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ABSTRACT

A 2-LOCAL APPROACH TO CONWAY'S SIMPLE GROUP
THROUGH THE 2-MODULAR GEOMETRY OF THE LEECH LATTICE

By

P. R. Hewitt

In this dissertation we examine the simple group <1 of
J. Conway, and in particular its 2-local geometry which
arises from certain of its 2-modular representations.

We proceed from the hypothesis that we have a group §
with an involution z, whose centralizer € in § is an
extraspecial 2-group of width 4 extended by the full
orthogonal group QZ(FZ). We then examine the fusion of z,
into € \ 02(8). Next, we add the hypothesis that z, fuses
into 02(8) and construct a flag-transitive, rank-4
simplicial complex A for §. We prove that the normalizer ﬁo
of a connected component of A contains & and fuses z, into
02(8).

We then give a nearly complete enumeration of the point
suborbits in Co. Finally, we use this information to examine
representations of co over F2 that are given locally by
generators and relations for Fz-l-modules. In particular, we
show that the existence of an adjoint module for ﬁo leads to
a module locally isomorphic to the Leech lattice modulo 2.

The techniques we employ throughout most of the
dissertation are geometric and combinatorial. In studying
the representations of Co we use freely the language of
sheaves and homology, but in fact make no essential use of

this theory.
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0. INTRODUCTION

The purpose of this work is to apply the geometric
representation theory of M. Ronan and S. Smith to the group
¢l of J. Conway. This is a finite simple group that lies in
the gray area between the sporadic groups and the finite
algebraic groups. For example, the simplicial complex
determined by its maximal 2-local subgroups is locally the
truncation of a building over Fz [Ronan-Smith 8]. It is
natural, then, to try and push the analogy as far as
possible. This point of view we adopt in constructing, for
example, various candidates for the ‘adjoint module’ of -1.

The working hypotheses for the thesis are that we are
given a finite group that contains an involution whose
centralizer has the same shape as that in 1. (Cf. (1.1) and
(2.1) below.) The two main results of this thesis are:

(1) to show how a complex which is locally isomorphic
to that for ¢l can be constructed naturally from
this class of involutions (¢cf. (2.7) and (2.15));

(2) to examine representations of this complex in
projective spaces over F2: the first of these is
closely patterned on the adjoint representations
of the algebraic groups over Fz (cf. §3,
especially (3,8)).

The first of these results may be summarized in the

following.

THEOREM Let § be a group of type -I.
(1) At least 10 of the suborbits of § on the conjugates of

z have the same lengths, parameters, and point-stabilizers
as their natural counterparts ing 1.

(i1) ¢ admits a flag-transitive 2-local complex A that has
the diagram and rank-2 residuals of a truncation of the
affine building B (0,). This complex is locally isomorphic
Lo the corresponding 2-local complex for °1l.




In §1 we present the general group-theoretic and
geometric definitions used throughout the thesis, and we
establish some of the basic results that intertwine the
group theory and the geometry. Most of these results are
well -known.

For background on the foundations of diagram geometries
we refer the reader to [Aschbacher 2] or [Tits 15]; for the
specific 2-local geometries involved here, [Ronan-Smith 8];
and for the basics of the geometry of groups of Fz-type,
[Aschbacher 2] or [Timmesfeld 14]. We use freely the
language of sheaves and homology as to be found in
[Ronan-Smith 9,10], although the material we present is
completely elementary and requires no depth from this
theory.

In §2 we begin with the main technical lemma: we
examine the fusion, for a group of type <1, of a 2-central
involution into its centralizer (cf. (2.4)). We then produce
the critical guads ~ these are elementary abelian subgroups
of order 2' on which the normalizers induce the symplectic
groups sz(rz) (cf£. (2.7)). These help lead quickly to the
complex alluded to above.

It is the class of quads which to us demonstrates most
clearly the ambiguity of <1’s status. On the one hand the
class of quads is sufficiently rich in structure so as to
lead to a nearly complete description of the full 2-central
involution class. It turns out that the permutation rank of
*1l on these involutions is 11: this is more than that
encountered in classical groups over Fz ~ five, typically ~
and less than that for, say, Z. Janko’s group J3 ~ 33 ~ or
the group % of B. Fischer and R. Griess ~ perhaps around
150. On the other hand, the presence of the quads creates
problems in defining what should be an analogue of the
adjoint module for an algebraic group. Indeed, unlike the
case for algebraic groups, the essential defining relations
for the ‘natural’ adjoint module for <l1 are not implicit in

the ‘Oz-geomecry' (cf. (3.3)). In particular, we are unable



to establish the existence of a ‘useful’ module for an
arbitrary group of type lI.

Thus in §3 we add as hypothesis the existence of one of
the choices for ‘adjoint module’, and then determine the
internal structure of this and related modules. The main
result of this section is first to produce a small,

‘natural’ module, and then to dissect this module rather

completely (¢cf. (3.8)).



1. GENERALITIES ON GROUPS OF Fz-TYPE

(1.1)DEFINITIONS AND NOTATION A finite group § is said to be

of Fz-;xng in case there is an involution z, in § whose
centralizer € satisfies:

(1.2) Q := ’*(C) is extraspecial.

Note that in such a group <z> is the centralizer of Q.
Thus, the center of any Sylow 2-subgroup of § is generated
by some conjugate of z; equivalently, any Sylow 2-subgroup
of € is a Sylow 2-subgroup of §. We will further assume
that Z°(§) = (1). This rules out merely the case § = O(f).C.
Should we have occasion to consider groups under (1.2)
without this extra hypothesis, the groups will not be
referred to as groups of Fz-type.

We denote by £ := €/Q the Fitting factor of €, and by
A= Q/<z°> the central factor of Q. Recall that A is an
elementary abelian 2-group of even rank 2n, say, which
affords a faithful, nondegenerate orthogonal th-module,
induced by conjugation. Call n the width of Q, or more
generally of §.

Let § be a group of Fz-type, with notation as above.
Denote by P := zbc the class of z, and call these -~ or,
often, the groups <z°‘> ~ points. For any point z, we will
denote its centralizer by 8:; and we continue this
subscripting with Q’ (wm 9*(8'), z' (- Bt/Q:, and
Mz t=- Qt/<z>. Say that points z and z’ are collinear when
z’ € Qz. The following fundamental result ~ in a much more
general form ~ can be found in [Aschbacher 2, (17.5),

PP. 125-126].

(L.3)LEMMA If § is of F -type then collipearity is a
sympetric relation. Indeed, if z » z* € P N Q cthen
{ := <z,2’> satisfies:

(a) ! ¢ P;
(&) 9, := <Q|x € S < ¥e(V); and

(&) 7,/8y () = Z,(F,).



PROOF If q € Q:, then z’? = 2z’ or z’z, whence q € Nc(t). The
claims will thus follow from the symmetry of collinearity in
that we may choose q (in the above) to be an element of
Q Cy.

If the width of Q is 1, then either € « Do or else
C = 08-63. In either case it is straightforward to check the
symmetry.

Assume that symmetry does not hold, so that z ¢ Qz,.
but z’ € Q;’ for certain z, 2’ in P. Thus N (L) < E_(2). We

¢ ¢

use this to argue that z € €,(2’), a contradiction to the

¢
hypothesis that 9*(82,) - Qz,.

Consider the groups R := GQ (z’) and & = BQ (z).

4
2z z

Write & = <z'>xQ°, where Qo < Q: is extraspecial. The
asymmetry yields [R n Qz,,R] < <z>n Q’, = ({1). This
implies that 8 n Qz, < Z(R) n Q;' = <z’>. Also

(R ,R] =< Qz, N8R = <z’>, Hence <z> < ®(R.R" ) < {. This gives

Nb (R.8) < & ; that is, NQ a(8.3’) < .8 . In particular
z’ z’
R =Q,, or ze €,(Q,) ~ a contradiction, as noted.
z G = O

(1.4)DEFINITION Let L be the set of foursgroups as in the

- lemma above. We refer to these as lines. We denote by

r := (P,L) the involution geometry of §. The distance
between two points is their distance in the collinearity
graph on P. Let Pd denote the set of points at distance d
from 2z, and for general z € P let P: =P N Qz be the
neighbors of z. Finally, let Pq"u = (z € Pd| |zz°| =n), a
C-stable set.

Note that P1 U [zo) is a subspace ~ that is, any line
that contains as many as 2 points from the set in fact
contains 3. More generally, if K is any subgroup, then
P(K) := PN K is a subspace. We use also the notation
LK) := {(te L|L s K), and T(K) := (P(K),L(X)).

*

The demands that § be finite and that Z (§) = 1 are
requisite to use the following fundamental result. In their
stead we might demand merely that L be nonempty.



(1.5)THEOREM (Cf. [Aschbacher 1] and [F. Smith 12]).) 1f § is
of F -type and L is empty, them either n =1 or § is
isomorphic to one of £ (F), <2, ox ¥ (F). _

(1.6)LEMMA (from F. Timmesfeld’'s [14, (5.1), pp. 163-164])
Let € satisfy hypothesis (1.2), and let t € € \ Q be an
involution. The following hold.

1) [Q,t] - C’Q(Qo) = 2(Q)), vhere Q :- Q(<t,z°>).
(ii) If C’Q(t)/<z°> » €,(t), then t is conjugate via Q to

tz .
0

(1id) If €y (£)/<z> = €,(t), then [Q,¢] is elementary
abelian, and te Nn Qg CQ V] (tzo)Q. Moreover

|¥g(£Q) :8g(£).Q| divides 2.

PROOF (1) Now |[A,t]| = |A:B,(£)] = ZI84(Q)]. Also,
[£,9]% = [t%,q%] € [t<z >,q<z>] = <[t,q]> for any q € Q
and q, € Qo’ That is, [Q,t] = b’Q(Qo). Thus, by an order
argument, [Q,t] = C’Q(Qo). (N.B. Since [Q,t] is normalized by
<Q,t> it must be that z, € [(Q,t], even when z is not itself
a commutator of the form [q,t] for q € Q.) However, as
[Q,c]/<z°> = [A,t] C C’A(t) - Q°/<z°>, necessarily C‘Q(Qo) -
(Q,t] = Z(Qo). That is, [Q,t] = G’Q(Qo) - Z(Qo).

(11): If q € Q is such that q" -9z, then t? = tzo.

(iii): Assume now that C’Q(t)/<z°> - GM(C). From (i) we
note that [Q,t] = Z(BQ(C)) - CQ(BQ(C)) is at least abelian.
Assume that q € Q is of order 4. Choose ¢’ so that
q= [q,t] mod <zo>. Thus qt = tq' mod <z°>, whence t
inverts q (in the dihedral group <t,tg> = Da)' This gives
q<z°> € Cm(t) and q € C’Q(c), a contradiction. Hence [Q,t]
is of exponent 2.

Consider tq € te N tQ. The previous paragraph yields
C’Q(tq)/<zo> - CM(tq) - e’b(C) - SQ(c)/<z°>, so that
tq € t&Q(BQ(c)) - t[Q,t] gt U (czo) .

Finallz, letqg € € with gQ € Cz(tQ). The above says

that t* € t° or ¢ z,, and either case gives

g € Ile(<c,z°>).Q. 5



(L.Z)LEMMA Let § be a gxoup of F -type.

(1) If 2z, z’ ,and z” are pairwise collinear, but do pot lie
together on a line, then they generate an elementary abelian
group of order 8 gll of whose involutions are points, with
every pair of these collinear. Call these subgroups planes.
If U is a plane, then 9, :-<Q.|zen'>sx(n), and

¢
VH/C,H(H) «Z(F).

(1) I_ﬁxele‘-Pz\C’, then |xz°| = 4 and

[x,2,] = (xzo)zﬁ.ﬂ\_eA_léﬂi ue point collinear with each of x
and z,. Each point of y is collinpear with precisely

#(P1\ BQ(y)) points of PL*'

(111) If x € P and { is a line containing x* € P, then x
is collinear with at most one point of L.

PROOF (i): Let the three pairwise collinear points be z, y,
and x. For q € Qz in the centralizer of y but not of x, y is
collinear with x? = xz € P, and q induces the transvection
of dut(<x,y,z>) whose center and axis are <z> and <y,z>.
This gives (1).

For (ii), let y be collinear with each of x and z,.
Since xz € Qy is not an involution, it must be that y =
(xzo)2 - [x,zo]. Thus, y is uniquely determined by x and z
in this case. Moreover, the number of such x for a fixed
y € P1 is simply the number of points of Q’ that do not
centralize z,.

Finally, (iii) follows from (i), since otherwise x and
x’ would be collinear, and x would be at distance no more

than { + 1 from z .
o O



(L.8)LEMMA Let § be of F -type

(1)1{:{6?2",y-(xzo)z,ganeﬁ’an_c_h_e_n<w,x,y>1g
4 plane, QBQSQVGPzz lfi.ns_ts_a.éweP ne then either
weea (wz)eQ §_qgh_qlwz|1§9_ng9_£4918g;
9_l§£x-(VY) ensll"z|1§3916 with <w,z > acting
symmetrically on <x,y>. Moreover the case |wz | = 8 can
eccur only when y = (wz)', [A,w] is totally isotropic but
not totally singular (i.e., w is of type c on A, cf.
prxoposition (2.4) below), and y is on every minimal path
Joining w o z .

(11) For w € P, one of the following holds.

() we P for some x € P, "N <w,z > has oxder 6 or 12, and
this gihed;a], group induces Z (F ) on <x, (xz )z> or

() |wz | divides 8. If |wz | = 8 then w € P such that
either x € P,  and (A ,z ] is not totally singular; ox else
xeP“.ws_ns;r_liz_gy-(XZ).em![My.WIis.m_c

totally singular.

PROOF For (i) we argue as in (1,6,i). In the first case w is
collinear with xo = xy, and so <w,Xx,y> = <w,X,xy> is a
plane. In the second case, if w € Pa then either w € C’Y \ B,
from the above; or else w and z, induce distinct
transpositions in <x,y>', so that <w,z°> induces a copy of
63 there. The former possibility says that
[z W] = (2 w)z € Q' so has order either 2 or 4 ~ giving,
respectively, a singular or nonsingular point of AI The
latter possibility gives (wz) z, Wwo € Qv, inverted by
both w and z,. However neither w nor z_ centralize xy, so
that (wzo)o -1

Moreover, if x’ = (wzo)3 is a point then x’ is
collinear with x = (xy)“o and y - (xy)".

(i1): If w is collinear with some x € Pz,;' then the
statements follow from (i). If w - x - y - z, is a path
joining w to z, with x € &, then [w,z ] = (wzo)z €Q, and

again the statements follow. 0



2. THE ADJOINT GEOMETRY FOR GROUPS OF TYPE -1

(2.1)DEFINITION A group § is said to be of type ¢l in case §
is of Fz-type (as in (1.2)) and € satisfies the following:

(2.2) Q= 7*(8) is an extraspecial 2-group of width and
Witt index 4, and £ := £/Q is isomorphic to OZ(FZ).
Naturally, the simple group ¢1 of J. Conway is of type 1.

(2.3)LEMMA Let § be of type 1.
(1) TIhe set L of lines is not empty.

(1) If ¢ is a line, then 7, := <Q |z € ¢> < ¥(O), and
I /Cg (1) = L (F ). Moreover each transvection is induced by
L

a point collinear with its center on the line.

(111) © acts flag-transitively on I'. Indeed, P 1is a'single
C-orbit, of length 2.135.

PROOF Clearly (i) and (ii) follow from lemma (1.3), in light
of theorem (1,5). For (iii) observe that § is transitive on
points, by design. Now € ~ acting as £ ~ has a single orbit
on the singular points of M. Thus, € has a single orbit on
the foursgroups of Q that contain L and P1 induces a

2-cycle on each of these. 0

(2.4)PROPOSITION Assume € satisfies hypothesis (2.2). The
lifting of involutjons of £ to involutjons of € is
constrajned to the possibilities listed in Table 1 (with the
notation detailed in the proof below).
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Iable 1
The possibilities for involutions of €
L-class centralizer as CQ(c)-(C’e(t)/!;'Q(t)) class length
1 a, either 23o2“"-2““[zz(rz)xn:(rz)] 4.1575
(two classes, equal modulo zo)
2 or 2202142172433 9% 8.1575
(two Q-classes, fused in )
3 4 23o22*2-2"’2"‘[zz<rz)x22] 8.9.1575
4 a  either 25-2°$.(r2) 16.3780
(two classes, equal modulo zo)
5 or 2% 2% .2 32.3780
(two Q-classes, fused in €)
4 & The same possibilities as for 4 above.
Yy & The same possibilities as for 5 above.
6 2%02'" 2% (F ) 8.10.3780
1 e 2%02'"42% (F ) 8.6.3780
8 ¢ 2%.2° (F ) 32.56700
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PROOF In the notation of [Aschbacher-Seitz 3], the
involutions of £ = ﬂ:(Fz) fall into 5 classes: a, the
Siegel (long root) elements; cz, the products of distinct,
commuting transvections; a, and a:, those whose commutator
subspace is a maximal totally singular subspace; and c,
certain involutions that lie in a,.c,. The ‘a’ refers to the
fact that the commutator subspace is totally singular, and
the 'c’ to the fact that commutator subspace is totally
isotropic but not totally singular. The subscript gives the
dimension of the commutator subspace.

The nomenclature serves also to describe the classes in
the full symplectic group ¥(V). The class of a symplectic
involution ¢t can be described as in the following table,
meaning that the condition listed for ¥(t) := (v € V|
<v,vt> = 0) suffices ~ with d := dU¥.([V,c]) ~ to determine

2

the class of t¢:

Iable 2
The classes of involutions in ¥(¥V) (or O(Y))
class condition on ¢
a, v(e) =¥
b, ¥(t) is a hyperplane, d is odd
c ¥(t) is a hyperplane, d is even

Of course, d is even for t € Q(¥).

The involutions of Z all lift to involutions of & :=
8/<zo>. More generally, one can show that each involution of
O:n(Fz) lifts to an element of the same order in the
automorphism group of an extraspecial 2-group Q of width n
and type ¢ using the Frattini argument. Indeed, each

respects a decomposition of Q (or Q’ODG, of the same type
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but of width n + 1) into a central product of subgroups
isomorphic to Qe’ whence one obtains that the element
normalizes a fixed-point-free, elementary abelian
3-subgroup. (This argument comes from U. Dempwolff’s

[4, (3), p. 453]; one could in fact use the result given
there by embedding Q@ in Q oZ/4.)

Now, the involutions of a coset tA are precisely
t€ (t), where t is any involution of €. Moreover,

t = t[M,t]. Thus there are |8‘(E):[M,E]| A-classes of
involutions in tA. In particular those of types a,, a:, and
c, - those for which ¥ is free over F2<c> ~ 1ift to a unique
M-class of €. An order argument now forces BE(t) to have
shape [M,t]-ct(c), for each of these iypes. _

Nex: we consider the action of ¥ := NE(tM) on the
module A := <c,8M(c)>/[M,c], for t of type a, or c,- Let
(t) denote the following:

— - * x —

(t) 0 — C(6)/[ME] M — <t>— 0
In the case a, (t) is split for OF(N*) since this group
induces 0'(a(F)) = u3m3.2 (Hore a,(F,) - <a, C O,(F )>.)
However, for the case c2 O°(¥ ) induces D:P.(Fz)) = “5' and
it is possible that (t) is nonsplit
(8&%; (<E>,8M(?)/[M,E]) » 0). We consider the split and

6

nonsplit cases separately. In either of the split cases we
now assume that the M-class of t is fixed by OZ(N*). For the
nonsplit case we choose any t in the coset. In the chart
below we list, for either of these t, the orbit lengths
under Oz(ﬂ*) for those elements of M* that map onto t under
x; the Oz(ﬂ*)-class lengths of involutions in tM; and
finally the subgroup N := Oz(BE(E)), expressed as

B, (E)+ (0% (B5()) /B, (E)) .
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Iable 3
The lifting of involutions from £ to €
0*(¥")-class-
0*(¥*)-orbit- lengths in
f-class lengths ip tx ' Ins (tA) N
a, 1 8 2212497
3,3 (nonsingular 3.8,3.8
points)
9 (singular 9.8
points)
c, 1 8 22"'25"5
(split) 15 15.8
c, 10 (index-2 10.8 21,2432
quadric)
(nen- 6 (index-1 6.8 2‘“‘~2"n’(r2)
split quadric)

In the split cases, BE(E)/B‘(E) - Bz('EM). In the nonsplit
cases this quotient is Zsﬂf(l’z). Let N s lle(<t,z°>) be the
preimage of N in €. Note that ¥ = Oz(ll).
We will make repeated use of the fact that, for each
class, [Oz(ll),ll N Q] covers
[Oz(ll),ﬂ N A) = olng.nad.([M,t]), and thus equals 01([Q.t]).
Next we show that the c, involutions do not lift to
involutions of €, unless (t) is nonsplit. Assume, on the
contrary, that (t) is split and t € € is an involution that
maps to t. From lemma (1.6) we conclude that CQ(C) »
!IQ(<t,z°>). The latter group is the central product, over an
element of order 4, of [Q,t] = 2x4 with a group

2'° w 402™ of symplectic type. However N as above
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normalizes no subgroup of Nb(<t,z°>) of index 2. Hence GQ(c)
is not properly contained in NQ(<t,z°>). The only possible
conclusion is that these c, involutions cannot 1lift to
involutions of € when (t) is split.

Rather than determine which of the remaining
€-involution-classes do in fact 1ift to involutions of € we
concentrate on the consequences, for each class, of finding
an involution in the given coset.

Consider an involution t that maps into c, in E£.
Necessarily » is nonsplit, and so Nc(<t,z°>) has shape
NQ<<c,z°>)-2°of(rz). Now, |Ng(<t,z>):Ee(t)| is at most 2,
but lemma (1.6) forces |NQ(<t,zo>):€Q(c)| =2,
[”Q(<c’zb>)’ﬂl contains 01([Q.t]) and covers the
4-dimensional orthogonal factor of NQ(<c,zo>), and so in
fact I[Q't]:e[Q,c](t)l -2,

For the class €, [Q,t] is not elementary abelian, so
that |NQ(<c,zo>):8Q(C)| = 2. This says that for t of this
class t[Q,t] is a single Q-class of involutions, of length
32.

For t of class a,, [NQ(<t,zb>),N] - NQ(<c,z°>), a
central product, over <z >, of [Q,t] and an extraspecial
group of width 2. Hence NQ(<t,z°>) - BQ(t) and so there are
at most 3 classes of involutions in tQ:

— the two Q-classes of t[Q,t], each of length 4, which
are exchanged upon multiplication by z,, and possibly
fused in ©;

and

— t.{involutions q of GQ(C) \ [Q,t]), a class of length

8.9.

Finally, for t of class a, (or a:), (Q,t]) is either the
indecomposable orthogonal module or else a direct sum of
<z°> with the natural symplectic module for 9‘(F2), so that
EQ(t) = [Q,t], and t[Q,t] is exactly 2 Q-classes of
involutions, exchanged upon multiplication by z, and

possibly fused in €.
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We have now verified that the entries of Table 1 give
all of the classes possible for involutions of €, their

lengths and centralizers, and their class in E. 0

(2.5)COROLLARY Let § be of type <I. If z and 2’ are
commuting points then the action of z on Qz, is isomorphic
to that of z’ on Q. (Ve are mot asserting here that z and
z’ can be exchanged by an element of §.)

PROOF If the points are collinear, this is clear. If not,
then Table 1 identifies 8z n 8‘,, and the possibilities are
essentially distinct for distinct classes of involutions in
8: = Gz,. 0
(2.6)COROLLARY Let § be of type 1.

(1) If w € T is a point then E(w)/(@ N Q) < Ce (W) /To(w).

(u)Ammaﬁe\(quQ)mmbsagin&.&',i.i’.g:
8.

(11i) If w € T 1s a point of ZL-class a or a;, then C’Q(W)Lg
the indecomposable orthogonal module for & n ¥ .

PROOF (1) follows from corollary (2,5) and the appropriate
Isomorphism Theorem, since BQ(w).Q' < (€ n 8').0'.

(i1) and (iij) Observe that if z € P \ {zo) then
@Qn Q;)’ - P1 n Px. Hence, by (1), BQ(w) < Ge(w)/BQ(w) for
w € U at distance greater than 2 from z,. This can happen
only for w of class a, (or a:) or c‘in L, as one sees by
inspection of Table 1. Thus if w is of E-class a, or a:,

then BQ(w) must be indecomposable. o

(2.7)PROPOSITION Let § be of type +I. The following held.

(1) Each of P, P, ,, and P, is a E-orbit, of length
2.135, 2.70.90, and 2.2°270, respectively. Each point of P,
is collinear with precisely 2.70 points of P, , and 2.2°
points of PZ'

e
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(11) There are no planes in I'. No point of P, is
collinear with any point of € \ Q.

(1i1) Each point x of P,  defines a Siegel (long-root)
element of £, and conversely each coset xQ of such a Siegel
element contains exactly 8 points of Pz.z' There are exactly
3 points collinear with both x and z,.

(v) If y, y’, and y” are the common neighbors of x and
z, x € Pz,z’ then ¥ := <x,y,y’ ,y",zo> is an elementary
abelian group of order 16 such that the geometry I'(¥)
induced from I' on it is isomorpic to the $~(F2)-gg§g;ang1e.
We call these subgroups quads.

(v) If # and ¥ are distinct quads, then their
intersection is either (1), a point, or a line. In
particular two commuting points at distance 2 from one

another lie together on a unique gquad.

(vi) The normalizer of a guad induces a copy of either
:f~(F2) = 66 or 'us, with each of the ‘Ils-j,nvg],utigng
(precisely those of class c, on ¥) induced by a point
collinear with its singular center in ¥ (i.e., the product
of the centers in ¥ of the two commuting transvections of
which the given involution is their product). In fact,

T, = <Q’|ze?'>sllc(:f), gnc_l?,/ﬁ’g:’(:f) -

(vii) I_fxeP“mweC’anshsn (w,# 1 =1(1). If
glg_qw&?zg_bﬂlwe:l’x

2z
o

PROOF The transitivity on P1 follows from lemma (2.3).

Lemma (1.6) gives that for each y € P1’ the set Pz,n n Qy is
conjugate ~ via Nc(<y,zo>) ~ to P1 \ L’Q(y), which is a
single € n By‘orbit, as £ « 0;(!’2) is rank 3 on the singular
points of K. Thus, € is transitive on Pz,:.‘
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Similarly, since € n By is transitive on the
involutions of Q N 8,, either all of these lie in Qy. or
none of these do and the set is conjugate via Ng(<y,zo>) to
PLz N Q’. Now the elementary abelian 2-group Q n Qy has
order dividing 25, so only the latter case can hold. The
flag-transitivity now gives that Pzg is a single C-orbit.

We have shown that there are no triangles of
collinearity. A fortiori there are no planes. Thus, by
(2.4.1), we conclude (ii).

The first and last orbit lengths are now clear. The
length of Pz,z is 2.70.#1’/#(?1 n Px), for any fixed
X € P&z' A comparison with Table 1 yields that the only
possibility for x is for it to have class a, in £ and
satisfy one of the situations 1 or 2 of Table 1. The second
paragraph of the proof yields that <x,zb> is conjugate into
Q, so that both x and Xz are points of PLz' and the second
case of Table 1 holds.

In particular we have ascertained the following facts.
|88(x)| - |l?|/#l’2'2 - 21833, and the foursgroup Q/BQ(x) has
two (regular) orbits in x[Q,x]. There are exactly 8 points
of 1»"2'2 in xQ; and <x,zo>' C P but is pot a line. Finally, x
and z0 have 3 common neighbors. This is (i) and (iii).

Call these common neighbors y, y’, and y” = yy’ . The
diameter of the geometry I'(¥) induced on the group
P = <x,y,y’,y”,z°> ~ perforce an elementary abelian group
of order 16 ~ is easily checked to be exactly 2, with each
pair of noncollinear points joined by at least 2 paths. For
example, the distance (in I'(¥)) between points of ¥ Nn Q is
certainly at most 2, as is the distance between z, and any
point of ¥#. Moreover, each point of ¥ n sz = x[Q,x] is
collinear with a unique point of any line in ¥ that contains
z,. Finally, one uses these observations to show that any
two points x’, x” of x[Q,x] are jointly collinear with at
least one point z of [Q,x]. Indeed, if P1 n P‘, 2 2z’ ,2” and

P NP ,_Q22z'z, 27z, then z = 2’2" = 2’z 2"z .
1 x 0 0 () 0
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As a consequence, I'(#) is the geodesic closure of x and
zo ~ the smallest subspace that contains x, z,, and all
points lying on all minimal paths joining any pair of points
of the subspace. This is because the above gives 3 common
neighbors in ¥ to any pair of noncollinear points of ¥ -
accounting for all of the common neighbors in all of I'. It
is immediate also that I'(¥) is isomorphic to the
:P‘(Fz)-quadrangle. Henceforth we will denote by :Pz.:, the
unique quad containing two commuting points z and z° at
distance 2 from one another.

If ¥ and ¥ are quads with |[# n ¥ | =2 8, then there is
a point z that is the radical, in each of ¥ and ¥, of any
eightsgroup in ¥ n ¥’ . This means that ¥ = ’ax and ¥ =
fo, for certain x and x’ in 8:, each acting as a Siegel
element on M:. As a result, x = x’ mod Q’, and so ¥ = ¥
(from the definition of a quad above). This finishes (iv)
and (v).

Consider now a path w — x — y — z,, where x € PL . We

2
assert that exactly one of the following holds for w:

(a) (w2 1= (1).
‘"o

(b) lwzol = 4, and w acts as an involution of class c,

on ¥ = fx‘ , with singular center x.
"o

By the previous lemma, we know that the order of |wz°|
is 2or 4 (remember that each point x of Pzz defines a
Siegel element on A, and z defines a Siegel element on each
Mx) so that GQ(zo) - 8Q£[Qx,zo]). Further, ¥ =

b 4
<[Qx,z°],zo> = <x,(Q,x]>. Thus w centralizes gome point of ¥

at distance 2 from x if and only if w centralizes each point
of ¥ collinear with x (since if an element centralizes both
a hyperplane and a point outside the hypefplane, it
centralizes the whole space). These conditions are thus
equivalent to [¥#,w] = {(1l). In particular, w cannot induce a
transvection on ¥. Now consider w collinear with x but not

commuting with z . First, (1) = [P,w] < ?.[Qx,zol =9,
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Second, w normalizes each line on x in the eightsgroup

N Qx, and centralizes a unique one of these, say <x,y’ >,
which must also be its commutator on ¥. If w were to induce
an a element on ¥, then zo' - zcy’ (since y’ is the unique

point of [#,w] collinear with zo). This contradicts the fact

that w € 8’, satisfies CQ (W)/<y’> = CM (w). Consequently,
y’ Y
the class of w in Nc(f)/ec(f) < Ge is as claimed. The

singular center of an involution t of type c, in any
symplectic group is the radical of ¥(t). Since w normalizes
each line on x, x must in fact be the singular center for w
acting on ¥. Thus (a) and (b) ~ which are mutually
exclusive ~ exhaust the possibilities for w. Finally, each
Qz is generated by its involutions, so the identification of
7, is complete.

The above ensures that [#,x’] = [¥ ,x] = (1), where

P = 5; . and ¥ = 3;, - whenever x and x’ are collinear
) ‘"o

points of Pzz' Corollary (2.6) implies that the only Siegel
elements of 8* (e Bx(xQ) that 1ift to points in Cc(x) must
normalize some nondegenerate 2* in A, = Q,/<x®, where
Q* t=- 02(8*). Now the only such Siegel elements that also
centralize ¥ lie in Q_, and thus {0} » [M,x] N [A,x"] =
<y<z >>, say. In particular, as every quad is geodesically
closed, <x,x',z°> < ¥ Nn ¥, and so these quads are equal.
This is (vii), and the proposition. 0

(2.8)REMARKS (i) We have shown that each point of sz
generates with z a ‘fake line’ ~ a foursgroup all of whose
involutions are points, but which is not a line. We call the
fake lines of the proposition hyperbolic lines; and if the
need for emphasis arises we will refer to the lines of the
involution geometry as the singular lines. The hyperbolic
lines are precisely the foursgroups that lie uniquely in
some quad. If A is a hyperbolic line then one sees that its

normalizer induces Zz(Fz) ] 63.
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(11) We will see in the proof of (2.135) below that the
normalizer of a quad induces all of :f‘(l-'z), with a
transvection induced by a point at distance 2 from its

center in the quad.

(2.9)DEFINITION Call any path 2z — z — 27, where ¢’ = <z,z’>

and L” = <z,z”> are lines, a corner, of width:

min{|x’x*| | X’ e ¥ \ <2>, x” € L \ <2>).
Note that the width of the corner depends only on z and the
lines ¢’ and {~.

(2.10)COROLLARY The involution geometry for a group of type

1 contains no irreducible pentagons. More precisely, if
2, -2 -z, -z -z -z =2z is a cycle of 5 distinct

points (subscripts read modulo 5 ) with no corner of width
1, then for all i it must be that z is collinear with
2,2 In particular, if x € Pz", then x and x"o are the
only points of Pz,s collinear with x.

PROOF If z, € Pz,~ then so is z,, by part (ii) of the
proposition. However, zz = zzzo and zz, = z;o are
collinear. Thus z and z  are collinear, since now
<zili » 0> must lie in a quad. This contradicts the fact
that there are no planes, since the hypotheses preclude
the possibility that <zl,zz> - <zs,z‘>.

Thus all z, lie in €. The proposition now gives that
all lie in some quad, in which one checks easily that all

pentagons are as described. 0

(2.11)COROLLARY Let § be of type -1. let w € P, and x € P,
be collinear. One of the following holds.

(8) x€P, , wy)’ =x (y= (xz)°) and |wz;| = 3.
@ xeP,, W' =1(y=(xz)") and (wz)* € P, .
(¢) xeP ,, and [w,# ] = (1).

» !,lo
(d) x € P2 2’ (wzo)z = yx, where <y,x> = [w,:Px . ],

o

and y €QnQ.
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PROOF Assume first that x € Pz,4’ and let y = (xzo)z. By
(L.8.11) either (b) holds, or else (wy)’ = x and lwz | = 3
or 6. The last case gives (wz°)3 - zo'.w'o € Pn Qxy, whence
<x,y,(wz°)3> is a plane ~ a contradiction.

If, on the other hand, x € Pz,z’ then the remaining

cases are lead to (¢) and (d) by application of proposition

(2.7,vi-vii) and lemma (1.8.i). For if (c¢c) does not hold
then { := [:P‘ . ,w] is a line, and x » (wza)2 e L\ Q. -

o

(2.12)LEMMA Let § be of type -I.

(1) Pa_z-Paneiga.LgLin e T-orbit. The product of z
mgp_o_m&wgiPa'zunotgmm: that is,
P n zo'Pa,z = @. Such a w acts as an involution of type a,
on M, and satisfies the conditions in entry & of Table 1.

(ii) I.ixeP“ then Cp(x) has 2 orbits LgPanQ’. viz.
the 2.36 points that centralize z and the 2.96 whose
product with z, has order 4.

(i1i) Each w € P3 2 is collinear with 15 points of P2 2"
P, has length 2°3%.7.

PROOQF We prove (ii) first. Corollary (2.,5) says that the
action of C’e(x) =Nt in P NQ =P \ [Q,z] is
x 3 x x x 0

isomorphic to the action of Be(x) in I’1 \ [Q,x]. Here
142.4
2
singular points of Bm(x) \ [M,x] ~ 36 in all ~ and
A (?M(x) ~ 96 in all.

(1) and (jii): The above ensures that P3 2 » 3. From

«3%2?% acts with a single orbit in each of the sets of

corollary (2.11) any neighbor x € Pz of a point w € I’3 2
must in fact lie in €. Corollary (2.6) implies that the
involutions in case 3 of Table 1 are not points. However

wE C’Q (zo) \ [Qx,zol , Wwhence wz is not a point. Hence, by
x
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the corollary again, we have P:"2 mod Q = a (say), with the
conditions of entry 4 of Table 1. Thus if w is any point of
P, then #P = 16.3780 = 2°3%.7 -

8.1575.2.36/#(P' n P&z)' This gives the parameters of
(11i). Note that a comparison of the size of the sets

P' n Pz,z and 02(6’ N 8') n Pz,z yields containment here.
Hence each minimal path joining w and z, lies entirely in
the elementary abelian group 02(8 n 8'), of order 2'%. a
(2.13)LEMMA Let § be of type 1, I' the connected component
of T that contains z, and §, the normalizer in § of T . The
following hold. 5‘ -<C’D> for any 9 : -Ilg(l,), ZOELEL.
G, is of type -1, 2(6’)- (1), and T 1is its adjoint
geometxy.

PROQF Since z, is central in a Sylow 2-subgroup of §, Po -
(P L) is the unique connected component of ﬁ normalized
by z,. Thus, € < G and so 6 is of type °1 ~ provided that
Z (6 ) = (1) (part of the hypothesis (2,1)). In fact PZJ C
Po’ so that zoco 2 P1 whence P(c) - zogo, l"o is the
adjoint geometry for Co and Z (c ) = (1). It is now clear
that 70 2 <€,D0>, whenever D = N (L), ¢ a line on z,. A

¢

Frattini argument gives that <€ ,0> = 60. 0

(2.14) Henceforth we assume that I' is connected, replacing §

by § if necessary.
We note that this hypothesis follows from (2.1) and the

broad classification [5] of D. Holt of tramsitive groups in
which a 2-central involution fixes a single point. However
the connectivity will be used in this section only to
establish (2,.15.v), whereas Holt'’s result is immeasurably
deeper than this.
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(2.15)PROPOSITION Let § be of type -1.

(1) The involution geometry I' extends to a residually
connected complex A that gatisfies the diagram:
1 2 4 1

D: o= — O

!

where the vertices of types 1, 2, and 4 are the points,
lines and guads, respectively. Those of type 11 are
elementary abelian 2-groups of the form 0,(¢ n € ,) where z
and 2z’ are commuting points at distance 3 from one another.
Call the vertices of type 11 hexes. The normalizer of a hex
K is a split extension of X by the Mathieu gxoup M , and
the action it induces on K is that of M on the (simple
factor of the) Golay code. The geometry I'(X) is a
near-hexagon on the 759 points of P(X).

(11) Iwo commuting points z, 2z’ at distance 3 from one
another lie in a unique hex ¥ .. Iwo distinct hexes

intersect in either (1), a point, a gquad, or else a subgroup
that contajins no point.

(iii) § is flag-transitive on A, and the residual geometry
for each simplex is isomorphic to the truncation of the
classical F -geometry that the residual diagram suggests,
save for that of a hex, which gives rather a copy of the

M -geometry over F (cf. [Ronan-Smith 8] for another
description of this 2-local geometry). Tacitly we "identify"
A with the incidence geometry on the vertices of A.

(iv) The stabilizers of the simplex o will be denoted ? ,
with ¥ defined to be the kermel of this parabolic on the
xesidual geometry A . Fix a flag (v |type(v) - i €I =
(1,2,4,11)). The shape of each  :=- # 1is given as

e |
follows:
P w2 -n;(r )
p = 2%+2:4, [2,(F )= (F )]
o= 2R (F 2 (F )]

? o 2M.m
11 24

1

1+8
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where ¥ (F)) < TZ(F,) (as the stabilizer of an oval) is a
(poncentral) triple cover of :f‘(le. Thus each vertex v may
be recovered as Z(Y), and ¥ =% (?). The stabilizer of a
chamber has a selfnormalizing Sylow 2-subgroup of index 3
which is a Sylow 2-subgroup in all of §.

(¥) 1 call the sheaf over A induced by the points, lines,
quads, and hexes (each regarded as a F -module for its
normalizer) the adjoint sheaf, and denote this by §_,. 1
denote ﬂo(i}.d) by 8, and refer to this as the adjoint module
(cf. [Ronan-Smith 9,10] for details on sheaf homology for

eometries). I denote by L the set of hyperbolic lines; by
I‘h i (P,Lh) the hyperbolic geometry; and by I‘+ i
(P,L v Lh), the augmented geometry.

Recall that if I" = (P’ ,L’) is a geometry with lines of
size 3, then there is a universal F dut(I”)-module H (I") :=-

F,P’/® generated by the points and subject to the defining
relations & := (R, = ¥ YzlXgL').
ex zel

Finally, in the following diagram of canonical

S e o

FP T H (D)
2 0

| 1 |

h +
H()—H(T)—38

7, is an isomorphism and dllt,,-zkm('rh) s 1.

PROOF Let x € Pz 2 and w € Px \ Pz 2 commute with zo. Such a

w is chosen in C’Q(zo) \ [Qx,zol, and is forced to be an

x
involution of € of type a,, owing to proposition (2.7) and
lemma (2.12). Set K := O, (Bp(w)). X has shape 1*4*e

to (2,4) ~ and contains [Q,w] = C,.(w), a maximal elementary

~ due

abelian subgroup of Q, of order 2°. K/[Q,w] is the natural
orthogonal module for NG(R)/R ] 0;(}'2) = l‘(Fz), and
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K\ [Q,w] is composed entirely of involutions: the 2*.28
N&(R)-conjugates of w, the same number of conjugates of vz,
the 2°.35 conjugates of x, and the 24.35 conjugates of xy
for any y € [Q,w] \ [Q,x]. Thus K is an elementary abelian
subgroup. Set N := Nc(x). Observe that since the definition
of K is symmetric in w and z, so is the definition of ¥.

We show next that 20” - P(K). It thet;/ foll;ws that N is
irreducible in K; indeed, we show that z5 =z K, and so
VR tm <Q |z € P(H)> acts irreducibly in K To see this note

that P32 is a single F-orbit, so that the orbital (z w)c
’ NB

is symmetric (or, self-paired). Thus z 2w . Now Q <N,
so for x € P22 n P as above we have chac wa c w'”nB zo”.

This in turn gives the claim, in that that z can be
conjugated via Vu to any point of X with which it is
collinear. It is not difficult to see that I'(K) is
connected.

Consider now the complex AR’ defined to be the
(flag-complex of the) points, lines, and quads that lie in
K. The residual geometries in &y of z, and of any line on z,
are easily checked to be (truncations of) respectively
?C~(F2) and PGS(FZ). (This is done entirely within €& by
noting that the lines and quads in K that lie on z
correspond exactly to the point- and line-stabilizers in
NNB)H = £~(F2) as this acts in [Q,w]/<zo>.) Thus AR is a
flag-transitive complex over Fz that satisfies the residual
diagram D11 of D:

D : a— - —O- 0
11

This complex is plainly embeddable (in X) over Fz, so that
the main result of S. Smith [13] yields the identification
N/ER = mz‘ and K =y Golay code (i.e., the simple factor of
dimension 11 obtained from the span of the octads). We note
that this extension is necessarily split, although we could
deduce the splitting from that of ¥ n € over K.
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Note that, in mz‘, the normalizer of a quad induces
:f‘(Fz), with each transvection induced by a point at
distance 2 from its center.

The residual connectivity of A is a consequence of the
connectivity of T ~ cf. (2.14) above.

To prove (ii), we suppose that K and K’ are hexes, with
P(KNnX)2 z,, say. Now € induces a permutation group on

the collection H' of hexes containing z, with Q acting
o

trivially. € is transitive on Paz’ hence transitive on Hz.
! o

The normalizer of any one of these hexes is, modulo Q,
merely the stabilizer of a maximal totally singular subspace
of M. Since this action is rank 3, and since there are pairs

of distinct hexes in Hz intersecting variously in <z°> or a
o

quad, we see that these are the only possible intersections
for a pair of distinct hexes with a point in common.

The remaining statements of the proposition ~ save
possibly the isomorphism of (¥) ~ now follow
straightforwardly from the claims already established,
together with the information known on by, at least once the
residual geometry for z, in this complex is determined. This
can be done by using the correspondence of the lines, quads,
and hexes on z, with, respectively, the singular-point-,
totally-singular-line-, and totally-singular-4-space stabi-
lizers (the 4-spaces corresponding to wc) in E.

For (v) observe first that there are natural

surjections:
H(r)—y"-»n(r)-y—"“» +R —z+8 — G )
o' h o' + 8, z h z + ad;z’’

Thus if Ho(Ph) = 0, then HO(P+) = g = 0. Assume that

Ho(rh) » 0. The relations Rh and the flag-transitivity of §
in Ph give that L is injective on the set of points in any
singular or hyperbolic line, quad, or hex of I'. Fix a quad
L. RL - RL’ mod ﬁh, for any singular lines {,&’ € L(¥). The
connectivity of A now gives that ker(yh) - 8+xh is a trivial

module for §, of dimension at most 1.
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To finish (v) consider ¥ := P(’)'S7h v {0} < HB(P+).
Now ¥ 1is closed under addition: zz’ € P(¥) and zz’ = z + 2’
mod 8+, for distinct z and 2z’ of P(¥) (use (2.7)). Thus ¥
and ¥ are isomorphic Né(?)-modules. Finally, the argument
above that provides the hexes of A can be repeated to
complete a proof that the sheaf 3.4 has a nontrivial image

in the constant sheaf HO(P+); use this map to invert 7+ o

In order to finish the enumeration of the C-orbits in P

we need the following.

(2.16)PROPOSITION Consider an “9 < €T that pormalizes a set

of 9 mutually nonperpendicular singular points in M. If Y <
€ is a patural Y -subgroup of this Y then §, :- 8&7(") = Ki,
the simple group of M. Hall and Z. Janko.

We first prove a short lemma.

(2.17)LEMMA Consider a pat zo -y -x-w-— v, where
X € Pz~, w e By, v € Bx\ <w,x>. We then have w € P3

veP .
4,5

a,m

PROOF OF LEMMA We have w € P, . by (2.11).

The a, involution VQ‘ in Z! normalizes a unique 2-space
in M‘ and containing y<x>, and va induces a transvection
there. Thus v normalizes a unique quad ¥ on <x,y>, and is
collinear with a unique point w of ® = <x,[y,v]>. As v is
connected to ¥ it induces the ﬂs-involution with singular
center w and axis s. On the other hand z, is connected to ¥
and induces the ﬁs-involution with axis € » <x,y> and
singular center y. As { and & are disjoint, e = (vzo)5
centralizes ¥ (cf. the Appendix).

Now z = y o = w 0’ is collinear with neither y nor
% € Qz (as in the Appendix). Unless e
is 1, z is the unique point 2z’ of ¥ with e € Q;" Neither z,

zZ Vv v
w, ande-VO.zo

nor v centralize z, so e = 1 and |vz°| = 5.

By (2.11), v cannot be in P1 or Ps' whence v € P‘. 0
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PROOF OF PROPOSITION First note that there is exactly one
O:(Fz)-class of sets of points that are maximal, with
respect to inclusion, amongst the sets of mutually
nonperpendicular points. The normalizer of any such set is
isomorphic to "9 (use Witt’s Theorem on extending partial
isometries).

Next observe that the centralizer # of a corner
2’ — z — z” at z of width 4 is the centralizer in 8' of a
subgroup D‘ of Q,' hence has shape 2“60*(!" ). Oz(d) acts
simply transitively on each of Py \ 8; and P{,\ Cz. Now a
point of either set can be viewed to correspond to the
subgroup OS(FZ) stabilizing the point; abstractly this is a
complement in # to Oz(d). There are in fact two classes of
complements to Oz(d) [Pollatsek 7, (5.2), p. 415]). Th
respective representatives of the classes act on the 64
lines on 2z’ not perpendicular to <z,z’> ~ as well as the 64
for <z,z”> ~ with orbit decompositions of 1 + 28 + 35 and
8 + 56, respectively. A consequence of this proposition is
that (to be proved in the proof of (2.19) below) is that a
complement that fixes a point in Pi \ 8: does not fix a
point in P;” \ 8

Now O :-ec (z) = E(1) = 2'™a (F ), with () =
u

x:-anu- 2!

—y-—-—x-w, where x € P 24 and weEP 33" In particular,

. The copy of “ chosen centralizes a path
cﬂ NR = <z >. That is, C“ is of type R]/J An old result
of Z. Janko [6] asserts that one of the following must hold:

Uy = ¥7: ox
ﬁu has exactly one class of involutions (and cu has the

character table of § ).
3

The second case is impossible since the involutions of D \ R
are of type c, on M, and (2,6) rules out these involutions

as points on §. This finishes the proposition. o

For future reference we list the D-orbits in Pu - zocﬂ

and the parameters for the lines between them.
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Iable 4
The point suborbits for HJ

10 80 160 64

(2.18)PROPOSITION Let § be of type -1.
(i)Lg_cwePa'.Me.i.agmima\m?’ on w

4

normalized by z . ¥ contains a unique point of P .
(11) P, breaks up into precisely 3 €-orbits (all
self-paired):
P_ .. of length 2°3°5.7; each of these points is

3,3

3.4

collinear with exactly 15 points of P, ; and each
has centralizer in € of shape 25-26?‘(F2);

of length 34560.2.64/9 = 2'°3.5; each of these
points is collinear with exactly 9 points of P, .,
with the remaining lines connecting to P .; and
each has centralizer in ¥ isomorphic to ¥ ; this
centralizer acts naturally on these 9 neighbors in

2,4’

of length 2°3°57; each of these points (v, say)
g@mmwlmgpz,zmz
points of P, ., and lies together with these
neighbors in the unique guad on v that is
normalized by 2z ; and the centralizer in € of v

has shape 22"'20:(}'2).

(1ii) Say a point z is connected to a quad ¥ in case z is
collinear with some point 2z’ of ¥. In (2.7.vi) we noted that
all the points connected to a given gquad normalize the guad.
mwmgg\?,,,uﬂmemmw_cnzou
connected. Each point of P,  or P is connected to a quad
to which z is connected.
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PROOF This proposition is really a compilation and
refinement of the results on P3 contained in (2.11) and
(2.12), and one should have these statements firmly in mind
as one reads the following. In fact the bulk of the proof is
. It might be
worthwhile to look ahead at this point to Iable 5 at the end
of the section. This gives a global view of the C-orbits in
P.

devoted to proving the statements about P3

(1): Let w € P3~' Corollary (2.11) says that w is
collinear with x € P2 where either x € £ and w induces an

ﬂs-involucion on ¥ = :Px . ©°f else y = (xzn)2 € P1 and

o
wE Gy. Consider the first possibility. In this case w € Qx

acts nontrivially on the unique quad ¥ on <z°,z°'> < Qy.
Moreover w centralizes a unique line ¢ in ¥ n Qx.
Necessarily € = <y’ ,x> for some y’ of Px N Q. Thus, z
induces an ﬂs-involution on 3;,". The first possibility
reduces to the one just considered by reversing the roles of
w and z,.

If z is the point of £ = ¥ N ¥ that is collinear with
neither w nor z, then a point 2z’ € P:‘ € must normalize ¥,
¥, and ¢, and conjugate z, to one of the 4 points of ¥
collinear with yz. If this is not w one can replace z’ by
another point of Pz or by a product of this point with a
point of Cz that induces a transvection on ¥ with center z
and obtain thereby a point that conjugates z tow.

We have shown that any point of P2 n P' lies in the
quad ywmto' perforce the unique quad on w that is
normalized by z, . This finishes (i) and yields the
parameters for P3J in (ii).

We will derive the statements about Pma simultaneously
with (i1ii). This is all that remains to prove. The
combination of (2.11), (2.12), and the first part of this
proof show that there are but 3 T-orbits in Pa' and provide

the statements in (ii) regarding P32 and P34'
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Consider the set of paths z, -y-x-w, for a fixed
w E Pa,a' The stabilizer of any one such path is a copy of
1!8, as was noted in (2.15). In the same proof we saw that
the set of lines <x,w>, for x € Pz,n on one of these paths,
determines a set of mutually nonperpendicular points in Al'.
Thus there are at most 9 such paths, and in any € n B'-orbit
of these paths, a point stabilizer is induced by a copy of
“a' However, by (2.15), there are at least 4 of these paths.
We conclude that there are exactly 9, with € n 6" = '!l9
acting naturally.

Finally, any v € P' must centralize some x € P' n le‘.
From (2.16) we conclude that P' Cc Pz.‘ v 1"3.3 U Ph,s' We
have observed that each such point is connected to a quad to

which z, is connected. This finishes the proof. 0

(2.19)PROPOSITION Let § be of type -1.

(1) 1f v € P_ for some w € P, then either v is
contained in the unique hex on w an z; or else v € P"‘.
In the latter case x := [v,zol - (vza)z € P' n Pz,z’ whence
w € ?v'x, the unique guad on v that is normalized by z,.

(ii) LQ&VEP'M.&EQWGP:,J- Set x := P'angml:P
to be the unique gquad on w that is normalized by z . Assume
v € <w,x>. Exactly one of the following three cases can
occur.

Vémngss_ems_musx,mvel" ;

5’
v does centralize x, but not ¥, and exactly one of v
and vw lies QP‘ 3’ while the other lies in P‘ 6;

v does centralize ¥, and v € P‘ Y
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(111) P, consists of exactly four F-classes:

16,3

P ., of length 27°3'7; each of these points has 10
neighbors in P, , 25 in P, ., and 200 in P, ;

P, .. of length dividing 2''5.7.135;
P, o of length 2'°3°5°7; each point here has 3

neighbors in each of P‘3 and Pa&' 96 in Pas’
and 36 in P ;
and
10,32

P .» of length 27°3°577; each points here has 3
neighbors in Paz' 192 jin P‘s, and 36 in Pac‘

(1v) 1f v € P, _ then there are 2°3 lines on v that contain
1 point of P, snd 2 from P, ; and 2°3° that contain 1
point from P and 2 from P .

PROOF We show first that if v € P‘, then vz, is one of
exactly four possibilities, with digressions to finish off
(1) and (ii).

From (2,18) we may choose a quad ¥ to which both v and
z, are connected. Say y € P1 Ny and w € Pv N ¥. Assume
first that both v and z, act nontrivially on #. If their
product induces a 5-cycle in ﬂa then in fact v € Pms’ as
noted. Otherwise their product induces a 3-element with
fixed points in ﬂs (a 3-cycle, as in the Appendix), and
moreover Cf(v,zo) consists of a single point x, say. In Bx
it is easy to check that ((vzo)a,(vwzo)s) = <x>. This
finishes this first case and also gives (ii). Moreover this
says that if v € Pl.'6 then x = (V'zo)3 and v generate a
hyperbolic line; and the quad ?v' contains all of the
neighbors of v in Paa' Thus #P"8 - 2933527.2.25/3.

If Bg(f) contains either v or zo then we claim that
|vz°| = 4. We establish this together with (i). Say z,
centralizes ¥, and let X be the hex on w and zo. Now z° € 6'
is of type a,, so that v’ := v'o € Qw and v commutes with

v. Since K 2 BQ (zo), v = v/ would imply v € K. Rather it

w
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must be that x (= vv/ = [v,zo,] € [Q',zol < K. Thus ¥ :=

fv! is the unique quad on v that is normalized by z,.

Moreover, v induces one of the 2-central mz‘-involutions in
R'Jo, whence x = zJﬁzo is at distance 2 from z, and
collinear with w.

As this argument shows, if v is gny point collinear

with w but not in P U P3 then v € P‘

2,2 2’ Ky
From the above v € P“ is connected to precisely 3

points of P:‘,,2 ~ viz. the 5 neighbors of v in ¥ -~ whence
#P, = 2°3%5.7.240/3. Assume now that z € P, but z is not
in ¥ . Either z centralizes ¥ or else z induces an
ﬂs-involution with v as singular center. Since the center x
of z, (z° as a transvection on ¥) is not collinear with v,
|zz°| is a multiple of 6 whenever z ¢ Bg(f).

Now count neighbors to see that each point v € P“ is

»

connected to 2232 points of P3~ and 2°3 points of Pss;

4

each point v € P‘s is connected to 223 points of P‘
while each point w € P3¢ is collinear with 2°3% points of

) 25 from each of P and P , and 27 from P . For
4,4 4,3 ‘.8 4,5
example, if v e P Y’ set X = (vzo) , and ¥ = f;x. Now

€ n€ = 2°°3* has just 3 orbits on L: the 3 in ¥, the 36

not in ¥ that centralize ¥, and the 96 that do not
centralize ¥. On the other hand if w € Psb then any
neighbor of wthat centralizes fv z, must lie in P“

»v

Hence, the 36 lines of L; that do not lie in ¥ but that

centralize ¥ must contain one point each from PL#' We claim
that the remaining neighbors of v ~ those that do not
centralize ¥ ~ all lie in Pms' Again it is enough to see
that w has at least one neighbor in Pms'

For this begin with the observation that v®o and x"
are collinear points of ¥, whenever u € P; acts nontrivially
on ¥ (cf. the Appendix). Set w = v'o.x"; this is a point of
sz that is collinear with each of v and x, and is
centralized by u as well as z,. Hence there is a quad ¥’ on

u and a hex X’ on zo whose intersection contains w.
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In A', then, we can find a unique hex X” containing ¥’
whose intersection with ¥’ is a quad ¥”. Now z, € X’ must be
connected to ¥”, as must be u € K”. Necessarily, u € P"s,
as we have seen in this case.

With this one calculates that the centralizer € n Cv of
a point v of P&,e ~ lying in the normalizer of both of the
hyperbolic lines <v,x> and <x,zo> ~ has shape
3 x 2™

r: those of lengths 3 and 36 just mentioned, and the one of

[tz(Fz)x zz(rz)] and hence has exactly 3 orbits in

length 96 consisting of points that do not centralize .‘Pv <
Each of these lines contains, besides v, a point each of
P and P .
4,5 4,6

Now counting the points of P‘5 in three ways one sees
that #P‘ s 216335.7/n. say, where each point v € P‘ s is
collinear with 2n points of Psa’ Sn of Ps‘, and 235n of

4,6
ll‘ X 115 < 119 < 0;(':2)' stabilizing a (4,5)-partition of the

9-set. Since n is at least 1, 2 divides the index of

P . 1If v is collinear with w € Pa 3’ then C’c(v,w,zo) =

C’c(v,w,zo) in l’,’g(v,zo). This*leaves only a subgroup 1.!5]2 as
a possibility for € n t." < Qa(Fz), whence n = 5.

The fact that n = 5 implies that if <v,v’> is a line,
with v € P"s and v’ € P‘,S, then vv’ € Pq,e' This finishes

the last of the P4 ¢ parameters, and thus the proposition. o

(2.20)REMARKS (i) A consequence of the results of this
section is that if ¥ is a fixed quad, ¥ is its normalizer,
. and P:’ is the set of points connected to ¥, then the Hecke
algebras E’nd”(FzPa,) and ende(FzP) are isomorphic (as
F,-spaces).
(11) It can be shown that in «1 each line on a point

and P, . This gives
,6 3,4

the remaining parameters for I', and demonstrates that I has

v € P‘ ) contains 1 point each of P‘

diameter 4. Moreover if K' (= P‘ V) P‘ 6’ then K. has the

3
property that each line that contains a point of K. in fact
contains exactly 2. This will be noted again in the next

section.
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Iable 5

The €-orbits in P

P
4,6
214325%;
96 3 36
135
P 2.100 P 2.96 P
4,5 4,3 4,4
218337 25 2145 .7 36 21033525
10 135 3
32
2.126 2.66\_ +32 2.36 2.120
P P P
3,3 3,4 3,2
21335 293%5%7 2%3%s .7
9 15
2.64 2.70  2.96 36
Pz,h P2.2
28335 2332527
1 3
2.64 2.70
P
1
2.3%
1
2.135




3. THE ADJOINT REPRESENTATION FOR GROUPS OF TYPE -1
(AND RELATED REPRESENTATIONS)

Throughout this section § remains a group of type -l
(cf. (2.1)), with the assumption (2.14) that its adjoint
geometry is connected.

Retain the notation of §§1-2. Much of this is given in
(L.1), (L.4), and (2.15). Throughout we will mean by S°(d)
the subspace of End(d) consisting of symmetric matrices ~ as
opposed to the appropriate quotient of End(d). Although this

involves a choice of basis, Sz(i) will arise only in

situations where the action theron is induced from a

symplectic representation.

(3.1)DEFINITIONS AND NOTATION We give another description of
the homology module HO(F’) for I'“ = (P’ ,L’) a geometry where

the lines have 3 points each (cf. (2.15.v)). Consider the

(deutr’-)permutation modules FZP' and FzL’. Define maps:
*
FL —aarzp', I1+——3Yp, and FP i»rzL',p — ¥ 1.
pel 1ap

Identify each of these modules with its dual through the
usual inner product; this identifies a* with the dual of o,
as the notation suggests. In this setting, HO(P’) -
awun(a*). The surjectivity of o is equivalent to the
injectivity of a*, in turn equivalent to the nonexistence
of a set K’ » @ of points such that every line meets K’
evenly. P’ \ K’ is an example of a hyperplane sec , as
considered by M. Ronan. We use this in the following.

(3.2)HYPOTHESIS H (T)) = 0.

(3.3)REMARK Using (2.15) we conclude from this hypothesis
that g = Hb(aad) » 0. At least in ¢1, the set P\ K. -

P\ (P’.'3 V] Pms) is a hyperplane section for I', as was
mentioned in (2.20). Thus HO(P) » 0 in this case. What
remains to do is establish the existence of a hyperplane
section P \ K£ for the hyperbolic geometry Ph. We could then
apply (2.15) to conclude that g = 0.

36
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Whatever K; might be, it is pot K.. In fact, there is
no €-invariant hyperplane section for the hyperbolic
geometry, as we show in (3,1]) below.

The anomoly of having two distinct hyperplane sections
is not unusual in geometries where there are both ‘singular’
and ‘hyperbolic’ lines. For example the symplectic spaces
over Fz (or, analogously, any field of even characteristic)
have as hyperplane sections, in addition to the linear
hyperplanes of subspaces perpendicular to a given point, the
set of points of an orthogonal quadric. These are ‘linear’
only in the universal (homology) module for the hyperplane
section ~ {.e., the orthogonal modules of 1 dimension
greater.

The near-hexagon on the octads for ﬂg‘ has a hyperplane
section consisting of the set of all octads at distance no
greater than 2 from a given octad. However, the
representation of the near-hexagon in the 1l-dimensional
factor of the Golay code does not realize these hyperplane

sections in linear hyperplanes.

(3.4)DEFINITIONS AND NOTATION Let S be the set of quads and
H the set of hexes. The shadow geometry

A(H) := (H,{Hy|$ € S)) over H is a partial linear space,
where we regard as H-lines the sets H? t=H N Ay for # € S.
The H-lines contain 3 points each.

Fix a hex K, and define K, as the set of all hexes X
that lie on paths of the form R* -z -K - ¥ — K, where
<z>=K, NnK is a point, # =K N X is a quad, but
 n Q’ = (1). K, can be shown to be the complement to the
unique N* te Nc(R*)-invariant hyperplane section of A(H).
For § = 1, K, corresponds to the set of codrdinate frames
of the Leech lattice A, taken modulo 2, that are not
perpendicular (module 2) to the frame (that corresponds to)
K,. Verifying that H \ K is indeed a hyperplane section is
tantamount to sorting the hexes into N*-orbits, of which

there are 6: one at distance 1 from R*, and two each at
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distances 2 and 3.

Rather than establish the nonvanishing of the module
HO(A(H)) as above, we show below how (3.2) implies that this
module is nonzero. This approach involves only some
elementary local calculations in various homology modules.

Y. Segev has studied the geometry A(H) extensively. He
uses elegant geometric arguments to obtain delicate
information about the geometry. He then constructs a
concrete isomorphism of A(H) with the ¢l1-geometry on the
codrdinate frames of A. A corollary to his work is the
existence of hyperplane sections in A(H). There is some
obvious overlap of our projects, although our aims are
somewhat different.

I thank Dr. Segev for useful conversations that we had
at the Noordwijkerhout meeting ‘Groups and Geometries’, and
for providing me with a draft of his paper while I prepared

this manuscript.

(3.5)LEMMA(1) A supports g sheaf §, for § as follows:
ﬁ 6+ 1 11.
55: Qa X E
A

where 26 denotes the homology of the sheaf of fixed-points
associated to the simple factor of A*(A); 6, denotes an
orthogonal module for the factor 0;("2) o Z‘(Fz) in ’2.
embedded in A*(A) as the exterior square of the ?,-invariant
totally-singular subspace of A; 11" denotes the dual of the

(simple) Golay code 11 for ®,; and 11° intersects 6, in a
\

totally-singular 3-dimensional sub-space, and intersects 26
in a 6-dimensional orthogonal subspace.

(11) If & := N(g) mmnamc-mssine.
the constant sheaf for &. In particular, H (35) = O.
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PROQOF We use the term S-pojint to mean an element of S; an
S-line is a shadow SL,H = SN AL,K’ where £ € L(K) and
K € H. Notice that the partial linear space A(S) has ‘lines’
in correspondence with the 7 points of ?ﬁa(Fz), and so a
universal Fzﬁ-representation of A(S) is not exactly as in
(2.15.v) or (3.4).

Given the definition of 33 above for the faces of a
fixed chamber of A it is not hard to check that the
definition extends equivariantly to all of A (cf.
[Ronan-Smith 10, (4.2), p. 142]).

We finish by showing that 55 has a nontrivial image in
te. The point is that HO(ES) is the limit of the system ﬁs,
so that 55 — E = Ho(te) must factor through Ho(ss). See
the Reciprocity of [Ronan-Smith 10, (1.2), p. 139]:
Kom(3,R%,) = Ro-c(Ho(tx).il) for 3 any sheaf over A and X any
F.U-module.

Recall that (2.15.v) allows us to regard § as generated
by P, subject to the defining relations determined by L and
Lh. Fix ¥ € S. The element 21A21 + zzAz; is the central
element of Az(f) whenever the two pairs (zi,zl) are
orthogonal hyperbolic pairs. Denote this by {,. Now if X is
a hex and ¥ s X is a quad, then Nb(?,u) induces a group 6 =
2°# (F) s M such that X is uniserial for 6: ¥ s X =<K ,
where K is the linear hyperplane containing the points of X
that are connected to ¥. Thus 6 has a single fixed point in
Az(x). Perforce this is f,, which then lies in a copy of
K* < Az(R) (the dual of the kernel of the cocycle for the
extension of R* over K that lives in the permutation module
of dimension 24).

The remaining terms of the subsheaf of :8 can be
constructed straightforwardly from the terms for the quads
and hexes. See the proof of (3.,8) below. Note that it is
unimportant what actually appears in & at the vertices P of

A: 55 will map to !8 in any case. -
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(3.6)LEMMA(L) H (A(H)) » 0.

(11) In each H (A(H))'0, o € A there is the term §,., of the
following sheaf over A:

8’ 4 2 1

QSA: a - IL
Here 1 denotes a trivial module; while 2 and 4 denote
natural modules of these dimensjons for the respective
parabolic factors isomorphic to tz(Fz) and t‘(Fz); 8’
indicates an orthogonal module that is twisted by a triality
automorphism from the orthogonal module A; and 4 is
contained in 8’ as a totally singular subspace.

PROOF (i) We show that E®3 represents the geometry A(H).
That is, we show that for each K € H there is a fixed point
K € Eeg for N&(R) such that % w teyr - 0 whenever
{K,X’ ,K”) is an H-line.Indeed for each K € H, the image of
= 8nd(1ll) in E®g has a l-dimensional fixed-point

€ + €

85k ® Baum
space for Nc(n); say this is eru.
It is straightforward to verify, exactly as in the

proof of (3.8) below, that gl’ , 1 € I, contains the
1

following composition factors:
1 1 8 ..

2 2 2@6+

4 O—d 4 682 2 ...

11 o1l ...

I
Thus, for example, there is a uniserial ?‘-submodule 8, of g
that contains jJ and E‘d;‘ and has composition factors

ad; 11

g“r‘ =% 4, 62, and 2 (6 is the F‘-semilinear module for

s:(rz) ] 65’ as before). Similarly, in & we find the

uniserial ?‘-submodule 8‘ containing 11* of shape:
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1 26 or 27 ...

2 6, --.

4 0—d 1 682 482 ...

*

11 oll
I

*
In particular Roa,‘(Fz,R‘eg‘) = Ron"(g~ ,8‘) = 0.
Now consider the H-line (X,H’ ,K”) on the vertex v, € S.

Since ¢, + €,, + €,, € 8‘93. is centralized by ?‘, the

K K - 0. This concludes (i).
(i1): Let A be HO(A(H)) ~ nonzero, from (i) ~ and let

X X ) Al
remark above forces gty te
711 and V‘ be, respectively, the images in A of the
subspaces qu and any of the permutation module FzH. Define
v, - ) v %, ¥, cannot vanish, lest A=Y v .G vanish. Thus
Vz is generated by the 15 points V}:.?z subject to the
relations determined by the lines of the natural module for
tz = zn(Fz) in which ?le/ﬂz fixes a point ~ a presentation
for this 4-dimensional natural module.

Similarly the sum Vl of the images of 711 under
elements of T = ?1 must be the natural module for & (as this
acts through its quotient OZ(FZ)) in which ?1J1 fixes a
point (One could either repeat the argument of (2.15.v), or
else invoke the general theorem of [Ronan-Smith 9, (4.1),

pp. 338-339]). _

(3.7)REMARKS (1) The notation EA is meant to suggest a
connection with the Leech lattice A. Indeed for each o € A,

3.

of the fixed points for ﬂa < ¢1. Ve regard this as saying

o is just the subspace 53'0 of A := A mod 2 that consists

that the pair C,&A is ‘'locally isomorphic to’' the pair
-1,§K . In proposition (3,8) we strengthen this to say that
A= Ho(ﬁA) ‘is locally isomorphic to’ A (g¢cf. the precise
statement in Jable 6 below).
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(1i) The assumption that Ho(aA) » 0 would, similarly, lead
to the nonvanishing of H;(P) through a nontrivial image of T
in Sz(Ho(ﬁh)). This is noted also in corollary (3.9).

(3.8)PROPOSITION Let § be of type -1, and §, the sheaf as

defined in lemma (3.6). For each maximal parabolic # of §

we list a composition series for HO(EA)l, in the following
i

table.

Table 6
The local composition series’ of Ho(ﬁA)

1 8’ 8~ 8’
* *
2 4 284 4 4
*
4 2 6 42 6 2
11 T u* 1 1
I v wy o X Y x 27y

REMARK Since Conway’s group ¢l is a group of type ¢l this

result is a ‘local uniqueness’ theorem for such groups.

PROOF Set A= Ho(ﬁA). Lemma (3,6) (that A» 0) provides us

with identifications EA'V - Vi <A, i€l Starting with
'
these the chart gives a ?1-series VL < '1 < 11 < ‘y1 s Zi,

i € I. The entries in the chart identify the composition
factors by their dimensions ~ a blank indicates 0 ~ possibly
in conjunction with other notational information which will
be explained as the proof develops. The proof is carried out
in twelve steps, one for each nonzero factor not given as a

sheaf term.
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Step 1 Define ¥  :- ) v? - This is a ? -submodule. In

vu/vu there 1s a sheaf over Av as follows. First,
1

Vu s Y‘ s '11’ and V‘/Yu is a 1l-dimensional

® _-submodule of ¥ /¥ . Next, ¥ < ¥, and ) V? -
4,1 1 1 ) 2 42,1
¥, so that V. /¥ < ¥ /¥ 1{is a natural 3-dimensional

2 2 1 1’ 1n

module for ’z ' Finally, the ?1 u-conjugates of Y‘

generate the subspace of the orthogonal module Yl that is
perpendicular to Vu. We summarize these calculations in the

following table:

1
6+ - (z vbyl.ll)/vll - vll/vll = vl/vll

3 -Q vs’z.u

)/vn - vz/vu

1 =y v

11

6+ is the 6-dimensional orthogonal module for Z‘(Fz) =
a.(F).

The homology of this sheaf is the simple !Rz‘-module
denoted by 11° ~ the Todd module (cf. [S. Smith 13]). The
fact that A » 0 forces the image, in vu/vn, of the
residual homology module to be nonzero. Hence Vu/‘lu
contains a copy of the Todd module. Since Un/i’11 is
generated by the subspaces (‘lf‘/!fu)f‘u in this copy of the
Todd module, these are perforce equal, and we have verified
the first of the twelve entries: the composition factor ¥/ Vv
gver i = 1 is the Todd module for ¥ .

Observe that ’u 2> Yn, and that 'u n Vl has a
?l'n-series 1:1:6+. (We abbreviate a composition series by
such a sequence.)

All of the other steps follow this same line, and so we
finish the proof with but a sketch of the calculations.
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Step 2 ¥, :- ) v ?, leads, in exactly the same way as
step 1, to the sheaf:

2N 6 =2
*
o6

6 denotes the F‘-semilinear module for :f~(F2), as before.
(The convention will be that the symbol for the dual of a
module will be the symbol for that module with a superscript
‘*’ ) Note here that on:.y the subgroup 02(111.) - 03(1!~) of ‘ll‘
acts trivially. Also, 6 contains the ’z,f and
?l'i-subspaces 2 and 4, respectively. As Ho("

second entry of the chart is verified.
Y <¥W <¥ ,and ¥ NV = 2:4.
2 ‘ 1 4 1

Step 3 ’z (- Z 71?2 leads to

04*

4F 0 202 = 2
4 = 202
D_I 203"

* 2 3
Since 4 N 4 = 2, the ?liz-subsheaf 5‘-: O—o—o
generates, in the homology of the above, a factor of
2@110({’;‘-) = 204*. Again, the simplicity of the residual
homology module, together with the nonvanishing of A, gives

*
Vz/vza 204 .
¥ >V , YV ; and ¥ nV¥ -1:3:293*.
2 1’ s 2 1

ﬂ 2
202

Step 4 X := Y v *, leads to:

2N4 =1
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Ho(::-:;) is a copy of the 5-dimensional orthogonal module
for 9~(Fz) ] 05(Fz). This and the fact that 2 N 4 = 1 imply
that the homology of the above is a factor of 582. However,
there does not exist a copy of the symplectic 4 in 582 (for
the parabolic ’4.,11)' so that this homology module is

492 = ’.!‘/V‘.

Step 5 X :=- ) [111,?1'11]91 -3 '2’1 leads to:
*
4

2

4*

whence to i!l/V1 = 87, a triality-twisting of Vl.
X =2¥ ,¥; andX N¥ =1:6 :4.
1 2’ s 1 1 +

All of the major steps of the proof are now complete.

Steps 6-8 "Dualize" the arguments in gteps 3, 2, and 1, in
that order, to obtain:

‘yz/ﬂ2 = 204; y‘/w‘ = 6; and yu/vu = 11.

Steps 9-12 First define Z :=- ) Y2 . and verify that
Z/X = 8 . Z is then stable for #, ?, and ? () 29
"™ 1 2" T 1 11
generates a constant sheaf for each).

Now Z1 < A is stable for each of the parabolics and
contains the generators for A, hence A = 2'11 - Z‘ - IL."2 -
21. a
(3.9)COROLLARY({) A is self-dual for §.

(i1) The singular lines of § act guadratically on A:
[A,£,L] = O whenever ¢ € L.

(i1i) S*(A) represents the adjoint geometry for §.

PROOF (1) The Table 6 shows that there is a nonzero
map 51\ 4 f\*, and so the reciprocity applies.

In particular § is represented in ¥#p(A), so that
(without loss) § leaves Sz(i\) invariant.
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(i1) and (iii) Let { = <z,z’> be a singular line. From
the proof of (3.,8) observe that [A,zol - V' < Ig - BA(z).
Now f'.' SV, ND) S ¥ < I, The G-map F.P — s*(A) <
Bnd(A), z —> 1 + z (of trace 0) factors through HO(F),

since1+z+1+z’+1+zz'-(1+z)(1+z’)-0.D

(3.10)REMARK Counts of the vertices of A and of the image of

these vertices in A shows that the map is indeed an

embedding.

As a final result we indicate how a proof of the
nonvanishing of the adjoint module that includes a

description of a hyperplane section will not be so easy.

(3.11)LEMMA There is no C-jinvariant hyperplane section for
the hyperbolic geometry of -I.

PROOF Any T-invariant subset of P must be a union of various
orbits P&n' Now there are hyperbolic lines that lie
entirely in P1’ and hyperbolic lines entirely in Pus; and
for any point v not in Pbs’ there is a hyperbolic line that
intersects ve in precisel& v. This gives the result.

To see these claims, first note that if y,y’ are in P1’
<y,z> <y’ V2>, then <y,y’> C P1 is a hyperbolic line.

Consider now w € P33

and x € P; N PLh. Choose v,v' €
P; n Cx, [v,v] = 1, and such that <v,w>, <v’ ,w>, <vv’ ,w>,
and <x,w> are pairwise distinct. We have then that

<v,v'> ¢ Pms is a hyperbolic line.

For x € sz’ there is a v € Phb such that <v,x> is a
hyperbolic 1line with vx € Phb' Similarly if w € Ps'z resp.
P&‘ there is a point v € Pms such that <w,v> is a
hyperbolic line with vw € Pms v Pus' And finally, if
vV € P"~ resp. P‘.,3 U Pms there is a point v € Pms such

that <v,v’> is a hyperbolic line with vv’' € P~5. 0



4. CONCLUDING REMARKS

We became interested in +1 while trying to characterize
the Friendly Giant #§ of B. Fischer and R. Griess. %§ is of

1*24,1. Ve have been investigating

Fz-type, with € of shape 2
an inductive approach to the adjoint module HO(F) for 3¢,
trying in particular to establish that this does not vanish,
based on the existence of the adjoint module for <1. As yet
we have not succeeded in this, although we can demonstrate
that if HO(F) is nontrivial then % admits a ‘nice’
2-modular representation. This representation is given by a
sheaf locally isomorphic to the sheaf of Oz-fixed-points in
the Griess-module modulo 2.

The approach of the present paper does produce for a
group of type %G a 2-local geometry as described in
[Ronan-Smith 8]. However it seems completely hopeless to
enumerate sufficiently the C-orbits in P to give the desired

nonvanishing as was done here. Indeed, the number of these

suborbits is at least:

1981/161% = 41.514...
S. Norton has suggested that there may be around 150
suborbits. We have enumerated most of those out to distance

4, and there seems to be no end in sight!
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CALCULATIONS IN THE 15-POINT QUADRANGLE

It is perhaps easiest to calculate in "s as it acts on
the 15-point quadrangle by viewing the quadrangle as the
transposi-tions of Gs' Thus the singular center of (12)(34)
is (56); its axis is {(12),(34),(56)). One sees that the
class of st ~ for involutions s and t with axes and singular
centers 1, m, p, q ~ is determined by the incidence

structure on {p,q,1,m):

Iable 7
The suborbits for the Y involutions
Pp=4q P q Pp=4q p q q p
O~ O O or or
l =m 1l = m i 1 i m 1
m 1 m i
1 (12)(34) (1234)(56)
p p P
O (o —
1 1 1
m
(o] [o]
q q m q m
(123) (123) (456) (12345)
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