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ABSTRACT

A 2-LOCAL APPROACH TO CONWAY'S SIMPLE GROUP

THROUGH THE Z-MODULAR GEOMETRY OF THE LEECH LATTICE

BY

P. R. Hewitt

In this dissertation we examine the simple group 01 of

J. Conway, and in particular its 2-local geometry which

arises from certain of its 2-modular representations.

We proceed from the hypothesis that we have a group 6

with an involution 20 whose centralizer 8 in c is an

extraspecial 2-group of width 4 extended by the full

orthogonal group OBI-'2). We then examine the fusion of 20

into 8 \CL(8). Next, we add the hypothesis that 20 fuses

into 02(8) and construct a flag-transitive, rank-4

simplicial complex A for c. We prove that the normalizer cc

of a connected component of A contains 8 and fuses 20 into

02(8).

We then give a nearly complete enumeration of the point

suborbits in 60. Finally, we use this information to examine

representations of so over F2 that are given locally by

generators and relations for onl-modules. In particular, we

show that the existence of an adjoint module for 60 leads to

a module locally isomorphic to the Leech lattice modulo 2.

The techniques we employ throughout most of the

dissertation are geometric and combinatorial. In studying

the representations of so we use freely the language of

sheaves and homology, but in fact make no essential use of

this theory.
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0. INTRODUCTION

The purpose of this work is to apply the geometric

representation theory of M. Ronan and S. Smith to the group

.1 of J. Conway. This is a finite simple group that lies in

the gray area between the sporadic groups and the finite

algebraic groups. For example, the simplicial complex

determined by its maximal 2-local subgroups is locally the

truncation of a building over F2 [Ronan-Smith 8]. It is

natural, then, to try and push the analogy as far as

possible. This point of view we adopt in constructing, for

example, various candidates for the ‘adjoint module' of 01.

The working hypotheses for the thesis are that we are

given a finite group that contains an involution whose

centralizer has the same shape as that in ol. (Cf. (1‘1) and

(2&1) below.) The two main results of this thesis are:

(l) to show how a complex which is locally isomorphic

to that for .1 can be constructed naturally from

this class of involutions (cf. (2‘1) and (2‘1§));

(g) to examine representations of this complex in

projective spaces over F2: the first of these is

closely patterned on the adjoint representations

of the algebraic groups over F2 (9f. §1.

especially (§*§)).

The first of these results may be summarized in the

following.

THEOREM Let c be a group of type -1.

(i)A.t__s_tlea logmmbt aficenthessnjssemefi

zohezetbsmmntNWMMMliz—m

astheirnetLraIWE-l.

(infiaslmgefles-WZ-MMAMM

mmmm-zmfiamgfim

summing. 3522;942:5an

mmwz-mmm-l.

 



In §1 we present the general group-theoretic and

geometric definitions used throughout the thesis, and we

establish some of the basic results that intertwine the

group theory and the geometry. Most of these results are

well-known.

For background on the foundations of diagram geometries

we refer the reader to [Aschbacher 2] or [Tits 15]; for the

specific 2-local geometries involved here, [Ronan-Smith 8];

and for the basics of the geometry of groups of Fz-type,

[Aschbacher 2] or [Timmesfeld 14]. We use freely the

language of sheaves and homology as to be found in

[Ronan-Smith 9,10], although the material we present is

completely elementary and requires no depth from this

theory.

In §2 we begin with the main technical lemma: we

examine the fusion, for a group of type 01, of a Zacentral

involution into its centralizer (cf. (ggg)). We then produce

the critical quads ~ these are elementary abelian subgroups

of order 2‘ on which the normalizers induce the symplectic

groups J:(F2) (cf. (2‘1)). These help lead quickly to the

complex alluded to above.

It is the class of quads which to us demonstrates most

clearly the ambiguity of -1's status. On the one hand the

class of quads is sufficiently rich in structure so as to

lead to a nearly complete description of the full 2-centra1

involution class. It turns out that the permutation rank of

.1 on these involutions is 11: this is more than that

encountered in classical groups over F2 ~ five, typically ~

and less than that for, say, 2. Janko's group J; ~ 33 ~ or

the group 96 of B. Fischer and R. Griess ~ perhaps around

150. On the other hand, the presence of the quads creates

problems in defining what should be an analogue of the

adjoint module for an algebraic group. Indeed, unlike the

case for algebraic groups, the essential defining relations

for the ‘natural'iadjoint module for 01 are not implicit in

the ‘Oz-geometry' (9f. (3‘1)). In particular, we are unable



to establish the existence of a ‘useful' module for an

arbitrary group of type -1.

Thus in 51 we add as hypothesis the existence of one of

the choices for ‘adjoint module', and then determine the

internal structure of this and related modules. The main

result of this section is first to produce a small,

‘natural' module, and then to dissect this module rather

completely (cf. (1‘§)).



l. GENERALITIES ON GROUPS OF Fz-TYPE

(lJ)D.EEINlIIQE§ AND NQIAIIQN A finite 81’0“? F 13 said to be

of Fz-tyng in case there is an involution 20 in 6 whose

centralizer 8 satisfies:

(1L2) Q :- 9*(6) is extraspecial.

Note that in such a group <zé> is the centralizer of Q.

Thus, the center of any Sylow 2-subgroup of 6 is generated

by some conjugate of 2°; equivalently, any Sylow 2-subgroup

of 8 is a Sylow 2-subgroup of C. We will further assume

that 2*(6) - {1}. This rules out merely the case 6 - O(C).8.

Should we have occasion to consider groups under (1‘2)

without this extra hypothesis, the groups will not be

referred to as groups of Fz-type.

We denote by t :- B/Q the Fitting factor of B, and by

A :- Q/<z&> the central factor of Q. Recall that A is an

elementary abelian 2-group of even rank 2n, say, which

affords a faithful, nondegenerate orthogonal Fit-module,

induced by conjugation. Call n the width of Q, or more

generally of 6.

Let 3 be a group of Fz-type, with notation as above.

Denote by P :- 20; the class of 2°, and call these ~ or,

often, the groups <zo‘> ~ points. For any point 2, we will

denote its centralizer by 8‘; and we continue this

subscripting with Qz :- 9*(8t), t; :- fig/Qt, and

All :- Q:/<z>. Say that points z and z’ are gelling]; when

2’ 6 Q2. The following fundamental result ~ in a mudh more

general form ~ can be found in [Aschbacher 2, (17.5),

pp. 125-126].

(IJ)LMIf§isefF2-mgthensfllinemgisa

mm.mde.fizvz’6Ponthen

€:-<2.2’>sa§i§_fiea:

(a) L’ c P;

(g) at :- <0le e L'> s Ne“); w

<9.) 7/59,“) a 2203).



PM If q 6 Q:, then z’q - z’ or z’z, whence q 6 New). The

claims will thus follow from the symmetry of collinearity in

that we may choose q (in the above) to be an element of

Q: \ 8y.

If the width of Q is 1, then either 8 a D8 or else

6’ a: Qa.63' In either case it is straightforward to check the

symmetry.

Assume that symmetry does not hold, so that z e Qt,,

but 2’ 6 Q2, for certain z, z’ in P. Thus N (L) s 8 (2). We

5 3

use this to argue that z 6 86(2’)’ a contradiction to the

*

hypothesis that 9 (62,) - Qt”

Consider the groups 8 :- 8Q (2’) and 8’ :- 6Q (2).

z 2'

Write 8 a <z’>xQo, where Qo:5 Qz is extraspecial. The

asymmetry yields [5! n Q2, ,3] S <z> n Qt, - {1). This

implies that 8 n 02, 5. 2(3) n Q.’ - <z'>. Also

[3’ ,3] 5 Qt, n 8 - <z’>. Hence <z> S ¢(8.8’) s L. This gives

N (3.1?) s 8’; that is, N (8.3’) s 8.3’ . In particular

Q: Qt, 8

fl’ - 02" or z e 86(Qt’) ~ a contradiction, as noted”

(1‘5)QEEINIIION Let L be the set of foursgroups as in the

.lemma above. We refer to these as ltggs. We denote by

F :- (P,L) the involution geometty gt C. The gittantg

between two points is their distance in the collinearity

graph on P. Let Pd denote the set of points at distance d

from 20, and for general 2 e P let Pz :- P n Qz be the

neighbors of 2. Finally, let Pam :- {z e Pal |zzb|1- n), a

C-stable set.

Note that PIIJ {20} is a subspace ~ that is, any line

that contains as many as 2 points from the set in fact

contains 3. More generally, if R is any subgroup, then

P(R) :- P n H is a subspace. We use also the notation

L(R) :- {L e LIL s X}, and F(X) :- (P(K),L(R)).

*

The demands that c be finite and that Z (3) - 1 are

requisite to use the following fundamental result. In their

stead we might demand merely that L be nonempty.



(L2)IHEQBEH (Cf. [Aschbacher l] and [F. Smith 12].) If C Le

esz-smanleissmm. martian-19161.:

imarnhis 52 one of 13,03). ~2. or ”$202). :1

(mum (from E. Iignnesfeld's [14, (5.1), pp. 163-164])

Let 6’ setisfx hypothesis (11), end let t e 6’ \ Q be en

immun- The Missing held.

(1) [Qot] - 6Q(QO) - 2(Qo)! m Q0 :- o(<tozo>)-

(it) If 80(t)/<zo> v‘ 8““), tl'gn t Le eonjugate via Q Q

(:2 .

0

(1.1.1) If 6Q(t)/<zo> - 6”“(t), then [Q,t] 1; elementary

abelian, egg t6 n £0 £2 t:Q U (tzo)Q. Moteove;

|NG(CQ):88(t).Q| dLVidee 2.

mo: (1) Now HAM-'1! - IM:6,,<c)I - 580(00):. Also.

[t,q]qo - [rqo,qqo] e [t<zo>,q<zo>] - <[t,q]> for any q e Q

and q() e 00' That is, [Q,t:] s C’Q(Qo). Thus, by an order

argument, [Q,t:] - €Q(Qo). (M. Since [Q,t] is normalized by

<Q,t> it must be that 2:0 6 [Q,t], even when 20 is not itself

a commutator of the form [q,t] for q 6 Q.) However, as

[Q,t]/<zo> - [Al,t] C 8‘“) - Qo/<zo>, necessarily BQ(QO) -

[Q,t] s 2(Qo). That is, [Q,t] - 80(Q0) - 2(QO).

(11): If q 6 Q is such that qt - qzo, then t‘:q - (:20.

(iii): Assume now that 80(t)/<zo> - 6"“). From (1) we

note that [Q,t] - 2(C’Q(t)) - 80(C‘Q(t)) is at least abelian.

Assume that q 6 Q is of order 4. Choose q’ so that

q I [q’,t] meg <zo>. Thus qt I tq’ nee <20), whence t

inverts q (in the dihedral group <t,t:q> a De)' This gives

q<zo> e 6"“) and q 6 600:), a contradiction. Hence [Q,t]

is of exponent 2.

Consider tq e t8 n tQ. The previous paragraph yields

8Q(tq)/<zo> - 8’“(tq) - 86a) - gQ(t)/<zo>, so that

tq e tBQ(GQ(t)) - t[Q,t] c t u (:20) .

Finallg, letqg e 6‘ with gQ e 88(tQ). The above says

that t‘ e t or t 20, and either case gives

3 E Ne(<tszo>) co. 0



(1.3mm: beemneffz-tm-

(1)112. z’.andz"arsnsim.seseninear.msanstlie

Manning.MMWQWM

mumsmgMWmm.m

@3112: these collineat. Qelltbeee gubgroups planes.

unngw, man :- <Q'lzen'>sllg(n), egg

VII/3:501) 9' 330:2)-

(li)1fxeP“-P\€.tb.enlxzol-4aos
2

[x,zo] - (xzo)2 in £13 unique point mm with each et x

ens! z . Eegn point gt ye 1e eolLinea; with pteeisely

0

#(P1 \ 8000) nointe efi P2".

(iii)lfxeP an_d€§al_nei 921131111113! 6P1.ths.nx
1+2

1e eollinea; with a most one point 9; L.

 

M (1): Let the three pairwise collinear points be 2, y,

and x. For q 6 Q2 in the centralizer of y but not of x, y is

collinear with xq - xz e P, and q induces the transvection

of de(<x,y,z>) whose center and axis are <z> and <y,z>.

This gives (1).

For (it), let y be collinear with each of x and 20.

Since :er0 e Qy is not ,an involution, it must be that y -

(x20): - [x,zo]. Thus, y is uniquely determined by x and 20

in this case. Moreover, the number of such x for a fixed

y 6 P1 is simply the number of points of Qy that do not

centralize 20.

Finally, (LL10 follows from (1), since otherwise x and

x’ would be collinear, and x would be at distance no more

thani+lfromz.

OD



(Lemma Let c he of. rims.

(pnxepm,y-(xzo)z,mweenpxghen<w,x,y>1§

enl_ne enegeweP.1£1nsteedwePanne1tn

wet?y _a__nd(wzoz) er, §e_n_t|wzo|1§gneefx4e;8;9_;

elsex-(wy) andlw2|is32r6 mwnm

smettisellerLQJ>-li_mmtbeeeeelwzol-8m

MmMy-mo)‘. [flymlis—ellxtot What

Emma-enviseftwecmtcf.

W<M>hfl2¥hmynmmflmw

12.15.119.8"31220-

(ii)£21weP3.m2fthef9_lm.inshalds.

(a)weP fermxeP,.<w2>has_L_916_112.at_m

thig gihedtal gtoup inducee 132(Fz)o_n <x, (xzo)z>; e;

(n) |wzo| d1v1des 8. 1f |wzo| -8tbenweP‘§tehthet

eitherxe? 2mmW2]isn9.t.tp.tallxeinsslet:szrelse

xeP“.waze:1£r_aliz_e_sy-(xzx).ansl [N w] isms;

.t__1_l.10taW

PRQQE For (1) we argue as in (1.1.1). In the first case w is

collinear with x'0 - xy, and so <w,x,y> - <w,x,xy> is a

plane. In the second case, if it 6 P3 then either w e L” \ 6’,

from the above; or else w and 20 induce distinct

transpositions in <x,y>', so that <w,zo> induces a copy of

(53 there. The former possibility says that

[20 ,w] - (zow): e Qy’, so has order either 2 or 4 ~ giving,

respectively, a singular or nonsingular point of fly. The

latter possibility gives (wzoa) 20 .wo s Q”, inverted by

both at and 20. However neither w not 20 centralize xy, so

that (wzo)6 - 1

Moreover, if x’ - (wzo)3 is a point then x’ is

collinear with x - (xy)zo and y - (xy)'.

(1.1): If V is collinear with some x 6 P2", then the

statements follow from (1,). If V — x — y - 20 is a path

joining w to 20, with x e 6’, then [w,zo] - (wzo)2 e Qx, and

again the statements follow. E1



2. THE ADJOINT GEOMETRY FOR GROUPS OF TYPE 01

(2‘1)DEE1ELILQN A group 6 is said to be of type 01 in case 6

is of Fz-type (as in (1‘2)) and 8 satisfies the following:

(2‘2) Q - 9*(8) is an extraspecial 2-group of width and

Witt index 4, and t :- G/Q is isomorphic to 0:62).

Naturally, the simple group -1 of J. Conway is of type -1.

(Limiflamlibsefms-l-

(1)1hesetL2flinesisnetemm-

(u) n: c is a 11112.net: s, :- <Q,Iz e c’> s ”6“" and

7/3,, (t) 9' 22(F2). 89.1:__reove each mm is ins—<1ced hr

L

aneintsallinmaithitsmterentbegine.

(iii) '3 acts fies-Wanv on P. IL_ddee . P1 is a'sinsle

B-etbit, 2f length 2.135.

2399: Clearly (t) and (1;) follow from lemma (1‘1), in light

of theorem (iii). For (L11) observe that c is transitive on

points, by design. Now 6 ~ acting as I ~ has a single orbit

on the singular points of M. Thus, 8 has a single orbit on

the foursgroups of Q that contain 20, and P1 induces a

2-cycle on each of these. 0

(M)WWBWW§(ML 111.2

liftissefinmlutienseftminmlsflmeffiis

Wmtflmflflhflalfltflhflkl<flmm

wmmmmmr
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Table l

m p_______sossib111t1e fer inmletiens 2f 5’

 

B-slees _e____rcntralize es €Q(t)-(6’8 (t)/€Q(t)) gm 19mm

_1_ a2 either, 23o2“‘2“2'2‘1z (r22W(r)1 4.1575

(tee classes, egnel modulo 2°)

2 et 23o2“"2“2”[3 .2 1 8.1575

(mm Q-sleises. £14m in 5’)

.3; a2 23°22“22“2'2‘12: (r 22)x2 1 8.9.1575

g 3‘ gm; 25-25932) 16.3780

(tee clasees, egne; modulo 20)

2 Qt 25-25862 32.3780

(t_we Q-eleeeee. fieeed in 5’)

é.’ a; The sag peseilzilieiee as fer a slam.

.5.’ a’ The ease Milne: as fer 2 Me

9 c2 22o2“‘-2‘o:(r2) 8.10.3780

1 c2 2262“‘-2°o;(r2) 8.6.3780

g c 252923262) 32.56700
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PRQQE In the notation of [Aschbacher-Seitz 3], the

involutions of t a 0:62) fall into 5 classes: a2, the

Siegel (long root) elements; c2, the products of distinct,

commuting transvections; a‘ and a2, those whose commutator

subspace is a maximal totally singular subspace; and c‘,

certain involutions that lie in az.c2. The ‘8' refers to the

fact that the commutator subspace is totally singular, and

the ‘c’ to the fact that commutator subspace is totally

isotropic but not totally singular. The subscript gives the

dimension of the commutator subspace.

The nomenclature serves also to describe the classes in

the full symplectic group $(V). The class of a symplectic

involution t can be described as in the following table,

meaning that the condition listed for V(t) :- {v 6 7|

<v,vt> - 0} suffices ~ with d :- qu.([V,t]) ~ to determine

2

the class of t:

Table 2

_e e___lasses ef M1213. is 9(1’) (er 0(V))

 

slees seeditiesent

ad V(t)-V

bd V(r) is a hyperplane, d is odd

c 7(t) is a hyperplane, d is even

 

Of course, d is even for t 6 0(7).

The involutions of 2 all lift to involutions of E :-

B/<z&>. More generally, one can show that each involution of

0:3(F2) lifts to an element of the same order in the

automorphism group of an extraspecial 2-group Q’ of width n

and type 6 using the Frattini argument. Indeed, each

respects a decomposition of Q’ (or Q’ODB, of the same type



12

but of width n + 1) into a central product of subgroups

isomorphic to Q8’ whence one obtains that the element

normalizes a fixed-point-free, elementary abelian

3-subgroup. (This argument comes from U. Dempwolff's

[4, (3), p. 453]; one could in fact use the result given

there by embedding Q’ in Q’01/4.)

Now, the involutions of a coset EN are precisely

EC (E), where E is any involution of 5. Moreover,

E - E[N,E]. Thus there are |6‘(E):[N,f]| N-classes of

involutions in th. In particular those of types a‘, a1, and

cu ~ those for which 9 is free over F2<t> ~ lift to a unique

N-class of 8. An order argument now forces 85(t) to have

shape [N,t]-Bz(t), for each of these types. _

Next we consider the action of N :- NE(tN) on the

module N :- <t,€m(t)>/[N,t], for t of type a2 or c2. Let

(1) denote the following:

- - * ' _

(T) 0 ——> 5m(C)/[I“.tl -—9 AI -—-) <t> ——> 0

In the case a2, (’1) is split for 02(N*) since this group

induces 910235)) e 85113.2 (ilere n:(rz) :- <82 c o:(rz)>.)

However, for the case c2 0 (N ) induces D$‘(F2)) at 116, and

it is possible that (f) is nonsplit

(8x6; (<E>,8‘(E)/[N,E]) ,. 0). We consider the split and

8

nonsplit cases separately. In either of the split cases we

now assume that the M-class of E is fixed by 02(N*). For the

nonsplit case we choose any E in the coset. In the chart

below we list, for either of these t, the orbit lengths

under 02(N*) for those elements of N* that map onto E under

«; the:CN(N*)-class lengths of involutions in EN; and

finally the subgroup N :- 02(8§(E))’ expressed as

6,4?) - <02<c§(E> )/6,,<'c’>>.



l3

 

18111.9. 3.

The lift—ins 2f 111221232111 item 1 $2 5

02(N*)-eleea-

02(N*)-2.tbi£- lengths in

Z-elaes lengths in Ex" mm) N

82 1 8 22“ . 2142.433

3,3 (nonsingula; 3.8.3.8

memes)

9 (singnlat 9.8

Delete)

c2 1 8 2294.25,.l

(split) 15 15.8

e2 10 (gm-2 10.8 21""-2‘32

guadrie)

(nen- 6 (neg-1 6.8 2“"-2‘0’(r2)

£211; uad )

 

In the split cases, 65(E)/8‘(E) - 6£(EN). In the nonsplit

cases this quotient is 260:0’2). Let N s Ne(<t,zo>) be the

preimage of N in 8. Note that N - 02(N).

We will make repeated use of the fact that, for each

class, [02(N),N n Q] covers

[02(N),N (1 Al] - m.aad.([fll,t]), and thus equals 01([Q,t]).

Next we show that the c2 involutions do not lift to

involutions of 8, unless (1) is nonsplit. Assume, on the

contrary, that (t) is split and t e 8 is an involution that

maps to E. From lemma (lefi) we conclude that 8Q(t) w

Nb(<t,z&>). The latter group is the central product, over an

element of order 4, of [Q,t] a 2x4 with a group

21+5 a 4021“. of symplectic type. However N as above
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normalizes no subgroup of Nd(<t,zo>) of index 2. Hence 80(t)

is not properly contained in Nb(<t,z&>). The only possible

conclusion is that these cz involutions cannot lift to

involutions of 8 when (t) is split.

Rather than determine which of the remaining

5-involution-classes do in fact lift to involutions of 8 we

concentrate on the consequences, for each class, of finding

an involution in the given coset.

Consider an involution t that maps into c2 in t.

Necessarily s is nonsplit, and so Né(<t,z&>) has shape

NQ(<t,zo>)-260:(F2). Now, |”8(<t’zo>):88(t)| is at most 2,

but lemma (Lt) forces |NQ(<t,zo>):€Q(t)| - 2.

[NQ(<t,zo>),N] contains 01([Q.t]) and covers the

4-dimensional orthogonal factor of NQ(<t,z&>), and so in

fact |[Q,r]:8[Q’c](t)| - 2.

For the class c‘, [Q,t] is not elementary abelian, so

that |N§(<t,z&>):80(t)| - 2. This says that for t of this

class t[Q,t] is a single Q-class of involutions, of length

32.

For t of class a2, [NQ(<t,zo>),N] - NQ(<t,zo>), a

central product, over <z&>, of [Q,t] and an extraspecial

group of width 2. Hence NQ(<t,z&>) - 60(t) and so there are

at most 3 classes of involutions in t0:

-—- the two Q-classes of t[Q,t], each of length 4, which

are exchanged upon multiplication by 20, and possibly

fused in 8;

'and

—— t.{involutions q of 8Q(t) \ [Q,t]}, a class of length

8.9.

Finally, for t of class a‘ (or a2), [Q,t] is either the

indecomposable orthogonal module or else a direct sum of

(20> with the natural symplectic module for :P‘(F2), so that

€Q(t) - [Q,t], and t[Q,t] is exactly 2 Q-classes of

involutions, exchanged upon multiplication by 20, and

possibly fused in 8.
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We have now verified that the entries of Table 1 give
 

all of the classes possible for involutions of 8, their

lengths and centralizers, and their class in t. D

(25_5)§QBQL_LA_BXLet€hee£$m'1-Ifzen512’ ere

eemmuting pointe then the aetion pf 2 en Qt"L§ isomorphic

mastefz’ 2110:.(Eeareseee__rei_sssen Memetzmie

2’ QBEJ—Lexhanedmgselementeffid

 

23993 If the points are collinear, this is clear. If not,

then Table 1 identifies 8; n 8t,, and the possibilities are

essentially distinct for distinct classes of involutions in

82 B 82’ . C]

(2.1.6.)___Y.COR0LLAR lit. 9’ 13. ef Sm '1.

<1) 1.: w e 6 is e p__n_oic _ethe aqua/(Q n on) s ec<w>/6Q<w).

(ii)Apo_ir_lto_f6’\(PZUQ)m1§_teeesise.e’.§.§’.et

8.

(111) 1; w e 8 1e e point pt t-clese a‘ e; a;, then 80(w) 1e

the 1ndecemposab1e otthegonel mednle fie; 8 n 6'.

23993 (1) follows from corollary (21;) and the appropriate

Isomorphism Theorem, since ti’Q(w).Qw s (6’ n 8') .Q'.

(11) and (111) Observe that if z e P \ {20} then

(Q n Q')’ - P1 n Px. Hence, by (1,), 80(w) g rem/80w) for

w e 6 at distance greater than 2 from 20. This can happen

only for w of class a‘ (or a;) or c‘in t, as one sees by

inspection of Ieh1e 1. Thus if w is of t-class a‘ or a1,

then 80(w) must be indecomposable. D

(M)WL2§C£Q£EM'1-fleieuefln£__l§h°-

(1) teen 9.: Pl. PM. ere P“ is e Beth—it. ef lease

2.135, 2.70.90, egg 2.26270,Les_pe9_t1le1!. £2211 p_Q_1nt 9; P1

1;,W 11th ptecisely 2.70 m 21: Pm at 2.26

mints 91 P2,-
4



16

(innereeteseelsseeisP-EemittefPuie

sellgleerfltbssxpeintef810.

(111) Eeeh M x 91 1,2,2 define; e §1ege1 ( on -root)

elm gt 2, ene conversely eflh coset xQ pf fleh e Siegel

elepent eenta1ns enactLy 8 po1nt§ pf Pz,z' Ihene & exactly

3 pe1nte collinear 1133; m x ene 20.

(ix)I_fy.Y’.ee<1y"emelie__tmn_scoo n_is.__ehborsefxessi.

20, x e P2.2’ they; 9 :- <x,y,y’ ,y”,zo> 13 en eLementaty

ehelian gngnp _o_f order 16 M thet Qe geonetg 1‘(:P)

1ndueeg LEE 1‘ 9n _i_t _i_e 1somorp1c Q t_l'_1e :P‘(F2)-gped_tangle.

W_e eel], these eubgtpups quads.

 

 

 

 

(x) ureter eteeiseimstgeees. theses-e1;

interseseien .Ls. either {1}. 3 92125.21: 5 use. In

pett1eu1a: £19 commuting peinte et distenee 2 item ene

anethe; Lie together en e un1gue guad.

(11) The normalize; pf e need 1nduce§ e gepy pf e1ther

9‘02) a: 66 e; 116, 31th Larch pf thJ 116-1nvp1utiens

(areeieelx thoseefelfisczss?) lame new

9311111125; 11th 1te singular center 1n 9’ (i.e. , the pteduet

2f the seams in 9’ e1: sale 119 We;W2f

mmmmmmmmm). Infect.

:7, :- <Qz|z e at’> s New), eng 79/89,”) as us.

 

(11.1) EXGPZZQQWEC’OPthen [Wfi'le-{ll- _1_:

elsewePz thenweaPx2

’ o

m The transitivity on P1 follows from lemma (2_,_1).

Lemma (15.6.) gives that for each y 6 P1, the set P2 ‘ n Qy is

conjugate ~ yin Nc(<y,zo>) ~ to P1 \ 800'), which is a

single 6’ n Byoorbit, as t at 0:072) is rank 3 on the singular

points of Al. Thus, 6‘ is transitive on P2 ‘.
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Similarly, since 8 n 8’ is transitive on the

involutions of Q n 8’, either all of these lie in Qy, or

none of these do and the set is conjugate via Ne(<y,z&>) to

P292 0 Qy. Now the elementary abelian 2-group Q n Qy has

order dividing 25, so only the latter case can hold. The

flag-transitivity now gives that PL} is a single B-orbit.

We have shown that there are no triangles of

collinearity. A fortiet1 there are no planes. Thus, by

(21311), we conclude (11).

The first and last orbit lengths are now clear. The

length of 1,2,2 is 2.70.1‘tl’1/#(P1 n P), for any fixed

x e PLZ. A comparison with lehle 1 yields that the only

possibility for x is for it to have class az in t and

satisfy one of the situations 1 or 2 of Iehle 1. The second

paragraph of the proof yields that <x,z&> is conjugate into

Q, so that both x and xz0 are points of PLJ' and the eeeene

case of Ieh1e 1 holds.

In particular we have ascertained the following facts.

|88(x)| - |8|/#P2'z - 21833, and the foursgroup Q/E’Q(x) has

two (regular) orbits in x[Q,x]. There are exactly 8 points

of P2,2 in xQ; and <x,zo>' C P but is n9_t a line. Finally, 11:

and 26 have 3 common neighbors. This is (1) and (111).

Call these common neighbors y, y’, and y” - yy’. The

diameter of the geometry F($) induced on the group

9 :- <x,y,y’,y”,z&> ~ perforce an elementary abelian group

of order 16 ~ is easily checked to be exactly 2, with each

pair of noncollinear points joined by at least 2 paths. For

example, the distance (in P(9)) between points of 9 n Q is

certainly at most 2, as is the distance between Z0 and any

point of 3. Moreover, each point of 9 nl’z'2 - x[Q,x] is

collinear with a unique point of any line in P that contains

20. Finally, one uses these observations to show that any

two points x’, x” of x[Q,x] are jointly collinear with at

least one point z of [Q,x]. Indeed, if P1r‘I;’ 2 z’,z” and

P nP,Qz’z, z”z, thenz-z’z”-z’zz”z.

1 x 0 0 0 0
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As a consequence, P(9) is the seeeesie glgsute of x and

25 ~ the smallest subspace that contains x, 20, and all

points lying on all minimal paths joining any pair of points

of the subspace. This is because the above gives 3 common

neighbors in 9 to any pair of noncollinear points of 9 ~

accounting for all of the common neighbors in all of F. It

is immediate also that F(9) is isomorphic to the

9‘(F2)-quadrangle. Henceforth we will denote by 92", the

unique quad containing two commuting points z and 2’ at

distance 2 from one another.

If 9 and 9’ are quads with [9 n 9’| z 8, then there is

a point 2 that is the radical, in each of 9 and 9’, of any

eightsgroup in 9 n 9’. This means that 9 - 9‘1 and 9’ -

9“, for certain x and x’ in 8:, each acting as a Siegel

element on A2. As a result, x I x’ neg Q', and so 9 - 9’

(from the definition of a quad above). This finishes (1y)

and (y).

Consider now a path w — x — y - 20, where x 6 P2. . We
2

assert that exactly one of the following holds for w:

(a) hm?” ] - {1}.

(h) |wzo| - 4, and w acts as an involution of class 02

on 9 - 9xz , with singular center x.

' o

By the previous lemma, we know that the order of |wz°|

is 2or 4 (remember that each point x of P22 defines a

Siegel element on M, and 20 defines a Siegel element on each

A) so that quzo) - chqu’zo])' Further. y '

<[Qx,z°],zo> - <x,[Q,x]>. Thus w centralizes gene point of 9

at distance 2 from x if and only if w centralizes eeeh point

of 9 collinear with x (since if an element centralizes both

a hyperplane and a point outside the hyperplane, it

centralizes the whole space). These conditions are thus

equivalent to [9,w] - {1}. In particular, w cannot induce a

transvection on 9. Now consider w collinear with x but not

commuting with 20. First, {1} " [9,w] s 9.[Qx,zo] - 9.
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Second, w normalizes each line on.x in the eightsgroup

9 n Q;, and centralizes a unique one of these, say <x,y’>,

which must also be its commutator on 9. If w were to induce

an 812 element on 9, then 20' - zoy’ (since y’ is the unique

point of [9,w] collinear with 20). This contradicts the fact

that w e 6”, satisfies C’Q (w)/<y’> - 6" (w). Consequently,

y’ 7'

the class of w in Ne(9)/Bc(9) S 66 is as claimed. The

singular center of an involution t of type c2 in any

symplectic group is the radical of 7(t). Since w normalizes

each line on x, x must in fact be the singular center for w

acting on 9. Thus (e) and (h) ~ which are mutually

exclusive ~ exhaust the possibilities for w. Finally, each

Qz is generated by its involutions, so the identification of

3y is complete.

The above ensures that [9,x’] - [9’,x] - {l}, where

9 - 9x: and 9’ - 9£,z , whenever x and x’ are collinear

'o '0

points of P22' Corollary (21g) implies that the only Siegel

elements of 6* :- 8z(xQ) that lift to points in 86(x) must

normalize some nondegenerate 2‘ in A* :- Q*/<xQ>, where

0*. :- 0203*). Now the only such Siegel elements that also

centralize 9 lie in Q*, and thus {0} # [M,x] n [N,x’] -

<y<z&X>, say. In particular, as every quad is geodesically

closed, <x,x’,z&> s 9 n 9’, and so these quads are equal.

This is (y11), and the proposition. D

(gy§)g§ngng§(1) We have shown that each point of P12

generates with 20 a ‘fake line' ~ a foursgroup all of whose

involutions are points, but which is not a line. We call the

fake lines of the proposition hyperb011c 11nee; and if the

need for emphasis arises we will refer to the lines of the

involution geometry as the e1ngn1et 11nee. The hyperbolic

lines are precisely the foursgroups that lie uniquely in

some quad. If h is a hyperbolic line then one sees that its

normalizer induces 22032) a 63.
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(11) We will see in the proof of (L12) below that the

normalizer of a quad induces all of 9‘(F2), with a

transvection induced by a point at distance 2 from its

center in the quad.

(MMQEEINITION Call any path 2’ - z — z”, where L’ - <z,z’>

and L" - <z,z”> are lines, a corner, of width:

min{|x’x”| lx’ eL’ \<z>, x" 6L” \ <z>).

 

Note that the width of the corner depends only on 2 and the

lines L’ and L”.

(2_JQ)COROLLARY _Th_e involution geometty m e gm pf type

-1 eenta1ns ne irreducible pentagone. Mete p;ee1ee1y, 1f

zo—zl—zz-za—z‘b-zfi-z0 _ieeeyeleefi 5 M11151;

pp1nt§ (subscripts read modulo 5 ) m .n_o_ gene; ef 311th

l, m £9: a_l1 i g must he M 21 1e c0111nee; 11th

z1+2z1+3' In particular, 11 x 6 P2", then x ene x‘o ere the

pnly points pf P2 4. collineat w1th x.

 

 

PM If 22 6 P2" then so is 23, by part (11) of the

proposition. However, zlz2 - 2:0 and zaz3 - 2320 are

collinear. Thus 21 and z“ are collinear, since now

<21” I‘ O> must lie in a quad. This contradicts the fact

that there are no planes, since the hypotheses preclude

the possibility that <zl,zz> - <za,z‘>.

Thus all 21 lie in 6’. The proposition now gives that

all lie in some quad, in which one checks easily that all

pentagons are as described. El

(LADWIetceeftm-ldetwegmxeg

he eellineer. Qse ef the fa w holes.

(a) x e P“. <wa - x (y - (x209) em Iwzol - 3.

(1.») x e P“. (w)2 - 1 (y - (x209) eta («'20)2 e P2.2'

(9.) xePzz. en_d [m9 l- {1}.
, 3,20

(g) x 6 P2 2, (wzo)2 - yx, where <y,x> - [w,9x ],
2

O

 

MYEQOQX-
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M Assume first that x 6 P2", and let y - (xz°)2. By

(1,141) either (b) holds, or else (my)2 - x and |wzo| - 3

or 6. The last case gives (wzn)3 - zo'.wzo e P n Q”, whence

<x,y,(wzo)3> is a plane ~ a contradiction.

If, on the other hand, x 6 P2 2, then the remaining

cases are lead to (e) and (e) by application of proposition

(2,2,v1-v11) and lemma (1,8,1). For if (e) does not hold

then L :- [91‘ z ,w] is a line, and x 9‘ (wzo)2 e L \ Q.

' o
D

(2.13% Let 5 he 9_f. _rp_te '1.

(1) P3.2 - P3 0 6’ 1e e single B-etleit. The product o_f zo

MemmwefPa'zienotem; thesis.

P n 2093.2 - w. m e w _age ee en 1nvp1ut1on efi tm a“

9_n Al, enel eatisf1es th_e cond1tions 1n em 5 pi we 1.

(11) 11 x 6 P2 2 then 88(x) nee 2 etb1ts 1n P3 (1 Qx, viz.

the 2.36 ppints that centrelize 20 eng the 2.96 whoee

ptgduet w1th zo ha_e orde; 4.

(iii) Bee—h w 6 P32 1_ film; _with 15 Mint g 1."2
.3 .

P3 2 has length 253 5.7.

2.

PRmE We prove (g) first. Corollary (Li) says that the

action of 880:) -6’nf.’ in P nQ -P \ [Q ,2] is
x 3 x x x 0

isomorphic to the action of 88(x) in P1 \ [Q,x]. Here

1+2.6
2

singular points of 6”“(x) \ [Al,x] ~ 36 in all ~ and

Al \ C’M(x) ~ 96 in all.

(1) and (111): The above ensures that P3 2 r‘ a. From

corollary (L11) any neighbor x 6 P2 of a point w 6 P3 2

must in fact lie in 6’. Corollary (L_6_) implies that the

.3322 acts with a single orbit in each of the sets of

involutions in case 1 of Tab1e 1 are not points. However

w 6 6’0 (20) \ [Qx,z°] , whence wz0 is not a point. Hence, by

x
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the corollary again, we have P3”2 meg Q - a‘ (say), with the

conditions of entry 2 of Iehle 1. Thus if w is any point of

PM, then #183.2 - 16.3780 - 2°3’5.7 -

8.1575.2.36/#(P' n Pz,2)' This gives the parameters of

(111). Note that a comparison of the size of the sets

P. n P2,: and 02(8 0 8') n P2,2 yields containment here.

Hence each minimal path joining w and 20 lies entirely in

the elementary abelian group 02(6' (1 L"), of order 211. CI

(LIDLE—WALercbeefm '1. Fathesenneceedmmest

efl‘thets_1L_0tains 20. mcomenemelizexinfiefl‘o. The

WM. 60 -<6,,D> menyfl :-Nc(L), zoeLeL.

c ieetme-I 2*(c) - (11. eneroieiseeeieint

BEQEEEEX-

ERQQE Since 20 is central in a Sylow 2-subgroup of C, I} -

(P'o, Lo) is the unique connected component of 60 normalized

by0 20 . Thus, 6 s 60 and so go is of type -1 ~ provided that

2* (600)I- {ll (part of the hypothesis (211)). In fact P2” C

Po, so that 2060 2 P1; whence P60) - zogo, F0 is the

adjoint geometry for 60, and 2* (co ) - (1). It is now clear

that co 2 <B,D>, whenever D - N€(L), L a line on 20. A

Frattini argument gives that <C,D> - €0.[j

(2.45:)8eneefsutbseesmethstfiseenneeteshrenleeimfi

bxfioifneeefieu.

We note that this hypothesis follows from (211) and the

broad classification [5] of D. Holt of transitive groups in

which a 2-central involution fixes a single point. However

the connectivity will be used in this section only to

establish (2,1§,v), whereas Holt's result is immeasurably

deeper than this.
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deifiwmgmefmd-

(i)meinqueti_onsemnreeserelsmar_i_el_xesdu1

ee__et_slnneeeesnlexAhhtaeerth1e them:

1 2 4 11

A O

I
sherethevmiesefmeel.2.endhm§hepeints.

linesahesseds.t_§e_ei__lxeec ve .Meefmellere

WMZ-mefimmozw'nfidsherez

ehsz’areepmtihgpeihtseteimnee3freumemeher-

gelltherieevee eitxpellhexealhenemelizerefahes

Kieasplihwxensio ethxthehsthiehstmmz,.m

the—imam Hie—ducesehxisthetefmz‘entheuim

faetetefthe)@lexeo_de.lhese2meeur(l¢)iea

hear-hereses es the 759 221.1195 9.: P00.

(ii)1‘ivessm__sutin p_i_sont 2. 2’ ethishesg3fresene

_eanothe liegeLmiQEhesKmu newness.

1m; in e.__ither {1). eyelet. eased. er gees—“8111bou

thet eonta1ns he pe1nt.

(iii)€lsfles-e_e1_LeranCV enA.shsltheees_id_uelse9thtx

fie; eeeh simplex 1e isomorphic tn the ttnneet1en pt the

eleeeisele-womt thettheresideeleiamswet.

smattlietefehgs.yhiehsm_§rethetamefehe

inn-2M over F2 (cf- [hm-Shim 8] fer nether

WefthieZ-Leelseese—n'x>-leeiflxse"iL_ifxent"

A 21th the ineidenee geometty en the vept1ee§ 21 A.

(ix)1hes$hhflimeefelm_i_e_ssmle ceillheeesetedfl.

sithfladejixmdteheelmemee 91.1%Sparabolicehtlm

:eaihuelzeemetnAa. Eisaflss unmet) -ieI-

{1.2.4.111}. The shape efi each 1’1 :- 9v is sizes as

-1

fpllpwe:

91 e 21*8o0‘;(r )

92 a 22*“. [22(r2)xr‘(r2)1

4+6.2

9, 9' 2 -[9‘(F2)><£2(F2)]

r a: 211-111
11 24

D:
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there 9,62) S 1230') (as the stehilizet ef en ml) is e

(neneentral) tum eevet pf 9‘62); Ihpe egg; vetten v hey

eereefleredeslwv). ens! flv-9(?v).1heetehiliz-etete

ehenhet bee e se1fnerna11zing m 2-§nbgroup ef 1nc1e35 3

ehiehieeMZ-ethsmeieelleffi-

(2)1eelltheeheeffle14mmehlthem. lieee.

sweet. enehesee (eeehresemeeeeeF2-me<h11efetite

nomal1zet) the adjoint sheaf, egg _denete th1e by 5“. 1

genote 110(5“) by 9, egg tefet te thin 5.3. _t_he adjoint module

(cf. [Renee-Smith 9.101fet details en sheet limits! fez

g_h__tieseoet).I_eseLdebehtheeetefhnerhelieliheezbl

1‘h :- (P,Lh) the hyperbolic geometry; the hy I‘ :-
+

(P,L U Ln) , the augmented geometry.

Beesllthetifl" - (P’.L’) iseseemettxeithliheset

size 3. tlm th__ere is e enixeteel deut(I")-meeele 110(1") :-

FZP’M’ geeetetedhxthepeihteeneflhlegtetheeetihies

W5? :- {RX :- X ZleC L’}.

LeX zeL

Finally, 1n the following gi_a,gr_a_n pf canon1ee1

surjectione:

FP -—>" H(I‘)
2 0

«.1 l ”
7 7+
h

H0(Fh) —9 ”0(P+) 7-) Q

nieehieemetehmmdflrmhgsl.

2

23005‘ Let x 6 P2 2 and w 6 P1‘ \ P2 2 commute with 20. Such a

w is chosen in 80(20) \ [Qx,zo], and is forced to be an

involution of 6’ of type a‘, owing to proposition (Li) and

lemma (1,12). Set 1: :- 02(88(w)). x has shape 21”"6

to (2__4_) ~ and contains [Q,w] - 8%(w), 2a maximal elementary

abelian subgroup of Q, of order 2 . H/[Q,w] is the natural

orthogonal module for N8(J¢)/R at 0:62) at 2‘62), and

~ due
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J(\ [Q,w] is composed entirely of involutions: the 2‘.28

Né(K)-conjugates of w, the same number of conjugates of wzo,

the 23.35 conjugates of x, and the 24.35 conjugates of xy

for any y e [Q,w] \ [Q,x]. Thus 3 is an elementary abelian

subgroup. Set N :- N¢(X). Observe that since the definition

of X is symmetric in w and 20, so is the definition of N.

We show next that 20” - 9(8). It thet; follgws that N is

irreducible in X; indeed, we show that 20 - 20 R, and so

9 - <Q |z e P(R)> acts irreducibly in X. To see this note
X

thatP3 2 is a single 6- orbit, so that the orbital (zo, w)6

is symmetric (or, self-paired). Thus 2“” 2 wflna. Now Q s N,

so for x 6 P2 2 n P as above we have that wa C rif; 20”.

This in turn gives the claim, in that that 20 can be

conjugated y1e 7x to any point of R with which it is

collinear. It is not difficult to see that F(K) is

connected.

Consider now the complex A“, defined to be the

(flag-complex of the) points, lines, and quads that lie in

R. The residual geometries in An of 20 and of any line on 20

are easily checked to be (truncations of) respectively

920:2) and 96362). (This is done entirely within 8 by

noting that the lines and quads in X that lie on 20

correspond exactly to the point- and line-stabilizers in

(N n 6’)/X a: £‘(F2) as this acts in [Q,w]/<zo>.) Thus AM is a

flag-transitive complex over F2 that satisfies the residual

diagram D11 of D:

D: u fl 4 Cl

11

 

This complex is plainly embeddable (in H) over F2, so that

the main result of S. Smith [13] yields the identification

N/R a ”he and R 8” Golay code (1.e., the simple factor of
 

dimension 11 obtained from the span of the octads). We note

that this extension is necessarily split, although we could

deduce the splitting from that of N n 6 over X.
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Note that, in Illa, the normalizer of a quad induces

9‘62), with each transvection induced by a point at

distance 2 from its center.

The residual connectivity of A is a consequence of the

connectivity of F ~ _f. (211$) above.

To prove (11), we suppose that R and K’ are hexes, with

P(X n K’) 2 20, say. Now 8 induces a permutation group on

the collection H: of hexes containing 20, with Q acting

O

trivially. 8 is transitive on P32, hence transitive on Hz .

' o

The normalizer of any one of these hexes is, megglg Q.

merely the stabilizer of a maximal totally singular subspace

of A. Since this action is rank 3, and since there are pairs

of distinct hexes in H; intersecting variously in <z¢> or a

O

quad, we see that these are the only possible intersections

for a pair of distinct hexes with a point in common.

The remaining statements of the proposition ~ save

possibly the isomorphism of (y) ~ now follow

straightforwardly from the claims already established,

together with the information known on AR' at least once the

residual geometry for 20 in this complex is determined. This

can be done by using the correspondence of the lines, quads,

and hexes on 25 with, respectively, the singular-point-,

totally-singular-line-, and totally-singular-4-space stabi-

lizers (the 4-spaces corresponding to wt) in t.

For (y) observe first that there are natural

surjections:

H(l‘)—1"L»H(I‘)—1:» z+81——)z+8 l—euua' )
o h o + 9’ h + ea;z '

Thus if HO(I‘h) - 0, then H0(I‘+) - 9 - 0. Assume that

H6(Fh) I O. The relations 8b and the flag-transitivity of C

in Pb give that «h is injective on the set of points in any

singular or hyperbolic line, quad, or hex of F. Fix a quad

9. R
L

connectivity of A now gives that ker(1h) - 8+«h is a trivial

I 5%, nee 3h, for any singular lines LHL’ e L(9). The

module for c, of dimension at most 1.
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To finish (y) consider 9’ :- P(9)11'h'yh U {0} 5 HO(I‘+).

Now 9’ is closed under addition: 22’ e P(9) and 22’ I z + 2’

mpg 8+, for distinct z and z’ of P(9) (use (211)). Thus 9’

and 9 are isomorphic Nt(9)-modules. Finally, the argument

above that provides the hexes of A can be repeated to

complete a proof that the sheaf {3nd has a nontrivial image

in the constant sheaf H6(P+); use this map to invert 1+. D

In order to finish the enumeration of the B-orbits in P

we need the following.

(211Q)PROPOSIT10N Cons1det en U9 3 8 thet netnaligee e get

91 9 nntne11y nonperpendicnla: singnlat pe1nte 1n N. 11 U s

8 is e netetel “s-eehsteee ef this "9 then 6“ =- 56(fl) e R}.

the eieele 8:222 2f M- hell ens Z- lathe.

We first prove a short lemma.

(2,1Z)L§hhe Considet e at zo-— y - x— w — v, whete

xePz‘,wefi’y,ve8x\<w,x>.W_e_t_henheveweP3 an
3’ .—

v E P .

4,5

EBQQE QB LEMMA We have V 6 P33 by (2111).

The a2 involution VQ‘ in 8x normalizes a unique 2-space

in A‘ and containing y<x>, and vQ: induces a transvection

there. Thus v normalizes a unique quad 9 on <x,y>, and is

collinear with a unique point w’ of I - <x,[y,v]>. As v is

connected to 9 it induces the “6-involution with singular

center w’ and axis a. On the other hand 20 is connected to 9

and induces the Ufi-involution with axis L I <x,y> and

singular center y. As L and a are disjoint, e - (v20)5

centralizes 9 (e1. the Appendix).

Now 2 - yvzo - w’ 2o" is collinear with neither y nor

20 6 Q2 (as in the Appene1n). Unless e

is 1, z is the unique point z’ of 9 with e 6 Qt" Neither 20

2V V

w’, ands-170.20

nor v centralize 2, so e - 1 and |vzo| - 5.

By (2111), v cannot be in P1 or P3, whence v e P‘. D
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PBQQE QB 23929511193 First note that there is exactly one

Oc(Fz)-class of sets of points that are maximal, with

respect to inclusion, amongst the sets of mutually

nonperpendicular points. The normalizer of any such set is

isomorphic to “9 (use Witt's Theorem on extending partial

isometries).

Next observe that the centralizer A of a corner

2’ — z — 2” at z of width 4 is the centralizer int?z of a

subgroup 113 of Q, hence has shape 21+60;(Fz)' 02(14) acts

simply transitively on each of P! \ 8: and2 P{,\ 8:. Now a

point of either set can be viewed to correspond to the

subgroup 020:2) stabilizing the point; abstractly this is a

complement in d to 02(11). There are in fact two classes of

complements to 0201) [Pollatsek 7, (5.2), p. 415]. Th

respective representatives of the classes act on the 64

lines on 2’ net perpendicular to <z,z’> ~ as well as the 64

for <z,z">'~ with orbit decompositions of l + 28 + 35 and

8 + 56, respectively. A consequence of this proposition is

that (to be proved in the proof of (2112) below) is that a

complement that fixes a point in.P£.\ 6; teen net fix a

point in P2,, \ 6’2.

N 9-8 811 2“"0'r °h9*n-ow .- Cu(z°)- e()' _ 52). mt ()

R :- Q n 6“ - 2?". The copy of “5 chosen centralizes a path

20 -y'—-X'- w, where x 6P2u and w'e P33. In particular,

2:68 0 8 I <zo:>. That is, en is of type XJ/Ja. An old result

of Z. Janko [o6] asserts that one of the following must hold:

cue“); 2t

6“ has exactly one class of involutions (and 6“ has the

character table of J ).

3

The second case is impossible since the involutions of D \5!

are of type cz on M, and (21h) rules out these involutions

as points on 6. This finishes the proposition. 0

For future reference we list the D-orbits in P1! :- zocll

and the parameters for the lines between them.
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£3992 This proposition is really a compilation and

refinement of the results on P3 contained in (Zyll) and

(2‘12), and one should have these statements firmly in mind

as one reads the following. In fact the bulk of the proof is

devoted to proving the statements about Pma' It might be

worthwhile to look ahead at this point to Ighlg i at the end

of the section. This gives a global view of the E-orbits in

P.

(1): Let w 6 PL‘. Corollary (Zyll) says that w is

collinear with x 6 P2 where either x e 8 and w induces an

”6-involution on :P - :1”x 2 , or else y - (xzo)z 6 P1 and

0

w 6 8y. Consider the first possibility. In this case w e Qx

acts nontrivially on the unique quad :f on <zo,zo'> s Qy.

Moreover w centralizes a unique line L in f n Qx.

Necessarily L - <y’,x> for some y’ of P; n Q. Thus, 2
o

induces an ”6-involution on f,, . The first possibility

reduces to the one just considered by reversing the roles of

w and 20.

If 2 is the point of L - 9 n 9’ that is collinear with

neither w nor 20, then a point z’ 6 P2\ 8 must normalize f,

9’, and L, and conjugate 20 to one of the 4 points of ?’

collinear with yz. If this is not w one can replace 2’ by

another point of P; or by a product of this point with a

point of 62 that induces a transvection on 9’ with center 2

and obtain thereby a point that conjugates 20 to w.

We have shown that any point of PerI; lies in the

quad 9;”30, perforce the unique quad on w that is

normalized by 20. This finishes (i) and yields the

parameters for P3” in (ii).

We will derive the statements about P3.3 simultaneously

with (iii). This is all that remains to prove. The

combination of (gyll), (gyLZ), and the first part of this

proof show that there are but 3 B-orbits in P3, and provide

the statements in (ii) regarding P32 and Paa'
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Consider the set of paths z°-— y - x - w, for a fixed

w e Pma' The stabilizer of any one such path is a copy of

"3’ as was noted in (2‘15). In the same proof we saw that

the set of lines <x,w>, for x e Pszon,one of these paths,

determines a set of mutually nonperpendicular points in A".

Thus there are at most 9 such paths, and in any 8 n Bw-orbit

of these paths, a point stabilizer is induced by a copy of

”8. However, by (zyle), there are at least 4 of these paths.

We conclude that there are exactly 9, with 6’ n 6" an 119

acting naturally.

Finally, any v e P" must centralize some 1: e P" n P2".

From (Li) we conclude that P" C P2" U P3.3 U P¢.5' We

have observed that each such point is connected to a quad to

which 20 is connected. This finishes the proof. D

(2.19)£ROPOSITION Leg 6 he ef hype 01.

(i) vaeowarmewePa'z. mm‘ffi

cehtaihee in ehe unigue he; eh w egg 20; e; elee v e P‘J.

_1_ she latte; w x :- [v,zo] - (v20)2 6 P" n P2,2’ whehee

w e $;Jn ehe ehigue ghee eh v £h§£ Le hoggalized hy zo.

(inheiveP'fgsemewePaJ.mxz-P'anehe?

he he ehe unique ghee eh w ghee ie ngggalized hy zo. Aeeeme

v e <w,x>. Exactly eee e; ehe followihg three cases eeh

2222;.

  

v dees hot cehtgelize x, egg v 6 P45;

v doee eenggalige x, bet he; i, egg exectly one 9: v

ehe vw Lies ih Psa’ yhile Eh; other lies Le P46;
 

v does centralize f, ahd v e P“.
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(iii) P, mists 2f M): {921; 81121355:

P”. 9: 1mmc 21°337; ml: 9.: mm mm h_as 10

neighbors _i_h P3 3’ 25 in P3 ‘, end 200 in P‘ 6;

P‘ 3, efi length dividing 2“s.7.135;

1422

P”. 2fl_.g_hent 2 357; Aeahpainshmhaa3

neighbors 13 each 9; P43 egg P3 ‘, 96 in P‘

.42936igPH;

5

1032

P , leengch 357; eachpeihgeheLehee3

4,4

neighbors in?3 2, 1921hP‘ 6, egg 36131:”.

(imifvePH—mthe __:.ethe $253line§envmatsenmg

Imagsmzmz’”; mzzazmml

9.21M from PHQQZ from P‘ 6.

M We show first that if v e P‘, then v20 is one of

exactly four possibilities, with digressions to finish off

(i) and (ii).

From (2_,__l§) we may choose a quad 5° to which both v and

20 are connected. Say y 6 P1 0 :P and w e P" n 9. Assume

first that both v and 20 act nontrivially on :P. If their

product induces a 5-cycle in ”a then in fact v e P as

noted. Otherwise their product induces a 3-e1ement with

fixed points in 116 (a 3-cycle, as in the W). and

moreover 6$(v,zo) consists of a single point 1:, say. In Bx

it is easy to check that {(vz°)3,(vwzo)3) - <x>. This

finishes this first case and also gives (11). Moreover this

says that if v e PM5 then x - (v20)3 and v generate a

hyperbolic line; and the quad 9", contains all of the

neighbors of v in PM. Thus #2” - 2933527.2.25/3.

If 86(9) contains either v or 20 then we claim that

|vz°| - 4. We establish this together with (1). Say 20

centralizes :P, and let I! be the hex on w and 20. Now 20 e 6"

is of type a‘, so that v’ :- v20 e Qw and v’ commutes with

v. Since I! 2 BO (20), v - v’ would imply v e R. Rather it
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must be that x :- vv’ - [v,zo.] e [Q',zo] s it. Thus :1” :-

Yv : is the unique quad on v that is normalized by 20.

Moreover, v induces one of the 2-central Illa-involutions in

Km: , whence x - 20".2o is at distance 2 from 20, and

collinear with w.

As this argument shows, if v is any point collinear

with w but not in P2.2 U P3,z’ then v 6 Ph‘.

From the above v 6 PM‘ is connected to precisely 3

points of P332 ~ _11. the 3 neighbors of v in 3" ~ whence

#P‘ 4. - 26335. 7. 240/3. Assume now that z e P, but 2 is not

in 9’. Either z centralizes :f’ or else 2 induces an

its-involution with v as singular center. Since the center x

of 20 (20 as a transvection on a?) is not collinear with v,

|zz0 | is a multiple of 6 whenever z e 860’).

Now count 2neighbors to see that each point v e P 4. is

connected to 2223 points of P3 4. and 2I53 points of Ps

“9

while each point w 6 P3 4. is collinear with 2332 points of

P , 25 from each of P and P , and 2 from P . For

4, 4 6,3 ,6 4.5

example, ifveP‘, setx-(vz),and$-:fx. Now

a n e -2“"“32 has just 3 orbits on L. the 3 in w, the 36

not in" .‘P that centralize :f, and the 96 that do not

each point v e P6 is connected to 2232 points2 of P

centralize :19. On the other hand if w 6 P3” then any

neighbor of wthat centralizes 9",sz must lie in PM"

Hence, the 36 lines of Lv that do not lie in 9’ but that

centralize :1“ must contain one point each from Pan.’ We claim

that the remaining neighbors of v ~ those that do not

centralize 9 ~ all lie in Pus' Again it is enough to see

that w has at least one neighbor in P"

For this begin with the observation that v20 and x‘1

are collinear points of 9, whenever u e P” acts nontrivially

on 3’ (ef. the Appendix). Set w - v'mx"; this is a point of

P3.2 that is collinear with each of v and x, and is

centralized by u as well as 20. Hence there is a quad :P’ on

u and a hex J" on 20 whose intersection contains w.
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In A”, then, we can find a unique hex R" containing 9’

whose intersection with R’ is a quad 9". Now 20 e K’ must be

connected to :P", as must be u e X”. Necessarily, u e Pms’

as we have seen in this case.

With this one calculates that the centralizer 6’ n I?" of

a point v of PLB ~ lying in the normalizer of both of the

hyperbolic lines <v,x> and <x,zo> ~ has shape

3 x 21“[£2(F2)x £2(F2)] and hence has exactly 3 orbits in

PV: those of lengths 3 and 36 just mentioned, and the one of

length 96 consisting of points that do not centralize :Pv'x.

Each of these lines contains, besides v, a point each of

1,4,5 and Pms'

Now counting the points of P‘ 5 in three ways one sees

that #P‘ 5 - 216335.7/n, say, where each point v e P‘ 5 is

collinear with 2:2 points of P3 3, 512 of P3 ‘, and 23512 of

Pms' If v is collinear with w e P3,3’ then 8g(v,w,zo) a

11‘ x 115 5 119 s 03%), stabilizing a (4,5)opartition of the

9-set. Since n is at least 1, 2 divides the index of

86(v,w,zo) in 8§(v,zo). This+leaves only a subgroup 1132 as

a possibility for 6’ n 6’” 5 03(F2)’ whence n - 5.

The fact that n - 5 implies that if <v,v’> is a line,

with v e P".6 and v’ 6 Pas” then vv’ 6 P‘ 5' This finishes

the last of the P‘ 5 parameters, and thus the proposition. [:1

(2,20)W(i) A consequence of the results of this

section is that if :P is a fixed quad, N is its normalizer,

. and P is the set of points connected to :P, then the Hecke
:f

algebras 8ndN(l-'2P$) and Endgfl'zP) are isomorphic (as

Fz-msss).

(1,1) It can be shown that in ol each line on a point

v 6 P4 3 contains 1 point each of P‘ a and P3 4’ This gives

the remaining parameters for P, and demonstrates that P has

diameter 4. Moreover if K. :- P‘ U P‘ s’ then K. has the

3

property that each line that contains a point of K; in fact

contains exactly 2. This will be noted again in the next

section.
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13119.2
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3. THE ADJOINT REPRESENTATION FOR GROUPS OF TYPE 01

(AND RELATED REPRESENTATIONS)

magma“ Vin—insema amflm -1

(cf. (2‘1)), giph phg assumption (2plg) phpp 1p; pdjoint

geometzy 1g gpppepted.

Retaip pp; notation pf §§l-2. Much pi phig Lg gixpp 1p

(LA), (LA), Q51 (Lg). Throughout we will mean by $204)

the subspace of 8nd(‘) consisting of symmetric matrices ~ as

opposed to the appropriate gpppigpp of 8nd(d). Although this

involves a choice of basis, 82(31) will arise only in

 

situations where the action theron is induced from a

symplectic representation.

(3‘1)DEE1NIILQN§ ANQ NOTAT ON We give another description of

the homology module H6(P’) for P’ - (P’,L’) a geometry where

the lines have 3 points each (pf. (2,15,v)). Consider the

(deuLP’-)permutation modules FZP’ and FZL" Define maps:

*

FZL’ —0-)F2P’, 1 i——-)Xp , and FzP’ -g->F2L’,p 1———-)21 .

p61 13p

Identify each of these modules with its dual through the

usual inner product; this identifies 0* with the dual of a,

as the notation suggests. In this setting, HB(P') -

cokow(a*). The surjectivity of a is equivalent to the

injectivity of 0*, in turn equivalent to the nonexistence

of a set K’ # O of points such that every line meets K’

evenly. P’ \ K’ is an example of a hypprplppg ggppipp, as

considered by M. Ronan. We use this in the following.

(M)W H0(Fh) v‘ 0.

(3‘3)3§MA35 Using (2plfi) we conclude from this hypothesis

that 9 - HUGS“) vi 0. At least in ol, the set P \ K. -

P \ (1,4,3 U Phs) is a hyperplane section for I‘, as was

mentioned in (2‘29). Thus HB(P) # O in this case. What

remains to do is establish the existence of a hyperplane

section P’\ K; for the hypepbolip geometry Ph. We could then

apply (gpli) to conclude that 3 fl 0.

36
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Whatever K? might be, it is pp; K.. In fact, there is

pp B-invariant hyperplane section for the hyperbolic

geometry, as we show in (1‘11) below.

The anomaly of having two distinct hyperplane sections

is not unusual in geometries where there are both ‘singular'

and ‘hyperbolic' lines. For example the symplectic spaces

over F2 (or, analogously, any field of even characteristic)

have as hyperplane sections, in addition to the linear

hyperplanes of subspaces perpendicular to a given point, the

set of points of an orthogonal quadric. These are ‘linear'

only in the universal (homology) module for the hyperplane

section ~ 1.g., the orthogonal modules of l dimension

greater.

The near-hexagon on the octads for flg“has a hyperplane

section consisting of the set of all octads at distance no

greater than 2 from a given octad. However, the

representation of the near-hexagon in the ll-dimensional

factor of the Golay code does not realize these hyperplane

sections in linear hyperplanes.

(1.3)W M112 119151.128 Lat S be the set 015 quads and

H the set of hexes. The shadow geometry

A(H) :- (H,{H9|$ e 3}) over H is a partial linear space,

where we regard as H-lines the sets My :- H n A, for 9 e S.

The H—lines contain 3 points each.

Fix a hex K* and define K* as the set of all hexes X

that lie on paths of the form R* - z - X’ — 9’ - H, where

<z> - 16* n u' is a point,-:f’ - u' n u is a quad, but

9’ n in- {l}. K* can be shown to be the complement to the

unique N* :- N6(R*)-invariant hyperplane section of A(H).

For 6 - o1, K* corresponds to the set of cobrdinate frames

of the Leech lattice A, taken mpdplp 2, that are pp;

perpendicular (mpgulp 2) to the frame (that corresponds to)

R*. Verifying that H’\ K* is indeed a hyperplane section is

tantamount to sorting the hexes into N*-orbits, of which

there are 6: one at distance 1 from K*, and two each at
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distances 2 and 3.

Rather than establish the nonvanishing of the module

H;(A(H)) as above, we show below how (3‘2) implies that this

module is nonzero. This approach involves only some

elementary local calculations in various homology modules.

Y. Segev has studied the geometry A(H) extensively. He

uses elegant geometric arguments to obtain delicate

information about the geometry. He then constructs a

concrete isomorphism of A(H) with the ol-geometry on the

codrdinate frames of A. A corollary to his work is the

existence of hyperplane sections in A(H). There is some

obvious overlap of our projects, although our aims are

somewhat different.

I thank Dr. Segev for useful conversations that we had

at the Noordwijkerhout meeting ‘Groups and Geometries', and

for providing me with a draft of his paper while I prepared

this manuscript.
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PRQQE We use the term S-ppipp to mean an element of 8; an

S-lipg is a shadow so,“ :- S n A5,," where L e L(R) and

K e H. Notice that the partial linear space A(S) has ‘lines'

in correspondence with the 7 points of 96303), and so a

universal cm-representation of A(S) is not exactly as in

(_._1_5_._2V) or (1.3).

Given the definition of 53 above for the faces of a

fixed chamber of A it is not hard to cheek that the

definition extends equivariantly to all of A (pf.

[Ronan-Smith 10, (4.2), p. 142]).

We finish by showing that 55 has a nontrivial image in

25,. The point is that ”0(58) is the limit of the system {35,

so that {38 —) 6’ 2: ”C(28) must factor through H0658). See

the Regiprpcity of [Ronan-Smith 10, (1.2), p. 139]:

Ito-(6.21) a “0-,;(H0(§).1) :23: as am: shsef 922.: A ans! =1 an!

Fae-modulg.

Recall that (2,15,!) allows us to regard 9 as generated

by P, subject to the defining relations determined by L and

Lh. Fix :1? e S. The element zlAz’1 + zzAz’2 is the central

element of AZ(:P) whenever the two pairs {21,21} are

orthogonal hyperbolic pairs. Denote this by {y' Now if K is

a hex and f s R is a quad, then Ne($,u) induces a group 6 a

26$‘(F2) s 1112‘ such that H is uniserial for 6: :f s R~ s It ,

where X~ is the linear hyperplane containing the points of R

that are connected to 9. Thus 6 has a single fixed point in

(@(K). Perforce this is {y' which then lies in a copy of

‘X* 5 A20!) (the dual of the kernel of the cocycle for the

extension of R* over X that lives in the permutation module

of dimension 24).

The remaining terms of the subsheaf of Re can be

constructed straightforwardly from the terms for the quads

and hexes. See the proof of (;‘§) below. Note that it is

unimportant what actually appears in 8 at the vertices P of

A: 53 will map-to 28 in any case. B



4O

(anagram Human) .- o.
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39;; l depptgs a tpiviai ppdplg; philg 2 ppp 4 depote

pgturai modules pf phggg gipgpgippg £91 phg respective

paraboiip iactors isomorphig _t_g 122(Fz) gag £‘(F2); 8’

indicates pp orthogonai module Eng; is twisted by p triality

automopphism fgpm pp; orthogoppi moduie A; ppg 4 1;

contained ip 8’ é§ a totally singpla; subspace.

 

P3003 (i) We show that 8%9 represents the geometry A(H).

That is, we show that for each R e H there is a fixed point

e 899 for N (R) such that e - 0 whenever

u C R K’ H"

{H,R’,H") is an H-line.Indeed for each R e H, the image of

58'“ 9 5A.“ a 8nd(ll) in 389 has a l-dimensional fixed-point

space for Nc(R); say this is F26

6 +6 +€

X'

It is straightforward to verify, exactly as in the

proof of (éifi) below, that 91? , i 6 I, contains the

1

following composition factors:

1 l 8

2 2 286+ .

4 4 662 2

11 ll ...

I

Thus, for example, there is a uniserial P‘-submodule 3‘ of 9

that contains fimrll and Eur; and has composition factors

Bur‘ a 4, 692, and 2 (6 is the F‘-semilinear module for

9‘62) 3 66, as before). Similarly, in 8 we find the

*

uniserial P‘-submodule 8‘ containing 11 of shape:
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l 26 or 27 ...

2 6+

*

4 1 6 82 482 ...

*

11 11

I

*

In particular Ron?‘(F2,8‘®9‘) =1 Hoar‘m‘ ,8‘) - 0.

Now consider the H-line {H,X’,H"} on the vertex v; e 8.

Since 6 + e + eR X’ H" e 8‘03‘ is centralized by 9‘, the

remark above forces ex + t + eX' R" - 0. This concludes (1).

(ii): Let A be HB(A(H)) ~ nonzero, from (1) ~ and let

931 and V“be, respectively, the images in A of the

subspaces F2“ and Fzfly of the permutation module FzH. Define

V2 - X 71192. 72 cannot vanish, lest A - 2 7n; vanish. Thus

72 is generated by the 15 points 71:32 subject to the

relations determined by the lines of the natural module for

£2 a: t‘(F2) in which fan/1‘2 fixes a point ~ a presentation

for this 4-dimensiona1 natural module.

Similarly the sum 71 of the images of 731 under

elements of 8 - 91 must be the natural module for 6 (as this

acts through its quotient 02(2)) in which 91.11 fixes a

point (One could either repeat the argument of (2,1§,v), or

else invoke the general theorem of [Ronan-Smith 9, (4.1),

pp. 338-339]). D

(1‘1)REMAE§§(1) The notation 5A is meant to suggest a

connection with the Leech lattice A. Indeed for each a e A,

5A;a

of the fixed points for ”a 5 cl. We regard this as saying

is just the subspace 33.0 of A :- A mpg 2 that consists

that the pair 6,5A is ‘locally isomorphic to' the pair

01,5X . In proposition (;i§) we strengthen this to say that

A :- ”0(5A) ‘is locally isomorphic to' A (pf. the precise

statement in Ipplg 6 below).



42

(ii) The Mpg that HOGA) ’5 0 would, similarly, lead

to the nonvanishing of H3(P) through a nontrivial image of P

in 52(Ho(5A)). This is noted also in corollary (1.2).

(M)Wmcbsfl£m-I.MEA£02MQ§

definedinlsms (1.6). MMMMraboli 91915

salifiameries mH0(5A)l, 1.0mm;

1

taplp.

Tabie 6

.__g ipcai composition sepies' pf ”0(8A)

 

1 8' 8" 8’

* *

2 a 264 294 a

*

a 2 6 662 6 2

*

11 1 11 11 1

I V 17/" 91/7 W1 Z/‘y

 

REMARK Since Conway's group 01 is a group of type 01 this

result is a ‘local uniqueness' theorem for such groups.

mm; Set A - 110(5A). Lemma (3,6) (that is .- 0) provides us

with identifications §A°v -—;+ 7*:5 A, i e I. Starting with

1

these the chart gives a Pi-series 71 s '1 s 11 s ill1 s 21,

i e I. The entries in the chart identify the composition

factors by their dimensions ~ a blank indicates 0 ~ possibly

in conjunction with other notational information which will

be explained as the proof develops. The proof is carried out

in twelve steps, one for each nonzero factor not given as a

sheaf term.
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mp 1 Define '11 :- Z V‘Pn. This is a Pll-submodule. In

111/711 there is a sheaf over AV as follows. First,

11

If 57 s I , and 7/7 is a l-dimensional
11 6 11 6 11

P -submodule of V /Y . Next, 7 s V , and Z V? -
6,11 11 11 6 z 6 2.11

V , so that V /V s I /V is a natural 3-dimensional

2 z 11 11 11

module for P2 11' Finally, the P1 n-conjugates of I!"

generate the subspace of the orthogonal module V1 that is

perpendicular to V11. We summarize these calculations in the

following table:

1

6+ - (2 7491,11)flll - VII/v11 S vl/Vll

3 - (X v4’2,11)/v11 - VZ/vll

1 - 1r4/vll

6+ is the 6-dimensional orthogonal module for £‘(F2) a:

0:62).

The homology of this sheaf is the simple Ilia-module

denoted by 11 ~ the Md moduie (pf. [S. Smith 13]). The

fact that A i 0 forces the image, in 111/711, of the

residual homology module to be nonzero. Hence Uu/V11

contains a copy of the Todd module. Since Vn/V11 is

generated by the subspaces (V‘flnfl’n in this copy of the

Todd module, these are perforce equal, and we have verified

the first of the twelve entries: _t_zhgWM7/7

9___ver I'IEEMMQMM’I-

Observe that '11 2 V , and that '11 n 71 has a

11

1’1 n-series l:1:6+. (We abbreviate a composition series by

such a sequence.)

All of the other steps follow this same line, and so we

finish the proof with but a sketch of the calculations.
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gm 2 W‘ :- 2 72?‘ leads, in exactly the same way as

mp 1, to the sheaf:

*

2n6 -2

*

06

6 denotes the fi-semilinear module for $‘(F2), as before.

(The convention will be that the symbol for the dual of a

module will be the symbol for that module with a superscript

w’ .) Note here that only the subgroup 02(11‘) - 03(11‘) of ‘1!"

acts trivially. Also, 6 contains the 92 ‘- and

' *

’1 (subspaces 2 and 4, respectively. As Ho(‘ 2) a: 6 , the

second entry of the chart is verified.

V SI SI ,and' n7 -2:4.

2 6 11 6 1

Stgp 3 '2 :- X 7192 leads to

*

o4

*

4 n 202 - 2

(iv—<1 4 - 202

*

203

* 2 3*

Since 4 n 4 - 2, the 91 z-subsheaf 5:: 0—0—0

generates, in the homology of the above, a factor of

*

20Ho(§‘*) a: 204 . Again, the simplicity of the residual

homology module, together with the nonvanishing of A, gives

~ *

Vz/Vz a 204 .

v 2v,v; andv nv -1:3:203*.
2 1 6 2 11 g

D 2

202

mp _4_ 1‘ :- Z In?‘ leads to:

2n4-1
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H (1 z) is a copy of the S-dimensional orthogonal module
0 0:0

for find-'2) at 050:2). This and the fact that 2 n 4 - 1 imply

that the homology of the above is a factor of 502. However,

there does not exist a copy of the symplectic 4 in 502 (for

the parabolic I" 11), so that this homology module is

402 a :z/v‘.

§Lsp _5_ 11 :- Z ['11’91,11]?1 - X 1291 leads to:

*

4

2

'k

4

whence to ill/V1 a: 8”, a triality-twisting of VI.

12',U;andflnv -l:6:4.

1 2 6 1 11 +

All of the major steps of the proof are now complete.

fipsps §-§ "Dualize" the arguments in spsps 3, 2, and i, in

that order, to obtain:

“Hz/V2 a: 204; III/'4. a: 6; and {Um/U11 =1 11.

Spsps 24.2, First define Z1 :- X 11291, and verify that

2/138’.Z is then stable for?,?,and? (22?
1 1 1 2 6 11 1 1

generates a constant sheaf for each).

Now 21 s A is stable for each of the parabolics and

contains the generators for A, hence A - Z11 - Z‘ - 22 -

21' CI

 (3.9)003011fl1m is 13 self-__1dua 19:. 6.

(ii) 111s singular lines pf, 6' s95 gusdratisaiiy Q A:

[A,L,L] - 0 whenever L e L.

(iii) 52(5) r_p.r___§_eesen s m _QJLLLai t 2mm £21: 6-

m (i) The Ms _6_ shows that there is a nonzero

map 5A -—-) A*, and so the reciprocity applies.

In particular 6 is represented in :Pp(A), so that

(without loss) 6 leaves 32(A) invariant.
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(ii) and (iii) Let L - <z,z’> be a singular line. From

the proof of (M) observe that [A,zo] - V‘ S III - 68(2).

Now 2‘, s 7316(6) s v: s :13. The c-map FzP —9 32(8) S

8nd(A), z F—9 l + z (of trace 0) factors through H6(F),

since 1 + z + l + z’ + l + 22’ - (l + z)(l + z’) - 0. D

(3,10)gsnsgg Counts of the vertices of A and of the image of

these vertices in A shows that the map is indeed an

embedding.

As a final result we indicate how a proof of the

nonvanishing of the adjoint module that includes a

description of a hyperplane section will not be so easy.

(LAW—1312161114212 Ema-wmmm

MWMO121'ng -1.

23992 Any B-invariant subset of P must be a union of various

orbits Pm“. Now there are hyperbolic lines that lie

entirely in P1, and hyperbolic lines entirely in Pas; and

for any point v not in P‘s, there is a hyperbolic line that

intersects v6 in precisely v. This gives the result.

To see these claims, first note that if y,y’ are in P1,

<y,zo> !‘ <y' ,zo>, then <y,y’> c P1 is a hyperbolic line.

Consider now w 6 P3 3 and x e P” n P2 ‘. Choose v,v’ e

P; n 8‘, [v,v’] - l, and such that <v,w>, <v’,w>, <vv’,w>,

and <x,w> are pairwise distinct. We have then that

<v,v’> c P‘5 is a hyperbolic line.

For x 6 P2 2, there is a v e P‘ such that <v,x> is a

hyperbolic line with vx e P“. Similarly if w 6 P32 resp.

P3“ there is a point v 6 P65 such that <w,v> is a

hyperbolic line with vw e P‘.3 U P‘s. And finally, if

v E P resp. P U P there is a point v’ e P such

6,6 6, 6,6 4.53

that <v,v’> is a hyperbolic line with vv’ 6 P‘s. D



4. CONCLUDING REMARKS

We became interested in .1 while trying to characterize

the Friendly Giant 96 of B. Fischer and R. Griess. 96 is of

Fz-type, with 8 of shape 2“2‘ -1. We have been investigating

an inductive approach to the adjoint module 86(F) for 96,

trying in particular to establish that this does not vanish,

based on the existence of the adjoint module for -1. As yet

we have not succeeded in this, although we can demonstrate

that if H3(P) is nontrivial then 96 admits a ‘nice'

2-modular representation. This representation is given by a

sheaf locally isomorphic to the sheaf of 02-fixed-points in

the Griess-module modulo 2.

The approach of the present paper does produce for a

group of type 96 a 2-local geometry as described in

[Ronan-Smith 8]. However it seems completely hopeless to

enumerate sufficiently the B-orbits in P to give the desired

nonvanishing as was done here. Indeed, the number of these

suborbits is at least:

wm/mz z 41.514...

S. Norton has suggested that there may be around 150

suborbits. We have enumerated most of those out to distance

4, and there seems to be no end in sight!
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APPENDIX

CALCULATIONS IN THE lS-POINT QUADRANGLE

It is perhaps easiest to calculate in us as it acts on

the 15-point quadrangle by viewing the quadrangle as the

transposi-tions of 65' Thus the singular center of (12)(34)

is (56); its axis is {(12),(34),(56)}. One sees that the

class of st ~ for involutions s and t with axes and singular

centers 1, m, p, q ~ is determined by the incidence

structure on {p.q,1,m}:

m1

Lbs—cmgsubr mmuemms

 

P ' q P q P ' q P q q P

o———- o—————o or or

1 - m 1 - m I 1 I m I 1

m 1 m

1 (12)(34) (1234)(56)

P P P

o————- o————-

I 1 1 1

m

o o

q q m q m

(123) (123)(456) (12345)
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