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ABSTRACT

LOCAL HEATING OF BIOLCGICAL BCDIES
WITH HF ELECTRIC AND MAGNETIC FIELDS

BY

Manochehr Kamyab Hessary

In this research the schemes of utilizing HF electric and
magnetic fieids to localiy heat a biological bcdy are investigated,
with the application to hyperthermia cancer therapy or other medical
purposas. The HF electric field maintained by a capacitor-plate
applicator and the HF magnetic field produced by a current disk are
used to heat biological bodies locally.

Rigorous theoretical analysis for such applicators are presanted
in this thesis. First the preblem of a capacitor consisting of a
pair of flat-plate electrodes cf arbitrary dimensions in free space is
studied. The distributions of the electric charges on the plates are
obtained numerically for variety of cases and the electric ficlds at
various points in free space are calculated. Following this study,
the heating pattern induced by a capacitor-plate applicator inside a
body is analyzed theoretically. Numerical results obtained on the basis
of the solutions of two coupled integral equations are presented for
several cases. After this a current disk applicator (pancake applicator)
is studied. The electric field and the heating pattern induced in a

body by a current disk placed on the body surface are obtained numerically.



Theoretical schemes are developed to synthesize the voltage distribution
on a capacitor-plate applicator and the current distribution on a current
disk to obtain a desired heating pattern inside a body. The electric
fields inside a simulated body induced by different applicators are

measured for several cases and are compared with the theoretical values.
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CHAPTER I
INTRODUCTION

Since its early days of discovery, electromagnetic radiation
and propagation has been utilized to benefit human societies and the
everincreasing impact of the EM waves on different aspects of human
life has been enormous.

Constant efforts by scientists and engineers to utilize the
potential usefulness of EM wavesto enhance the quality of life and their
incredible achievements has made it possible for many man's dreams to
become reality. Intercontinental satellite communication, radar detection
systems, microwave technology, and using EM energy for medical purposes
in recent years are only few examples to mention.

The idea of using EM energy to induce hyperthermia in bio-
logical bodies for the purpose of cancer therapy has become the center
of attention of many medical researchers over the past decade. It has
been found that when the temperture of a tumor is raised a few degrees
above that of the surrounding tissues, accompanying chemo or radio-
therapy becomes more effective in treating tumors {1-3]. In the combined
therapy of malignancies, the objective is to find a noninvasive method
by which to heat the tumor without overheating other parts of the body.
EM radiation has been found by many researchers to be a convenient

agent to heat a tumor locally.



Significant progress was made in the hyperthermia cancer
therapy when Leveen, et al. " 4 ] used 13.56 MHz EM radiation to
eradicate tumors in cancer patients. Holt [ 5 ] has used 433 MHz EM
radiation in combination with X-rays to cure many cancer patients.
Antich, et al. [ ¢ ] used 27.12 MHz EM radiation to heat cutaneous
human tumors. Jaines, et al. L 7 ] combined microwave with X-rays to
treat tumors in the bodies of terminal cancer patients. Many other
researchers [8-13] have used EM radiation of 2450 MHz, 918 MHz or HF
range to heat tumors in animal bodies and reported significant tumor
regressions.

However, in order to improve the efficiency of applicators,
in-depth theoretical study of the EM fields inside biological bodies
induced by the applicators, as well as the heating pattern or power
deposition in the tumor and other parts of the body is needed.

In the present research the methods of local heating of a
biological body with HF electric field (capacitor-plate applicator) and
HF magnetic field (current disk applicator) are studied theoretically
and experimentally.

In Chapter II a theoretical analysis of flat-plate capacitors
of arbitrary dimenisons and arrangements in free space is presented.
The distribution of the electric charge on the plates is found numerically,
and the three components of the electric field at various points in
free space are calculated for variety of cases.

In Chapter III a capacitor-plate applicator is analyzed. Two
flat piate electrodes located across a biological body with properly applied

voltage distributions are used to heat the body locally. Based on the



tensor integral equation method (TIEM) developed by Chen, et al.[16 I,
two coupled integral equations are established from which the induced
electric field inside the body and the density of the electric charge

on the electrodes are obtained numerically. Then, the specific ab-
sorption rate (SAR) of the EM energy in the body is calculated for both
homogeneous and heterogeneous bodies. In this chapter, a theoretical
scheme is also developed for synthesizing the voltage distribution on
the plates in order to obtain a desired heating pattern in the body,

and some numerical examples for such a synthesis are given.

In Chapter IV the shortcoming of the capacitor-plate applicators
relating to the overheating of the fat layer in biological bodies is
explained. The main subject of this chapter is the theoretical study
of a current disk applicator (or a pancake applicator). The electric
field inside a biological body induced by a current disk applicator
placed on the surface of the body is calculated numerically for different
current distributions, and various results are presented. A theoretical
scheme for synthesizing the current distribution on the disk to obtain
a selective heating pattern is developed and some numerical examples
are given.

In order to verify the theoretical results, a series of experi-
ments was conducted where the electric fields inside a biological body
and in free space induced by applicators were measured. The experimental
results are compared with theoretical results at the end of each chapter.

The decriptions of the experimental setup and related problems are

given in Chapter V.



Chapter VI' contains a brief description of the computer programs
used to obtain the numberical results. The lists of programs and numer-

jcal examples for each program are also included in this chapter.



CHAPTER I1I

ANALYSIS OF FLAT-PLATE CAPACITORS OF ARBITRARY
DIMENSIONS AND ARRANGEMENTS IN FREE-SPACE

In this chapter,a numerical method is developed to analyze the
problem of a capacitor which consists of two flat parallel electrodes
of arbitrary dimensions and seperated by a distance, and with two dif-
ferent potentials applied to the electrodes. The distribution of induced
electric charges on the surfaces of the electrodes are determined first.
After that, the electric field maintained between the electrodes, and

the capacitance between the electrodes are determined.

2.1 Discription of Problem

Consider a capacitor with two conducting parallel electrodes,

S] and 52’ as shown in Figure 2.1. Two a.c. potentials of VS and
1

v are applied to the electrodes, and a harmonic time variation of

)
Jut .
e is assumed for those potentials.

At any point ¥ in free space the vector and scalar potentials,
>
A(*) and ¢(r), maintained by the current and charge on S, and S,

can be shown to satisfy the following differential equations.

2 > 2 ,» _ Y"ls(-rt )
vo(r) + 8o(r) = - 3 (2.1.1)
v2A(7) + ng(‘r’) = -, JF ) (2.1.2)

Equations (2.1.1) and (2.1.2) can be solved easily by the Green's

function technique resulting in the following integral equations in



4N2 = Number of subareas
on S2

4N1 = Number of subareas
on S1

N=N+

r =(Xm,Ym,Zm) field point

rn=(Xn,Yn,Zn) source point

Figure 2.1. A pair of flat,parallel electrodes partitioned into
subareas.



terms of Ng and 35:

o(7) = e‘_j ng (F1)6 (R, ¥ )ds" (2.1.3)
0 ’/S,+S
172
> > > 5 > >
A(r) = My f Js(r')G(r,r')ds' (2.1.4)
S.+S
172
. +> >,
-38y -1
where G(r,r') = e—++— is the free space Greens' function -
4n|r-r'|

Equation (2.1.3) may be solved for Ng subject to the condition of
vanishing of the tangential component of electric field, i.e.
> -> I
Et = -vtw(r) - JmAt(r) =0
. s -> > ->
at low frequencies |JwAt| << | vyo(r)|, thus, E, ® -vue(r) = 0. For
r € S] and 52, which implies that ¢(; € S],Sz) = constant.

2.2. Moment Solution of Integral Equation

The induced electric charge ng(¥) is difficult if not im-
possible to determine in closed form. However, there are numerical tech-
niques available by means of which the solution can be found. One such
method is the well known "Method of Moment" which is briefly discussed
here. More detailed descriptions can be found in other sources [14].

The moment method is one of the convenient ways of solving
integral equations by converting them into a set of simultaneous linear
equations in terms of the discretized values of the unknown. The latter
can be solved by digital computers with desired accuracy.

To solve equation (2.1.3), S] and 52 are divided into a number
of subareas which hereafter are referred to as cells. The charge

density on the nth cell is represented by p s and the potential



at an arbitrary point P(¥)

th

n cell is given as

¥) = -
P (r) = &

where as, represents the surface of nth

I nn(?-)e(F,F' )ds '
ASn

cell.

in free space due to the charge on the

(2.2.1)

If Asn is chosen

small enough, nn(;‘) varies insignificantly over Sy thus (2.2.1)

becomes

G(¥,r')ds"

AS

n
-> - n
9, (r) = E;'J
n

The total potential at point * is
4N

o(F) = 1 ¢, (F) =

4

ne-1=z

cf“"

n

where 4N

is the total number of surface cells.

(2.2.2)

nnf G(F,F')ds'  (2.2.3)
1 AsS

n

Next we require that (2.2.3) be satisried at the center of

each cell with position vector Fh

4N
-> ] > >
o = o(r ) =— n J G(r_,r')ds' (2.2.4)
m m % nZ] n As, m
m = ] ’2’ . ,4N

when m # n, we can assume that r' = Fn’ where

position vector for the center of nth

1 4N . 4N
Py = E; [nzl nnG(rm’rn)ASn * nzl $tann
n#m
m=1,2,...,4N
0 m#n
mn
1 m=n

?n represents the

cell, thus (2.2.3) becomes

G(r_,r')ds"']
JAsn m

(2.2.5)



The second term on the right is the contribution to the potential
at the center of a cell due to the charge on the same cell.
Equation (2.2.5) comprises a set of 4N Tlinear equations in

terms of n's and may be written in the matrix form as follows

B T o I ~ 1
? ™
(Pz N2
) _ .
(2.2.5)
| Py | i 1L Man]
4NXT 4NX4N 4NXT

. _-]__ > >
with 6 = 3 48 G(rp,r.)

As explained earlier, at low frequencies the vanishing of the
tangential component of electric field on the electrodes requires that‘

the potential on the surface of each electrode should be constant.

Thus, we have.

' for m < 4N

¢, = constant =

Vv for 4N'l <m< 4(N.l + N

)
S, 2

where N1 and N2 are the number of cells on % of S] and 52

respectively.
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2.3. Calculation of Matrix Elements

In this section the expressions for the matrix elements Gmn
will be developed. Two different cases of grounded and floating

potentials are treated seperately.

2.3.1 Grounded Case: This case is commonly used in practice where one

electrode is grounded (S] for example) and an a.c. potential is applied

to the other electrode. For this case VS =0 and VS = V, where V is the
1 2

amplitude of the applied voltage. Substituting these values for Pn
into equation (2.2.5), we have

-1

- n] - - - ™ 0 -
2
. 4N]
=YV G 0
1
4N2 (2.3.1)
| 4N L | I R
4Nx1 4Nx4N 4Nx1

To make the problem more general, and at the same time to keep
the cost of computation down, we assume a four quadrant symmetry for the
problem. In other words, the geometry of electrodes is symmetric about
the planes z=0 and y =0 (Figure 2.2). The planes of symmetry

divide the space and two electrodes into four quadrants labled by



/

y

. (b)
Figure 2.2. A cubical volume of free space is partitioned into four symme-

trical quadrants(a),and (b) the geometry of two parallel electrodes
with 52 partitioned and the charge densities on the subareas.
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Roman numerals I through IV. It is noted that the cases where no
symmetry is present in the geometry the problem can be handled as well,
but they are of 1ittle value in practical applications.

Under the stated conditions we need only to compute the
charge density, and later in this chapter the electric field, only
in one quadrant. The desired quantities in the other quadrants can be
obtained by utilizing the symmetry. The charge densities on various

cells on the first quadrant of 52 and that of their counterparts on

other quadrants are shown in Figure 2.2.b.
Now we proceed with the computation of the matrix elements.
The off-diagonal elements will be computed first.

If m# n, by synmetry and refer to Figure 2.2.b, we have

I_ II_ III _ IV
nn nn nn nn

which reduces the size of G matrix in (2.3.1) to %-of that when there

is no symmetry present. With this symmetry, (2.3.1) reduces to

-1

r ; - -
rl] ] 0
n2
i N,
=y 6> 0
i N,
L ™ L I LT

NX1 NXN NX1
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where
GS=.A_S_n.[G(r ?I)*‘G(? ?II)+G(+ +III+G+ > IV
m = € el , Pl ) (Pt )1
(2.3.3)
. > > e.JBol]’.m-l"nl
with G(rm,rn) = — , and
41r|rm-rn|
-> - - -~
rm = me + me + Zmz
> 1 = " ~ > > II _ 2 ~ A
ry = an + Yny + an = an - Yny + an
> IIT _ A - A > IV _ - ~ -
™ = an - Yny - an rm = an + Yny an

n,Yn,zn) are the cartesian coordinates of
th

cell (field point), and the n

where (Xm,Ym,Zm) and (X

th

the centers of the m cell (source

point), respectively. Thus, G;n can be written as

. I . Il . III . IV
s AS =38R ~JB,Rmn =38R 'JBoRmn
¢S = n_ e , 8 - - ]
mn 4ﬂ€0 RI RII RIII RIV?
mn mn mn mn
(2.3.4)
where
I _ 2 2 2.5
Ron = [(Xm - Xn) * (Ym - Yn) * (Zm - Zn) :
11 _ 2 2 24k
Rin [(Xm Xn) + (Ym + Yn) + (Zm Zn) ]
I11 2 2 2.5
Ron = [0 = Xp)7 + (Y + ¥ )"+ (7 + Z)")
IV 2 2 2. %
R = [(xm xn) + (Ym - Y )"+ (Zm + Zn) ]
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and

D for m»> N] D for n > N]

X = s X =
n

0 otherwise 0 otherwise
D = The distance between the electrodes.

For diagonal elements, m = n and as a result Fm = Fn’ which
makes the first term on the right hand side of (2.3.3) become infinite.
Since this term represents the contribuiton to the potential at the
center of a cell due to the charge on the same cell, it is easy to
avoid the singularity by evaluating this term analytically. For this
purpose, we approximate the square cell by a cicular one of the same

area as shown in Figure 2.3. The potential at the center of the circular

disk with uniform charge density n is.
-JB,r %

_JB ———
S e - oV m _
P 4n€0 fs - rdrdo (e 1) (2.3.5)

2'n
JB €
c 00

Therefore, the diagonal elements can be obtained by substituting (2.3.5)

into (2.3.3) for aS_ G(?ﬁ’Fn) and setting m = n:

D . II . ITI . Iv
S 1 -J8, 1;- AS, e'JeoRmn e'JBoRmn e'JsoRmn
Sm = 238.€, (© "Dt e ot T v
mn mn mn
(2.3.6)

This concludes the evaluation of the matrix elements for the grounded

potential case.

2.3-2 Floating Potential Case: When the potentials of the electrodes

are floating, VS and VS are not known, except for the special case
1 2
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Figure 2.3. A square cell is approximated by a circular one for
the calculation of the diagonal elements of matrix G®
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of S, =S,, for which VS = -VS = %-. However, it is noted that

2 1
once the voltage on one of the electrodes is obtained, that of the other

1 2’

is determined from
- Vo =V (2.3.7)

This means that one extra unknown is introduced into the equations
{2.2.5). Therefore an additional equation is required in order that
the equation system (2.2.5) can be uniquely solved. This extra equation

can be derived from the continuity equation.

->
V'\] = -jwp (2.3.8)

If we integrate (2.3.8) over the volume enclosed by surface S surrounding
electrode S] as illustrated in Figure 2.4 , and apply the divergence

theorem we obtain

=1
9 =3 (2.3.9)

€

where 9 is the total induced charge on S] and I is the current

flowing out from electrode. Similarly for 52 we have

.1
qy = T (2.3.10)

with a5 being the total charge on S,. Adding (2.3.9) and (2.3.10) and

N
noting that g, + 9p = In AS

n 85, » leads to the following relation .
n=1

n, AS =10 (2.3.11)
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I
52 2
H2
+
C?-V
S 9
1 I
y 1
1
q1+q2 =0
(a)
y I
S
2 q2
+
~ ')
)
'4‘.-—-—-'_--_-_t'$-'-~
Sq ‘\_-__________________)
q1=_q2  J
(b)

Figure 2.4. Relation between the charge on and the current flowing into
the electrodes. (a) grounded potential case (b) floating
potential case.
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Equation (2.3.11) in conjunction with the equation (2.2.5) gives the
following matrix representation of N + 1 equations in terms of charge

densities and the potential of S] .

- , j ~ b [ 7
=1 .
: &
'
S ; - 0 J
G ' =V (2.3.12)
; ]
: ’ N
=1 WY . 2
_ AS, AS, 0 ] LVS] ‘ _ 0 ‘

2.4 Numerical Results

A computer program has been developed for solving (2.2.5) and
(2.3.12), and the induced charge density has been obtained for several
cases. The capacitance between the electrodes of the same dimension
was calculated as the ratio of the total induced charge and the applied
voltage for several values of the seperation between electrodes, and the
results are depicted in Figure 2.4. (the solid curve). The dashed curve
on Figure 2.4. is obtained from the formula for the electrostatic

capacitance of

C=¢ % ' (2.4.1)
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Capacitance (X]O]3 farad)
(o))

n
L]
o
"
m
o>

j

0
- —

e R S —

0.0 ' 7.0 ' ) — D
spacing between the electrodes(cm)

Figure 2.5. The capacitance Vs spacing of two parallel plates of equal
size. (a) using the methode of subareas,(b) using c= € A/D.
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The closeness of the two curves for small values of the seperation
between electrodes suggests that the value for capacitance obtained
from (2.4.1) is close to the exact value of capacitance obtained numer-
ically. For a large seperation between the electrodes the expression
(2.4.1) does not give accurate results for the capacitance, the numerical
method should be employed instead for exact evaluation of the capacitance
between the electrodes.

Figure 2.6. shows the distribution of the induced electric
charge on the upper electrode S] and lower electrode 52 along the
edge (Z-axis), and the diagonal (Zd axis) of the electrodes. The
electrodes are of equal dimension (6 x 6 cm). The solid curves are
obtained for D = 2. cm, while the dashed curves are for the case when
D=4. cm. A floating voltage of 2. volts at 15 MHZ is applied between
the electrodes. It is noted that the charges on the upper and lower
electrodes have equal magnitude, but they are 180° out of phase. It
is observed that the charge is distributed almost uniformly on the middle
section of each electrode and increases rapidly towards the edges, and at
the corners of electrodes the magnitude of charge is maximum.

In Figure 2.7. the lower electrode S1 of Figure 2.6. is
grounded and D is kept constant at 4. cm. The distributions of the
electric charge on the electrodes are shown along Z, and Zd (solid
curves). The charge distributions for floating potential case are also
included for the purpose of comparison (dashed curves). It is noted
that for the grounded potential case the magnitude of the charge on
the upper electrode is noticeably larger than that on the lower grounded

electrode.
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Figure 2.6. The distributions of the charge densities on S, and S
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Figure 2.7. The distributions of the charge densities on S1 and 52 (same
dimension) (a) along Z. (b) along Zd
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Figure 2.8. shows the distribution of the electric charge on
the surface of two electrodes with different dimensions. The solid
curves represent the case when the larger lower electrode is grounded,

and the dashed curves are obtained for the case of floating potentials.

2.5. Computation of the Electric Field

This section is devoted to the calculation of the electric field
in free space maintained by the charge and current on the surfaces of
the parallel electrodes. If ¢(F) and K(?) are the scalar and vector
potentials at point ¥ in free space, the electric field at that point
is

>

E(F) = - vo(¥) -JwA(F) (2.5.1)

At Tow frequencies and in the near zone, the first term on the right
hand side of (2.5.1) predominates. In other words, in the near-zone
the electric field is mainly due to the charge on the surfaces of the
electrodes. Thus, the electric field can be expressed as;

-8, [F-F]

E(7) = -v fs y ng(F') & s’ (2.5.2)

> >,
1+S5 [r - r'|

Taking the differential operator inside the integral, and after some
straightforward manipulation we get
2y o ] f ) (1438, | F-F ) (F-F*) -jsol?’-?'cljs
r) = — ne(r e '
€ Ises, O ¥ -7 |
(2.5.3}




f=15 MHz
Sl=6x6cm
SZ=4x4cm

V=2. volts

—_— S1 grounded
——— floating potential

A nxlO9 cou]omb/m2
. . > 4 > L
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4 (B) |-2
Figure 2.8. The distribution of charge densities on S and S, (different
dimensions) for grounded(solid lines) and f]oat1gg potential

cases:(A)along Z, (B) along Zd
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The electric field at point r in free space due to the charge

on the nth subarea is approximately equal to
> > > > > >
> @) - ASnnn (l+JBO|r-rn|)(r-rn) e-Jsolr-rnI
n 4n€o |; i |3
n

The total electric field is then

., AN aS n_ (1+jg_|F-F [V(F-F )  -jg_|F-F |

EF) = 1 E (R = ] gt o _n. D "0 " (25.4)

n=1 n=1 0 Ir-r,|

The three scalar components of E in the first quadrant can
be written as

N

I I . I1 . 111, IV
B s Lomg (G # G v Gy v Gp) (XeXy) (2.5.5)
EL = g e ¢y (vov ) + (clf + ¢l (vav ) (2.5.6)
Y n=1 " *n n n n n n i
£l = ? e+ ¢ty (z-z) + (I« ¢y (z+2) (2.5.7)
z 4 "% " n n n n 9.
where
K ok
AS 1+j8_ R -jB R
ck . n on_ ovom oI, III, IV

and (X,Y,Z) are the coordinates of the field point ¥, and

k _ = =k
Ry = |r -.rnl
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where =¥ th

n is the position vector for the source point in the k

quadrant. The numerical results for the electric field components are
shown for various cases in Figures 2.9 to 2.12.

Figure 2.9. shows the distirubiton of the three components of
the electric fields, maintained by the charges on the electrodes, at
the centers of the partitioned subvolumes (1 cm3) between the electrodes
of equal dimension (6 x 6 cm) when the potentials of the electrodes
are left floating. The applied voltage between the electrodes is 2
volt and the frequency is 15 MHz. Due to symmetry only the fields in
one quarter of the free space between the electrodes are shown in the
Figure. It is seen that the X-component of the electric field pre-
dominates as expected. Also the field is rather uniform with a slight
decrease in the middle portion between electrodes.

Figure 2.10. shows the distribution of the X-component (dominant
component) of the electric field in free space between two electrodes
of equal diminsions (6 x 6 cm) seperated by a distance of 4. cm. A
voltage of 2. volts at 15 MHz 1is applied between the electrodes
while the lower electrode is grounded. For this case weaker electric
fields are maintained near the grounded electrode, even though the
electric field in the free space between electrodes is still rather
uniform. Figure 2.11. shows the similar distribution of electric fields
maintained in the free space between two electrodes of different dimen-
sions, the upper electrode is 4 x 4 cm, and the Tower one is 6 x 6 cm.
The potentials of the electrodes are left floating and the applied voltage

is 2. volts at 15 MHz. The most noteworthy phenomenon in Figure 2.11
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is the distribution of the high electric field near the smaller upper
electrode. This pehnomenon is expected from physical intuition, and
has been used in practical applications to focus the electric field.

Figure 2.12 shows the similar results as that given in Figure
2.11. with two different features: The larger lower electrode is grounded,
and only the X-components of electric fields are shown. The interest-
ing point we observe from Figure 2.12. is that when the larger electrode
is grounded, the concentration of higher electric fields near the
smaller electrode becomes most outstanding. This phenomenon should
have practical applications.

Figure 2.13. shows the distribution of the X-component (dominant
component) of the electric field along the X-axis maintained between
two electrodes of equal dimension. The spacing D between electrodes
is kept at 4. cm and the electrode dimension (a) is varied to give
four cases of 2 : 1.16, 1.75, 2.4, and 3.5. A voltage of 2. volts
at 15 MHz is applied to each of the four cases. The lower electrode
S] is grounded, and the distribution of X-component of the electric
field along the X-axis is shown in the Figure for the four cases. It
is noted that when the dimension of electrodes is about the same as
the spacing between them, the electric field between electrodes is
nearly uniform. However when the dimension of electrodes become con-
siderably smaller than the spacing, the distribution of the electric
field along the X-axis can be nonuniform; with the intensity of the
electric field decreasing quite rapidly from the upper electrode (un-

grounded) towards the larger electrode (grounded).
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Figure 2.13. Distributions of the X-component of the electric field along
the X axis between two electrodes of equal dimension for va-
rious ratios of D/a , where D is the spacing between the el-
ectrodes and a is the dimension of the electrode. S1 is
grounded.
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Figure 2.14. shows the distribution of the X-component of
electric field along the X-axis in the free space between two electrodes
of different dimensions. A voltage of 2. volts at 15 MHz is applied
between electrodes while their potential are left floating. Four
cases of different electrode dimensions are considered for different
values of B, which is defined as the ratio of the surface areas of the
tow electrodes. The spacing between the electrodes, D is kept at
4. cm, it is observed that for B = 1, the electric field is uniform.

For g8 > 1, however, the electric field intensity is higher near the
smaller electrode 52’ and decreases towards the larger electrodes.

It is noted that as the ratio B8 increases, the electric field intensity
decreases more rapidly along the X-axis towards the larger electrode.
Similar phenomena are observed for the case when the larger electrode

is grounded. The results for this case are shown for four different
values of B, in Figure 2.15. comparing Figures 2.14 and 2.15, we

observe that for the same value of B if S.I is grounded the intensity
of the electric field increases near the smaller upper electrode 52

and reduces near the larger lower electrode S] as compared with the
case of floating potential case. For this reason the grounded potential
case has advantage over the floating potential case for the purpose

of focusing the electric field.
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Figure 2.14. Distributions of the X-component of the electric field along
the X axis between electrodes of different dimensions for
various ratios of 51/52 .The potentials of the electrodes
are left floating.
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Figure 2.15. Distributions of the X-component of the electric field along
the X axis between two electrodes of different dimensions
for various ratios of S.,/S, where S, and S, are the surface
areas of the two electrddes. ( 1 i& grouné%d )
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2.6. Comparison of Numerical Results with Experimental Results

In order to verify the theory and numerical results presented
in the preceding sections, a series of experiments was conducted to
measure the electric field between the electrodes for various cases of
capacitor dimensions and applied voltages. The details of the exper-
imental setup will be given in Chapter V, and only the experimental
results will be used to compare with theoretical results in this section.

Figure 2.16. shows the theoretical and experimental results
of the electric fields maintained at the inner and outer surfaces of
one electrode for three capacitors with various electrode dimensions
(a), and seperations D (i) D=4. cm, and a = 4°™ (ii) D=8
cm, and @ = 6. cm, and (iii) D= 4 cm and a = 6 cm. The electric
fields at the inner and at the outer surfaces of one electrode tends
to increase towards the edge of the electrode, somewhat proportional
to the induced surface charge on the electrode. The electric field at
the inner surface of electrode is in general, larger than that at the
outer surface. The ratio of the former to the latter becomes larger
if the electrode dimension (a) is increased, or' the separation between
electrodes D is decreased. In the limit of an infinite a and a
finite D, there is zero electric field at the outer surface of the
electrodes. The agreement between theory and experiment is considered
to be good.

In Figure 2.17. the variation of the normalized X-components
of the electric field along the X-axis maintained between two electrodes
of equal dimension (7 x 7 cm) has been shown for the cases of

D=4cm(A), and D = 8. cm (B). The solid lines show the theoretical
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Figure 2.16. Theoretical and experimental results of the electric field at
the inner and outer surfaces of one electrode for three capa-
citors with various electrode dimensions and seperations . So-
1id 1ines are the theoretical results and discrete points re-
present the experimental results.
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Figure 2.17. Theoretical and experimental results for the distribution of
the X-component of the electric field along X axis between
electrodes of equal dimension.
theoretical results and the discrete points represent the
experimental results.

Solid lines show the
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results, while the discrete points represent the experimental values.
Again a good agreement between theory and experiment is obtained. In
Figure 2.18. the theoretical and experimental results for the variation
of the X-component of electric field along the X-axis between two
electrodes of different dimensions are shown for the floating potential
case (A), and for the grounded potential case (B). In each case

the results for 3 different values of B8 are shown. It is observed

that the agreement between theory and experiment is satisfactory.
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Figure 2.18. Theoretical and experihenta] results for the distribution of
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CHAPTER III
LOCAL HEATING WITH HF ELECTRIC FIELD

The heating effect of nonradiating electromagnetic fields has
been utilized over the past decade in order to eradicate the cancerous
tumor embedded inside a biological body. A great deal of research has
been conducted and successful results have been obtained on tumor-bearing
labratory animals and even the human body.

There exist several methods by means of which a biological body
can be locally heated. One such method is the local heating with
electric field, where the body is placed between two parallel electrodes
connected to a RF generator. Although this method has been proven
efficient in cancer therapy, very few engineering studies have
been conducted to analyze the distribution of the induced electric
field and the specific absorption rate of energy (SAR) in the body.

In this chapter we aim to analyze the theoretical aspect of
the problem and find the induced electric field in the body for various
configurations of the electrodes as shown in Figure 3.1. Also a scheme
will be developed to synthesize the potential distribution or the charge
distribution on the electrodes in order to obtain a desired heating

pattern in the body.

3.1 Problem Discriptions

In the preceding chapter a capacitor consisting of two electrodes

4]



42

Electrodes of the same size
floating voltage

\)
[ —— == .-’.,
4
s Q4
----—7 - -
/sy V 4
/
Y A S

Vi =V, = v/2 and 9 = 9

oot ;

1]
= -"::.‘ )

N S A X

U -_qz"

—
4 4
v /

4
’

Lo 2caa-..

heterogeneous body

Vi= =V, = v/2 and 9 = 9,

AC

C47

oo eed

’
SV ’

P . L L L, J

/

/ q2 4

’
’

e = comwm = o we

Electrodes of different sizes
floating voltage
v]+v2 = v and 9 = 9

=

U
lda

AL SO

’

Electrodes of different sizes
one electrode grounded

V2=

0.0, Vi =V
q] *q2

Figure 3.1. Different arrangements of capacitor plates placed on the
biological body for the purpose of local heating.
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of arbitrary dimensions in free space was studied in some detail,
and the distributions of the electric charges on the electrodes, as
well as the electric field in free space, were obtained.

When a biological body of conductivity o, permittivity €
and permeability My is placed between the electrodes, the problem
becomes more complicated in the sense that the charge induced on the
electrodes and the induced charge on and the induced current in the
body are coupled. This necessitates the establishment of more equations
from which more unknown quantities are to be solved as compared with
the problem treated in the preceding chapter.

The geometry of the problem is shown in Figure 3.2 where a
pair of e]ectrodes are placed across a biological body. The density
of charge on the electrodes is denoted by n(r'), and the incident elec-
tric field maintained by n(¥') is represented by Ei(?). The total
electric field at any point ¥ inside the body is the sum of the in-
cident electric field Ei and the electric field maintained by the
induced current and charge inside the body, or the scattered electric
field represented by Es.

By using the Maxwells' equations we will obtain two coupled
integral equations in terms of the induced charge density on the elec-
trodes and the unknown total electric field inside the body. Then the

moment method is employed to solve the integral equations numerically.

3.2 Integral Equation for the Total Electric Field in the Body

The incident EM fields must satisfy the source-free Maxwells'

equations in the free space between the electrodes:
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Figure 3.2. A pair of electrodes energized by a HF voltage placed
across the biological body for local heating



vXE (%) =-jmuoﬁ" ) (3.2.1)
>{ _ > >
VX' (F) = Jue, E (7 (3.2.2)
VENF) = 0 (3.2.3)
vl (%) = 0 (3.2.4)
Jut

where a time variation factor of e is assumed for the incident
fields.
The total EM fields at any point inside the body can be

expressed as the sum of the incident and scattered fields

E@) = B (F) + B (3.2.5)
HF) = B (F) + B°(F) (3.2.6)

E(?) and H(F) must satisfy the following set of Maxwells' equations.

VXE(F) = ~jum H(P) (3.2.7)
VH(F) = [o(F) + ju €(F)IE(F) (3.2.3)
v-[o(F) + ju €(F)IE(F) = 0 (3.2.9)
v-H(F) = 0 (3.2.10)

substituting (3.2.5) and (3.2.6) into (3.2.7) and (3.2.8) leads to the

following equations
>4 >S > . e IS . >S5,
VXE' (F) + WXES(¥) = -JmuoH1(r) -juu H(F) (3.2.11)

VXH' (F) + 0 (F) = o(PE(F) + Jule(F)-e JE(F) + jue (E'(F) + E5(F):

(3.2.12)
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If we subtract (3.2.1) and (3.2.2) from the above two equations, the

result is
TXES (F) = -juu H® () (3.2.13)
X (r) = [o(F) + Jule(F)-€)IE(F) + jue E°(F) (3.2.14)

We define an equivalent current density jeq(?) by

> - >,

J_(r) = =(r)E(¥) (3.2.15)
eq

where t(r) = o(F) + ju (e(?)-eo) is called the complex conductivity.

Thus, the equation (3.2.14) reduces to

UXRS(F) = t(PEQ(F) + jweo“s’(?) (3.2.16)

-

It is noted that the equivalent current density, Jeq consists of
the conduction current of, and the polarization current jm(e(F)-eo)E.
The appropriate Maxwells' equations for the scattered fields

can be summarized as follows

vXE® (F) = -quoﬁs(r) (3.2.17)

VXS (¥) = 3eq(?) + jweoES(F) (3.2.18)
2S5 > 1 >

vV-E>(r) = E: oeq(r) (3.2.19)

7R (%) = 0 (3.2.20)

peq is the equivalent charge density and is related to jeq by the

equation of continuity



v.ﬁeq(‘F) = -preq(“r‘) (3.2.21)
jved_ (F)
oeq(?) = ——-;39—— (3.2.22)

The scattered electric field can be thought of as the field
maintained by jeq(?), which flows within the conductive medium. It

can be shown that they are related by the following expression [ 15]
> > >,
B(F) = [ 3 7). mEF) - LHER) g g0 (3.2.23)
v 9 Ju )

<>

where G(r,7') = Juou [T + Z%J G(r,r') is the free space dyadic Greens'

60

-3 |77
- e

function and G(F,r') = is the scalar Greens' function for

o}

-
4n|r-r' |
free space, and

A A A A A A

<>
[ = xx +yy + zz

is the unit dyadicl

P.V. stands for the principle value and it means that the source point
should be excluded while evaluating the integral. With (3.2.23),
(3.2.5) becomes

(1+ %‘i‘el JE(F) - P.v. fv (FOEF)TFF)av = £ (F) (3.2.24)

>

which is an integral equation for the total electric field E(F¥) inside

the body.

3.3 Integral Equation for the Induced Charge on the Electrodes

An integral equation can be derived for the induced charge

density on the electrodes by a proceduce similar to that employed for
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the free space case in Chapter II. The difference however, is that in

the present case the charge induced on the surface of the body must be

taken into account for evaluating the potentials on the electrodes.

Thus, at any point T on the surfaces of the electrodes the potential

V(?) can be expressed in terms of the charge induced on the surfaces

of the electrodes and that on the body surface.
VE) =S aF6(FF s + -

(0]

0 S]+52

nb(F--)a(?,‘F")ds" (3.3.1)

Sh

Where S] and 52 represent the surfaces of the electrodes, Sb

represents the body surface, n(¥'), and nb(?") represent the charge
densities on the electrodes and the body surface, respectively. An

expression for b in terms of 3; may be deduced from (3.2.21).

For a homogeneous biologica? body v-jeq(?) is nonzero only
at the body-free space interface, where the induced charge is present.
If (3.2.21) is integrated over an infinitesimal volume enclosed by a
samll pillbox as shown in Figure 3.3.b, and the divergence theorem is
applied, np can be obtained as

>\ A T 5
n(F1) = - TELN-E(F) (3.3.2)

Jw

Where n is the outward unit vector normal to the surface of the body.

With (3.3.2), (3.3.1) can be rewritten as

VE) = & nFGFEF s+ g [ (FOREF)G(FF s (3.3.3)
o S$1#S N
1752 b
e-jsolr-r'l

where as before G(F,F') = =——
4u|r-r'|
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Equation (3.3.3) and (3.2.23) constitute a pair of coupled integral
equations for the unknowns n(*') and E(?).

The incident electric field Ei(?) in (3.2.24) is maintained
by the charges distributed on S1 and 52 only, and can be written

in terms of the charge density n(*') as

B = - elf n(r')v,. G(F,7')ds' (3.3.5)
o Sy+S

172

For convenience, (3.2.24) and (3.3.3) are rewritten together.

(1 + ELER) - v, [ GOREIRER 0 - R (3220

=0/ e F)dst + L (P (R-EF)G(F. s T = V(F)
o $;%S, Ysy

(3.3.3)
where E(F) = -/  n(#)v6(F.F)ds

3. Moment Solution of Coupled Integral Equations

The two coupled integral equations may be converted into a
system of linear equations in terms of the unknowns by using the method
of moments. For this purpose, the body and the electrodes are assumed
to be symmetric with respect to the Y =0 and Z = 0 planes as shown
in Figure 3.3. The first quadrant of the body is divided into N
subvolume cells, throughout each cell «<(¥) and E(?) are assumed
to be constant. Similarly, the first quadrants of S] and 52 are
partitioned into a total number of N' subareas, over each subarea

the charge density n 1is assumed to be constant.
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From (3.3.3), the voltage at the center of the th subarea

located in the first quadrant can be written as

N, ~ 2,2»b, b
N' 4 . B n-E(r )t(r)
*Sy - yS 2 1 i2s »sy ko L 2
virp) = Vg € k§1 Tk izl G (rpeTy)aSe + 3 221 w
¥ i s oby o2
. 121 G (rm’rz)ASb (3.3.4)

where i represents the quadrant number and U is the charge density

th subarea on the electrodes. F;, and Fz are the po;ition

th

on the k

vectors for the centers of the m cell (field point) and kth cell

(source point) on the electrodes.

th

?g represents the position vector of the center of the & body

surface cell, and finally Asz, and ASé are the areas of the kth

cell on the electrode and the lth

cell on the body surface, respectively.
The induced electric field inside the body is mainly in the
_ tx<E

143
x direction, this implies that " = ja = ji .

Therefore, the equation (3.3.4) may be transformed into the following

matrix form.

n
N NB 1 ] _
- i X 2
: : v
N : N 2 N (3.3.5)
S ! C ——eqee = *
G ' 1 .
; Ex .
E § ‘ L VN 4
N
B
| gl

Where
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4 : Jt 4 .
S oL 7 uskg BEATE SR
Gy e 121 2Sg6y, and C o 121 G, A5, (3.3.5a)
6l 2@, 6 @), o )

and NB is the total number of the subareas on the body surface. The

expressions for the elements of the matrices GS

and C will be
presented in the next section.
The matrix representation of (3.2.24) is given elsewhere [16 ],

and the result is of the following form:

i 107 ¢ ] i
Gyx 5 Gy i Gz || Ex| | Ex
P A A it I
Sx 1 Gy i Sz || B |f (3.3.6)
e cc e csdmceccnedecoce = - & == - comaae
' : 1
Sox Sy Sz || B2 | B

Equation (3.3.6) can be written in a more compact form as

el T

where [G] 1is a 3NX3N matrix and (EJ], and [Ei] are column metrices

each with 3N elements.
The incident electric field matrix [E‘] can be related to the
induced charge densities on the subareas of S] and 52 by the

following matrix relation.

NI
i I 1
Ey __fﬁﬁ--- "
i ;
3N uFlu - -.-51,"- _ (3.3.7)
i N
.EZ L A;
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With (3.3.7) substituted into (3.3.6), and after some rearrangements,

we obtain

[ 1
3N N
i
| ' : | X
Gyx & Gxy ¢ Gz i Ax [|Ey | 3N
Moy foy iogl A |[E = 0 (3.3.8)
Gzx 1 Gzy 1 Gz s Ap I
N
an

For the case when one electrode (S]) is grounded, equations (3.3.5)

and (3.3.8) may be combined into the following matrix representation.

3N N
(6w ' G ! G ! A, 1TE } [0 ]
xx + Gxy ! Gxz i Ax X
] 1]
A O L I 2
I SR F— L
S | Gy i G A |8 |TV]O ] (3.3.9)
""" s v M cal
H ! : . 1
NOje to o too e | P
! 5 5 flowe 1 L1 102
Nyt Ny= N

where, N] and N2 are the numbers of subareas on S] and 52, and
V is the applied voltage.

The matrix C' is related to the matrix C as

N N N-N B

=
('2
"
2.
O
- ;---
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3.4 Calculation of the Matrices Elements

In this section the expressions for the elements of the matrices

G, A, 6

, and C will be developed. The elements of the matrix G
have been given by Livesay and Chen [16 ], and only the results will

be presented here.

3.4.1 G Matrix

For a four quadrant symmetry it is shown that

mn mn mn mn
mn _ ] 2 3 4
GXPX = GXPx + prx + GXPX + GXPX (3.4.1)
mn mn mn mn
mn 1 2 3 4
G =G -G + G -G (3.4.2)
XPY XPY XPY XPY XPY
mn mn mn mn
mn 1 2 3 4
G =G -G -G + G (3.4.3)
XpZ XPZ XPZ XPZ XPZ
P=1,2,3
x] = X, X2 =Y, X3 =7

In the above expressions the numbers 1 to 4 in the superscripts
represent the quadrant number.
For the diagonal elements we have m = n, and

Juu 8 -jg a
Gy ¢ ——Zz—q— (30e(F ) + Ju€ 3-2c(F Je  ° M(1+jsa )} (3.4.4)

Pq

where
q=1,2,3

1 for P =q

Pq ™
0 for P #q
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and

th

where AVn is the volume of the n volume cell.

For m # n, we have
i . i

6 = -juu 8 <(F )aV e o325 o
Xo X o o™ N "M, *mn J%mn-°pq
P™q 1 i
+ Cos o’ Cos o’ (3-(od )2 + 3 ol 3 (3.4.5)
Xp Xq %mn %mn <7
where
i i _ >
%mn BoRmn » Ron = Irm] - ;ﬁil
i i
i Xm - Xn i Xm - Xn
mn- _ P P mn- _
CosexP -—Ri—,Cos oy —JF——q—
mn q mn
i=1,2,3,4 (The quadrant number)
and
i i i
> _gym Mmoo _ 0N n n
fn = (K Xpa Xgdo P = (X5 Xy 0 Xg)

1

3.4.2 A Matrix
From (3.3.7) the three components of the incident electric field
at the center of the mth body subvolume located in the first quadrant

are given as

N
Em = X Amnn
X a5 X
EV = §' AN m=1,2,...,N
Y opnp vy
Nl
m mn
2= L Azmg

3
—
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By comparing the above equations with (2.5.5), (2.5.6), and (2.5.7) the

following expressions for the elements of the matrix A can be obtained

m _ .l 2, 3,4, ,m _n
AX (Cn + Cn + Cn + Cn) (X] - X]) (3.4.6)
mn _ .l 4 m 2 3 m n
AY = (Cn + Cn) (X2 Xz) + (Cn + Cn) (X2 + X2) (3.4.7)
A = (¢} + i) (5 - X3) + (€2 + ¢l (XD + x
7 = - 3) (3.4.8)
where
.ok . ok
s 1+j8 R -jg R
k _ A5¢ I8, mn o mn -
Cn - 4‘“’6 (Rk )3 e ’ k - ],2,3,4
° mn
and
k _ » +k
Ron lrm - r‘n|
k k k
> _,m m .m 2k _ ,.n n n
rm = (x]a X2’ x3): rn = (X] ’ X2 ’ X3 )

again k represents the quadrant number.

3.4.3 G Matrix

In Chapter II the expressions for the elements of the matrix

S

G~ were developed and the results are as follows.

For m# k (off-diagonal elements),
S - e ce‘(?s T+ GE(E, W)+ (FS, 7))+ 6N, 7)1
m Eo > 'k * Tk >k > Tk

k
(3.4.9)

where



i
38 |- |
61 (';S’ '*S) = e .
m’ 'k . |+S +S1|
mlro-r
m=1,2,...,N'
i=1,2,3,4
*: (XS, Y:, Z;) is the cartesian coordinates of the mth subarea

on the electrode.

i TR T
FOLIN S RS B

e = s Ve L)
th

area in the i quadrant. It should be noted that all surface cells

th

Y Y4 is the cartesian coordinates of the k sub-

are assumed to have the same area ASe, and

0 if k< Ny 0 if m< N,
st
Xk - ’ X;:
D if Ny < k< NN, D if Np<me< Ni#h,
where D 1is the distance between the electrodes.
For m = k (diagonal elements) we have,
A
. e
s 1, B\ 85 2, 33 35y 4 S S
G = VAT (e -1) + = [67°(r (r ,P ) + G (rLr ) + 6 (r L,
00 o
(3.4.10)

3.4.4 C Matrix

From (3.3.5.a) we have

Jt 4 _
= g 1 2’ 9"],2,.-.,N
Crne = €0 121 Gme8Sp, B
° m=1,2,...,N'

where



i 2 Ai/2S b
sz =G (rm,rz)
It is straightforward to show that
A3y, 25 2b S 0) + (S, 7) + AP
C = j g——-r (G (rm, 2) + 62 (r ,rz) + G(F ,r ) + G (r )] (3.4.11)
2S +b‘
1 S -JBO| m 2 |
where 6 (P, /)= ¢ : o1 = k2,3,
+S >b
r|r -r [

= (¥S +S 38, . . .
and r (X m’ Z ) is the cartesian coordinates for the center of

the mth subarea on the electrodes with
0 for m < N1
S _
Xm._
D for N] <m< N]+N2
i i i i
?E = (Xf . Yf . Zf ) 1is the coordinates for the center of the zth
subarea on the body surface located in the quadrant
N
g for ¢ < 7?
i
X =
2

where g is the seperation between the body and the electrodes.
When the voltage between the electrodes is left floating, by
the same argument given in Chapter II for the free space case, (3.3.9)

can be modified into the following form:



3N N 1
- . E : - - . - o
' . !
Gyx i Gxy :6xz Ay 0 Ey 0
ccccemdanaa. R LR T TR IPE B PR NP,
3N GYX : GYY :GYZ : AY 50 EY 0 3N
..---..-:.--..-:-.-.-.i---.--..:.-..- ....... 4 peee---
! : : f (3.4.12)
GZX E GZY EGZZ f AZ EO Ez = -V 0 T
. i 5 : ! n 0 | N,
N ' ; ~ s -1 : '
c ., 0 + 0 : G ! N,+N,=N
' - X n. 1 1 N 172
; : : : N 2
- L.-----.‘---. e o = ® o= be o @ o mea
1 0 . 0 : 0 : AS_ 0 v 0 1
| ' ; : e - 1L S] J L A
where VS is the potential of the electrode S]and V is the applied
vo]tage.]

t

3.5 Numerical Results for SAR's and Electric Fields

Equations (3.3.9) and (3.4.12) can be solved easily by the
computer for the total electric field inside a conducting body and
the density of induced charge on the electrodes. In this section the
numerical results for various geometries shown in Figure 3.1 will be
presented. The dimension of the body is chosen to be 6X6X3 cm, and
a potential of 2 volts at 15 MHz is applied between the electrodes.
The gap between the electrode and the body in each case is assumed to
be 2.5 mm.

Figure 3.4 shows the distributions of the electric charge density
along the edge (Y-axis) on the upper electrode for the free space
case and the case when a conducting body is introduced between the
electrodes. The electrodes have the same dimension (4X4 cm), and a
potential difference of 2 volts at 15 MHZ is applied between the

electrodes. From Figure 3.4.a it is seen that in the presence of a
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Figure 3.4, The distributions of the electric charge along the Y axis on
the electrod for the free space case and the case with a body
between the electrodes.In figure (b) the charge distributions
are normalized by their maximum values to show the relative

variation.
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conducting body the induced charge on the electrodes increases greatly
as compared to that of the free space case. In Figure 3.4.b, the
charge distributions for the cases are hormalized by their maximum
values. It is noted that for the case when a conducting body is placed
between the electrodes, the distribution of the charge on the electrodes
is more uniform than that of the free space case.

In Figure 3.5 the electrodes of equal dimension (4X4 cm) with
floating potentials are u§ed to heat the body. One quarter of the
body is divided into three layers and each layer contains 9 cubic cells

3 volume. The specific absorption rate of energy (SAR), and

of 1 cm
the components of the total electric field at the center of each cell
are shown. It is noted that the electric field, as is expected, is
mainly in the X-direction and is uniformly distributed in the body
between the electrodes. The magnitude of the electric field drops
drastically in the region of body outside the electrodes. This phenom-
enon is important in practical applications where it is required to
focus the EM energy in a desired region of a biological body for the
purpose of local heating.

Figure 3.6 shows the distributions of SAR's, and electric fields
in various body cells when the lower of the two identical electrodes
(4X4 cm) 1is grounded. It is seen that unlike the floating potential
case the shown quantities are not equal in the first and the third layers.
Instead, the SAR's are maximum near the upper electrode and decrease
along the X-axis towards the lower electrode.

In Figure 3.7 the distributions of SAR's and electric fields

in various cells are shown for the case when the electrodes of different

dimensions are placed across the body. The upper electrode is 2 x 2 cm
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Figure .3.5. Distributions of SAR and induced electric field in one quarter of a
body maintained by a capacitor plate applicator with electrodes of-
the same size. :



63

3rd layer
Electrode-body gap = 2.5 mm x [ [/ / —
€% =280 ///,52 [—2nd layer
o =0.5S/m z T~ 1st layer
f=15Mz 7 /__§__’;7Z_
V = 2. volts - /’ L ,/
-5 = ; A
$1° 52 =4x4 cm  p—-cmmm=" ;/ 7 Y
¥ /S //
/—_]: ______ /
* 4 cm >
4— b6bcm ——
1st layer 2nd layer 3rd layer
5.4 5.5 3.9 5.2 4.8 1.9 5.5 5.4 2.2
98.0 | 95.0 5.5 121.41 120.8 4.8 150.2| 154.6 5.4
101.0 | 98.0 5.4 1 |121.1]1121.4 5.2 144.1 .150.2 5.5
Absorbed power density ( HWatt/Kgm)
13.0 | 12.0 7.0 13.0] 12.0 5.0 12.0 | 11.0 1.0 Ex
1.0 | 5.0 7.0 1.0] 4.0f 5.0 1.0 | 5.0 | 6.0[E,
5.0 6.0 7.0 4.0 5.0 5.0 7.0 8.0 6.0 Ez
62.0 | 61.0 | 12.0 69.0| 69.0] 12.0 77.0 | 78.0 11.0
1.0 5.0 6.0 1.0 5.0 5.0 2.0 6.0 8.0
4.0 5.0 5.0 4.0 5.0 4.0 5.0 6.0 1.0
63.0 | 62.0 | 13.0 69.0 | 69.0] 13.0 75.0 {77.0 12.0
1.0 4.0 5.0 1.0 4.0 4.0 1.0 5.0 7.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0
components of the induced electric field ( Ey, > Ey » E, )(10mv/m) -

Figure 3.6. Distributions of SAR and induced electric field in one quarter of a

body maintained by a capacitor-plate applicator with electrodes of
the same size and one electrode grounded.
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Figure 3.7. Distributions of SAR and induced electric field in one quarter of a
body maintained by a capacitor-plate applicator with electrodes of

different sizes.
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and the lower one is 4 X 4 cm and the potentials of the electrodes
are left floating. The interesting observation is that like in the
free space case, the intensity of the electric field is maximum near
the smaller electrode and decreases rather rapidly along the X-axis
towards the lower larger electrode. As a result the absorbed power is
maximum near the smaller electrode. Similar phenomenon occurs when the
lower larger electrode is grounded (Figure 3.8). In this case the
concentration of the power density near the smaller electrode becomes
even more significant compared to the floating potential case.

In Figure 3.9 a heterogeneous body with an embedded tumor is
placed between two electrodes of equal dimension (4 X 4 cm). The
conductivity of the tumor is assumed to be 0.35 S/m, and that of the
surrounding cells is 0.5 S/m. It is seen that the absorbed power in
the tumor is greater than that of the neighboring cells. On the other
hand, if the conductivity of the tumor is higher than that of the
surrounding cells, less power will be absorbed by the tumor. The
numerical results for this case are shown in Figure 3.10 where the

conductivity of the tumor is assumed to be 0.65 S/m.



66

3rd layer
Electrode-body gap = 2.5 mm X //7 // // —
€= 80 // ///]////// *——2nd layer
o= 0.55/m {52' 73 T~ 1st layer
4
f = 15 MHz V@ Yt ittty
V=2 volts  — / A /4
S.= 4x4 cm -----_-/_/ T ,{---_ y
= - /
52 2x2 cm // 51 /
VA S /
+—4 cm—
+— 6cm ——
1st layer 2nd layer 3rd layer
0.9 0.4 0.4 0.6 0.3 0.2 0.6 0.2 0.2
10.4 4.4 0.4 9.2 2.6 0.3 10.0] 1.5 0.2
60.1 | 10.4 0.9} |116.8 9.2 0.6 201.6] 10.0 0.6
Absorbed power density ( HWatt/Kgm)
4.0 3.0 | 2.0 2.0 | 2.0 1.0 0.9 | 0.9 | 0.1 |E,
1.0 2.0 2.0 1.0 2.0 2.0 1.0 3.0 2.0 Ey
4.0 1.0 2.0 3.0 0.8 2.0 4.0 1.0 2.0 |&
18.0 | 13.0 3.0 17.0 |10.0 2.0 16.0 6.0 0.9
1.0 1.0 1.0 1.0 1.0 0.8 1.0 2.0 1.0
7.0 1.0 2.0 7.0 1.0 2.0 10.0 2.0 3.0
48.0 | 18.0 4.0 68.0 {17.0 2.0 89.0 | 16.0 0.9
4.0 7.0 4.0 4.0 7.0 3.0 5.0 }110.0 4.0
4.0 1.0 1.0 4.0 1.0 1.0 5.0 1.0 1.0
components of the induced electric field ( Ex s E.y s EZ ) (10mv/m) -

Figure 3.8. Distributions of SAR and induced electric field in one quarter of a
body maintained by a capacitor-plate applicator with electrodes of
different sizes and one electrode grounded.
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Figure 3.9. Distributions of SAR and induced electric field in one quarter of a
main-

heterogeneous body, alower conductivity region at the center .
tained by a capacitor-plate applicator with electrodes of the same

size.
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tions of SAR and induced electric field in one quarter of a
neous body,a higher conductivity region at the center, mai-
by a capacitor-plate applicator with electrodes of the same
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3.6 Synthesis of the Potential Distribution for Selective Heating

Theoretically it is possible to sythesize the voltage distri-
bution on the electrodes in such a way that the induced electric field
vanishes everywhere inside the body except in a specific cell. In
this section we attempt to find the scheme for such a synthesis.

A system of linear equations for the induced electric field
inside the body and the induced charge density on the electrodes was

developed in section 3.4. This is rewritten here for convenience:

[ [ E, 0
: ———-
G LA Ey
i [
b ] Lz e L2 (3.6.1)
I 1 i
¢t otoig Z .
Pooroob ] e
s

The elements of the matrices G, G°, A, C' were all defined earlier

in this chapter.

The equation (3.6.1) can be decomposed into the following two systems.

[ 9 g
Ey ]
™
G .
Ey + A : =0 (3.6.1.a)
nNI'
E, L J
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Where [G] dis a 3NX3N matrix, and [A] 1is 3NXN' and

3N N L
- E
’ b [
: ! ' Y 1
i : ' [T v ,
Ml bolod @ E2 | ) = |.2|N (3.6.1.b)
E H E n] ) tvN'
) . N -
-an-

We demand that the induced electric field E(Fﬁ) = X1 V/m in the

mth body cell and zero elsewhere. Thus, (3.6.1.a) reduces to

Nl
ﬂ n -G(m,l)
L 6(m,2)
3N A : - : (3.6.2)
an .
I ] LG(I‘“,3N) .

In order that the equation (3.6.2) can be solved for n uniquely,
the number of equations must be equal to the number of unknowns. In
other words, the matrix [A] must be a square matrix. This is possible

only when
3N = N'

or the number of surface subareas is three times the number of body

cells. Satisfying this condition, we find from (3.6.2)
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_ 3N -1
n [ 1 Tem,1) ]
: A G(m,2)
3N o= . (3.6.3)
an o
| I |RECEDN

once n's are determined from (3.6.3), the potential at any subarea

on the electrodes can be calculated from (3.6.1.b).

3.7 Numberical Results for Synthesized Voltage Distributions

Based on the discussion in the preceding section, the distri-
butions of potentials on the electrodes required to produce a localized
induced electric field inside the body is calculated for three cases,
and the results are presented here.

Figure 3.11 shows the geometry of a body with dimension
(6X6X9 cm) placed in between two electrodes of equal dimension
(4.8X4.8 cm). One eighth of the body is divided into three layers with
four cells (1 cm3) in each layer. One quarter of the upper electrode
is divided into 6 rows each containing 6 subarea cells. The desired
patterns for the induced electric field in different layers of the body
are shown in the figure as well; where E = 1x in the cell located
at the center of the body and zero elsewhere. The distribution of the
potential on one quarter of the upper electrode which is required to
produce the desired pattern of the induced electric field is shown in

Figure 3.12. This figure indicates that the required voltages of
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Figure 3.11.Geometry of body and a capacitor- plate applicator with
subsectioned electrodes for localized heating at the center
of the body. The distribution of required voltages is shown
in the next figure.
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neighboring sub-electrodes alternate their signs, and the amplitudes
of the required voltages are very high. It is also found that this
distribution of the required voltages is extremely unstable in that a
small error in the required voltages will lead to a quite different
pattern of induced electric field than that specified in Figure 3.11.
Figure 3.13 shows the case where a localized electric field
of 1X V/m is induced in the cell located at the centers of the body
surfaces which face the electrodes. The required potential distribution
on different rows of sub-electrodes is shown in Figures 3.14(a) and
3.14(b). Again, a voltage distribution of alternating signs between
neighboring sub-electrodes is required. However, the magnitude of the
required voltages is considerably smaller than the case of Figure 3.12.
Finally, Figure 3.15 shows the case when the induced electric field is
to be concentrated in the central column of the body along the X axis.

The amplitude and the phase distributions of the required potential

are shown in Figures3.16 and 3.17. The required potential distribution
for this case is considerably smaller in magnitude than the two previous
cases where a localized electric field is to be induced in an isolated
cell.

The theoretical results obtained in this section may not have
easy practical applications because the required voltage distribution
is of very high magnitude and with a rapid phase variation. However,
with the advent of computer technology, the implementation of such a

voltage distributions may not be a very difficult task.
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Figure 3.13.

Geometry of a body and a capacitor-plate applicator with
subsectioned electrodes for localized heating at the -
center of the body surface. The distribution of the

required voltages on the electrodes is shown in next figures.
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Figure 3. 15. Geometry of a body and capacitor-plate applicator with
subsectioned electrodes for localized heating at the -
central column of the body. The distribution of required
voltages on the electrode is shown in next figures.
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3.8 Comparison of Numerical Results and Experimental Results

To confirm the theoretical results presented in section 3.6
a series of expreiments was conducted to measure the induced electric
field inside a simulated biological body, a volume of saline solution,
with an implantable electric field probe. Since the experimental set
up will be described in Chapter V, only the experimental results will
be used here to compare with the numerical results.

Figure 3.18 depicts a body of (8X8X4 cm) dimensions with a
conductivity of 0.5 S/m placed between two electrodes of equal dimen-
sion (4X4 cm). The spacing between the electrode and the body is
2.5 mm. A potential difference of 2. volts at 20 MHz is applied
between the electrodes. The distributions.of the theoretical (solid
lines) and experimental (discrete points) values of the X-component of
the induced electric field inside the body along the Y-axis are shown
in Figure 3.18. On the same figure, the corresponding distributions
of the X-component of the electric field in free space along the Y-axis
are also included. It is seen that there is a good agreement between
theory and experiment.

In Figure 3.19 the electrodes of equal dimension (6X6 cm)
are placed across a body of dimensions (8X8X8 cm), and a conductivity
of 0.5 S/m. The applied voltage and frequency are the same as that in
Figure 3.18. The distributions of the theoretical and experimental
values of the X-component of the electric fields inside the body along

the X-axis are shown. The corresponding results for the free space
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Figure 3.18. Distributions of the theoretical and experimental values
of the X-component of electric field along Y axis maintained
in the body between two electrodesof equal dimension.
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Figure 3.19. Distributions of the theoretical and experimental values of
the X-component of electric field along the X axis maintained

in the body between two electrodes of equal dimension.
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case are also included in the same figures. The distributions of the
same quantities for the case when the electrodes are of different
dimensions are shown in Figure 3.20. In both cases, Figures 3.19

and 3.20, a good agreement between theory and experiment is observed.
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Figure3.20. Distributions of the theoretical and experimental values of
the X-component of electeric field along the X axis maintained
in the body between two electrodes of different dimensions.



CHAPTER IV
LOCAL HEATING WITH HF MAGNETIC FIELD

Electromagnetic local heating of a biological body can be
accomplished with the application of an HF magnetic field. In fact
the utilization of an HF magnetic field provides an important advantage
over the use of an HF electric field for not overheating the region
under the skin. In this chapter, a pancake, or a current disk, which
produces an HF magnetic field for the purpose of FM local heating is

studied.

4.1. Introduction

The capacitor plate applicator used for local heating of a
biological body was discussed in detail in the preceding chapter.
This scheme suffers a major drawback of overheating the fat region
under the skin. This difficulty can be explained by considering a
biological body consisted of three different layers as shown in Figure
4,1. The layers 1 and 2 represent the skin and the fat layers, and
the layer 3 represnets the muscle.

From Maxwell's equations we have
v- (0 + ju €)E(F) =0 (4.1.1)

where E(?) is the total electric field inside the body. Integrating
(4.1.1) over the volume V enclosed by the surface S as shown in

Figure 4.1, and applying the divergence theorem gives.

86
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Electrode
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A Ef
- Fat
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m
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Figure 4.1. A biological body consisted of skin, fat and muscle layers
placed between a pair of electrodes for the purpose of local
heating.
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Em(om + jw Eoerm) = Ef(cf + Jjw eoerf) (4.1.2)

where the subscripts m and f stand for the muscle and the fat layers.
Thus, the ratio of the absorbed power density in the muscle layer to that
in the fat layer is given by
-»> 2 . 2
P am|Em[ omlcf + ju Goérfl

- ) (4.1.2)

m _
P, > 72 :
f °f|Ef| Ufldm + Jw eoerml

For example, at 27.12 MHZ we have [17]
O = 0.61 S/m, erm = 113

of = 0.11 ~ 0.43 S/m, Grf = 20

therefore (4.1.2) gives

1.5< 5 < 5.6
S

which implies that the density of the power absorbed in the fat layer is
between 1.5 to 5.6 times higher than that absorbed in the muscle layer.
Therefore, for the cases when the tumor is located inside the muscle
layer, a sever burn may occur in the fat layer before adequate heat can

be produced at the tumor.

4.2. Theoretical analysis

The geometry of the problem is shown in Figure 4.2. A circular
disk of radius b carrying a circulatory current is placed on the sur-
face of a body with conductivity o(F¥), permittivity €(r¥), and per-
meability M- The density of the current on the disk is represented

by ¢ K¢(p'). It is assumed that the geometry of the body and disk is
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vth ring on the disk

r‘—______,—— circular current disk

" — bOdy (0, erauo)

th

m~" body ring
\ m

°b

nth body ring

Figure 4.2. Geometry of a circular disk carrying a ciculatory current
placed on a body for local heating.
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rotationally symmetric, this implies that all quantities are independent

of the azimuthal angle ¢.

4.2.1 Impressed electric field

The vector potential at any point ¥ inside the body maintained
by the current is the absence of the body is
u 'JB R(-r’:i-':l)
-> ~
Ay = g2 [ @ Ky 8
mls ¥ R(
d

ds' (4.2.1)

=+| o

)

where * and *' are the position vectors for the field and source

points, respectively, and Sd represents the surface of the disk. In

the cylindrical coordinate system, R(¥,7') can be expressed as follows.

R(F,F') = [0'2 + pz - 2pp' COs @ + (z-L)2]Li (4.2.2)

where p and p' are the radial distances of the field and source points

from the Z axis and L is the height of the body. Due to the symmetry

the field point is chosen at ¢ = 0. The unit vector @' can be written

in terms of the unit vectors Xx and y as

$' = - x sin @' +y cos ¢ (4.2.3)

with (4.2.3), (4.2.1) becomes

b 2 "J'BOR(-F,_F')
Ap,z) = Eg'f-i f K,(p')o'dp' ( sin o' & de'
b 0o ¢ 0 R(F,7')
b 2 ‘JBOR(?s?')
+y J Kw(p')p'dp' [ cos ¢' = de']
0 0 R(r,r'
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The first term on the right hand side of (4.2.4) integrates to zero,
since the integrand of the inner integral is an odd function of ¢'.

Thus, the impressed electric field E' at any point is

-jBOR('F,?')

t(0,2) = -juh(o,2) ‘r—j“"° " koerder [ e d

ps2) = -JwA(p,z) = - ¢ f p')p'dp! J cos @' ¢
m o ¢ 0 R(F,7')

(4.2.5)

4.2.2 Scattered electric field

As it is shown by (4.2.5), the impressed electric field is of the
circulatory type which induces an eddy current inside the body. The
induced current becomes a source for a secondary or the scattered electric
field Es. To find ES at any point inside the body the volume of the

body is divided into N rings, and the eddy current density inside the

nth ring is represented by jn‘ The vector potential at the center of
th . +*
the m ring due to Jn is
> I-Io - e-JBORmn
Amn = H I th Jn T dv (4.2.6)
n"ring
where

7 7+ G- 2] o o+ e

B, = 2 nf /“oeo’ f 1is the operating frequency, and pg and pg are

th and nth

the radial distances of the m rings from the Z axis, re-
spectively.

If the cross sections of the rings are small enough, the density
of the current Jn can be assumed to be constant over the cross section

and (4.2.6) reduces to



K_“uo‘] n
mn = © 2 InSn®bMmn (4.2.7)
where
™ e'jBoRmn
H = I cos ¢' de'
mn 0 Rmn

and Sn is the cross section area of the nth ring.

The total vector potential at the center of the mth ring is

n
z 2n n nprmn (4.2.8)

3
[ P4
-—

The vector potential at the center of a ring due to the current
in the same ring should be evaluated more carefully, since for this case
the integrand in (4.2.6) becomes infinite. It has been shown that

Kﬁm can be expressed as [18 ]

~ H
=@ 2
A= @520 S orH (4.2.9)
where
_ 2w m ' -jBolel(o) '
Hom = g; [Rmm(a) - Rmm(O)] JO cos ¢' e de
with a =/§2 , and a 1is the length of the side of the square cross
m

section of the ring, and
m c2 b
Rmm(c) = pbtz(]-cos P) + z;ﬁgz—ﬂ
The induced current jn is related to the total electric field

En by the following relation;
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where Ty = (on + Jm(erm - eo)) is the complex conductivity. Thus,

the scattered electric field E; at the center of the mth ring may be
written as

‘)s _ . -> _ ~ jwuo N n

E, = -JwAm =-9— nZ] snprmnTnEn (4.2.10)

The total electric field at any point inside the body is the sum

of the impressed and scattered electric fields at that point.

>

E S
E =E +E (4.2.11)

substituting (4.2.10) into (4.2.11) gives
N n i
En * nZ1 3fu SneptunTnEn = En (4.2.12)
m = ],Z’ooo’N

Equation (4.2.12) can be transformed into the following matrix re-

presentation
po N -~ - r
i
i
E, E>
N M . = . (4.2.13)
i
L E" J A EN J
where
- . n
Man = 1+ 3fuSpepHny

and

- S N n —~
an N quosnprmn‘n
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The value for the impressed electric field Ei maintained by
the current disk at the center of the mth body ring can be obtained from

(4.25) as.

i

En = (pb,zb)
' m . 2%
= fb Ky(p')o"d fﬂ e % C(og) +e*2-200p" cos ' + (zp-1)°) d
= p')p'dp’ cos 9' @'
o do ¥ 0 [(OE) +p'2-ZpEp' cos ¢' + (z't"‘.L)zfi

(4.2.14)
To evaluate the integral in (4.2.14), the area of the disk is
divided into N' concentric surface rings, over the area of each ring

the density of the surface current is assumed to be constant. The im-

pressed electric field at the center of the mth body ring due to the
current flowing on the vth surface ring can be written as
: Jwu
+] _ a 0
Emv = ¢ Kv Pv AvamV (4.2.15)
where
" -38 L(eM? + o220 cos @' + (Z0-1)%7"
A = f cos @' = de'
mv my 2 2 .M , m, \2-%
0 [(pp)” + o =20, p cos @' + (Z,-1)"]
(4.2.16)
and Kv is the density of the current on the vth ring of the disk.
o, and o, are the radial distance and the width of the vth surface
ring, respectively.
The total impressed electric field at the center of the mth body
ring is
N' Jwu N'
1 _ -2 B o
E Z] Emv ? 5 “Z] Kv p,, Bo Amv (4.2.17)

3
]
o—

-
n
-

-
=
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Equation (4.1.17) can be written into the following matrix form.

- .i - r -
E] ) 1
Ky
N : = p ) (4.2.18)
3 .
i - °N'
L BN | ]
where
jwuo
mv  2m Kv Py Apv Amv

If the surface current K on the current disk is given, the
>3 :
impressed electric field E' is determined by (4.2.18). once E' s

determined the induced electric field E can be obtained from (4.2.13).
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4.3. Numerical results

The total induced electric field induced in a body for several
different cases is calculated numerically and the results are persented
in this section. Unless otherwise specified, in each case the operating
frequency is fixed at 100 MHz and the conductivity and relative per-
mittivity of the body are assumed to be 0.5 S/m, and 80, respectively.

In Figure 4.3 a disk of radius 2.cm carrying a uniform circu-
latory current with a density of 200 A%E is placed on the surface of a
cylindrical body of 5 cm radius and 4. cm height. The body is divided
into 4 layers and each layer is divided into 5 rings. The distributions
for the amplitude and phase of the total electric field induced inside
each layer of the body are shown. The quasi-static approximations for
the phase and for the amplitude of the total electric field in the first
layer of the body are also included in the figure. It is seen that the
intensity of the electric field is zero at the center of the body as
expected. The total electric field obtained form the present numerical
method is close to the quasi-static solution, however, when the frequency
increases the discr pancy between the numerical solution and the quasi-
static solution becomes more significant. It is also noted that the
intensity of the electric field is high in the region of the body close
to the disk and drops significantly in both vertical and radial directions
as we move away from the disk.

In Figure 4.4 the distributions of the amplitude of the electric
field in different layers of a body are shown at 100, and 30 MHz. The
radius of the current disk is 3. cm and the body has a radius of 5 cm.
The current density on the disk is 200 Amp/m. At 100 MHz the intensity
of the field is considerably higher thanthat at 30 MHz. Comparing



97

"JU344ND WAO4LUN 4O YSLp e AQ paodnpul Apoq
® JO SudAR| JUBUBSSLP UL P|ALS OLUIII|d 3Y3 o aseyd pue apniL|dwe JO SUOLINGLAISLG °€°p d4nbLy

(wd) Apoq 8yl 40 4a3udd 9y3 wouy mu:mum_v LeLpey

S b £ 2 L 0
b — . " 4 "
€
4
L
wd € =
= dd - b
mm w xouadde 2p3e3s-iLsen |
w/s 60 = apny 1 Lduy
ZHW 00L = 4
w/dwy Q02 = A3LSUIp JuaUA4N) Asm>v
=W G 4
£
© 100L-
< |
AN 1
AN .
xoudde oLje3s-isenb
e . albue aseyq
.mwav

i aseyq



*ZHW 00L PU® ZHW O 3° JUBUUND WUOJLUN JO YSLp e Aq paosnpui Apoq
® JO Suake| JUBUBSJLP UL PL3LJ I14303|3 3y} 40 apnii|dwe 3y} JO suoLINgLuIsig “p'y a4nbL4

(wd) Apoq 3ay3 J0 433UID 3Y} WOLJ 3dURISLp |eipey

98

. . / { ooz

wd °g
08

w/s G°0
ZHW 00L
ZHW OF

"
- & o VvV ©
’

-~

[ |

1 00t

_..l w g |._ / \. j

- ”I’M
(4

o —————

NN

-

LTI
| IR

. apn3 L Lduy 009

w/dwy 002 = A3LSuUsp Juauaun)

e




99

Figures 4.3, and 4.4 we notice that for the same frequency and body
dimension, the amplitude of the induced electric field inside the body
increases considerably as the radius of the current disk increases.

In Figure 4.5 a current disk of radius 5 cm is located on the
surface of a body of 12 cm radius and 15. cm height. The body is divided
into 10 layers each containing 4 rings. The distributions of the
amplitude of the induced electric field in different layers are shown
in the same figure. The distributions of the phase angle of the induced
electric field in each layer 1is depicted in Figure 4.6.

Figure 4.7 shows the distributions of the amplitude of the total
electric field inside a body induced by three different kinds of current
distributions (1) a single current loop, (2) a uniform current distribution,
and (3) a triangular type of current distribution (zero at the edge of
the disk and increases linearly towards the center). The radius of the
body is 5 cm and its height is 4 cm. The distributions of the relative
amplitude of the electric field in the first two layers of the body are
depicted for each case. It is observed that for a single current loop
of radius 2.5 cm the maximum electric field occurs at a radial distance
equal to the radius of the current loop and the electric field decreases
rather rapidly on either side. When the current is distributed uniformly
over the surface of the disk the point of the maximum electric field
moves closer to the center of the body and the distribution of the elec-
ric field becomes more uniform. If the current on the disk has a tri-
angular form of distribution the peak of the electric field distribution
moves even closer to the center of the body as compared with the pre-

vious cases.
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>

4.4. Synthesis of the current distributions for selective heating

In this section we attempt to develope a theoretical scheme for
synthesizing the distribution of the current on a disk in order to obtain
a desired heating pattern inside a biological body.

Suppose that it is desired to have an indicued electric field

th

of 1 v/m at the center of the m~ ring and zero electric field in the

rest of the body. From (4.2.13) and (4.2.18) we obtain

N ) ]
B - M(m,1)
K] M(M,2)
N p : = ' (4.4.1)
K, , .
] N M(m,N)

It is required that tte matrix P be a square matrix if K's are to

be determined uniquely, that is,

N=N' (4.4.2)

which means that the number of the rings in the body must be equal to
the number of the surface rings on the current disk.

Some numerical example are given here to illustrate this scheme.
In the first example a current disk of 3 cm radius is placed on the
surface of a body of 10 cm radius and 5 cm height. The body is divided
into a total of 25 rings. It is desired to produce an electric field
with an amplitude of 10 V/m in a ring of radius 0.5 cm which is located

at the center of the body, and zero in the remaining part of the body.
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The distributions for the phase angle and the amplitude of the current
required to produce the desired pattern for the electric field are shown
in Figure 4.8. It is noted that the amplitude of the required current
density is extremely high at the center of the disk and it decreases
rapidly towards the edge of the disk. The phase angle for the required
current density undergoes rapid fluctuations from one surface ring to
another.

In the second example we consider a body of 15 cm radius and
4.5 cm height, and the radius of the current disk is chosen to be the
same as that of the body. The objective is to produce an induced elec-
tric field of amplitude 10 V/m which is uniformly distributed over the
volume of a ring in the first layer having an outer radius of 4.5 cm. The
distributions of the phase angle and the amplitude of the required current
density to produce the prescribed pattern are shown in Figure 4.9. It
is noted that the amplitude of the current is very much smaller as com-
pared to that obtained in the previous example.

It is found that 1ike the case of voltage synthesis in a cap-
acitor plate applicator, the theoretical results are unstable and a
small error in the phase or the amplitude of the required current may
produce a distribution of electric field which is quite different from

the desired one.
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Figure 4.8.
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4.5 Comparison of theoretical results with experimental results

The electric field induced inside a simulated biological body
(saline solution) by three kinds of current distributions was measured
by an implantable electric field probe. The measured values along with
the theoretical results in relative amplitude are shown for each case
in Figures 4.10 to 4.12. It is noted that due to the finite length
of the prob in each case the measured values deviate from the theoretical
values near the center, but for the region away from the origin the
agreement between experiment and theory is considered to be good. The
details of the experimental set up and the simulations for different

current distributions will be explained in Chapter V.
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Figure 4.10. Distributions of the theoretical (solid lines) and experimental

values (discrete points) for the electric field in different
layers of a body induced by a single current loop.
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Figure 4.11. Distributions of the theoretical (solid lines) and experimental
values (discrete points) for the electric field in different
layers of a body induced by a disk of uniform current.
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Figure 4.12. Distributions of the theoretical (solid lines) and experimental
values (discrete points) for the electric field in different
layers of a body induced by a triangular type of current
distribution.



CHAPTER V
EXPERIMENTAL SETUP

In order to verify the theoretical results obtained in the
preceding chapters, a series of experiments was conducted where the
induced electric field inside a body maintained by a capacitor plate
applicator or a current disk was measured. In this chapter the descrip-

tions of the setups for such measurements are given.

5.1 Construction of an Implantable Probe

The procedure involving the construction of an inexpensive
implantable probe has been given by K.M. Chen, et al. [19 ]J. This probe
has been tested successfully and proven efficient in measuring the in-
duced electric field inside a phantom model of a biological body. A
brief description of the probe is presented in this section.

In Figure 5.1 the schematic diagram of the probe is shown.

This probe consists of a conventional short electric dipole loaded with
a zero bias microwave diode (Microwave Associates, MA 40234). The probe
output is connected to the measuring device (d.c. voltmeter or SWRM)
with a pair of very thin resistive parallel wires. The resistive wires
are loaded with two series of resistors in the sections adjacent to the
diode. This scheme reduces the induced current in the lead wires, and
consequently, minimizes the noise in the measurment. The probe and the

lead wires are encased in a plexiglass stick with the help of epoxy glue.
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zero bias microwave diode
receiving probe / (microwave Associates)

MA 40234

e resistor (3 K Q)

plexiglass _____
stick

I thin high resistance
wires

Figure 5.1. A non-interferring, electric field probe for
measuring the induced electric field in a biological
body.

34
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The electric field in any direction at a given point can be

measured by orientating the probe parallel to that direction.

5.2. Construction of a balun.

A difficulty encountered in the measurment of the electric field
is associated with the direct connection of a coaxial line to a balanced
two-wire line. The problem can be explained by considering the situation
depicted in Figure 5.2.

In Figure 5.2 a coaxial transmission line is directly connected
to a two-wire line. Like in most practical applications the outer con-
ductor of the coaxial line is assumed to be grounded. Since the wires 1and
2 of the two-wire are line at different potentials with respect to ground,
the capacitances with respect to ground of the wires are different and
as a result the currents 1] and 12 in the wires are different. This
implies that a current id = i]-iz flows on the outer surface of the
coaxial line.

The current on the two wire line in Figure 5.2a may be decomposed
into symmetric and antisymmetric modes as shown in Figure 5.2b. For the
symmetric mode, equal currents flow in opposite directions on the two
wires, while for antisymmetric mode, two currents of equal magnitude
flow in the same direction. The anitsymmetric component of the line
current does not energize the applicator but it produces a strong electric
field around the applicator and will lead to an ambiguous probe measur-
ment.

One way to eliminate the antisymmetric component of the current

is by making the impedance seen by id in Figure 5.2d very high and thus,
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Figure 5.2. (a) direct connection of a coaxial line to a two wire line.
(b) decomposition of the current on the two-wire line into
symmetric and antisymmetric modes.
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prevent the current from flowing on the outer surface of the coaxial
line. This can be accomplished by using a balance to unbalance convertor
or a balun for short. One such balun is shown in Figure 5.3 where a
coaxial line is forked into a pair, one of which is a dummy. The center
conductor of the coaxial line is connected to the shield of the dummy
coaxial line and the shields are joined to the paralle-wire line. The
coaxial line and the dummy are wound on a ferrite toroid to prevent a
short circuit at the input terminal of the paralied-wire and at the same
time to suppress the current flowing on the outer surface of the coaxial
line. The detailed theory and the structure for different kinds of

baluns are reported in many sources [20,21]'

5.3. Experimental setup for the measurement of the electric field in

a conducting medium maintained by a capacitor-plate applicator and probe-

electrode interaction.

The setup for the measurment of the electric field inside a
body maintained by a capacitor-plate applicator is shown in Figure 5.4.
An HF voltage, form an HF signal generator processed through an ampli-
fier is applied to a pair of capacitor plate placed across a box of
plexiglass filled with saline solution. A variable inductor is used
for the tunning purpose.

The equivalent circuit for an isolated probe is shown in Figure
5.5a where Zin is the input impedance of the short electric dipole
and ZL is the impedance of the diode, V 1is the equivalent driving

voltage induced by the impressed electric field, and V0 is the output
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balanced two-wire line

ferrite
toroid

- - ——

. dummy coaxial
coaxial cable

cable

o o= = - o - —

—— e - - -

§
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A balun for converting a coaxial line to a balanced

Figure 5.3.
two-wire line.
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Z
in +
> +
A AE v_(»-) Z, A
(a)
Zin
—C} +
V, 3 +E + !
o__ & v (™ Z, Vo
e L -
+ 3
(b)

Figure 5.5. Equivalent curcuits for a probe. (a) an isolated probe
(b) a probe located close to a grounded plane.
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voltage of the probe. When the probe is located close to the surface

of the conducting electrode, the image effect due to the electrode should
be considered. The image effect of the electrode can be taken account
for by introducing an additional impedance Zm in the equivalent circuit
(Figure 5.5b). Therefore, in measuring the electric field between two
electrodes the effect of conducting electrodes on the performance of the
probe should be investigated and corrections should be made in the mea-
sured values of the electric field if necessary.

It is possible to obtain a rough estimate for Zm. To do this we
assume that the electrode is of infinite extent and held at zero potential.
We also neglect the effect of the lead wires. With these assumptions,
the conducting plane in Figure 5.5b can be replaced by an image dipole
as shown in Figure 5.6. The mutual impedance between the dipole (1)

and its image (2) can be obtained from the follwoing expression [22 ]:

Zm = - T;T:E}TETEY Jh?dd EZZ(Z)I](z)dz (5.3.1)
where d is the distance from the center of the dipole to the conducting
plane and h is half of the dipole length. I](-d) and Iz(d) are the
magnitudes of the currents at the centers of the dipole and its image,
respectively. Ezz represents the z component of the electric field
at the surface of the dipole maintained by the current on the image dipole
(2), and finally I](z) is the current distribution on the dipole.

Since h << A the currents I](z) and Iz(z) on the dipole and its

image can be approximated with triangular distributions of

,(2) = 1,(1- lz+dl (5.3.1)
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+e
. 2
Iz(z) = Io(l- Z;d ) ’,/' Image dipole
< 't
. |n
g
---------- gl-—-=———---—--— ground
plane
1(2) = 15(1- 124l
i : The original
“.. ) dipole
\\‘ ]

Figure 5.6. Distribution of the currents on a short electric dipole
and its image caused by the ground plane.
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I(z) = I,(1- Zad ) (5.3.2)

where

The Z component of the electric field at the surface of the
dipole due to the current flowing on the image dipole can be qbtained

from the following relation,

jw 32 .
Eyy(2) = - iz 7 Ugg(2)1 - Ju gy (2)) (5.3.3)
5 32
where
_ uolg (d*h l2'-d|, 1 \
AZZ(Z) T aq J (] = h ) Z77-2 dz (5.3.4)
d-h
~Jgglz'-z)

with the assumption that e

Equation (5.3.4), after evaluating the integral, gives

u 1
=_00 _d d-z d d+h-2z
Ay, (2) (1 -+

Z
Yo gyt O+ g -Pom=55-1  (5.3.5)

4n

=N

with (5.3.5), (5.3.3) becomes

E,,(z) = - Tkl - L M. (5.3.6)
27 2n (g2 (d-z)(d*h-2)(d-h-2) vy -3
0

Then from (5.3.1) we obtain

~h-d
Z = Jh_d E,,(2)(1 - 15%91 )dz (5.3.7)

It is traight forward but very tedious to evaluate the integral in

(5.3.7). However, it can be done numerically with computer. For
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h=0.5cm, d=0.7cm and f =15 MHZ we obtain
Zm =~ j 2800 @

The input impedance of a short dipole receiving antenna is
well known [ 23] and is given by

g Un (2—) -1]
Lin® 9 "8 P
0 ™
where ;= 120n. For h = 0.5 cm, g= 10 and f =15 MH_,

: 3
Zin = - j 100 x 107Q.

Thus, it is obvious that Zm << L Consequenity, the effect of the

in’
ground plane on the performance of the probe can be neglected.

5.4. Experimental setup for the measurment of the electric field in

a conducting medium maintained by a current disk.

The experimental setup for this case is shown in Figure 5.7.
The capacitor C is connected in series with the current disk to create
a resonance in the circut. This allows the maximum current to flow in
the current disk. Two 25Q@ vresistors in the circuit are used to prevent
short circuit in the output terminals of the amplifier.

In Figure 5.8 the experimental models for three kinds of current
distributions are shown. In Figure 5.8.a, a single current loop
consists of several turns of enameled copper wire. The total length
of the wire is chosen to be shorter than a wavelength to ensure a con-
stant current distribution along the loop. In Figure 5.8.b, a single

piece of enameled copper wire is wound into a number of circular loops
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Figure 5.8. Experimental models for three kinds of current distributions:
(a) single current loop (b) uniform current distribution
(c) triangular current distribution.
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with equal spacing to approximate a uniform current distribution.
Finally the experimental model for a triangular current distribution

is shown in Figure 5.8.c where the spacing between two adjacent loops

is varied accordingly.



CHAPTER VI
A USER'S GUIDE TO COMPUTER PROGRAM USED TO
CALCULATE THE ELECTRIC FIELD INSIDE A BIOLOGICAL
BODY INDUCED BY A PAIR OF CAPACITOR PLATE
APPLICATOR

Part I of this chapter briefly explains the computer program used
to determine the electric field inside a biological body induced by a pair
of capacitor-plate applicator p]a;ed across that body. This program en-
ables one to evaluate the density of electric charge on the electrodes
as well.

The geometry of the problem is shown in Figure 6.1. One quarter
of the body is divided into a number of cubic cells. Similarly, one quarter
of each electrode is partitioned into subareas. The matrix representation
for a set of linear algebraic equations in terms of the unknowns induced
electric field at the center of each body cell, and the charge densities

on different subareas of electrodes was presented in Chapter III and is

rewritten here

G COA E 0
! =V (6.1)
- ---.--.-:.. PR e e ccoe .--..é..--
o ;6| | n
L ' <4 L -~ L ] .

Given the necessary data the program solves equation (6.1) for E and

n, for both floating and grounded potential cuses.
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Figure 6.1. Geometry of a body located between two energized electrodes
for the purpose of local heating. The numbering order of %
of the body and electrodes are shown.
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6.1 Description of input data files.

The symbolic name for the program is "FIELD" and the sequential
structure of the data files, the format specifications and the symbolic
names of the input variables used in the program are outlined in Table

6.1, and the information on each data file are explained below.

First data file - contains only one card which defines the following

variables.

"D" - The thickness of the body between electrodes in meter.

“DL" - Defines the electrode-body spacing in meter.

"V" - Shows the amplitude of the applied voltage in volts.

"SLP,SUP" - Specify % of the dimensions of the lower and upper electrodes,
respectively in meter.

"NSL,NSU" - Define the number of partitions along the x-axis on % of the
lTower and upper electrodes, respectively.

"V mode" - Shows the mode of applied voltage (floating or grounded).

Second data file - with only one card containing the following informations

"Comp" - Specifies the components of the induced electric field and may
have one of the following forms.
"X-only" For x-component of the induced electric field. This code is
used when the other components of electric field are neglegible.
"X,Y,Z¢ - Used when it is desired to compute all three components of induced
electric field.
"Q(j), j = 1,4"-1s the symbolic name for quadrants.

"FMEG"-Reads the frequency of applied voltage in MHz.
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Table 6.1. The symbolic names for the input variables and format speci-
cations used in program "FIELD".

File No. Card No. Columns Variable Name Format
1 1 1-10 D F10.4
11-20 DL F10.4
21-30 v F10.4
31-40 SLP F10.4
41-50 SUP F10.4
51-53 NSL I3
54-56 NSU I3
59-61 V mode A3
2 1 1-6 Ccomp A6
11-13 Q1 to Q4 4A1
18-27 FMEG F10.0
3 1 1-2 NX I2
6-7 NY I2
11-12 NZ I2
4 1-N 1-10 AMX F10.3
11-20 AMY F10.3
21-30 AMZ F10.3
31-40 RELPI F10.3
41-50 SIGI F10.3
51-60 DXCM F10.3
61-70 DYCM F10.3
71-80 DZCM F10.3
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Third data file - contains one card which specifies the number of cells

in X,Y,Z directions (NX, NY, NZ).

Fourth data file - contains as many cards as there are number of cells in

% of biological body, and on each card the following informations are

punched.

"AMX", "AMY", "AMZ" which correspond to the maximum boundaries of a
cell in the X,Y and Z directions in centimeter with reference to
the origin.

"RLEPI" and "SIGI" are the codes for relative dielectric constant and
conductivity (mho/m) of each cell.

"DXCM", "DYCM", "DZCM" are the dimension of the cell in X,Y and Z,
in centimeter.
This concludes the description of input data files. An example

is worked out in the next section to supplement this user's guide.

6.2 Numerical example In this example the electrodes are considered to

be of different sizes with lower electrode grounded. The lower electrode
3x3 cm and the upper electrode is 2.0x2.0 cm. A voltage of 2. volts

at 15 MHz is applied between electrodes. The numbering order of
electrodes subareas is presented in Figure 6.1. Based on the given in-

formations, the input data files have the following form.



File No.

—

O O Y O Y Y Y SR
0O N N B W N —

0.02 0.0025
X,Y,Z. 1234
02 02 02
1.0 1.0
1.0 2.0
1.0 1.0
1.0 2.0
2.0 1.0
2.0 2.0
2.0 1.0
2.0 2.0

131

Informations on the file.
2.0 0.015 0.01 003002 GRD"
15.0

80.0
80.0
80.0
80.0
80.0
80.0
80.0
80.0

N N = = NN e e
O O O O O O O O
O O O O O O O O
. . . . . . . .

g O v O O Oy OO
— — w— o— — — — —
O O O O O O o o
— -—t —d — — — -— —
O O O O O O O o
— — — — — — — —

* . .
GRD is the code for grounded potential case, for floating potential

case "FLT" should be used instead.

It is noted that NX * NY * NZ

is the number of cells in % of the body.

The numerical results and program listing are presented in the

following pages.

.OZDOOOOOO
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PART II
A USER'S GUIDE TO COMPUTER PROGRAM
USED TO DETERMINE THE ELECTRIC FIELD

INSIDE A BIOLOGICAL BODY INDUCED BY A
CURRENT DISK APPLICATOR

Part II of Chapter VI describes the computer program used for
calculating the electric field inside a biological body, maintained by a
current disk placed on the surface of the body for the purpose of local
heating. This program is a modified version of the computer program

developed by Lee [18].

6.3 Formulation of the problem

The geometry of problem is shown in Figure 6.2 where a current
disk of radius a is placed on the surface of a rotationally symmetric
biological body. In order to calculate the induced electric field inside
the body, the body is divided into a number of rings. Similary the area
of the current disk is divided into a number of surface rings. The induced
electric field at the center of each body ring can be obtained from the

following equation which was derived in Chapter IV.

) N .
a - . - i
Ey E
E, .
N M . -
§
Ex Ex
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a current
disk

T~ — e body

T e —— —— — — e

&w - (o(F),€(F)uy)

Figure 6.2. A circular current disk is placed on a body for the purpose
of local heating.
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where N 1is the nubmer of body rings, and

N
_Eiw i _
n] -
U]
= P
L K§
bE;]- L .J

with N' being the number of surface rings on the current disk. The

elements of M and P matrices were defined in Chapter IV.

6.4 Description of the Computer Program.

The program "EDDY" wuses the following complex functions and

subroutines.

"LEEMAT" - Calculates the elements of [M] matrix
"HMAT" - Calculates the elements of [P] matrix
"FMMC" "FMMS" "FMNC" "FMNS" "F1" "F2" - are functions which determine

H A

mm> “mv’
"DCADRE" - is a subroutine for numerical integration called from the

the integrands of integrals Hmn’

computer library.
"CMATP" - subroutine which solves 1linear algebric equations by using

Gauss - Seidel method.

6.5 Structure of the input data files.

The structure of the data files and relating formats is presented

in Table 6.2, and the informations on each data file are explained here.
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First data file - contains one card with the following informations.

"N"- defines the total number of body rings.
"NPLAT"- specifies the number of rings on the surface of current disk.
"DIA" — the diameter of the disk in meter.

"FREINM" - specifies the operating frequency in MHz.

Second data files - reads the density of the currents on different rings

on the disk.

Third data file - contains only one card which specifies the following

variables.

" "o : . . N 0

NPAR for the integrals Hmm’ Hmn’ Amv’ the integration interval 0
and 180° will be divided into "NPAR" subinterval in order to
save the computational cost.

"AERR" - desired minimum absolute error for the numerical integration.

"RERR" - desired munimum relative error for the numerical integration.

Fourth data file - contains N cards each with the following information.

"XEND" "ZEND" correspond to the maximum boundaries (in cm) of a ring

corss - section in the X- and Z-direction with reference to the origin.

"XAA" "ZBB" - are the codes for the dimensions of thering cross-section
in X- and Z- direction (in cm).
"REP" "SIG" - define the dielectric constant and conductivity (S/m)
of each circular ring.
This concludes the specifications of theinput data for the program.

A numerical example is presented in the next section.
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Table 6.2. The symbolic names for the input variables and format
specifications used in program "EDDY"/

File No. Card No. Column Variable Name Format
1 1 1-3 N I3
4-6 NPLAT I3
11-20 DIA F10.4
21-30 FREINM F10.4
2 1 cD(I)
I =1, NPLAT NPLAT (F10.4)
3 1 1-5 NPAR I5
6-15 AERR F10.5
16-25 RERR F10.5
4 1-N 1-12 XEND F12.5
13-24 ZEND F12.5
25-36 XAA F12.5
37-48 ZBB F12.5
49-50 REP F12.5
51-63 SIG F13.6
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6.6 An example to use the program

As an example, we consider a body of 2.cm height and 4 cm radius.
The body is divided into two layers each containing 4 rings. The current
disk is considered to be of 5. cm diameter and is divided into 5 concentric

rings each having a current density of 200 Amp/m.
The sequential order of the input data files is as follows

File No. Information on the file

1 008005 0.05 100.0

2 200.0 200.0 200.0 200.0 200.0

3 18. 0.0 0.01
4.1 1.0 1.0 1.0 1.0 80.0 0.5
4.2 2.0 1.0 1.0 1.0 80.0 0.5
4.3 3.0 1.0 1.0 1.0 80.0 0.5
4.4 4.0 1.0 1.0 1.0 80.0 0.5
4.5 1.0 2.0 1.0 1.0 80.0 0.5
4.6 2.0 2.0 1.0 1.0 80.0 0.5
4.7 3.0 2.0 1.0 1.0 80.0 0.5
4.8 4.0 2.0 1.0 1.0 80.0 0.5

The following pages are devoted to numerical results and computer program

listing.
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CHAPTER VII
SUMMARY

A numerical method is developed in Chapter II for determining
the electric charge densities on the surfaces of two squares, parallel
electrodes of arbitrary dimensions and spacing, energized by a HF
voltage. The denisty of electric charge is calculated numerically by
the moment-method technique for several cases, and the accurate value
for capacitance between two e]eétrodes is evaluated. The induced charge
is calculated for both floating and grounded excitations, and significantly
different distributions are observed. As expected, the charge densities
are nearly uniform near the center of the electrodes with their increase
with the well-known singularity near the edges.

Based on the calculated charge density the components of electric
field at various points in free space are calculated for a variety of
cases. It is noted that for two electrodes of equal size, separated
by a distance small compared to the dimensions of the electrodes, the
electric field between electrodes is uniform. In the case of two electrodes
of different sizes, the electric field is mostly concentrated near the
smaller electrode.

In the next two chapters the problem of local heating of a bio-
logical body with HF electric and magnetic fields is discussed. This

study was motivated by the fact that HF electromagnetic radiation has
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been utilized to heat tumor-bearing biological bodies for the purpose
of hyperthermia cancer therapy.

A pair of energized electrodes can be used to induce heating in
biological bodies. This problem is analysed theoretically in Chapter III.
Two coupled integral equations for the unknowns total electric field
inside body and charge density on the electrodes are established and
solved numerically for different cases. The distribution of specific
absorption rate (SAR) of energy in the body is calculated for both
homogeneous and heterogeneous bodies. From numerical results it is
observed that power is absorbed mainly in that part of the body located
between electrodes. For a body with an embedded tumor, the magnitude
of absorbed power at the location of tumor is a function of tumor con-
ductivity; less conductive tumors absorb more power than those with
higher conductivity.

In Chapter IV the shortcoming of a capacitor plate applicator,
relating to overheating of the fat layer in biological bodies, is discussed.
This difficulty can be eliminated by using a current disk applicator.

The problem of a current disk applicator is analyzed theoretically
in Chapter IV. The electric field induced inside a biological body,
having rotational symmetry, by a current disk placed on the surface of
that body is calculated. Numerical results are presented for several
cases.

It is found that the induced electric field is strong near the
surface of the body, in the vicinity of current disk, with approximately
equal amplitudes in fat and muscle layers near the interface. The

intensity of induced electric field decreases rapidly in the direction
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away from the disk. This suggests that the current disk applicators are
more effective on tumors located near the surface of the body. For
tumors located deep inside the body capacitor plate applicators are
perferable.

It is possible to synthesize the voltage distribution on a
capacitor plate applicator and the current distribution on a current
disk applicator in order to obtain a localized heating pattern inside
a biological body. The theoretical procedures are presented in Chapters
IIT and IV, respectively.

To confirm the accuracy of the theory, a series of experiments
was conducted where the electric field induced inside a simulated bio-
logical body by different applicators was measured and was compared with
the theoretical values. In each case a good agreement between theory

and experiment was observed.
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