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ABSTRACT 

HIGH RESOLUTION CHARACTERIZATION OF AQUIFERS TO IMPROVE FLOW AND 
TRANSPORT MODELS OF HIGHLY HETEROGENEOUS MEDIA 

By 

Mine Dogan Diker 

Aquifers are the primary sources of clean drinking water. Pollution in aquifers is one of 

the most challenging and important environmental problems. It is not only extremely complex to 

map but also difficult to remediate. Flow and transport of water and pollutants in porous media 

requires detailed characterization of the properties of the media. The main property which 

controls the flow and transport is hydraulic conductivity (K), which can be defined as the ability 

of the media to let the water flow through. Intensive studies to map the distribution of hydraulic 

conductivity are necessary to model the plume migration. Conventional in-situ aquifer 

characterization techniques are invasive and lack the necessary high resolution. Therefore, novel 

methods are required to improve the methods to monitor and simulate the flow and transport 

through aquifers. 

This study introduces a combination of novel techniques to provide the necessary 

information related to porous media. The proposed method was tested at a highly heterogeneous 

site called the Macro Dispersion Experiment (MADE) site in Mississippi. The MADE site is a 

very well studied site where several large scale tracer tests were conducted in the 1980s and 

1990s. The tracers used for these tests were monitored using more than 300 multi-level sampler 

(MLS) wells. Concentration measurements showed that the majority of the mass stayed near the 

injection area, whereas minute concentrations were measured further down-gradient. This 

behavior is significantly different from the simulations created using models based on the 



Advection-Dispersion Equation (ADE). This behavior and the inability to explain this using most 

models has led to a major debate in the hydrologic science community. 

The hypothesis of this study is that the ADE based models can reproduce simulations of 

the measured transport when the models are parameterized with sufficient high-resolution 

hydraulic conductivity data. Two novel high resolution characterization methods, the direct-push 

high resolution hydraulic conductivity (HRK) tool and 3D full-resolution ground penetrating 

radar (GPR) were combined to generate 3D K fields using fractal stochastic methods. This study 

demonstrated that the complementary geophysical data can be used to reduce the K variance by 

dividing the aquifer into hydrofacies. This approach, in combination with a fractional 

differencing filter, simplifies the statistically complex distribution of K. Fractional differencing 

was also capable of removing the long range dependence in vertical K profiles to investigate the 

underlying K distribution. The 3D K fields were then used to test the ADE based modeling 

approach at the site and resulting concentrations were compared to one of the large scale tracer 

experiments. The simulations in this study resulted in mass distributions comparable to those 

measured during the tracer test experiments. They successfully reproduced the extent of the 

plume in both 1D and 2D using K fields based on solely field data. Additional tests emphasized 

the importance of high-resolution data to parameterize K models to successfully simulate flow 

and transport using the ADE model. 
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Chapter 1  

Prologue 

1.1 Introduction 

It is an extensive challenge to understand all aspects of underground water such as 

storage, flow, transport, and interactions with surrounding material, since aquifers constitute the 

most important natural medium for storage, purification and filtering of fresh water. Hydraulic 

conductivity (K) is the main property that controls water flow in porous media [e.g., Dagan, 

1989] K can simply be defined as the ability of any porous medium to allow the fluids to flow 

through. It depends on the pore and grain size, their distribution, and sorting. To solve 

environmental problems, accurately parameterized models that describe the flow of water and 

solutes in aquifers are critical, since models that can consistently and realistically simulate flow 

and transport rely on accurate representations of K. Although there have been many studies on 

these topics involving in-situ measurements of aquifer properties and pollution monitoring , the 

methods utilized in these studies have certain limitations and are mostly invasive. Furthermore, 

the lack of an in-situ and non-invasive method to directly measure K is a major obstacle to create 

realistic simulations of flow and transport through aquifers. 

Even though several characterization methods exist, resolution still remains as an issue. 

Characterization methods can be combined with Gaussian geostatistical methods to develop 3D 

K fields to overcome the resolution problem, which at sites with low levels of heterogeneity 

provides acceptable results [Freyberg, 1986; Mackay et al., 1986, Garabedian et al., 1991; 

LeBlanc et al., 1991, Hyndman et al., 2000; Phanikumar et al., 2005]. Parameterization of K 

fields for flow and transport modeling in highly heterogeneous aquifers, however, remains 



2 
 

challenging. Various stochastic and geostatistical methods that have been proposed to improve 

simulations of highly heterogeneous K fields generally rely on conventional in-situ measurement 

methods that provide limited spatial sampling, and have large support volumes with unknown 

geometries. Therefore, innovative approaches to measure and interpret K are necessary to truly 

understand flow and transport through highly heterogeneous media. 

The main goal of this study is to develop a novel approach for predicting flow and 

transport in highly heterogeneous porous media with the aid of novel measurement and 

stochastic methods. If successful, this approach will provide a significant contribution to 

ameliorate real-world problems related to ground water and aquifers. The principal aspect of this 

research involves high-resolution characterization of hydraulic conductivity and aquifer 

structure. Descriptive statistics and distribution tests were used to confirm the consistency of the 

data sets used in this study. This comparative approach forms the foundation of this research, 

since there is no known direct relationship between geophysical parameters and K. 

Consecutively; geophysics-derived information was integrated with in-situ K measurements 

using stochastic methods. Fractal methods, which are capable of representing the long-memory 

nature and connectivity of K, were used to populate simulated 3D K fields to run flow and 

transport models. 

In this thesis, detailed K data from a heterogeneous site were used to model fluid flow 

and solute transport utilizing the advection-dispersion equation. A combination of novel and 

traditional measurements and data processing methods was explored for detailed characterization 

of shallow, unconfined aquifers. 
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1.2 Aquifer Characterization 

Aquifer characterization is a broad topic addressed by many researchers from different 

disciplines, including earth science, hydrology, environmental engineering, and statistics. 

Researchers from these fields have been employing many different tools including laboratory 

measurements [Illman et al., 2010], in-situ measurements [Kabala, 1993], macro-scale field 

experiments [Garabedian et al., 1991; Boggs, 1991], geophysical imaging [Dafflon et al., 2011], 

and computer simulations [Gómez-Hernádez and Wen, 1998]. Figure 1.1 shows the numbers of 

articles in Google Scholar for the keyword "aquifer characterization”. In recent years, the 

number of the articles has increased significantly, and technological advances promote more 

interest in this matter. Aquifer characterization methods, involving the measurement and/or 

estimation of K, will be discussed from here on. 

 
Figure 1.1 Number of articles over the years which comprise "aquifer characterization" as 
keywords. For interpretation of the references to color in this and all other figures, the reader is 
referred to the electronic version of this dissertation. 

There are several different methods to determine hydraulic conductivity. Empirical 

approaches involving pedotransfer functions rely on textural analysis for defining the physical 
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properties of the medium such as pore/grains/fracture size, distribution, and organization. 

Textural analysis involves collecting core samples from the aquifer and sieving these samples to 

get grain size distributions [Masch and Denny, 1966]. Although several methods, such as 

freezing the samples, exist to collect nearly undisturbed cores, it is still an extremely challenging 

process especially for unconsolidated sediments. 

Alternative experimental methods to determine K require either laboratory measurements 

(following Darcy's law) on the core samples or more complicated procedures for in-situ 

experiments. In both cases, the measured values are affected by the core removal or 

experimentation procedure since re-sorting due to the vibration and the loss of pore water are 

almost unavoidable. Flowmeter tests are the most commonly used in-situ experimentation 

methods since they allow in-situ measurements of bulk parameter K. These are capable of 

measuring K averaged over an uncertain volume and have been widely used to map the hydraulic 

properties of aquifers. Although several existing studies demonstrate the success of flowmeter 

tests in mildly heterogeneous media, they also have many limitations. Beside the invasiveness, 

flowmeter tests are relatively slow, and capable to measure the bulk parameter for an unknown 

volume. Therefore, these tests can provide K information with a limited resolution and, are not 

very sensitive to low K. 

Indirect measurement procedures also exist, and include slug tests, infiltration and tracer 

experiments. These methods intend to derive K distribution using other measured parameters 

rather than attempting to measure the actual K. Infiltration experiments based on the amount of 

water infiltrated through a limited surface area and only capable of providing the average K 

estimates for limited and generally unknown depth. Slug tests require addition or removal of a 

known volume of water from a designated well, with detailed measurements of the associated 
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changes in the water levels. Tracer experiments intend to derive a [or the] K distribution by 

measuring concentration distribution of the injected tracer. They are capable of providing the 

largest scale K distribution and may require a large amount of sampling. 

Several other indirect measurements in the boreholes include well logging methods, that 

do not require the material removal. However, they require complementary data and an 

interpretation step since a known relationship between K and the measured parameters (i.e., 

resistivity, seismic velocity, gamma ray exposure) does not exist. 

Geophysical methods are another set of techniques which can only provide indirect 

information related to K distribution. However, they often provide the advantage of non-

invasiveness and higher resolution than the borehole based methods. The potential benefits of 

geophysical methods in addition to, or as replacements of, current in-situ methods are very 

significant. Geophysical methods can be effectively used for measuring bulk properties and 

mapping certain structures such as fractures, gravel beds, and clay lenses, which may have strong 

effects on the movement of groundwater either as preferential flow paths or as retardant barriers 

[Overmeeren, 1998; Streich et al., 2006]. Innovative approaches to collect and interpret 

geophysical data to map these structures, can also contribute to the efforts to derive a quantitative 

affinity between geophysics-derived parameters and hydraulic conductivity. Besides, 

improvements of geophysical methods provide data for the non-invasive monitoring of pollution 

and remediation processes [Brewster and Annan, 1994; Halihan et al., 2005]. 

In recent years, several novel borehole based approaches have emerged to delineate 

aquifer characteristics at higher resolution than previously possible. These approaches include in-

situ measurements using direct-push technology, which is a significantly faster alternative to the 

conventional borehole methods, especially in unconsolidated sediments. A recently developed 
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direct-push tool, called High Resolution K (HRK) tool, which couples direct-push permeameter 

(DPP) and direct-push injection logger (DPIL), provides cm-scale vertical resolution and partly 

overcomes an important obstacle related to resolution issues [Liu et al., 2009]. This relatively 

less destructive tool involves a probe with an injection port and two pressure sensors. Water is 

injected through the port and the difference in back pressure is measured via pressure sensors. 

These backpressure measurements are then converted to relative K values. Surface-based 

geophysical methods can be used to provide complementary data to direct-push methods which 

give high resolution data in vertical profiles. 

1.3 The MADE Site 

The method developed in the context of this study was applied at the Macro Dispersion 

Experiment (MADE) site on the Columbus Air Force Base of Mississippi. The MADE site is a 

highly heterogeneous, unconfined shallow aquifer.  Previous research suggests that the sediments 

consist of meandering fluvial deposits over braided fluvial deposits over a fine-grained sand 

layer inter-bedded with clay and silt [Bowling et al., 2005].  

 

Figure 1.2 Vertically exaggerated (x5) hydraulic conductivity cross-section along A-A' using 
1560 flowmeter K measurements [Boggs, 1991] (see Figure 1.4 for location). 

The MADE site is one of the most heavily studied uncontaminated sites, and it represents 

a high level of heterogeneity in many contaminated sites [Zheng et al., 2010]. It is a secure 
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facility that has been used to explore flow regimes in an aquifer using macro scale tracer tests 

and borehole measurements. The research at the site was started with measurements of ground 

water flow in 1984; later, the MADE-1 experiment was conducted between October 1986 and 

June 1988 [Boggs, 1991]. It was an extensive natural gradient experiment involving the 

preliminary flowmeter measurements of K. Figure 1.1 shows a cross section created using these 

K measurements along a transect (see Figure 1.4 for location), and the variance of ln K was 

calculated as 4.5. The experiment was monitored using 328 multi-level sampling wells (Figure 

1.3) [Zheng et al., 2010; Boggs et al., 1992]. A mixture of several different chemicals, including 

bromide (in the form of calcium bromide, Cinj=2500 mg/l), pentafluorobenoic acid (PFBA, 

Cinj=400 mg/l), trifluoromethylbenzoic acid (TFBA, Cinj=400 mg/l), and orthofluorobenzoic 

acid (DFDA, Cinj=400 mg/l) was used as a tracer. The total mixture volume was 10.03 m
3
 and 

groundwater extracted from the aquifer was used to prepare the mixture. The injection setup 

consists of five boreholes installed on a linear array with approximately 1 m separation (Figure 

1.4) approximately perpendicular to the average down gradient direction. Injection was carried 

out through a 0.6 m screened interval between the 57.5 and 58.1 m elevations above sea level 

(7.4-8 m below the surface) during 48.5 hours. 

Sampling was done on a snapshots basis, and the sampled area was increased through 

time for each snapshot. A total of 11446 samples were collected for 8 snapshots, and analyzed 

for the concentrations of the injected chemicals. Bromide (total injected mass of 25.0 kg) was the 

primary tracer due to its highly conservative nature and consistency of measured concentrations. 

Analysis of the measured concentrations suggested rather an interesting outcome, extremely 

different than what was expected. More than 20 % of the injected mass stayed around the 
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injection area and did not move any further than 10 meters even 500 days after the injection. In 

contrast, very low but detectable concentrations moved extremely fast down gradient. This 

interesting behavior resulted in a concentration profile with several peaks and a heavy tail which 

did not match the expected Gaussian shape (as predicted by advection-dispersion equation 

models). Thereafter, the flow behavior at the MADE site became a notorious problem for 

hydrologists. Two more macro-scale (MADE-2 and -3) and several smaller scale tracer tests 

were conducted to further investigate the issues at the site. 

 

Figure 1.3 Multi level sampler and flowmeter well setup at the MADE site (photo courtesy: 
stanford.edu). 

The MADE-2 experiment was conducted between June 1990 and September 1991 

[Boggs, 1993]. The same injection procedure was followed but a different mixture was used as 

tracer including tritium (Cinj=55,610 pCi/ml), 
14

C labeled p-xylene (Cinj=2770 pCi/ml), benzene 

(Cinj=68.1 mg/l), p-xylene (Cinj=51.5 mg/l), naphthalene (Cinj=7.23 mg/l), and o-

dichlorobenzene (Cinj=32.8 mg/l). The total injected mixture volume was 9.7 m
3
 and observed 
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using 258 multi-level sampling wells. The sampling procedure for the second experiment was 

improved with additional multi-level sampling wells installed along two transects known as 

fences, in the vicinity of injection area. However, the recovered mass was still not comparable to 

the injected mass and the concentration profiles presented the same interesting behavior. 

 

Figure 1.4 Site map showing the locations for flowmeter K measurements with cross-section line 
(A-A’ in Figure 1.1),  multilevel sampler wells, and test boundary. 

Another attempt was made with the MADE-3 experiment. This time, the injection 
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was allowed to dissolve the tracer and transport [Boggs et al., 1995]. The natural condition of the 

sediments in the injection area was destroyed and homogenized irreversibly with this 

experiment. Several smaller scale tracer tests, including a push-pull test and an extensive core 

sampling procedure following blue dye injection [Liu et al., 2010], were also carried on recently. 

Several approaches have been explored to simulate the flow regime at the MADE site 

following the experiments. Most of the earlier research concluded that the advection-dispersion 

equation (ADE) based approaches were not capable of reproducing the observed transport 

behavior at the MADE site [Zheng et al., 2010]. Modeling efforts based on ADE resulted in 

smooth concentration curves that were not comparable to the experiment outcomes. More 

exhaustive approaches followed the classic ADE method, including preferential flow paths 

approach, mass transfer approach between mobile and immobile domains, utilizing the fractal 

version of the ADE  [Benson et al., 2001; Zheng and Gorelick, 2003; Harvey and Gorelick, 

2000]. However, these approaches either did not include adequate parameterization due to lack 

of necessary data or involved naturally undeterminable features and calibration procedures. In 

conclusion, a successful modeling effort based on solely field data and capable of reproducing 

the observed transport behavior is still not available. 

 1.4 Methods 

Geophysical methods such as electrical resistivity tomography (ERT) and ground 

penetrating radar (GPR) are minimally-invasive and can often provide high resolution data. They 

have been used for mapping hydrologically different structures and more recently for tracking 

fluid migration during tracer tests [Johnson et al., 2007]. Borehole and surface GPR have been 

successfully used to map sedimentary structures [Neal, 2004], estimate porosity from GPR 

velocity fields [Klotzsche et al., 2010], track Dense Non-Aqueous Phase Liquid (DNAPL) and 
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saline tracers [Brewster and Annan, 1994; Birken and Versteeg, 2000; Hwang et al., 2008], and 

monitor remediation [Halihan et al., 2005]. However, most of these studies lack comparatively 

high-resolution in-situ measurements of K, which in the absence of a direct relationship is 

necessary to determine the connection between GPR signal response and K. 

GPR reflections originate at interfaces between geological materials with distinctive 

values of dielectric permittivity, which is directly related to water content, which for saturated 

media is governed by porosity. The correlation between hydraulic conductivity (which is related 

to porosity) and dielectric properties of media has been discussed in recent publications [Chen et 

al., 2001; Lambot et al., 2006; Kowalsky et al., 2005; Klotzsche et al., 2010], but no direct 

relationship has been established. Morin [2006] found an inverse relationship, which contrasts 

the common belief that K is higher for large porosities. Therefore, in this research, GPR data was 

used to delineate main unit boundaries and different sedimentary facies. 

GPR and direct-push (DP) hydraulic conductivity data collection was completed during 

two field campaigns in 2008 and 2009 (Figure 1.5 and see Figure 1.6 for the locations). Multiple 

GPR data collection techniques were applied, with most collection using: 2D profiles, full-

resolution 3D and 4D data cubes, and cross-borehole tomography (Figure 1.6). GPR data along 

2D profiles were collected for broader scale site characterization and three distinct regions were 

selected for full resolution GPR data cubes for detailed characterization (Table 1.1). Regions to 

collect full resolution 3D GPR data were selected from previous tracer test sites to take 

advantage of existing grain size and tracer test data. 
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Figure 1.5 Panoramic view of the site showing the source location (metal pipes in the center-
front) and GPR data collection setup (on the right) (photo courtesy: Kaya Diker). 

 

Figure 1.6 Site map showing HRK and GPR measurement locations, and the original MADE 
test boundary. 
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58 high resolution vertical K profiles were obtained with the new DP High Resolution K 

(HRK) probe (Figure 1.7). This tool, which was developed for rapid characterization of 

unconsolidated shallow aquifers [Liu et al., 2009], is advanced into the subsurface while water is 

injected out of a small screened port located a short distance behind the tool tip. The injection 

rate and injection induced back pressure are recorded every 1.5 cm. The ratio of these quantities 

is transformed into K following the approach described by Liu et al. [2009]. Although the 

calibration of the transform equation is the subject of ongoing work, the spatial patterns of K, 

which are of greatest interest in this study, would not change with different transformation 

parameters. 

 

Figure 1.7 Side view of DP High Resolution K (HRK) probe (photo courtesy: Kaya Diker). 
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Table 1.1 Inventory of collected GPR data. 

Area Size Data Type Frequencies 

MADE site 
from tracer tests 

250x150 m 2D profiles 50-100 MHz 

Intensively Cored Area 
(ICA) 

12x12 m 
3D data cubes 
Vertical Radar Profiling 

50-100-200-250 MHz 
50-100 MHz 

Multi-Level Sampler Area 
(MLS) 

25x25 m 
3D data cubes 
Zero Offset Profiling 
Multi Offset Gathering 

50-100 MHz 
50-100 MHz 
50-100 MHz 

Dipole Tracer Test Area 
(DTA) 

5x12 m 
4D data cubes 
Zero Offset Profiling 
Multi Offset Gathering 

50-100 MHz 
50-100 MHz 
50-100 MHz 

Source Trench Area 
(STA) 

30x10 m 3D data cubes 50-100 MHz 

 

1.5 Outline of the thesis/dissertation 

This study aims to provide a novel approach to create flow-transport models solely based 

on field data to reproduce the outcomes of MADE-1 and -2 experiments. This introductory 

chapter provides the history and the technical details related to the experiments conducted at the 

MADE site. Below, I present a brief synopsis of the following chapters in this dissertation. 

Chapter 2 presents a qualitative comparison of GPR and K data on which the remaining 

chapters are based. This chapter includes a statistical analysis of K data as a proof of concept. 

The objective of this second chapter is to investigate the potential of the geophysical data to 

delineate the hydrostratigraphically different units and to demonstrate the correlation between 

the GPR reflections and K data. Full-resolution 3D GPR derived facies boundaries were used to 

define the boundaries of different hydrostratigraphic structures. Descriptive statistics and 

distribution tests were then used to examine the power of subdivisions to reduce the variances of 

K distributions. This chapter shows that GPR reflections coincide with anomalies in K profiles 
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and separate units with distinct K characteristics. The chapter presents a new approach for 

building high-resolution 3D hydrostratigraphic frameworks of heterogeneous aquifers and to 

improve the stochastic K field creation procedure to better simulate transport through such highly 

heterogeneous aquifers. 

The proof of concept is followed by Chapter 3, which introduces the quantitative and 

statistical analysis of HRK data along with the fractional differencing approach. The MADE site 

sediments possess a very complex and widely varied K distribution. Henceforth, conventional 

statistical approaches cannot be successfully utilized to model the K distribution. In this Chapter, 

I show that fractional differencing filter serves to remove the long range dependence and reveals 

the underlying K distribution.  Fractal stochastic methods, which are not commonly used for 

aquifer characterization, were then employed to simulate K fields containing the naturally 

observed connectivity of the sedimentary structures. This chapter introduces the procedure 

followed to simulate fractal stochastic K fields and demonstrates the value of fractal methods as 

well as GPR derived hydrostratigraphy. It concludes that the use of fractal methods in 

combination with GPR derived facies boundaries, provides improved representations of K 

created using exclusively data based mixing of Gaussian fields. Chapter 3 is followed by an 

Appendix that presents a comparative analysis of conditional and unconditional K fields with and 

the effects of the hydrostratigraphic information obtained from GPR. This comparison includes 

flow and transport simulations to explore the best suitable method for stochastic K field 

generation. 

Chapter 4 presents the outcomes of 3D flow transport simulations for an area (25x45 m) 

near the MADE1-3 injection site. This chapter builds on the statistical methods developed in 

Chapter 3, but are now applied in 3D. The research in this chapter is unique since it provides the 
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first 2D representations of simulated plumes in comparison to measured concentrations from 

MADE-1 experiment. For this chapter both data sets published after the experiments were 

revisited and reanalyzed. Resulting simulations were used to create 2D vertically integrated 

contour maps and 1D profiles of relative mass distribution. Amount of recovered mass is not 

comparable to the experimentation due to the limitations of reproducing the sampling procedure 

in the field. However flow and transport simulations, based on the presented approach, are 

significantly capable of representing the spatial extent of the observed plume as well as the 

multi-peak and heavy tail behavior of the observed relative mass distribution along the down 

gradient direction. 

Chapter 5 combines the 3D flow simulations near the injection area with the GPR 

hydrofacies approach developed in Chapter 2 and investigates the effect of this additional piece 

of information on the outcomes of flow-transport simulations. This chapter demonstrates that the 

complementary GPR data improves the representation of tail behavior. The second part of this 

chapter includes a comparative analysis for simulated plumes for several different scenarios 

including: use of flowmeter K data, a transient flow scheme, and changing densities of HRK 

profiles. This part of the study showed that: (1) flowmeter K data alone is not sufficient to create 

K fields to reproduce the plume behavior successfully, (2) no significant difference exist between 

steady state and transient flow schemes in simulated plume shape and characteristics, (3) HRK 

profiles have a significant effect on the simulated plume. 

Finally, Chapter 6 lays out a synthesis of the previous chapters and tabulates the 

conclusions of this research. 
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Chapter 2  

Hydrostratigraphic analysis of the MADE site with full-resolution GPR and direct-push 

hydraulic profiling 

 

Abstract 

Full-resolution 3D Ground-Penetrating Radar (GPR) data were combined with high-resolution 

hydraulic conductivity (K) data from vertical Direct-Push (DP) profiles to characterize a portion 

of the highly heterogeneous MAcro Dispersion Experiment (MADE) site. This is an important 

first step to better understand the influence of aquifer heterogeneities on observed anomalous 

transport. Statistical evaluation of DP data indicates non-normal distributions that have much 

higher similarity within each GPR facies than between facies. The analysis of GPR and DP data 

provides high-resolution estimates of the 3D geometry of hydrostratigraphic zones, which can 

then be populated with stochastic K fields. The lack of such estimates has been a significant 

limitation for testing and parameterizing a range of novel transport theories at sites where the 

traditional advection-dispersion model has proven inadequate.1 

  

                                                 
This chapter is based on Dogan, M., R. L. Van Dam, G. C. Bohling, J. J. Butler Jr., and D. W. 
Hyndman (2011), Hydrostratigraphic analysis of the MADE site with full-resolution GPR and 
direct‐push hydraulic profiling, Geophysical Research Letters, 38, L06405, 
doi:10.1029/2010GL046439. 
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2.1 Introduction 

The transport of solutes through an aquifer is primarily controlled by medium properties, 

in particular the spatial distribution of hydraulic conductivity (K) [e.g., Gelhar, 1993; 

Fleckenstein and Fogg, 2008]. Studies of mildly heterogeneous aquifers have demonstrated that 

solute transport can be reasonably modeled using the classical advection-dispersion equation 

(ADE) with limited K data [e.g., Mackay et al., 1986; Hess et al., 1992], and that 

hydrostratigraphic analysis of core material improves transport predictions [e.g., Phanikumar et 

al., 2005]. In contrast, studies in highly heterogeneous aquifers have shown that the classic ADE-

based approach with K data from conventional field methods does not accurately simulate 

transport in such systems [e.g., Eggleston and Rojstaczer, 1998; Whittaker and Teutsch, 1999]. 

Indeed, three large-scale natural gradient tracer experiments performed at the MAcro Dispersion 

Experiment (MADE) site (Figure 2.1) on Columbus Air Force Base, Mississippi, USA, displayed 

pronounced non-Gaussian behavior [Boggs et al., 1992; Zheng, 2006]. The MADE aquifer 

consists of highly heterogeneous unconsolidated fluvial sediments (ln K variance = 4.5 from 

borehole flowmeter data [Rehfeldt et al., 1992]), underlain by a clay aquitard at ~12 m depth. 

Bowling et al. [2005] used 2D Ground-Penetrating Radar (GPR) lines and information from a 

nearby quarry to identify three main facies above the aquitard: a meandering fluvial system over 

a braided fluvial deposit over a fine-grained sand interbedded with clay and silt. 

Several approaches have been proposed for simulating the observed tracer transport at 

MADE by incorporating preferential flow paths [e.g., Zheng and Gorelick, 2003] or mass 

transfer between mobile and immobile domains [e.g., Harvey and Gorelick, 2000] into the ADE, 

or by using a fractional form of the ADE [e.g., Benson et al., 2001]. Although these approaches 

may provide reasonable representations of the average plume behavior, they do not accurately 
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replicate concentration histories at observation wells nor can they be parameterized using 

available data. Novel high-resolution characterization methods, however, may provide the 

necessary subsurface data to greatly improve traditional transport simulations in such highly 

heterogeneous systems and aid in the assessment of alternative transport theories. 

GPR is a common noninvasive method for high-resolution exploration of spatial 

variability in the shallow subsurface [e.g., Jol, 2009], but it does not provide direct information 

about K [Hubbard and Rubin, 2000]. Previous efforts to use GPR to improve flow and transport 

models have combined GPR facies analysis with modeled K fields and stochastic simulations 

[Rauber et al., 1998; Moysey et al., 2003; Ezzy et al., 2006; Engdahl et al., 2010]. Such studies 

have not directly combined surface 3D GPR data with high-resolution in-situ K estimates to 

develop hydrofacies models for heterogeneous aquifers, which is the focus of this paper. 

In this paper, we present results of a recent field demonstration at the MADE site where 

full-resolution 3D GPR and cm-scale Direct-Push (DP) K data were collected. Following a 

description of the approach and methods, we discuss the general reflection patterns in the GPR 

data cubes. We then present the results of a GPR facies analysis for a 2D plane where four DP K 

profiles were obtained. Following a qualitative comparison of these collocated data sets, we 

present the results of statistical tests to evaluate whether GPR facies are also distinct 

hydrostratigraphic units. The results of this field demonstration indicate that the combination of 

methods presented here is a promising approach for characterizing 3D hydrostratigraphic 

structures. These structures, which can then be populated by stochastic simulation of K fields, 

can serve as the basis for flow and transport models of highly heterogeneous aquifers, such as at 

the MADE site. 
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2.2 Methods  

GPR is an excellent method to image shallow sedimentary structures because the signal 

response is controlled by textural properties [Neal, 2004]. In saturated low-loss media, such as 

sand and gravel, the variable most directly linked to GPR signal propagation and reflection is 

porosity, which is governed by sediment characteristics such as grain size, sorting, and packing. 

GPR has traditionally been used for 2D and pseudo-3D characterization, but recent studies have 

demonstrated the added value of full-resolution data, with less than quarter wavelength (λ) 

sampling for in- and cross-line directions [Grasmueck et al., 2005]. Full-resolution GPR 

maximizes the potential to characterize 3D subsurface structures. Its vertical resolution depends 

on signal wavelengths, which depend on by frequencies of propagating waves and dielectric 

permittivities of the medium. For example, vertical resolution is ~0.145 m (1/4 λ) for 100 MHz 

signals in saturated sediments with a relative dielectric permittivity of 23 (EM velocity ~0.058 

m/ns). The lateral resolution depends on the Fresnel zone, which gets larger with increasing 

depth and decreasing frequency. 

We used 2D GPR lines to characterize the stratigraphy over the region where three 

natural-gradient tracer experiments [Zheng, 2006] were conducted. We then collected full-

resolution 3D GPR data around the Intensively Cored Area (ICA – Figure 2.1a) where a single-

well, push-pull tracer test was recently performed [Liu et al., 2010]. A total of 3.8 km of GPR 

lines were collected in the ICA cube using 50 and 100 MHz antennae, with step sizes of 0.2 and 

0.1 m, respectively, which is less than the 1/4 λ required spacing. Line spacing was equal to step 

size, thus forming a regular grid of GPR traces. Data were collected using a sampling interval of 

800 ps over 550 and 400 ns time windows, and 16 and 32 stacks for the two frequencies, 

respectively. Accurate positioning was achieved using guidance ropes and odometer-wheel  
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Figure 2.1 (a) Map of the MADE site on Columbus Air Force Base (AFB) with GPR 
measurement lines. The GPR survey coordinates are shown in blue. The blowup of the ICA cube 

(144 m
2
) shows DP sites and locations of the 3D GPR cubes in Figures 2.1b and c (yellow 

shaded area) and the profile in Figure 2.2 (red dashed line); viewing angles are indicated with 
arrows in corresponding colors. Full-resolution 3D GPR data cubes at (b) 100 MHz and (c) 50 
MHz are shown with no vertical exaggeration. An envelope was used to render negative 
amplitudes transparent; number labels in Figure 2.1b are discussed in the text. 
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triggering. All GPR data were collected with a Sensors and Software pulseEKKO 100 system 

(1000V transmitter) at night and on weekends to avoid flight-time interference with a 

communication station adjacent to the site (Figure 2.1a). 

GPR data were processed with a background removal filter (dewow, 14 and 8 ns for 50 

and 100 MHz, respectively) followed by a band-pass filter to eliminate high-frequency noise. 

Static corrections were then applied to flatten the reflection from the top of the saturated zone, as 

the measured water table gradient was only ~0.0003 (3.3 cm over 111 m). The reflection times 

for the saturated zone were converted to depths based on the average measured velocity of 0.058 

m/ns, from CMP and cross-borehole data.  

A GPR facies approach [Van Overmeeren, 1998] was used to identify zones with distinct 

reflection characteristics. The primary criteria used to define GPR facies were reflection 

terminations, dip angle, amplitude, and continuity in 3D. We then compared GPR facies with 

high-resolution vertical K profiles that were obtained with the new DP High-Resolution K 

(HRK) probe. This tool, which was developed for rapid characterization of unconsolidated 

shallow aquifers [Liu et al., 2009], is advanced into the subsurface while water is injected out of 

a small screened port located a short distance behind the tool tip. The injection rate and injection-

induced back pressure are recorded every 1.5 cm. The ratio of these quantities is transformed 

into K following the approach described in Liu et al. [2009]. Although the calibration of the 

transform equation is the subject of ongoing work, the spatial patterns of K, which are of greatest 

interest in this study, would not change with different transformation parameters. We used the 

Kolmogorov-Smirnov (K-S) test and box plots to evaluate differences among K distributions for 

different GPR facies and layers. 
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2.3 Results  

Cutouts of the 100 and 50 MHz GPR data, with 10 and 12 m of signal penetration, 

respectively, clearly image the details of 3D structures (Figures 2.1b and c). The 100 MHz north-

south oriented cut at 97 m East shows two ~2 m thick packages with northward dipping 

reflections between 4 and 8 m depth (� and � in Figure 2.1b). These structures likely 

represent large-scale clinoforms associated with channel bar migration. This interpretation is 

corroborated by a reflection pattern along the perpendicular cut at 170 m North that resembles 

trough cross-stratification (� in Figure 2.1b). The GPR reflections from the deepest portion of 

the cube are dominated by sub-horizontal continuous reflectors, but the signal is notably 

attenuated for the 100 MHz data. The 50 MHz data, which depict the same dipping clinoforms, 

have reasonable signal strength to the top of the clay aquitard (Figure 2.1c). 

We conducted facies analysis across a transect at 105 m East (Figure 2.2), where the 

general reflection pattern is comparable to the plane at 97 m East. For this analysis, 100 MHz 

data were used from the water table to 8 m, and 50 MHz data were used below 9 m. The average 

data from both frequencies were used between 8 and 9 m depth (Figure 2.2a), since picks from 

both were consistent. To define the spatial distribution of GPR stratigraphy, we developed an 

algorithm for automated picking of peak amplitudes and identification of laterally continuous 

reflections (Figure 2.2b). Decisions on how reflections connect and terminate were aided by 3D 

analysis of the data. Using the procedure outlined earlier, the GPR data were separated into four 

GPR facies (Figure 2.2b). Facies A (green) consists of sub-horizontal reflections, and can be 

divided into two sub-facies those appear to be separated by an erosional surface. The underlying 

Facies B (brown) contains the most notable clinoform sets, and these can again be divided into 
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two sub-facies. The lowermost two facies are characterized by laterally continuous sub-

horizontal reflections. Facies C (blue) has several internal clinoform structures (based on 3D 

analysis of the GPR data) and gently dipping bounding surfaces; Facies D (tan) has primarily 

horizontal reflections.  

 

Figure 2.2 Interpretation of GPR and HRK data at line 105E (see Figure 2.1 for location). (a) 
GPR profile with red (positive) to blue (negative) amplitude scale using combined 100 MHz and 
50 MHz data; black triangles indicate the zone where the two data sets were averaged. In 
addition to processing mentioned in the text, these data were plotted with an energy decay gain. 
(b) Continuous reflections identified using an automated picking algorithm and interpreted GPR 
facies (color shaded). (c) Qualitative interpretation of GPR facies with HRK data; facies 
boundaries are marked by horizontal lines. 
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Figure 2.2c presents a qualitative comparison of the GPR data and the HRK profiles 

along this transect. The GPR data show good correlation with the HRK profiles, as is evident 

from numerous small-scale anomalies that coincide with GPR reflections. In addition, GPR 

facies are consistent with the main K zones across the interpreted portion of the aquifer. Facies A 

has generally high K values, consistent with coarse-grained sediments. The relatively constant K 

values in Facies A in profiles 111108A-C reflect an upper HRK measurement threshold of 

roughly 10 m/d; the actual K values are likely higher and more variable than indicated. In the 

zone with prominent clinoforms, Facies B shows declining K with depth. Facies C shows 

constant to increasing conductivities with depth, whereas Facies D is characterized by generally 

high K values. There is a clear transition into the low-K aquitard at the bottom of HRK log 

111108A (Figure 2.2c); in other logs, DP probe advancement was halted at the top of the clay. 

The observations from this qualitative evaluation suggest that GPR and HRK methods 

can be used in tandem for high-resolution hydrostratigraphic analysis (Figure 2.3a). To evaluate 

this possibility quantitatively, we statistically analyzed the K data within GPR facies, sub-facies, 

and layers. Boxplots in Figures 2.3b-e visualize the descriptive statistics of the K data for GPR 

facies, sub-facies, and layers (collectively called 'segments'), respectively. One-sample K-S tests 

with 95% confidence intervals (CI) rejected the null-hypothesis that the K data from each 

segment have a log-normal distribution (see Table A2.1 of the appendix); therefore, the common 

assumption that K distributions are log-normal is not valid for these data. 

To evaluate differences in K distributions, we used two-sample K-S tests with 95% CI. 

These tests show that the distribution of K data for each of the four GPR facies is distinct (see 

Table A2.2 of the Appendix). Similar K-S tests were used to test the difference of K distributions 

between adjacent segments. These tests show that all adjacent layers as well as sub-facies/facies 
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have statistically distinct distributions of K (see Table A2.2 of the Appendix). Although this 

analysis suggests that the individual GPR facies and layers can be translated into statistically 

distinct hydrofacies, it does not indicate that both are necessarily equivalent. When the K data are 

separated by individual HRK profiles in a plot of mean versus variance, the between-profile 

variation in log K means for each facies is generally significantly smaller than the between-facies 

variation (see Figure A2.4a of the Appendix). There is, however, considerable overlap between 

the mean log K values for Facies B and C, which is expected since they have opposite trends of 

K with depth. Indeed, a plot of mean log K versus the slope of log K values with depth in each 

facies clearly separates the facies into clusters (see Figure A2.4b of the Appendix). Figure A2.4a 

also shows that the variance of log K is low for Facies A (affected by K truncation discussed 

earlier) and D but higher for Facies B and C, which we argue is related to the depositional 

environment. 

Modeling of flow and transport through heterogeneous aquifers would greatly benefit 

from detailed characterization of K. Figure 2.3f demonstrates that as the aquifer is split into 

facies, sub-facies, and layers based on our stratigraphic analysis of full-resolution GPR data, the 

total variance in K is drastically reduced. Most of this reduction occurs in the first two splits into 

facies and sub-facies. Therefore, subdivision into layers may not be required to develop realistic 

3D K fields at this site. A wide range of stochastic methods can be used to distribute the K data 

through facies/sub-facies shown in Figure 2.3a. Although a stochastic K field could be developed 

for all DP data shown in Figure 2.3a, it would clearly not be possible to fully capture the 

geometry of the GPR stratigraphy based on the K data alone. The value of separating the cube 

into facies, sub-facies or layers (Figure 2.3f) can then be quantified using simulations of tracer 

tests through the stochastically derived K fields. 
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Figure 2.3 (a) 3D GPR facies boundaries (shaded to visualize topography) with collocated DP 
HRK profiles. Descriptive statistics of these K data for (b) all saturated material above the 
aquitard, (c) GPR facies, (d) sub-facies, and (e) layers. Box plots show the sample median, 

interquartile range, and positions of extreme values. (f) Variance of log10 K and ln K values for 
the data in Figures 2.3b–2.3e, respectively. The red line is a power fit through the medians of the 
variance values for each group (horizontal axis in log scale). 

2.4 Conclusions  

Accurate predictions of transport through highly heterogeneous aquifers would greatly 

benefit from a method to characterize the detailed structure of aquifers; this would be an 

important first step to populate 3D K fields with high vertical and horizontal resolution. Recently 

developed DP methods can provide high-resolution K (HRK) data in vertical profiles, yet they 

cannot provide sufficient spatial density to establish lateral connectivity. In this paper, we 

present the first comparison of full-resolution 3D GPR and HRK data to develop high-resolution 
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hydrofacies for highly heterogeneous sediments. Four GPR facies that were identified at the 

MADE site were determined to be distinct hydrofacies based on statistical analysis of several 

collocated HRK profile data. The division of these facies into smaller segments (sub-facies, 

layers) results in zones with lower variance in K. These zones can then be used to generate 

stochastic fields with less uncertainty than previously possible. 

We found good agreement between full-resolution GPR stratigraphy and HRK profiles, 

thus forming a solid foundation for hydrostratigraphic characterization of this site. Our approach 

provides an opportunity to reconstruct 3D subsurface structures with their correct geometries and 

hydrologic attributes. The strong connection between the HRK data and GPR facies indicates 

that at many sites, a 3D K field could be generated using GPR data tied to a few HRK profiles. 

Clearly, as facies change character laterally, additional HRK profiles are needed to intercept 

these facies and to capture a representative distribution of K values. 

It should be noted that the approach presented in this paper is not without limitations. The 

vertical and lateral resolution of GPR data is finite, and reduces with increasing depth. Limiting 

the variance of K within hydrofacies units and layers nevertheless provides the basis for better-

constrained stochastic fields for solute transport simulations. In future research, the hydrofacies 

model described here will be used to test a range of emerging transport theories. 
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Stratigraphic analysis of full-resolution ground-penetrating radar (GPR) data at the 

MAcro Dispersion Experiment (MADE) aquifer in Mississippi identified 4 radar facies, 2 of 

which can be subdivided in sub-facies, and 30 individual layers (collectively called 'segments'). 

In two tables, we present statistical analyses of hydraulic conductivity (K) data obtained with the 

HRK tool for these facies and layers. For each facies- and layer boundary in these tables, data 

from a transition zone with 1/4 wavelength of the GPR frequency (1/8 wavelength on top and 

bottom) was excluded from the analysis. 

A one-sample Kolmogorov-Smirnov (K-S) test was used to check if K data in any of the 

segments is log-normally distributed. Probability values larger than 0.05 indicate log normal 

distribution for a 95% confidence interval. Combining K data from four HRK profiles (111108A, 

111108B, 111108C, 121108A), Table A2.1 provides the number of data points and p values of 

the entire aquifer, the four facies (A: layers 1-9, B: layers 10-22, C: layers 23-26, D: layers 27-

30), the sub-facies, and individual layers (see Figure 2.2 for location relative to GPR full-

resolution data). 

Table A2.2 provides the p values calculated using two-sample K-S tests with 95% 

confidence intervals for the statistical comparison of facies and consecutive sub-facies/layers, 

respectively. The null hypothesis of this test is that data sets of 2 samples come from the same 

continuous distribution. 

Separated by facies and DP profile, Figure 2.4 presents cross plots of log10 K mean 

versus (a) variance and (b) the slopes of linear trends of the change in log10 K with depth.  

  



36 
 

Table A2.1 Single-sample K-S tests of four HRK profiles for facies and layers identified in full-
resolution 3D GPR data (see Figures 2.1 and 2.3a for locations). Columns, “SEGMENT", name 
of segment (facies/sub-facies/layer), "N_SAMPLE", number of HRK measurements used, 

"p_FOR_LOG_K", p values for log10 K using single-sample K-S test with 95% CI. 

SEGMENT N_SAMPLE p_FOR_LOG_K 
ALL_DATA  2163 3.24E-28 
Facies_A 503 6.47E-134 
Facies_B 533 3.76E-33 
Facies_C 302 1.06E-136 
Facies_D 655 1.06E-31 
Facies_A1 337 9.70E-109 
Facies_A2 128 8.73E-26 
Facies_B1 265 1.11E-03 
Facies_B2 232 1.04E-41 
Facies_C 302 1.06E-136 
Facies_D 655 1.06E-31 
Layer_01 55 9.08E-30 
Layer_02 24 1.21E-07 
Layer_03 26 1.84E-18 
Layer_04 22 5.39E-11 
Layer_05 65 8.40E-21 
Layer_06 43 1.36E-29 
Layer_07 13 3.29E-09 
Layer_08 38 1.40E-11 
Layer_09 48 3.26E-08 
Layer_10 22 1.40E-04 
Layer_11 33 2.68E-02 
Layer_12 12 1.44E-02 
Layer_13 38 1.85E-04 
Layer_14 14 1.97E-10 
Layer_15 21 5.78E-08 
Layer_16 33 2.86E-08 
Layer_17 15 7.84E-14 
Layer_18 12 1.41E-09 
Layer_19 18 5.94E-08 
Layer_20 36 2.06E-13 
Layer_21 12 1.13E-02 
Layer_22 60 8.76E-20 
Layer_23 10 1.13E-07 
Layer_24 22 1.12E-16 
Layer_25 92 6.56E-60 
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Table A2.1 (cont'd) 

SEGMENT N_SAMPLE p_FOR_LOG_K 
Layer_26 64 1.16E-17 
Layer_27 79 6.41E-11 
Layer_28 70 1.50E-08 
Layer_29 123 4.47E-12 
Layer_30 155 1.94E-18 

 

Table A2.2 Statistical comparison of K values for four identified radar facies and adjacent 
segments, where p values were calculated using two-sample K-S tests. Columns, "SEGMENT", 
names of compared consecutive segments (facies/sub-facies/layers), "p_FOR_LOG_K", p values 

for log10 K using two-sample K-S test with 95% CI. 

SEGMENT p_FOR_LOG_K 
Facies_A-B 8.06E-110 
Facies_A-C 3.11E-158 
Facies_A-D 5.09E-94 
Facies_B-C 9.50E-44 
Facies_B-D 8.80E-49 
Facies_C-D 2.91E-149 
Facies_A1-A2 8.67E-08 
Facies_A2-B1 1.27E-21 
Facies_B1-B2 4.20E-17 
Facies_B2-C 1.54E-11 
Facies_C-D 2.91E-149 
Layer_01-02 5.32E-16 
Layer_02-03 3.26E-12 
Layer_03-04 5.40E-05 
Layer_04-05 5.02E-02 
Layer_05-06 7.84E-05 
Layer_06-07 2.26E-01 
Layer_07-08 1.64E-01 
Layer_08-09 1.97E-06 
Layer_09-10 6.80E-05 
Layer_10-11 2.39E-03 
Layer_11-12 1.13E-02 
Layer_12-13 1.23E-03 
Layer_13-14 6.34E-07 
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Table A2.2 (cont'd) 

SEGMENT p_FOR_LOG_K 
Layer_14-15 1.54E-08 
Layer_15-16 7.16E-05 
Layer_16-17 2.90E-10 
Layer_17-18 5.73E-07 
Layer_18-19 1.88E-07 
Layer_19-20 1.09E-01 
Layer_20-21 4.84E-06 
Layer_21-22 2.73E-06 
Layer_22-23 6.31E-03 
Layer_23-24 1.24E-02 
Layer_24-25 3.10E-02 
Layer_25-26 1.44E-07 
Layer_26-27 2.22E-10 
Layer_27-28 2.05E-04 
Layer_28-29 7.31E-12 
Layer_29-30 2.83E-03 
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Figure A2.4 (a) Cross plot of log10 K mean and variance for high resolution K data from four 

DP profiles (see Figure 2.1 for location and Figure 2.2 for data). (b) Cross plot of log10 K mean 

and the slopes of linear trends of the change in log10 K with depth. In these plots, each facies is 
shown by a different symbol and color. The number next to each symbol indicates the DP profile 
(1, 2, 3, and 4 represent 111108A, 111108B, 111108C, and 121108A, respectively). 
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Chapter 3  

Hydraulic conductivity fields: Gaussian or not? 

 

Abstract 

Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport 

models. Numerical simulations require a detailed representation of the K field, synthesized to 

interpolate between available data. Several recent studies introduced high resolution K data 

(HRK) at the MAcro Dispersion Experiment (MADE) site, and used ground-penetrating radar 

(GPR) to delineate the main structural features of the aquifer. This paper describes a statistical 

analysis of these data, and the implications for K field modeling alluvial aquifers. Two striking 

observations have emerged from this analysis. The first is that a simple fractional difference 

filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a 

coherent distribution. The second is that using GPR facies allows us to reproduce the 

significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln 

K field in each facies. This illuminates a current controversy in the literature, between those who 

favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Essentially, both 

camps are correct, but at different scales.2 

 

 

                                                 
This chapter is based on Meerschaert, M.M., M. Dogan, R. L. Van Dam, D. W. Hyndman, and 
D. A. Benson (2013), Hydraulic conductivity fields: Gaussian or not? Water Resources 
Research, doi:10.1002/wrcr.20376. 
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3.1 Introduction 

Groundwater flow and transport simulations require a densely defined hydraulic 

conductivity (K) field to populate the model grid. Because it is not practical to collect 2-D or 3-D 

data at this resolution, stochastic simulation methods are commonly used to interpolate between 

measured data values. Stochastic K field simulation requires a statistical analysis of the available 

K data, to ensure that the synthesized K field resembles the data in terms of its distribution and 

correlation structure. The two main simulation steps are: (1) generate an uncorrelated noise field; 

and (2) apply an appropriate filter to impose a correlation structure. Since random number 

generators produce only uncorrelated noise, both steps are necessary. To parameterize the 

simulation model, the process is reversed: (1) apply an appropriate inverse filter to the raw data 

to remove the correlation; and (2) examine the filtered, uncorrelated data to determine its true 

underlying distribution. Unless the data is filtered properly to remove correlations, the data 

histogram can significantly misrepresent the underlying distribution, since a histogram of 

correlated data need not reflect the true underlying distribution. In this chapter, we will see a 

remarkable example of this simple and well-known fact. 

Hydraulic conductivity data from the Macro Dispersion Experiment (MADE) site, at the 

Columbus Air Force Base in Mississippi, clearly show a high level of heterogeneity in hydraulic 

properties [Rehfeldt et al., 1992; Zinn and Harvey, 2003; Llopis-Albert and Capilla, 2009]. The 

site was recently revisited to obtain K measurements with much higher spatial resolution than 

previous measurements [Bohling et al., 2012; Liu et al., 2009]. Vertical columns (profiles) of 

hydraulic conductivity data were measured at approximately 1.5 cm depth increments, using a 

new direct-push profiling method that couples the direct-push injection logger (DPIL) and the 

direct-push permeameter (DPP) [Butler Jr et al., 2007; Liu et al., 2009, 2012]. This novel high- 
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resolution K (HRK) tool was advanced into the subsurface, while water was injected out of a 

small screened port located a short distance behind the tool tip. The injection rate, and injection- 

induced back pressure, were recorded every 1.5 cm, and the ratio of these quantities was then 

transformed into K estimates [Liu et al., 2009]. The cm-scale spatial resolution of the resulting K 

data is orders of magnitude finer than the data considered in previous studies [Rehfeldt et al., 

1992; Meerschaert et al., 2004; Bohling et al. 2012] analyzed the resulting K data, and compared 

those measurements to previous flowmeter-based K estimates collected at lower resolution 

across the same site. 

A parallel data collection effort used ground- penetrating radar (GPR) to image the 

related sedimentary structures in the aquifer, called facies, by identifying distinct reflection 

characteristics, such as reflection terminations, dip angles, amplitudes, and continuity. Such GPR 

facies have been shown to correlate with hydrogeological units [e.g., see Van Overmeeren, 1998; 

Heinz and Aigner, 2003; Schmelzbach et al., 2011]. Full-resolution 3D GPR data using 50 and 

100 MHz antennae were obtained with step sizes (and line-spacings) of 0.2 and 0.1 m, 

respectively, using a Sensors and Software pulseEKKO 100 system. Data processing and 

analysis to extract facies boundaries was detailed in Dogan et al. [2011]. The map in Figure 3.1 

outlines the GPR data collection site, and the location of the four HRK profiles that form the 

basis for our study. The ICA (Intensively Cored Area) cube was the site of a push-pull tracer test 

described in Liu et al. [2010], see also Zheng et al. [2011]. The MLS (Multi-Level Sampler) cube 

was the site of the MADE-5 tracer test reported in Bianchi et al. [2011]. 

The modeling of hydraulic conductivity fields at the MADE site has been the focus of 

intensive study and modeling for over twenty years. The geostatistical analysis of Rehfeldt et al. 

[1992] documented a high level of heterogeneity, indicated by the variance of 4.5 for ln K in 
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their multi-Gaussian model, as well as anisotropy, indicated by horizontal and vertical 

correlation scales of 12.8 m, and 1.6 m, respectively. Silliman and Wright [1988] and Rubin and 

Journel [1991] argued that a Gaussian model with a single covariance function cannot reproduce 

the preferential pathways (connected regions with the highest ln K values) observed in real 

aquifers. Gómez-Hernádez and Wen [1998] continued this argument against the multi-Gaussian 

model, and cautioned against drawing broad conclusions on the basis of one dimensional data 

distributions. Renard and Allard [2011] survey several methods for characterizing connectivity, 

and note that the multi-Gaussian model alone is often insufficient to reproduce the connectivity 

observed in real aquifers. Significant deviations from a Gaussian profile were noted by Painter 

[1996] and Meerschaert et al. [2004], and some alternative non-Gaussian models were proposed. 

Zinn and Harvey [2003] point out that even in a model with Gaussian ln K profiles, deviation 

from the usual multi-Gaussian model can lead to connected features. Salamon et al. [2007] 

discuss the non-monotone variograms in MADE ln K data, and recommend a sequential 

Gaussian simulation methodology with a non-monotone covariance structure, to reproduce this 

“hole effect.” Llopis-Albert and Capilla [2009] use a gradual conditioning algorithm to produce 

non-Gaussian ln K fields based on flowmeter, head, and concentration data from MADE-2. This 

controversy between Gaussian and non-Gaussian ln K fields has profound implications for flow 

and transport modeling. Heavy tailed ln K distributions support novel approaches including the 

CTRW [Berkowitz et al., 2006], fractional ADE [Benson et al., 2013], and some related 

stochastic hydrology models [Cushman and Ginn, 2000; Neuman and Tartakovsky, 2009], while 

Gaussian ln K models are more consistent with the traditional ADE, mobile-immobile, and dual-

domain models. 
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Figure 3.1 Layout of Macro Dispersion Experiment test site, showing key features of MADE 
experiments, as well as the locations of GPR data collected for this project. The inset of the 
12×12 m ICA (Intensively Cored Area) cube shows the locations of the four HRK profiles and 
the 2D transect discussed in this paper. 

The two main findings of this study are that: (1) a fractional difference filter can be useful 

to reveal the true underlying distribution of highly correlated vertical columns of HRK data; and 

(2) using GPR facies, a multi-Gaussian simulation method with an appropriate operator scaling 

correlation structure applied to each facies can reproduce the significantly non-Gaussian profiles 

seen in columns of filtered HRK data. There remains a significant debate in the literature 

between those who favor Gaussian models, and others who believe that a non-Gaussian approach 

is needed. In our view, both groups are correct, albeit at different scales. Within a single facies, 

an appropriate multi-Gaussian model can be effective, and when different facies are combined, a 

non-Gaussian profile with a sharper peak and a heavier tail will emerge.  
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3.2 Statistical analysis 

Many studies have analyzed the statistical properties of low-resolution K data profiles; 

see Meerschaert et al. [2004] for a brief review. A typical field experiment collects K data at a 

vertical resolution of 1 − 3 m. Since the vertical resolution of the new HRK data is orders of 

magnitude finer, it is useful to reconsider the results of past analysis. For relatively homogeneous 

aquifers, it has been common to employ a log-normal distribution for K: the distribution of ln K 

is assumed to be normal, and aquifer heterogeneity is inferred from the variance of ln K [Rehfeldt 

et al., 1992]. A more detailed analysis suggests a departure from normality, with a sharper peak 

and heavier tails [e.g., Lu et al., 2002; Meerschaert et al., 2004]. This deviation becomes more 

significant for aquifers that display a higher degree of heterogeneity. 

Typical values for ln K are highly correlated, leading many researchers to employ models 

such as a fractional Brownian motion. The MADE site is highly heterogeneous, with ln K 

variance greater than 4.5. Several novel models have been proposed to try and capture this 

combination of non-Gaussian distributions and strong correlations [e.g., Painter, 1996; Herrick 

et al., 2002; Molz and Boman, 1993; Kohlbecker et al., 2006]. 

Figure 3.2a shows a histogram of ln K data from HRK profile 121108A (see map in 

Figure 3.1). The histogram suggests a complex underlying distribution, widely varying with 

several peaks, and no simple discernible shape. A fractional difference filter was applied to 

remove the correlations, resulting in the histogram in Figure 3.2b. The filtered data show no 

significant serial correlations, indicating that fractionally integrated noise is a reasonable model 

for this vertical column of ln K data. Fractional models have been applied in hydrology since 

pioneering work of Hurst [1951] on flood levels of the Nile river. In these models, observations 
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Xn are related to a sequence of independent and identically distributed random variables Zn 

(white noise) by the fractional difference relation 

 Zn= � wj Xn-j

∞

j=0

 (3.1) 

where the fractional binomial coefficients w� can be computed recursively using wn =1 and 

wj=w
j-1�j-1-d�/j for j≥1. If the underlying noise sequence Zn is Gaussian, then the sequence Xn 

is a fractional Brownian motion with Hurst index H=d-1/2. See the Appendix 3.1 for more 

details. 

 

Figure 3.2 Histogram of ln K for HRK profile 121108A (see map in Figure 3.1) before (a) and 
after (b) applying the fractional difference filter (1) with d=0.9. The filtered data are organized 
into a unimodal distribution with a sharper peak and a heavier tail than the best fitting Gaussian 
probability density function (black line).  
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Figure 3.2b was obtained using a fractional difference filter with d=0.9. The parameter d 

was gradually increased until the autocovariance plot showed no significant correlations, see 

Figure 3.3. The same value of d was effective in removing correlation in all four vertical HRK 

columns 111108A, 111108B, 111108C, and 121108A (see Figure 3.1) that formed the basis for 

our study. A fractional difference filter of order d=0.89 was used in Lu et al. [2002] to remove 

correlations in laboratory ln K data from a vertical sandstone core; a value of d=0.9 was found 

suitable for a sandstone slab in Major et al. [2011]; Meerschaert et al. [2004] used d=0.74 for 

lower resolution ln K values from three horizontal profiles in a sandstone facies at a site in Utah. 

The effect of fractional differencing on the histogram is striking. The filtered HRK data in 

Figure 3.2b form a coherent shape, with a sharper peak and a heavier tail than a Gaussian (the 

data fail the Anderson-Darling test for normality, p<0.0005. It is known that correlation can 

distort a histogram, but we have never seen such a clear example in real data. The fractional 

difference filter transforms a highly complex histogram into a form amenable to statistical 

modeling, by removing the correlation. This is the first major finding of our statistical analysis: 

A simple fractional difference filter is sufficient to capture and remove the correlation structure 

of a vertical ln K profile. This filter reveals the underlying noise distribution needed to design a 

faithful ln K field simulation. 

The dramatic transformation between Figures 3.2a and 3.2b has not been observed 

previously, perhaps because the available data were either more homogeneous (e.g., laboratory 

studies of a sandstone slab) or more widely spaced (e.g., flowmeter data from field studies) than 

the data considered in this study. Since our data are closely spaced, many similar K values tend 

to clump together due to high correlations, creating histogram peaks. These high correlations are 

evident in Figure 3.3a. Mathematically, this strong correlation is a fractional integration. Since 
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each vertical section spans several different facies, with significantly different material 

properties, multiple peaks can occur in a single HRK profile. The fractional difference filters out 

the correlations by reversing the fractional integration.  

 

Figure 3.3 Autocorrelation function for ln K from HRK profile 121108A (see Figure 3.1) before 
(a) and after (b) applying the fractional difference filter (3.1) with d=0.9. Autocorrelations inside 
dashed lines are statistically zero. 

Next, we discuss our simulation scheme. Since the ln K data exhibit long range 

dependence, with a shorter correlation length in the vertical direction, we applied the anisotropic 

random field generator of Benson et al. [2006]: Fourier transformed Gaussian white noise on a 

1.5 cm grid was multiplied by a Fourier filter ψ	k
= � ∑ Ci|k·θi|2
i  �-

H+1

2  with Hurst index 

H=0.4, θ1 horizontal, θ2 vertical, and correlation length parameters C1=10 and C2=1 to produce 

anisotropic ln K fields with a longer correlation length in the horizontal direction. In this 
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simulation, any horizontal row or vertical column of simulated data represents a fractional 

Brownian motion with Hurst index H=0.4. The horizontal autocorrelation parameter C1 was 

chosen to match measured autocorrelations between the four vertical HRK profiles 111108A, 

111108B, 111108C, and 121108A used in this study, but due to the 4 m horizontal spacing, this 

represents only a very rough fit. The simulated ln K field was then adjusted to impose the same 

mean and standard deviation as the log-transformed HRK data. The conditioning algorithm of 

Benson et al. [2013] was then applied, to make the simulated ln K field agree with available 

HRK data. Figure 3.4a shows the results of this simulation procedure for the combined HRK 

data, without subdividing into GPR facies.  

Next the HRK data were segregated by facies, using the GPR method discussed in 

Section 3.1. Both the mean and the standard deviation of ln K were found to vary significantly 

between facies. Separate ln K fields with the same mean and standard deviation as the log-

transformed HRK data were generated over the entire model domain for each facies, using the 

same method of Benson et al. [2006, 2013] with the same filter, and the same white noise 

sequence as in Figure 3.4a, with dip angle θ1 matched to the orientation of GPR reflections for 

each facies. Then, GPR facies boundaries were used to cut out the relevant portions of the 

simulated ln K field for each facies, resulting in the ln K field shown in Figure 3.4b. The 

multiscaling fractal filter used in this simulation methodology produces enhanced connectivity, 

as compared to a traditional multi-Gaussian model. Connectivity is further enhanced by our 

facies approach, since ln K statistics vary by facies. 

 

 



53 
 

 

  

 
Figure 3.4 Simulated ln K field without (a) and with (b) GPR facies (dashed lines), conditioned 
on four HRK profiles (vertical black lines). Histogram (c, d) of one column (white line at x = 172 
m) from simulated ln K field (a, b, respectively) after applying the fractional difference filter (1) 
with d=0.9. The histogram (c) fits a Gaussian model, but the histogram (d) from facies 
simulation (b) deviates from Gaussian shape, similar to measured HRK data (Figure 3.2b). 
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Figure 3.5 shows the Gaussian fit to fractionally differenced ln K data in a single facies, 

using the facies boundaries shown in Figure 3.4b. The data from facies A (shallowest) at 

horizontal location 174 m had the smallest standard deviation (σ=0.0110). The probability plot in 

Figure 3.5a shows that these data fit a Gaussian distribution reasonably well, except for a single 

outlier (0.7244, removed). The histogram (not shown) is similar to Figure 3.4c. Figure 3.5b 

shows the corresponding plot for facies D (deepest) at horizontal location 170 m, which had the 

largest standard deviation ( σ=0.3637 ). Since the points on the probability plot in Figure 3.5b 

show a significant and systematic deviation from the reference line, a lack of fit to the Gaussian 

model is indicated. The histogram (not shown) is similar to Figure 3.4d. We attribute this 

deviation from the Gaussian model in our data to the existence of sub-facies and smaller 

sedimentary variations with significantly different material properties [Dogan et al., 2011]. In 

this study, we employ only a few of the most definitive and connected GPR reflection 

boundaries, to subdivide the model domain into four distinct facies. However, the full 

geostatistical analysis reported in Dogan et al. [2011] did uncover additional substructures. 

Zhang et al. [2013], and others referenced in Section 3.5 of that paper, find that sub-facies 

heterogeneity has only a secondary influence on transport, hence the importance of accurately 

modeling sub-facies is unclear. 

As noted by Silliman and Wright [1988] and further discussed in Gómez-Hernádez and 

Wen [1998], a multi-Gaussian simulation with a single covariance function will not produce 

continuous regions where the highest or lowest ln K values occur. However, in our model, the 

facies with the highest or lowest mean ln K value produce just such features. This is no 

contradiction, because our model employs a different multi-Gaussian mean and covariance 

structure in each facies. In our opinion, the “hole effect” in the variograms of Rehfeldt et al. 
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[1992] and Salamon et al. [2007] can be the result of combining data from distinct facies, which 

will naturally cause a deviation from a single multi-Gaussian model with a fixed mean and 

covariance structure. Furthermore, combining the simulated multi-Gaussian ln K values from 

different facies does produce the kind of non-Gaussian histogram, with a sharper peak and a 

heavier tail, frequently seen in column data. 

 

Figure 3.5 Fractionally differenced ln K data (a) from the shallowest facies at horizontal location 
174 m fits a Gaussian distribution. Deepest facies (b) at horizontal location 170 m deviates from 
the Gaussian model. These probability plots show the sorted data on the horizontal axis, and the 
corresponding model percentiles for the best fitting Gaussian model on the vertical axis. If the 
data fits this model, the points will follow the reference line, with some random scatter. 
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This simulation methodology used to produce the ln K field in Figure 3.4b produces 

results similar to the indicator geostatistics method of Fogg et al. [1998], which has been 

successfully applied in both groundwater hydrology [Weissmann et al., 1999] and surface water 

hydrology [Rubin et al., 2006]. The idea of combining fractal simulation methods with a facies 

model is already present in Lu et al. [2002]. The difference in our approach is that we use GPR to 

determine the facies boundaries. Since the actual facies boundaries are known, there is no need 

to resort to an indicator simulation method to synthesize the facies boundaries. Ritzi [2000] notes 

that lithofacies data can also be used to determine facies boundaries, but if aquifer lithology is 

not available at sufficient resolution to parameterize a flow and transport model, then a 

combination of GPR facies and HRK profiles can provide a useful modeling approach for highly 

detailed K field synthesis. 

3.3 Model validation  

If a simulated ln K profile exhibits the statistical features of a measured ln K data profile, 

then this validates the simulation methodology. The histogram shown in Figure 3.4c represents a 

single column (81st column, at 172 m) of values from the simulated ln K field without GPR 

facies in Figure 3.4a, fractionally differenced with d=0.9 as in Figure 3.2b. Without facies, the 

fractionally differenced simulated HRK profile fits a Gaussian distribution, and hence does not 

resemble the measured HRK data. Figure 3.4d shows the corresponding histogram from a single 

column of the simulated ln K values with GPR facies in Figure 3.4b, fractionally differenced 

with d=0.9. Before fractional differencing, the simulated profile histogram (not shown) appeared 

similar to Figure 3.2a. After fractional differencing, the histogram of simulated values in Figure 

3.4d appears quite similar to the corresponding histogram in Figure 3.2b, with a sharper peak and 

a heavier tail than the best-fitting Gaussian. There are also some significant differences between 
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Figure 3.4d and Figure 3.2b, including a higher peak and some asymmetry in Figure 3.2b, but the 

overall shape seems to support our conclusion that combining simulated Gaussian ln K values 

from different facies can reproduce a significantly non-Gaussian shape, similar to what is seen in 

real HRK data profiles. Even though the simulated noise is normal in each facies, the histogram 

in Figure 3.4d does not fit a normal probability density (Anderson- Darling test p<0.0005). This 

is due to the well-known fact that a mixture of Gaussian random variates with different mean 

and/or standard deviation cannot be normally distributed. Indeed, many non-Gaussian 

distributions that have been used to model ln K data, including the Laplace and symmetric stable, 

are Gaussian mixtures [Kotz et al., 2001; Guadagnini et al., 2012; Riva et al., 2013a]. We 

conclude that GPR facies are useful in this simulation, as they provide a data-based procedure for 

delineating statistically distinct regions of K values, leading to the more sharply peaked and non-

Gaussian profile evident in Figure 3.4d. The facies approach also allows us to preserve observed 

correlation structures and angles. 

In order to gain a practical appreciation for the accuracy of d estimates, we then 

simulated a number of statistically identical ln K fields, and applied automatic d estimation to the 

resulting ln K profiles. Using a standard maximum likelihood estimation routine for fractional 

ARIMA models, we found typical estimates of the d parameter to vary from the true (input) 

value of d=0.9 by �0.2 in those simulations. Hence we cannot rule out other values of d 

(including d=1.0, a simple difference), and the estimated d value from any single profile should 

only be taken as a rough indicator of the true value. However, since the value d=0.9 resulted in 

no significant serial correlation in any of the four HRK profiles in this study, this value was 

deemed adequate for our purposes. It is certainly possible that more significant variations in d 

could emerge on a larger scale, or at a different site. 
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We believe that the departure from a Gaussian distribution, commonly observed in many 

ln K data profiles from alluvial aquifers, can be attributed to mixing. Although our simulated ln 

K field is based on Gaussian noise, the distribution of any single column exhibits a significant 

non-Gaussian shape, because different facies are mixed. This leads to the second major finding 

of our statistical analysis: A simulation that uses GPR facies, with a fractional Brownian motion 

within each facies, generates ln K fields whose fractionally differenced vertical profiles have a 

strongly non-Gaussian distribution, with a sharper peak and a broader tail, consistent with non-

Gaussian ln K models applied in previous studies [Meerschaert et al., 2004; Painter, 1996]. The 

GPR data are valuable in this simulation method, since they delineate facies boundaries that 

allow the Gaussian simulation to reproduce non-Gaussian ln K profiles. 

3.4 Discussion 

Modeling and simulation of K fields is challenging, especially in highly heterogeneous 

aquifers including the MADE site, where the ln K fields exhibit anisotropy [Boggs et al., 1990; 

Riva et al., 2008], long-range correlations [Neuman, 2003; Ritzi et al., 2000], non-monotone 

variograms [Ritzi et al., 2004; Salamon et al., 2007], and a significantly non-Gaussian shape 

[Ritzi et al., 2004]. The standard model of ln K is based on a normal distribution, but many 

studies have found significant deviations from the Gaussian shape in increments of low 

resolution ln K field data, with a sharper peak and/or heavier tails [Meerschaert et al., 2004; 

Painter, 1996, 2001]. Some researchers have suggested that accurate representation of the K data 

at the smallest scale may be a critical component of solute transport simulation, particularly 

regarding the distribution and long-range dependence [Zheng et al., 2003; Ritzi et al., 2004; Dai 

et al., 2004; Ramanathan et al., 2008]. Based on the statistical analysis reported in this paper, we 

find that the observed non-Gaussian distribution of fractionally differenced ln K data from 
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alluvial aquifers can be reproduced using a Gaussian ln K field in each facies. The combination 

of ln K data from different facies at different depths combines into a data profile with a non- 

Gaussian shape (e.g., Painter, 2001). The non-Gaussian ln K distributions used in previous 

studies are also Gaussian mixtures of this type. It is well known that mixing of data from 

different populations changes the histogram shape, but it is usually impossible to reconstruct the 

Gaussian components. This has led to popular indicator geostatistics methods that synthesize 

facies boundaries (e.g., Weissmann et al., 1999). Using GPR facies, it does seem possible to 

delineate the actual facies boundaries without resorting to simulations, and thereby reduce 

measured ln K data to a reasonably Gaussian form. This allows a simple method for interpolating 

highly variable and non-stationary ln K fields. Another advantage of facies modeling is laid out 

in [Winter et al., 2002, 2003]: It facilitates efficient perturbation-based stochastic methods based 

on locally homogeneous ln K fields. Riva et al. [2013b] has reported a significantly non-

Gaussian distribution of log permeability for the two faces parallel to bedding in a relatively 

homogeneous sandstone slab, while the distribution on the other four faces was close to 

Gaussian. Hence the Gaussian facies model promoted here may not be universally applicable. 

3.5 Conclusions  

In this paper, ground-penetrating radar (GPR) reflections were used to delineate facies 

boundaries, and a high resolution fractal ln K field was simulated within each facies to 

interpolate between available K data. There were two main findings of this study. First, a 

fractional difference filter can be useful to capture the correlation structure of ln K profiles. The 

unfiltered data histogram from one profile is severely distorted, but the filter uncovers a coherent 

noise distribution, required for simulation design. Second, GPR data can be used to delineate 

facies boundaries for the K field model. While the overall distribution of ln K profiles in a typical 
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alluvial aquifer deviates significantly from Gaussian, it is reasonable to model the ln K field 

within each GPR facies as Gaussian. The deviation from Gaussian in the combined profile is the 

result of mixing, since the combination of data from different Gaussian distributions will no 

longer fit a Gaussian model. In past research, many investigators have assumed a Gaussian 

model for ln K, while many others have presented strong evidence for non-Gaussian alternatives. 

Our analysis indicates that both groups are correct, albeit at different scales, consistent with the 

findings of Lu et al. [2002]. A Gaussian model with an appropriate correlation structure can be 

adequate for a single facies. For a highly heterogeneous aquifer, comprised of significantly 

different facies, the combination of ln K values with a different mean and variance in each facies 

will produce significantly non-Gaussian profiles. 
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APPENDIX 3.1: Fractional difffffffference filter 

The fractional difference filter was pioneered by Hurst [1951] to remove correlation in 

river flood level data. It has now become a standard tool in one dimensional time series analysis 

[Brockwell and Davis, 1991] and multidimensional spatial statistics [Beran, 1994]. Given a 

correlated time series Xn (or a spatial series collected at equally spaced intervals along a one 

dimensional line), the backward shift operator BXn�X
n-1 facilitates a simple notation for the 

fractional difference 

 ∆dXn=	I-B
dXn= � wj Xn-j,

∞

j=0

 (A3.1) 

where the fractional binomial coefficients 

 wj=	-1
j �d

j
� =

	-1
jΓ	d+1

j!Γ	d-j+1
  (A3.2) 

using the natural extension of the integer order binomial coefficients. Using the well-known 

property Γ	x+1
=xΓ	x
 of the gamma function, one can also write  

 wj=
��	1 � �
 ···  	j � 1 � �


j!
 (A3.3) 

from which the recursive formula wj�w
j-1�j‐1‐d�/j follows. Hence in the special case where d 

is a positive integer, the sum (A3.1) is finite, since wj=0 when j � �. Integer order derivatives 

are defined as the limit of difference quotients using these operators. In the same way, fractional 

derivatives can be defined as the limit of fractional difference quotients [Meerschaert and 

Sikorskii, 2012]. 
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In time series and spatial statistics, an integer order difference is also useful to remove 

trends, since for example the first order difference of a linear trend is a constant, and the second 

order difference of a quadratic trend is also a constant. Since the goal is to filter out the 

correlation (and possibly a trend), an effective fractional difference filter will output an 

uncorrelated white noise Zn=∆dXn. This is tested in practice by computing the sample 

autocorrelation defined by ρ�	h
 =γ�	h
/γ�	0
 where the sample autocovariance is defined by 

 γ�	h
= ��Zn+h-Z��	Zn-Z�

N-h

n=1

 with Z�=
1

N
� Zn

N

n=1

 (A3.3) 

for a data set of length N. Standard statistical theory [Brockwell and Davis, 1991] shows that, for 

large N, the sample autocorrelation of an uncorrelated white noise at any lag h is approximately 

normally distributed with mean zero and variance 1/N. Since this random quantity lies between 

±1.96/√N approximately 95% of the time, the autocorrelation plots in Figure 3.3 show dashed 

lines at ±1.96/√N. Then the correlation in the data is judged to be statistically insignificant 

(statistically zero) if 95% of the sample autocorrelations ρ�	h
 lie within these bounds, and the 

remaining sample correlations do not lie very far outside these bounds. In this case, there is no 

compelling evidence to contradict the (null) hypothesis that the correlation is zero at any lag 

h " 0. The data Zn in Figure 3.2b was obtained from equation (3.1) using the data Xn from 

Figure 3.2a, and the optimal value of d=0.9 was determined by increasing d gradually until the 

autocorrelation (Figure 3.3) was reduced to be statistically zero. It is also possible to obtain an 

estimate of d for a single time series using standard maximum likelihood estimation routines for 

fractional ARIMA models [Brockwell and Davis, 1991]. 
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For spatial data in 2 or 3 dimensions collected at equally spaced grid points, a fractional 

difference filter can be applied in each coordinate. The order d of the fractional difference filter 

can vary with the coordinate to remove spatial correlations. The entire data set can be used to 

estimate the order(s) of the fractional difference [Beran, 1994; Guo et al., 2009], which 

facilitates a more accurate estimate of the d parameter(s). 
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APPENDIX 3.2: Flow-Transport Simulations3 

The work presented in this chapter demonstrates the advantages and the details of 

fractional differencing and fractal stochastic simulation methods for creating K fields. It also 

emphasizes the contribution of GPR derived facies boundaries to define hydrologically different 

parts of the aquifer. Although the K fields generated using a combination of GPR and HRK data 

sets using fractal statistical methods exhibit a better statistical representation of K data, it is 

important to also see the effects of these different K realizations on flow and transport 

simulations. Therefore, this section involves flow transport simulations through the simulated K 

fields to investigate the distinct effects of each data set. 

Macro-scale tracer experiments at the MADE site resulted in the well-known non-

Gaussian behavior of tracer concentrations with multiple peaks and a heavy tail, as explained in 

detail in Chapter 1.3. However, most of the earlier modeling efforts were not successful to 

reproduce both components of the behavior simultaneously. This additional study also aims to 

test whether it is possible to reproduce these components using new data sets (HRK and GPR) 

and K fields. 

Based on K fields discussed in this chapter, MODFLOW and MT3D software were used 

to model hydraulic heads and conservative tracer transport. The model domain had 160x570 

(width x height) cells representing a 16 by 9.8 m (width x height) vertical cross section of the 

aquifer. The entire model was saturated during the simulation, with specified head boundaries on 

the two sides of the domain, and no-flow boundaries above and below. The tracer was injected at 

x=166 m with 100 mg/l concentration over the entire depth for two days to minimize potential 

boundary related artifacts. Figure A3.6 (top) shows the simulated plume through the simple K 

                                                 
This appendix is not included in the manuscript. 
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model, assuming a constant K values in each facies, set to the median of the measured K values 

in that facies, 500 days after the injection. Figure A3.6 (middle) shows the same plume simulated 

through the K field (shown in Figure 3.4a) populated without using facies boundaries. Figure 

A3.6 (bottom) shows the plume simulated through the K field populated using both HRK data 

and facies boundaries. Flow and transport through the top and bottom facies is significantly 

faster, with more dispersion than the middle two facies. 
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Figure A3.6 Simulated plume 500 days after the end of injection, using a constant K value in 
each GPR facies (top), the K field from Figure 3.4a without GPR facies (middle), and the K field 
from Figure 3.4b with GPR facies (bottom). 
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Figure A3.7 Normalized concentration profiles (top) 500 days after the end of injection, and 
normalized concentration breakthrough curves (bottom), measured at location x=172 m, from the 
three simulations illustrated in Figure A3.6. 

In order to achieve a detailed comparison of the three simulations illustrated in Figure 

A3.6, concentration histories and profiles were created. Figure A3.7 (top) shows the normalized 

concentration profiles for the simulated plumes. Figure A3.7 (bottom) shows the normalized 

concentration histories at location x=172 m, black dashed lines in Figure A3.6. These curves 

demonstrate the impact of each data set (GPR and HRK) on plume behavior. The simple K 

model represents what can be accomplished using only GPR facies. The resulting curves show 

smooth, symmetrical variations in concentration that do not compare favorably to the field 

measurements at the MADE site. This demonstrates the value of detailed HRK conditioning data 

for capturing natural plume roughness. The simulated curves without facies seem more realistic, 

but significantly smoother than the model with facies. The breakthrough curve has multiple 
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peaks and a heavy tail, consistent with tracer tests at the MADE site. I conclude that HRK data is 

important for characterizing micro-scale variations, and GPR facies are useful for delineating 

meso-scale variation. Together, they allow a simple Gaussian ln K model in each facies to 

reproduce a realistic K field, consistent with the measured HRK data, and resulting in plausible 

simulated plume behavior. 

  



70 
 

 

 

 

 

 

 

 

 

 

REFERENCES 

  



71 
 

REFERENCES 

Benson, D. A., M. M. Meerschaert, B. Baeumer, and H. P. Scheffler (2006), Aquifer operator-
scaling and the effect on solute mixing and dispersion, Water Resources Research, 42(1), 
doi:10.1029/2004WR003755.  

Benson, D. A., M. M. Meerschaert, and J. Revielle (2013), Fractional calculus in hydrologic 
modeling: A numerical perspective, Advances in Water Resources, 51, 479–497, 
doi:10.1016/j.advwatres.2012.04.005.  

Beran, J. (1994), Statistics for long-memory processes. Chapman & Hall/CRC Press, Boca 
Raton, Florida. 

Berkowitz, B., A. Cortis, M. Dentz, and H. Scher (2006), Modeling non-Fickian transport in 
geological formations as a continuous time random walk, Rev. Geophys., 44, RG2003. 

Bianchi, M., C. Zheng, G. R. Tick, and S. M. Gorelick (2011), Investigation of small-scale 
preferential flow with a forced-gradient tracer test, Ground Water, 49(4), 503–514.  

Boggs, J. M., S. C. Young, D. J. Benton, and Y. C. Chung (1990), Hydrogeologic 
characterization of the MADE site, epri en-6915, research project 2485-5, interim report, 
Electric Power Research Institute, Palo Alto, CA.  

Bohling, G. C., G. Liu, S. J. Knobbe, E. C. Reboulet, D. W. Hyndman, P. Dietrich, and J. J. 
Butler Jr (2012), Geostatistical analysis of centimeter-scale hydraulic conductivity variations 
at the MADE site, Water Resources Research, 48(2), doi:10.1029/2011WR010791.  

Brockwell, P. J. and R. A. Davis (1991), Time Series: Theory and Methods, 2nd ed. New York: 
Springer-Verlag.  

Butler Jr, J. J., P. Dietrich, V. Wittig, and T. Christy (2007), Characterizing hydraulic 
conductivity with the direct-push permeameter, Ground Water, 45(4), 409–419.  

Cushman, J. H., and T. R. Ginn (2000), Fractional advection-dispersion equation: A classical 
mass balance with convolution-Fickian flux, Water Resources Research, 36(12), 3763– 3766.  

Dai, Z., R. W. Ritzi Jr., C. Huang, Y. N. Rubin and D. F. Dominic (2004), Transport in 
heterogeneous sediments with multimodal conductivity and hierarchical organization across 
scales, J. Hydrology, 294(1–3), 68–86. 

Dogan, M., R. L. Van Dam, G. C. Bohling, J. J. Butler Jr, and D. W. Hyndman (2011), 
Hydrostratigraphic analysis of the MADE site with full-resolution GPR and direct-push 
hydraulic profiling, Geophys. Res. Lett., 38(6), doi:10.1029/2010GL046439.  

Fogg, G. E., C. D. Noyes, and S. F. Carle (1998), Geologically based model of heterogeneous 
hydraulic conductivity in an alluvial setting, Hydrogeology J., 6(1), 131–143.  



72 
 

Gómez-Hernádez, J. J., and X.-H. Wen (1998), To be or not to be multi-Gaussian? A reflection 
on stochastic hydrogeology, Adv. Water Resour. 21(1), 47–61.  

Guadagnini, A., M. Riva, and S. P. Neuman (2012), Extended power-law scaling of heavy-tailed 
random air-permeability fields in fractured and sedimentary rocks. Hydrol. Earth Syst. Sci. 
16, 3249–3260, doi:10.5194/hess-16-3249-2012.  

Guo, H., C. Y. Lim, and M. M. Meerschaert (2009), Local Whittle estimator for anisotropic 
random fields. J. Multivariate Anal. 100(5), 993–1028.  

Heinz, J., and T. Aigner (2003), Hierarchical dynamic stratigraphy in various Quaternary gravel 
deposits, Rhine glacier area (SW Germany): implications for hydrostratigraphy, International 
Journal of Earth Sciences, 92(6), 923–938.  

Herrick, M. G., D. A. Benson, M. M. Meerschaert, and K. R. McCall (2002), Hydraulic 
conductivity, velocity, and the order of the fractional dispersion derivative in a highly 
heterogeneous system, Water Resources Research, 38(11), 1227.  

Hurst, H. E. (1951), Long-term storage capacity of reservoirs, Trans. Amer. Soc. Civil Eng., 116, 
770–808.  

Kohlbecker, M. V., S. W. Wheatcraft, and M. M. Meerschaert (2006), Heavy-tailed log 
hydraulic conductivity distributions imply heavy-tailed log velocity distributions, Water 
Resources Research, 42(4), doi:10.1029/2004WR003815.  

Kotz, S., T. J. Kozubowski, and K. Podgorski (2001), The Laplace Distribution and 
Generalizations: A Revisit with Applications to Communications, Economics, Engineering, 
and Finance, Birkhäuser, Boston.  

Liu, G., J. J. Butler Jr, G. C. Bohling, E. Reboulet, S. Knobbe, and D. W. Hyndman (2009), A 
new method for high-resolution characterization of hydraulic conductivity, Water Resources 
Research, 45(8), doi:10.1029/2009WR008319.  

Liu, G., C. Zheng, G. R. Tick, J. J. Butler Jr, and S. Gorelick (2010), Relative importance of 
dispersion and rate-limited mass transfer in highly heterogeneous porous media: Analysis of 
a new tracer test at the Macrodispersion Experiment (MADE) site, Water Resources 
Research, 46(3), W03524.  

Liu, G., J. J. Butler Jr, E. Reboulet, and S. Knobbe (2012), Hydraulic conductivity profiling with 
direct-push methods, Grundwasser, 17(1), 19–29.  

Llopis-Albert, C., and J. E. Capilla (2009), Gradual conditioning of non-Gaussian transmissivity 
fields to flow and mass transport data. 3 Application to the Macrodispersion Experiment 
(MADE-2) site, on Columbus Air Force Base in Mississippi (USA) J. Hydro. 371, 75–84.  

Lu, S., F. J. Molz, G. E. Fogg, and J. W.Castle (2002), Combining stochastic facies and fractal 
models for representing natural heterogeneity, Hydrogeology J., 10(4), 475–482.  



73 
 

Major, E., D. A. Benson, J. Revielle, H. Ibrahim, A. Dean, R. M. Maxwell, E. Poeter, and M. 
Dogan (2011), Comparison of Fickian and temporally nonlocal transport theories over many 
scales in an exhaustively sampled sandstone slab, Water Resources Research, 47(10), 
W10519.  

Meerschaert, M. M., T. J. Kozubowski, F. J. Molz, and S. Lu (2004), Fractional Laplace model 
for hydraulic conductivity, Geophys. Res. Lett., 31, 1–4.  

Meerschaert, M. M. and A. Sikorskii (2012), Stochastic Models for Fractional Calculus. De 
Gruyter Studies in Mathematics 43, De Gruyter, Berlin.  

Molz, F. J., and G. K. Boman (1993), A fractal-based stochastic interpolation scheme in 
subsurface hydrology, Water Resources Research, 29(11), 3769–3774.  

Neuman, S. P. (2003), Relationship between juxtaposed, overlapping, and fractal representations 
of multimodal spatial variability, Water Resources Research, 39(8), 1205.  

Neuman, S. P., and D. M. Tartakovsky (2009), Perspective on theories of non-Fickian transport 
in heterogeneous media, Adv. Water Resour., 32, 670-680.  

Painter, S. (1996), Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary 
formations, Water Resources Research, 32(5), 1183–1195.  

Painter, S. (2001), Flexible scaling model for use in random field simulation of hydraulic 
conductivity, Water Resources Research, 37(5), 1155–1163.  

Ramanathan, R., R. W. Ritzi,and C. Huang (2008), Linking hierarchical stratal architecture to 
plume spreading in a Lagrangian-based transport model, Water Resources Research, 44(4), 
W04503.  

Rehfeldt, K. R., J. M. Boggs, and L. W. Gelhar (1992), Field study of dispersion in a 
heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity, Water Resources 
Research, 28(12), 3309–3324.  

Renard, P., and D. Allard (2011), Connectivity metrics for subsurface flow and transport, Adv. 
Water Resour., 51, 168–196.  

Ritzi, R. W., D. F. Dominic, A. J. Slesers, C. B. Greer, E. C. Reboulet, J. A. Telford, R. W. 
Masters, C. A. Klohe, J. L. Bogle, and B. P. Means (2000), Comparing statistical models of 
physical heterogeneity in buried-valley aquifers, Water Resources Research, 36(11), 3179–
3192.  

Ritzi, R. W. (2000), Behavior of indicator variograms and transition probabilities in relation to 
the variance in lengths of hydrofacies, Water Resources Research, 36(11), 3375–3381.  

Ritzi, R. W., Z. Dai, D. F. Dominic, Y. N. Rubin (2004), Spatial correlation of permeability in 
cross-stratified sediment with hierarchical architecture, Water Resources Research, 40(3), 
W03513.  



74 
 

Riva, M., A. Guadagnini, D. Fernàndez-Garcia, X. Sanchez-Vila, and T. Ptak (2008), Relative 
importance of geostatistical and transport models in describing heavily tailed breakthrough 
curves at the Lauswiesen site, J. Contam. Hydrol., 101(1-4), 1–13.  

Riva, M., S.P. Neuman, and A. Guadagnini (2013), Sub-Gaussian model of processes with heavy 
tailed distributions applied to permeabilities of fractured tuff. Stoch. Environ. Res. Risk 
Assess. 27, 195–207, doi:10.1007/s00477-012-0576-y.  

Riva M., S.P. Neuman, A. Guadagnini (2013), Anisotropic scaling of Berea sandstone log air 
permeabilities statistics, Vadose Zone Journal, in press, doi: 10.2136/vzj2012.0153.  

Rubin, Y. and A. G. Journel (1991), Simulation of non-Gaussian space random functions for 
modeling transport in groundwater. Water Resources Research, 27, 1711–1721.  

Rubin, Y., I. A. and Lunt, and J. S. Bridge (2006), Spatial variability in river sediments and its 
link with river channel geometry, Water Resources Research, 42, W06D16.  

Salamon, P., D. Fernàndez-Garcia, and J. J. Gómez-Hernández (2007), Modeling tracer transport 
at the MADE site: the importance of heterogeneity. Water Resources Research, 43, W08404.  

Schmelzbach, C., J. Tronicke, P. Dietrich (2011), Three-dimensional hydrostratigraphic models 
from ground-penetrating radar and direct-push data. Journal of Hydrology, 398, 235-245.  

Silliman, S. E., and A. L. Wright (1998), Stochastic analysis of paths of high hydraulic 
conductivity in porous media. Water Resources Research, 24, 1901–1910.  

Tennekoon, L., M. C. Boufadel, D. Lavalee, and J. Weaver (2003), Multifractal anisotropic 
scaling of the hydraulic conductivity, Water Resources Research, 39(7), 1193, 
doi:10.1029/2002WR001645.  

Van Overmeeren, R. A. (1998), Radar facies of unconsolidated sediments in the Netherlands: A 
radar stratigraphy interpretation method for hydrogeology, Journal of Applied Geophysics, 
40(1), 1–18.  

Weissmann, G. S. and G. E. Fogg (1999), Multi-scale alluvial fan heterogeneity modeled with 
transition probability geostatistics in a sequence stratigraphic framework, J. Hydrology, 
226(1), 48–65.  

Winter, C.L., D.M. Tartakovsky, and A. Guadagnini (2002), Numerical solutions of moment 
equations for flow in heterogeneous composite aquifers. Water Resources Research, 38(5), 
10.1029/2001WR000222.  

Winter, C.L., D.M. Tartakovsky, and A. Guadagnini (2003), Moment differential equations for 
flow in highly heterogeneous porous media, Surveys in Geophysics, 24(1), 81–106.  

Zhang, Y., C. T. Green, and G. E. Fogg (2013), The impact of medium architecture of alluvial 
settings on non-Fickian transport, Adv. Water Resour., 54, 78-99.  



75 
 

Zheng, C., and S. M. Gorelick (2003), Analysis of Solute Transport in Flow Fields Influenced by 
Preferential Flowpaths at the Decimeter Scale, Ground Water, 41(2), 142–155.  

Zheng, C., M. Bianchi, and S. M. Gorelick (2011), Lessons learned from 25 years of research at 
the MADE site, Ground Water, 49(5), 649–662.  

Zinn, B., and C. F. Harvey (2003), When good statistical models of aquifer heterogeneity go bad: 
A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian 
hydraulic conductivity fields, Water Resources Research, 42(3), 1051.  

 



76 
 

Chapter 4  

Novel characterization method provides a major advance for 

flow and transport prediction 

 

Abstract 

Predicting the fate and transport of solutes in aquifers is a societal grand challenge [Cantor, 

1997] that requires characterization of aquifer properties. Although many studies have 

reasonably explained transport through mildly heterogeneous aquifers, transport through highly 

heterogeneous aquifers has yet to be accurately predicted. The complex transport behavior in 

highly heterogeneous aquifers has fueled an ongoing debate in the hydrology community for 

more than two decades [e.g., Berkowitz et al., 2002; Boggs et al., 1992; Dagan et al., 1992; 

Dagan and Neuman, 1997; Zimmerman et al., 1998]. A wide range of modeling approaches have 

been used to simulate tracer and contaminant transport at such sites, ranging from the classical 

advection-dispersion equation (ADE) to dual-domain mass transfer and methods that impart 

preferential flow paths to describe the observed complex behavior. A striking outcome of this 

research to date has been the inability of approaches to reasonably predict transport in highly 

heterogeneous systems based solely on field data. Here we demonstrate that when supported by 

direct push high-resolution characterization data, advection dispersion equation can accurately 

predict flow and transport without the need for calibration or addition of features that have not 

been observed in the field. The ramifications for practical issues, such as the design of effective 

remediation schemes and reliable risk assessments, are profound.  
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4.1 Introduction 

Hydraulic conductivity (K) is the main property that controls solute transport in 

subsurface flow systems [e.g., Dagan, 1989]. Thus, accurate predictions of flow and transport 

through porous media require good representations of the K distribution [e.g., Molz et al., 1986]. 

Examples of successful applications of ADE models based on statistical distributions of K data 

from mildly heterogeneous aquifers include those from Borden Ontario [e.g., Freyberg, 1986; 

Mackay et al., 1986], Cape Cod, MA [e.g., Garabedian et al., 1991; LeBlanc et al., 1991], and 

Schoolcraft, MI [Hyndman et al., 2000, Phanikumar et al., 2005]. 

However, flow and transport through highly heterogeneous sites has proven to be much 

more challenging [e.g., Eggleston and Rojstaczer, 1998; Whittaker and Teutsch, 1999]. The 

MAcro-Dispersion Experiment (MADE) site in Columbus, Mississippi is one of the best-studied 

highly heterogeneous sites (variance of ln K = 4.5) [Boggs et al., 1992]. Much of the debate 

about the applicability of the ADE at highly heterogeneous sites started with the experiments at 

the MADE site. The outcome of the natural gradient tracer tests at this site highlighted the 

limitations of existing and new modeling approaches. 

Two large-scale tracer tests were performed at the site; in this paper we focus on the most 

studied experiment called MADE-1, conducted from October 1986 to June 1988 [Boggs, 1991]. 

This test involved injection of bromide solution through an array of five boreholes, 

approximately perpendicular to natural gradient of groundwater flow. The injection was followed 

by collection of thousands of samples from 258 monitoring wells that were later analyzed for 

tracer concentrations. The resulting data showed non-Gaussian tracer migration that was very 

different than predicted using the ADE model based on K data from borehole flowmeters. Low 

concentrations were detected far down gradient starting soon after the injection, yet more than 
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20% of the mass stayed within 6-7 meters of the injection wells for the duration of the 

experiments [Adams and Gelhar, 1992]. 

Several approaches have been proposed to explain the observed tracer transport at the site 

including: incorporating preferential flow paths [Zheng and Gorelick, 2003], multi-indicator 

models [Fiori et al., 2013], mass transfer between mobile and immobile domains [Harvey and 

Gorelick, 2000], and using a fractional form of the ADE [Benson et al., 2001]. Although some of 

these approaches reasonably represented the average plume behavior in one dimension, they did 

not accurately replicate several important characteristics of the plume including the spatial 

extent. In addition, these methods would be difficult to use in a predictive sense as they are not 

easily parameterized based solely on field data. We postulate that the difficulty in predicting 

solute transport at heterogeneous sites like MADE is at least partly due to the absence of 

sufficient high-resolution hydraulic property data to parameterize the models. 

4.2 Methods 

Here we present an approach to reproduce spatial extent of the tracer plume measured 

during the MADE experiments. To this effect, we collected a novel suite of high-resolution K 

data using a recently developed in-situ measurement method called the High-Resolution 

Hydraulic Conductivity (HRK) tool [Liu et al., 2009]. This direct push tool can collect a 10 m 

long profile in two to four hours, providing hydraulic conductivity estimates with an 

unprecedented 1.5 cm vertical resolution. This allows important characterization of much smaller 

scale transport features than previously possible [Dogan et al., 2011; Bohling et al., 2012]. 

In this study, we exploit the power of this novel tool along with fractal stochastic 

methods to populate 3D hydraulic conductivity fields. Several studies have demonstrated that 



79 
 

fractional differencing can remove long range dependence, which allows the investigation of the 

underlying distribution of K data [e.g., Benson et al., 2001]. Moreover, fractals are well-suited to 

represent the connectivity of natural phenomena. Parameters for the fractal K field generation 

were calculated based on autocorrelation and variogram analysis of the HRK data [Meerschaert et 

al., 2013], which were also used as hard conditioning values for the stochastic fields. 

The flow and transport model domain for this study includes a region of high density 

HRK data near the tracer injection area of the MADE experiments (Figure 4.1). The model grid 

was defined with over 3.2 million 0.25 x 0.25 x 0.05 m (length x width x height) cells oriented 

with the long axis parallel to the average downgradient direction of the observed plumes. The 

east and west edges of the model, which are approximately along flow paths, were assumed to be 

no flow boundaries. The north and south edges of the model were assumed constant head 

boundaries, and were assigned head values based on the average measured heads during the first 

503 days of the MADE-1 tracer experiment. The maximum measured water level increase (0.64 

m; Boggs et al. [1992]) across the five injection wells was used as a test of the reasonableness of 

simulated K fields. Of the 20 generated stochastic K fields, the 6 that provided maximum 

simulated head increases within 25% of the measured value (0.64 ±0.16 m) were selected for 

transport simulations. 

Transport simulations, based on the classical ADE, were performed in MT3D [Zheng and 

Wang, 1999] without any calibration or parameter estimation. Parameters for the transport 

simulations were defined based on literature as follows: longitudinal dispersivity of 0.05 m 

[Gelhar, 1993], transverse horizontal and vertical dispersivity ratios of 0.1 and 0.01; effective 

molecular diffusion coefficient of 10
-6

; vertical and horizontal anisotropy in hydraulic 

conductivity of 1 since we assume that the anisotropy will be introduced by our highly 
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heterogeneous and high-resolution K fields; and constant porosity of 0.35 [Adams and Gelhar, 

1992]. Transport simulations were based on the 3rd order Total Variation Diminishing scheme, 

which is mass conservative with minimal numerical dispersion. Total injected mass in the six 

simulations averaged 25.1 kg with a standard deviation of 0.143 kg, which compares favorably 

with the injected mass of 25.0 kg during the experiment. 

 
Figure 4.1 (a) Map of the MADE site with the test boundary (dashed line) and sampling 
locations; gray shaded rectangle shows the model domain used for simulations. (b) Model 
domain with HRK, injection, and observation borehole locations. 
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4.3 Results 

We first compare the simulated versus observed transport using 1D mass distribution 

profiles, which has been the community standard for this site [e.g., Adams and Gelhar, 1992; 

Fiori et al. 2013]. We then provide the first ever 2D comparison. Only concentration 

measurements and simulated values that were larger than specified detection limits (0.01 mg/l for 

the presented snapshot) were used in this analysis. To replicate the experimental procedure we 

sampled the simulations at the location and depth of every multi-level sampler included in the 

field experiment. The sampled concentrations were then interpolated in 3D using a 1 x 1 x 0.5 m 

(dx, dy, dz) grid, and integrated vertically (along z-axis) and horizontally (along y-axis) 

following the procedure in Adams and Gelhar [1992].  

 
Figure 4.2 Relative mass distribution profiles 501 days after the injection. The black line shows 
the mean of the simulations along with 2σ error range (in gray shaded area); the red line shows 
the profile for the MADE-1 observations.  

The t=503 day snapshot was chosen for comparison as it is the most commonly presented 

in publications with MADE-1 simulations (Figure 4.2) in comparison to the measured relative 

mass distribution profile. The shape of the mean simulated curve is strikingly similar to the 
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simulations shows somewhat heavier tails than was observed. Both could be improved by 

optimization or calibration of porosity, but this would reduce the predictive power of the 

approach.  

 

Figure 4.3 Vertically integrated contour maps of relative mass 503 days after the start of 
injection for MADE-1 experiment (a), the mean of the 6 simulations that met the head criteria (b) 
a sample simulation which matches the head change criteria best (c). All three contour maps 
were created following the same interpolation procedure, as discussed in the text. 

Despite the large quantity of research that has focused on the MADE site tracer test data, 

literature contains no examples comparing simulation results with experimental data in two 

dimensions. Figure 4.3a shows a map of vertically integrated relative mass for the experiment 

data, which can be compared to the mean of 6 simulations that match the head change criteria 

(Figure 4.3b) and to the simulation that best matches the observed head increase during the tracer 

injection (∆h=0.637 m; Figure 4.3c). The measured extent of the plume, defined by the relative 
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values of 28 and 15 m (Figure 4.3a, c). Also, the measured plume center of mass is very similar 

to those of the simulated plumes.  

4.4 Discussion and Conclusions  

In this paper we demonstrate that, contrary to common belief, the classic ADE can 

reproduce the measured distribution of MADE tracer concentrations. Our approach is different 

from previous research to address this problem in that it uses a novel set of high-resolution K 

data in combination with a fractal method to generate stochastic K fields. No calibration or 

parameter estimation was used to improve the fit to measured data. 

As with any transport modeling approach, there are differences between simulated and 

observed concentrations. The total mass of the simulations is approximately twice the measured 

mass. Other studies have shown similar observations, which may be due to a range of factors 

including entrapment of tracer in the vadose zone [Adams and Gelhar, 1992]. We tested the 

influence of transient flow behavior using almost two years of temporal water level 

measurements, and found that this did not explain the difference. Other possible reasons include 

differences between the simulated and field sampling procedure, which involves pumping 

sample out from different levels of boreholes where small scale mixing of water with higher and 

lower tracer concentrations will occur. Another possible explanation for the difference is due to 

the absence of HRK profiles in close proximity to the injection wells. However, these data could 

not be collected as the injection area was dug out and homogenized for the MADE 3 tracer test in 

the 1990s. Inclusion of K data from flowmeter measurements from this area did not significantly 

improve the recovered mass discrepancy. 
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Overall, the approach presented here successfully reproduced nearly all aspects of the 

observed tracer plume without calibration. This includes the heavy tails that have previously only 

been reproduced using transport theories such as dual domain mass transport or imposed high K 

pathways. Predictive solute transport based solely on field data, such as done here, has immense 

value for improving the ability to design more effective remediation schemes. 
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Chapter 5  

Quantifying the value of different data sets and modeling schemes for flow and transport 

simulations 

5.1 Introduction 

Depending on the level of heterogeneity, flow and transport modeling through aquifers 

can be an extremely challenging task. Previous research has shown that improvement of 

modeling results can be achieved in multiple ways, including: (1) different modeling approaches 

to account for some of the behavior observed in tracer experiments, (2) a better knowledge of the 

(statistical) distribution of hydraulic conductivity (K) by collecting more or better field data, and 

(3) addition of complementary data that give information on the structural characteristics of the 

aquifer.  

Regarding the different modeling approaches, when the classic ADE approach does not 

produce acceptable results, alternatives have been proposed. These approaches include, amongst 

others, preferential flow paths [Zheng and Gorelick, 2003] and mass transfer between mobile and 

immobile domains [Harvey and Gorelick, 2000]. The difficulty with these approaches is that 

they are difficult to parameterize based on field data and are thus non-predictive. 

Regarding the statistical distribution of subsurface properties, direct measurements of K 

have traditionally been done using flowmeters. This is a common, easily accessible, and 

relatively cheap method that requires installation of a groundwater well. This method is not 

sensitive to low K, but is very capable of measuring high K values [Bomana et al., 1997]. 

Disadvantages of this method include an unknown support volume, sensitivity to well bore 

disturbance, and low vertical resolution. In recent years a new method, the High Resolution 
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Hydraulic Conductivity (HRK) tool has been developed, which allows measurements of K for 

smaller support volumes and higher vertical resolution than flowmeters. This method, which is 

sensitive to low K, but cannot yet measure K above 60 m/d, has been discussed in considerable 

detail in the previous chapters and in Liu et al. [2009, 2012]. A disadvantage of this method is 

that it is not yet not widely accessible and relatively expensive. 

Many researchers have shown that complimentary data can greatly improve modeling 

results. These data can be derived from geophysical measurements, such as electrical resistivity 

[e.g., Atekwana et al., 2000; Cassiani et al., 2006], nuclear magnetic resonance (NMR) 

measurements [Legchenko et al., 2002], seismic [Hyndman, et al., 1994; Hyndman and Gorelick, 

1996], and surface and cross borehole ground-penetrating radar (GPR) [e.g., Tronicke et al., 

2002]. GPR is very sensitive to textural changes, porosity and water content, and can be used to 

obtain structural information of an aquifer; GPR can thus provide complementary data to direct 

measurements of K. 

Of the different methods presented above, each has different levels of detail, cost, and 

benefit. Previous chapters in this dissertation have discussed the relative benefits of various 

alternative approaches and added data sets for modeling flow and transport at the MADE site. 

The objective of this chapter is to compare the various additions or improvements to modeling 

the flow and transport behavior at the MADE site, as observed during the MADE-1 tracer test 

[Boggs, 1991]. The comparisons presented here are only a subset of possibilities, and are based 

on the available data in the injection area (Figure 5.1).  

The first comparison of modeling results in this chapter is between simulations through K 

fields parameterized with HRK data and through fields parameterized with a combination of 

HRK data and GPR facies. This section is a natural follow up on Chapter 4. The next section of 
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this chapter is a cost-benefit analysis of different options, which focuses on (1) the effects of 

transient simulation (of the water table), (2) a K field parameterized with only flowmeter data 

measured during the MADE studies [Boggs, 1991, 1992], (3) the amount of HRK information, 

and 4) GPR facies. All results are compared with the MADE-1 measurements and a single base 

simulation that used steady-state flow and parameterization based on 25 HRK profiles (this base 

simulation was discussed in Chapter 4 – Figure 4.3c).  

 
Figure 5.1 A detailed map of the model domain with locations of flowmeter K (orange) and 
HRK measurements (blue) and multi-level sampler (grey) wells. The area of 3D GPR data is 
given by the rectangle with green dashed line. Injection wells are given with red stars. See Figure 
4.1 for the location within the larger MADE site. 
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5.2 Complementary GPR data 

In this research, 3D full-resolution GPR data were used as complementary data to 

measurements of K using the HRK tool. GPR data were collected with 50 and 100 MHz antennas 

using a trigger wheel and ropes for positional guidance (details in Chapter 2). The profile 

separation was selected as equal to step size and smaller than a 1/4 of the GPR signal wavelength 

[Grasmueck et al., 2005]. Data were processed using a de-wow function and a low pass filter. 

Time-depth conversion was made using the velocities derived from common-mid-point and cross 

borehole measurements. An automated search algorithm was used to pick the reflectors. 

Reflectors were then grouped using another automated algorithm to create the facies boundaries. 

 
 

Figure 5.2 Vertically integrated contour maps of relative mass; (a) MADE-1 experiment at 
t=503 days, (b) mean of 6 simulations, (c) best head change simulation. K fields for the 
simulations in (b) and (c) were based on a combination of HRK data and GPR facies (these maps 
can be compared with Figure 4.2, which presents contour maps of relative mass for K fields 
based on just HRK data). 

The K field simulation procedure was similar to the one for the scenario with HRK data 

alone (see Chapter 4), but now separated by facies (see Chapter 3). For each facies, K fields were 

0 10 20

0

10

20

30

40

Distance [m]

D
is

ta
n

ce
 [

m
]

 

 

Relative mass (x10-3)

(a)

1 2 3

0 10 20

0

10

20

30

40

Distance [m]

 

 

Relative mass (x10-3)

(b)

2 4 6 8 10

0 10 20

0

10

20

30

40

Distance [m]

 

 

Relative mass

(c)

0.01 0.02



93 
 

generated using appropriate depth interval from the same noise field. K fields for each facies 

were then stitched together to create a 3D model for the flow and transport simulations in 

MODFLOW and MT3D [Zheng and Wang, 1999]. From the simulation results, 2D vertically 

integrated contour maps and 1D concentration profiles were created following the same 

procedure as in Chapter 4.  

 

 

Figure 5.3 Relative mass distribution profiles for the MADE-1 experiment at t=503 days (red 
line), and the mean and 2σ range of 6 simulations (black line and gray shaded area, respectively). 
Simulations used (a) K fields based on just HRK data and (b) K fields based on a combination of 
HRK data and GPR facies. 

Similar as with the K fields based on just the HRK data (Chapter 4) in these simulations 

the recovered mass is significantly larger than the mass recovered during the experiment. 

However, the extent of the plume was very comparable to the measured data (Figure 5.2) and the 

location of maximum relative mass was similar to what was observed (Figure 5.3). Most 
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importantly, the facies-based approach resulted in a much better characterization of the plume 

tail (Figure 5.3b). This improvement is because the facies boundaries allow one to determine the 

high-K zones of the aquifer in more detail. In summary, this comparison shows that the 

simulations that incorporate structural information from GPR-derived hydrofacies better 

reproduce the part of the tracer that rapidly moved down-gradient.  

5.3 Cost-benefit analysis 

The objective of this section is to compare the relative benefits and disadvantages of 

different modeling approaches, use of flowmeter K data, different densities of HRK information, 

and addition of a complementary data set (GPR facies). The results are compared to the MADE-

1 experiment data and to the base simulation, which had the best match to the head-change 

criterion (Figure 4.3b). This base simulation used steady state flow, all 25 HRK data for 

conditioning, and no flowmeter data or GPR facies. For all compared K fields, the same noise 

field was used.  

The results are presented qualitatively using 2D vertically integrated mass distribution 

maps (contour maps) and 1D mass distribution profiles. Additionally, for quantitative 

comparison of the results, Table 5.1 lists the details of each simulation (down-gradient distance 

to maximum mass peak, peak and tail shapes, injected mass, and mass recovery for each 

simulation), and compares the RMS error between simulation and field data. All contour maps 

and 1D concentration profiles have been normalized by total mass so that the results can be more 

easily compared.   
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Table 5.1 Quantitative measures for the comparison of simulation scenarios and field experiment 

(R
2
 values were calculated comparative to the MADE-1 experiment t=503 days in the first row).  

 
Peak 

loc. [m] 

R
2
 Mass [grams] 

Total 
(0-45m) 

Peak 
(0-25m) 

Tail 
(25-45m) 

Injected Simulated Recovered 

Data 
(MADE-1, t=503 
days) 

11.5 1 1 1 
25000.00 
(100 %) 

N/A 
5326.5 

(23.7 %) 

Base simulation 11.5 0.899 0.880 0.101 
25183.49 
(100 %) 

23722.07 
(94.2 %) 

21969 
(87.2 %) 

Transient flow 11.5 0.879 0.843 0.000 
24917.69 
(100 %) 

14342.35 
(57.5 %) 

21899.35 
(87.9 %) 

Flowmeter K 19.5 0.002 0.001 0.002 
25173.43 
(100 %) 

12193.20 
(48.4 %) 

14469 
(57.5 %) 

GPR data 11.5 0.830 0.783 0.760 
25181.85 
(100 %) 

24634.42 
(97.8 %) 

24363 
(96.7 %) 

80% HRK 11.5 0.924 0.895 0.445 
25161.81 
(100 %) 

19296.71 
(76.7 %) 

18583.3 
(76.8 %) 

60% HRK 11.5 0.893 0.874 0.102 
25177.01 
(100 %) 

23045.80 
(91.5 %) 

21632.7 
(85.9 %) 

40% HRK 8.5 0.397 0.236 0.267 
25161.48 
(100 %) 

21670.72 
(86.1 %) 

25013.7 
(99.4 %) 

20% HRK 8.5 0.712 0.624 0.049 
25174.02 
(100 %) 

25111.05 
(99.7 %) 

27940.6 
(110.9 %) 

 

5.3.1 Transient flow 

Since the flow-transport simulations are computational experiments, simplification is 

required. Simplification is also beneficial due to lower computational costs. In hydrologic 

simulations it is common to use steady state solutions. However, under natural conditions, flow 

and transport is more complicated than is typically achieved by simplified models. Unconfined 

aquifers are especially challenging to model with precision, since such aquifers are usually very 

shallow, highly heterogeneous and open to recharge through the surface via infiltration and 

discharge. Thus, flow and transport simulations in unconfined aquifers may require transient 

solutions to reproduce the effect of changing water table depth. Transient solutions require 
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periodically collected piezometric measurements to specify the changes in water table depth 

along boundaries of models. Computational power and time for transient simulations are also 

more intense than for steady state simulations. 

Comparative analysis of flow-transport simulations involving transient and steady state 

flow schemes are presented in this section. The objective of this comparison is to test the effect 

of possible tracer entrapment in vadose zone due to water level changes, as was hypothesized by 

Adams and Gelhar [1992]. The transient flow simulation was based on the piezometric 

measurements collected during the MADE-1 experiment. This simulation used the same K field 

as the base simulation; only the head conditions were changed.  

The results shown in the contour maps of normalized mass (Figure 5.4) and 1D 

concentration profiles (Figure 5.5) suggest that the transient flow had very little effect. The 

transient flow simulations were almost identical to the ones using steady state flow. It is 

hypothesized that this small difference is in part due to the fact that the injection screen was 

located at a depth of 7.4-8 meters (around 3.8 meters below the depth of the water table at the 

start of the experiment and simulation). Considering that the transient simulation took 

significantly more computer time and required the additional piezometric data, this modification 

of the approach presents very little additional value. 

Quantitative measures presented in Table 5.1 show that the transient flow simulation is 

very similar to the base simulation, except the percentage of mass that stayed in the model 

domain after 503 days of simulation (57.5 % versus 94.2% for the base simulation). Higher 

gradient periods during the flow simulation may be the cause of this difference since the seasonal 

changes in the water table promote faster flow in the model domain and more mass leaves 

through the northern boundary of the domain. Although mass entrapment in vadose zone could 
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be another reason, it was not captured by the simulation and numerical sampling procedure of the 

simulated plume. 

 

Figure 5.4 Vertically integrated contour maps of normalized mass; (a) MADE-1 experiment at 
t=503 days, (b) base simulation, (c) transient flow simulation.  

 

Figure 5.5 Normalized mass distribution profiles of the MADE-1 experiment at t=503 days (red 
line), base simulation (black line), and transient flow scheme (blue line). 
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5.3.2 Flowmeter K 

Direct measurements of K have traditionally been done using flowmeters. At the MADE 

site many flowmeter measurements were conducted during the MADE field experiments in the 

1980s and 1990s (see Figure 5.1 for the locations of flowmeter wells in the study domain). 

Flowmeter measurements in heterogeneous media are not very sensitive to low K, but very 

sensitive to high K zones [Bomana et al., 1997]. Disadvantages of this method include the 

unknown support volume, low vertical resolution, and averaging over a bulk volume of different 

K zones.  

Here, a direct comparison is given between simulations through K fields based on (1) 

flowmeter data, and (2) the more recently introduced HRK tool. The stochastic K fields were 

created using the same fractal methods discussed in Chapter 4 with the flowmeter K data as hard 

conditioning points.  

The results show that for the simulation based on the flowmeter data (Figure 5.6c and 

5.7), the mass moves much faster down-gradient than for the simulations based on the HRK data 

(Figure 5.6b and 5.7). In fact, a significant portion of the tracer mass moved outside the model 

domain (Table 5.1). Flowmeter measurements are not sensitive to the low K, which explains why 

the average K is higher than HRK.  

Quantitative measures provided in Table 5.1 suggest that the flowmeter K based 

simulation cannot reproduce the observed plume shape at the MADE site. This simulation 

resulted in the most incomparable plume shape, peak location, and tail behavior of all scenarios 

tested. 
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Figure 5.6 Vertically integrated contour maps of normalized mass; (a) MADE-1 experiment at 
t=503 days, (b) base simulation, (c) simulation based on just flowmeter K data. 

 

Figure 5.7 Normalized mass distribution profiles of the MADE-1 experiment at t=503 days (red 
line), base simulation (black line), and simulation based on just flowmeter K data (blue line). 
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A random number generator was used to create subsets of HRK measurement profiles in 
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profile #1, which is located very near to the injection location (see Figure 5.1) was removed from 

each of parameterized fields. The same noise field was used to generate each K field.  

A visual comparison of 2D vertically integrated mass distribution maps (Figure 5.8c-f) 

shows that decreasing the number of HRK profiles has a significant effect on both the plume 

extent and shape. Although the locations of randomly selected HRK profiles have an effect on 

the results, it is clear that the accuracy of modeled plumes generally decreases with number of 

HRK profiles. As expected, the plume simulated using 80 % of the HRK profiles was most 

comparable to the base simulation. 

The effects of reducing the HRK profile density on the peak and tail shapes of simulated 

plumes is also clear from the 1D mass distribution profiles (Figure 5.9). HRK profiles located 

near the injection location control the quality of peak representation. The simulation with 40% of 

HRK profiles has no nearby HRK profiles (Figure 5.8e), which resulted in a highly distorted 

peak shape (Figure 5.9c). It is also notable that although 1D mass distribution profiles (in this 

case: 60% HRK profiles; Figure 5.9b) may look nearly unchanged from the base simulation and 

the situation with more HRK profiles, the corresponding integrated mass distribution map 

(Figure 5.8d) shows a strong deviation from the base simulation. 

The simulations with 20 and 40 % of the HRK profiles provided poor correlation with the 

base simulation results for both the peak and the tail shape of the mass distribution profiles 

(Table 5.1). The mass recoveries for these simulations also significantly deviated from the base 

simulation. 
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Figure 5.8 Vertically integrated contour maps of normalized mass: (a) MADE-1 experiment at 
t=503 days, (b) base simulation based on all 25 HRK profiles, and simulations based on (c) 20 , 
(d) 15, (e) 10, and (f) 5 randomly selected HRK profiles. The randomly selected HRK profiles 
used to generate the K fields are shown with blue symbols; see Figure 5.1 for the location of all 
25. 
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Figure 5.9 Normalized mass distribution profiles of the MADE-1 experiment at t=503 days (red 
line), base simulation (black line), and simulations based randomly selected number of HRK 
profiles (blue line). (a) 80% of HRK profiles (#’s 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 
19, 20, 22, 23, 24), (b) 60% of HRK profiles (#’s 2, 3, 4, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 
24), (c) 40% of HRK profiles (#’s 2, 5, 7, 11, 12, 14, 17, 18, 19, 22) (d) 20% of HRK profiles 
(#’s 8, 11, 14, 15, 24). See Figure 5.1 for the locations of the HRK profiles.  
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5.3.4 Complementary GPR data 

To allow comparison with the previous sections, one simulation for a K field partially 

based on GPR facies is presented. Rather than using the average of 6 simulations (Section 5.2), 

only the simulation for the noise field that best matched the head-change criterion is presented 

here. 

As already discussed in Section 5.2, when GPR facies are used to help construct the K 

field, the mass contour maps do not differ much from those based on just HRK data (Figure 

5.10). However, the tail of the tracer plume is much better characterized (Figure 5.11). 

 
Figure 5.10 Vertically integrated contour maps of normalized mass: (a) MADE-1 experiment at 
t=503 days, (b) base simulation, and (c) simulation based on a combination of HRK data and 
GPR facies. 

Correlation coefficients provided in Table 5.1 shows that the simulation with GPR data 

exhibits the best representation of heavy tail behavior observed in the mass distribution curves. 
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explained by the lack of GPR data around the injection area (Figure 5.1). As mentioned earlier in 

Chapter 1, the source area was dug out during the MADE-3 macro scale experiment in the 1990s. 

Therefore, 3D GPR data were not collected in the vicinity of the source wells, which limits the 

effective use of GPR-derived facies boundaries around the injection area. 

 
Figure 5.11 Normalized mass distribution profiles of the MADE-1 experiment at t=503 days 
(red line), base simulation (black line), and simulation based on a combination of HRK data and 
GPR facies. 

5.4 Conclusions 

The first section of this chapter introduces the use of GPR data in combination with HRK 

data and presents the results of simulations for both types of K fields. The mean of the flow and 

transport simulations involving the GPR data exhibits a better representation of the tailing 

behavior. However, for the simulations based on the facies boundary information the standard 

deviation of the simulation means was somewhat higher than for the simulations without facies. 

This might be explained by the fact that the criterion used to select the noise fields was based on 

a maximum head-change (Chapter 4). Here, the same noise fields were used without taking into 

account any effects on the head changes (due to a low K facies around the injection depth, they 

increased from a mean of 0.67 m to 1.03 m with a larger standard deviation). 
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In the second section of this chapter, the effects of complementary data, transient flow, 

use of conventional flowmeter K data, and different densities of HRK data were examined. 

Based on these comparisons, the following conclusions can be drawn: 

• Good representations of peak behavior were obtained in the base simulation, in transient 

flow simulations, and in the simulation with the aid of GPR data.  

• Flowmeters are the most common tool to collect K information in field investigations, but 

the results presented here show that they are incapable of representing the K field in 

sufficient detail, resulting in wrong plume behavior in the transport simulations.  

•  The best representation of tail behavior was obtained using GPR facies as 

complementary data. This outcome shows that in cases where heavy tail behavior exists, 

GPR facies boundaries can help identify the preferential flow paths through an aquifer. 

• Reducing the density of HRK profiles resulted in less comparable simulation results. In 

this case, 60% of HRK profiles were required to obtain reasonable 1D mass profiles, but 

80% were required for a good 2D mass distribution. However, it is important to point out 

that the locations of the selected HRK profiles had a critical effect on the simulation 

results. Omission of the HRK profiles close to the source area had a strong negative 

effect on representation of the peak behavior. 
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Chapter 6  

Synthesis 

This dissertation presents a set of techniques to improve the characterization of and flow 

and transport simulations through highly heterogeneous aquifers. The Macro Dispersion 

Experiment site in Mississippi was selected to test the developed methods due to existing 

extensive data sets and previous research. The biggest challenge for this site is the highly 

heterogeneous nature of the porous media and the observed non-Gaussian transport during the 

large scale tracer tests in 1980s and 1990s [Boggs, 1991; Boggs et al., 1992]. Flow meter K data, 

collected prior to those tracer experiments, suggested that the K distribution was highly 

heterogeneous. In previous studies, this behavior could not be successfully modeled using 

advection and dispersion as the primary mechanisms. Indeed, this extraordinary behavior led 

most of the hydrological research community to believe that the advection-dispersion equation 

(ADE) is not capable of modeling the flow and transport in aquifers above a certain 

heterogeneity level.  

This study was aimed to test the hypothesis that ADE is capable of modeling flow and 

transport even in highly heterogeneous aquifers as long as the model is supported by sufficient 

high resolution K data. The required high resolution K fields were created using fractal stochastic 

methods based on two high-resolution data sets: high-resolution direct-push K profiles and 3D 

full-resolution ground-penetrating radar (GPR). Below, I present a brief summary of the main 

outcomes of each Chapter, followed by a discussion of some new questions resulting from this 

work. 

GPR, a high resolution non-invasive geophysical method, is capable of defining textural 

properties such as porosity, packing, and sorting in a spatial context. These textural properties 
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are related to K in an indirect way. Chapter 2 [based on Dogan et al., 2011] presents an 

integrative study to investigate the consistency between GPR derived structures (or facies) and K 

data. This work was performed in an area where a recent push pull test was performed. 

Descriptive statistics and distribution tests performed in Chapter 2 proved that the different 

facies separated statistically different K distributions, with a reduced level of K variation within 

each facies. Therefore, this study demonstrated that GPR-derived structural information can be 

successfully used to define hydrofacies. 

High-resolution spatial information is necessary to create better flow and transport 

models, as hypothesized above. However, no invasive or non-invasive method exists to measure 

K fields at a spatial resolution that does not require some form of interpolation. Therefore, 

stochastic methods are generally required to generate parameter fields to fill in the gaps between 

measurement locations with similar levels of heterogeneity. To avoid drawbacks of common 

stochastic methods, including the inability to create parameter fields that display the connectivity 

of real sedimentary deposits, fractal stochastic methods were used in this dissertation. 

Connectivity is an important property of aquifers that can define connected high K paths as 

preferential flow paths. Chapter 3 [based on Meerschaert et al., 2013] presents the details of the 

fractal K field generation technique that was developed and shows that the fractional differencing 

filter can remove the long-range dependence observed in K data. This finding shows that 

fractional differencing filters can be successfully used to further investigate the underlying 

distribution of K data. Parameter fields are presented that are more natural looking and have a K 

distribution that better matches observations from HRK profiles. Flow simulations through these 

fields resulted in improved representation of the transport characteristics typical for this site, 

such as a heavy tail and multiple concentration peaks. 
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The focus of the next two Chapters was on the area around the original injection wells of 

the Macro Dispersion Experiment tracer tests. Also, the approach demonstrated in Chapter 2 was 

applied to a 3D domain. Flow and transport simulations were performed following injection 

procedure and sampling strategy of the MADE-1 experiments. Several different K fields were 

generated using the method explained in Chapter 3. The concentrations derived from the 

simulations, excluding GPR facies to derive the parameter fields, were presented in Chapter 4. 

Vertically integrated contour maps of relative mass distribution created in this study were an 

innovation compared to earlier modeling efforts at the MADE site, as no other study has 

compared simulation results with experiment data in more than 1D. The extent of the modeled 

plumes and maximum mass zones were very comparable to the ones measured during the 

experiment. The simulations also did a good job of characterizing the fast moving heavy tail of 

the plume. These findings show that the proposed method using K fields based on just measured 

field data is able to define the parameters necessary for designing effective remediation solutions 

for real-world problems. 

Chapter 5 presents a comparative study to define the value of different data sets for 

improving modeling results and provides insight into the required data sets for successful flow 

and transport modeling in heterogeneous media. This Chapter emphasizes the effect of 

complementary GPR data to better reproduce the heavy tail behavior of MADE plume. It also 

highlights the inability of flow meter K data to produce simulation results comparable to the 

observed data. It presents a comparison of the steady state and transient flow schemes, which 

concludes that the tracer entrapment in the vadose zone is not a strong argument to explain the 

poor mass recovery of the modeling efforts. Finally, an analysis of the effects of HRK 
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conditioning density shows that 60% to 80% of HRK profiles are needed to produce acceptable 

simulation results. 

Despite the new developments and improvements of modeling of flow and transport in 

heterogeneous media presented in this dissertation, there are a few unanswered questions. 

Several of these points can be summarized as follows, and may be answered with future work:  

• As was shown in this dissertation, GPR facies that are derived from surface 

measurements are very useful to build hydrostratigraphic frameworks that can improve 

flow and transport modeling (Chapters 2 and 5). However, facies boundaries cannot be 

directly used to obtain K information. Future work could make use of inversion 

approaches and interpretation of borehole measurements to develop a more direct link 

between geophysical data and hydraulic properties of interest. 

• The 3D simulations had excellent correlation with the transport observations (Chapter 4 

and 5) and fractal methods provided a better tool to generate K fields than sequential 

Gaussian methods (Chapter 3). One of the two main components of fractal stochastic 

parameter field generation is the parameterization (fractal dimension, correlation 

structures and statistical measures) of the fractal method, which can be obtained using 

HRK data. However, the second component, the noise field, is randomly generated and of 

Gaussian nature. This Gaussian noise field may not be the best solution to this step, but 

further work would be needed to investigate whether this simplification has important 

consequences. 

• One major disagreement between the simulations and the field experiments involves the 

mass recovery. All simulations had significantly larger mass recovery than the 

experiments, despite identical sampling and interpolation procedures. One possibility for 
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this observation has been considered in Chapter 5 (transient flow), but this did not 

address the discrepancy. Other possible explanations include the lower mean K 

throughout the model domain due to the upper of limit of the HRK tool, and an inability 

to reproduce the mixing in sampling wells as would have occurred during the sampling 

procedure in the field. 

Finally, this study demonstrated that the ADE is capable of modeling flow and transport even in 

highly heterogeneous aquifers such as the MADE site without parameter calibration or 

optimization. However, high resolution parameter fields are required to enable these modeling 

efforts. The novel high resolution characterization tool HRK can be used in combination with 

high resolution geophysical methods to provide the necessary data. Even though some steps of 

the presented research need improvement, it presents a straightforward method to create 

uncalibrated, reproducible flow and transport models based on solely field data. Moreover, these 

models can reproduce the non-Gaussian transport behavior at the infamous MADE site. 
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