general (rather than special) semiotic is chap. v. of

Tarski(l). Unfortunately the primitive concepts of Tarski's

treatment are the concepts of being a sentence and being a

consequence of a set of sentences. Thus the essay is of

limited value when it comes to the problem of classification.

It must be mentioned, however, that Tarski's extrasystematic

explanation of being a consequence of a set of sentences

makes reference to "rules of inference." It would seem,

then, that it is being treated by Tarski as a syntactical

concept.
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It was earlier noted that the concept of expressive

completeness is not firmly entrenched in our linguistic

behavior.12 This is undoubtedly true; but this is not to

say that it is wholly unentrenched. Indeed, this and

directly related concepts are alluded to with moderate

frequency. Some such allusions are so brief (and unpre—

tentious) that they might easily escape our critical

attention. As an example, we cite a passage from Carnap's

Logical Syntax 93 Language. There he writes:
 

Limited universal Operators and regressively

defined [functors] are not mere abbreviations,

and if we were to renounce them, the expressive

capacity of the language would be very considerably

diminished. On the other hand to renounce the

limited existential Operator . . . and the symbols Of

conjunction and implication together with all

explicitly defined [numerals, predicates and

functors] would only succeed in rendering the

language more clumsy without in the least dim-

inishing the extent of the expressible.l3

 

 

The reader will perhaps be reminded of many passages with

the same general direction. Their claims are undoubtedly

justified. But their precise sense is not always evident.

Nonetheless, claims like these constitute a significant

part of the hard core of what we know about expressive

power. An analysis which radically altered their truth

value would be unacceptable. But it should be obvious

that the foregoing analysis gives them a precise sense

and leaves their truth value unaltered.

 

12

Sec. 1.

l3Carnap(3), p. 31. Emphasis added.
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There are some passages in the literature which are

obviously related to expressive completeness but too

garbled to be regarded as making acceptable claims. As an

example, we cite the following:

It might be supposed that the invention of new

symbolism is conclusive evidence of the inadequacy

of the language to which it is adjoined, and that

one would be justified in condemning such a language

even before the need for further symbolism is felt.

It is natural to view symbols of the form n + LL, for

example, as additions made to the existing language

of numbers for the purpose Of filling in gaps which

the language previously had. The situation is the

same with rudimentary languages which a highly devel-

oped language seems tO complete. Thus, the present

language of arithmetic in which we have the possibility

of indefinitely writing numerals, seems to complete the

language having the numerals from one to five and the

word "many." That it is capable of expressing facts

(e.g., that 6>5)which the rudimentary language cannot

seems properly to be ascribed to the superiority of a

complete language over a fragmentary one.

Is this, however, a proper account of the difference

between a simple and a highly develOped language? And

if it is, must we not be forced to say that for all we

know every language is incomplete? A counterquestion

is in order here: Incomplete with reference to what

standard? Unless there exists a wider language of

which a given symbolism is a part, we have no standard

in relation to which it is incomplete. Further, even

the fact that a symbolism L is part of another, L ,

does not necessarily make L incomplete, although it

may be inadequate for certain purposes. The language

of arithmetic can be said to be part of the language

of real numbers; it lacks certain symbols and the

rules for their usage. But although arithmetic is

inadequate for certain purposes, e.g., for solving

algebraic equations, it is not an incomplete arithmetic.

NO parts of it are missing, as there would be from a sym-

bolism which purported to be our arithmetic but which

lacked the operation 4x4. Taken by itself it is the

whole language. It is completely unlike a dictionary

with missing pages. Any inadequacy which at a given

moment a language comes to have is not due to incomplete-

ness. The classification "incomplete" (and hence also

the classification "complete") is not properly applicable
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to a language. A symbolism which purports to be a

language but which has missing parts can be called

incomplete, but a language L does not become in-

complete when it becomes a part of L2, because it

does not purport to be L . It is a whole even

though additions are made to it, since these addi—

tions do not supply missing parts. To repine that,

for all we know, every language may be incomplete

is to indulge in the absurd complaint that a whole

language is perhaps not a whole language. Further-

more, it sounds as though a remedy may be needed,

whereas there is no completing what is already a

whoLe. We can add to it; but we cannot complete

it.

The kindest thing we can say is that it is suggestive.

Some passages are more direct in their reference

to expressive completeness. For example, within the

context Of a general discussion of formal systems, Copi

writes:

When the formal system has been constructed, the

question naturally arises as to whether or not it

is adequate to the formulations of all propositions

it is intended to express. If it is, it may be said

to be 'expressively complete' with respect Ln that

subject matter. We are here discussing what can be

said in the system, not what can be proved. With

respect to a given subject matter, a formal system

is 'expressively complete' when it is possible to

assign meanings to its undefined terms in such a way

that every proposition about that subject matter can

be expressed as a formula of the system.1

  

 

 

It should be noted that Copi does not explain what he

understands by such obviously crucial terms as 'meaning',

'proposition', 'expresses a proposition', 'prOposition a

system is intended to express', and 'subject matter'- He

 

l“Ambrose, pp. 30-31.

15Copi, pp. 178—179. Author's emphasis.
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does, however, explain that the functional completeness

of various sets of statement connectives is one kind of

16
expressive completeness.

Elsewhere, and along these same lines, we find

Fraenkel and Bar-Hillel writing that

the notion of notational (or expressive) nnn—

pleteness with respect Ln n given subject matter

deserves at least to be mentioned. Its meaning

should be clear. As an illustration, let us only

mention that the propositional calculus, based

upon '3' and 'N' as the only connectives, is

notationally complete with respect to the truth

functions: in short, is truth functionally com-

plete, since it can easily be shown that all

truth functions are expressible on this base.17

  

  

When the claim is made that "its meaning should be clear"

it is not intended that its meaning should be clarified but

that it Ln clear. If that claim is correct, this whole

essay becomes pointless. But I think that it is not.

There is only one place in the literature known to me where

we have an analysis of what might be thought of as expres-

l8
sive completeness. The analysis is Tarski's. He speaks

not of expressive completeness but of the completeness 9L
 

concepts. In the next section we offer a brief account of

his analysis.

 

161818., p. 192.
 

l7Fraenkel, p. 295, n. 3. Author's emphasis.

18Tarski(l), "Some methodological investigations on

the definability Of concepts," pp. 296-319.



19. TARSKI AND THE COMPLETENESS

OF CONCEPTS

In this section we Offer a brief explanation of

Tarski's analysis of the completeness of concepts. It is

argued that although his analysis isolates an important

concept it does not provide an explication of expressive

completeness. We conclude by showing that these two con-

cepts, expressive completeness and completeness of con-

cepts,are related in a rather definite way.

Let n be an extralogical constant and let 8 be a set

of such constants. Further, let p (v,8) be any Open

sentence which has X as its only free variable and no

extralogical constants other than those of 8. Then,

(V)(v=c ++ ¢ (V,8))l

is said to be a (possible) definition nL 3 Ln terms 9L L.
 

Where Z is a set of sentences, p is said to be

definable Ln terms 9L L nn the basis 9L t, if (1) n and
  

each member of 8 occurs in some member or other of Z, and

(2) some definition of n in terms of 8 is derivable from

the sentences of E.

 

lHere '++', etc. are used autonymously. Note that

Tarski's account is directly applicable only to those sets

of sentences containing these signs.
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Where 21 and 22 are sets of sentences, let 8 be the

1

set of extralogical constants occurring in the members of

21 and let 82 be the set of extralogical constants occurring

in the members of 2 Then, 21 Ln essentialLy richer than 2
 

2° 2

with respect to specific terms if (1) 22:21, and (2) there is

some extralogical constant n such that ce8l, mce82, and p

is not definable in terms Of 82 on the basis of 21.

Finally, a set of sentences 2 Ln complete with
l

respect Ln its specific terms if there is no set of sen-

 

 

is categorical, and 22 is essen-

with respect to specific terms.2

tences 22 such that 22

tially richer than :1

Tarski does not argue the adequacy of his analysis.

But categoricity is of great importance; and we must agree

with Tarski when he writes that a "non-categorical set of

sentences (especially if it is used as an axiom system for

a deductive theory) does not give the impression of a

closed and organic unity and does not seem to determine

 

2Very roughly, a set of sentences is categorical if

any two normal interpretations of the set are isomorphic.

For brief but careful formulations of this concept see

Carnap(2), pp. 173—174, Church, pp. 317—332, and Mendelson,

pp. 90-91. An interpretation is normal if it assigns the

identity relation of its universe to ' ='. The isomorphism

of two interpretations (not to be confused with an isomor-

phism of their universes) can be explained as follows. Let

. . , and c be the terms occurring in the members

0} aCget of sentences S. Consider two interpretations Of

S; I in the universe U and I* in the universe U*. Then I

and I* are isomorphic interpretations of S if there is a

function L which establishes an isomorphism between U and U*

such that: for any c (1 < i < m), x, ., and Xn’

(i) if 01 is an absolute term,then Xeext(c:7 under I if

and only if f(x)eext(ci ) under I*, and (ii) if c is a rela-

tive term, then <xl,x .. >eext(c ) under I ii and only

if <f(xl ), f(x2 ),... fgxn )>cext(ci ) under 1*
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precisely the meaning of the concepts contained in it."3

We must also agree with Carnap when he makes what seems to

be the inverse claim that a categorical axiom system

"specifies all the structural properties of its possible

models."Ll There can be no doubt that Tarski's complete-

ness of concepts is one (important) kind of completeness.

But I do not think that it is the kind of completeness we

want to speak of as expressive completeness. I have two
 

reasons.

First, Tarski's concept is applicable to uninter-

preted sets of sentences. But sentences of such sets do

not express any thing. Thus it seems imprOper to speak

of sets of these sentences as being expressively complete.

An Obvious, if inadequate, rejoinder is that sets of sen-

tences which satisfy Tarski's conditions need only satisfy

one further condition to be expressively complete. That

condition is that they be interpreted. Thus, one might

argue, if Tarski has not explicated expressive complete-

ness, he has come very near to doing so. My second reason

shows that this line of thought is mistaken.

If we may speak loosely, and use the terminology Of

Copi, a language (or theory) is not expressively complete

unless it has the apparatus to express all the propositions

about its subject matter. But Tarski has shown that there

 

3Tarski(l), p. 311.

”Carnap(2), p. 174.
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are postulate sets for the real numbers which are complete

5
with respect to their specific terms. Relative to such

systems, as is well known, there are real numbers which

cannot be designated. If n is such a real number, then

that (Ex)x=r is a proposition which cannot be expressed

within the system. Thus the language system cannot be

expressively complete. Hence, eXpressive completeness and

completeness with respect to concepts are distinct.

Let me remind the reader that Tarski's analysis is

not being criticized as being inadequate or unimportant.

My point is simply that it is not an adequate analysis Of

expressive completeness. And, so far as I know, Tarski

has never claimed that it is.

It has been noted that the two analyses are con-

cerned with different kinds of systems. Tarski is pri-

marily concerned with nnLnn systems (though his concept

is applicable to sets of sentences). Expressive complete-

ness, however, was understood to be applicable only to

language systems. And as was suggested earlier6 only

those axiom systems which are interpreted are to be regarded

as languages, and only those languages with axioms are to

be regarded as axiom systems.

We have seen that an interpreted axiom system which

is complete with respect to its specific terms need not be

 

5Tarski(l), pp. 313-31u.

6Section 1.
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expressively complete. It is quite natural at this point

to inquire whether the converse holds, that is, whether an

expressively complete axiom system is always complete with

respect to its specific terms. It should be clear that this

is not the case. Whether an axiom system is expressively

complete is independent Of the character of its axioms.7

There is no logical restriction governing which of a

system's sentences one selects as its axioms. A system's

axioms may be as meager and uncategorical as one chooses.

But even if the converse does not hold we can

establish the following, somewhat related, claim.

(1) If L is expressively complete, then there is

an L' such that (i) L and L' are equivalent

in expressive power, and (ii) there is a set x

of true sentences of L' such that X is complete

with respect to its specific terms.

In order to establish this it will be convenient to make

use of a theorem proved by Tarski.8

(2) If 2 is a monotransformable set of sentences,

then 2 is complete with respect to its specific

terms.9

Thus, to establish (1) it will suffice to show that:

 

70f. Sec. 1.

8Tarski(l), pp. 313-317.

9Roughly again, a set of sentences is monotrans-

formable if there is at most one way of establishing an

isomorphism between any two of its interpretations.
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If L is expressively complete, then there is an L'

such that (i) L and L' are equivalent in expressive

power, and (ii) there is a set, E, of true sentences

of L' such that 2 is monotransformable.

Let us suppose that L is an expressively complete

language. Then, by the reasoning of section 17, we know

that L has a finite primitive domain. Let al, a2, . . . ,

and an be the n distinct members of that finite domain.

Since L is expressively complete, L has referring expres-

sions, Al, A2, . . . , and An, whose extensions are

respectively {a1}, {a2}, . . . , and {an}. Let us now con-

sider another language, L'. As will be shortly evident,

L' is to have standard apparatus for quantification and

truth—functional combination. The only terms of L' are to

be '=', B , and Bn' '=' is to be understood as
1’ B2:

having the ordered pairs <al,al>, <a2,a >, , and

2

<an,an> as the members of its extension. Further, the

sentence '(x)x=x' is to be understood as true for L'.

Thus, L and L' are to have the same primitive domain. Each

B1 is to be explained in such a way that its extension is

{a1}. Reasoning in the manner of section 15, we see that

L' is expressively complete. Since L and L' have the same

primitive domain and are both expressively complete, (by

theorem 5 of section 14)

(i) L and L' are equivalent in expressive power.

It is clear that the following are true sentences

of L'.
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I (x)(le v B x v ... v an)
2

(Ex)[le . (y)(Bly + X=y)1

(Ex)[82x - (y)(82y + X=y)1

II .

(Ex)[an . <y><Bny + x=y>1

(x)[le + (mB2x . mB3x . ... . man)]

(x)[B2x + (mle . mB3x . ... . man)]

III .

(x)[an + (mle . NB2x . ... . mBn_lx)]

Let X be the set of these sentences. Suppose, now, that

we have two normal interpretations Of Z, I and 1*. If

these interpretations render the sentences of S true,

they are interpretations in nfmembered universes (or prim-

itive domains), say, U and U* respectively. Let 81 be the

subset of U which is assigned (as extension) to Bi under I.

Similarly, let 8* be the subset of U* which is assigned
1

s
to Bi under I . Clearly, Bi 1

is guaranteed by Group II above. Also, Bj=Bk if, and only

szk’ and BJ.=Bk if, and only if, 8*j=8*k. This is

guaranteed by Group III above. Think now Of bi as the

as the sole member of 8*

and 8* are unit sets. This

if B

sole member of 81 and b* It
i i'

is Obvious at this point that if a relation is to estab-

lish an isomorphism between I and 1*, it can do so only by

pairing bi with b*i. Thus there is only one way of

establishing an isomorphism between I and I*. That is,
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Z is monotransformable. Thus,

(ii) There is a set, 2, of true sentences of L'

such that E is monotransformable.

This completes the proof of (3) and therewith the proof

of (1).

It is perhaps Of interest to Observe that just as

the reasoning of section 15 shows how to construct an

expressively complete language for a finite universe, so

the above reasoning shows how to construct a complete

theory for a finite universe.lo But there can be little

comfort in this. For just as the language prescribed is

cumbersome and unwieldy,so the theory prescribed is in-

elegant and complex. It has, after all, more primitive

terms and more primitive sentences than there are

entities in its universe.ll

 

loCompleteness, here, can be understood either as

completeness with respect to specific terms or monotrans-

formability. Tarski mentions as unsolved the problem

whether only monotransformable sets Of sentences are

complete with respect to their specific terms, i.e.,

whether the converse of (2) holds.

11We can, of course, take a conjunction Of sentences

in Z and trivially reduce the number Of axioms to one.

(Though this may require the addition of a new rule of

inference.) A more genuine economy is effected simply by

omitting any one (but not more than one) of the sentences

in group III.
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A1

A2

A3

AXIOMS

Ext(L,y,x).Ext(L,z,x).+ y=z

RelRefExp(L,x) + (Ey)Ext(L,y,x)

RelRefExp(L,x).y=ext(L,x):+ (En)(u)[uey + (Ev)

(Ordn-ad(u,v).vCPrimDom(L))]
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D1

D2

D3

D4

D5

D5'

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

DEFINITIONS

RefExp(L,x) ++ (Ey)Ext(L,y,x)

...ext(L,x)... ++ (EY)(Ext(L,y,x)....y...)

Exten(L,x) ++ (Ey)Ext(L,x,y)

<x,y> = {{x},{x,y}}

Ord2-ad(x,y) ++ (Eu)(Ev)(x=<u,v>.y={u,v})

Ordn—ad(x,y) ++ (Ex)(EY)(EZ)(Ordn-l-ad(x,y).

u=<z,x>.v=yu{z})

OrdPr(x) ++ (Ey)Ord2-ad(x,y)

FirstCoord(x,y) ++ (Eu)(Ev)(y=<u,v>.x=u)

SecndCoord(x,y) ++ (Eu)(Ev)(y=<u,v>.x=v)

Ancestor(x,y) ++ (z)[yez.(u)(v)(uez.VEu.+ Vez).+ Xez]

AbsRefExp(L,x) ++. RefExp(L,x).NRelRefExp(L.x)

PrimDom(L)=X(Ey)(AbsRefExp(L,y).xeext(L,y))

PrimSel(L,x) ++ xcPrimDom(L)

AuxSel(L,x) ++ (En)(u)[uex + (Ev)(PrimSel(L,v).

Orda-ad(u,V))l

AuxDom(L)=XAuxSel(L,x)

Sel(L,x) ++. PrimSel(L,x) v AuxSel(L,x)

Dom(L)=XSel(L,x)

ExpComp(L) ++ (y)(Sel(L,y) + Exten(L,y))

ExplnComp(L) ++ «ExpComp(L)

ExpCompRel(Ll,L2) ++ (x)(Sel(L2,x) + Exten(Ll,x))

AsExpPow(Ll,L2) ++ (x)(Exten(L2,x) + Exten(Ll,x))

GrExpPow(Ll,L2) ++. AsExpPow(Ll,L2).mAsExpPow(L2,Ll)

LsExpPow(Ll,L2) ++ GrExpPow(L2,Ll)
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D23

D24

D25

D26
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EqupPow(Ll,L2) ++. AsExpPow(Ll,L2).AsExpPow(L2,Ll)

dom(x)=y{ycx v (En)(Eu)[uey + (Ev)(m:x.Ordn—ad(u,v))]}

ExpCompResp(L,x) ++ (y)(yedom(x) + Ext(L,y))

UniverExpComp(L) ++. ExpComp(L).(x)x£PrimDom(L)



T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

T21

T22*

T23*

T24

T25

THEOREMS

RefExp(L,x) e»(Ey)EExt(L,y,x).(z)(Ext(L,z,x) + z=y)]

RefExp(L,x)‘++(Ez)z=ext(L,x)

RelRefExp(L,x) + RefExp(L,x)

RelRefExp(L,x) + (Ex)y=ext(L,x)

AbsRefExp(L,x) + (Ey)y=ext(L,x)

RefExp(L,x) ++. AbsRefExp(L,x) v RelRefExp(L,x)

(Ey)Ext(L,y,x) ++. AbsRefExp(L,x) v RelRefExp(L,x)

XePrimDom(L) ++ (Ey)(AbsRefExp(L,y).xeext(L,y))

RelRefExp(L,x).yeext(L,x) +. (En)(Eu){Ordn-ad(y,y).

(z)[zeu + (Ew)(AbsRefExp(L,w).zEext(L,w)))]}

AbsRefExp(L,y).x=ext(L,y) .+ PrimSel(L,x)

RelRefExp(L,x) + AuxSel(L,ext(L,x))

XeAuxDom(L) ++ AuxSel(L,x)

RelRefExp(L,x) + ext(L,x)eAuxDom(L)

RefExp(L,x).y=ext(L,x) .+ Sel(L,y)

XeDom(L) ++ Sel(L,x)

RefExp(L,x).y=ext(L,x) .+ yeDom(L)

Exten(L,x) + Sel(L,x)

Exten(L,x) + XeDom(L)

AuxDom(Ll)=AuxDom(L2) + PrimDom(Ll)=PrimDom(L2)

AuxDom(Ll)=AuxDom(L2) ++ PrimDom(Ll)=PrimDom(L2)

PrimDom(Ll)=PrimDom(L2) + Dom(Ll)=Dom(L2)

Dom(Ll)=Dom(L2) + PrimDom(Ll)=PrimDom(L2)

PrimDom(Ll)=PrimDom(L2) ++ Dom(Ll)=Dom(L2)

ExpComp(L) ++ (y)(Sel(L,y) ++ Exten(L,y))

ExpComp(L) ++ (y)(yeDom(L) ++ Exten(L,y))
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T26

T27

T28

T29

T30

T31

T32

T33

T34

T35

T36

T37

T38

T39

T40

T41

T42

T43

T44

T45

95

EprnComp(L) ++ (Ey)(Sel(L,y).mExten(L,y))

EprnComp(L) ++ (Ey)(yeDom(L).mExten(L,y))

ExpCompRel(Ll,L2).ExpCompRel(Ll,L2) .+

ExpCompRel(Ll,L3)

ExpCompRel(Ll,L2).ExpCompRel(L2,Ll) .+.

ExpComp(Ll).ExpCOmp(L2)

ExpCompRel(Ll,L2).ExpCompRel(L2,Ll) .++

ExpComp(Ll).ExpComp(L2).Dom(Ll)=Dom(L2)

ExpComp(L) +» ExpCompRel(L,L)

AsExpPow(Ll,L2).AsExpPow(L2,L ) .+ AsExpPow(Ll,L3)

3

AsExpPow(L,L)

Dom(Ll)cDom(L2).ExpComp(L2).AsExpPow(Ll,L2) .+

ExpComp(Ll)

GrExpPow(Ll,L2).GrExpPow(L2,L3) .+ GrnxpPow(Ll,L3)

mGrExpPow(L,L)

GrExpPow(Ll,L2)->%GrExpPow(L2,Ll)

Dom(Ll)CDom(L2).GrExpPow(Ll,L2) .+ EprnComp(L2)

LsExpPow(Ll,L2).LsExpPow(L2,L3) .+ LsExpPow(Ll,L3)

mLsExpPow (L,L)

LsExpPow(Ll,L2) + mLsExpPow(L2,Ll)

Y. 1) P
EqupPow(Ll,L2).EqupPow(L2,L3) . Equp ow(Ll,L3)

EqupPow(L,L)

EqupPow(Ll,L2) + EqupPOw(L2,Ll)

Dom(Ll)=Dom(L2).EqupPow(Ll,L2) .+. ExpComp(Ll) ++

ExpComp(L2)



T46

T47

T48*

T49*

T50*

T51*

T52*

T53*

T54*

T55

T56

T57

T58

T59
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Dom(Ll)=Dom(L2).EqupPow(Ll,L2) .+. ExplnComp(Ll) ++

EprnComp(L2)

EqupPow(Ll,L2) + (x)(Exten(Ll,x) ++ Exten(L2,x))

EqupPow(Ll,L2) + (x)(Sel(Ll,x) ++ Sel(L2,x))

EqupPow(Ll,L2) + Dom(Ll)=Dom(L2)

EqupPow(Ll,L2) ++ (x)(Exten(L2,x) «+ Exten(Ll,x))

EqupPOw(Ll,L2).ExpComp(L2) .+ ExpComp(Ll)

EqupPow(Ll,L2).EprnComp(L2) .+ EprnComp(Ll)

ExpComp(Ll).ExpCOmp(L2) .+. EqupPow(Ll,L2) ++

(x)(Se1(Ll,x) ++ Sel(L2,x)

ExpComp(Ll).ExpComp(L2) .+. EqupPow(Ll,L2) ++

Dom(Ll)=Dom(L2)

ExpCompResp(L,PrimDom(L)) ++ ExpComp(L)

ExpComp(L) ++ (x)(PrimSel(L,x) + ExpCompResp(L,x))

ExpCompResp(L,x) ++ (y)(yex + ExpCompResp(L,y))

(Ex)(L)[(Ey)RefExp(L,y) + ExpCompResp(L,x)]

mUniverExpComp(L)
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