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ABSTRACT

THEOREMS OF BARTH-LEFSCHETZ TYPE AND MORSE THEORY ON
THE SPACE OF PATHS IN HOMOGENEOUS SPACES

By

Chaitanya Senapathi

Homotopy connectedness theorems for complex submanifolds of homogeneous spaces

(sometimes referred to as theorems of Barth-Lefshetz type) have been established by a num-

ber of authors. Morse Theory on the space of paths lead to an elegant proof of homotopy

connectedness theorems for complex submanifolds of Hermitian symmetric spaces. In this

work we extend this proof to a larger class of compact complex manifolds namely quotients

of complex orthogonal, unitary groups and exceptional groups.
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Chapter 1

Introduction

In the 1920s Lefschetz [Le] stated the following theorem now known as the Lefschetz

theorem on hyperplane sections. Let H ⊂ Pv be a connected complex submanifold of

complex dimension n. Let H be a hyperplane and N ∩ H be a non singular hyperplane

section. Then the relative cohomology groups satisfy:

Hj(N,N ∩H,C) = 0 j 6 n− 1

Fifty years later Barth [B] generalized Lefschetz’ theorem: Let M,N ∈ Pv be complex

submanifolds of complex dimensions m,n respectively. If M and N meet properly, then

Hj(N,N ∩M) = 0 , j ≤ min(n+m− v; 2m− v + 1).

Generalizations of Barth's results to homotopy groups were first obtained by Larsen [La],

Barth-Larsen [B-L] and later by Sommese. Sommese [S1][S2] and Goldstein [G] generalized

these results to submanifolds of generalized flag manifolds, i.e manifolds of the form Gc/P

where Gc is a semi-simple complex Lie group and P a parabolic subgroup.

In 1961 T. Frankel [F] proved a connectedness theorem for complex submanifolds of a

Kähler manifold of positive holomorphic sectional curvature: Let V be a complete Kähler

manifold of positive holomorphic sectional curvature and of complex dimension v. Let
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M,N ⊂ V be compact complex submanifolds of dimensions m and n, respectively. If m+n ≥

v then M and N must intersect. Later [K-W]and [S-W] expanded on this idea to prove

the Barth-Lefschetz theorems on a class of generalized flag manifolds, namely Hermitian

Symmetric Spaces and hence reproduced the results of [S1], [S2] and [G].

In this thesis we extend the theorem of [S-W] and [K-W] to a larger class of generalized

flag manifolds. In the main theorem of the work we deal with the case when Gc is simple

and later, state how to deal with the semisimple case.

Theorem 1.1. Let Gc be a simple complex Lie group and P be a parabolic subgroup. Let

V be the complex homogeneous space Gc/P with dimension v. Let M,N ⊂ V be compact

complex submanifolds dimension m and n respectively. Then there exists a number ` and a

number λ0 = m+ n− (v − `)− v such that

ι∗ : πj(N,N ∩M)→ πj(V,M)

is an isomorphism for j ≤ λ0 and a surjection for j = λ0 + 1.

(i) If Gc = SLr+1(C) then ` = r

(ii) If Gc = SO2r(C) then ` = 2r − 3

(iii) If Gc = SO2r+1(C) then ` = 2r − 2

(iv) If Gc = Spr(C) then ` = r

(v) If Gc = E6 ,E7 ,E8 then ` = 11, 17 and 29 respectively

(vi) If Gc = F4 the ` = 8

(vii) If Gc = G2 the ` = 3
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Corollary 1.2. Suppose that V,M, and N satisfy the same hypotheses as Theorem 1.1 and

` remains the same then

(a) If j ≤ 2m− v − (v − `) + 1 then πj(V,M) = 0

(b) If j ≤ min(2m− v − (v − `) + 1, n+m− v − (v − `)) then

πj(N,N ∩M) = 0

In part (iii) of Theorem 1.1, the case where Gc = SO2r+1(C) and P is the parabolic

corresponding to the painted Dynkin diagram with all long roots painted, the result can be

improved. By a Theorem of [O] the corresponding homogeneous space can be written in the

form SO2r+2(C)/P where P is a parabolic subgroup of SO2r+2(C), in this case ` can be

improved to 2r − 1.

Also the case Gc = Spr(C) and for a special type of parabolic subgroup P , Gc/P is

biholomorphic to CP2r−1 ([O]) so the number ` can be improved to 2r − 1. The parabolic

P is a maximal parabolic containing a copy of Spr−1(C).

The results obtained from Theorem 1.1 also follow from the work of [S1] ,[S2] and [G].

In [S1] and [S2] Sommese shows that the number ` can be replaced by the co-ampleness of

the respective homogeneous space, and in [G] the co-ampleness of the respective spaces are

calculated. In the case where Gc = Spr(C), F4 or G2 and P is a parabolic such that the

corresponding painted Dynkin diagram contains a long root, the approach of [S1] ,[S2] and

[G] leads to stronger results. All other cases treated in this work, the results are same as

those obtained in [S1], [S2] and [G]. To prove these connectedness Theorems [S1] and [S2]

apply Morse Theory locally on the ambient space but in this work we apply Morse theory

on the space of paths following the work of [F],[S-W],[K-W],[N-W],[C],[FM] and [W].
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The basic idea of [S-W] and [K-W] is to demonstrate that the index of the critical points

in the space of paths joining two submanifolds has the appropriate index for a chosen Morse

function. The Morse function that they choose on the space of paths is the energy function

with respect to the Kähler metric. To compute a lower bound of the index at the critical

points, variational vector fields are constructed along these geodesics and used in the second

variation formula.

In this work we generalize the idea of [S-W] and [K-W]. Their argument cannot be gen-

eralized to non-symmetric homogeneous spaces as [M1] has shown that other homogeneous

spaces that are not covers of products of Hermitian Symmetric Spaces don't posses Kähler

metrics with non-negative curvature. But complex Gc/P , being a quotient of a compact Lie

group, does posses a metric induced by the standard bi-invariant metric of the compact Lie

group. This metric, which is commonly referred to as the 'normal metric' is what we use

in this paper. This metric has non-negative curvature and is Kähler only in the case of a

Hermitian Symmetric Space. Using this metric allows us to naturally generalize the work of

[S-W] and [K-W].

Using the canonical connection we construct a new connection referred here as the

complex-hat connection. We use this connection to form variational vector fields along

geodesics. This connection is invariant and is compatible with the complex structure. The

connection is also amenable towards the root structure, as a result most of the computa-

tions follow naturally. We also use certain types of linear combinations of these variational

vector fields and show the existence of a quaternionic structure on the linear combinations.

To demonstrate a lower bound on the index, we take an average using this quaternionic

structure.

An outline of this thesis is as follows. In Chapter 2 we review Morse theory on the space
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of paths and its relation to homotopy theory. In Chapter 3 we review the basic properties

of reductive homogeneous spaces. In Chapter 4 we construct the complex-hat connection,

describe its properties, and describe its relation with the second variation formula. In Chap-

ter 5 we establish a lower bound on the index of geodesics in terms on an invariant of a Lie

algebra. In the final Chapter we compute this invariant, thereby proving Theorem 1.1.
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Chapter 2

Morse Theory and Homotopy groups

In this chapter we follow [S-W] and talk about Morse Theory on the space of paths, and

relate the index of geodesics with the vanishing of relative homotopy groups.

2.1 Morse Theory

Let V be a complete Riemannian manifold and let M and N be closed submanifolds with

M compact and N a closed subset of V. We let P (V ;M,N) denote the set of continuous

paths γ : [0; 1]→ V such that γ(0) ∈M and γ(1) ∈ N and let Ω(V ;M,N) denote the set of

piecewise smooth paths. To learn about the topology of the path space P (V,M,N) it suffices

to look at the space Ω(V ;M,N), as the natural inclusion i∗ : Ω(V ;M,N)→ P (V ;M,N) is

a homotopy equivalence [M]. To study the topology of Ω(V ;M,N) we use a Morse function

following [M]. We will denote Ω(V ;M,N) by simply Ω.

In [M], Milnor approximates the path space by finite-dimensional manifolds and employs

techniques from finite-dimensional Morse Theory. However the problem that Milnor deals

with is Ω(V ; p, q), but the proofs given in [M] apply to the general case with only minor

changes that can easily be made. Accordingly, in this section, we will describe the general

set-up, state the results we will need and give the appropriate references to [M].

The set Ω(V ;M,N) can be topologized as follows. Let ρ denote the Riemannian distance

function on V . Let γ1, γ2 ∈ Ω(V ;M,N). Define the distance d(γ1, γ2) by :
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d(γ1, γ2) = max
0≤t≤1

ρ(γ1(t), γ2(t)) +

∫ 1

0
(|γ̇1(t)| − |γ̇2(t)|)2dt

The energy of a path, given by

E(γ) =

∫ 1

0
|γ̇(t))|2dt,

defines a continuous map from Ω(V ;M,N)→ R.

Define the 'tangent space' of Ω at γ, TγΩ, to be the vector space of piecewise smooth

vector fields W along γ such that W (0) ∈ Tγ(0)Ω and W (1) ∈ Tγ(1)Ω. A standard compu-

tation in [C-E] shows that the first variation of E in the direction of W ∈ TγΩ is given by

:

1

2
E∗(W ) = 〈W, γ̇〉|10 −

∑
t

〈W (t),∆tγ̇〉 −
∫ 1

0
〈W, Dγ̇

dt
〉dt

where ∆tγ̇ = γ̇(t+)− γ̇(t−), is the discontinuity of γ̇ at t. It follows that γ is a critical point

of E if :

(a) γ is a smooth geodesic.

(b) γ is normal to M and N at γ(0) and γ(1) , respectively.

Let W1,W2 ∈ TγΩ. If γ is a critical point of E then the second variation of E along γ, is

given by:

1

2
E∗∗(W1,W2) =

∑
t

〈W2(t),∆t
DW1
dt
〉 −

∫ 1

0
〈W2,

D2W1

dt2
+R(γ̇,W1)γ̇〉 (2.1)

Let Ωc denote the closed subset E−1([0, c]) ⊂ Ω and let Ω∗c denote the open subset

E−1([0, c)). We construct a finite dimensional approximation of Ωc. Choose some subdivi-
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sion 0 = t0 < t1 < ...... < tk = 1 of [0, 1]. Let Ω(t0, .....tk) be the subspace of Ω consisting

of paths γ : [0, 1]→ V such that :

(a) γ(0) ∈M and γ(1) ∈ N

(b) γ|[ti−1,ti
] is a geodesic for each i = 1, .....k

Define the subspace Ω∗c(t0, .....tk) = Ω∗c ∩ Ω(t0, ....., tk)

Theorem 2.1. Let V be a complete Riemannian manifold and let M and N be sub-manifolds

with M compact and N a closed subset of V . Let c be a fixed positive number such that

Ωc 6= φ. Then for all sufficiently fine subdivisions 0 = t0 < t1 < ......tk = 1 of [0, 1] the set

Ω∗c(t0, .....tk) can be given the structure of a smooth finite dimensional manifold.

Proof. [M] Sect 16.

Denote the manifold Ω∗(t0, ....tk), of broken geodesics by B. Let E' : B → R denote the

restriction to B of the energy function.

Theorem 2.2. E′ : B → R is a smooth map. For each a < c the set BA = (EB)−1([0, a]) is

compact and is a deformation retract of the set Ωa. The critical points of E′ are precisely the

same as the critical points of E in Ω∗c , that is the smooth geodesics from M to N , intersecting

M and N orthogonally, and with energy less than c. The index of the hessian of E′ at each

such critical point γ is equal to the index of E∗∗ at γ.

Proof. [M] Sect. 14 and Sect 16.

Now suppose that every nontrivial critical point γ of E on Ω has index λ > λ0 ≥ 0 .

We remark that this implies that N ∩M 6= ∅, otherwise there exists a nontrivial minimizing
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geodesic from M to N and the index of such a geodesic must be zero. It follows that if every

nontrivial critical point γ on Ω has index λ > λ0 ≥ 0 then the space Ω0 of minimal (i.e

trivial ) geodesics can be identified with the subspace N ∩M ⊂ Ω.

Proposition 2.3. Suppose N intersects M transversely and that every non-trivial critical

point of E on Ω has index λ > λ0 ≥ 0. Then the relative homotopy groups πj(Ω,Ω0) are

zero for 0 ≤ j ≤ λ0

The essential element in the proof of the proposition is the following simple lemma whose

proof can be found in [M], about functions on finite-dimensional manifolds. Let X be a

smooth manifold and f : X → R be a smooth real-valued function with minimum value 0

such that each Xc = f−1([0, c]) is compact.

Lemma 2.4. If the set X0 of minimal points has a neighborhood U with retraction r : U →

X0 and if every critical point in X\X0 has index > λ0 then

πj(X,X0) = 0 for 0 ≤ j ≤ λ0

For the proof of Proposition 2.3 we refer back to [S-W].

2.2 Homotopy Theory and Index

In this section we will apply Morse Theory to the path spaces Ω(V ;M,N), in the spirit of

[S-W]. Here we cite Theorem 1.5 of [S-W] which is an improvement of Proposition 2.3. The

assumption of transversality is dropped.

Theorem 2.5. Let V be a complete complex manifold. Let M,N ⊂ V be closed complex

submanifolds and suppose that M is compact and N is a closed subset of V . If every nontrivial
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critical point of E on Ω has index λ > λ0 ≥ 0, then the relative homotopy groups πj(Ω,Ω0) =

0 for 0 ≤ j ≤ λ0.

As we can identify Ω0 with M ∩ N we have πj(Ω,M ∩ N) = 0 for 0 < j < λ0. This

observation, along with the long exact sequence of the pair (Ω, N ∩ M) implies that the

homomorphism induced by the inclusion:

ι∗ : πj(N ∩M)→ πj(Ω) (2.2)

is an isomorphism when j < λ0 and is a surjection j = λ0.

Now consider the fibration

Ω(V ;M,x)→ Ω(V ;M,N)
e−→ N

where e is the evaluation map e : γ → γ(1) and x ∈ N . The long exact homotopy sequence

of the fibration is:

...πj+1(N)→ πj(Ω(V ;M,x))→ πj(Ω)
e∗−−→ πj(N)→ πj−1(Ω(V ;M,x))... (2.3)

It is well known that the homotopy groups of the fiber Ω(V ;M,x) satisfy.

πj(Ω(V ;M,x)) ' πj+1(V,M) (2.4)

for all j and hence the sequence (2.3) becomes

...πj+1(N)→ πj+1(V,M)→ πj(Ω)
e∗−−→ πj(N)→ πj(V,M)... (2.5)
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Theorem 2.6. Let V be a complete complex manifold. Let M,N ⊂ V be complex subman-

ifolds and suppose that M is compact and N is a closed subset of V . If every nontrivial

critical point of E on Ω has index λ > λ0 ≥ 0, then the homomorphism induced by the

inclusion.

ι∗ : πj(N,N ∩M)→ πj(V,M)

is an isomorphism for j ≤ λ0 and a surjection for j = λ0 + 1.

Proof. Consider the following diagram :

...πj+1(N) πj+1(V,M) πj(Ω) πj(N) πj(V,M)...

...πj+1(N) πj+1(N,N ∩M) πj(N ∩M) πj(N) πj(N,N ∩M)..

' '

The first horizontal line is just equation 2.5, the second is the long exact sequence for the

pair (N,N ∩M) and the vertical arrows are the inclusion maps. For j < λ0 the middle map

is an isomorphism (2.2) and hence by the five lemma ι∗ : πj(N,N ∩M) → πj(V,M) is an

isomorphism. For j = λ (2.2) is onto so the corresponding map is onto via the five lemma.
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Chapter 3

Homogeneous Spaces

In this Chapter we introduce and set up notation to objects associated to compact com-

plex homogeneous spaces, including the canonical connection and the Levi-Civita connection.

The canonical connection associated to a reductive homogeneous space is well known. The

construction of this connection can be found in [K]. Here we describe an easier construction

of this connection. We also talk about the Levi-Civita connection of the normal metric

as well as briefly describe compact homogeneous spaces of the form Gc/P , where Gc is a

complex semi-simple Lie group and P is a parabolic subgroup.

3.1 Notation and Background

Let G be a compact Lie group with identity element e. We identify the Lie algebra g of G,

with the tangent space TeG at e.

Each element a ∈ G defines diffeomorphisms

La : G→ G by La(g) = ag (left translation)

Ra : G→ G by Ra(g) = ga (right translation)

Ca : G→ G by ca(g) = aga−1 (conjugation)

The adjoint map Ada : g→ g is the differential of the map Ca : G→ G at the identity.
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Since Ca1
◦ Ca2

= Ca1a2
that gives us a representation of G on the vector space g. Which

we denote by the following map Ad : G→ GL(g)

After taking the derivative, we get the adjoint representation ad : g → gl(g) of the lie

algebra which is given by ad(X)Y = [X, Y ] ∀ X, Y ∈ g. We denote the exponential map

by exp : g → G. So if t ∈ R, X ∈ g the map t → exp(tX) is the unique one parameter

subgroup whose tangent vector at t = 0 is X. Let 〈·, ·〉 be a bi-invariant metric on G. This

implies that

〈X, [Y, Z]〉e = 〈[X, Y ], Z〉e for all X, Y, Z ∈ g (3.1)

Let K ⊆ G be a closed connected subgroup of G and with Lie algebra k then M = G/K

is naturally a differentiable manifold. Let π : G → G/K be the canonical projection map.

If g ∈ G we denote its image in G/K by ḡ or gK depending on the situation. Let a ∈ G

we define the following map La : G/K → G/K by La(gK) = agK. It is obvious that

La ◦ π = π ◦ La

Definition 1. A reductive homogeneous space is a homogeneous space with a decomposition

g = k⊕m such that Ad∣∣K(m) ⊆ m.

Let m = k⊥, clearly g = k ⊕m. The bi-invariance of the metric implies that the metric

is Adg-invariant ∀g ∈ G, in particular it is Adk invariant ∀k ∈ K, which along with the

orthogonality of m with k implies that Ad∣∣K(m) ⊆ m. So g = k ⊕ m makes G/K into a

reductive homogeneous space.

As π∗m = TēG/K, this implies that in a reductive homogeneous space we can identify

m with TēG/K. With this identification we can show how left translation is the same as

pushing forward the adjoint map.
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Proposition 3.1.

π∗Adk(X) = Lk∗X ∀X ∈ m,∀k ∈ K

Proof. This follows from

π∗Adk(X) = π∗Lk∗Rk−1∗X

= Lk∗π∗Rk−1∗X

= Lk∗π∗X

= Lk∗X

The isotropy representation of the group K, AdG/K : K → GL(TeG/K) is defined by

AdG/K(k)(X) = Lk∗(X) ∀X ∈ Tē(G/K)

Let ω ∈ Λr(TG/K) be a covariant vector valued r-tensor. Then ω is G-invariant if

La∗ωḡ(X1, X2, .....Xr) = ωāg(Lg∗X1, Lg∗X2.......Lg∗Xr) ∀Xi ∈ TḡG/K for i = 1, 2....r

Likewise ω ∈ ΛrTēG/K is AdG/K invariant if

(AdG/K(k)ωē(X1, X2, .....Xr) = ωē(Ad
G/K(k)(X1), ......., AdG/K(k)(Xr)) ∀k ∈ K

We have similar definitions for real valued tensors. The next proposition follows from

Proposition 3.1
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Proposition 3.2. If ω ∈ ΛrTēG/K is AdG/K invariant then ω can be extended to a G

invariant r-tensor.

Restrict 〈·, ·〉e to m. Then the restricted metric is AdG/K invariant since 〈·, ·〉e is AdG-

invariant. Thus we have a G invariant metric 〈·, ·〉∣∣G/K on the whole of G/K, which turns

out to be nothing but the push forward of the metric 〈·, ·〉 on G.

We give some important examples of invariant tensors. Let X, Y ∈ m, lets denote the m

and k component of the bracket by [X, Y ]m and [X, Y ]k respectively. As Ad(g) commutes

with the Lie bracket ∀g ∈ G and the fact that the decomposition m
⊕

k is reductive, we

have the following

AdG(k)[X, Y ]m = [AdG(k)X,AdG(k)Y ]m (3.2)

AdG(k)[X, Y ]k = [AdG(k)X,AdG(k)Y ]k (3.3)

From the first equality we have that [·, ·]m is AdG/K invariant (2, 1) tensor. From the

second equality and the fact that the metric 〈·, ·〉∣∣G/K is invariant under K, we have that

that |[X, Y ]k |2 is AdG/K(k) invariant real valued tensor.

Definition 2. [·, ·]m and |[·, ·]k|2 will represent the global tensors obtained by extending the

AdG/K invariant tensors [·, ·]m and |[·, ·]k|2 to G/K.

We now mention a very important property of the bracket tensor [·, ·]m

〈[X, Y ]m, Z〉 = 〈X, [Y, Z]m〉 for all X, Y, Z ∈ TgK(G/K) (3.4)

This property just follows from (3.1). We will refer to this property as 'associativity of the
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bracket'.

3.2 The canonical connection

In this section we assume G/K is a reductive homogeneous space, with the decomposition

g = k ⊕ m. We will define and describe the basic properties of the canonical connection of

a reductive homogeneous space.

Consider G as a fiber bundle over the left-coset space G/K with structure group K. The

action of K on G is right multiplication. The group G itself acts on the fiber bundle; this

action clearly commutes with the projection map and the action of K.

We define a G-invariant connection on the principle bundle G. We set the horizontal

space at the identity to be the space m and to be Lg∗m at g. This defines a horizontal

distribution. To show that this distribution is a connection we have to show compatibility

with the right action:

Rk∗Lg∗m = Lg∗Rk∗m

= Lg∗Lk∗L
−1
k∗ Rk∗m

= L(gk)∗Ad
G/K(k−1)∗m

= Lgk∗m

Let θ : G× m→ T (G/K) is defined by θ(g ×X) = Lg∗X ∈ Tg(G/K). Let φ : T (G/K)→

G/K denote the projection map and π' : G × m → (G/K) be the natural projection map.

Then clearly φ ◦ θ = π′.
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Define an equivalence relation '∼' on G×m by

(g ×X) ∼ (gk × L−1
k∗ X) ∀k ∈ K

Now θ clearly factors through the quotient space (G×m)/∼ so we have the quotient map

θ̃ : (G×m)/ ∼→ T (G/K)

θ̃ is clearly one-one, onto and fiber preserving, making θ̃ an isomorphisms of vector bundles.

With this connection on the principle bundle G we have a notion of parallel transport

along a curve γ : [0, 1] → G/K as follows. Let u0 ∈ π−1(γ(0)) and let ut denote the

horizontal lift of γ starting at u0, then the parallel transport of u0 from γ(0) to γ(t) is

simply ut.

On the space (G × m)/ ∼ there is a notion of parallel transport (as in section 7 ch2 of

[K])that derives from the notion of parallel transport on the principle bundle G. Let [(u0, X)]

represent the equivalence class containing(u0, X). The parallel transport of [(u0, X)] along

γ, from γ(0) to γ(t) will just be [(ut, X)]. This is independent of the choice of representative

[(u0, X)].

As we can identify (G×m)/ ∼ with T (G/K) we can talk about the parallel translation

of X ∈ Tγ(0)G/K along γ. By this identification [(u0, L
−1
u0∗X)] can be identified with X, so

the parallel translation of X will be Lut∗L
−1
u0∗X.

Let τh0 : φ−1(γ0)→ φ−1(γh) denotes the parallel translation along γ from γ(0) to γ(h),

and let τ0
h denote the inverse map. With this notion of parallel transport on T (G/K) we

can find a linear connection which has parallel transport coinciding with this (as in sec 1 ch
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3 of [K]), as follows.

Define

∇γ̇(0)X = lim
h→0

1

h
[τ0
h(X(γh))−X(γ0)]

This linear connection will also be called the canonical connection and will be denoted

by ∇. The above discussion can be summarized in the following proposition.

Proposition 3.3. The parallel transport of X ∈ Tγ(0)G/K with respect to the canonical

connection along a curve γ is given by left translation of some element of G. More precisely

τh0 (X) = Lut∗L
−1
u0∗X where ut is any horizontal lift of γ

Now for a few applications of this proposition. Let γX(t) be the integral curve to the

vector field X̂ in G starting at the identity. Where X̂ is the left-invariant vector field

generated by X.

Theorem 3.4. π(γX(t)) is a geodesic with respect to the canonical connection and all

geodesics are of this form or a translate of it.

Proof. To show that π(γX(t)) is a geodesic with respect to the canonical connection, it

suffices to show that the tangent vector field on the curve is itself parallel. From the

above Theorem, the parallel transport of X ∈ TēG/K along π(γX(t)) will be LγX (t0)∗X ∈

TγX (t0)G/K. So the vector field LγX (t)∗X is a parallel vector field on π(γX(t)). But by

the construction of π(γX(t)) it is easy to see that this is in fact the tangent vector field on

the curve.

The second part of the Theorem follows from G-invariance of the connection.

Theorem 3.5. Every G-invariant tensor is parallel with respect to the canonical connection.
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Proof. This follows from Proposition 3.3 and the definition of G-invariant tensor.

Definition 3. For a vector field X on G/K define fX : G→ m by

fX(g) = L−1
g (X(π(g)).

Proposition 3.6. Let X be vector field on G/K, let γ(t) be a path in G/K, let ut be a

horizontal lift of γ(t) and denote γ(0) by Y and u′(0) by Y ∗. Then ∇Y X = Lu0∗(Y
∗(fX)).

Proof.

Lu0∗(Y
∗(fX)) = Lu0∗

{
lim
h→0

1

h
[fX(uh)− fX(u0)]

}
= Lu0∗

{
lim
h→0

1

h
[L−1
uh∗X(γh)− L−1

u0∗X(γ0)]

}
= lim
h→0

1

h
[Lu0∗L

−1
uh∗X(γh)−X(γ0)]

= lim
h→0

1

h
[τ0
h(X(γh)−X(γ0)]

= ∇Y X

Proposition 3.7. Suppose X, Y, Z are vector fields on G/K and X∗, Y ∗, Z∗ be the respec-

tive horizontal lifts, let T (X, Y ) and R(X, Y )Z denote the torsion and curvature on G/K

Then

(a) T (X, Y )(ḡ) = Lg∗(X∗(fY )− Y ∗(fX))− [X, Y ](g)

(b) R(X, Y )Z = Lg∗(X∗(Y ∗(fZ))− Y ∗(X∗(fZ))− h([X∗, Y ∗])(fZ)
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= Lg∗v([X∗, Y ∗](fZ))

where h() and v() denote the horizontal and vertical components of the vector

Proof. (a) follows from the definition of torsion and the Proposition .

(b) This follows from Proposition 3.6, the definition of curvature, and the fact that [X, Y ]∗ =

h([X∗, Y ∗])

Proposition 3.8. For the canonical connection

(a) T (X, Y ) = −[X, Y ]m

(b) R(X, Y )Z = −[[X, Y ]k, Z]m

Proof. (a) It suffices to prove it at ē as T (·, ·) and [·, ·]m are invariant tensors. For X, Y ∈ m

let X̃, Ỹ be right-invariant vector fields generated by X, Y in G. The right invariance

implies that pushing forward makes sense. So π∗X̃, π∗Ỹ are extensions of X, Y in G/K.

We will use these vector fields to show the first part.

Now

[π∗X̃, π∗Ỹ ] = π∗[X̃, Ỹ ]

= π∗(−̃[X, Y ])

= (−[X, Y ])m

so at the identity [π∗X̃, π∗Ỹ ] = −[X, Y ]m
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Now

f
π∗X̃

(g) = L−1
g (π∗X̃(ḡ))

= L−1
g (π∗Rg∗(X))

= π∗(ad(g−1)∗X)

Now as we are only calculating the value of the tensors at the identity, we will just note

that the horizontal lifts of X, Y at the identity is just X, Y itself. Now

Y ∗(e)(f
π∗X̃

(g)) = Y (π∗(ad(g−1)∗X))

=
d

dt
(π∗(ad(exp(−tY )∗X))

= π∗[−Y,X]

= [X, Y ]m

Similarly we have X(f
π∗Ỹ

(g)) = X(π∗(ad(g−1)∗Y ) = [Y,X]m

So combining the previous equations we get

T (X, Y ) = [Y,X]m − [X, Y ]m − [−X, Y ]m

= −[X, Y ]m

(b) Firstly let X̂, Ŷ denote the left invariant vector fields generated byX, Y inG. Notice that

v([h(·), h(·)]) is a tensor on G, so v([h(X∗), h(Y ∗)]) = v([h(X̂), h(Ŷ )]), where X∗, Y ∗

are horizontal lifts of any extensions of X, Y . As X̂, Ŷ are in fact horizontal vector fields,
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we have the following calculation.

v([h(X̂), h(Ŷ )] = v([(X̂), (Ŷ )])

= v([X, Y ])

= [X, Y ]k

From the above equations we get.

R(X, Y )Z = v([h(X∗), h(Y ∗)])(fZ))

= v([h(X̂), h(Ŷ )]

= [X, Y ]k(fZ)

= [X, Y ]k(π∗(ad(g−1)∗Z)

=
d

dt
(π∗(ad(exp(−t[X, Y ]k)∗Z))

= π∗[−[X, Y ]k , Z]

= [−[X, Y ]k , Z]m

Proposition 3.9. Let J be a G-invariant integrable complex structure on G/K. Then

a) ∇J = 0, where ∇ is the canonical connection.

b) [X, Y ]m + J [JX, Y ]m + J [X, JY ]m − [JX, JY ]m = 0

Proof. a) This follows from Proposition 3.5

b) Let X, Y be two vectors at some point, we extend the vector fields in a small neighbour-
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hood and compute the Nijenhuis tensor on the extension.

N(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

= ∇XY −∇Y X + [X, Y ]m + J∇JXY − J∇Y JX + J [X, Y ]m

+ J∇XJY −∇JY X + J [X, JY ]m −∇JXJY +∇JY JX − J [X, JY ]m

= [X, Y ]m + J [JX, Y ]m + J [X, JY ]m − [JX, JY ]m (3.5)

We have used the torsion of the canonical connection (Proposition 3.8)) and part (a)

of this proposition to do the calculation. Part (b) follows from this formula since the

Nijenhuis tensor is zero if and only if the complex structure is integrable.

3.3 The Levi-Civita Connection

We use the metric 〈·, ·〉 to decompose the Lie algebra g. This makes G/K into a reductive

homogeneous space. Whenever we refer to the canonical connection it will refer to the

connection from this decomposition hence forth. For the rest of this work we fix the metric

〈·, ·〉∣∣G/K on G/K and simply denote it by 〈·, ·〉.

Definition 4. We define a connection ∇̃ by

∇̃XY = ∇XY +
1

2
[X, Y ]m

Proposition 3.10. (a) ∇̃ is the Levi-Civita connection for the metric 〈·, ·〉.

(b) The geodesics of ∇̃ are the same as the geodesics of the canonical connection.
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Proof. (a) Since the torsion of the canonical connection is −[X, Y ]m, it is easy to show

that the connection ∇̃ has zero torsion. Compatibility with the metric follows from

compatibility of the metric with the canonical connection and the associativity of the

bracket (3.4).

(b) For a given path γ in G/K we have ∇̃γ̇ γ̇ = ∇γ̇ γ̇. The result now follows.

Proposition 3.11. The curvature of the metric is given by

〈R̄(X, Y )Y,X〉 =
1

4
〈[X, Y ]m, [X, Y ]m〉+ 〈[X, Y ]k, [X, Y ]k〉

Proof. Using Definition 4 and the fact that [·, ·] is an invariant tensor we have.

R̄(X, Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z

= ∇̃X(∇Y Z + 1
2 [Y, Z]m)− ∇̃Y (∇XZ + 1

2 [X,Z]m)− (∇[X,Y ]Z

+ 1
2 [[X, Y ], Z]m)

= R(X, Y )Z + 1
2(∇X [Y, Z]m −∇Y [X,Z]m − [[X, Y ], Z]m)

+ 1
2([X,∇Y Z]m − [Y,∇XZ]m) + 1

4([X, [Y, Z]m]m − [Y, [X,Z]m]m)

= R(X, Y )Z + 1
2([∇XY, Z]m − [∇Y X,Z]m − [[X, Y ], Z]m)

+ 1
4([X, [Y, Z]m]m − [Y, [X,Z]m]m)

Using the formulas for the torsion and curvature of the canonical connection (Proposition
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3.8), we have

R̄(X, Y )Z = R(X, Y )Z + 1
2([∇XY,−∇Y X − [X, Y ], Z]m) + 1

4([X, [Y, Z]m]m

− [Y, [X,Z]m]m)

= R(X, Y )Z + 1
2([−[X, Y ]m, Z]m) + 1

4([X, [Y, Z]m]m − [Y, [X,Z]m]m)

= [−[X, Y ]k , Z]m + 1
2([−[X, Y ]m, Z]m) + 1

4([X, [Y, Z]m]m − [Y, [X,Z]m]m)

The result now follows from the associativity of the bracket property (3.4).

3.4 Complex Gc/P

Let Gc be a complex semi-simple Lie group and let gC be the corresponding Lie algebra.

Let h be a Cartan subalgebra. Let ∆ ⊂ h∗ be the set of roots. Let V C
α = {E ∈ gC|[h,E] =

α(h)E} denote the root space corresponding to α. We also have the following decomposition

gC = h⊕
⊕
α∈∆ V C

α .

For a semi-simple Lie algebra gC the roots and root spaces satisfy the following properties.

If α is a root then so is −α. Each V C
α is one-dimensional. The root space satisfies an

important property [V C
α1
, V C
α2

] ⊂ V C
α1+α2

, the bracket is zero if α1 + α2 is not a root and

[V C
α1
, V C
α2

] ⊂ h if α1 + α2 = 0.

We can choose a base Σ ⊂ ∆ such that any element of ∆ can be uniquely written as an

integer linear combination of elements of Σ, such that all the co-efficients are either positive

or negative. A choice of such a set of roots Σ, are called simple roots. Let ∆+, ∆− be

the set of elements of ∆ that can be written as a positive / negative linear combinations

25



respectively. ∆+ and ∆− will be referred to as positive and negative roots.

We have an inner product on the Lie algebra gC namely the Killing form κ(·, ·). κ is

associative in the sense that κ([X, Y ], Z) = κ([X, [Y, Z]) for all X, Y, Z ∈ g. It also satisfies

the following properties κ(V C
α1
, V C
α2

) = 0 iff α1 + α2 6= 0 and κ(Vαi , h) = 0 for i = 1, 2,

αi ∈ ∆. This inner product restricted to h is non-degenerate giving us an identification of h

and h∗.

For a given root α we will denote its dual by tα. We also denote by hR the R linear span

of tα for α ∈ ∆+. κ(·, ·) is positive definite on hR. Let (·, ·) be the dual of κ. Define the

structure constants cα,β by [Eα, Eβ ] = cα,βEα+β . We state a Proposition from [H,sec 25]

Proposition 3.12. We can choose Eα ∈ V C
α such that

(a) cα,β = −cβ,α

(b) cα,β = −c−α,−β

(c) [Eα, E−α] = 2tα
(α,α)

Eα are called root vectors, such a choice of root vectors is called a Chevalley basis[H]. As a

consequence of this choice κ(Eα, E−α) > 0.

Let Σk ⊂ Σ and let ∆k be the set of all roots which can be written down as sums of

roots of Σk . Let ∆+
k = ∆k ∩∆+ and ∆−k = ∆k ∩∆−. Let p = h⊕

⊕
α∈∆−

k
∪∆+ V C

α . Let

P be the Lie subgroup corresponding to the subalgebra p. P is a parabolic subgroup and

every parabolic subgroup is of this form, for an appropriate choice of h, ∆ and Σ. [W]

The homogeneous space V = Gc/P is a compact complex homogeneous space and can

be written as a quotient G/K where G is a compact subgroup of Gc and K = Gc ∩ P . We

now describe its Lie algebra g.
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Let Xα = Eα − E−α and let Yα = iEα + iEα. Then g decomposes as

g = ih⊕
⊕

α∈∆+

Vα

where Vα = spanR{Xα, Yα} is the real root space associated to α.

Since K = Gc ∩ P is the Lie algebra of K is k = ih ⊕
⊕
α∈∆+

k
Vα, the restriction of κ

to g is negative definite, hence the corresponding group G is compact. Denote by 〈·, ·〉 the

left-invariant metric on G such that the restriction to g is −κ|g. Since κ is associative, that

implies that 〈·, ·〉 is a bi-invariant metric.

Let ∆m be the complement of ∆k in ∆. Let m =
⊕
α∈∆+

m
Vα. Using the properties of

the Killing form its clear that g = k ⊕m is an orthogonal decomposition. This makes G/K

a reductive homogeneous space. So we can identify m with TēG/K.

Now we define a complex structure on this tangent space J : TēG/K → TēG/K by (note

that α ∈ ∆+
m)

J(Xα) = iYα

J(Yα) = −Xα

We note that the complex structure we just defined, implies that JEα = iEα and

JE−α = −iE−α. This can extended to the whole G/K to give us an invariant, integrable

and hermitian complex structure.
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3.5 The map I

In this section we define a linear operator on a subspace of g, which along with J gives us

quaternionic structure on the subspace. This structure plays an important role in the work

below.

We define a bilinear form on m by RY X = [Y,X]m + J [JY,X]m

Lemma 3.13. (a) If X, Y ∈ m then [X1,0, Y 1,0]m ∈ m1,0

(b) RY X 6= 0 iff [X1,0, Y 0,1]m /∈ m0,1

(c) If X, Y ∈ m then [X1,0, Y 1,0]k = 0.

(d) If [Y,X]k = 0 and [Y, JX]k = 0 iff [X1,0, Y 0,1]k = 0

Proof. (a) The result follows by decomposing X, Y into their {1, 0} and {0, 1} components

in the integrability condition (Proposition 3.9)

(b) After a brief calculation we find that RY X = −(Z + Z) where Z = [X1,0, Y 0,1]m −

iJ [X1,0, Y 0,1]m But Z ∈ m1,0 so Z + Z = 0 if and only if Z = 0 if and only if

[X1,0, Y 0,1]m ∈ m0,1.

(c) It suffices to show that if α, β ∈ m the α + β /∈ k. This follows trivially from the

construction of m and k.

(d) Using (c) we arrive at

|[X, Y ]k |
2 + |[JX, Y ]k |

2 = 4〈[X1,0, Y 0,1]k , [X
0,1, Y 1,0]k〉

The result now follows from this calculation.
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Lemma 3.14. (a) If [X1,0, Y 0,1]m ∈ m0,1 then J [Y,X]m = [JY,X]m

(b) If [X1,0, Y 0,1]m ∈ m0,1 then J [Y,X]m = −[Y, JX]m + i[Y 1,0, X1,0]m + i[Y 0,1, X0,1]m

Proof. (a) The hypothesis implies RY X = 0 from Lemma 3.13. The result now follows

directly from the definition of RY X

(b)

J [Y,X]m + [Y, JX]m = J [Y 1,0 + Y 0,1, X1,0 +X0,1]m + i[Y 1,0 + Y 0,1, X1,0 −X0,1]m

= i[Y 1,0, X1,0]m + [Y 0,1, X0,1]m

The last line follows since [X1,0, Y 0,1]m ∈ m0,1

For α, β ∈ ∆ we define the structure constants cα,β by [Eα, Eβ ] = cα,βEα+β whenever

α + β 6= 0

Lemma 3.15. Let α, β, δ ∈ ∆+ such that α + β = δ. Then

cδ,−α =
−(β, β)

(δ, δ)
cα,β

cδ,−β =
(α, α)

(δ, δ)
cα,β

Proof. By the Jacobi identity we have

[[Eα, Eβ ], E−δ] + [[Eβ , E−δ], Eα] + [[E−δ, Eα], Eβ ] = 0 (3.6)
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Using Proposition 3.12 3), (3.6) becomes

2cα,βtδ

(δ, δ)
−

2cβ,−δtα
(α, α)

−
2c−δ,αtβ

(β, β)
= 0 (3.7)

Since tα is the dual of α. α + β = δ implies that

tδ − tα − tβ = 0 (3.8)

Using the linear independence of tα, tβ and tδ, (3.7) and (3.8) gives us

2cα,β

(δ, δ)
=

2cβ,−δ
(α, α)

=
2c−δ,α
(β, β)

Using the properties of the structure constants in Proposition 3.12, the Lemma follows.

Let c̃α,β =

√
(α,α)(β,β)c2

α,β

(δ,δ)2
and let [·, ·]α,β denote the projection of the bracket on to

the subspace Vα ⊕ Vβ . We have following lemma

Lemma 3.16. Let X ∈ Vα ⊕ Vβ and δ = α + β. For X̃δ = aXδ + bJXδ

[X̃δ, [X̃δ, X]α,β ]α,β = −(a2 + b2)c2α,βX

Proof. Using the properties of the structure constants (Proposition 3.12) we have

[Xδ, Xα] =[Eδ − E−δ, Eα − E−α]

=cδ,αEα+δ + c−δ,−αE−α−δ − c−δ,αEβ − cδ,−αEβ

=cδ,αXα+δ − cδ,−αXβ
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So finally we have [Xδ, Xα]α,β = −cδ,−αXβ . Similarly we also have [Xδ, Xβ ]α,β =

−cδ,−βXα.

Using Lemma 3.15 we have

[Xδ, [Xδ, Xα]α,β ]α,β = −c̃2α,βXα

[Xδ, [Xδ, Xβ ]α,β ]α,β = −c̃2α,βXβ

Using these calculations and Lemma 3.14 we also observe that

[Xδ, [Xδ, JXα]α,β ]α,β = −c̃2α,βJXα

[JXδ, [JXδ, Xα]α,β ]α,β = −c̃2α,βXα

[JXδ, [JXδ, JXα]α,β ]α,β = −c̃2α,βJXα

Using these equations and Lemma 3.14 the lemma follows.

We can define an operator Ia,b : Vα ⊕ Vβ → Vα ⊕ Vβ by

Ia,bX =
1

(a2 + b2)
1
2 |c̃α,β |

[X̃δ, X]α,β

We can readily see that I2
a,b = −Id and Ia,bJX = −Ia,bJX which follows from Lemma

3.14 and 3.16. Let S be a set of unordered pairs {α, β} such that α + β = δ. We can

naturally extend Ia,b to be linear operator on the subspace

S0 =
⊕

{α,β}∈S
Vα ⊕ Vβ
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Lemma 3.17. The map Ia,b : S0 → S0 defined above satisfies the following properties

(a) I2
a,b = −Id

(b) Ia,bJ = −JIa,b

(c) For X ∈ S0 we have |Ia,bX| = |X|

(d) If X ∈ S0 then 〈[Ia,bX,X], X̃δ〉 6 −N0(a2 + b2)
1
2 |X|2 where N0 is a constant only

dependant on the Lie algebra g

Proof. For the sake of convenience we refer to Ia,b as I in the proof. For (a) and (b) this

follows from the preceding discussion.

(c)

〈IX, IX〉 =
∑

α+β=δ

1

(a2 + b2)|c̃α,β |2
〈[X̃δ, X]α,β , [X̃δ, X]α,β〉 (3.9)

=
∑

α+β=δ

−1

(a2 + b2)|c̃α,β |2
〈X, [X̃δ, [X̃δ, X]α,β ]α,β〉 (3.10)

=
∑

α+β=δ

〈Xα,β , Xα,β〉 (3.11)

In the first line we use the fact that the root spaces Vα are orthogonal. In the second

line we use associativity of bracket (3.4) and later we use Lemma 3.16.
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(d) In the computation we use the associativity of the bracket and part (c) of this lemma.

〈[IX,X], X̃δ〉 = −〈IX, [X̃δ, X]〉

= −
∑

{α,β}∈S
〈IX, [X̃δ, X]α,β〉

= −
∑

{α,β}∈S
(a2 + b2)

1
2 |c̃α,β ||IXα,β |

2

= −
∑

{α,β}∈S
(a2 + b2)

1
2 |c̃α,β ||X|

2

< −(a2 + b2)
1
2N0|Xα,β |

2
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Chapter 4

The complex hat connection

In this Chapter we assume that G/K is equipped with an invariant integrable complex

structure J such that the normal metric is hermitian. Let M and N be two complex subman-

ifolds of dimensions m,n respectively. Let γ : [0, 1]→ G/K be a critical point to the energy

functional on the space of paths joining M and N and so it is a geodesic perpendicular to

the both manifolds at the endpoints.

If X(t) is any vector field along the geodesic γ such that X(0) and X(1) are in the tangent

space of M and N respectively then X(t) is called admissible. For an admissible vector field

X(t) we recall the second variation formula

E∗∗(X,X) = 〈∇̃XX〉|
1
0 −

∫ 1

0
〈∇̃γ̇X, ∇̃γ̇X〉 − 〈R(γ̇, X)X, γ̇)〉dt

Observe that if X(t) is admissible then JX(t) is admissible too, the following quadratic

form can be defined.

Definition 5. The following quantity is defined as the complex energy hessian.

EC
∗∗(X,X) =

1

2
E∗∗(X,X) +

1

2
E∗∗(JX, JX) (4.1)
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Definition 6. Define the complex-hat connection ∇̂ by

∇̂Y X = ∇Y X +
1

2
RY (X)

where RY (X) = [Y,X]m + J [JY,X]m.

4.1 The second variation formula

In this section we rewrite the second variation formula.

Theorem 4.1. Suppose that X(t) is admissible and parallel with respect to the complex hat

connection. Then

EC
∗∗(X,X) = −

∫ 1

0

1

2
(|Rγ̇(X)|2) + |[X, γ̇]k|

2 + |[JX, γ̇]k|
2dt

Proof. Using Proposition 2.1 we have

EC
∗∗(X,X) = 〈∇̃XX + ∇̃JXJX, γ̇〉|

1
0 −

∫ 1

0
〈∇̃γ̇X, ∇̃γ̇X〉+ 〈∇̃γ̇JX, ∇̃γ̇JX〉

− 〈R(γ̇, X)X, γ̇)〉 − 〈R(γ̇, JX)JX, γ̇)〉dt (4.2)
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We begin with the boundary term at t = 0.

〈∇̃XX + ∇̃JXJX, γ̇〉t=0 = 〈∇XX + J∇JXX, γ̇〉t=0

= 〈∇XX + J(∇XJX + [JX,X]− [JX,X]m), γ̇〉t=0

= 〈−J [JX,X]m), γ̇〉t=0

In the first line we use the formula for the Levi-Civita connection along with fact that

J commutes with ∇. In the next line we use the formula for the torsion of the canonical

connection (Proposition 3.8). For the last line we observe that the variations for X, JX at

t = 0 are tangent to M hence J [X, JX] ∈ TM is tangent too. As γ is perpendicular to M ,

so 〈J([JX,X]), γ̇(0)〉 = 0.

We can make a similar conclusion for t = 1 and we have the following.

〈∇̃XX + ∇̃JXJX, γ̇〉|
1
0 = 〈−J [JX,X]m, γ̇〉|10 (4.3)

The covariant derivative with respect to the canonical connection vanishes for all G

invariant tensors (Theorem 3.5). Applying this to the tensors J , [·, ·]m and the metric 〈·, ·〉

we have.

〈−J [JX,X]m, γ̇〉|10 =

∫ 1

0

d

dt
〈J [X, JX]m, γ̇〉dt

=

∫ 1

0
〈J [∇γ̇X, JX]m + J [X, J∇γ̇X]m, γ̇〉+ 〈J [X, JX]m,∇γ̇ γ̇〉dt

=

∫ 1

0
〈∇γ̇X, [Jγ̇, JX]m + J [Jγ̇,X]m〉dt (4.4)

In the last line we use the associativity of the bracket (eq 3.4).
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Now let us simplify the second term in equation 4.2 and write it in terms of the canonical

connection and apply the formula for the curvature (Proposition 3.11)

∫ 1

0
|∇̃γ̇X|2 + |∇̃γ̇JX|2 − 〈R(γ̇, X)X, γ̇)〉 − 〈R(γ̇, JX)JX, γ̇)〉dt (4.5)

=

∫ 1

0
|∇γ̇X +

1

2
[γ̇, X]m|2 + |J∇γ̇X +

1

2
[γ̇, JX]m|2 − 〈R(γ̇, X)X, γ̇)〉 (4.6)

− 〈R(γ̇, JX)JX, γ̇)〉dt (4.7)

=

∫ 1

0
2|∇γ̇X|2 + 〈∇γ̇X, [γ̇, X]m〉 − 〈∇γ̇X, J [γ̇, JX]m〉 − |[X, γ̇]k |

2 − |[JX, γ̇]k |
2dt (4.8)

Now combining eq 4.3 4.4 and 4.8 in equation 4.2 we have

EC
∗∗(X,X) =

∫ 1

0
2|∇γ̇X|2 + 〈∇γ̇X, [γ̇, X]m − J [γ̇, JX]m + [Jγ̇, JX]m + J [Jγ̇,X]m〉

− 〈[X, γ̇]k [X, γ̇]k〉 − 〈[JX, γ̇]k , [JX, γ̇]k〉dt

=

∫ 1

0
2(|∇γ̇X|2 + 〈∇γ̇X, [γ̇, X]m + J [Jγ̇,X]m〉)− 〈[X, γ̇]k , [X, γ̇]k〉

− 〈[JX, γ̇]k , [JX, γ̇]k〉dt

=

∫ 1

0
2(〈∇γ̇X,∇γ̇X +Rγ̇(X)〉 − |[X, γ̇]k |

2 − |[JX, γ̇]k |
2dt (4.9)

Note that we use the integrability condition (Proposition 3.9) in the eq 4.9. As ∇γ̇X +

1
2Rγ̇(X) = 0, the result follows.
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4.2 Properties of the complex-hat connection

Proposition 4.2. (a) The complex-hat connection commutes with the complex structure J

(b) The parallel transport along a geodesic γ with respect to the complex-hat connection

preserves orthogonality between the geodesic and the transported vector.

(c) If ∇̂γ̇X = 0 along a quadratic γ and Rγ̇(X) vanishes at t = 0 then ∇γ̇X = 0 along γ.

Proof. (a) Using part (b) of Proposition 3.9 it is easy to show that RY (JX) = JRY (JX).

The result now follows from this observation and part (a) of Proposition 3.9.

(b) Let X(t) be a vector field along a geodesic curve γ̇ which is parallel with respect to the

complex-hat connection i.e ∇γ̇X = −1
2Rγ̇(X) then

d

dt
〈X(t), γ̇(t)〉 = 〈∇γ̇X, γ̇〉+ 〈X,∇γ̇ γ̇〉

= 〈−1
2([γ̇, X]m, γ̇〉+ 〈−J [Jγ̇,X]m), γ̇〉+ 0

= 1
2(〈X, [γ̇, γ̇]m〉 − 〈X, [Jγ̇, Jγ̇]m〉)

= 0

In this computation we have used the associativity of the bracket (3.4) and t

(c) We can use a canonical connection parallel frame. All invariant tensors are parallel with

respect to the canonical connection (Theorem 3.5) and so is γ̇(t) (Proposition b). Hence

with respect to this frame Rγ̇(X) is a linear transformation with respect to X with

constant co-efficients, so parallel transport with respect to the complex-hat connection

can be thought of as the solution to the linear ODE Ẋ(t) = −1
2R(X). From linear ODE

Theory it is clear that Ẋ(t) = 0 iff R(X(0)) = 0 .
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Theorem 4.3. The complex energy hessian of a vector field X(t) which is admissible and

parallel with respect to the complex-hat connection is negative iff [X1,0(0), γ̇0,1(0)] /∈ m0,1.

Proof. The sufficient condition follows from Theorem 4.1 and Lemma 3.13. For the necessary

condition, now suppose that [X1,0(0), γ̇0,1(0)] ∈ m0,1. That implies that Rγ̇(X(0)) = 0 and

|[X(0), γ̇(0)]k |2 + |[JX(0), γ̇(0)]k |2 = 0 by Lemma 3.13. Rγ̇(X(0)) = 0 implies that X(t)

is parallel with respect to the canonical connection by part 3 ) of Proposition 4.2. But that

implies that the value |[X(t), γ̇]k(t)|2 + |[JX(t), γ̇]k(t)|2 remains zero along the geodesic and

that implies that the complex energy hessian is zero.
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Chapter 5

Index calculations

In this Chapter we work with the complex homogeneous space Gc/P where Gc is a

complex simple Lie group and P a parabolic subgroup. This manifold can also be written

as G/K where G is a compact Lie group and K a closed subgroup as mentioned in Chapter

section 3.4. Equip G/K with the normal metric. Let M and N be two complex submanifolds

of dimensions m,n respectively, with the dimension of G/K equal to v. Let γ : [0, 1]→ G/K

be a critical point to the energy functional on the space of paths joining M and N . Thus γ

is a geodesic perpendicular to both manifolds at the endpoints. In this Chapter we will focus

on giving a lower bound on the index of each geodesic in terms of m,n, v and an invariant `

of the Lie algebra g.

After applying an isometry we can assume that γ(0) = ē. So we can identify Tγ(0)G/K

with m. Recall that ∆ and ∆k denote the roots associated to the root system of g and k

respectively. ∆m denote the roots complementary to ∆k . Vα ⊂ g is the real root space

associated to α ∈ ∆+. We define an ordering on ∆+ by α < δ if and only if δ − α is a

positive root. This ordering is not partial.

Define Γ = {α ∈ ∆+|γ̇(0) has a non-trivial component in Vα}. Let δ ∈ Γ be a minimal

element such that it also satisfies the following, α < β and β < δ implies that α /∈ Γ, we will

refer to such δ as superminimal.
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Sδ = {α ∈ ∆+
m|α < δ and δ − α ∈ ∆+

m} (5.1)

Tδ = {β ∈ ∆+
m|β ≥ δ} ∪ {α ∈ ∆+

m|δ − α ∈ ∆k} (5.2)

To derive an optimal lower bound on the index we impose the following conditions on

the sets Sδ and Tδ. These conditions will be shown to be true if g is a simply laced Lie

algebra i.e Lie algebras of the type A, D and E in Chapter . In the non-simply laced case

the conditions are satisfied for most δ. For the remaining choices of δ the arguments given

below can be modified.

Condition 1. If β0, β1 ∈ Tδ\{δ} with β0 6= β1 then β0 − δ 6= β1 − λ for λ ∈ Γ

Condition 2. If α, β ∈ Sδ then α + β ∈ Γ iff it is equal to δ.

Observe that if α < δ then α, δ− α cannot both lie in ∆+
k from the construction of k, it

follows that |Sδ| is even. Let ` = 1
2 |Sδ|+ |Tδ| and let h = 1

2 |Sδ|.

The main goal of this Chapter is to prove the following theorem.

Theorem 5.1. If Conditions 1 and 2 are satisfied then the index of the geodesic γ is at least

I = m+ n− (v − `)− v + 1

To prove this theorem we will construct a vector space of dimension 4I. We will use a

quaternionic structure on this space and show that there exists a subspace of dimension I

such that the hessian E∗∗ is negative definite.

Let

S0 =
⊕
α∈Sδ

Vα, T0 =
⊕
β∈Tδ

Vβ
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The spaces S0, T0 are invariant under J and are of complex dimension 2h and ` − h

respectively. Let U0 = S0 ⊕ T0 and τ̂ : Tγ(0)(G/K) → Tγ(1)(G/K) denote the parallel

translation with respect to the complex-hat connection. Let

U = {X ∈ U0 ∩ Tγ(0)M |τ̂(X) ∈ Tγ(1)(N)}

.

Proposition 5.2. The minimum complex dimension of U is I + h.

Proof. Since the dimension of U0 is `+h the minimum dimension of U0 ∩Tγ(0)M is `+h+

m− v. It is clear that the

dimCU = dimC(τ̂(U0 ∩ Tγ(0)M)) ∩ Tγ(0)M

Since both Tγ(0)M , Tγ(1)N are perpendicular to γ and the complex-hat parallel transport

preserves orthogonality with γ (part (b) of Proposition 4.2) we can get an extra dimension

in the count. So the dimension of U is m+ `+ h− v + n− v + 1.

Let γ̇δ(0) = aXδ + bJXδ denote the the Vδ component of γ̇(0). Lemma 3.17 gives us a

linear operator Ia,b : S0 → S0 satisfying the following properties, I2 = −Id and IJ = −JI

(from now on we omit the subscript).

Let S1 = S0∩U and let dimCS1 = s1. Using the properties of I we get that the subspace

S = S1∩IS1 is a closed under I and J . We see that dimCS ≥ 2(s1−h) whenever s1 > h else

S is the trivial space. Now let T be the orthogonal complement of S1 in U and t = dimCT .

We observe that as s1 + t ≥ I + h, t+ 1
2s ≥ I.
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Let Ŝ, T̂ and Û be the space of vector fields parallel with respect to the complex-hat

connection starting from S, T and U respectively. We will use Theorem 4.3 to show that the

index of E∗∗|T̂ is at least t. For Ŝ Theorem 4.3 does not yield anything, instead one must

take suitable linear combinations of vector fields in Ŝ. The index of E∗∗ restricted to these

linear combinations is s
2 .

5.1 The variations T̂

Proposition 5.3. If Z(t) ∈ T̂ then EC∗∗(Z,Z) < 0

Proof. By Theorem 4.3 it suffices to show that [Z(0)1,0, γ̇0,1(0)] /∈ m0,1. Since Z(0) ∈ T we

can write Z(0) = X + Y where X ∈ S and Y ∈ T . As [X1,0, γ̇0,1(0)] ∈ m0,1 it suffices to

prove that [Y 1,0, γ̇0,1(0)] /∈ m0,1.

Suppose Y 1,0 = Σβ∈TδcβEβ with cβ0
6= 0 , where β0 ∈ Tδ\{δ} then condition 1 implies

that the co-efficient of Eβ0−δ is non-zero in [Y 1,0(0), γ̇0,1(0)]. As either β0 − δ > 0 or

|β0 − δ| ∈ ∆+
k , implies that Eβ0−δ /∈ m0,1.

If cδ is non-zero and cβ0
= 0 , for all β0 ∈ Tδ\{δ} that implies that [Y 1,0, γ̇0,1(0)]m /∈

m0,1 has a non-trivial component in h.

Theorem 5.4. The index of γ when restricted to T̂ is t.

Proof. T̂ has a natural complex structure J on it, since ∇̂ commutes with J . To show that

the index is t, it suffices to show that every t+ 1 dimensional subspace of the 2t dimensional

space T̂ has an element X such that E∗∗(X,X) < 0. Let W be such a subspace, then

W ∩ JW is non-empty. Let X ∈ W ∩ JW , then from Proposition 5.3 we know that the

complex energy hessian E∗∗(X,X) + E∗∗(JX, JX) < 0. Since both X, JX ∈ W ∩ JW the

result follows.
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5.2 The variations Ŝ

If α ∈ Sδ then α < δ and by the choice of δ that implies that either α < λ or α is not

comparable with λ for λ ∈ Γ. If X(t) ∈ Ŝ then X(0) ∈ S which implies [X1,0, γ̇0,1(0)]m ∈

m0,1. Hence Rγ̇(X(0)) = 0 so Theorem 4.2 gives us that X is parallel to the canonical

connection.

Let τ t0 : Tγ(0)G/K → Tγ(t)G/K denote parallel translation with respect to the canonical

connection. We have I : S → S where S ⊂ Tγ(0)M , using parallel translation we can also

define It : τ t0(S)→ τ t0(S). Since the invariant tensors J and [·, ·]m, the vector fields γ̇(t) and

X(t) are all parallel the properties of Lemma 3.17 carry over to It. Using this, we can now

define a natural operation I on the vector fields Ŝ.

We define

Ŝk = {Z|∇γ̇Z = −kIZ and Z(0) ∈ S}

On Ŝk we can define operations Ī and J̄ . For Z ∈ Ŝk we have (ĪZ)(0) = I(Z(0)), (J̄Z)(0) =

J(Z(0)). We observe that Ī2 = −Id,J̄2 = −Id and Ī J̄ = −J̄ Ī.

Proposition 5.5.

E∗∗(Z,Z) + E∗∗(ĪZ, ĪZ) + E∗∗(J̄Z, J̄Z) + E∗∗(Ī J̄Z, ĪJ̄Z) < 0 for sufficiently small k

(5.3)
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Proof. Let X ∈ Ŝ such that X(0) = Z(0). It is easy to verify that

Z = cos(kt)X − sin(kt)IX (5.4)

ĪZ = sin(kt)X + cos(kt)IX (5.5)

J̄Z = cos(kt)JX + sin(kt)JX (5.6)

Ī J̄Z = − cos(kt)JIX + sin(kt)JX (5.7)

We see that all these vector fields are admissible since X and IX are. We begin by analysing

E∗∗(Z,Z)

E∗∗(Z,Z) = 〈∇ZZ, γ̇〉|
1
0 +

∫ 1

0
|∇̃γ̇Z|2 − 〈R(γ̇, Z)Z, γ̇〉dt

= 〈∇ZZ, γ̇〉|
1
0 +

∫ 1

0
|∇γ̇Z +

1

2
[γ̇, Z]m|2 −

1

4
|[γ̇, Z]m|2 − |[γ̇, Z]k |

2dt

= 〈∇ZZ, γ̇〉|
1
0 +

∫ 1

0
k2|IZ|2 − k〈IZ, [γ̇, Z]m〉 − |[γ̇, Z]k |

2dt

If α, β ∈ Sδ then from condition 2 we have that α+β /∈ Γ\{δ} and since δ is superminimal,

we have that η < α implies η /∈ Γ. So we have α − β /∈ Γ. We can now conclude that

〈[Z, IZ]m, γ̇(0)− γ̇δ(0)〉 = 0. So for sufficiently small k we have
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E∗∗(Z,Z) = 〈∇ZZ, γ̇〉|
1
0 +

∫ 1

0
k2|IZ|2 − k〈IZ, [γ̇δ, Z]m〉 − |[γ̇, Z]k |

2

< 〈∇ZZ, γ̇〉|
1
0 +

∫ 1

0
k2|IZ|2 − kN0(a2 + b2)

1
2
∑

α+β=δ

|Xα,β |
2 − |[γ̇, Z]k |

2

< 〈∇ZZ, γ̇〉|
1
0 (5.8)

To get the inequality we use part 3 of Lemma 3.17. We can get a similar calculation for

E∗∗(ĪZ, ĪZ), E∗∗(J̄Z, J̄Z) and E∗∗(Ī J̄Z, ĪJ̄Z). We now calculate the corresponding bound-

ary terms.

〈∇ZZ, γ̇〉+ 〈∇J̄Z J̄Z, γ̇〉+ 〈∇ĪZ ĪZ, γ̇〉+ 〈∇Ī J̄Z Ī J̄Z, γ̇〉|
1
0

= 〈∇XX, γ̇〉+ 〈∇JXJX, γ̇〉+ 〈∇IXIX, γ̇〉+ 〈∇IJXIJX, γ̇〉|
1
0

= 〈[−JX,X]m, γ̇〉|10 + 〈[−JIX, IX]m, γ̇〉|10

= 0 (5.9)

For the last line we observe that X, [·, ·]m and J are parallel to the canonical connection,

which implies that 〈[−JX,X]m, γ̇〉 and 〈[−JIX, IX]m, γ̇〉 are independent of t.

Using the inequality 5.8 and eqn 5.9 the proposition is proved.

Theorem 5.6. For sufficiently small k the index of γ when restricted to Ŝk is s
2 .

Proof. The real dimension of Ŝk is 2s, so its suffices to show that for any 3s2 + 1 real

dimensional subspace W , there exists Z ∈ Ŝk such that E∗∗(Z,Z) < 0. By the properties

of Ī and J̄ we know that there exist Z ∈ W such that Z, ĪZ, J̄Z, Ī J̄Z belong to W . From
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Proposition 5.5 the Theorem follows .

5.3 Reconciling Ŝk and T̂

In the Theorems 5.4 and 5.6 we have shown the existence of two subspaces of dimension t

and s
2 belonging to T̂ and Ŝk such that E∗∗ is negative definite. But that is not sufficient

to show that the index is I = t+ s
2 . We will tackle this problem by twisting the space T̂ .

Let T̂k = {Z|Z = cos(kt)X − sin(kt)Y with X, Y ∈ T̂}. From equations 5.4 to 5.7 we

observe that Ŝk = {Z|Z = cos(kt)W − sin(kt)IW with W ∈ Ŝ}. We now define Ûk =

Ŝk
⊕

T̂k. So if Z ∈ Ûk then Z = cos(kt)(X)− sin(kt)(Y ) for some X, Y ∈ Û .

We can define two operations on Ûk, ĪZ = sin(kt)(X + W ) + cos(kt)(Y + IW ) and

J̄Z = cos(kt)J(X + W ) + sin(kt)J(Y + IW ). Observe that Ûk is closed under the two

operations Ī and J̄ . It can be easily verified that Ī2 = −Id and J̄2 = −Id and that

Ī J̄ = −J̄ Ī. From eqns 5.4 to 5.7, we see that the definitions of Ī and J̄ coincide.

Recall that the complex energy hessian EC∗∗(X,X) = E∗∗(X,X) + E∗∗(JX, JX). For

Z ∈ Ûk we define Q(Z) = E∗∗(Z,Z) + E∗∗(ĪZ, ĪZ) + E∗∗(J̄Z, J̄Z) + E∗∗(J̄ ĪZ, J̄ ĪZ)

Now we are ready to prove an important proposition.

Proposition 5.7. There exists a k > 0 such that for any Z ∈ Ûk, Q(Z) < 0

We first state and prove a few lemmas

Lemma 5.8. If X ∈ T then there exists M > 0 such that 1
2 ||Rγ̇(X(t)|2 + |[X(t), γ̇]k|2 +

|[JX(t), γ̇]k|2 > M |X(t)|2 for any t ∈ [0, 1] where X(t) is a vector field which is parallel with

respect to the complex-hat connection with initial value X. As a consequence E∗∗(X,X) +

E∗∗(JX, JX) > M
∫ 1
0 |X(t)|2dt
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Proof. For X ∈ T we know from the proof of the above Propsition 5.4 that either 1
2 |Rγ̇(X(0)|

6= 0 or |[X(0), γ̇]k |2 + |[JX(0), γ̇]k |2) 6= 0. If the first case is true then we know from

Proposition 4.2 part (c) that Rγ̇(X(t)) 6= 0 for all t. If the first case were not true then

the vector field X is parallel with respect to the canonical connection and so |[X(t), γ̇]k |2 +

|[JX(t), γ̇]k |2 is the same for all t because |[·, ·]k | is an invariant tensor. But at t = 0 we

know that this quantity is non-zero and hence it is non-zero for all t. As the interval [0, 1] is

compact the lemma follows.

Lemma 5.9. If Z = cos(kt)X − sin(kt)Y with X, Y ∈ Û then

Q(Z) = EC
∗∗(X,X) + EC

∗∗(Y, Y ) +

∫ 1

0
2k2|X|2 + 2k2|Y |2 + 2k〈[Y,X]m − [JY, JX]m, γ̇〉dt

Proof. Let us begin by rewriting the second variational form as the sum of two quadratic

forms for ease of computation. Now

E∗∗(X,X) = 〈∇̃XX, γ̇〉|
1
0 +

∫ 1

0
〈∇̃γ̇X, ∇̃γ̇X〉 − 〈R(γ̇, X)X, γ̇)〉dt

= 〈∇̃XX, γ̇〉|
1
0 +

∫ 1

0
|∇γ̇X +

1

2
[γ̇, X]m|2 −

1

4
|[X, γ̇]m|2 − |[X, γ̇]k |

2dt

= 〈∇̃XX, γ̇〉|
1
0 +

∫ 1

0
|∇γ̇X|2 + 〈∇γ̇X, [γ̇, X]m〉 − |[X, γ̇]k |

2dt

= H(X,X) +G(X,X)

Where H(X,X) = 〈∇̃XX, γ̇〉|10 −
∫ 1
0 [X, γ̇]k |2 &

G(X,X) =
∫ 1
0 |∇γ̇X|

2 + 〈∇γ̇X, [γ̇, X]m〉dt We observe that H(·, ·) is linear with respect to
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differentiable functions and a simple calculation gives us

H(Z,Z) +H(ĪZ, ĪZ) = H(X,X) +H(Y, Y ) (5.10)

So we focus on G(Z,Z) +G(ĪZ, ĪZ). We start by simplifying

|∇γ̇Z|2 + |∇γ̇ ĪZ|2 = |∇γ̇X|2 + |∇γ̇Y |2 + k2|X|2 + k2|Y |2 − 2k〈cos(kt)∇γ̇X

− sin(kt)∇γ̇Y, ĪZ〉+ 2k〈sin(kt)∇γ̇X + cos(kt)∇γ̇Y, Z〉

= |∇γ̇X|2 + |∇γ̇Y |2 + k2|X|2 + k2|Y |2 − 2k〈cos2(kt)∇γ̇X, Y 〉

− 2k〈sin2(kt)∇γ̇X, Y 〉+ 2k〈cos2(kt)∇γ̇Y,X〉+ 2k〈sin2(kt)∇γ̇Y,X〉

= |∇γ̇X|2 + |∇γ̇Y |2 + k2|X|2 + k2|Y |2 − 2k〈∇γ̇X, Y 〉+ 2k〈∇γ̇Y,X〉

(5.11)

and similar computation leads us to

〈∇γ̇Z, [γ̇, Z]m〉+ 〈∇γ̇ ĪZ, [γ̇, ĪZ]m〉 = 〈∇γ̇X, [γ̇, X]m〉+ 〈∇γ̇Y, [γ̇, Y ]m〉+ 2k〈[Y,X]m, γ̇〉

(5.12)

From equation 5.11 and 5.12 we arrive at

G(Z,Z) +G(ĪZ, ĪZ) = k

∫ 1

0
k|X|2 + k|Y |2 − 2〈∇γ̇X, Y 〉+ 2〈∇γ̇Y,X〉+ 2〈[Y,X]m, γ̇〉dt

+G(X,X) +G(Y, Y ) (5.13)

Equations 5.10 and 5.13 give us

49



E∗∗(Z,Z) + E∗∗(ĪZ, ĪZ)

=E∗∗(X,X) + E∗∗(Y, Y ) +

∫ 1

0
k2|X|2 + k2|Y |2 − 2k〈∇γ̇X, Y 〉+ 2k〈∇γ̇Y,X〉

+ 2k〈[Y,X]m, γ̇〉 (5.14)

Keeping in mind that J̄Z = cos(kt)JX + sin(kt)JY and J̄ ĪZ = cos(kt)JY − sin(kt)JX

we can use equation 5.14 to obtain

E∗∗(J̄Z, J̄Z) + E∗∗(Ī J̄Z, ĪJ̄Z)

= E∗∗(JX, JX) + E∗∗(JY, JY ) +

∫ 1

0
k2|JX|2 + k2|JY |2 − 2k〈∇γ̇JX, J(−Y )〉

+ 2k〈∇γ̇J(−Y ), JX〉+ 2k〈[J(−Y ), JX]m, γ̇〉dt

= E∗∗(JX, JX) + E∗∗(JY, JY ) +

∫ 1

0
k2|JX|2 + k2|JY |2 + 2k〈∇γ̇X, Y 〉

− 2k〈∇γ̇Y,X〉 − 2k〈[JY, JX]m, γ̇〉dt

The result follows from adding the formulas for E∗∗(Z,Z)+E∗∗(ĪZ, ĪZ) and E∗∗(J̄Z, J̄Z)+

E∗∗(J̄ ĪZ, J̄ ĪZ)

Lemma 5.10. Let P (X(t), Y (t)) = 〈[Y (t), X(t)]m − [JY (t), JX(t)]m, γ̇〉

(a) There exists a N such that P (X(t), Y (t)) < N |X(t)||Y (t)| for X, Y ∈ Ûk ∀ t ∈ [0, 1]

(b) P (W (t), IW (t)) < −2kN0(a2 + b2)
1
2 )|W (t)|2

Proof. (a) Clear.

(b) Since all the objects we deal with are parallel with the canonical connection, it suffices to
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prove it in the case t = 0. It is easy to see that [W (0), IW (0)]m− [JW (0), JIW (0)]m =

4Re[W1,0, IW1,0]m. Now IW,W ∈ S0 implies that [W1,0, IW1,0]m ∈ Vδ via condition

2. As a consequence 〈[W (0), IW (0)]m − [JW (0), JIW (0)]m, γ̇(0) − γ̇δ(0)〉. The result

now follows form (c) of Lemma 3.17.

Proof. of Proposition 5.7 If Z ∈ Ûk there exists X, Y ∈ T̂ and W ∈ Ŝ so that Z =

cos(kt)(X+W )−sin(kt)(Y +IW ). Note that Rγ̇W (0) = Rγ̇(IW (0)) = 0, so from eqn 4.9 of

Theorem 4.1 we get that EC∗∗(X,X) = EC∗∗(X+W ) and EC∗∗(Y, Y ) = EC∗∗(Y +IW, Y +IW )).

So now we can rewrite Lemma 5.9.

Q(Z) = EC
∗∗(X,X) + EC

∗∗(Y, Y ) +

∫ 1

0
2k2(|X +W |2 + |Y + IW |2) + 2k(P (X, Y )

+ P (X, IW ) + P (W,Y ) + P (W, IW ))dt

Using part (a) and part (b) of Lemma 5.10 we have

Q(Z) < EC
∗∗(X,X) + EC

∗∗(Y, Y ) +

∫ 1

0
4k2(|X|2 + |Y |2) + 2kN(|X||Y |+ |X||W |+ |W ||Y |)

+ (8k2 − 4k(a2 + b2)
1
2 )|W |2dt
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We choose ε2N = 2(a2 + b2)
1
2 and apply the AM-GM inequality.

Q(Z,Z) < EC
∗∗(X,X) + EC

∗∗(Y, Y ) +

∫ 1

0
(4k2 + kN)(|X|2 + |Y |2) + kN(

|X|2

ε2
+ ε2|W |2

+
|Y |2

ε2
+ ε2|W |2) + (8k2 − 4k(a2 + b2)

1
2 )|W |2dt

<

∫ 1

0
(4k2 + kN +

kN

ε2
)(|X|2 + |Y |2) + k(8k − 2(a2 + b2)

1
2 )|W |2dt

+ EC
∗∗(X,X) + EC

∗∗(Y, Y )

Finally applying Lemma 5.8 we conclude that.

Q(Z) =

∫ 1

0
(4k2 + 2kN +

kN

ε2
−M)(|X|2 + |Y |2) + k(8k − 2(a2 + b2)

1
2 )|W |2dt

It is clear that k and can be chosen small enough so that Q(Z) is negative for all Z̄ ∈ Ûk.

Proof. of Theorem 5.1 To prove this we demonstrate the existence of an I dimensional

subspace of the variation vector fields Ûk such that E∗∗ is negative definite. We recall that

the real dimension of Ûk is 4I. To show that the index is I all we have to do is show that

for every 3I + 1 real subspace W there exists a vector field of negative index. As J̄2 = −Id

that implies that in every 3I + 1 dimensional real space we can find a 2I + 2 dimensional

space which is closed under J̄ . Now Ī2 = −Id and Ī J̄ = −J̄ Ī forces the existence of a 4

dimensional space which is closed under both J̄ and Ī. So we can find a vector field Z such

that J̄Z ĪZ and J̄ ĪZ belong to W . By Theorem 5.7 we know that Q(Z) < 0 for uniform k

so the hessian is negative for one the following vector fields Z, J̄Z, ĪZ and J̄ ĪZ
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Chapter 6

Lie algebra calculations

From Theorem 5.1 have shown that the index of a geodesic is I = m+n− (v− `)− v+ 1

where n, m are the dimensions of the submanifolds M , N and ` = 1
2 |Sδ|+ |Tδ|, if the roots

satisfy certain conditions. For the simply laced Lie algebras Ar,Dr and Er we will show that

these conditions are satisfied. For simple Lie algebra Br these conditions are not satisfied

when δ is a short root. In this case we explicitly work with the roots and get over this

handicap.

Recall that ∆ is the set of roots for a simple Lie algebra g. Here g is not the algebra G2.

Define Wδ = {α ∈ ∆|δ − α is a root}. Let (·, ·) be the dual of the Killing form on the Lie

algebra g restricted to h∗R. Normalize (·, ·) so that the inner product corresponding to the

root system ∆ of g is normalized so that the length of each long root is 2.

In this chapter we refer the reader to [H] for all standard results on root systems and Lie

algebras.

Lemma 6.1. Suppose δ and α are roots such that δ is long then (α, δ) > 0 is (α, δ) = 1

Proof. Since (α, δ) > 0 the value 2
(α,δ)
(α,α)

is either 1 or 2. Using table 1 from [H,sec 9.4] it is

clear that 2
(α,δ)
(α,α)

is 1 if α is long and 2 if α is short. In either case it is easy to verify that

(α, δ) = 1.
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Lemma 6.2. If δ ∈ ∆ is a long root then, for η1, η2 ∈ Wδ, η1 + η2 is a root if and only if

it is equal to δ.

Proof. Since the Weyl group is transitive on the set of long roots it suffices to prove this in

the case where δ is the highest root vector.

Let the α-chain of roots through δ be

−pα + δ, . . . , δ, . . . qα + δ where p, q ≥ 0

Then it is well known that p − q = 2
(α,δ)
(α,α)

. Since δ is the highest root we have q = 0.

Since α ∈ Wδ we have that p > 0 making (α, δ) > 0. From Lemma 6.1 (α, δ) = 1. So if

η1, η2 ∈ Wδ then (η1 + η2, δ) = 2. So if η1 + η2 is a root then it has to be equal to δ.

Recall that

Sδ = {α ∈ ∆+
m|α < δ and δ − α ∈ ∆+

m}

Tδ = {β ∈ ∆+
m|β ≥ δ} ∪ {α ∈ ∆+

m|δ − α ∈ ∆k}

Proposition 6.3. If δ is a long root then condition 1 and condition 2 are satisfied.

Proof. We first recall condition 1 and 2

Condition 1. If β0, β1 ∈ Tδ\{δ} with β0 6= β1 then β0 − δ 6= β1 − λ for λ ∈ Γ

Condition 2. If α, β ∈ Sδ then α + β ∈ Γ iff it is equal to δ.

For condition 1, begin by assuming that β0 − δ = β1 − λ. So λ = β1 + δ − β0 is a

root. Observe that β1 and δ − β0 belong to Wδ. So by the Lemma 6.2 the only way that
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β1 + δ − β0 is a root is if it is equal to δ, that means β1 = β0. A contradiction and hence

the lemma readily follows. Condition 2 follows trivially.

Proposition 6.4. If the root system associated to gC is such that all roots are long, the

value ` = 1
2 |Sδ| + |Tδ| is independent of δ and only dependent on the lie algebra gC. The

values of ` are given below

(a) If gC = slr+1(C) then ` = r

(b) If gC = so2r(C) then ` = 2r − 3

(c) If gC = E6 ,E7 ,E8 then ` = 11, 17 and 29 respectively

Proof. We begin by showing that ` is independent of δ and later calculate '`'by choosing δ

appropriately.

Define W̃δ = {{α, β}|α + β = δ, α, β ∈ ∆}. It is clear that |W̃δ|+ 1 = 1
2 |Sδ|+ |Tδ|. Since

the Weyl group acts linearly |W̃δ| is preserved by the Weyl group. As these Lie algebras are

simply-laced, it is well known that the Weyl group acts transitively on the roots [H] therefore

|W̃δ| is independent of δ. We observe that |Wδ| = 2|W̃δ| and calculate |Wδ| for a suitable

root δ in each case. We refer to [H] for a description of the respective root systems that we

will use.

Ar : The roots are given by ∆ = {ei − ej |1 ≤ i, j ≤ r + 1} where ei ∈ Rr+1 are

the standard basis. Let us choose δ = e1 − e2. Then it is clear that Wδ = {e1 − ej |2 <

j} ∪ {ek − e2|k ≤ r + 1}. Thus |Wδ| = 2r − 2,so ` = r

Dr : The roots are given by ∆ = {±ei ± ej |i 6= j, 1 ≤ i, j ≤ r + 1} where ei ∈ Rr+1

are the standard basis. Choose δ = e1 − e2. we then have that Wδ = {e1 ± ej , ek ± e2|2 <

j, k ≤ r}. So |Wδ| = 4r − 8

55



E8 :The roots are given by

∆ = {±ei ± ej |i 6= j, and 1 ≤ i, j ≤ 8} ∪

1

2

8∑
i=1

tiei|ti = ±1,
8∏
i=1

ti = 1


where ei ∈ R8. Choose δ = e1 − e2. A little computation gives us that

Wδ = {e1 ± ej |2 < j} ∪ {ek ± e2|k ≤ 8} ∪

1

2
(e1 − e2) +

1

2

8∑
i=3

tiei|ti = ±1,
8∏
i=3

ti = 1


So we have |Wδ| = 56 and so ` = 29. A similar calculation for E6 and E7 can be made.

Proof of Theorem 1.1

Parts i,ii and v

In Lie algebras of type A, D and E all roots are long, so parts i, ii and iv follow from

Theorem 5.1, Proposition 6.3 and Propsition 6.4.

Part iii

Referring back to [H] we see that the roots of Br are given by

∆ = {±ei ± ej |1 ≤ i, j ≤ r} ∪ {±ei|1 ≤ i ≤ r}

where ei are the standard basis of Rr. The positive roots are given by

∆+ = {ei + ej |1 ≤ i, j ≤ r} ∪ {ei − ej |1 ≤ i < j ≤ r} ∪ {ei|1 ≤ i ≤ r}.

Recall that given a Γ ⊂ ∆+ we chose δ ∈ Γ to be a superminimal element i.e a minimal

element such that if α < β and β < δ then α /∈ Γ.
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Suppose we can choose a superminimal element δ such that it is a long root. In this

case we can repeat the arguments of the the simply laced case, using Proposition 6.3 and

Theorem 5.1. We can make similar calculations and conclude that ` = 2r − 2.

Suppose no superminimal elements are long. In this case δ = ei where i is the largest

index such that ei ∈ Γ. Observe that el+ ej /∈ Γ for i < l < j and that el− ej /∈ Γ for l < j.

For if any of these statements were not true it would imply that there exists a superminimal

long root.

We now claim that if ek /∈ ∆k for i < k ≤ r then δ = ei satisfies conditions 1 and

2. To verify the claim we argue as follows. It is clear that Sδ is a subset of the following

{ei−el|i < l}∪{el| i < l}. Thus condition 2 can be easily verified. Let Uδ = {β ≥ δ|β ∈ ∆+
m}

and let Vδ = {α ∈ ∆+
m|δ − α ∈ ∆+

k }. Then Tδ = Uδ ∪ Vδ. We can clearly see that

Uδ = {ea|a < i} ∪ {ei + ea| a < i}. Due to the assumption that ek /∈ ∆k , we have

Vδ = {eb| i < b, ei − eb ∈ ∆+
k }. Thus

Tδ = Uδ ∪ Vδ = {ea|a < i} ∪ {ei + ea| a < i} ∪ {eb| i < b, ei − eb ∈ ∆+
k }

Note that if β1, β2 ∈ Tδ then β1 + δ − β2 is a positive root if and only if its equal to δ or of

the form es − et where s < t. To see this note that

{δ − β|β ∈ Tδ} = {−(ea − ei)|a < i} ∪ {−ea|a < i} ∪ {ei − eb| i < b, ei − eb ∈ ∆+
k }.

We have already observed that roots of the form es− et does not belong to Γ with s < t, we

now see that condition 1 is satisfied thereby verifying the claim.

To finish the proof we assume that ek ∈ δk for k such that i < k. Let gt = exp(tXek)

where Xek is a root vector for the root ek. Since Xek ∈ K that implies that gt ∈ K. Then
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the left translation Lgt is an non-trivial isometry as well as a biholomorphism on the space

G/K, that fixes the base point ē. So it suffices to study the index of the geodesic Lgt∗ γ̇.

For small values of t the set Γ associated to the geodesic will contain the long root ei − ek

by the Baker-Campbell-Hausdorff formula. So δ can be chosen in the form ep − eq where

p < q. We can then use the arguments above to prove the Theorem in the main case.

Parts iv,vi and vii The proofs of the remaining cases are similar and details will appear in

a forthcoming paper. �
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