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ABSTRACT

HIGH RESOLUTION CHARACTERIZATION OF AQUIFERS TO IMROVE FLOW AND
TRANSPORT MODELS OF HIGHLY HETEROGENEOUS MEDIA

By
Mine Dogan Diker
Aquifers are the primary sources of clean drinkireger. Pollution in aquifers is one of
the most challenging and important environmentabf@ms. It is not only extremely complex to
map but also difficult to remediate. Flow and tqaor$ of water and pollutants in porous media
requires detailed characterization of the propgiethe media. The main property which
controls the flow and transport is hydraulic contduty (K), which can be defined as the ability
of the media to let the water flow through. Inteesstudies to map the distribution of hydraulic
conductivity are necessary to model the plume nigmnaConventional in-situ aquifer
characterization techniques are invasive and laelnecessary high resolution. Therefore, novel
methods are required to improve the methods to tmoand simulate the flow and transport

through aquifers.

This study introduces a combination of novel teghes to provide the necessary
information related to porous media. The proposethod was tested at a highly heterogeneous
site called the Macro Dispersion Experiment (MADBIg in Mississippi. The MADE site is a
very well studied site where several large scaeer tests were conducted in the 1980s and
1990s. The tracers used for these tests were meditsing more than 300 multi-level sampler
(MLS) wells. Concentration measurements showedth®ainajority of the mass stayed near the
injection area, whereas minute concentrations wexasured further down-gradient. This

behavior is significantly different from the simtitas created using models based on the



Advection-Dispersion Equation (ADE). This behavamd the inability to explain this using most

models has led to a major debate in the hydrolsgience community.

The hypothesis of this study is that the ADE basedels can reproduce simulations of
the measured transport when the models are pamareetevith sufficient high-resolution
hydraulic conductivity data. Two novel high resadatcharacterization methods, the direct-push
high resolution hydraulic conductivity (HRK) toahe 3D full-resolution ground penetrating
radar (GPR) were combined to generatel3ields using fractal stochastic methods. This gtud
demonstrated that the complementary geophysicaladat be used to reduce theariance by
dividing the aquifer into hydrofacies. This approain combination with a fractional
differencing filter, simplifies the statisticallypmplex distribution oK. Fractional differencing
was also capable of removing the long range depeeda verticaK profiles to investigate the
underlyingK distribution. The 3[K fields were then used to test the ADE based mogleli
approach at the site and resulting concentratia@re wompared to one of the large scale tracer
experiments. The simulations in this study resuitechass distributions comparable to those
measured during the tracer test experiments. Thesessfully reproduced the extent of the
plume in both 1D and 2D using K fields based orlydield data. Additional tests emphasized
the importance of high-resolution data to paranmtdét models to successfully simulate flow

and transport using the ADE model.



Copyright by
MINE DOGAN DIKER
2013



For my parents, Emine and Sami Dogan, for all tive | trust, and support they provided.
| am proud for being able to make them proud of me.



ACKNOWLEDGEMENTS

First and foremost, | would like to state that thare no words to express my gratitude
for my advisor Dr. Remke L. van Dam. He supportex] encouraged me, challenged me and,
most importantly, he inspired me. Together, weaméld millions of GPR traces during many
cold and humid nights in Mississippi. He becameandy an advisor, but also a colleague and a
most supportive friend throughout this process.é#igertise as an earth scientist guided me
towards becoming a better scientist with an optimharacter. Without him, my experience as

a graduate student would not be as bright andfgatis “Beep, evet!”

Second, | would like to acknowledge my co-advigur,David W. Hyndman, for being a
great role model for my academic personality andigg me through the great deal of stress that
every graduate student experiences. His confidenee made every task seem doable and
every target reachable. It was a great gift andlpge having not only one, but two wonderful

advisors.

| would like to thank Dr. Mark M. Meerschaert faslendless patience for my questions,
explanations of challenging statistical conceptsl lelief that | could make this project work.
His creative insight about our work was excitingl @ave me clarity about how to proceed. |
also would like acknowledge Drs. Brian Hampton, Karingha, and David Benson for their

contribution to my research. They were the ones mhde my research complete and strong.

| would like to thank the Hydrogeology Lab membeaspecially my friends, Erin King
and Alex Kuhl, who have been very encouraging amgbsrtive throughout this process. Gizem
and Mustafa Ali, for listening to my endless exp@laons and practice talks , just their existence

made many things easier than they actually werd, Aty graduate school sister, Dr. Nicole D.

Vi



LaDue, for being the magnificent best friend, gagdme through the cultural differences, and

challenges. Thanks lady!

Many thanks dear Jackie, Jennae, and Heidi of epardmental office for all of their
help handling paperwork and managing deadlinesir haling faces always made me thankful

to be in the Department of Geological Sciences.

| would like to acknowledge Dr. Gulcin Ozurlan Agazgu, who is a role model for me
as an intelligent, and confident female scienéist Dr. Argun Kocaoglu since they kept

supporting me all the way from Turkey.

My husband, Kaya, thank you for joining me on imsnense journey, and following me
all the way to Michigan. Your existence made Eastding a real home for me and you have

helped me grow stronger from this experience.

Finally, my family, | love you to the pieces. Mytii@r, Sami Dogan, has been always the
greatest role model and my biggest supporter. ldcoot be who | am without him. Thanks,
Dad! My mother, Emine Dogan, made the biggest Baerof accepting my decision to live far
away, always missing her only daughter. | wanhenk to my brother, Malik, for leading and
encouraging me to venture out of my safe shelllmewme a world citizen. Wish you see the

better ones from your sons, my beloved nephewsa8d&ren and Bilge Cinar.

Vil



TABLE OF CONTENTS

IS IO e N = I NS X
LIST OF FIGURES ... .ottt ettt e e e e e e e e e e et e e e e e e e e e e e e e e s e aabbeeneees Xi
(@ gF=T o] (= g I o (0] (oo B = OSSR PPPURPPRTPPP 1
00 11 Yo [ T £ PSRN 1
1.2 Aquifer CharaCterization ................ceeeemoiieieee et e e 3
1.3 THE MADE SIE...ceeiiiiiiiiiiie ettt e e bbb 6
1.4 METNOMS ... e e e e e e e e e e e e e e e e e e e e e eeaeaeenennnn 10
1.5 Outline of the thesiS/dISSErtation ... . ...eereeiiiie e eeeeeeeeeeeeeeeeneeee.. 14
L N[ O TP 18
Chapter 2 Hydrostratigraphic analysis of the MADEE with full-resolution GPR and direct-
PUSh Nydraulic Profiling ...t e s 21
Y 0151 >V PP PPPRRS 21
P20 R 1 {0 T [V Tox 1 o] o [P 22
22 |V =1 T To £ 24
2.3 RESUILS ... e 27
P2 o o (1] o PSPPI 31
2.5 ACKNOWIEAGMENTS .....uiiiiieie et eeeeeeeeeeeeeannne 32
APPENDIX L.ttt ettt e e e e e e e ettt aaaaaaaas 34
REFERENCES ...ttt ettt ettt et ettt en et eee e e en e ee e, 41
Chapter 3 Hydraulic conductivity fields: GauSSI@MOL? .........cccooeiiiiieeeeiiiieeeeeeees s e e 43
Y 011 =T od ST PRSP UPPPRUPUPPPTR 43
G 200 I 11 70T [V Tox 1 o o 44
3.2 Statistical aNalYSIS .......cooeiiiiiiiii e 48
TG |V oo [ ANV 7= 1o F= 14 o] o S 56
G I ST od U 1S3 (o] o PP 58
G o [ox (1] o PSPPSR 59
3.6 ACKNOWIEAGMENTS .....uiiiiiiei e eeeeeeeeeeeennnna 60
APPENDICES ... .ooitiiiiiiiiiiii et ettt e e e e e s s s s s s nnaae 61
APPENDIX 3.1: Fractional dierence filter ............cooovvriiiiiiiiiiiiemmmme e 62
APPENDIX 3.2: Flow-Transport SIMmulations .....cccceeeeoeieeiiieeeeeeceeeeeeevien 65
L e o N [ O S 71
Chapter 4 Novel characterization method providesgr advance for flow and transport
1 =To [Tod 1 To] o PP UPPPRPPPPPUPPTRRTN 76
Y 0151 > Tod S PPPUPPRRRS 76
v R 11 oo [ 3o 1o TSRS 77
A |V =1 1 T T £ P 78
A B3 RESUILS ..ot 81
4.4 Discussion and CONCIUSIONS .......uuuuiieciiiee s s 83
L e o o N[ O TP 86

viii



Chapter 5 Quantifying the value of different dagéssand modeling schemes for flow and

L= T ] 0T T AR T 4101 = 0] o 1 89
0 R o1 0T [UTox 1 o] o [N PP 89
5.2 Complementary GPR data............cooiicccceeeieieeeeeeiceie e eeeeeee e e 92
5.3 Cost-benefit aNaAlYSIS .....ccoeeiiiiiiiiimm e 94
5.3. 1 TranSient flOW......coooiiiiiiiiii it eeeeme e e e 95
5.3. 2 FIOWMELET K ..ot e e e e e e e e e et bbb s 98
5.3.3 Effect of conditioning data density....ccccc.ccooeeeeeiiiiiiicieeiicee e, 99
5.3.4 Complementary GPR data..............umoeeeeeeeeeeeeiiieieeiiiiiiin s 103
5.4 CONCIUSIONS ..ttt ettt e e e e e e e e e e e e e e e as 104
REFERENGCES ... ..ottt et e et e e e e e e e eaeeeensnnnssereeees 107
(@ g F=T o] (= g G TS} Y7 11 4TS 1 109
REFERENGCES ...ttt e e e et e e e e e e e e eaaeeensnnnssseneees 115



LIST OF TABLES

Table 1.1 Inventory of collected GPR data. ..........cceeeeeiiiiiiiii e 14

Table A2.1 Single-sample K-S tests of four HRK profiles facies and layers identified in full-
resolution 3D GPR data (see Figures 2.1 and 213adations). Columns, “SEGMENT", name
of segment (facies/sub-facies/layer), "N_SAMPLRImber of HRK measurements used,

"p_FOR_LOG_K", p values for lgg K using single-sample K-S test with 95% CiI............ 36
L= o] L= A A (oo | o ) 37

Table A2.2 Statistical comparison of K values for four idéetl radar facies and adjacent
segments, where p values were calculated usingammple K-S tests. Columns, "SEGMENT",
names of compared consecutive segments (faciefsigs/layers), "'p. FOR_LOG_K", p values

for logyg K using two-sample K-S test With 95% Cl.......coooeiiiiiiiiiiiiii e 37
U= o] L= (ole] o ) TR PR 38

Ta2ble5.1 Quantitative measures for the comparison of sitrauiascenarios and field experiment
(R values were calculated comparative to the MADEqleement t=503 days in the first row).



LIST OF FIGURES

Figure 1.1 Number of articles over the years which compresguifer characterization" as
keywords. For interpretation of the referencesaiorcin this and all other figures, the reader is
referred to the electronic version of this diSFEILA...............c.evuviiiiiiiiiiiiiieeeeee e 3

Figure 1.2 Vertically exaggerated (x5) hydraulic conductivitypss-section along A-A' using
1560 flowmeteK measurement8pggs 1991] (see Figure 1.4 for location). .........ccccceennnn. 6

Figure 1.3 Multi level sampler and flowmeter well setup a¢ MADE site (photo courtesy:
E5] = 110 (o =T 11 ) 8

Figure 1.4 Site map showing the locations for flowmetemeasurements with cross-section line
(A-A’in Figure 1.1), multilevel sampler wells, drtest boundary. ...............ccveeiiiiiiicmmmnennnns 9

Figure 1.5 Panoramic view of the site showing the sourcetlongmetal pipes in the center-
front) and GPR data collection setup (on the rigioto courtesy: Kaya Diker). ................ 12

Figure 1.6 Site map showing HRK and GPR measurement locatardsthe original MADE
1( 1S B oo TU T o =T YOS 12

Figure 1.7 Side view of DP High Resolutidk (HRK) probe (photo courtesy: Kaya Diker)..... 13

Figure 2.1 (a) Map of the MADE site on Columbus Air Force B48FB) with GPR
measurement lines. The GPR survey coordinatehamsin blue. The blowup of the ICA cube

(144 m2) shows DP sites and locations of the 3D GPR cubEgures 2.1b and c (yellow
shaded area) and the profile in Figure 2.2 (rethethéine); viewing angles are indicated with
arrows in corresponding colors. Full-resolution GBR data cubes at (b) 100 MHz and (c) 50
MHz are shown with no vertical exaggeration. Ane@ope was used to render negative
amplitudes transparent; number labels in Figurb argé discussed in the text..................... 25

Figure 2.2 Interpretation of GPR and HRK data at line 105&e(Bigure 2.1 for location). (a)
GPR profile with red (positive) to blue (negatiaplitude scale using combined 100 MHz and
50 MHz data; black triangles indicate the zone whbe two data sets were averaged. In
addition to processing mentioned in the text, tttega were plotted with an energy decay gain.
(b) Continuous reflections identified using an aodébed picking algorithm and interpreted GPR
facies (color shaded). (c) Qualitative interpretatof GPR facies with HRK data; facies
boundaries are marked by horizontal INeS. .o oo 28

Figure 2.3 (a) 3D GPR facies boundaries (shaded to visutdizegraphy) with collocated DP
HRK profiles. Descriptive statistics of theldedata for (b) all saturated material above the
aquitard, (c) GPR facies, (d) sub-facies, andgg@rs. Box plots show the sample median,

interquartile range, and positions of extreme \&l(® Variance of logg K and InK values for
the data in Figures 2.3b—2.3e, respectively. Thdine is a power fit through the medians of the
variance values for each group (horizontal axi®gnscale). ............eevvvvveveiiiieee e eeeveeens 31

Xi



Figure A2.4 (a) Cross plot of logh K mean and variance for high resolution K data ffoor

DP profiles (see Figure 2.1 for location and Figuzfor data). (b) Cross plot of lpgK mean

and the slopes of linear trends of the changegm K with depth. In these plots, each facies is
shown by a different symbol and color. The numblextno each symbol indicates the DP profile
(1, 2, 3, and 4 represent 111108A, 111108B, 1111888 121108A, respectively). ................ 39

Figure 3.1 Layout of Macro Dispersion Experiment test sitegwing key features of MADE
experiments, as well as the locations of GPR daltaated for this project. The inset of the
12x12 m ICA (Intensively Cored Area) cube showsltimations of the four HRK profiles and
the 2D transect discussed in thiS PAPET. ..ceeueeeerieiiiiiiiie e a7

Figure 3.2 Histogram of IrK for HRK profile 121108A (see map in Figure 3.1jdre (a) and
after (b) applying the fractionalftierence filter (1) witld=0.9. The filtered data are organized
into a unimodal distribution with a sharper peald arheavier tail than the best fitting Gaussian
probability density function (DIACK liN€). ... e eeeeeieeeee e 49

Figure 3.3 Autocorrelation function for 1K from HRK profile 121108A (see Figure 3.1) before
(a) and after (b) applying the fractionaffdrence filter (3.1) witld=0.9. Autocorrelations inside
dashed lines are statiStiCally ZEr0. ..........uuuueeiiiiiii e 51

Figure 3.4 Simulated IrK field without (a) and with (b) GPR facies (dasltieds), conditioned

on four HRK profiles (vertical black lines). Hist@gn (c, d) of one column (white linex =172

m) from simulated IK field (a, b, respectively) after applying the tianal difference filter (1)
with ¢=0.9. The histogram (c) fits a Gaussian model, butikogram (d) from facies

simulation (b) deviates from Gaussian shape, sinolaneasured HRK data (Figure 3.2b)....... 53

Figure 3.5 Fractionally dfferenced IrK data (a) from the shallowest facies at horizolokztion
174 m fits a Gaussian distribution. Deepest fa(¢st horizontal location 170 m deviates from
the Gaussian model. These probability plots shanstrted data on the horizontal axis, and the
corresponding model percentiles for the best fttBaussian model on the vertical axis. If the
data fits this model, the points will follow thefeeence line, with some random scatter.....55...

Figure A3.6 Simulated plume 500 days after the end of inje¢timing a constam value in
each GPR facies (top), tkefield from Figure 3.4a without GPR facies (middlend theK field
from Figure 3.4b with GPR facies (DOtOM). .......coiiiiiiiiii e 67

Figure A3.7 Normalized concentration profiles (top) 500 dayerathe end of injection, and
normalized concentration breakthrough curves (bottaneasured at location x=172 m, from the
three simulations illustrated iN FIQUIE A3.6. .. oo e e e e e e e e e 68

Figure4.1 (a) Map of the MADE site with the test boundarggded line) and sampling
locations; gray shaded rectangle shows the modehdoused for simulations. (b) Model
domain with HRK, injection, and observation borehlalcations. ................cccccoeiiiiiiiviceeeeen. 80

Figure 4.2 Relative mass distribution profiles 501 days aiferinjection. The black line shows
the mean of the simulations along with &ror range (in gray shaded area); the red liogvsh
the profile for the MADE-1 ODSEIVAtIONS. ....cccceeeeeiiiiiiiiiiiiee e e e e e e e e e e e e s 81

Xii



Figure 4.3 Vertically integrated contour maps of relative ;:1&83 days after the start of

injection for MADE-1 experiment (a), the mean o #h simulations that met the head criteria (b)
a sample simulation which matches the head chantgei@ best (c). All three contour maps

were created following the same interpolation pdace, as discussed in the text. ............. 32.

Figure5.1 A detailed map of the model domain with locatiohdlowmeterK (orange) and

HRK measurements (blue) and multi-level samplezypwells. The area of 3D GPR data is
given by the rectangle with green dashed line ctiga wells are given with red stars. See Figure
4.1 for the location within the larger MADE Site.........uciiiiiiiiiie e 91

Figure 5.2 Vertically integrated contour maps of relative s1ga) MADE-1 experiment at

t=503 days, (b) mean of 6 simulations, (c) bestl@®mnge simulatiorK fields for the

simulations in (b) and (c) were based on a comimnaif HRK data and GPR facies (these maps
can be compared with Figure 4.2, which presentsocmmmaps of relative mass firfields

based On JUST HRK data). ........coooiiiiiiicmmemme oo e e e e e e e e e e eeeeneeees 92

Figure 5.3 Relative mass distribution profiles for the MADEegperiment at t=503 days (red

line), and the mean and 2ange of 6 simulations (black line and gray shaaled, respectively).
Simulations used (& fields based on just HRK data and Kbjields based on a combination of
HRK data and GPR fACIES.........uuuiiii e eeeeiim e e s e e e e e e e e e eeeeenees 93

Figure 5.4 Vertically integrated contour maps of normalizedsst (a) MADE-1 experiment at
t=503 days, (b) base simulation, (c) transient fRTUIALION. ........uvvveiiiiiiiiee e 97

Figure 5.5 Normalized mass distribution profiles of the MAQEexperiment at t=503 days (red
line), base simulation (black line), and transigmty scheme (blue line). ...............coeev .. 97

Figure 5.6 Vertically integrated contour maps of normalizedsst (a) MADE-1 experiment at
t=503 days, (b) base simulation, (c) simulationellasn just flowmeteK data. ........................ 99

Figure 5.7 Normalized mass distribution profiles of the MAQEexperiment at t=503 days (red
line), base simulation (black line), and simulatmased on just flowmetét data (blue line). .. 99

Figure 5.8 Vertically integrated contour maps of normalizedsst (a) MADE-1 experiment at
t=503 days, (b) base simulation based on all 25 pRH#iles, and simulations based on (c) 20,
(d) 15, (e) 10, and (f) 5 randomly selected HRKfites. The randomly selected HRK profiles
used to generate tiefields are shown with blue symbols; see Figureférthe location of all

Figure 5.9 Normalized mass distribution profiles of the MAOEexperiment at t=503 days (red
line), base simulation (black line), and simulatidrased randomly selected number of HRK
profiles (blue line). (a) 80% of HRK profiles (#% 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18
19, 20, 22, 23, 24), (b) 60% of HRK profiles (#s3 4, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21,
24), (c) 40% of HRK profiles (#'s 2,5, 7, 11, 124, 17, 18, 19, 22) (d) 20% of HRK profiles
(#'s 8, 11, 14, 15, 24). See Figure 5.1 for thetmns of the HRK profiles. ............c.......... 102

Xiii



Figure 5.10 Vertically integrated contour maps of normalizedsst (a) MADE-1 experiment at
t=503 days, (b) base simulation, and (c) simulatiased on a combination of HRK data and
(€] o = o] [ PP 103

Figure5.11 Normalized mass distribution profiles of the MAOEexperiment at t=503 days
(red line), base simulation (black line), and siatiain based on a combination of HRK data and
L] o = T [ 104

Xiv



Chapter 1

Prologue

1.1 Introduction

It is an extensive challenge to understand all @sp& underground water such as
storage, flow, transport, and interactions withreunding material, since aquifers constitute the
most important natural medium for storage, purtfaaand filtering of fresh water. Hydraulic
conductivity K) is the main property that controls water flowpiorous media [e.gDagan
1989]K can simply be defined as the ability of any porogglium to allow the fluids to flow
through. It depends on the pore and grain sizd, dnsribution, and sorting. To solve
environmental problems, accurately parameterizedetsahat describe the flow of water and
solutes in aquifers are critical, since models taat consistently and realistically simulate flow
and transport rely on accurate representatiots aithough there have been many studies on
these topics involving in-situ measurements of @guaroperties and pollution monitoring , the
methods utilized in these studies have certairtditioins and are mostly invasive. Furthermore,
the lack of an in-situ and non-invasive methoditealy measur& is a major obstacle to create

realistic simulations of flow and transport throwguifers.

Even though several characterization methods eeisplution still remains as an issue.
Characterization methods can be combined with Gauggostatistical methods to develop 3D
K fields to overcome the resolution problem, whitkites with low levels of heterogeneity
provides acceptable result&&argyberg 1986;Mackay et al. 1986,Garabedian et a).1991;
LeBlanc et al.1991,Hyndman et a).2000;Phanikumar et aJ.2005]. Parameterization &f

fields for flow and transport modeling in highlyteeogeneous aquifers, however, remains



challenging. Various stochastic and geostatistizgihods that have been proposed to improve
simulations of highly heterogeneokidields generally rely on conventional in-situ ma@ment
methods that provide limited spatial sampling, bade large support volumes with unknown
geometries. Therefore, innovative approaches tsureaand interprd€ are necessary to truly

understand flow and transport through highly hegjeneous media.

The main goal of this study is to develop a noyglraach for predicting flow and
transport in highly heterogeneous porous media thighaid of novel measurement and
stochastic methods. If successful, this approadipvavide a significant contribution to
ameliorate real-world problems related to grountewand aquifers. The principal aspect of this
research involves high-resolution characterizatibhydraulic conductivity and aquifer
structure. Descriptive statistics and distributiests were used to confirm the consistency of the
data sets used in this study. This comparativecaabr forms the foundation of this research,
since there is no known direct relationship betwgeophysical parameters akkd
Consecutively; geophysics-derived information waegrated with in-sitik measurements
using stochastic methods. Fractal methods, whieltapable of representing the long-memory
nature and connectivity &, were used to populate simulated RBields to run flow and

transport models.

In this thesis, detaile data from a heterogeneous site were used to mioafiow
and solute transport utilizing the advection-dispeEr equation. A combination of novel and
traditional measurements and data processing methiad explored for detailed characterization

of shallow, unconfined aquifers.



1.2 Aquifer Characterization

Aquifer characterization is a broad topic addredsechany researchers from different
disciplines, including earth science, hydrologyissnmental engineering, and statistics.
Researchers from these fields have been employamy miifferent tools including laboratory
measurementsliman et al, 2010], in-situ measurementsgbala 1993], macro-scale field
experiments@arabedian et a).1991;Boggs 1991], geophysical imagin@gfflon et al, 2011],
and computer simulation&pmez-Hernadez and Wetr§98]. Figure 1.1 shows the numbers of
articles in Google Scholar for the keyword "aquitbaracterization”. In recent years, the
number of the articles has increased significamihg technological advances promote more
interest in this matter. Aquifer characterizatioathods, involving the measurement and/or

estimation oK, will be discussed from here on.
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Figure 1.1 Number of articles over the years which compresguifer characterization" as
keywords. For interpretation of the referencesdiorcin this and all other figures, the reader is
referred to the electronic version of this disdesta

There are several different methods to determimieaufic conductivity. Empirical

approaches involving pedotransfer functions relyextural analysis for defining the physical



properties of the medium such as pore/grains/fracize, distribution, and organization.
Textural analysis involves collecting core samgtem the aquifer and sieving these samples to
get grain size distributiondfasch and Dennyl966]. Although several methods, such as
freezing the samples, exist to collect nearly uidised cores, it is still an extremely challenging

process especially for unconsolidated sediments.

Alternative experimental methods to determheequire either laboratory measurements
(following Darcy's law) on the core samples or mawenplicated procedures for in-situ
experiments. In both cases, the measured valuedfanted by the core removal or
experimentation procedure since re-sorting dubeovibration and the loss of pore water are
almost unavoidable. Flowmeter tests are the maatmanly used in-situ experimentation
methods since they allow in-situ measurements lif pparameteK. These are capable of
measuringK averaged over an uncertain volume and have badglywised to map the hydraulic
properties of aquifers. Although several existinglges demonstrate the success of flowmeter
tests in mildly heterogeneous media, they also haaey limitations. Beside the invasiveness,
flowmeter tests are relatively slow, and capablméasure the bulk parameter for an unknown
volume. Therefore, these tests can proWdaformation with a limited resolution and, are not

very sensitive to lowK.

Indirect measurement procedures also exist, anddaclug tests, infiltration and tracer
experiments. These methods intend to defiistribution using other measured parameters
rather than attempting to measure the adfu#hfiltration experiments based on the amount of
water infiltrated through a limited surface ared anly capable of providing the average
estimates for limited and generally unknown defllg tests require addition or removal of a

known volume of water from a designated well, vd#tailed measurements of the associated



changes in the water levels. Tracer experimenghichto derive a [or theq distribution by
measuring concentration distribution of the injeldi@cer. They are capable of providing the

largest scal& distribution and may require a large amount of garg.

Several other indirect measurements in the borshotdude well logging methods, that
do not require the material removal. However, tregyuire complementary data and an
interpretation step since a known relationship leetwik and the measured parameters (i.e.,

resistivity, seismic velocity, gamma ray exposwuegs not exist.

Geophysical methods are another set of technigheshwan only provide indirect
information related td distribution. However, they often provide the adage of non-
invasiveness and higher resolution than the boesbhased methods. The potential benefits of
geophysical methods in addition to, or as replacegsef, current in-situ methods are very
significant. Geophysical methods can be effectiweslgd for measuring bulk properties and
mapping certain structures such as fractures, gbeds, and clay lenses, which may have strong
effects on the movement of groundwater either atepential flow paths or as retardant barriers
[Overmeerenl1998;Streich et al.2006]. Innovative approaches to collect and prisr
geophysical data to map these structures, carcafgabute to the efforts to derive a quantitative
affinity between geophysics-derived parametershamlaulic conductivity. Besides,
improvements of geophysical methods provide dat#® non-invasive monitoring of pollution

and remediation processd&r¢wster and Anngri994;Halihan et al, 2005].

In recent years, several novel borehole based appes have emerged to delineate
aquifer characteristics at higher resolution theavipusly possible. These approaches include in-
situ measurements using direct-push technologyiwisia significantly faster alternative to the

conventional borehole methods, especially in unclihsted sediments. A recently developed



direct-push tool, called High ResolutiBn(HRK) tool, which couples direct-push permeameter
(DPP) and direct-push injection logger (DPIL), po®s cm-scale vertical resolution and partly

overcomes an important obstacle related to reswlusisueslfiu et al, 2009]. This relatively

less destructive tool involves a probe with andh@@n port and two pressure sensors. Water is

injected through the port and the difference inkga@ssure is measured via pressure sensors.
These backpressure measurements are then contceréddtiveK values. Surface-based

geophysical methods can be used to provide compimedata to direct-push methods which

give high resolution data in vertical profiles.

1.3TheMADE Site

The method developed in the context of this studyg applied at the Macro Dispersion
Experiment (MADE) site on the Columbus Air ForcesBaf Mississippi. The MADE site is a
highly heterogeneous, unconfined shallow aquiferevious research suggests that the sediments
consist of meandering fluvial deposits over braifledal deposits over a fine-grained sand

layer inter-bedded with clay and siB¢wling et al, 2005].
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Figure 1.2 Vertically exaggerated (x5) hydraulic conductivitypss-section along A-A' using
1560 flowmetelK measurement8pggs 1991] (see Figure 1.4 for location).

The MADE site is one of the most heavily studiedamtaminated sites, and it represents

a high level of heterogeneity in many contaminatiées Zheng et al.2010]. It is a secure



facility that has been used to explore flow reginmean aquifer using macro scale tracer tests
and borehole measurements. The research at theaststarted with measurements of ground
water flow in 1984, later, the MADE-1 experimentsa@nducted between October 1986 and
June 1988Boggs 1991]. It was an extensive natural gradient expent involving the
preliminary flowmeter measurementskafFigure 1.1 shows a cross section created usagsgth
K measurements along a transect (see Figure lldcation), and the variance of Khwas
calculated as 4.5. The experiment was monitoresgud28 multi-level sampling wells (Figure

1.3) [Zheng et a].2010;Boggs et al.1992]. A mixture of several different chemicaigluding

bromide (in the form of calcium bromide;2500 mg/l), pentafluorobenoic acid (PFBA,
Cinj=400 mg/l), trifluoromethylbenzoic acid (TFBA;{=400 mg/l), and orthofluorobenzoic

acid (DFDA, Gj=400 mg/l) was used as a tracer. The total mixtofeme was 10.03 ?’nand

groundwater extracted from the aquifer was usqaeépare the mixture. The injection setup

consists of five boreholes installed on a lineaaywith approximately 1 m separation (Figure
1.4) approximately perpendicular to the averagerdgradient direction. Injection was carried
out through a 0.6 m screened interval between The &nd 58.1 m elevations above sea level

(7.4-8 m below the surface) during 48.5 hours.

Sampling was done on a snapshots basis, and th@esharea was increased through
time for each snapshot. A total of 11446 sample®wellected for 8 snapshots, and analyzed
for the concentrations of the injected chemicalendde (total injected mass of 25.0 kg) was the
primary tracer due to its highly conservative natand consistency of measured concentrations.
Analysis of the measured concentrations suggestbdiran interesting outcome, extremely

different than what was expected. More than 20 %hefinjected mass stayed around the



injection area and did not move any further thamBlers even 500 days after the injection. In
contrast, very low but detectable concentrationgedaextremely fast down gradient. This
interesting behavior resulted in a concentratiafiler with several peaks and a heavy tail which
did not match the expected Gaussian shape (ascprddiy advection-dispersion equation
models). Thereafter, the flow behavior at the MASIite became a notorious problem for
hydrologists. Two more macro-scale (MADE-2 andaf3)l several smaller scale tracer tests

were conducted to further investigate the issuéiseasite.

Figure 1.3 Multi level sampler and flowmeter well setup a¢ iADE site (photo courtesy:
stanford.edu).

The MADE-2 experiment was conducted between Ju8@ 38d September 1991

[Boggs 1993]. The same injection procedure was followeta different mixture was used as

tracer including tritium (¢5;=55,610 pCi/mI),14C labeled p-xylene (§&;=2770 pCi/ml), benzene
(Cinj=68.1 mg/l), p-xylene ((j=51.5 mg/l), naphthalene {§=7.23 mg/l), and o-

dichlorobenzene (&j=32.8 mg/l). The total injected mixture volume v@ag m3 and observed



using 258 multi-level sampling wells. The samplprgcedure for the second experiment was
improved with additional multi-level sampling wellsstalled along two transects known as
fences, in the vicinity of injection area. Howeviére recovered mass was still not comparable to

the injected mass and the concentration profilesgmted the same interesting behavior.
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Figure 1.4 Site map showing the locations for flowmetemeasurements with cross-section line
(A-A’ in Figure 1.1), multilevel sampler wells, driest boundary.

Another attempt was made with the MADE-3 experim@&his time, the injection

procedure was passive, involving a trench fillethveiand and tracer mixture. The natural flow



was allowed to dissolve the tracer and transfogps et al.1995]. The natural condition of the
sediments in the injection area was destroyed antblgenized irreversibly with this
experiment. Several smaller scale tracer testkjdimg a push-pull test and an extensive core
sampling procedure following blue dye injectidany et al, 2010], were also carried on recently.
Several approaches have been explored to simblati#otv regime at the MADE site
following the experiments. Most of the earlier @ concluded that the advection-dispersion
equation (ADE) based approaches were not capalepodducing the observed transport
behavior at the MADE siteZheng et al.2010]. Modeling efforts based on ADE resulted in
smooth concentration curves that were not comparadthe experiment outcomes. More
exhaustive approaches followed the classic ADE otktincluding preferential flow paths
approach, mass transfer approach between mobilerandbile domains, utilizing the fractal
version of the ADE Benson et aJ.2001;Zheng and Gorelick2003;Harvey and Gorelick
2000]. However, these approaches either did ndudiecadequate parameterization due to lack
of necessary data or involved naturally undeterbiméeatures and calibration procedures. In
conclusion, a successful modeling effort basedobelsfield data and capable of reproducing

the observed transport behavior is still not avdda

1.4 Methods

Geophysical methods such as electrical resisttoityography (ERT) and ground
penetrating radar (GPR) are minimally-invasive aad often provide high resolution data. They
have been used for mapping hydrologically differgniictures and more recently for tracking
fluid migration during tracer testdghnson et al.2007]. Borehole and surface GPR have been
successfully used to map sedimentary structidMesl] 2004], estimate porosity from GPR

velocity fields Klotzsche et a).2010], track Dense Non-Aqueous Phase Liquid (DN)ydhd
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saline tracersBrewster and Annari994;Birken and Verstee@000;Hwang et al. 2008], and
monitor remediationHalihan et al, 2005]. However, most of these studies lack comipaaly
high-resolution in-situ measurements of K, whichha absence of a direct relationship is

necessary to determine the connection between @RI sesponse and.

GPR reflections originate at interfaces betweeraggoal materials with distinctive
values of dielectric permittivity, which is diregttelated to water content, which for saturated
media is governed by porosity. The correlation leemvhydraulic conductivity (which is related
to porosity) and dielectric properties of media hasn discussed in recent publicatioGbgn et
al., 2001 Lambot et al.2006;Kowalsky et al.2005;Klotzsche et a).2010], but no direct
relationship has been establishitbrin [2006] found an inverse relationship, which costsa
the common belief thdf is higher for large porosities. Therefore, in ttasearch, GPR data was

used to delineate main unit boundaries and diftesedimentary facies.

GPR and direct-push (DP) hydraulic conductivityadedllection was completed during
two field campaigns in 2008 and 2009 (Figure 1.8 see Figure 1.6 for the locations). Multiple
GPR data collection techniques were applied, witlstneollection using: 2D profiles, full-
resolution 3D and 4D data cubes, and cross-boreboiegraphy (Figure 1.6). GPR data along
2D profiles were collected for broader scale sitaracterization and three distinct regions were
selected for full resolution GPR data cubes foatked characterization (Table 1.1). Regions to
collect full resolution 3D GPR data were select@uf previous tracer test sites to take

advantage of existing grain size and tracer teist. da
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Figure 1.5 Panoramic view of the site showing the sourcetlongmetal pipes in the center-
front) and GPR data collection setup (on the rigpioto courtesy: Kaya Diker).
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Figure 1.6 Site map showing HRK and GPR measurement locatamtsthe original MADE
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58 high resolution verticd{ profiles were obtained with the new DP High ResolukK
(HRK) probe (Figure 1.7). This tool, which was deyed for rapid characterization of
unconsolidated shallow aquifedsifi et al, 2009], is advanced into the subsurface while niate
injected out of a small screened port located atshstance behind the tool tip. The injection
rate and injection induced back pressure are recoegiery 1.5 cm. The ratio of these quantities
is transformed intd following the approach described biy et al.[2009]. Although the
calibration of the transform equation is the subgg@ngoing work, the spatial patterns of K,
which are of greatest interest in this study, waudtlchange with different transformation

parameters.

Figure 1.7 Side view of DP High Resolutiok (HRK) probe (photo courtesy: Kaya Diker).
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Table 1.1 Inventory of collected GPR data.

Area Size Data Type Frequencies
MADE site 250x150 m 2D profiles 50-100 MHz
from tracer tests
Intensively Cored Area 12%12 m 3D Qata cubes N 50-100-200-250 MHz
(ICA) Vertical Radar Profiling 50-100 MHz
3D data cubes 50-100 MHz

Multi-Level Sampler Area

(MLS) 25x25 m Zero Offset Profiling 50-100 MHz

Multi Offset Gathering 50-100 MHz
4D data cubes 50-100 MHz
5x12 m Zero Offset Profiling 50-100 MHz
Multi Offset Gathering 50-100 MHz

Dipole Tracer Test Area
(DTA)

Source Trench Area

(STA) 30x10 m @ 3D data cubes 50-100 MHz

1.5 Outline of the thesis/dissertation

This study aims to provide a novel approach toter8aw-transport models solely based
on field data to reproduce the outcomes of MADEy & experiments. This introductory
chapter provides the history and the technicalidatalated to the experiments conducted at the

MADE site. Below, | present a brief synopsis of thibowing chapters in this dissertation.

Chapter 2 presents a qualitative comparison of @RI data on which the remaining
chapters are based. This chapter includes a gtatiahalysis oK data as a proof of concept.
The objective of this second chapter is to invedeghe potential of the geophysical data to
delineate the hydrostratigraphically different srahd to demonstrate the correlation between
the GPR reflections and data. Full-resolution 3D GPR derived facies boursawere used to
define the boundaries of different hydrostratigiaggtructures. Descriptive statistics and
distribution tests were then used to examine theepof subdivisions to reduce the variances of

K distributions. This chapter shows that GPR reitexst coincide with anomalies K profiles
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and separate units with distin€tcharacteristics. The chapter presents a new agipfoa
building high-resolution 3D hydrostratigraphic fraworks of heterogeneous aquifers and to
improve the stochasti€ field creation procedure to better simulate tramsggwough such highly

heterogeneous aquifers.

The proof of concept is followed by Chapter 3, whistroduces the quantitative and
statistical analysis of HRK data along with thectranal differencing approach. The MADE site
sediments possess a very complex and widely vérigidtribution. Henceforth, conventional
statistical approaches cannot be successfullyeatiiio model th& distribution. In this Chapter,
| show that fractional differencing filter servesremove the long range dependence and reveals
the underlyingK distribution. Fractal stochastic methods, whiah ot commonly used for
aquifer characterization, were then employed taifateK fields containing the naturally
observed connectivity of the sedimentary structuféss chapter introduces the procedure
followed to simulate fractal stochastcfields and demonstrates the value of fractal mettasd
well as GPR derived hydrostratigraphy. It concluthed the use of fractal methods in
combination with GPR derived facies boundariesyioles improved representationskof
created using exclusively data based mixing of Giansfields. Chapter 3 is followed by an
Appendix that presents a comparative analysis oflitimnal and uncondition& fields with and
the effects of the hydrostratigraphic informatidstaaned from GPR. This comparison includes
flow and transport simulations to explore the lsestable method for stochas#cfield

generation.

Chapter 4 presents the outcomes of 3D flow trangpalations for an area (25x45 m)
near the MADE1-3 injection site. This chapter bsitth the statistical methods developed in

Chapter 3, but are now applied in 3D. The resegrthis chapter is unique since it provides the
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first 2D representations of simulated plumes in parnson to measured concentrations from
MADE-1 experiment. For this chapter both data petslished after the experiments were
revisited and reanalyzed. Resulting simulationsewesed to create 2D vertically integrated
contour maps and 1D profiles of relative mass itistion. Amount of recovered mass is not
comparable to the experimentation due to the limoms of reproducing the sampling procedure
in the field. However flow and transport simulaspbased on the presented approach, are
significantly capable of representing the spatidépt of the observed plume as well as the
multi-peak and heavy tail behavior of the obsemaddtive mass distribution along the down

gradient direction.

Chapter 5 combines the 3D flow simulations nearitifextion area with the GPR
hydrofacies approach developed in Chapter 2 anesiigates the effect of this additional piece
of information on the outcomes of flow-transporhsiations. This chapter demonstrates that the
complementary GPR data improves the representafitail behavior. The second part of this
chapter includes a comparative analysis for sirediplumes for several different scenarios
including: use of flowmeteK data, a transient flow scheme, and changing dessif HRK
profiles. This part of the study showed that: (@jvimneterK data alone is not sufficient to create
K fields to reproduce the plume behavior successf(®) no significant difference exist between
steady state and transient flow schemes in sinijgitene shape and characteristics, (3) HRK

profiles have a significant effect on the simulaphame.

Finally, Chapter 6 lays out a synthesis of the jmes chapters and tabulates the

conclusions of this research.
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Chapter 2

Hydrostratigraphic analysis of the MADE site with full-resolution GPR and direct-push

hydraulic profiling

Abstract

Full-resolution 3D Ground-Penetrating Radar (GP&padvere combined with high-resolution
hydraulic conductivity K) data from vertical Direct-Push (DP) profiles twacacterize a portion

of the highly heterogeneous MAcro Dispersion Expent (MADE) site. This is an important
first step to better understand the influence afifeq heterogeneities on observed anomalous
transport. Statistical evaluation of DP data inthsanon-normal distributions that have much
higher similarity within each GPR facies than betwéacies. The analysis of GPR and DP data
provides high-resolution estimates of the 3D geoynatt hydrostratigraphic zones, which can
then be populated with stochadtidields. The lack of such estimates has been afsignt
limitation for testing and parameterizing a ranfj@@vel transport theories at sites where the

traditional advection-dispersion model has provedequate.

This chapter is based on Dogan, M., R. L. Van D@nC. Bohling, J. J. Butler Jr., and D. W.
Hyndman (2011), Hydrostratigraphic analysis of M&DE site with full-resolution GPR and
directpush hydraulic profiling, Geophysical Research ésestt 38, L06405,
doi:10.1029/2010GL046439.
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2.1 Introduction

The transport of solutes through an aquifer is prim controlled by medium properties,
in particular the spatial distribution of hydrautionductivity K) [e.g.,Gelhar, 1993;
Fleckenstein and Fog@008]. Studies of mildly heterogeneous aquifersehdemonstrated that
solute transport can be reasonably modeled usangl#issical advection-dispersion equation
(ADE) with limited K data [e.g.Mackay et al. 1986;Hess et a].1992], and that
hydrostratigraphic analysis of core material img®transport predictions [e.hanikumar et
al., 2005]. In contrast, studies in highly heterogerseaquifers have shown that the classic ADE-
based approach witk data from conventional field methods does not ately simulate
transport in such systems [e §ggleston and Rojstaczet998;Whittaker and Teuts¢gti999].
Indeed, three large-scale natural gradient trageer@ments performed at the MAcro Dispersion
Experiment (MADE) site (Figure 2.1) on Columbus Rorce Base, Mississippi, USA, displayed
pronounced non-Gaussian behavidogigs et al.1992;Zheng 2006]. The MADE aquifer
consists of highly heterogeneous unconsolidatedalisediments (IK variance = 4.5 from
borehole flowmeter dat&fhfeldt et a).1992]), underlain by a clay aquitard at ~12 mtdep
Bowling et al[2005] used 2D Ground-Penetrating Radar (GPR) lamesinformation from a
nearby quarry to identify three main facies abdeedquitard: a meandering fluvial system over

a braided fluvial deposit over a fine-grained samdrbedded with clay and silt.

Several approaches have been proposed for singithnobserved tracer transport at
MADE by incorporating preferential flow paths [e.dheng and Goreligk2003] or mass
transfer between mobile and immobile domains [élgryey and Gorelick2000] into the ADE,
or by using a fractional form of the ADE [e.Benson et a].2001]. Although these approaches

may provide reasonable representations of the gegrlume behavior, they do not accurately
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replicate concentration histories at observatiolsweor can they be parameterized using
available data. Novel high-resolution charactermamethods, however, may provide the
necessary subsurface data to greatly improve iwadittransport simulations in such highly

heterogeneous systems and aid in the assessnadtéraftive transport theories.

GPR is a common noninvasive method for high-regmugxploration of spatial
variability in the shallow subsurface [e.gal, 2009], but it does not provide direct information
aboutK [Hubbard and Rubin2000]. Previous efforts to use GPR to improvevfand transport
models have combined GPR facies analysis with nead€fields and stochastic simulations
[Rauber et al.1998;Moysey et a).2003;Ezzy et al.2006;Engdahl et al.2010]. Such studies
have not directly combined surface 3D GPR data high-resolution in-sitiK estimates to

develop hydrofacies models for heterogeneous aguiféich is the focus of this paper.

In this paper, we present results of a recent fielshonstration at the MADE site where
full-resolution 3D GPR and cm-scale Direct-Push Y BlRlata were collected. Following a
description of the approach and methods, we digsitiesgeneral reflection patterns in the GPR
data cubes. We then present the results of a Gétésfanalysis for a 2D plane where four RP
profiles were obtained. Following a qualitative quarison of these collocated data sets, we
present the results of statistical tests to evaluditether GPR facies are also distinct
hydrostratigraphic units. The results of this fidkemonstration indicate that the combination of
methods presented here is a promising approaathéracterizing 3D hydrostratigraphic
structures. These structures, which can then belatgal by stochastic simulation Kffields,
can serve as the basis for flow and transport nsoofehighly heterogeneous aquifers, such as at

the MADE site.
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2.2 Methods

GPR is an excellent method to image shallow sediangistructures because the signal
response is controlled by textural propertidedl 2004]. In saturated low-loss media, such as
sand and gravel, the variable most directly lintee@&PR signal propagation and reflection is
porosity, which is governed by sediment charadiessuch as grain size, sorting, and packing.
GPR has traditionally been used for 2D and pseuictaracterization, but recent studies have
demonstrated the added value of full-resolutiomdaith less than quarter wavelength (
sampling for in- and cross-line directioriGrasmueck et 312005]. Full-resolution GPR
maximizes the potential to characterize 3D subserfdructures. Its vertical resolution depends
on signal wavelengths, which depend on by frequenaf propagating waves and dielectric
permittivities of the medium. For example, vertioagolution is ~0.145 m (14 for 100 MHz
signals in saturated sediments with a relativeedieic permittivity of 23 (EM velocity ~0.058
m/ns). The lateral resolution depends on the Fiesme, which gets larger with increasing

depth and decreasing frequency.

We used 2D GPR lines to characterize the stratigraper the region where three
natural-gradient tracer experimenfhgng 2006] were conducted. We then collected full-
resolution 3D GPR data around the Intensively Cévexh (ICA — Figure 2.1a) where a single-
well, push-pull tracer test was recently perforrfied et al, 2010]. A total of 3.8 km of GPR
lines were collected in the ICA cube using 50 a@@ MHz antennae, with step sizes of 0.2 and
0.1 m, respectively, which is less than theAlYéquired spacing. Line spacing was equal to step
size, thus forming a regular grid of GPR tracedalere collected using a sampling interval of
800 ps over 550 and 400 ns time windows, and 163&ratacks for the two frequencies,

respectively. Accurate positioning was achieveaggjuidance ropes and odometer-wheel
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Figure 2.1 (a) Map of the MADE site on Columbus Air Force B44FB) with GPR

measurement lines. The GPR survey coordinateshasersin blue. The blowup of the ICA cube

(144 m2) shows DP sites and locations of the 3D GPR cubEgyures 2.1b and c (yellow
shaded area) and the profile in Figure 2.2 (rethelddine); viewing angles are indicated with
arrows in corresponding colors. Full-resolution GBR data cubes at (b) 100 MHz and (c) 50
MHz are shown with no vertical exaggeration. An@&ope was used to render negative
amplitudes transparent; number labels in Figure aré discussed in the text.
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triggering. All GPR data were collected with a Sssand Software pulseEKKO 100 system
(1000V transmitter) at night and on weekends tadaflmght-time interference with a

communication station adjacent to the site (Figuie).

GPR data were processed with a background remibeal(dewow, 14 and 8 ns for 50
and 100 MHz, respectively) followed by a band-gdss to eliminate high-frequency noise.
Static corrections were then applied to flattenrefeection from the top of the saturated zone, as
the measured water table gradient was only ~0.0®@3cm over 111 m). The reflection times
for the saturated zone were converted to depthedoas the average measured velocity of 0.058

m/ns, from CMP and cross-borehole data.

A GPR facies approaciWan Overmeereri998] was used to identify zones with distinct
reflection characteristics. The primary criteri@dgo define GPR facies were reflection
terminations, dip angle, amplitude, and continutgD. We then compared GPR facies with
high-resolution verticakK profiles that were obtained with the new DP Highs&ationK
(HRK) probe. This tool, which was developed foridagharacterization of unconsolidated
shallow aquiferslfiu et al, 2009], is advanced into the subsurface while miatajected out of
a small screened port located a short distanceniehe tool tip. The injection rate and injection-
induced back pressure are recorded every 1.5 cerdilo of these quantities is transformed
into K following the approach describedliiu et al.[2009]. Although the calibration of the
transform equation is the subject of ongoing winlk, spatial patterns &f, which are of greatest
interest in this study, would not change with diffiet transformation parameters. We used the
Kolmogorov-Smirnov (K-S) test and box plots to exak differences amorgdistributions for

different GPR facies and layers.
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2.3 Resaults

Cutouts of the 100 and 50 MHz GPR data, with 10 Ehd of signal penetration,
respectively, clearly image the details of 3D dwues (Figures 2.1b and c¢). The 100 MHz north-

south oriented cut at 97 m East shows two ~2 nk thackages with northward dipping
reflections between 4 and 8 m dep@ (and@ in Figure 2.1b). These structures likely

represent large-scale clinoforms associated wieimell bar migration. This interpretation is

corroborated by a reflection pattern along the gedicular cut at 170 m North that resembles
trough cross-stratificatior@ in Figure 2.1b). The GPR reflections from the destortion of

the cube are dominated by sub-horizontal continueflsctors, but the signal is notably
attenuated for the 100 MHz data. The 50 MHz datackvdepict the same dipping clinoforms,

have reasonable signal strength to the top ofltheaquitard (Figure 2.1c).

We conducted facies analysis across a transe®bamlEast (Figure 2.2), where the
general reflection pattern is comparable to the@la 97 m East. For this analysis, 100 MHz
data were used from the water table to 8 m, andl 3@ data were used below 9 m. The average
data from both frequencies were used between ®andlepth (Figure 2.2a), since picks from
both were consistent. To define the spatial distidn of GPR stratigraphy, we developed an
algorithm for automated picking of peak amplitudes identification of laterally continuous
reflections (Figure 2.2b). Decisions on how refl@es connect and terminate were aided by 3D
analysis of the data. Using the procedure outlgedier, the GPR data were separated into four
GPR facies (Figure 2.2b). Facies A (green) consisssib-horizontal reflections, and can be
divided into two sub-facies those appear to bersepd by an erosional surface. The underlying

Facies B (brown) contains the most notable clinofgets, and these can again be divided into
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two sub-facies. The lowermost two facies are chiareed by laterally continuous sub-
horizontal reflections. Facies C (blue) has sevietatnal clinoform structures (based on 3D
analysis of the GPR data) and gently dipping baugpdurfaces; Facies D (tan) has primarily

horizontal reflections.

(a) Distance [m] (b) Distance [m]
166 168 170 172 174 176 178

() 111108A 1111088 Distance [m] 111108¢ 121108A
166 170 170 172 174 17

Depth [m]

log,, (KIm/dayl) ~ log,, (K[m/day]) ~log,, (K[m/day]) log,, (K[m/day])

Figure 2.2 Interpretation of GPR and HRK data at line 105&e(Eigure 2.1 for location). (a)
GPR profile with red (positive) to blue (negatiahplitude scale using combined 100 MHz and
50 MHz data; black triangles indicate the zone whbe two data sets were averaged. In
addition to processing mentioned in the text, thdega were plotted with an energy decay gain.
(b) Continuous reflections identified using an aébed picking algorithm and interpreted GPR
facies (color shaded). (c) Qualitative interpretatof GPR facies with HRK data; facies
boundaries are marked by horizontal lines.
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Figure 2.2c presents a qualitative comparison ®GPR data and the HRK profiles
along this transect. The GPR data show good coioelavith the HRK profiles, as is evident
from numerous small-scale anomalies that coincitle @PR reflections. In addition, GPR
facies are consistent with the mairzones across the interpreted portion of the aquiaecies A
has generally higK values, consistent with coarse-grained sedimetis.rélatively constar€
values in Facies A in profiles 111108A-C reflectugper HRK measurement threshold of
roughly 10 m/d; the actu#l values are likely higher and more variable thatdated. In the
zone with prominent clinoforms, Facies B shows idéaf) K with depth. Facies C shows
constant to increasing conductivities with depthereas Facies D is characterized by generally
high K values. There is a clear transition into the ldwaquitard at the bottom of HRK log

111108A (Figure 2.2c); in other logs, DP probe axdesnent was halted at the top of the clay.

The observations from this qualitative evaluatiaggest that GPR and HRK methods
can be used in tandem for high-resolution hydragnaphic analysis (Figure 2.3a). To evaluate
this possibility quantitatively, we statisticallpayzed theK data within GPR facies, sub-facies,
and layers. Boxplots in Figures 2.3b-e visualizedbscriptive statistics of thedata for GPR
facies, sub-facies, and layers (collectively caltsyments'), respectively. One-sample K-S tests
with 95% confidence intervals (Cl) rejected thel#nylpothesis that th& data from each
segment have a log-normal distribution (see Taldel df the appendix); therefore, the common

assumption thaK distributions are log-normal is not valid for thetsa.

To evaluate differences K distributions, we used two-sample K-S tests witPo9GI.
These tests show that the distributiorkKadata for each of the four GPR facies is distinee(s
Table A2.2 of the Appendix). Similar K-S tests wased to test the difference Kfdistributions

between adjacent segments. These tests show lthdjadent layers as well as sub-facies/facies
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have statistically distinct distributions Kf(see Table A2.2 of the Appendix). Although this
analysis suggests that the individual GPR facieslayers can be translated into statistically
distinct hydrofacies, it does not indicate thatbate necessarily equivalent. When khdata are
separated by individual HRK profiles in a plot oéam versus variance, the between-profile
variation in logK means for each facies is generally significamhaber than the between-facies
variation (see Figure A2.4a of the Appendix). Thisrdhowever, considerable overlap between
the mean log values for Facies B and C, which is expected sineg have opposite trends of
K with depth. Indeed, a plot of mean Ikgrersus the slope of Idg values with depth in each
facies clearly separates the facies into clust®s Figure A2.4b of the Appendix). Figure A2.4a
also shows that the variance of ldgs low for Facies A (affected k¢ truncation discussed
earlier) and D but higher for Facies B and C, whighargue is related to the depositional

environment.

Modeling of flow and transport through heterogerseaquifers would greatly benefit
from detailed characterization Kf Figure 2.3f demonstrates that as the aquifeplisiato
facies, sub-facies, and layers based on our stagtic analysis of full-resolution GPR data, the
total variance irK is drastically reduced. Most of this reduction asc the first two splits into
facies and sub-facies. Therefore, subdivision layers may not be required to develop realistic
3D K fields at this site. A wide range of stochastic moells can be used to distribute Heata
through facies/sub-facies shown in Figure 2.3ah@lgh a stochasti field could be developed
for all DP data shown in Figure 2.3a, it would clgaot be possible to fully capture the
geometry of the GPR stratigraphy based orkiluata alone. The value of separating the cube
into facies, sub-facies or layers (Figure 2.3f) tteen be quantified using simulations of tracer

tests through the stochastically derivedields.
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Figure 2.3 (a) 3D GPR facies boundaries (shaded to visustizegraphy) with collocated DP
HRK profiles. Descriptive statistics of theldedata for (b) all saturated material above the
aquitard, (c) GPR facies, (d) sub-facies, andgggrs. Box plots show the sample median,

interquartile range, and positions of extreme v&l(® Variance of logg K and InK values for
the data in Figures 2.3b—2.3e, respectively. Thdine is a power fit through the medians of the
variance values for each group (horizontal axi®gnscale).

2.4 Conclusions

Accurate predictions of transport through highlyehegeneous aquifers would greatly
benefit from a method to characterize the detastedacture of aquifers; this would be an
important first step to populate 30fields with high vertical and horizontal resolutidRecently
developed DP methods can provide high-resollidRIRK) data in vertical profiles, yet they
cannot provide sufficient spatial density to egsdblateral connectivity. In this paper, we

present the first comparison of full-resolution &PR and HRK data to develop high-resolution
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hydrofacies for highly heterogeneous sedimentsr ERR facies that were identified at the
MADE site were determined to be distinct hydrofadiased on statistical analysis of several
collocated HRK profile data. The division of thdaeies into smaller segments (sub-facies,
layers) results in zones with lower varianc&inThese zones can then be used to generate

stochastic fields with less uncertainty than praslyg possible.

We found good agreement between full-resolution GR&igraphy and HRK profiles,
thus forming a solid foundation for hydrostratignagpcharacterization of this site. Our approach
provides an opportunity to reconstruct 3D subs@rfstcuctures with their correct geometries and
hydrologic attributes. The strong connection betwine® HRK data and GPR facies indicates
that at many sites, a 3B field could be generated using GPR data tiedfewaHRK profiles.
Clearly, as facies change character laterally,temdil HRK profiles are needed to intercept

these facies and to capture a representativeldistrn ofK values.

It should be noted that the approach presentdusmaper is not without limitations. The
vertical and lateral resolution of GPR data isténand reduces with increasing depth. Limiting
the variance oK within hydrofacies units and layers nevertheleswiges the basis for better-
constrained stochastic fields for solute transponiulations. In future research, the hydrofacies

model described here will be used to test a rahgenerging transport theories.
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Stratigraphic analysis of full-resolution groundapérating radar (GPR) data at the
MAcro Dispersion Experiment (MADE) aquifer in Missippi identified 4 radar facies, 2 of
which can be subdivided in sub-facies, and 30 idd&@l layers (collectively called 'segments’).
In two tables, we present statistical analysesydfdwulic conductivity K) data obtained with the
HRK tool for these facies and layers. For eachefcand layer boundary in these tables, data
from a transition zone with 1/4 wavelength of theRsfrequency (1/8 wavelength on top and

bottom) was excluded from the analysis.

A one-sample Kolmogorov-Smirnov (K-S) test was utsedheck if K data in any of the
segments is log-normally distributed. Probabiligjues larger than 0.05 indicate log normal
distribution for a 95% confidence interval. CombigK data from four HRK profiles (111108A,
111108B, 111108C, 121108A), Table A2.1 providesnimmber of data points and p values of
the entire aquifer, the four facies (A: layers BB9)ayers 10-22, C: layers 23-26, D: layers 27-
30), the sub-facies, and individual layers (seaife@.2 for location relative to GPR full-

resolution data).

Table A2.2 provides the p values calculated usivagysample K-S tests with 95%
confidence intervals for the statistical comparisbfacies and consecutive sub-facies/layers,
respectively. The null hypothesis of this teshigttdata sets of 2 samples come from the same

continuous distribution.

Separated by facies and DP profile, Figure 2.4equisscross plots of Igg K mean

versus (a) variance and (b) the slopes of lineanrds of the change in IpgK with depth.
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Table A2.1 Single-sample K-S tests of four HRK profiles facies and layers identified in full-
resolution 3D GPR data (see Figures 2.1 and 213adations). Columns, “SEGMENT", name
of segment (facies/sub-facies/layer), "N_SAMPLREImber of HRK measurements used,

"p_FOR_LOG_K", p values for lgg K using single-sample K-S test with 95% CI.

SEGMENT | N_SAMPLE[ p FOR_LOG_K
ALL_DATA 2163 3.24E-28
Facies_A 503 6.47E-134
Facies B 534 3.76E-33
Facies_C 302 1.06E-136
Facies D 654 1.06E-31
Facies_Al 337 9.70E-109
Facies A2 12§ 8.73E-26
Facies_B1 26% 1.11E-03
Facies B2 232 1.04E-41
Facies_C 302 1.06E-136
Facies D 654 1.06E-31
Layer_01 55 9.08E-30
Layer_02 24 1.21E-07
Layer_03 26 1.84E-18
Layer_04 22 5.39E-11
Layer_05 65 8.40E-21
Layer_06 43 1.36E-29
Layer_07 13 3.29E-09
Layer_08 38 1.40E-11
Layer_09 48 3.26E-08
Layer_10 22 1.40E-04
Layer_11 33 2.68E-02
Layer_12 12 1.44E-02
Layer_13 38 1.85E-04
Layer_14 14 1.97E-10
Layer_15 21 5.78E-08
Layer_16 33 2.86E-08
Layer_17 15 7.84E-14
Layer_18 12 1.41E-09
Layer_19 18 5.94E-08
Layer_20 36 2.06E-13
Layer_21 12 1.13E-02
Layer_22 60 8.76E-20
Layer_23 10 1.13E-07
Layer_24 22 1.12E-16
Layer 25 92 6.56E-60
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Table A2.1 (cont'd)

SEGMENT| N_SAMPLE | p FOR_LOG_K
Layer 26 64 1.16E-17
Layer 27 79 6.41E-11
Layer 28 70 1.50E-08
Layer 29 123 4.47E-12
Layer 30 155 1.94E-18

Table A2.2 Statistical comparison of K values for four idéet radar facies and adjacent
segments, where p values were calculated usingammple K-S tests. Columns, "SEGMENT",
names of compared consecutive segments (faciefdsigs/layers), "p. FOR_LOG_K", p values

for logyo K using two-sample K-S test with 95% CI.

SEGMENT p_ FOR LOG K

Facies_A-B 8.06E-110
Facies A-C 3.11E-158
Facies_A-D 5.09E-94
Facies B-C 9.50E-44
Facies_B-D 8.80E-49
Facies C-D 2.91E-14p
Facies_Al-A2 8.67E-08
Facies_A2-B1l 1.27E-2L
Facies_B1-B2 4.20E-1y7
Facies_B2-C 1.54E-11
Facies_C-D 2.91E-14P
Layer_01-02 5.32E-16
Layer 02-03 3.26E-1P
Layer_03-04 5.40E-0b
Layer_04-05 5.02E-02
Layer_05-06 7.84E-0b
Layer_06-07 2.26E-01
Layer_07-08 1.64E-01
Layer_08-09 1.97E-06
Layer_09-10 6.80E-0b
Layer_10-11 2.39E-08
Layer 11-12 1.13E-02
Layer_12-13 1.23E-08
Layer 13-14 6.34E-0f
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Table A2.2 (cont'd)

SEGMENT | p FOR LOG K

Layer_14-15 1.54E-08
Layer_15-16 7.16E-0%
Layer_16-17 2.90E-10
Layer_17-18 5.73E-0Y
Layer_18-19 1.88E-0Y
Layer_19-20 1.09E-01
Layer_20-21 4.84E-0b
Layer_21-22 2.73E-06
Layer_22-23 6.31E-08
Layer_23-24 1.24E-02
Layer_24-25 3.10E-02
Layer_25-26 1.44E-0y
Layer_26-27 2.22E-10
Layer_27-28 2.05E-04
Layer_28-29 7.31E-12
Layer_29-30 2.83E-08
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Figure A2.4 (a) Cross plot of logh K mean and variance for high resolutidmata from four
DP profiles (see Figure 2.1 for location and Figau2for data). (b) Cross plot of lpgK mean

and the slopes of linear trends of the changegng& with depth. In these plots, each facies is
shown by a different symbol and color. The numiextno each symbol indicates the DP profile
(1, 2, 3, and 4 represent 111108A, 111108B, 1111888 121108A, respectively).
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Chapter 3

Hydraulic conductivity fields: Gaussian or not?

Abstract

Hydraulic conductivity K) fields are used to parameterize groundwater #oa transport
models. Numerical simulations require a detailguesentation of thK field, synthesized to
interpolate between available data. Several restendies introduced high resoluti@ndata

(HRK) at the MAcro Dispersion Experiment (MADE)sesitand used ground-penetrating radar
(GPR) to delineate the main structural featurethefaquifer. This paper describes a statistical
analysis of these data, and the implicationféield modeling alluvial aquifers. Two striking
observations have emerged from this analysis. iFeiei$ that a simple fractional difference
filter can have a profound effect on data histograonganizing non-Gaussiankndata into a
coherent distribution. The second is that using GRires allows us to reproduce the
significantly non-Gaussian shape seen in real HRta g@rofiles, using a simulated Gaussian In
K field in each facies. This illuminates a curreobiroversy in the literature, between those who
favor Gaussian IK models, and those who observe non-Gaussinfields. Essentially, both

camps are correct, but at different scales.

This chapter is based dheerschaert, M.M., M. Dogan, R. L. Van Dam, D. Wndman, and
D. A. Benson (2013), Hydraulic conductivity fieldSaussian or not? Water Resources
Research, doi:10.1002/wrcr.20376.
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3.1 Introduction

Groundwater flow and transport simulations regaidensely defined hydraulic
conductivity K) field to populate the model grid. Because itas practical to collect 2-D or 3-D
data at this resolution, stochastic simulation méshare commonly used to interpolate between
measured data values. Stochaktieeld simulation requires a statistical analydishe available
K data, to ensure that the synthesiKefield resembles the data in terms of its distidrutand
correlation structure. The two main simulation stape: (1) generate an uncorrelated noise field;
and (2) apply an appropriate filter to impose a@ation structure. Since random number
generators produce only uncorrelated noise, betbsstire necessary. To parameterize the
simulation model, the process is reversed: (1)yapplappropriate inverse filter to the raw data
to remove the correlation; and (2) examine ther@d, uncorrelated data to determine its true
underlying distribution. Unless the data is fil@q@operly to remove correlations, the data
histogram can significantly misrepresent the undegl distribution, since a histogram of
correlated data need not reflect the true undegldistribution. In this chapter, we will see a

remarkable example of this simple and well-knowect.fa

Hydraulic conductivity data from the Macro DispersiExperiment (MADE) site, at the
Columbus Air Force Base in Mississippi, clearlywtehigh level of heterogeneity in hydraulic
properties Rehfeldt et a).1992;Zinn and Harvey2003;Llopis-Albert and Capilla2009]. The
site was recently revisited to obtddrmeasurements with much higher spatial resolutian t
previous measurementBdhling et al, 2012;Liu et al, 2009]. Vertical columns (profiles) of
hydraulic conductivity data were measured at appmately 1.5 cm depth increments, using a
new direct-push profiling method that couples threa-push injection logger (DPIL) and the

direct-push permeameter (DPButler Jr et al, 2007;Liu et al, 2009, 2012]. This novel high-
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resolutionK (HRK) tool was advanced into the subsurface, wivéger was injected out of a
small screened port located a short distance behatbol tip. The injection rate, and injection-
induced back pressure, were recorded every 1.@ndtthe ratio of these quantities was then
transformed int& estimateslfiu et al, 2009]. The cm-scale spatial resolution of theiltexy K
data is orders of magnitude finer than the dataicened in previous studieR¢hfeldt et a).
1992;Meerschaert et al2004;Bohling et al.2012] analyzed the resultifgdata, and compared
those measurements to previous flowmeter-b&sestimates collected at lower resolution

across the same site.

A parallel data collection effort used ground- peating radar (GPR) to image the
related sedimentary structures in the aquiferedafhcies, by identifying distinct reflection
characteristics, such as reflection terminations adgles, amplitudes, and continuity. Such GPR
facies have been shown to correlate with hydroggcdd units [e.g., se¥an Overmeerernl998;
Heinz and Aigner2003;Schmelzbach et aR011]. Full-resolution 3D GPR data using 50 and
100 MHz antennae were obtained with step sizesl{aaepacings) of 0.2 and 0.1 m,
respectively, using a Sensors and Software puls€EKB0 system. Data processing and
analysis to extract facies boundaries was deta&l&bgan et al[2011]. The map in Figure 3.1
outlines the GPR data collection site, and thetlonaof the four HRK profiles that form the
basis for our study. The ICA (Intensively Cored &reube was the site of a push-pull tracer test
described irLiu et al.[2010], see als@heng et al[2011]. The MLS (Multi-Level Sampler) cube

was the site of the MADE-5 tracer test reporte8isnchi et al[2011].

The modeling of hydraulic conductivity fields aetMADE site has been the focus of
intensive study and modeling for over twenty yeditse geostatistical analysis Rehfeldt et al.

[1992] documented a high level of heterogeneitgtidated by the variance of 4.5 forKnin
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their multi-Gaussian model, as well as anisotrapgicated by horizontal and vertical
correlation scales of 12.8 m, and 1.6 m, respégti&lliman and Wrigh{1988] andRubin and
Journel[1991] argued that a Gaussian model with a singl@riance function cannot reproduce
the preferential pathways (connected regions viighhighest IrK values) observed in real
aguifers.Gomez-Hernadez and WEr998] continued this argument against the muliu&sian
model, and cautioned against drawing broad cormhsson the basis of one dimensional data
distributions.Renard and Allard2011] survey several methods for characterizimgnectivity,
and note that the multi-Gaussian model alone enaftsufficient to reproduce the connectivity
observed in real aquifers. Significant deviatiomsf a Gaussian profile were notedPginter
[1996] andMeerschaert et a[2004], and some alternative non-Gaussian modets wroposed.
Zinn and Harvey2003] point out that even in a model with GaussreK profiles, deviation
from the usual multi-Gaussian model can lead taneoted featuresSalamon et al[2007]
discuss the non-monotone variograms in MADK Idata, and recommend a sequential
Gaussian simulation methodology with a non-monotmmeariance structure, to reproduce this
“hole effect.”LIopis-Albert and Capill§2009] use a gradual conditioning algorithm todaroce
non-Gaussian IK fields based on flowmeter, head, and concentratada from MADE-2. This
controversy between Gaussian and non-Gaussiriids has profound implications for flow
and transport modeling. Heavy taileddrdistributions support novel approaches includhng t
CTRW [Berkowitz et al.2006], fractional ADEBenson et al.2013], and some related
stochastic hydrology model€{ishman and Ginr2000;Neuman and Tartakovsk®009], while
Gaussian IrK models are more consistent with the traditionaEADhobile-immobile, and dual-

domain models.
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Figure 3.1 Layout of Macro Dispersion Experiment test sitegwsing key features of MADE

experiments, as well as the locations of GPR daltaated for this project. The inset of the

12x12 m ICA (Intensively Cored Area) cube showsltivations of the four HRK profiles and
the 2D transect discussed in this paper.

The two main findings of this study are that: (¥jactional difference filter can be useful
to reveal the true underlying distribution of higltorrelated vertical columns of HRK data; and
(2) using GPR facies, a multi-Gaussian simulatiathmad with an appropriate operator scaling
correlation structure applied to each facies canaduce the significantly non-Gaussian profiles
seen in columns of filtered HRK data. There remaisgynificant debate in the literature
between those who favor Gaussian models, and otlferdelieve that a non-Gaussian approach
is needed. In our view, both groups are correbgitht different scales. Within a single facies,
an appropriate multi-Gaussian model can be effecand when different facies are combined, a

non-Gaussian profile with a sharper peak and aibetail will emerge.
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3.2 Statistical analysis

Many studies have analyzed the statistical progedf low-resolutiolK data profiles;
seeMeerschaert et a[2004] for a brief review. A typical field experant collectK data at a
vertical resolution of 1 — 3 m. Since the verticadolution of the new HRK data is orders of
magnitude finer, it is useful to reconsider thauhessof past analysis. For relatively homogeneous
aquifers, it has been common to employ a log-nodistibution forK: the distribution of IrK
is assumed to be normal, and aquifer heterogerseityerred from the variance of K [Rehfeldt
et al, 1992]. A more detailed analysis suggests a degaftom normality, with a sharper peak
and heavier tails [e.gLu et al, 2002;Meerschaert et al2004]. This deviation becomes more

significant for aquifers that display a higher dsgof heterogeneity.

Typical values for IrIK are highly correlated, leading many researcheesrtploy models
such as a fractional Brownian motion. The MADE sstaighly heterogeneous, with K
variance greater than 4.5. Several novel models baen proposed to try and capture this
combination of non-Gaussian distributions and gjroorrelations [e.gRainter, 1996;Herrick

et al, 2002;Molz and Bomanl1993;Kohlbecker et aJ.2006].

Figure 3.2a shows a histogram oKrdata from HRK profile 121108A (see map in
Figure 3.1). The histogram suggests a complex Wydgrdistribution, widely varying with
several peaks, and no simple discernible shapeadidnal difference filter was applied to
remove the correlations, resulting in the histogmarigure 3.2b. The filtered data show no
significant serial correlations, indicating thaadtionally integrated noise is a reasonable model
for this vertical column of K data. Fractional models have been applied in hgdyosince

pioneering work oHurst[1951] on flood levels of the Nile river. In thes®dels, observations
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X; are related to a sequence of independent andadiydistributed random variables,

(white noise) by the fractional difference relation

o0
J=0

where the fractional binomial coefficientg can be computed recursively usiwg=1 and

szwj_l(j-l-d)/j for j>1. If the underlying noise sequentg is Gaussian, then the sequebge

is a fractional Brownian motion with Hurst indéixd-1/2. See the Appendix 3.1 for more

details.
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Figure 3.2 Histogram of IrK for HRK profile 121108A (see map in Figure 3.1jdre (a) and
after (b) applying the fractionalftierence filter (1) wittd=0.9. The filtered data are organized
into a unimodal distribution with a sharper peald arheavier tail than the best fitting Gaussian
probability density function (black line).
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Figure 3.2b was obtained using a fractionéledence filter wittd=0.9. The parameted
was gradually increased until the autocovarianoe giiowed no significant correlations, see
Figure 3.3. The same valueafvas éfective in removing correlation in all four vertiddRK
columns 111108A, 111108B, 111108C, and 121108AKgpare 3.1) that formed the basis for
our study. A fractional diference filter of orded=0.89 was used iLu et al.[2002] to remove
correlations in laboratory Id data from a vertical sandstone core; a valld=0.9 was found
suitable for a sandstone slabMiajor et al.[2011]; Meerschaert et a[2004] usew=0.74 for

lower resolution IrK values from three horizontal profiles in a sandsttacies at a site in Utah.

The dfect of fractional dferencing on the histogram is striking. The filteif8K data in
Figure 3.2b form a coherent shape, with a sharpak pnd a heavier tail than a Gaussian (the
data fail the Anderson-Darling test for normalp<0.0005. It is known that correlation can
distort a histogram, but we have never seen swbbaa example in real data. The fractional
difference filter transforms a highly complex histograio a form amenable to statistical
modeling, by removing the correlation. This is tinst major finding of our statistical analysis:
A simple fractional dference filter is sfficient to capture and remove the correlation strectu
of a vertical InK profile. This filter reveals the underlying nodistribution needed to design a

faithful In K field simulation.

The dramatic transformation between Figures 3.283a2b has not been observed
previously, perhaps because the available data erer more homogeneous (e.g., laboratory
studies of a sandstone slab) or more widely spgeegd flowmeter data from field studies) than
the data considered in this study. Since our d&&lasely spaced, many simildrvalues tend
to clump together due to high correlations, crephirstogram peaks. These high correlations are

evident in Figure 3.3a. Mathematically, this straogrelation is a fractional integration. Since
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each vertical section spans severéfedent facies, with significantly fferent material
properties, multiple peaks can occur in a singl&HiRofile. The fractional dference filters out

the correlations by reversing the fractional insigm.
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Figure 3.3 Autocorrelation function for 1K from HRK profile 121108A (see Figure 3.1) before
(a) and after (b) applying the fractionaffdrence filter (3.1) witld=0.9. Autocorrelations inside
dashed lines are statistically zero.

Next, we discuss our simulation scheme. Sincertlikedata exhibit long range
dependence, with a shorter correlation length énvirtical direction, we applied the anisotropic

random field generator @enson et al[2006]: Fourier transformed Gaussian white nois&0

H+1
1.5 cm grid was multiplied by a Fourier filty (k)= [ Y C;|k-0;]> 172 with Hurst index

H=0.4, 61 horizontal 0, vertical, and correlation length parameiC{=10 andC,=1 to produce

anisotropic IrK fields with a longer correlation length in the izontal direction. In this
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simulation, any horizontal row or vertical columihsimulated data represents a fractional
Brownian motion with Hurst inde4=0.4. The horizontal autocorrelation parameCjrwas
chosen to match measured autocorrelations betwediour vertical HRK profiles 111108A,
111108B, 111108C, and 121108A used in this studtydbe to the 4 m horizontal spacing, this
represents only a very rough fit. The simulateH fireld was then adjusted to impose the same
mean and standard deviation as the log-transfoitdt@d data. The conditioning algorithm of
Benson et al[2013] was then applied, to make the simulateld freld agree with available

HRK data. Figure 3.4a shows the results of thisuktion procedure for the combined HRK

data, without subdividing into GPR facies.

Next the HRK data were segregated by facies, ubie@gPR method discussed in
Section 3.1. Both the mean and the standard dewiafilnK were found to vary significantly
between facies. Separatedrfields with the same mean and standard deviasahelog-
transformed HRK data were generated over the emiidel domain for each facies, using the
same method ddenson et al[2006, 2013] with the same filter, and the sam&eavhoise
sequence as in Figure 3.4a, with dip arf;lenatched to the orientation of GPR reflections for
each facies. Then, GPR facies boundaries weretasad out the relevant portions of the
simulated IrK field for each facies, resulting in theKnfield shown in Figure 3.4b. The
multiscaling fractal filter used in this simulatiomethodology produces enhanced connectivity,
as compared to a traditional multi-Gaussian mddehnectivity is further enhanced by our

facies approach, since Kstatistics vary by facies.
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Figure 3.4 Simulated IrK field without (a) and with (b) GPR facies (daslieds), conditioned
on four HRK profiles (vertical black lines). Hist@gn (c, d) of one column (white linex =172
m) from simulated IKK field (a, b, respectively) after applying the fianal difference filter (1)
with ¢=0.9. The histogram (c) fits a Gaussian model, buthiktogram (d) from facies
simulation (b) deviates from Gaussian shape, sirtolaneasured HRK data (Figure 3.2b).
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Figure 3.5 shows the Gaussian fit to fractionalf§edlenced IrK data in a single facies,
using the facies boundaries shown in Figure 3.4e. data from facies A (shallowest) at
horizontal location 174 m had the smallest standardation ¢=0.0110). The probability plot in
Figure 3.5a shows that these data fit a Gaussg&nhidition reasonably well, except for a single
outlier (0.7244, removed). The histogram (not shpisrsimilar to Figure 3.4c. Figure 3.5b
shows the corresponding plot for facies D (deepadtprizontal location 170 m, which had the
largest standard deviatiols=0.3637 ). Since the points on the probability plot in tig 3.5b
show a significant and systematic deviation from risference line, a lack of fit to the Gaussian
model is indicated. The histogram (not shown) nsilsir to Figure 3.4d. We attribute this
deviation from the Gaussian model in our data éoetkistence of sub-facies and smaller
sedimentary variations with significantlyffirent material propertie®pgan et al. 2011]. In
this study, we employ only a few of the most defua and connected GPR reflection
boundaries, to subdivide the model domain into filistinct facies. However, the full
geostatistical analysis reportediogan et al[2011] did uncover additional substructures.
Zhang et al[2013], and others referenced in Section 3.5 af gaper, find that sub-facies
heterogeneity has only a secondary influence orspart, hence the importance of accurately

modeling sub-facies is unclear.

As noted bySilliman and Wrigh{1988] and further discussed @omez-Hernadez and
Wen[1998], a multi-Gaussian simulation with a singte/ariance function will not produce
continuous regions where the highest or lowest fralues occur. However, in our model, the
facies with the highest or lowest mearKlwalue produce just such features. This is no
contradiction, because our model employsffetent multi-Gaussian mean and covariance

structure in each facies. In our opinion, the “heffect” in the variograms dRehfeldt et al.
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[1992] andSalamon et all2007] can be the result of combining data fromstidct facies, which
will naturally cause a deviation from a single m@gaussian model with a fixed mean and
covariance structure. Furthermore, combining theutated multi-Gaussian IK values from
different facies does produce the kind of non-Gaumskistogram, with a sharper peak and a

heavier tail, frequently seen in column data.
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Figure 3.5 Fractionally dfferenced IrK data (a) from the shallowest facies at horizolatehtion
174 m fits a Gaussian distribution. Deepest fafi¢st horizontal location 170 m deviates from
the Gaussian model. These probability plots shanstirted data on the horizontal axis, and the
corresponding model percentiles for the best fitBaussian model on the vertical axis. If the
data fits this model, the points will follow thefeeence line, with some random scatter.
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This simulation methodology used to produce thk freld in Figure 3.4b produces
results similar to the indicator geostatistics ro€tbhfFogg et al.[1998], which has been
successfully applied in both groundwater hydrolpgieissmann et al1999] and surface water
hydrology [Rubin et al. 2006]. The idea of combining fractal simulatioetirods with a facies
model is already present liu et al.[2002]. The diference in our approach is that we use GPR to
determine the facies boundaries. Since the acisa#d boundaries are known, there is no need
to resort to an indicator simulation method to bgsize the facies boundari&stzi [2000] notes
that lithofacies data can also be used to deterfaries boundaries, but if aquifer lithology is
not available at gticient resolution to parameterize a flow and transpmdel, then a
combination of GPR facies and HRK profiles can jmewa useful modeling approach for highly

detailedK field synthesis.
3.3 Model validation

If a simulated IrK profile exhibits the statistical features of a mead InK data profile,
then this validates the simulation methodology. fistogram shown in Figure 3.4c represents a
single column (81st column, at 172 m) of valuesftbie simulated I field without GPR
facies in Figure 3.4a, fractionallyfterenced wittd=0.9 as in Figure 3.2b. Without facies, the
fractionally dfferenced simulated HRK profile fits a Gaussian digtion, and hence does not
resemble the measured HRK data. Figure 3.4d shmevwsarresponding histogram from a single
column of the simulated IK values with GPR facies in Figure 3.4b, fractiopdlifferenced
with ¢=0.9. Before fractional dferencing, the simulated profile histogram (not shpappeared
similar to Figure 3.2a. After fractionalf@rencing, the histogram of simulated values in f@gu
3.4d appears quite similar to the correspondinpgiam in Figure 3.2b, with a sharper peak and

a heavier tail than the best-fitting Gaussian. €ree also some significantf@grences between
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Figure 3.4d and Figure 3.2b, including a higherkpaad some asymmetry in Figure 3.2b, but the
overall shape seems to support our conclusionctirabining simulated GaussianKnvalues

from different facies can reproduce a significantly non-Giansshape, similar to what is seen in
real HRK data profiles. Even though the simulates@ is normal in each facies, the histogram
in Figure 3.4d does not fit a normal probabilityndity (Anderson- Darling tep<0.0005). This

is due to the well-known fact that a mixture of Gsian random variates withffiirent mean

and/or standard deviation cannot be normally disted. Indeed, many non-Gaussian
distributions that have been used to modd bhata, including the Laplace and symmetric stable,
are Gaussian mixtureKtz et al, 2001;Guadagnini et al.2012;Riva et al, 2013a]. We

conclude that GPR facies are useful in this sinutatas they provide a data-based procedure for
delineating statistically distinct regionskfvalues, leading to the more sharply peaked and non
Gaussian profile evident in Figure 3.4d. The faaipgroach also allows us to preserve observed

correlation structures and angles.

In order to gain a practical appreciation for theuaacy ofd estimates, we then
simulated a number of statistically identicaKrields, and applied automaticestimation to the
resulting InK profiles. Using a standard maximum likelihood mestiion routine for fractional
ARIMA models, we found typical estimates of tth@arameter to vary from the true (input)
value ofd=0.9 by +0.2 in those simulations. Hence we cannot rule outotalues ofl
(includingd=1.0, a simple diference), and the estimatddalue from any single profile should
only be taken as a rough indicator of the true @allowever, since the valid=0.9 resulted in
no significant serial correlation in any of the fd4RK profiles in this study, this value was
deemed adequate for our purposes. It is certamggiple that more significant variationsdn

could emerge on a larger scale, or atffedent site.
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We believe that the departure from a Gaussianilgigion, commonly observed in many
In K data profiles from alluvial aquifers, can be atiited to mixing. Although our simulated In
K field is based on Gaussian noise, the distributiioany single column exhibits a significant
non-Gaussian shape, becaudéedent facies are mixed. This leads to the secondrrfiading
of our statistical analysis: A simulation that u&RR facies, with a fractional Brownian motion
within each facies, generatesHrfields whose fractionally fierenced vertical profiles have a
strongly non-Gaussian distribution, with a shapegik and a broader tail, consistent with non-
Gaussian IlK models applied in previous studiédderschaert et al2004;Painter, 1996]. The
GPR data are valuable in this simulation methot;esthey delineate facies boundaries that

allow the Gaussian simulation to reproduce non-GandnK profiles.
3.4 Discussion

Modeling and simulation d fields is challenging, especially in highly hetgeneous
aquifers including the MADE site, where thelrfields exhibit anisotropyBoggs et al.1990;
Riva et al, 2008], long-range correlationslguman 2003;Ritzi et al, 2000], non-monotone
variograms Ritzi et al, 2004;Salamon et aJ.2007], and a significantly non-Gaussian shape
[Ritzi et al, 2004]. The standard model ofknis based on a normal distribution, but many
studies have found significant deviations from @aussian shape in increments of low
resolution InK field data, with a sharper peak and/or heavid¢s feerschaert et gl2004;
Painter, 1996, 2001]. Some researchers have suggesteddtiaiate representation of talata
at the smallest scale may be a critical componkstlote transport simulation, particularly
regarding the distribution and long-range dependéiceng et al.2003;Ritzi et al, 2004;Dai
et al, 2004;Ramanathan et gl2008]. Based on the statistical analysis repadrtetis paper, we

find that the observed non-Gaussian distributiofraxtionally dfferenced IrK data from
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alluvial aquifers can be reproduced using a Gandsi field in each facies. The combination
of In K data from diferent facies at ffierent depths combines into a data profile with @ no
Gaussian shape (e.@ainter, 2001). The non-GaussianKndistributions used in previous
studies are also Gaussian mixtures of this tyge.vitell known that mixing of data from
different populations changes the histogram shapét, isuisually impossible to reconstruct the
Gaussian components. This has led to popular itafiggostatistics methods that synthesize
facies boundaries (e.g/Veissmann et al1999). Using GPR facies, it does seem possible to
delineate the actual facies boundaries withoutrtiegpto simulations, and thereby reduce
measured IfK data to a reasonably Gaussian form. This allogisn@le method for interpolating
highly variable and non-stationary knfields. Another advantage of facies modeling id tut

in [Winter et al, 2002, 2003]: It facilitatesfficient perturbation-based stochastic methods based
on locally homogeneous In K fieldRiva et al[2013b] has reported a significantly non-
Gaussian distribution of log permeability for theotfaces parallel to bedding in a relatively
homogeneous sandstone slab, while the distribatiotne other four faces was close to

Gaussian. Hence the Gaussian facies model prorhetednay not be universally applicable.
3.5 Conclusions

In this paper, ground-penetrating radar (GPR) céiftes were used to delineate facies
boundaries, and a high resolution fractaKlfield was simulated within each facies to
interpolate between availaltedata. There were two main findings of this stugyst, a
fractional dfference filter can be useful to capture the coilagtructure of IrK profiles. The
unfiltered data histogram from one profile is s@hedistorted, but the filter uncovers a coherent
noise distribution, required for simulation desi§econd, GPR data can be used to delineate

facies boundaries for th€ field model. While the overall distribution of K profiles in a typical

59



alluvial aquifer deviates significantly from Gaums) it is reasonable to model theKrield

within each GPR facies as Gaussian. The deviatan fSaussian in the combined profile is the
result of mixing, since the combination of datanirdifferent Gaussian distributions will no
longer fit a Gaussian model. In past research, nrargstigators have assumed a Gaussian
model for InK, while many others have presented strong evidEmmagon-Gaussian alternatives.
Our analysis indicates that both groups are caredioeit at diferent scales, consistent with the
findings ofLu et al.[2002]. A Gaussian model with an appropriate catreh structure can be
adequate for a single facies. For a highly hetaregas aquifer, comprised of significantly
different facies, the combination offnvalues with a dferent mean and variance in each facies

will produce significantly non-Gaussian profiles.

3.6 Acknowledgments

Support for this research was provided by NSF gramiS-1025486, DMS-0803360,
EAR-0738938, EAR-0738955, NIH grant RO1-EB012074] RRF grant 48515-G8. Any
opinions, findings, and conclusions or recommematiexpressed are those of the authors and
do not necessarily reflect the views of the fundaggncies. We thank GEdohling and Jim
Butler Jr. at the Kansas Geological Survey forghtful discussions. Thanks also to Hans-Peter
Schéfler at the University of Siegen for providing themgmuter simulation code for operator

scaling random fields.

60



APPENDICES

61



APPENDI X 3.1: Fractional differencefilter

The fractional difference filter was pioneeredHbyrst[1951] to remove correlation in
river flood level data. It has now become a statidaol in one dimensional time series analysis
[Brockwell and Davis1991] and multidimensional spatial statistiBeffan 1994]. Given a
correlated time series;, (or a spatial series collected at equally spacthals along a one

dimensional line), the backward shift operr:BXn=Xn_1 facilitates a simple notation for the
fractional difference
o0
d~y _ dy — . :
A"Xn=(I-B)*X= Wi Xpijs (A3.1)
j=0

where the fractional binomial coefficients

o a(dy_ (DT@@+1)
wi=(-1)! (j) ITYCATS)) (A32)

using the natural extension of the integer ordeotmial coefficients. Using the well-known

propertyl'(x+1)=xI"(x) of the gamma function, one can also write

—d(1—d)~ (—1—d)

(A3.3)

from which the recursive formulg; =W (j-1-d)/j follows. Hence in the special case where

is a positive integer, the sum (A3.1) is finitencse'wj=0 whenj > d. Integer order derivatives

are defined as the limit of difference quotientsigghese operators. In the same way, fractional
derivatives can be defined as the limit of fracéibdifference quotientdjeerschaert and

Sikorskii 2012].
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In time series and spatial statistics, an integderndiference is also useful to remove
trends, since for example the first orddifetience of a linear trend is a constant, and thenskec
order dfference of a quadratic trend is also a constanteShe goal is to filter out the

correlation (and possibly a trend), dfeetive fractional dference filter will output an

uncorrelated white noisZn=Aan. This is tested in practice by computing the sampl

autocorrelation defined kp(h) =y(h)/7(0) where the sample autocovariance is defined by

N-h N
7(h)= Z (Zp+n-Z)(Zn-Z) with z=§ Z Zn (A3.3)
n=1 n=1

for a data set of length N. Standard statisticabti [Brockwell and Davis1991] shows that, for
largeN, the sample autocorrelation of an uncorrelatedevmise at any lag h is approximately
normally distributed with mean zero and varian@é. Since this random quantity lies between

+1.96/+/N approximately 95% of the time, the autocorrelapdots in Figure 3.3 show dashed

lines at£1.96/+/N. Then the correlation in the data is judged tstagistically insignificant
(statistically zero) if 95% of the sample autoctatiensp(h) lie within these bounds, and the
remaining sample correlations do not lie very fatsale these bounds. In this case, there is no
compelling evidence to contradict the (null) hypestis that the correlation is zero at any lag

h # 0. The dateZ;, in Figure 3.2b was obtained from equation (3.Ingishe datéX;, from

Figure 3.2a, and the optimal valued=0.9 was determined by increasidgyradually until the
autocorrelation (Figure 3.3) was reduced to beassiizdlly zero. It is also possible to obtain an
estimate ofd for a single time series using standard maximuslililbod estimation routines for

fractional ARIMA models Brockwell and Davis1991].
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For spatial data in 2 or 3 dimensions collecteelcpially spaced grid points, a fractional
difference filter can be applied in each coordinate. diderd of the fractional dference filter
can vary with the coordinate to remove spatial@ations. The entire data set can be used to
estimate the order(s) of the fractiondfelience Beran 1994;Guo et al, 2009], which

facilitates a more accurate estimate ofdhmarameter(s).
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APPENDI X 3.2: Flow-Transport Simulations

The work presented in this chapter demonstrateadkiantages and the details of
fractional differencing and fractal stochastic siation methods for creatin fields. It also
emphasizes the contribution of GPR derived facmsbaries to define hydrologically different
parts of the aquifer. Although thefields generated using a combination of GPR an& ldRta
sets using fractal statistical methods exhibit el estatistical representation i§fdata, it is
important to also see the effects of these diffelkerealizations on flow and transport
simulations. Therefore, this section involves flmansport simulations through the simulated K

fields to investigate the distinct effects of edela set.

Macro-scale tracer experiments at the MADE sitelted in the well-known non-
Gaussian behavior of tracer concentrations withtiplalpeaks and a heavy tail, as explained in
detail in Chapter 1.3. However, most of the ean@deling efforts were not successful to
reproduce both components of the behavior simuttaslg. This additional study also aims to
test whether it is possible to reproduce these comapts using new data sets (HRK and GPR)

and K fields.

Based orK fields discussed in this chapter, MODFLOW and MT&itware were used
to model hydraulic heads and conservative traagsport. The model domain had 160x570
(width x height) cells representing a 16 by 9.8wid{h x height) vertical cross section of the
aquifer. The entire model was saturated duringstimeilation, with specified head boundaries on
the two sides of the domain, and no-flow boundaaitesve and below. The tracer was injected at
x=166 m with 100 mg/l concentration over the entiepth for two days to minimize potential

boundary related artifacts. Figure A3.6 (top) shawessimulated plume through the simKle

This appendix is not included in the manuscript
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model, assuming a constdfitvalues in each facies, set to the median of thesmreK values

in that facies, 500 days after the injection. FggaB.6 (middle) shows the same plume simulated
through theK field (shown in Figure 3.4a) populated withoutngsfacies boundaries. Figure

A3.6 (bottom) shows the plume simulated throughkHield populated using both HRK data

and facies boundaries. Flow and transport throbhghdp and bottom facies is significantly

faster, with more dispersion than the middle twoda.
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Figure A3.6 Simulated plume 500 days after the end of injectiming a constark value in
each GPR facies (top), tikefield from Figure 3.4a without GPR facies (middlahd theK field
from Figure 3.4b with GPR facies (bottom).
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Figure A3.7 Normalized concentration profiles (top) 500 dayerthe end of injection, and
normalized concentration breakthrough curves (Ibofteneasured at location x=172 m, from the
three simulations illustrated in Figure A3.6.

In order to achieve a detailed comparison of thedlsimulations illustrated in Figure
A3.6, concentration histories and profiles wereated. Figure A3.7 (top) shows the normalized
concentration profiles for the simulated plumeguifeé A3.7 (bottom) shows the normalized
concentration histories at location x=172 m, bldakhed lines in Figure A3.6. These curves
demonstrate the impact of each data set (GPR ai BRplume behavior. The simpke
model represents what can be accomplished usiiyg@&PR facies. The resulting curves show
smooth, symmetrical variations in concentratiort thaanot compare favorably to the field
measurements at the MADE site. This demonstratesdiue of detailed HRK conditioning data

for capturing natural plume roughness. The simdlateves without facies seem more realistic,

but significantly smoother than the model with &ciThe breakthrough curve has multiple

68



peaks and a heavy tail, consistent with traces taisthe MADE site. | conclude that HRK data is
important for characterizing micro-scale variatioasd GPR facies are useful for delineating
meso-scale variation. Together, they allow a singdessian IiK model in each facies to
reproduce a realisti€ field, consistent with the measured HRK data, @sdilting in plausible

simulated plume behavior.
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Chapter 4
Novel characterization method provides a major advance for

flow and transport prediction

Abstract

Predicting the fate and transport of solutes infaggiis a societal grand challengegntor,

1997] that requires characterization of aquiferperties. Although many studies have
reasonably explained transport through mildly hedeneous aquifers, transport through highly
heterogeneous aquifers has yet to be accuratelycped. The complex transport behavior in
highly heterogeneous aquifers has fueled an ongtebgte in the hydrology community for
more than two decades [e.Berkowitz et a].2002;Boggs et al.1992;Dagan et al. 1992;

Dagan and Neumari997;Zimmerman et al.1998]. A wide range of modeling approaches have
been used to simulate tracer and contaminant teeihapsuch sites, ranging from the classical
advection-dispersion equation (ADE) to dual-donraess transfer and methods that impart
preferential flow paths to describe the observadmex behavior. A striking outcome of this
research to date has been the inability of appesatireasonably predict transport in highly
heterogeneous systems based solely on field data. Wie demonstrate that when supported by
direct push high-resolution characterization dathjection dispersion equation can accurately
predict flow and transport without the need foilw@tion or addition of features that have not
been observed in the field. The ramifications fiagtical issues, such as the design of effective

remediation schemes and reliable risk assessnaptprofound.
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4.1 Introduction

Hydraulic conductivity K) is the main property that controls solute tramspo
subsurface flow systems [e.®agan 1989]. Thus, accurate predictions of flow and$gort
through porous media require good representatibtiseed distribution [e.g.Molz et al, 1986].
Examples of successful applications of ADE modealselol on statistical distributions Kfdata
from mildly heterogeneous aquifers include thosenfBorden Ontario [e.gEreyberg 1986;
Mackay et al.1986], Cape Cod, MA [e.gGarabedian et a).1991;LeBlanc et al.1991], and

Schoolcraft, Ml Hyndman et a).2000,Phanikumar et aJ.2005].

However, flow and transport through highly heterggus sites has proven to be much
more challenging [e.gEggleston and Rojstaczer998;Whittaker and Teuts¢l999]. The
MAcro-Dispersion Experiment (MADE) site in Columbudississippi is one of the best-studied
highly heterogeneous sites (variance okls 4.5) Boggs et al.1992]. Much of the debate
about the applicability of the ADE at highly hetgemeous sites started with the experiments at
the MADE site. The outcome of the natural gradiester tests at this site highlighted the

limitations of existing and new modeling approaches

Two large-scale tracer tests were performed asitleein this paper we focus on the most
studied experiment called MADE-1, conducted fromdber 1986 to June 198B¢ggs 1991].
This test involved injection of bromide solutiomdahgh an array of five boreholes,
approximately perpendicular to natural gradiengraundwater flow. The injection was followed
by collection of thousands of samples from 258 roritig wells that were later analyzed for
tracer concentrations. The resulting data showed@aussian tracer migration that was very
different than predicted using the ADE model based data from borehole flowmeters. Low

concentrations were detected far down gradientisggsoon after the injection, yet more than
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20% of the mass stayed within 6-7 meters of thectipn wells for the duration of the

experimentsAdams and Gelharl992].

Several approaches have been proposed to expiaobderved tracer transport at the site
including: incorporating preferential flow patidheng and Gorelick2003], multi-indicator
models Fiori et al., 2013], mass transfer between mobile and immalmleains Harvey and
Gorelick 2000], and using a fractional form of the ACEehson et al.2001]. Although some of
these approaches reasonably represented the ayduage behavior in one dimension, they did
not accurately replicate several important charaties of the plume including the spatial
extent. In addition, these methods would be diffitmuse in a predictive sense as they are not
easily parameterized based solely on field datap@stulate that the difficulty in predicting
solute transport at heterogeneous sites like MAD& ieast partly due to the absence of

sufficient high-resolution hydraulic property dateparameterize the models.

4.2 Methods

Here we present an approach to reproduce spatetesf the tracer plume measured
during the MADE experiments. To this effect, welecled a novel suite of high-resoluti&n
data using a recently developed in-situ measuremettiod called the High-Resolution
Hydraulic Conductivity (HRK) toollfiu et al, 2009]. This direct push tool can collect a 10 m
long profile in two to four hours, providing hydtauconductivity estimates with an
unprecedented 1.5 cm vertical resolution. Thisvadlanportant characterization of much smaller

scale transport features than previously possbtgan et al. 2011;Bohling et al, 2012].

In this study, we exploit the power of this novabltalong with fractal stochastic

methods to populate 3D hydraulic conductivity feel&everal studies have demonstrated that
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fractional differencing can remove long range dejeece, which allows the investigation of the
underlying distribution oK data [e.g.Benson et al.2001]. Moreover, fractals are well-suited to
represent the connectivity of natural phenomPasameters for the fractidlfield generation
were calculated based on autocorrelation and vaima@nalysistthe HRK data Meerschaert et

al., 2013], which were also used as hard conditionadges for the stochastic fields.

The flow and transport model domain for this stuttudes a region of high density
HRK data near the tracer injection area of the MA&eriments (Figure 4.1). The model grid
was defined with over 3.2 million 0.25 x 0.25 x®:® (length x width x height) cells oriented
with the long axis parallel to the average downgmaiddirection of the observed plumes. The
east and west edges of the model, which are appedgly along flow paths, were assumed to be
no flow boundaries. The north and south edgesefribdel were assumed constant head
boundaries, and were assigned head values basbd amerage measured heads during the first
503 days of the MADE-1 tracer experiment. The maximmeasured water level increase (0.64
m; Boggs et al[1992]) across the five injection wells was use@ asst of the reasonableness of
simulated K fields. Of the 20 generated stochdstields, the 6 that provided maximum
simulated head increases within 25% of the meastake (0.64 +0.16 m) were selected for

transport simulations.

Transport simulations, based on the classical Aké&te performed in MT3DZ4heng and
Wang 1999] without any calibration or parameter estiora Parameters for the transport
simulations were defined based on literature devd: longitudinal dispersivity of 0.05 m

[Gelhar, 1993], transverse horizontal and vertical dispéysratios of 0.1 and 0.01; effective
molecular diffusion coefficient of 18, vertical and horizontal anisotropy in hydraulic

conductivity of 1 since we assume that the anigytmill be introduced by our highly

79



heterogeneous and high-resolutkofields; and constant porosity of 0.3&dams and Gelhar
1992]. Transport simulations were based on theo8ildr Total Variation Diminishing scheme,
which is mass conservative with minimal numeridapdrsion. Total injected mass in the six

simulations averaged 25.1 kg with a standard dewiatf 0.143 kg, which compares favorably

with the injected mass of 25.0 kg during the expernt.
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Figure4.1 (a) Map of the MADE site with the test boundarggded line) and sampling
locations; gray shaded rectangle shows the modebhdoused for simulations. (b) Model

domain with HRK, injection, and observation borehlcations.
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4.3 Reaults

We first compare the simulated versus observedpam using 1D mass distribution
profiles, which has been the community standardHisrsite [e.g.Adams and Gelharl992;
Fiori et al. 2013]. We then provide the first ever 2D comparigonly concentration
measurements and simulated values that were ldrgerspecified detection limits (0.01 mg/I for
the presented snapshot) were used in this analysiseplicate the experimental procedure we
sampled the simulations at the location and dep#very multi-level sampler included in the
field experiment. The sampled concentrations weee interpolated in 3D usinga 1 x1x 0.5 m
(dx, dy, dz) grid, and integrated vertically (alangxis) and horizontally (along y-axis)

following the procedure iddams and Gelhdil992].
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Figure 4.2 Relative mass distribution profiles 501 days atfterinjection. The black line shows
the mean of the simulations along with &ror range (in gray shaded area); the red liogvsh
the profile for the MADE-1 observations.

The t=503 day snapshot was chosen for comparisdnsathe most commonly presented
in publications with MADE-1 simulations (Figure 4ia comparison to the measured relative
mass distribution profile. The shape of the mearufated curve is strikingly similar to the
experiment. The location, extent of the peaks &eddiling behavior of the mean simulated

curve reasonably represent the measured masdudigin, although the average of the
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simulations shows somewhat heavier tails than veasmwed. Both could be improved by

optimization or calibration of porosity, but thisowld reduce the predictive power of the

approach.
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Figure 4.3 Vertically integrated contour maps of relative ;883 days after the start of

injection for MADE-1 experiment (a), the mean oé B simulations that met the head criteria (b)
a sample simulation which matches the head chanitgeia@ best (c). All three contour maps

were created following the same interpolation pdace, as discussed in the text.

Despite the large quantity of research that hasded on the MADE site tracer test data,
literature contains no examples comparing simutatésults with experimental data in two
dimensions. Figure 4.3a shows a map of verticallggrated relative mass for the experiment
data, which can be compared to the mean of 6 strankathat match the head change criteria
(Figure 4.3b) and to the simulation that best meddhe observed head increase during the tracer

injection Ah=0.637 m; Figure 4.3c). The measured extent oplime, defined by the relative

mass parallel and transverse to flow as 22 and,Iréspectively, is similar to the simulated
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values of 28 and 15 m (Figure 4.3a, c). Also, tleasured plume center of mass is very similar

to those of the simulated plumes.

4.4 Discussion and Conclusions

In this paper we demonstrate that, contrary to combelief, the classic ADE can
reproduce the measured distribution of MADE trammrcentrations. Our approach is different
from previous research to address this problerhanit uses a novel set of high-resolution K
data in combination with a fractal method to geteestochastic K fields. No calibration or

parameter estimation was used to improve the finéasured data.

As with any transport modeling approach, thereddferences between simulated and
observed concentrations. The total mass of thelatrons is approximately twice the measured
mass. Other studies have shown similar observatimsh may be due to a range of factors
including entrapment of tracer in the vadose zé&dams and Gelhal992]. We tested the
influence of transient flow behavior using almagbtyears of temporal water level
measurements, and found that this did not explardifference. Other possible reasons include
differences between the simulated and field sargghocedure, which involves pumping
sample out from different levels of boreholes wharall scale mixing of water with higher and
lower tracer concentrations will occur. Another gibke explanation for the difference is due to
the absence of HRK profiles in close proximityhe injection wells. However, these data could
not be collected as the injection area was dugwndthomogenized for the MADE 3 tracer test in
the 1990s. Inclusion of K data from flowmeter measuents from this area did not significantly

improve the recovered mass discrepancy.
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Overall, the approach presented here successaghpduced nearly all aspects of the
observed tracer plume without calibration. Thidudes the heavy tails that have previously only
been reproduced using transport theories suchasldmain mass transport or imposed high K
pathways. Predictive solute transport based solelifeld data, such as done here, has immense

value for improving the ability to design more efige remediation schemes.
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Chapter 5

Quantifying the value of different data sets and modeling schemes for flow and transport

simulations

5.1 Introduction

Depending on the level of heterogeneity, flow aathsport modeling through aquifers
can be an extremely challenging task. Previousarebehas shown that improvement of
modeling results can be achieved in multiple wayduding: (1) different modeling approaches
to account for some of the behavior observed icetraxperiments, (2) a better knowledge of the
(statistical) distribution of hydraulic conductiyifK) by collecting more or better field data, and
(3) addition of complementary data that give infation on the structural characteristics of the

aquifer.

Regarding the different modeling approaches, wherctassic ADE approach does not
produce acceptable results, alternatives have ppegosed. These approaches include, amongst
others, preferential flow pathZljieng and Gorelick2003] and mass transfer between mobile and
immobile domainsHarvey and Gorelick2000]. The difficulty with these approaches iatth

they are difficult to parameterize based on fiedthdand are thus non-predictive.

Regarding the statistical distribution of subsuefacoperties, direct measurementof
have traditionally been done using flowmeters. Tig common, easily accessible, and
relatively cheap method that requires installabba groundwater well. This method is not
sensitive to lowK, but is very capable of measuring higlvalues Bomana et aJ.1997].
Disadvantages of this method include an unknowmpaupolume, sensitivity to well bore

disturbance, and low vertical resolution. In recggdrs a new method, the High Resolution
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Hydraulic Conductivity (HRK) tool has been develdpwhich allows measurementskfor
smaller support volumes and higher vertical resotuthan flowmeters. This method, which is
sensitive to lowK, but cannot yet measukeabove 60 m/d, has been discussed in considerable
detail in the previous chapters and.in et al.[2009, 2012]. A disadvantage of this method is

that it is not yet not widely accessible and reklir expensive.

Many researchers have shown that complimentaryadatareatly improve modeling
results. These data can be derived from geophysieaburements, such as electrical resistivity
[e.g.,Atekwana et a].2000;Cassiani et al.2006], nuclear magnetic resonance (NMR)
measurementd ggchenko et 812002], seismicHlyndman, et a.1994;Hyndman and Goreligk
1994, and surface and cross borehole ground-peneagrediiar (GPR) [e.gTronicke et al.

2002]. GPR is very sensitive to textural changespgity and water content, and can be used to
obtain structural information of an aquifer; GPR ¢hus provide complementary data to direct

measurements df.

Of the different methods presented above, eaclliffasent levels of detail, cost, and
benefit. Previous chapters in this dissertatiorendigcussed the relative benefits of various
alternative approaches and added data sets forlmgdlew and transport at the MADE site.
The objective of this chapter is to compare theéowsr additions or improvements to modeling
the flow and transport behavior at the MADE sitepaserved during the MADE-1 tracer test
[Boggs 1991]. The comparisons presented here are osUpset of possibilities, and are based

on the available data in the injection area (Fidufg.

The first comparison of modeling results in thisyter is between simulations through
fields parameterized with HRK data and throughdSgbarameterized with a combination of

HRK data and GPR facies. This section is a natotimw up on Chapter 4. The next section of
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this chapter is a cost-benefit analysis of différgotions, which focuses on (1) the effects of
transient simulation (of the water table), (X &eld parameterized with only flowmeter data

measured during the MADE studidddggs 1991, 1992], (3) the amount of HRK information,

and 4) GPR facies. All results are compared withNIADE-1 measurements and a single base

simulation that used steady-state flow and paramaten based on 25 HRK profiles (this base

simulation was discussed in Chapter 4 — Figure)4.3c
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Figure5.1 A detailed map of the model domain with locatiohslowmeterK (orange) and
HRK measurements (blue) and multi-level samplegypwells. The area of 3D GPR data is
given by the rectangle with green dashed line ciga wells are given with red stars. See Figure

4.1 for the location within the larger MADE site.
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5.2 Complementary GPR data

In this research, 3D full-resolution GPR data wesed as complementary data to
measurements & using the HRK tool. GPR data were collected withehd 100 MHz antennas
using a trigger wheel and ropes for positional goik (details in Chapter 2). The profile
separation was selected as equal to step sizamaitbsthan a 1/4 of the GPR signal wavelength
[Grasmueck et gl2005]. Data were processed using a de-wow funetial a low pass filter.
Time-depth conversion was made using the veloaditegsred from common-mid-point and cross
borehole measurements. An automated search algowts used to pick the reflectors.

Reflectors were then grouped using another autahagorithm to create the facies boundaries.
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Figure 5.2 Vertically integrated contour maps of relative s1g88) MADE-1 experiment at

t=503 days, (b) mean of 6 simulations, (c) bestl@®mnge simulatiorK fields for the

simulations in (b) and (c) were based on a comlmnaif HRK data and GPR facies (these maps
can be compared with Figure 4.2, which presenttocomrmaps of relative mass firfields

based on just HRK data).

TheK field simulation procedure was similar to the dmethe scenario with HRIata

alone (see Chapter 4), but now separated by féapesChapter 3). For each faciédjelds were
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generated using appropriate depth interval fronstme noise fielK fields for each facies
were then stitched together to create a 3D modehiflow and transport simulations in
MODFLOW and MT3D Eheng and WandL999]. From the simulation results, 2D vertically
integrated contour maps and 1D concentration @®fNere created following the same

procedure as in Chapter 4.
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Figure 5.3 Relative mass distribution profiles for the MADEgperiment at t=503 days (red
line), and the mean and 2ange of 6 simulations (black line and gray shaaled, respectively).

Simulations used (& fields based on just HRK data and Kbjields based on a combination of
HRK data and GPR facies.

Similar as with th& fields based on just the HRK data (Chapter 4) @s¢hsimulations
the recovered mass is significantly larger thanntiass recovered during the experiment.
However, the extent of the plume was very comparabthe measured data (Figure 5.2) and the

location of maximum relative mass was similar taatwvas observed (Figure 5.3). Most
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importantly, the facies-based approach resultedrimuch better characterization of the plume
tail (Figure 5.3b). This improvement is becausef@ioges boundaries allow one to determine the
highK zones of the aquifer in more detail. In summérg tomparison shows that the
simulations that incorporate structural informatfoom GPR-derived hydrofacies better

reproduce the part of the tracer that rapidly modeadn-gradient.

5.3 Cost-benefit analysis

The objective of this section is to compare thatre¢ benefits and disadvantages of
different modeling approaches, use of flowmé&tetata, different densities of HRK information,
and addition of a complementary data set (GPR $aciéhe results are compared to the MADE-
1 experiment data and to the base simulation, wihéchthe best match to the head-change
criterion (Figure 4.3b). This base simulation useghdy state flow, all 25 HRK data for
conditioning, and no flowmeter data or GPR fackas. all compared fields, the same noise

field was used.

The results are presented qualitatively using 2icadly integrated mass distribution
maps (contour maps) and 1D mass distribution @m®fihdditionally, for quantitative
comparison of the results, Table 5.1 lists theitdetd each simulation (down-gradient distance
to maximum mass peak, peak and tail shapes, igj@ctess, and mass recovery for each
simulation), and compares the RMS error betweenlsition and field data. All contour maps
and 1D concentration profiles have been normalmetbtal mass so that the results can be more

easily compared.
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Table 5.1 Quantitative measures for the comparison of sitraniagscenarios and field experiment

(R2 values were calculated comparative to the MADBqieeiment t=503 days in the first row).

2

| Peak Total P;k Tail , Ma.LSS[gramS]

oc. [m] (0-45m) | (0-25m) | (25-45m) Injected | Simulated | Recovered
MADELtss| 115 | 1 | 1 | 1 | 2X00001 | swes
days)
Basesmulation | 115 | 0.899| 0.880| 0.101 2(21%233/04)9 %31_222(;/2)7 (571_26(;)
Transentflov | 115 | 0.879| 0.843|  0.000 2(‘1‘8370'/06)9 %g?‘gzo/i’)‘r’ %81329(;/:;’)5
Flowmeter K 195 | 0.002| 0.001 0.002 Z(trl’ég?;/o“f %28133(;%0 (51;_‘;6(;)
GPR data 115 | 0.830| 0783 0.760 z(iéglof)‘r’ %3;324(;/‘:)2 (533;6;))
80% HRK 115 | 0.924| 0895  0.445 2(?(13((3)10./08)1 %%%6(;/2)1 (17225?3%)()3;
60% HRK 115 | 0.893| 0874 0.102 2(%870'/81 %3‘1325(;2)0 (28156.8%/.07)
40% HRK 85 | 0.397| 0236 0.267 2&32%8 %812,710(;/3)2 é%?j%
20% HRK 85 | 0712| 0.624| 0.049 2&(1);42./00)2 %33.171(;2; (ﬂg_‘gogz)

5.3.1 Transient flow

Since the flow-transport simulations are computeti@xperiments, simplification is

required. Simplification is also beneficial duddaver computational costs. In hydrologic

simulations it is common to use steady state smistiHowever, under natural conditions, flow

and transport is more complicated than is typicatizieved by simplified models. Unconfined

aquifers are especially challenging to model witlcgsion, since such aquifers are usually very

shallow, highly heterogeneous and open to rechwrgegh the surface via infiltration and

discharge. Thus, flow and transport simulationsnnonfined aquifers may require transient

solutions to reproduce the effect of changing wttble depth. Transient solutions require
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periodically collected piezometric measurementspiecify the changes in water table depth
along boundaries of models. Computational powertene for transient simulations are also

more intense than for steady state simulations.

Comparative analysis of flow-transport simulatiam#olving transient and steady state
flow schemes are presented in this section. Thectilsg of this comparison is to test the effect
of possible tracer entrapment in vadose zone duweater level changes, as was hypothesized by
Adams and Gelhdgr1992]. The transient flow simulation was basedlmpiezometric
measurements collected during the MADE-1 experimBmis simulation used the sadield

as the base simulation; only the head conditiong weanged.

The results shown in the contour maps of normalimeds (Figure 5.4) and 1D
concentration profiles (Figure 5.5) suggest thattthnsient flow had very little effect. The
transient flow simulations were almost identicattie ones using steady state flow. It is
hypothesized that this small difference is in gl to the fact that the injection screen was
located at a depth of 7.4-8 meters (around 3.8 iméow the depth of the water table at the
start of the experiment and simulation). Considgtimat the transient simulation took
significantly more computer time and required thdifonal piezometric data, this modification

of the approach presents very little additionalreal

Quantitative measures presented in Table 5.1 shatithe transient flow simulation is
very similar to the base simulation, except thepetage of mass that stayed in the model
domain after 503 days of simulation (57.5 % ve@u2% for the base simulation). Higher
gradient periods during the flow simulation maytbe cause of this difference since the seasonal
changes in the water table promote faster flovhenrhodel domain and more mass leaves

through the northern boundary of the domain. Algifomass entrapment in vadose zone could
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be another reason, it was not captured by the atial and numerical sampling procedure of the

simulated plume.
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Figure 5.4 Vertically integrated contour maps of normalizedsst (a) MADE-1 experiment at
t=503 days, (b) base simulation, (c) transient femulation.
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Figure 5.5 Normalized mass distribution profiles of the MAOlEexperiment at t=503 days (red
line), base simulation (black line), and transigmv scheme (blue line).
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5.3.2 Flowmeter K

Direct measurements &f have traditionally been done using flowmetersth&t MADE
site many flowmeter measurements were conductadgltire MADE field experiments in the
1980s and 1990s (see Figure 5.1 for the locatibfievwmeter wells in the study domain).
Flowmeter measurements in heterogeneous mediatxery sensitive to low, but very
sensitive to highk zones Bomana et a).1997]. Disadvantages of this method include the
unknown support volume, low vertical resolutiongdaveraging over a bulk volume of different

K zones.

Here, a direct comparison is given between simutatthrougtK fields based on (1)
flowmeter data, and (2) the more recently introduld®K tool. The stochasti€ fields were
created using the same fractal methods discussébapter 4 with the flowmetdt data as hard

conditioning points.

The results show that for the simulation basedherflowmeter data (Figure 5.6¢ and
5.7), the mass moves much faster down-gradientftirtethe simulations based on the HRK data
(Figure 5.6b and 5.7). In fact, a significant pomtof the tracer mass moved outside the model
domain (Table 5.1). Flowmeter measurements arserttitive to the oWk, which explains why

the averag& is higher than HRK.

Quantitative measures provided in Table 5.1 sughesthe flowmeteK based
simulation cannot reproduce the observed plumeeshaithe MADE site. This simulation
resulted in the most incomparable plume shape, loealkion, and tail behavior of all scenarios

tested.
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Figure 5.6 Vertically integrated contour maps of normalizedsst (a) MADE-1 experiment at
t=503 days, (b) base simulation, (c) simulationellasn just flowmeteK data.
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Figure 5.7 Normalized mass distribution profiles of the MAQlEexperiment at t=503 days (red
line), base simulation (black line), and simulatiased on just flowmetét data (blue line).

5.3.3 Effect of conditioning data density

A random number generator was used to create subSEIRK measurement profiles in
the modeling domain. The number of HRK profilescufa theK field parameterization was

decreased from 25 (the base simulation) to 20 (8@%J60%), 10 (40%), and 5 (20%). HRK
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profile #1, which is located very near to the injee location (see Figure 5.1) was removed from

each of parameterized fields. The same noise falslused to generate edc€Hield.

A visual comparison of 2D vertically integrated malstribution maps (Figure 5.8c-f)
shows that decreasing the number of HRK profilesasignificant effect on both the plume
extent and shape. Although the locations of rangaralected HRK profiles have an effect on
the results, it is clear that the accuracy of medglumes generally decreases with number of
HRK profiles. As expected, the plume simulated g0 % of the HRK profiles was most

comparable to the base simulation.

The effects of reducing the HRK profile densitytbe peak and tail shapes of simulated
plumes is also clear from the 1D mass distribupimfiles (Figure 5.9). HRK profiles located
near the injection location control the qualityp&fak representation. The simulation with 40% of
HRK profiles has no nearby HRK profiles (Figure&),8vhich resulted in a highly distorted
peak shape (Figure 5.9¢). It is also notable thabagh 1D mass distribution profiles (in this
case: 60% HRK profiles; Figure 5.9b) may look ngarichanged from the base simulation and
the situation with more HRK profiles, the corresgimyg integrated mass distribution map

(Figure 5.8d) shows a strong deviation from thesmsulation.

The simulations with 20 and 40 % of the HRK prdfifgovided poor correlation with the
base simulation results for both the peak andaheshape of the mass distribution profiles
(Table 5.1). The mass recoveries for these sinmratalso significantly deviated from the base

simulation.
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Figure 5.8 Vertically integrated contour maps of normalizedsst (a) MADE-1 experiment at
t=503 days, (b) base simulation based on all 25 HRHiles, and simulations based on (c) 20,
(d) 15, (e) 10, and (f) 5 randomly selected HRKfitgs. The randomly selected HRK profiles
used to generate tlefields are shown with blue symbols; see Figureférthe location of all

25.
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Figure 5.9 Normalized mass distribution profiles of the MAlEexperiment at t=503 days (red
line), base simulation (black line), and simulasidrased randomly selected number of HRK
profiles (blue line). (a) 80% of HRK profiles (#% 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18
19, 20, 22, 23, 24), (b) 60% of HRK profiles (#sX 4, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21,
24), (c) 40% of HRK profiles (#'s 2, 5, 7, 11, 14, 17, 18, 19, 22) (d) 20% of HRK profiles
(#'s 8, 11, 14, 15, 24). See Figure 5.1 for theatmns of the HRK profiles.
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5.3.4 Complementary GPR data

To allow comparison with the previous sections, sineulation for & field partially
based on GPR facies is presented. Rather than tn@rayerage of 6 simulations (Section 5.2),
only the simulation for the noise field that besttained the head-change criterion is presented

here.

As already discussed in Section 5.2, when GPRdamie used to help construct e
field, the mass contour maps do not differ muclmftbose based on just HRK data (Figure

5.10). However, the tail of the tracer plume is imbetter characterized (Figure 5.11).
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Figure 5.10 Vertically integrated contour maps of normalizedsst (a) MADE-1 experiment at

t=503 days, (b) base simulation, and (c) simulatiased on a combination of HRK data and
GPR facies.

Correlation coefficients provided in Table 5.1 slsawat the simulation with GPR data
exhibits the best representation of heavy tail bemabserved in the mass distribution curves.

However, the peak representation is not quite asl @s the base simulation. This can be
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explained by the lack of GPR data around the igactrea (Figure 5.1). As mentioned earlier in
Chapter 1, the source area was dug out during thBBA3 macro scale experiment in the 1990s.
Therefore, 3D GPR data were not collected in tleeity of the source wells, which limits the

effective use of GPR-derived facies boundariesratdbe injection area.
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Figure5.11 Normalized mass distribution profiles of the MAOEexperiment at t=503 days
(red line), base simulation (black line), and siatiain based on a combination of HRK data and
GPR facies.

5.4 Conclusions

The first section of this chapter introduces the osGPR data in combination with HRK
data and presents the results of simulations ftr types oK fields. The mean of the flow and
transport simulations involving the GPR data exkibibetter representation of the tailing
behavior. However, for the simulations based orfabees boundary information the standard
deviation of the simulation means was somewhatdrigfan for the simulations without facies.
This might be explained by the fact that the ciaterused to select the noise fields was based on
a maximum head-change (Chapter 4). Here, the saise fields were used without taking into
account any effects on the head changes (dueoto K facies around the injection depth, they

increased from a mean of 0.67 m to 1.03 m withrgelastandard deviation).
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In the second section of this chapter, the effettsomplementary data, transient flow,
use of conventional flowmeté& data, and different densities of HRK data werem@rad.

Based on these comparisons, the following conchssgan be drawn:

e Good representations of peak behavior were obtam#te base simulation, in transient

flow simulations, and in the simulation with thel @f GPR data.

e Flowmeters are the most common tool to colleaformation in field investigations, but
the results presented here show that they are abtapf representing théfield in

sufficient detail, resulting in wrong plume behawvio the transport simulations.

e The best representation of tail behavior was abthusing GPR facies as
complementary data. This outcome shows that inscabere heavy tail behavior exists,

GPR facies boundaries can help identify the pretekflow paths through an aquifer.

e Reducing the density of HRK profiles resulted issl@omparable simulation results. In
this case, 60% of HRK profiles were required toaibteasonable 1D mass profiles, but
80% were required for a good 2D mass distributidowever, it is important to point out
that the locations of the selected HRK profiles hattitical effect on the simulation
results. Omission of the HRK profiles close to sleeirce area had a strong negative

effect on representation of the peak behavior.
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Chapter 6
Synthesis

This dissertation presents a set of techniquespodve the characterization of and flow
and transport simulations through highly heterogeseaquifers. The Macro Dispersion
Experiment site in Mississippi was selected to tiestdeveloped methods due to existing
extensive data sets and previous research. Thediiggallenge for this site is the highly
heterogeneous nature of the porous media and #exwen non-Gaussian transport during the
large scale tracer tests in 1980s and 19B0gds 1991;Boggs et al.1992]. Flow meteK data,
collected prior to those tracer experiments, suggethat the distribution was highly
heterogeneous. In previous studies, this behaweidmot be successfully modeled using
advection and dispersion as the primary mechanibrdeed, this extraordinary behavior led
most of the hydrological research community toéadithat the advection-dispersion equation
(ADE) is not capable of modeling the flow and tqamid in aquifers above a certain

heterogeneity level.

This study was aimed to test the hypothesis thdE Adcapable of modeling flow and
transport even in highly heterogeneous aquifetsragas the model is supported by sufficient
high resolutiorK data. The required high resolutiirfields were created using fractal stochastic
methods based on two high-resolution data seth-t@golution direct-pusK profiles and 3D
full-resolution ground-penetrating radar (GPR).@®el | present a brief summary of the main
outcomes of each Chapter, followed by a discussi@ome new questions resulting from this

work.

GPR, a high resolution non-invasive geophysicahoetis capable of defining textural

properties such as porosity, packing, and sorting $patial context. These textural properties
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are related t& in an indirect way. Chapter 2 [based@ogan et al. 2011] presents an
integrative study to investigate the consistendywben GPR derived structures (or facies) End
data. This work was performed in an area whereentepush pull test was performed.
Descriptive statistics and distribution tests perfed in Chapter 2 proved that the different
facies separated statistically differéqtistributions, with a reduced level Kfvariation within
each facies. Therefore, this study demonstrated3R&-derived structural information can be

successfully used to define hydrofacies.

High-resolution spatial information is necessargreate better flow and transport
models, as hypothesized above. However, no invaginwen-invasive method exists to measure
K fields at a spatial resolution that does not regaome form of interpolation. Therefore,
stochastic methods are generally required to gemeexameter fields to fill in the gaps between
measurement locations with similar levels of hajereeity. To avoid drawbacks of common
stochastic methods, including the inability to ¢egarameter fields that display the connectivity
of real sedimentary deposits, fractal stochastithods were used in this dissertation.
Connectivity is an important property of aquifenattcan define connected hiflpaths as
preferential flow paths. Chapter 3 [basedeerschaert et al2013] presents the details of the
fractalK field generation technique that was developedstioavs that the fractional differencing
filter can remove the long-range dependence obden¢ data. This finding shows that
fractional differencing filters can be successfuled to further investigate the underlying
distribution ofK data. Parameter fields are presented that are madueal looking and haveka
distribution that better matches observations fidRK profiles. Flow simulations through these
fields resulted in improved representation of asport characteristics typical for this site,

such as a heavy tail and multiple concentratiorkpea
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The focus of the next two Chapters was on the am@and the original injection wells of
the Macro Dispersion Experiment tracer tests. Alse,approach demonstrated in Chapter 2 was
applied to a 3D domain. Flow and transport simategiwere performed following injection
procedure and sampling strategy of the MADE-1 expents. Several differei fields were
generated using the method explained in ChapfEh& concentrations derived from the
simulations, excluding GPR facies to derive theapaater fields, were presented in Chapter 4.
Vertically integrated contour maps of relative mdstribution created in this study were an
innovation compared to earlier modeling effortsh&t MADE site, as no other study has
compared simulation results with experiment dataare than 1D. The extent of the modeled
plumes and maximum mass zones were very compamatile ones measured during the
experiment. The simulations also did a good jobharacterizing the fast moving heavy tail of
the plume. These findings show that the proposetiadeusinK fields based on just measured
field data is able to define the parameters necg$sadesigning effective remediation solutions

for real-world problems.

Chapter 5 presents a comparative study to defm@dlue of different data sets for
improving modeling results and provides insighoitite required data sets for successful flow
and transport modeling in heterogeneous media. Thapter emphasizes the effect of
complementary GPR data to better reproduce theytted\behavior of MADE plume. It also
highlights the inability of flow meteK data to produce simulation results comparablédo t
observed data. It presents a comparison of thegtate and transient flow schemes, which
concludes that the tracer entrapment in the vadose is not a strong argument to explain the

poor mass recovery of the modeling efforts. Finally analysis of the effects of HRK
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conditioning density shows that 60% to 80% of HRHKfjles are needed to produce acceptable

simulation results.

Despite the new developments and improvements delirg of flow and transport in

heterogeneous media presented in this dissertdtiere are a few unanswered questions.

Several of these points can be summarized as fsJland may be answered with future work:

As was shown in this dissertation, GPR facies éin@tderived from surface
measurements are very useful to build hydrostrapigic frameworks that can improve
flow and transport modeling (Chapters 2 and 5). e\mav, facies boundaries cannot be
directly used to obtain K information. Future waxduld make use of inversion
approaches and interpretation of borehole measuntsn® develop a more direct link

between geophysical data and hydraulic properfigg@rest.

The 3D simulations had excellent correlation with transport observations (Chapter 4
and 5) and fractal methods provided a better generat& fields than sequential
Gaussian methods (Chapter 3). One of the two nm@amponents of fractal stochastic
parameter field generation is the parameterizgfi@ctal dimension, correlation
structures and statistical measures) of the fraw&thod, which can be obtained using
HRK data. However, the second component, the rimkg is randomly generated and of
Gaussian nature. This Gaussian noise field map@&dte best solution to this step, but
further work would be needed to investigate whether simplification has important

consequences.

One major disagreement between the simulationgrenfleld experiments involves the
mass recovery. All simulations had significantlggler mass recovery than the

experiments, despite identical sampling and intetpm procedures. One possibility for
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this observation has been considered in Chapteabs{ent flow), but this did not
address the discrepancy. Other possible explarsitn@tude the lower meaf
throughout the model domain due to the upper ot ldiithe HRK tool, and an inability
to reproduce the mixing in sampling wells as wduwdde occurred during the sampling

procedure in the field.

Finally, this study demonstrated that the ADE igatde of modeling flow and transport even in
highly heterogeneous aquifers such as the MADEwgiteout parameter calibration or
optimization. However, high resolution parametelds are required to enable these modeling
efforts. The novel high resolution characterizatiool HRK can be used in combination with
high resolution geophysical methods to providertbeessary data. Even though some steps of
the presented research need improvement, it pgeaesttaightforward method to create
uncalibrated, reproducible flow and transport medsed on solely field data. Moreover, these

models can reproduce the non-Gaussian transpaoawtwetat the infamous MADE site.
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