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ABSTRACT

APPROACHES TO SCALING AND IMPROVING METAGENOME
SEQUENCE ASSEMBLY

By

Jason Pell

Since the completion of the Human Genome Project in the early 2000s, new high-

throughput sequencing technologies have been developed that produce more DNA sequence

reads at a much lower cost. Because of this, large quantities of data have been generated

that are difficult to analyze computationally, not only because of the sheer number of reads

but due to errors. One area where this is a particularly difficult problem is metagenomics,

where an ensemble of microbes in an environmental sample is sequenced. In this scenario,

blends of species with varying abundance levels must be processed together in a Bioinfor-

matics pipeline. One common goal with a sequencing dataset is to assemble the genome

from the set of reads, but since comparing reads with one another scales quadratically, new

algorithms had to be developed to handle the large quantity of short reads generated from

the latest sequencers. These assembly algorithms frequently use de Bruijn graphs where

reads are broken down into k-mers, or small DNA words of a fixed size k. Despite these

algorithmic advances, DNA sequence assembly still scales poorly due to errors and computer

memory inefficiency.

In this dissertation, we develop approaches to tackle the current shortcomings in metagenome

sequence assembly. First, we devise the novel use of a Bloom filter, a probabilistic data struc-

ture with false positives, for storing a de Bruijn graph in memory. We study the properties

of the de Bruijn graph with false positives in detail and observe that the components in

the graph abruptly connect together at a specific false positive rate. Then, we analyze the



memory efficiency of a partitioning algorithm at various false positive rates and find that

this approach can lead to a 40x decrease in memory usage.

Extending the idea of a probabilistic de Bruijn graph, we then develop a two-pass error

correction algorithm that effectively discards erroneous reads and corrects the remaining

majority to be more accurate. In the first pass, we use the digital normalization algorithm

to collect novelty and discard reads that have already been at a sufficient coverage. In the

second, a read-to-graph alignment strategy is used to correct reads. Some heuristics are

employed to improve the performance. We evaluate the algorithm with an E. coli dataset as

well as a mock human gut metagenome dataset and find that the error correction strategy

works as intended.
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Chapter 1

Introduction

1.1 Overview

In Bioinformatics, the genome assembly problem is among the most challenging and pressing

to date. Informally, the goal of assembly is to determine, from shredded pieces of DNA frag-

ments, the original DNA sequence. Though assembly algorithms have been in development

for decades, an accurate and efficient assembler for all but the most simple genomes has not

been achieved, for reasons we will discuss briefly.

One principle reason for the difficulty in assembling genomes is the proliferation of so-

called next-generation sequencing technologies. Though these newer platforms have dra-

matically reduced the cost of sequencing, they typically produce smaller, more erroneous

reads, which are more difficult to find overlaps between. For example, Illumina’s HiSeq 2000

System is capable of producing 6 billion reads of approximately 100 base pairs in length. In

contrast, the traditional, capillary-based methods (i.e. Sanger sequencing) have generally

produced longer reads with fewer errors but at a greater cost and lower throughput. As newer

technologies are developed, the phrase next-generation sequencing becomes more of a mis-

nomer as companies are constantly developing new approaches that produce a combination

of higher throughput, fewer errors, and longer reads.
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1.2 Assembly Algorithms

As sequencing technologies have evolved, so have the assembly algorithms. The primary

assembly method for assembling traditional Sanger data is called Overlap-Layout-Consensus

(OLC). These assemblers typically apply three primary stages using the long reads that

capillary-based sequencers produce. In the Overlap stage, an assembly/overlap graph is con-

structed by checking for overlaps between reads. In the next step, the reads are laid out along

a putative genome. Finally, the reads are aligned to one another and a consensus sequence

is determined. Examples of such assemblers include Celera[36], pcap[20], and Arachne[2].

Due to the large number of reads generated by next-generation sequencing platforms,

the overlap step of OLC assemblers became intractable due to being quadratic with respect

to the number of reads. To better handle these types of datasets, k-mer graph, or DNA

de Bruijn graph, methods took over as the predominant assembly method. Rather than

checking for overlaps among entire reads, each read is broken up into words of fixed size

k. Each k-mer is stored in a data structure, generally a hash table, to enable fast lookup.

An assembler can represent k-mers as vertices in an assembly graph, where k-mers can

share an edge if they share a k-1 word overlap. The algorithms for traversing the graph

to generate contigs are assembler-dependent. One of the first DBG assemblers, EULER,

finds an Eulerian path through the graph[40]. Other assemblers, such as Velvet[55] and

SOAPdenovo[28], use Dijkstra’s algorithm to detect sequencing errors and heterozygosity

between two k-mers. Assemblers apply their own heuristics to handle repetitive elements,

errors, and heterozygosity[35].

Though the de Bruijn graph approach is the most predominant in next-generation se-

quence assembly, other methods exist. One such approach has been with string graphs[37].
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R1: GGGGCCAA
R2:   GGCCAAAATA
R3:     CCAAAAT
R4:        AAATAGCAC

GGGG
 GGGC
  GGCC
   GCCA
    CCAA
     CAAA
      AAAA
       AAAT
        AATA
         ATAG
          TAGC
           AGCA
            GCAC

de Bruijn graph
k=4

R1 R1

R2
R3

R4
R2

R4

Overlap Graph

String Graph

Figure 1.1: Three main types of assembly graphs.
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A string graph is similar to the overlap graph used in OLC approaches, but it does not

necessarily need to know all of the overlaps among reads. Instead, it requires all of the read

overlaps that cannot be transitively reduced. For example, if read A overlaps with read B,

read B overlaps with read C, and read A overlaps with read C (and reads B and C overlap

the same side of the read as A), then the overlaps from A to B and B to C do not need to

be considered since the overlap from A to C transitively implies the former overlaps. An-

other feature of the string graph is that it does not contain the entire set of reads from a

sequencing dataset. If a read is contained within another read (i.e. it is a substring), then it

does not need to be part of the initial string graph. However, knowing all of the reads may

be important for determining coverage levels that are useful for resolving repetitive regions

and copy number variations (CNVs). Initially, the string graph approach was not utilized

because the running time was still quadratic with respect to the number of reads. However,

using the FM-index data structure, the running time was brought down to O(N)[45]. In the

next chapter, we go into more detail about how the FM-index can be used to store assembly

graphs and compare it to other data structures and approaches.

Figure 1.1 provides a visual comparison between the three main types of assembly graphs.

One immediate observation is that the overlap graph and string graph scale with the number

of reads while the k-mer graph scales with the number of distinct k-mers in the sample. This

implies a trade-off where longer reads make string and overlap graphs more memory efficient

while de Bruijn graph-based assemblers are better for shorter and more abundant reads.

Another observation is that the string graph does not utilize read 3 since it is contained

within read 2. This offers a potentially significant memory reduction since many reads may

not be needed. Furthermore, sequencing projects utilizing both short and long reads benefit

from this approach because many more short reads will be contained within the longer reads.
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1.3 Metagenomics

The assembly problem is made even more challenging when presented with metagenomic

data. Metagenomics, or environmental sequencing, is the study of sequence data obtained

from environmental samples, which can contain different species of microbes with varying

abundance levels. This is particularly useful when it is difficult to isolate a microbial species

from a sample or one is interested in the entire population as a whole. For example, one may

be interested in the microbial population in the human gut or in a water sample from the

ocean. Since many species exist in a sample, more questions can be answered from looking

at the entire population than isolating individual species, especially considering the complex

dynamics that occur in microbial ecology.

In contrast to metagenome sequencing, genomic sequencing is considered an easier prob-

lem because, other than issues such as contamination and PCR biases, only one genome

is isolated and sequenced. A further hindrance to metagenomes is the amount of coverage

needed. As of 2010, the total amount of environmental sequencing constitutes less than 1%

of what would be found in a gram of soil[17]. In addition, due to the uneven abundances of

microbial species, deep sequencing is needed to discover all of the diversity in such a sample.

For example, if two species exist in a sample with one being 100 times more common than

the second, it is clear that one would need 1000X coverage of the sample in order to obtain

at least 10X coverage for each individual species. The difference between the least and most

abundant species in a metagenomics sample is likely to be much greater in highly diverse

populations than others.
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1.4 Why Assemble?

A variety of tools are available that do not require an assembly to obtain information about

a metagenome sequence dataset. Furthermore, depending on the analysis, it may not make

sense to obtain the shotgun sequence of the environmental sample. If the goal is to deter-

mine the diversity within a population, it is useful to target and amplify the ribosomal 16S

sequence and sequence with a platform that provides longer reads such as 454. This allows

one to construct a phylogenetic tree that can be compared with similar samples of different

treatments or locations. If one is interested in the functional composition of a microbial

population, then the entire metagenome should be sampled rather than the ribosomal 16S

sequence. In this case, a variety of analyses are possible without assembling. Gene fragments

can be obtained by looking at the six open reading frames and searching through a protein

database. Many tools such as MG-RAST[34] and FragGeneScan[42] are available that can

assist in metagenome sequence analyses that do not require an assembly.

However, despite the options for metagenome sequence analysis without a reference as-

sembly, there are many limitations. First, because a sequence obtained from next-generation

sequencers has a specific maximum read length, only gene fragments can be obtained rather

than entire genes. This limits how effective metagenome analysis tools can be at analyzing

a sample since it may only be possible to find a match to a protein domain rather than

a protein. This lowers the likelihood that a function can be assigned to the sequence. By

assembling, one has the ability to pull out longer contigs and possibly large portions of entire

genomes.

6



1.5 Problem Statement

Though current sequencing technologies has enabled deep sampling of highly diverse micro-

bial ecosystems, algorithmic methods for analyzing these datasets are still in their infancy.

Assembling less diverse metagenomics datasets is possible, especially with the computing

resources available at large sequencing centers and supercomputing facilities. However, high-

throughput sequencing technologies is now inexpensive enough that labs with modest budgets

are able to sequence environmental samples of interest. Thus, a clear gap exists between

the ability to sequence complex microbial populations and the ability to analyze these large

datasets. Though the running time of sequence assembly is a concern, the primary bottleneck

that needs to be addressed is memory usage.

Another concern with metagenome sequence assembly is accuracy. Since an estimated

99% of microbes cannot be cultured in a laboratory[48], it is unlikely that reference genomes

can be obtained for the majority of microbes in an environmental sample. Since many

assembly validation techniques require the use of a reference genome, new techniques must

be developed to produce accurate assemblies. Prior to assembly, one of the most important

procedures in an assembly pipeline is read error correction. However, many techniques rely on

being able to obtain the coverage of the sequenced genome. Metagenome assembly pipelines

need methods for improving the accuracy of assemblies without the ability to compare to a

reference.

1.6 Significance of Research

In this dissertation, we will establish a set of approaches that enable the assembly of ex-

tremely diverse metagenomic samples. Currently, this is not possible in high-performance
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computing facilities, let alone on commodity machines. By making metagenomic assembly

easier to do on the cloud and in supercomputing facilities, we can enable researchers in any

lab to obtain a metagenomic assembly. By attempting to tackle both the high-memory and

compute requirements of assembly, this research will reduce the bottlenecks that currently

plague assembly pipelines.

Solving the metagenome sequence assembly problem has far reaching consequences in

basic and applied sciences. As mentioned previously, few microbes can be cultured in the

laboratory, so sequencing environmental populations is one of the few ways to better under-

stand individual microbial species and populations. By deep and broad sampling throughout

the Earth, it is likely that novel genes will be discovered that can be used to produce better

biofuels and lead to new insights into drug development. By improving soil assemblies, it is

possible to better understand how soil and its microbial ecosystem sequesters carbon, fixates

nitrogen, and how it provides a fertile location for crops to grow. Though studies on the

human gut microbiome are in progress, better assemblies will lead to more insight into the

interactions between microbial populations and human cells within the human ecosystem.

Given that so much diversity has not been sampled, new approaches that make the analysis

of metagenomics datasets will lead to more discoveries.

1.7 Outline of Dissertation

To aid in the assembly of metagenomes, we use a Bloom filter (or Counting Bloom Filter,

where appropriate) to store sequence data in order to accurately and efficiently pre-process

next-generation sequencing datasets, which will improve the overall quality of assembled

metagenomes. In the first approach, we will show how metagenome partitioning can greatly
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reduce the amount of memory needed to assemble datasets. We evaluate this approach on an

E. coli dataset as well as a small soil metagenome. For the second part, we utilize a read error

correction algorithm that uses k-mer coverage information to discern between erroneous and

true k-mers. We evaluate the error correction procedure on another E. coli dataset and a

mock human gut microbiome dataset. By combining these approaches together, it is possible

to assemble much larger datasets than with current methods.
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Chapter 2

Review of Relevant Literature

DNA sequence assembly is a rapidly changing field. Early algorithms were designed to

handle longer reads of higher quality, but next-generation sequencing platforms have forced

Bioinformaticians to rethink previous approaches. In this chapter, we present several existing

works on sequence assembly, particularly for metagenomes. In addition, we introduce pre-

assembly filtering and error correction methods that are relevant to the framework of this

dissertation. However, because a focus of this research is on scaling assembly, we begin our

discussion with a review of data structures that are useful in assembly pipelines.

2.1 Data Structures in Assembly

To scale assembly the choice of data structures is critical as an assembly tool must be able to

handle processing and storing billions of reads quickly. In this section, we will discuss many

of the data structures used for k-mer storage in pre-assembly tools as well as those used for

storing assembly graphs.

2.1.1 Hash Tables

Hash-style data structures are likely the most popular choice for storing assembly graphs,

particularly in de Bruijn graph-based assemblers. Hash tables are one of the most important

10



data structures in Computer Science, and many variants exist. A hash table maps a key to

a value. For k-mer based assemblers, generally the k-mer is the hash and the value is the

number of occurrences for that k-mer in the dataset. Once k-mers are stored, it is possible to

query for the existence of neighboring k-mers to traverse the de Bruijn graph of the dataset

and assemble contigs.

For a representative example of how a hash table is used in an assembler, we will discuss

how ABySS[47] implements a distributed de Bruijn graph. ABySS uses Google’s SparseHash

implementation of a hash map. This is advantageous because within the range of k used in

assembly (generally greater than 20), the number of possible k-mers is much larger than the

actual number in a dataset. Thus, using SparseHash keeps the memory overhead relatively

low. For each k-mer, 8 bits are used to represent the up to 8 possible edges that a k-mer

can have. There are eight possible neighbors because a k-mer could have four k-mers whose

(k−1)-mer prefix matches the (k−1)-mer suffix, and vice versa. If the corresponding neighbor

exists, then the bit is flipped. This is advantageous to querying the k-mer itself because if

the bin where the neighbor k-mer is located is on another node, it will be considerably slower

than simply checking the status of a bit.

To distribute the assembly graph across multiple nodes, ABySS uses a simple scheme.

Each k-mer (with its reverse complement) is converted to a number, say i. If there are n hash

tables, then the k-mer is located at node i%n. Though this is simple to implement, there are

some drawbacks depending on the type of high-performance computing environment where

the assembler is being run. Due to the nature of de Bruijn graphs, the neighboring k-mers

for a particular k-mer are probably on different nodes. The 8 bit scheme discussed earlier

partially remedies this by keeping the check for edges local to the node of a given k-mer, but

if a neighboring k-mer does indeed exist, then the node on which that k-mer exists must be
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queried. Thus, components in the assembly graph are likely to be located on several different

nodes if many nodes are used by the assembler. In the Genome Assembler section, we will

discuss in greater detail how ABySS implements a k-mer graph.

Hash tables offer a number of advantages over other data structures concerning scaling

behavior. As we discussed previously with ABySS, it is possible to easily distribute hash

tables on multiple nodes. Another advantage is that while query and insertion times are not

guaranteed to be constant time given a sub-par hash function, for practical purposes hash

tables are generally very fast. However, handling collisions can add to the memory footprint.

2.1.2 Trie

Though a regular trie data structure is rarely used in sequence assemblers, special cases

such as suffix trees, suffix arrays, and so on have been used in assemblers in the past[8, 18].

Trie-style data structures offer a number of interesting properties and are useful for string

processing applications in Bioinformatics. A trie, or prefix tree, is a tree where the root

is an empty string and words build from it. The first character in each word of the data

structure is a child node of the root. Thus, if two words share the same prefix, they share a

set of nodes that contains that prefix. Several variants of tries exist that offer a number of

advantages over a basic trie.

2.1.2.1 Suffix Tree

An important building block in examining trie-style data structures in assemblers is the

suffix tree. A suffix tree is a trie where each possible suffix of a tree is added to a trie. In

1973, the first linear-time construction of a suffix tree enabled faster string searching at the

expense of a string indexing step[53]. However, one drawback that keeps classic suffix trees
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from being useful in Bioinformatics is that they are more memory intensive than the leading

approaches.

2.1.2.2 Suffix Array

Though suffix arrays[31] have not been extensively used for de Bruijn graph-based assembly

(though exceptions such as the Edena[18] assembler exist), they have been useful for a variety

of pre-assembly filtering and sequence analysis purposes. Suffix arrays use up to three to

five times less memory than suffix trees[53]. A related data structure, the FM-index[16],

has recently been used as a way to store string assembly graphs, which we will elaborate on

briefly.

To construct a suffix array, first one must generate all of the suffixes for a string (or a set

of strings). These suffixes are then sorted, and the starting position of the suffix is stored as

the array element where the array index is the sorted order for that suffix. The result is a

single array with the number of elements equal to the size of the string. However, this alone

does not enable fast lookup since a binary search would be required to determine whether

a pattern exists in the original string. Adding an additional data structure such as an LCP

(longest common prefix) array improves the speed of searching.

Suffix arrays enable many rapid string operations that are amenable for Bioinformatics

algorithms. One application for this data structure is for k-mer counting. Jellyfish[32] and

tallymer[50] are two examples of k-mer counting software packages that utilize some kind

of suffix array. Though suffix arrays improve the speed of searching for a pattern within a

dataset, they can significantly add to the memory footprint. Tallymer tackles this problem

by giving the user an option to split the suffix array into several different partitions. If

the array is divided into two partitions, then only half is put into memory at a time. If
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the entire suffix array cannot fit into the amount of memory given, this can significantly

improve the running time of the data structure construction even if multiple passes through

the dataset are required. Jellyfish handles the problem differently; it uses a specialized,

memory-efficient hash table and takes advantage of compare-and-swap in modern CPUs to

enable parallelization. Combining these approaches allow jellyfish to be much more memory

efficient than tallymer and other k-mer counters.

2.1.2.3 FM-Index

Short read mappers such as Bowtie[26] and BWA[27] used the Burrows-Wheeler transform

(BWT)[7] to reduce the memory requirements for storing the reference genome on which the

short reads are mapped. However, the use of the BWT was not used in assembly algorithms

until a method for storing a string graph with an FM-index was discovered[16]. An FM-

index, which we will describe in greater detail below, uses the BWT as a component of the

FM-index. This approach led to the creation of the String Graph Assembler (SGA)[46].

FM-indices offer a number of advantages compared to other data structures. However,

while FM-indices enable fast lookup after graph construction, constructing the data structure

from a set of reads is relatively time consuming. Another issue is that the data structure

scales with the number of reads inserted rather than k-mers. With effective compression, FM-

indices can compare favorably to other implementations, but for highly diverse metagenomics

datasets this is not the case.

The first step of an FM-index is to take the Burrows-Wheeler Transform of the set of

reads. The transform takes every cyclic permutation of a string and then sorts them. Since

each read is a separate string, a unique character can be used between each read to enable

fast lookup by read ID. One important feature of the Burrows-Wheeler Transform is that it
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can compress the reads due to the way the strings are sorted. In addition to this transform,

the FM-index requires two additional data structures: a counts table and an occurrences

table. The counts table contains a simple lookup between a character (which could only

be the four letters used to represent nucleotides or an expanded alphabet) and the number

of times it appears in the dataset along with any characters lexicographically smaller. The

occurrences table provides a lookup for the number of times a character occurs in a prefix

of the transformed text. Using these three data structures together, it is possible to enable

fast queries of the text.

When reads are added to an FM-index, it is possible to determine the reads that overlap

another using the algorithm described in [45]. However, this algorithm returns all reads that

overlap rather than an irreducible set, which they also include. One drawback to the paper

(which is explicitly discussed) is that it does not handle mismatches, which is necessary for

real sequencing data. In another paper, the same authors outline the algorithm used in SGA

that enables the assembler to handle inexact overlaps[46].

2.2 Assemblers

Currently, most mainstream assemblers are tailored specifically for genome assembly. Some

assemblers, such as SOAPdenovo[41] include an option on the command line to denote a

metagenome assembly. In other cases, 3rd party add-ons are built around the original assem-

bler to handle non-genomics datasets (e.g. MetaVelvet[38]). Finally, many other assemblers

are built specifically for metagenome assembly. We will discuss many of the approaches and

current metagenome sequencing projects that have occurred to date.
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2.2.1 Genome Assembly

EULER[40] was the first assembler that used a de Bruijn graph and was published in 2001, a

few years before the first 2nd generation sequencers were released. Thus, EULER made use

of the long reads produced by Sanger, and it was built primarily to resolve repeats rather

than improve memory efficiency. It also made use of k-mer abundance based error correction.

Once sequencing platforms from Solexa (now Illumina) and 454 were released, many

new assemblers emerged. Velvet[55] was released in 2008 and is still maintained and used

in many assembly pipelines today. In addition to being a de Bruijn graph assembler, it

includes procedures for removing tips (i.e. erroneous, hanging ends in the read) and bubbles

(i.e. cycles in the graph caused by errors or heterozygosity). ABySS[47] was released shortly

after and included many similar error correction methods. What distinguished ABySS was its

use of a distributed hash table to enable high-memory assembly of large genomes. However,

because k-mers that are part of the same component frequently end up on different nodes,

the assembler can run into performance issues due to the speed of the network.

A recent assembler/variant caller, Cortex[21], introduced the concept of colored de Bruijn

graphs. Rather than loading reads from different samples into the same bins in a hash table,

Cortex assigns a different color to each sample so that variants such as SNPs, indels, and

structural variation can be called from the assembly phase. Cortex was primarily designed

for bacterial variant calling and for the human genome project to enable the ability to call

variants in 1000s of different human genomes.
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2.2.2 Metagenome Assemblers

Assemblers created specifically for metagenomes have not been available until recently. One

reason for this is that sequencing platforms have only now been able to produce the deep

sampling required to probe highly diverse samples. Another reason is that they are inher-

ently more challenging than genome assemblers: while many genome assemblers can take a

more or less uniform sampling for granted, metagenomes contain varying abundance levels.

Furthermore, with the sequencing of a single species, while heterozygosity is a challenging

problem when determining whether a SNP is real or a sequencing error, the concept of a

single species is more fuzzy for a population of microbes. Thus, metagenome assemblers are

still in their infancy and there is much room for progress in the field.

2.2.2.1 MetaVelvet

One such assembler is called MetaVelvet[38]. MetaVelvet uses much of Velvet’s code base

(and thus is a de Bruijn graph based assembler) but is tailored to handle the uneven coverage

level found in most metagenomes. One key feature behind MetaVelvet is that it does a

type of partitioning to separate different microbial species based on graph connectivity and

coverage level. Whereas Velvet truncates sequence when the coverage level in the graph

differs largely from the expected coverage, MetaVelvet uses a mixture model to approximate

different coverage levels and separates them in order to prevent chimeric contigs. This is

advantageous compared to neglecting to incorporate coverage levels because species that

share sequences could end up being assembled together, leading to a misassembly. While

MetaVelvet was shown to produce better results (measured by N50 length and other metrics)

compared to other methods, it is very memory intensive, which makes it impractical for large

datasets.
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2.2.2.2 Meta-IDBA

Another assembler created specifically for metagenomes is called Meta-IDBA[39]. Meta-

IDBA, too, uses a de Bruijn graph for assembly. The authors make a distinction between

cr-branches, which are branches in the graph that result from similar genes, and sp-branches,

which are branches that result from variation, such as SNPs and indels. These types of

branches do not occur as often when assembling a single genome, so Meta-IDBA is designed

to detect and handle these cases. However, the method to resolving these issues are similar

to genome assemblers, except when encountering a branch (i.e. a bubble or tip as described

in Velvet), both paths are generally kept while a single genome assembler would generally

discard one branch as an error or treat the bubble as being caused by heterozygosity.

2.2.2.3 Ray Meta

In late 2012, a metagenome assembler was published called Ray Meta[5], which specializes in

distributed assembly of metagenomes. It is based off a genome assembler called Ray[4], which

also focuses on the scalability of genome assembly through a better distributed computing

model. Ray Meta is a de Bruijn graph based assembler, but rather than partitioning the

graph based on coverage levels, component finding, or graph simplification, it applies a

“heuristic-guided graph traversal” that result in good assemblies.

To demonstrate the effectiveness of the approach, the authors simulated two metagenomes

containing 100 and 1,000 genomes where each genome had a different coverage level. They

also assembled and analyzed a dataset of 124 gut microbiomes. These results were compared

with the MetaVelvet assembler with the Ray Meta assembler showing superior results.

Ray Meta shows that distributing a de Bruijn graph generated from metagenomic data

is effective in scaling. However, it is not clear how the approach will scale to highly diverse
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datasets like soil since a simulated dataset of 1,000 genomes required 1,024 cores with 1.5GB

of memory per core. A soil sample could potentially contain 1,000 times more genomes and

the graph could be more complex. Nonetheless, the approach is well-demonstrated and will

likely be improved upon to handle such scale.

2.3 Recent Works in Metagenomics

Though some types of metagenomics, particularly those that used 16S ribosomal sequencing,

have been around for a longer period of time, it was not until recently that shotgun sequenc-

ing of environmental samples has become popular. A seminal work in the field involved

shotgun sequencing an Acid Mine Drainage sample[51]. Due to the high abundance and

low heterozygosity of only a handful of the species in the sample, it was possible to almost

completely construct two genomes (Leptospirillum group II and Ferroplasma type II) and

partially reconstruct three additional genomes.

Another important work in metagenomics was led by Craig Venter where they sequenced

a water sample from the Sargasso Sea[52]. They obtained approximately a gigabase of data,

and attempted an assembly using the Celera assembler[36]. However, they experienced a

now-commonly encountered problem where reads from highly abundant species would be

flagged as repetitive regions in the assembler, which would result in a poor assembly. To

resolve this, they had to incorporate some manual steps to resolve the issue. Ultimately,

1,800 different species were found where 148 were newly-discovered. They also discovered

more than a million genes, suggesting that a great deal of novelty is yet to be discovered

using metagenomics. As this paper covered a small number of samples in the Sargasso

Sea, different communities are likely to live in other waters and depth levels. Furthermore,
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because Sanger sequencing was used, there is likely even more to be discovered in the water

sample taken.

Both of the previously mentioned works used Sanger sequencing to obtain their data.

More recently, a number of works have been published using Illumina technology. The Meta-

HIT Consortium published the initial results of their international human gut microbiome

project[41]. They sequenced the microbes in 124 different faecal samples with the goal of

obtaining a gene catalog. Overall, approximately 576Gb of sequence data was obtained.

Because of the short reads in Illumina platforms, they used the SOAPdenovo assembler to

obtain contigs before cataloging the genes found. Initially, the dataset for each sample was

assembled separately, and then any of the reads leftover were pooled together and assembled.

Prior to any assembly, the reads were filtered to remove any low abundance reads that would

be unlikely to be part of any assembly. Resulting from the assemblies, they found over three

million genes in total.

Other metagenomics efforts that have required assembly include the cow rumen[19] and

permafrost soil[30]. To assemble the cow rumen metagenome dataset, a filtering program

developed at the Joint Genome Institute was used to remove well-known sequencing artifacts.

Furthermore, low abundance reads were removed since their coverage level would not meet

the threshold required by most assemblers. The permafrost soil assembly was filtered and

assembled in a similar manner as it was also a project by the Joint Genome Institute. In 2012,

Iverson et al. reported that they were able to close the assembly of a highly predominant

microbial species found in the Puget Sound[22]. The genome was from marine group II

Euryarchaeota, which has not yet been cultured. They used several custom filtering steps

prior to assembly, primarily for dealing with SOLiD reads. These procedures do simple read

trimming using quality scores, read error correction, and PCR amplification bias removal.
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Frequently, previously published metagenome datasets are reanalyzed to reproduce the

results of a paper or look for new insights. For example, Wu et al. developed a method to look

for previously unknown branches in the evolutionary tree[54]. Using their approach, they

identified homologous genes that had not been characterized from the Sargasso Sea dataset.

They concluded that these may be from viruses, ancient paralogs, or even genes belonging to

organisms distantly unrelated to any that have been discovered and characterized. However,

because these genes nor the organism or virus to which they belong have not been studied

in greater detail, it is impossible to determine with certainty how the homologs should be

classified.

2.4 Sequence Filtering

Due to the large size of datasets, it is becoming more common to filter out a large number of

reads to make it feasible to assemble or do some type of high-memory analysis of the data.

However, several different methods exist that can pose problems for downstream analyses.

We will introduce a couple of these methods and discuss their advantages and shortcomings.

2.4.1 Abundance Filtering

Most commonly for metagenomic datasets, reads are filtered by using k-mer coverage as a

way of removing erroneous k-mers and reads[41, 19]. In some cases, reads that fall below

a certain level of k-mer coverage as one walks from the 5’ end of the read to the 3’ read is

trimmed at a certain threshold. If all of the k-mers in a read fall below the threshold, then

the entire read is discarded. This method has been effectively used to lower the memory

requirements for assemblies, specifically for metagenomic datasets. However, the biggest
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shortcoming of this approach is that low-abundance novelty will be discarded since coverage

levels are uneven.

2.4.2 Digital Normalization

A recently developed method, digital normalization, looks at the median k-mer coverage for

a read[6]. If the read falls below a specific threshold, then the read is kept and discarded

otherwise. While the algorithm is simple and easy to implement, it has the effect of evening

out the level of coverage in a dataset. This is particularly attractive for metagenomics

datasets because most assemblers expect an even level of coverage for parameter estimation.

The digital normalization algorithm relies on the fact that the coverage level of the k-

mers within a read are similar. By using a Count-Min Sketch[11], a data structure that

enables memory-efficient counting with a false positive rate and possible overestimation, it is

possible to process large amounts of sequence data with little memory footprint. By treating

a sequence read dataset as a stream, the digital normalization algorithm can be considered

an online algorithm as it only requires one pass through a dataset. Though the digital

normalization paper used genome and mRNAseq datasets, the results clearly showed that

the “correct” k-mers were retained while a large portion of erroneous k-mers are thrown out.

2.5 Graph Alignment

One recent advance in gene targeted assembly combines A* graph search with aligning profile

hidden Markov models (profile HMM) with de Bruijn graphs in a software package called

Xander(Jordan Fish, personal communication). In this approach, the profile HMMs are

treated as the query sequence and a set of sequence reads are considered the database. The
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sequence reads are initially loaded into a Bloom filter with a low false positive rate. To

assemble a gene, one searches the corresponding profile HMM against the de Bruijn graph

found in the Bloom filter. More accurately, the search is done by combining the elements

of both k-mers and the states of a hidden Markov model. Thus, a vertex has a k-mer, read

position, and state (e.g. insertion, match, deletion). The edges connecting these vertices

are determined by the probabilities of the HMM. Since the database of sequence reads are

in nucleotide-space, the profile HMM must be transformed to nucleotide-space in order to

find seeds. The graph is then walked by 3 bases at a time to ensure that valid codons are

being searched. Once seeds are found, an A* graph search strategy is applied by using the

optimistic heuristic that the remaining nodes in the path to the goal (i.e. the end of the

alignment) will be perfect matches. Because this is an optimistic heuristic, it is admissible

and thus the graph search strategy will find a shortest path/optimal alignment.

The biggest advantage to the approach in Xander is that it gives biologists a method

for finding genes of interest in metagenomic samples. For many reasons, especially uneven

coverage and errors, a de novo metagenome assembly is unlikely to assemble all of a biologist’s

genes of interest even if they exist in the dataset. However, using a profile HMM introduces

biases due to the fact that profile HMMs are generally built using genes that have already

been discovered. A homologous gene in a metagenomic sample (or any sample for that

matter) could be part of an under-sampled outgroup phylogenetically or the gene may have

undergone rapid selection compared to other genes in the family. These biases would cause

some of the novelty in the original set of reads to be lost in favor of the biases of the profile

HMM. Another shortcoming to the approach is that the Bloom filter does not incorporate

coverage information. This makes it difficult to discern between a sequencing error and true

novelty. Incorporating this information could be a way to overcome some of the biases with
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using profile HMMs that were mentioned previously.

2.6 Error Correction

Given that errors in reads is one of the most challenging aspects to address in assembly,

many error correction algorithms have been developed in order to attempt to address these

challenges. While many error correction algorithms are implemented as separate packages

that can be incorporated into an assembly pipeline, many assemblers include their own error

correction procedures. In this section, we will focus on the error correction algorithms that

are most closely related to the error correction method that will be introduced in a later

chapter. While these algorithms are primarily developed for genomic reads, we will address

how they may be useful for metagenomic datasets as well.

2.6.1 Quake

One read error corrector for whole genome assembly that has been part of many assembly

pipelines for evaluation purposes such as GAGE[44] and the Assemblathon[13] is Quake[23].

The central idea behind Quake is that it incorporates base quality values into the k-mer

coverage distribution of the dataset in order to better discriminate between erroneous k-

mers and low coverage true k-mers. To determine the k-mer coverage distribution, all of the

k-mers must first be counted. However, the count for a k-mer is not simply incremented

each time it is discovered. Instead, for each base in the k-mer, the probability that the

base is correct based on the quality value is multiplied. Initially, Quake used a Hadoop-

style algorithm to quickly count the k-mers. However, after the Jellyfish[32] k-mer counting

software package was released they switched to using it by default. Quake uses a mixture
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model on the k-mer coverage distribution to predict whether or not a k-mer is erroneous.

For the true k-mers, a Gaussian distribution was used for coverage, and the zeta distribution

was used for copy number. For the error k-mer distribution, the gamma distribution was

used. In order to correct a read, each k-mer is determined to be either “trusted” or not.

The end goal is to correct the reads so that all of the k-mers are trusted. By looking at the

pattern of erroneous k-mers in a particular read, Quake localizes the errors and then uses

maximum likelihood to find the most probable set of trusted k-mers.

One of the biggest advantages to using Quake is that it converts a regular k-mer into

“q-mers” by incorporating base quality values to prevent low coverage real k-mers from

being falsely changed. However, as is, Quake would be ineffective in correcting metagenomic

datasets. The primary reason is that erroneous and real k-mers are much more difficult to

separate by using the k-mer coverage distribution in these datasets. Since the abundance

levels for species in environmental samples differ, it is unclear what the expected k-mer

coverage level will be. Furthermore, it seems unlikely that the mixture distribution used

in Quake would be effective for metagenomes, particularly the use of the Zeta function to

estimate copy number. In order to make the use of a Quake-style error correction algorithm,

one possibility would be to incorporate digital normalization to even out the coverage level.

2.6.2 Hammer

Not all error correction software packages use the k-mer coverage distribution to correct reads.

One such package, called Hammer[33], uses a Hamming (edit-distance) graph to attempt to

handle datasets with non-uniform coverage such as single-cell sequencing, mRNAseq, and

metagenomics.

In the first step of the error correction algorithm, Hammer finds the set of distinct k-mers
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in the reads. Then, it finds all of the components in the Hamming graph using a “spaced

seed” approach since comparing each pair of k-mers would be computationally intractable.

A union-find data structure is used to quickly determine which k-mers are part of the same

components. Next, each component is processed in order to attempt to find a consensus

k-mer. If the size of the component is 1, then the k-mer is either correct or it has too

many errors to connect within the edit-distance parameter that was set. In a manner similar

to Quake, Hammer weights the score of a k-mer using its quality value. If the size of the

component is greater than 1, then the highest occurring k-mer in the cluster is considered

to be the consensus.

Hammer was shown to perform better than other error correctors on a single-cell se-

quencing dataset, but it did not perform as well as Quake on a regular E. coli dataset. One

advantage to Hammer compared to other k-mer based approaches is that it is able to recon-

struct k-mers that are not present in the dataset. This is particularly useful for Hammer’s

intended purpose, single cell sequencing datasets. While approaches that use Hamming

graphs are useful, there are many drawbacks to consider. First, if one were to take into

account indels, the Hamming graph is likely not a suitable candidate approach because the

problem becomes more computationally prohibitive. A drawback to Hammer is that it as-

sumes that no more than one k-mer in a cluster is correct. This calls into question the use

of the software package on non-microbial genomes that are large and/or highly repetitive.

2.6.3 SEQuel

While most error correctors are generally employed in an assembly pipeline prior to assembly,

some correction methods are used to refine an assembly and thus are placed after the assembly

step in a pipeline. This is the idea behind SEQuel[43], which is a post-assembly error
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correction tool specifically tailored for single and multi-cell sequencing datasets. As with

Hammer, SEQuel specializes in datasets with non-uniform coverage.

SEQuel goes through each contig and finds the reads that have a unique mapping to that

contig. From here, SEQuel constructs what they coin a positional de Bruijn graph. This is

similar to a de Bruijn graph except that it also accounts for the k-mer’s position within a

contig as well, so the same k-mer could occur in different vertices in the graph. Along with

the k-mer sequence and position is the count that is obtained from the original mapping

of the read to the contig. Since the k-mers are anchored to the contig, the graph is much

simpler, which makes refining the assembly easier. Given the simplified graph, common

errors such as bubbles can be corrected, and indeed SEQuel is shown to correct a large

number of substitution and indel errors in the final assembly.

One of the biggest shortcomings to SEQuel is that it relies on a read mapper. Un-

fortunately, this is not easy to overcome but it limits the capabilities of the algorithm to

the sensitivity and specificity of the mapper and the parameters chosen for that mapper.

Another issue is that it is unclear how well the algorithm would work with more complex

genomes because the paper only used microbial genomes as examples. However, what was

perhaps most relevant to this dissertation is the use of a positional de Bruijn graph, which

can place a k-mer at separate positions in a read and can simplify the overall structure of

the assembly graph.

2.6.4 Musket

A more recent addition to read error correction software packages is Musket[29]. Musket uses

many of the features from previously mentioned error correctors along with parallelization

support that make it highly effective in both accuracy and performance. There are two
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stages to the error corrector: k-mer counting and coverage cut-off analysis, and then the

actual error correction stage.

In the first stage, Musket uses a Bloom filter to eliminate as many distinct k-mers as

possible. Thus, only k-mers that have already been seen by the Bloom filter will make it into

the hash table. Using a Bloom filter produces false positives, but no non-distinct k-mers

will be lost during the process. To parallelize this process, a master-slave model is used

where k-mers are dissected from reads by master nodes, which then distribute the k-mers

to slave nodes. Each slave handles a different set of possible k-mers. Once the hash table

in each slave has been loaded with k-mers (after having distinct k-mers filtered out by the

Bloom filter), all other distinct k-mers are removed from the hash tables, and the result is

the k-mer abundance distribution of the dataset with all distinct k-mers removed. Finally,

Musket uses the k-mer abundance distribution to estimate the cut-off between erroneous and

trusted k-mers. Rather than using a mixed model as with Quake, Musket simply finds the

point with the lowest k-mer count between the peaks though this can be overridden by a

parameter.

In the second stage, Musket combines three different methods to achieve error correction.

First, it uses a “two-sided correction” that introduces the concept of trusted bases. A trusted

base is simply a base that is part of any trusted k-mer, which was determined from the

previous stage. Next, Musket attempts to replace the untrusted bases with ones that would

result in trusted k-mers. To speed up the process, only the end k-mers for an untrusted

base is used so that multiple combinations do not need to be tested. However, this approach

is too conservative when used on its own and only works when there is a single error in a

k-mer. To address this, Musket adds another step to their correction workflow that attempts

to correct untrusted k-mers next to trusted k-mers so that the k-mer has the highest count
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of any of the given alternatives. Musket has further steps to their workflow to quality check

the corrections made and make changes as needed.

Being one of the most recent error correctors published, Musket offers a combination of

features from other read error correction packages that give it good scaling characteristics as

well as accuracy. The use of a Bloom filter is an effective way to screen out distinct k-mers

that are likely to be erroneous. While some distinct k-mers make it through the first pass,

they are taken care of in the next stage. Another interesting component in Musket is using

the point of lowest density between the two peaks in the k-mer abundance distribution as

the error cut-off. Other error correctors such as Quake use more complicated mixed models,

but this simple approach seems to work just as well. While Musket is a viable option for

correcting sequence datasets for genomes, it has yet to be proven for more complicated

scenarios such as metagenomes. It is unlikely that the aforementioned cut-off method would

work when examining the k-mer spectra of a metagenomic dataset. Thus, further pre-error

correction filtering would be required to handle these situations.
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Chapter 3

Probabilistic de Bruijn Graphs

In this chapter, we introduce the idea of a probabilistic de Bruijn graph. This novel graph

representation utilizes a Bloom filter data structure for storing a k-mer assembly graph. We

start by describing useful properties of de Bruijn graphs, then we break down how a Bloom

filter can be used to store an assembly graph. We introduce an algorithm called partitioning

that finds graph components in an assembly graph and use it on an actual soil metagenome.

Next, we analyze the point at which the partitioning approach breaks down due to the

increase in the false positive rate.

3.1 Properties of de Bruijn Graphs

In graph theory, de Bruijn graphs[12] are a well-studied class of graphs due to their interesting

properties and application to computer networks. Recently, they have been shown to be

useful for analyzing DNA sequence datasets. In this section, we will introduce some basic

properties of de Bruijn graphs and also define a DNA de Bruijn graph and how they are

used as DNA sequence assembly graphs.

A (s, k)-de Bruijn graph is a graph where s different symbols are used to form words of

length k. If these words share a k− 1 overlap, they are considered to be adjacent. Though a

directed formulation is used in some literature, we will consider only simple de Bruijn graphs

where there are no self-loops or directed edges. In total, there are sk vertices in the graph

30



where each vertex can have up to 2s adjacent vertices. While most vertices indeed have 2s

neighbors, two special cases exist. For vertices that contain only the same symbol (e.g. 0000

in a binary de Bruijn graph with k = 4 and s = 2), there are 2s− 2 adjacent vertices since

we do not include the self-loop that would exist in a directed de Bruijn graph. Another case

is where a word contains an alternating sequence (e.g. 0101 in a binary de Bruijn graph

with k = 4 and s = 2). These words (i.e. k-mers) have 2s− 1 because the directed version

would contain parallel edges between that k-mer and another alternating sequence word.

One property of de Bruijn graphs that make them a topic of study in computer networking

theory is the short diameter length, k. The diameter is generally defined as the “longest

shortest” path. In other words, when comparing the shortest path between each possible

pair of vertices, the diameter is the longest of these paths.

We will now consider the application of de Bruijn graphs to DNA. In this case, we set

s = 4 and let our alphabet only allow the symbols a ∈ A,C,G, T . The word size, k, can

vary depending on the DNA sequence dataset of interest. Since DNA is double stranded, we

may want to consider the reverse complement of a k-mer as being the vertex itself. In this

case, rather than having a graph of 4k vertices, the graph will contain either 4k

2 vertices if k

is odd or 4k

2 − 4
k
2 if k is even. The difference is due to the presence of k-mers that are their

own reverse complement. They can be easily counted by dividing k by two and constructing

the reverse complement of that sequence and concatenating it to the original sequence. For

example, if k = 4, we can choose GT to be the first two letters of a sequence. The reverse

complement is AC, so the full sequence is GTAC, which is it’s own reverse complement.
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3.2 Probabilistic de Bruijn Graphs

To better scale assembly, we used a Bloom filter[3] data structure to store k-mers originat-

ing from next-generation sequencing datasets. A Bloom filter is a hash-style probabilistic

data structure used for storing sets. In the khmer software package, the Bloom filter is

implemented as multiple hash tables with each having a different hash function. To add an

element in the data structure, the corresponding bin in each hash table where the k-mer

maps is set to 1. To query whether a k-mer is present or not, one must find a 1 in each bin

for the k-mer. If there are one or more 0s, then the k-mer is definitely absent from the set.

However, if we find all 1s, then the k-mer might be present. Thus, while false positives are a

possibility, false negatives are not. It is possible to tune the false positive rate by optimizing

the number of hash tables used depending on the expected number of k-mers to be inserted

and the total amount of memory that one is willing to allocate for the Bloom filter.

To load the Bloom filter, we step through each read and break it up into k-mers and

insert each into the Bloom filter. After loading the set of reads, it is possible to traverse the

de Bruijn graph by checking for the presence of each of the up to eight possible neighbor

k-mers (that share a k − 1 overlap). Due to the one-sided error caused by using a Bloom

filter, we call this graph a probabilistic de Bruijn graph, an example of which is illustrated

in Figure 3.1. If we use an ancillary data structure that tags at least one k-mer to each read,

we can employ a graph traversal algorithm to discover which reads transitively connect to

one another by finding components in the de Bruijn graph.

It is important to note that the data structure used in khmer is not a Bloom filter by

definition. A classic Bloom filter consists of one hash table with k different hash functions.

Each hash function is assumed to be independent as this keeps the false positive rate as
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Read 1: ATGGACCA
Read 2:     ACCAGATG

ACCA

GACC CCAG

CAGA

AGAT

GATG

TGGA

ATGG

AGGA

GGAC

Figure 3.1: Example of a simple probabilistic de Bruijn graph with k=4, consisting of two
reads. Due to the false positive rate, an erroneous k-mer, AGGA, exists though it doesn’t
exist in the set of reads. For interpretation of the references to color in this and all other
figures, the reader is referred to the electronic version of this dissertation.

low as possible. In contrast, the data structure in khmer consists of k different hash tables

with a different hash function in each. Furthermore, the hash functions used in khmer are

not necessarily independent. Figure 3.2 demonstrates the difference between the two data

structures where two k-mers are inserted into a classical Bloom filter (right side) and the

Bloom filter in khmer (left side). Both require three different hash functions each (in this

particular example).

Currently, khmer uses prime numbers above the given minimum hash table size parameter

as the size for each hash table. The hash function is then the modulo of that prime with

the number a k-mer is converted to. By mapping A to 00, C to 01, G to 10 and T to 11,

we can convert the k-mer to its binary number form. If we count the reverse complement of

the k-mer as the same, we can obtain both numbers and choose whichever is smaller.

We will show two ways that the Bloom filter variant data structure used in khmer has
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Figure 3.2: Illustration between a classical Bloom filter (left side) and the Bloom filter in
the khmer software package (right side).

similar properties to the theoretical properties of a classical Bloom filter. First, we will

compare the simple analytic derivatives that show they are equivalent (assuming independent

hash functions) and show that the optimal number of hash tables is equivalent to the optimal

number of hash functions for a classical Bloom filter.

For the Bloom filter variant in khmer, we will begin by considering the probability that

a particular bin in one of the hash tables is occupied or not. First, let us assume that the

size of each hash table equivalent, and let m be the total amount of memory allocated to the

hash tables, k be the number of hash tables, h be the size of each hash table, and n be the

number of k-mers inserted into the data structure. Furthermore, we assume that each hash

function is independent of one another.

Examining one hash table, the probability that a bin is occupied after one k-mer is

inserted is
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1

h
. (3.1)

Thus, the probability that a bin is unoccupied after a single insertion is

(
1− 1

h

)
. (3.2)

Extending this to n insertions, we see that the probability that a bin is unoccupied after

n insertions is

(
1− 1

h

)n

. (3.3)

Thus, we find that the false positive rate for a single hash table to be

1−
(

1− 1

h

)n

. (3.4)

Since the data structure has k hash tables, we find that the false positive rate for the

given variables is

(
1−

(
1− 1

h

)n)k

. (3.5)
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Figure 3.3: Comparison between the optimal number of hash tables in khmer with the
theoretical optimal for Bloom filters.

Since (1− 1
h)n approximates to e

−n
h , we obtain

(
1− e

−n
h
)k

. (3.6)

The false positive rate for a classical Bloom filter is obtained in a similar manner, and

given the same variables is (1 − e−
kn
m )k[14]. Since m = kh, we see that the false positive

rate properties for both data structures are analytically the same.

While the analytic derivation matches, it makes the critical assumption that the Bloom
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Figure 3.4: Graph visualization of a circular chromosome at four different false positive rates
(1%, 5%, 10%, and 15%).

filter used in khmer has independent hash functions. Thus, it is important to compare the

theoretical properties with the actual properties in the software implementation. Given a

fixed amount of memory we allocate to our Bloom filter-variant, we can vary the number of

hash tables and determine the false positive rate for each. As Figure 3.3 shows, the false

positive rate given a various number of hash tables matches the theoretical number of hash

functions for a classical Bloom filter for the given dataset. Given that our variant matches

the theoretical properties of a classical Bloom filter, we will henceforth refer to the data

structure in khmer as a Bloom filter.
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3.3 Percolation of DNA de Bruijn graphs

Intuitively, it is clear that traversing a graph at a high enough false positive would result

in erroneous k-mers connecting together in such a way that false paths could connect com-

ponents in the graph. We visualized this effect by inserting a randomly generated 1,000bp

circular chromosome into a Bloom filter with four different false positives. By starting at

the first k-mer and then exploring the graph using the Bloom filter, we can see the effects

of false positives as the false positive rate grows larger (Figure 3.4). Figure 3.5 shows as

the false positive rate increases linearly, the average number of clusters appears to rise non-

linearly and approaches a vertical asymptote. As we approach this asymptote, it becomes

computationally intractable to calculate average cluster sizes for large k because the number

of possible k-mers is so large and false positives erroneously connect clusters together.

The problem of determining when clusters begin to connect together has a strong theo-

retical framework called percolation theory. In graphs, the percolation threshold is the point

at which a unique, giant cluster exists. In infinite graphs, this cluster is infinitely-sized.

For finite graphs such as de Bruijn graphs, the giant cluster is of a size proportional to the

number of vertices in the graph, whereas below the percolation threshold the largest clusters

are of size proportional to the logarithm of the number of vertices. For a particular graph or

lattice, there are actually two percolation problems: site and bond. In site percolation, the

vertices are randomly “on” with a probability p. If an edge is shared between two vertices

that are “on,” then they are considered to be part of the same cluster. In bond percolation,

the edges are randomly “on” with probability p.

The most well-studied lattice for percolation analysis is the 2D lattice (Figure 3.6), which

consists of an infinite number of vertices in a grid layout. Thus, each vertex has an adjacent
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Figure 3.5: Average cluster size versus false positive rate. The average cluster appears to
approach a vertical asymptote.
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Figure 3.6: A 2D Lattice.

vertex above, below, to the left, and to the right. Though analytic solutions have been

attempted for both the site percolation threshold and the bond percolation threshold, only

the bond percolation threshold has been proven to be 0.5[24]. Through simulation, the site

percolation threshold for 2D lattices has been found to be around .59[15]. Simulating either

the site or bond percolation threshold for 2D lattices is considerably easier than DNA de

Bruijn graphs because of the structures between both graphs. An effective way to find the

percolation threshold for 2D lattices is to create a large, finite-sized grid and find at what p

there exists a path from the left border to the right border. This calculation is made easier

by using a union-find data structure to determine whether two vertices are part of the same

component. However, de Bruijn graphs do not appear to have natural boundaries that can

be easily tested. In order to test the DNA de Bruijn site percolation threshold, a different

type of simulation must be used.
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The site percolation threshold can be estimated by examining the cluster size distribution

as vertices are randomly flipped on. As p increases, the distribution is fitted using both

linear and quadratic regression. The percolation threshold is found by finding the point

where quadratic regression fits better than a linear one due to the appearance of the giant

component[49]. We calculate this by using the F-statistic

F =
RSS1 −RSS2

q2 − q1
× n− q2

RSS2

where RSSi is the residual sum of squares for a model i, qi is the number of parameters for

model i, and n is the number of simulations run for a particular probability. The percolation

threshold, pc, is found by finding the second local maxima. In order to account for finite

sampling error, we employ the threshold binning method[1]. Using this technique, we found

that the percolation threshold for DNA de Bruijn graphs is approximately 0.183.

3.4 Effect of False Positives on Long-Range Graph Con-

nectivity

Though the percolation threshold results suggest that components in the graph will not fuse

together below a specific percolation threshold, we wanted to explore how false positives affect

long-range graph structure. To do this, we examined how the diameter, or “longest shortest

path” in the graph changes as the false positive rate increases. Because we wanted to find

when long-range connections occur beyond the percolation threshold, it is computationally

difficult to use a large k. To remedy this, we simulated 50bp circular chromosomes at k = 8
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Figure 3.7: The diameter (i.e. longest shortest path) decreases abruptly after the percolation
threshold, suggesting long-range connections within the graph structure.

(i.e. 58bp reads with the last 8bp equivalent to the first 8) and then calculated the shortest

path between each pair of true k-mers with the longest of these being the diameter. The

experiment was repeated 500 times for each false positive rate. From these experiments, we

conclude that long-range false connections do not occur until at or beyond the percolation

threshold (Figure 3.7).
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3.5 Partitioning a Metagenomic Dataset

Using the probabilistic de Bruijn graph, it is possible to separate the graph into components

that are likely to assemble together, which is called read partitioning. Using a probabilistic de

Bruijn graph, we are able to partition the reads with far less memory than with exact (i.e.

non-probabilistic data structures) approaches as long as we remain below the percolation

threshold.

The partitioning algorithm works as follows. A set of reads is inserted into a Bloom filter.

When each read is inserted, at least one k-mer is tagged in a C++ STL map so that the k-

mer is mapped to a read ID. The next step is to perform a local traversal of the probabilistic

de Bruijn graph based on the distance between tagged k-mers in the reads. Tagging few

k-mers requires less memory, but more computation to traverse through a larger portion of

the graph. However, doing a local traversal only captures the reads that share k-mers with

a particular read. To determine which reads belong together in the same graph component,

a merging step occurs where subsets are merged together. Finally, these separate sets of

reads (i.e. partitions), can be assembled separately on different nodes to reduce memory

requirements.

One concern with the partitioning algorithm is how it performs as the false positive rate

increases. Though we determined a specific percolation threshold, this only applies when

vertices are randomly turned on and off. However, this clearly does not apply with genomic

DNA since large chromosomes will consist of large components with many k-mers. If two

chromosomes share a single k-mer, they will be part of the same graph component. This

may not present a problem when this happens infrequently, but if the false positive rate is

high enough, erroneous connections could occur in the graph if false paths are introduced
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Table 3.1: Partitioning results on a soil metagenome at k=31.

False positive rate Total memory use (improvement) Largest partition size in reads
1% 1.75GB (18.8x) 344,426
5% 1.20GB (27.5x) 344,426
10% 0.96GB (34.37x) 344,426
15% 0.83GB (39.75x) 344,426

between components. To test whether or not this occurs, we randomly generated 1,000

DNA sequences 1,000 base pairs long. Varying the false positive rate with k=31, we used

the partitioning algorithm to determine the resulting number of partitions. Though the time

to partition increases in a similar fashion to the expected average cluster size, the number

of partitions does not change (Figure 3.8).

Using a small soil metagenomic dataset, we demonstrated the memory efficiency and

utility of the partitioning algorithm in the khmer software package. To do this, we utilized

a small script called memusg (available at https://gist.github.com/netj/526585) that

checked the memory usage every 0.1 seconds. With all of the partitioning and assembly

steps added to an sh script, the memusg script reported the highest memory measurement.

Assembling the entire dataset without partitioning requires approximately 33 GB of RAM,

but partitioning at a 15% false positive rate requires almost 40 times less memory. The

memory requirements for partitioning and assembly are roughly linear and match the per k

estimates (Table 3.1).

3.6 Sequencing Errors Outnumber False Positives

No sequencing platform produces error-free reads, and we explored how the number of er-

roneous k-mers resulting from sequencing errors compared to the erroneous k-mers that

resulted from the false positives in a Bloom filter. We used two different datasets, the E.
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Figure 3.8: After partitioning a simulated dataset at increasing false positive rates up to
15%, the number of partitions found does not change. Closer to the percolation threshold,
the partitioning process becomes more difficult computationally.
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Table 3.2: Effects of loading E. coli data at different false positive rates

Graph Total k-mers False connected k-mers % Real Deg > 2 Mem (bytes)

E. coli at 0% 4,530,123 0 100 50,605 2.1× 109

E. coli at 1% 4,814,050 283,927 94.1 313,844 5.4× 106

E. coli at 5% 6,349,301 1,819,178 71.3 1,339,102 3.5× 106

E. coli at 15% 31,109,523 26,579,400 14.6 10,522,482 2.2× 106

Reads at 0% 45,566,033 41,036,029 9.9 7,699,309 2.1× 109

Reads at 1% 48,182,271 43,652,265 9.4 31,600,208 5.4× 107

Reads at 5% 62,019,545 57,489,537 7.3 42,642,203 3.6× 107

Reads at 15% 231,687,063 227,157,037 1.9 113,489,902 2.3× 107

coli genome as well as a set of Illumina GA-II reads that were obtained from sequencing

the same strain of E. coli. We loaded both the reads and the genome into separate “exact”

Bloom filters with K=17. It is exact in the sense that there is a bin for each possible 17-

mer, so no collisions are possible. We then loaded each of the datasets into Bloom filters

with 3 different false positive rates (1%, 5%, and 15%). As Table 3.2 shows, even with no

false positives, the number of erroneous k-mers is almost 10x larger than the number of real

k-mers. Inserting the E. coli genome into a Bloom filter with a 1% false positive rate yields

approximately 5.9% of the k-mers as being false positives. However, it should be noted that

as the false positive rate approaches the percolation threshold, the percentage of real k-mers

falls dramatically. Another important comparison is between the number of k-mers with a

degree greater than 2. This metric is used as a proxy for graph complexity. When reads

are loaded into an exact Bloom filter, there are 7.7 million k-mers with 3 or more degrees.

On the other hand, storing the genome with a 1% false positive rate yields only 313,844

false k-mers, implying that for low false positive rates, the erroneous k-mers generated from

sequencing errors yields a comparatively more complex graph than false positive k-mers.
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3.7 Memory Efficiency vs. Exact Data Structures

Assuming that the percolation threshold for DNA de Bruijn graphs is .183, we can compress

an assembly graph down to approximately 4 bits per k-mer, independent of the size of k.

Given a set of n total possible items and x items to be inserted, it is possible to represent

the set in log2
(n
x

)
total bits. This problem has been considered in the context of DNA as-

sembly graphs previously[10]. While many efforts have been undertaken to create a succinct

representation of these types of datasets that match the lossless informatic-theoretic lower

bound, none have solved this problem in the general case. Regardless, a probabilistic data

structure such as a Bloom filter or Counting Bloom Filter can push below this lower bound.

Using the equation above, we compared the Bloom filters with four different false positive

rates (1%, 5%, 10%, and 15%) with the information-theoretic lossless lower bound. Figure

3.9 shows that for sparsely populated k-mer bitmaps (typical of any sequencing dataset with

a reasonably high k), the Bloom filters have better memory efficiency than any exact data

structure. It is also important to note that the lossless lower bound is dependent on the size

of k chosen: when a larger k value is chosen, there is a larger number of possible k-mers

that could be part of the set. However, a Bloom filter is independent of k, but begins to

lose its advantage over lossless data structures as the set becomes more dense. Intuitively,

this makes sense because when a bitmap is used to represent a set, it is impossible to further

compress when half of the bits are randomly occupied.

3.8 K-mer Counting with Counting Bloom Filters

One limitation to Bloom filters is that they can only provide the likely presence or certain

absence of a particular item in a set. Since many genomics analyses use coverage information
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Figure 3.9: Comparison between a Bloom filter at four different false positives with the
information-theoretic lower bound for four values of k.
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to help find erroneous, repetitive, or other types of sequence, it is sometimes necessary to

use a data structure that can store k-mer counts rather than simply presence or absence.

A natural extension of the Bloom filter is to increase the bin size from 1 bit to the largest

count one would like to store (e.g. 8 bits would allow one to count from 0 to 255). Then, to

obtain the count for a particular k-mer, we look up the count for that particular k-mer in

each hash table and take the minimum value. As with Bloom filters, false negatives are not

possible, but false positives are. However, for k-mer counting there is yet another one-sided

error that must be considered. That is, if a k-mer exists in the dataset, we will correctly

see that it is present, but its count may be over-inflated. This only occurs in the case when

each bin that corresponds to the k-mer of interest collides with another k-mer. This type of

error depends largely on the count distribution as well as the false positive rate.

3.9 Implications for Non-Probabilistic de Bruijn Graphs

In this chapter, we examined the false positive rate at which point components in a probabilis-

tic de Bruijn graph begin to erroneously connect together and form a giant cluster. However,

the idea of percolation can further be considered for non-probabilistic graphs. When choos-

ing a low k value, one must consider that if the occupancy rate of possible vertices is above

the percolation threshold, then it is highly likely that the graph is already percolated and

that most of the reads will belong to one large cluster. This, of course, makes assembly more

difficult and should be taken into consideration when selecting a value for the k parameter

of assemblers. Given that there are 4k possible k-mers for a selected k value (without taking

into account reverse complements), this becomes less of an issue as k is greater than 25. On

the other hand, selecting too high a value for k will lower the sensitivity since fewer overlaps
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will be found between k-mers. Furthermore, even for non-probabilistic de Bruijn graphs,

it is still possible that components will share different species or chromosomes even if they

are not sampled from the same place. The classic Birthday Problem suggests that even for

higher k values, say between 30 and 40, it is still possible that these types of problems can

occur.

3.10 Data

3.10.1 Genomic Data

The data used to demonstrate the effect of false positives compared to sequencing errors in

a de Bruijn graph was the E. coli K-12 MG1655 genome, which is available on NCBI under

accession number NC 000913.2. The Illumina reads datasets that were used for comparison

were a 200bp insert library (SRA0016655) and a 500bp insert library (SRA001666). Both

were sequenced using the GA-II platform.

3.10.2 Metagenomic Data

The dataset used for the demonstration of the partitioning algorithm and its memory effi-

ciency was a small soil metagenome sample named MSB2. It was sequenced on one lane of

Illumina’s GA-II platform. It contains approximately 35 million reads and totals around 2.8

Gbp. Since soil is so highly diverse, this dataset does not contain near enough coverage to

assemble the entire metagenome. The dataset exists in NCBI’s Short Read Archive under

accession number SRA050710.
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Chapter 4

Read Error Correction

Though assembling a set of reads together is challenging, it is even more difficult due to the

errors present in reads. Rather than detecting exact overlaps, one must develop algorithms

that are able to efficiently find inexact overlaps between reads. In the context of a de Bruijn

graph, error k-mers greatly complicate assembly. A single base pair error in a sequence

read can create up to k erroneous k-mers. Given a greater than 1% error rate, it is clear

that erroneous k-mers generate the bulk of memory requirements for assemblers when not

properly handled. Furthermore, they can make the graph so complex in certain regions

that it is impossible to traverse the region in the graph. This is particularly troublesome in

repetitive sequence. Due to the problems that errors create in assembly, read error correctors

have become an ubiquitous part of assembly pipelines.

In this chapter, we introduce a two-pass algorithm for error correcting metagenomic

sequencing datasets. Currently, few options exist for error correcting metagenomics datasets.

Many effective algorithms exist for correcting genomic reads, but these generally rely on a

more uniform coverage level across the sample. Because metagenomes can contain millions of

species of varying abundance levels, it is difficult to use k-mer abundance information without

conducting an additional round of filtering. We take advantage of the k-mer abundance

distribution that results from applying the digital normalization algorithm[6] to a dataset to

error correct metagenome datasets.
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4.1 K-mer Abundance Distributions

Before we proceed with an implementation of a read error correction algorithm, we must first

consider the k-mer abundance distribution for reads containing erroneously called bases if

we incorporate such information in the algorithm. However, we must first make a number of

unrealistic assumptions to make an analysis feasible. Such assumptions are not unfounded,

and we will make similar ones used by Lander and Waterman in their paper outlining the

statistics behind shotgun sequencing[25].

One assumption we will make is that that there are no repetitive or low complexity

regions in the genome such that every k-mer in the genome is unique. This is clearly false

as not only will k-mers in different locations of the genome be the same by random chance

for lower k values, but repetitive and low complexity regions will mean that even for large

k values there will be many identical k-mers. Another assumption is that sequencing errors

occur uniformly across a read. This, too, is an unrealistic assumption as sequencers tend

to have different error profiles. In Illumina, it is well known that most errors occur on the

ends of reads with the majority happening on the 3’ end. We will also assume that indels do

not occur. These are relatively uncommon compared to SNPs in Illumina reads, and have a

similar effect to them in the k-mer abundance distribution. However, by not including them,

we can assume the length of each read is the same. The last assumption we will make is

that when a sequencing error occurs, the new erroneous k-mers generated will be distinct.

This simplifies calculating the k-mer abundance distribution with sequencing errors since

any erroneous k-mer will be given a count of 1.
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4.1.1 K-mer Abundance Distribution of One Genome

Let G be the number of base pairs in a circular genome. Since it is circular, G is also the

number of k-mers where k is the chosen word size. Let er be the probability that a particular

base in a sequence read is erroneous. For a given sequence read, let R be the length of the

read in bases, and let M = R −K + 1 be the number of k-mers in a read. Lastly, let N be

the number of reads in a dataset.

To determine the k-mer abundance distribution, let us consider the probability that a

particular k-mer occurs in c reads without any errors. First, we will consider the probability

that a k-mer occurs in a particular read. Since a sequence read contains M k-mers, the

probability is M
G . The probability that the k-mer does not exist in the read is then G−M

G .

Putting this together, the probability that a k-mer occurs in c reads without any errors is

(
N

c

)(
M

G

)c(G−M

G

)N−c
. (4.1)

This means that for a genome of size G, the k-mer abundance distribution is

G ·
(
N

c

)(
M

G

)c(G−M

G

)N−c
. (4.2)

Now we will incorporate errors into the distribution. The probability that a k-mer in a

read is error-free is (1 − er)
k. This implies that the probability that a k-mer contains at

least one error (and is thus an error k-mer) is (1− (1− er)
k). Thus, the expected number of

correct k-mers per read is M(1− er)
k and the number of error k-mers is M(1− (1− er)

k).
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To simplify the notation, let L = (M(1 − er)
k). We can then replace M with L from the

previous equation. Due to our assumption that all error k-mers are unique, we find that the

piece-wise function for the k-mer abundance distribution for a single circular genome with

sequencing errors is

F (G,R, er, k, c) =


G ·
(N
c

) (L
G

)c (
G−L
G

)N−c
+ M(1(1− er)

k), if c = 1

G ·
(N
c

) (L
G

)c (
G−L
G

)N−c
, otherwise.

(4.3)

Due to the presence of the binomial distribution, this function simplifies to

F (G, r, er, k, c) =


G · bin(c,N, LG) + M(1(1− er)

k), if c = 1

G · bin(c,N, LG), otherwise

. (4.4)

4.1.2 Digital Normalization Convergence

An important issue when applying the digital normalization algorithm to a dataset is if the

k-mer coverage converges towards a specific value (ideally, the C parameter). If convergence

can be expected, then it can be useful for predicting when a dataset has saturated or if more

novelty can be expected. For the case where the length of the read is equal to K, it is simple

to show that the k-mer coverage approaches C, the parameter for digital normalization. We

define k-mer coverage to be the expected number of reads in a dataset that “contains” a

particular k-mer.

Intuitively, we can see that this is the case since the genome will continue to be sampled
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until each possible k-mer has a count of C. We can also consider the probability mass

function for the k-mer abundance distribution in this special case given the size of a genome

in k-mers (G), the number of reads processed so far (N), and the digital normalization

parameter (C), To do this we must consider three cases: where the k-mer count is less than

C, the k-mer count is currently equal to C, and the count is greater than C. In the last case,

we know that the number of k-mers having a count greater than C must be zero because if

a read equal to the size of a k-mer is introduced that is of size C, it will be discarded. In

the first case, the count will be the same as for the binomial case, so any k-mer that does

not have a count of less than C must be equal to C. Putting this all together, we obtain

pmf(N,C,G,X) =



G ·
(N
X

) ( 1
G

)X (
G−1
G

)N−X
, if X < C

G ·
(

1−
∑C−1

i=0

(N
i

) ( 1
G

)i (
G−1
G

)N−i)
, if X = C

0, if X > C

(4.5)

Furthermore, we can use the probability mass function to derive the number of reads

that are kept by the digital normalization algorithm in the same case where the length of

the read is K. Since no k-mer can have an abundance greater than C, we only consider

adding a read (i.e. k-mer) when the count is less than C, which we see is

readskept(N,C,G) =
N∑
i=1

C−1∑
j=0

(
i

j

)(
1

G

)j (G− 1

G

)i−j
. (4.6)

Though it is straight-forward to analyze the probability mass function and number of
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reads kept with the digital normalization in the case where there are no errors and the

length of the read is equal to k, the analysis becomes considerably more complicated when

extended to the length of the read. The most challenging part of this analysis is the use of

the median function in the algorithm. To determine the count of a particular k-mer after

N reads have been processed, one must consider the ordering of the reads that covered a

particular k-mer. Each of these reads may not have been retained because the median k-mer

count of the read exceeded C. To do this analysis, one would need to take into account the

median, rather than the expectation at each point in time. Since the digital normalization

algorithm skews the original reads distribution, this complicates the analysis. Regardless, it

is possible to evaluate the convergence of the algorithm by creating a simulation of the digital

normalization algorithm. We simulated a set of 200,000 reads where each read contains 20

k-mers. Given a circular genome with 100,000 k-mers, we apply the digital normalization

algorithm with C = 10. After processing the reads with the algorithm, we see that the mode

of the k-mer abundance distribution is 10, but that some k-mers have an abundance greater

than C due to how the reads are stacked along the genome as they are processed (Figure

4.1). Furthermore, the algorithm clearly causes the number of reads to converge to a specific

value (Figure 4.2).

However, it is clear that there is no convergence towards the C parameter in the presence

of errors. Considering the error model introduced earlier, there is a possibility that a read

will contain only error k-mers as long as there is at least one base error every k or fewer

bp in distance. Given an infinite stream of reads, this means that any possible read can be

generated, and thus any k-mer. This implies that the data structure used would collect every

possible k-mer, but the k-mer coverage would still end up around C (since the erroneous

k-mers would dominate the expectation calculation at this point). However, because these
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Figure 4.1: K-mer abundance distribution using simulated reads with 20 reads per k-mer, a
circular genome size of 100,000 k-mers and 200,000 reads.

error k-mers would begin to match the coverage of trusted ones, the algorithm would need

to terminate much sooner and would need to be modified heavily to form the basis for an

online, streaming algorithm. Due to the use of a Counting Bloom filter, we instead must use

a multi-pass approach that terminates well before these errors cause such an issue.

4.2 Error Correction Algorithm Components

Currently, few methods exist for reliably error correcting metagenomic reads due to the un-

even abundances among “species” within an environmental sample and the deep sequencing

required to sufficiently sample the least abundant organisms. As mentioned previously, sev-

eral error correction methods such as Quake and what is used in the EULER assembler rely

on the k-mer coverage distribution to estimate which k-mers can be trusted and which are
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Figure 4.2: The number of reads kept and discarded as reads are processed through a
simulation of the digital normalization algorithm in the same experiment as Figure 4.1.
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likely erroneous. However, the k-mer coverage of metagenomic data is different from genomic

datasets.

Digital normalization[6] can be used to even out the coverage level in a metagenomic

sample. This results in a k-mer coverage distribution from which one can separate erroneous

k-mers from non-erroneous. By creating only one peak of “trusted” k-mers, we need only

track two peaks in the abundance distribution. As the digital normalization algorithm uses

one pass through the reads dataset, we will use an error correction method that requires two

passes through the dataset by combining elements of probabilistic de Bruijn graph traversal

and alignment with the digital normalization algorithm.

The error correction algorithm applies digital normalization to the dataset of interest

and uses a Counting Bloom filter as the underlying data structure for k-mer counting. As

the algorithm walks through the reads, the k-mer abundance distribution is built up using

the digital normalization algorithm as a filter. We will use a mixture model containing two

Poisson distributions to discern between erroneous and non-erroneous k-mers, but better

fitting distributions and models can be used in circumstances where the distribution is better

characterized.

4.2.1 Read to Graph Alignment

In order to pull out the best candidate alignment from the graph based on a sequence read,

we use a similar strategy to what is in Xander (Jordan Fish, personal communication). Given

a Counting Bloom Filter with a word size of k, we start at the beginning of each sequence

read until we reach a k-mer that exists in both the Counting Bloom Filter and the read.

To avoid aligning from each k-mer, we do not align k-mers that exist in alignments that

were previously obtained. We consider this k-mer to to be the starting vertex in an A*

59



search algorithm. We maintain a closed set of nodes that have been explored as a set and

an open set of nodes as a priority queue (implemented as a heap in C++’s STL library).

For each vertex, we check if any of its possible neighbors exist in the Counting Bloom Filter.

However, unlike with a regular de Bruijn graph, we must account for up to four insertions

and a deletion vertex in addition to the one possible exact match vertex and up to three

mismatch vertices. These vertices are added to the open set, and by employing the A*

graph algorithm, we can find the optimal alignment between the read and the graph. It is

important to note that for each non-end k-mer (i.e. k-mers that are not at the end of a read),

we must do two traversals: one for the forward direction and one for the backward. Figure

4.3 demonstrates an example of a read containing one error being aligned to the graph, which

contains both the erroneous k-mers of the read (with only a k-mer coverage of one) and the

correct sequence where all of the k-mers have a coverage of either 19 or 20. The algorithm

must prefer the path that is more likely to contain correct sequence as opposed to the path

that more closely matches the read with erroneous k-mers.
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Original Sequence: AGCCGGAGGTCCCGAATCTGATGGGGAGGCG
             Read: AGCCGGAGGTACCGAATCTGATGGGGAGGCG
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Figure 4.3: Simplified example of a graph alignment beginning at a seed k-mer. Two paths exists due to a single SNP, which forms
a bubble structure. The goal is to correct the read by replacing the substituted SNP for the original base. The abbreviations
for the vertex classes are as follows: MN = match and non-erroneous, ME = match and erroneous, SN = substitution and
non-erroneous.



Table 4.1: Scores for error correction graph alignment.

Type Score
Match 0

Substitution 8
Insertion 4
Deletion 4

To score the alignment, we assign scores for matches, substitutions, insertions, and dele-

tions. However, due to the nature of the real biological sequence data, erroneous k-mers are

certain to exist in the dataset. Rather than traverse down paths that contain error k-mers,

we choose to stop traversal and not consider such error k-mers. We will discuss the method

for determining whether or not a k-mer can be trusted later on. However, if the algorithm

were to consider erroneous paths (e.g. to retain, rather than discard, error-prone reads), one

could assign separate scores for erroneous matches, SNPs, and indels. These scores must

necessarily be lower than any of the scores for correct k-mers that exist in the graph. The

set of scores that were used for the experiments in this paper are listed in Table 4.1.

4.2.2 Two-pass Error Correction

To handle metagenomic data, we must first be able to successfully call an erroneous k-mer

from a correct one. However, given errors in reads, the mode of the distribution is generally 1

with another peak occurring at the expected k-mer coverage. Figure 4.4 illustrates this effect

with an E. coli reads sequencing dataset (see Data section). Due to the large number of error

k-mers, the second peak is a small fraction of the size of the number k-mers of abundance

one. Though this is typical, other types of sequencing datasets such as mRNAseq, MDA

single cell, and metagenomic datasets are likely to have very different distributions from

this. This highlights the importance of a pre-assembly filtering method that can effectively
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Figure 4.4: The raw k-mer abundance distribution on an E. coli reads dataset. Note that
the y-axis uses logarithmic scaling.

normalize the distribution. The problem is even worse with metagenomic dataset because

with an ensemble of species in the sample, it is possible for no other easily discernible peaks

to exist.

To ameliorate this issue, we employ the digital normalization algorithm[6] to even out the

coverage level among different species. By limiting the k-mer coverage to a specific value, we

know where to look for the second peak in the dataset. As long as all “species” in the sample

were sequenced to a higher coverage level than digital normalization’s C parameter, we can

retain the novelty from the sample while creating a peak from which we can discern trusted

k-mers from ones likely to be erroneous. Figure 4.8 shows the effect of applying the digital

normalization algorithm to the E. coli reads dataset. Clearly, a peak occurs around 20,

which can be used to predict whether a particular k-mer is erroneous or correct. Knowing
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where the peak will be due to the C parameter is also useful because we do not need to

keep track of the entire k-mer abundance distribution. Rather, we know that a peak at an

abundance level of 1 due to error k-mers as well as a peak near C.

We will now outline the two-pass error correction algorithm. A two-pass algorithm means

that the sequence reads dataset will be processed twice. In the first pass, we build a Counting

Bloom filter while applying the digital normalization algorithm, which keeps any read where

the median k-mer count is below C and discards any other read. For the purposes of error

correction, the set of reads that are retained by the digital normalization algorithm are not

needed. Instead, the Counting Bloom filter that is used to obtain the count is saved so that

it can be used for the second pass of the algorithm.

In the second pass through the entire reads dataset, we utilize the read to graph alignment

strategy outlined earlier. To properly score the possible alignments, we must be able to

determine whether a k-mer is likely to be erroneous or correct. We use the post-digital

normalization abundance distribution as a guide. Though it is possible to use a bimodal

distribution analytically obtained by making the assumptions made from previous sections,

in practice there are many issues with this approach. First, as the assumptions about

repetitive and low complexity regions are unreasonable, there is a possibility that the model

may underestimate the number of erroneous k-mers. Ideally, an error correction algorithm

should limit the number of “false corrections” as much as possible, so a more conservative

approach is key. Second, the model requires many parameters that may not be known, so a

more simple solution may be desirable. For these reasons, we choose to use a mixed model

containing two Poisson distributions with one distribution belonging to error k-mers and the

other to correct k-mers. The lambda parameter for the correct k-mer distribution can be

directly tied to the C parameter of the digital normalization algorithm, which means that
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the k-mer abundance distribution of the dataset after applying digital normalization does

not have to be obtained before hand. To determine whether a k-mer is classified as either

erroneous or correct, we simply pick which distribution the k-mer of interest fits best in.

4.2.3 Error Region Heuristics

A pressing limitation to a graph-based alignment strategy is that in complex regions of the

assembly graph, graph search algorithms have a difficult time quickly finding the lowest

cost path. Furthermore, aligning an entire read to the graph exacerbates the issue since

this leads to more possible paths for the graph aligner to traverse. These issues can make

the algorithm unreasonably slow for longer reads. To address this, we introduce a simple

heuristic to shorten the size of the read that is being aligned.

Using the method described in the previous section to determine whether or not a k-mer

is erroneous or not, we can go along a read and see the “error footprint” of a read. Since

a single base pair error results in k erroneous k-mers, we expect that if an erroneous k-mer

exists, there are likely to be several more in the same region. The longer this region, the

longer the graph alignment and thus the more time it takes to complete an alignment. To

avoid aligning an entire read, we adjust the graph alignment algorithm to only align from the

last correct k-mer before an erroneous region to the next correct k-mer. Figure 4.5 visually

demonstrates how an error footprint may look within a read. The binary numbers represent

whether or not the k-mer is considered correct (1 for correct, 0 for erroneous). The red line

illustrates the region that is aligned with the graph. To do an entire alignment, the stretches

of 1’s are added to the result along with the alignments of the 0 regions. This approach

makes a necessary assumption that any so-called correct k-mers are in fact correct. Aligning

the entire read becomes prohibitive for longer stretches of sequence, and thus this method is
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Figure 4.5: Illustration of the error footprint for a read. Each binary number represents
whether a k-mer. If the number is 1, the k-mer is deemed correct; if 0, then the k-mer is
considered erroneous. Rather than aligning an entire read, the graph search need only span
an erroneous region in the graph.

necessary. Furthermore, we assume that the first and last k-mer of the starting alignments

are correct and exist in the Counting Bloom filter. An exception to this is when the region is

on the end where we instead require only that a starting k-mer is correct. If this requirement

is not met, then the alignment cannot be made and the entire read is discarded.

Even when adding the heuristic to only align over erroneous regions, there are still likely

to be issues when trying to align long stretches. Figure 4.6 shows a histogram of the lengths

of the error regions in an E. coli reads dataset with the y-axis on a log scale. As the region

size is larger, hen number of these regions decrease exponentially. However, there are very

noticeable blips at 20 and 80. The spike at 20 is due to SNPs in reads that generate k

erroneous k-mers in a row, and in this case, k is set to 20. There is another spike at 80 that

occurs when the entire read is erroneous. These reads are discarded since no seed k-mers
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Figure 4.6: Histogram of the lengths of “error regions” in 100,000 reads of an E. coli reads
dataset. The spike at 20 is due to a single base pair error causing k erroneous k-mers. In
this case, k = 20. The spike at the end is due to reads with no k-mers called as correct.

exist that can be used to anchor the alignment(s) between the read and the graph.

When examining the largest error region size on a per read basis, it is worth noting that

most reads have small error regions (Figure 4.7). Since the time to error correct a large

error region becomes computationally prohibitive, we add another feature called max-error-

region-size that will only error correct a read if the largest error region in the read is less

than or equal to the max-error-region-size parameter. If the read’s largest error region is

higher than this parameter, then the read is discarded. Adding this ability to the read

error correction procedure allows for some flexibility between speed and the number of reads

that are corrected. Furthermore, it is likely that aligning longer erroneous segments is less
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Figure 4.7: Histogram of the largest error region in a 100,000 read subset of the E. coli reads
dataset.

accurate than shorter alignments, so being conservative with this parameter may lead to a

higher specificity.

4.3 Error Correction on Genome Sequence Data

Having introduced all of the ingredients to our read error correction algorithm, we will now

use it to correct reads from a 5 million reads subset of an E. coli sequence dataset (see Data

section of this chapter). We first run the digital normalization stage of the algorithm. After

applying the digital normalization algorithm at C = 20, a peak appears around 20 in the

k-mer abundance distribution (Figure 4.8). Compared to the raw distribution (Figure 4.4),
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Figure 4.8: The k-mer abundance distribution of the E. coli dataset after running the digital
normalization algorithm with C=20. Note that the y-axis uses logarithmic scaling.

the number of erroneous k-mers is greatly reduced. However, the existence of the larger peak

allows us to better separate the error k-mers from correct ones, so we can then proceed with

the correction stage of the algorithm.

The top graph of Figure 4.9 shows the k-mer abundance distribution after it has been

corrected using the genome itself. This is effectively the gold standard for the error correction

algorithm since it is not possible for a k-mer that doesn’t belong in the genome to be

considered correct. Though it is still possible to have false corrections due to the same k-mer

being in multiple locations on the genome, this type of error is difficult to mitigate. The

graph shows a clear peak around 75, which is where the peak existed albeit slightly in the

raw reads abundance distribution. We see that though the distribution does not quite match

the “gold standard”, particularly at the left tail, the error correction algorithm performs well
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when used against the normalized data (shown in the bottom of Figure 4.9).

4.4 Evaluation on Human Gut Mock Dataset

We will now evaluate the error correction procedure on a metagenomic dataset. Because

most metagenomic datasets have incomplete references where very few microbes in the sam-

ple are fully sequenced, it is difficult, if not impossible, to properly evaluate error correction

in this circumstances. However, one mock metagenome dataset exists where microbes whose

genomes have been fully sequenced were combined together into a sample and then se-

quenced. These data were sequenced by the Human Microbiome Project, and they offer two

Illumina datasets. The first, an even sample, contains 20 different known genomes with close

to equal abundance. The second, a staggered sample, contains the same 20 genomes but

with varying levels of abundance. The Data section has more information about where to

obtain the datasets.

The goal of the evaluation is to demonstrate that the error correction algorithm consid-

erably reduces the error rate in the reads. Since we have the reference genomes available to

us, we can map the reads back to the genomes and look at the number of mismatches in

the alignment. However, there are some drawbacks to this method. First, since we will be

using Bowtie, insertions and deletions will not be captured. Though this is not ideal, this

is not a big issue since most errors from Illumina chemistries are SNPs rather than indels.

Another issue is that Bowtie has a limit to the number of mismatches that it check for. This

limit is in place presumably because the mapping problem becomes combinatorially more

difficult as you increase the number of mismatches you are willing to tolerate. Because we

are limited in the number of mismatches to which we can map a read, we are unable to map
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Figure 4.9: K-mer abundance distributions on the E. coli dataset after error correction using
both the genome (top) and the dataset post-digital normalization(bottom) as the abundance
distribution used for error correction.
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Table 4.2: Error correction and mapping results on HMP Mock Dataset

Even Dataset Staggered Dataset

Total Reads 6433051 7686356
Mappable Reads 4598477 (71.48%) 3741334 (48.68%)
EC Reads 4245210 (65.99%) 5073565 (66.01%)
EC Mappable 4148620 (97.72%) 4740514 (93.44%)

the most error-prone reads. Thus, this means that any error rate given as a result of the

mappings are an underestimate. However, we can combine the percentage of reads that map

to the reference genomes with the error rates of the ones that are mappable to get a good

idea of the relative number of errors. Though we could change the parameters of Bowtie to

get as many reads as possible, we used the default parameters since we are only interested

in comparing reads that the error correction algorithm is likely to keep and correct. Since

the error correction algorithm detects and discards particularly error-prone reads, we are

unlikely to find them in the reads file that is outputted.

To do the evaluation, we will first map the raw reads of the even and staggered HMP

datasets to a collection of reference genomes using the default parameters of Bowtie. Then,

we will run the digital normalization algorithm against the datasets with C = 10 and K = 23.

Then, we run the second pass of the error correction algorithm with the max-error-region

parameter set to 25. We set it to be just above k because we wanted to make sure to include

reads that only had error regions caused by a single base pair errors, which is ultimately a

large number of reads. By 25, we choose speed over sensitivity, but since we are interested

more in obtaining high-quality reads than correcting as many reads as possible, this approach

is more favorable. Finally, we map the reads that were successfully error corrected back to

the reference genomes.

We could then summarize the results by counting the number of reads that mapped to
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the reference genomes. With each mapping, we can see the number of mismatches that

occurred between the read and the reference, and by counting these we can see the error

rate of the mappable reads. Though the even and staggered datasets use the same reference

genomes, the percentage of mappable reads differ greatly, at 71.48% and 48.68%, respectively

(Table 4.2). After correcting each of the reads datasets, 65.99% of the even reads were kept

and corrected along with 66.01% of the staggered. Even though fewer staggered reads were

mappable, a similar proportion were able to be corrected. Even more promising, 97.72%

of reads in the error-corrected even dataset were successfully mapped back to the reference

genomes while 93.44% of the reads in the error corrected staggered dataset mapped back.

This strongly implies that the reads are being accurately corrected and that highly error-

prone reads are eliminated. Though we do not know how many mismatches existed between

the unmappable reads, the specificity is clearly much better compared to the raw dataset.

Tables 4.3 and 4.4 summarize the mapping results when broken down by genome. The

first surprising result is that the even dataset is not very evenly distributed by abundance

level. Approximately 35.69 % of the raw reads mapped to the D. radiodurans genome. In

fact, only four genomes had more than 5% of the raw reads map to it. Because of the

unevenness of this sample, it is likely that the digital normalization algorithm filtered out

most of the reads of many genomes because there was not enough coverage for even C = 10.

Low abundance organisms like L. gasseri and S. agalactiae were almost completely filtered

out. Though concerning, this does suggest that the error correction procedure works as

intended because it is likely that the vast majority of the k-mers in those low abundance

genomes would be called as erroneous due to the low coverage. Due to the lower abundance

genomes being filtered out, the high abundance organisms were corrected to have many

more mappable reads to the genome than the raw dataset. The number of errors between
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the raw and the error corrected dataset is quite dramatic, with some genomes showing several

factors of fewer error bases. The most abundant species, D. radiodurans had a more than

10x decrease in the number of errors. However, the difference is actually likely to be much

more extreme as the result of Table 4.2 suggest that the percentage of reads that map to the

reference genomes in the error corrected dataset is much higher than the raw reads. Since

the most error-prone reads are excluded from this analysis, the gap in errors between the

raw and error corrected datasets is much larger.
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Table 4.3: Even HMP Mock Dataset: raw versus error corrected.

Genome # Reads # Reads Errors Errors % Reads % Reads % Errors % Errors
(Raw) (EC) (Raw) (EC) (Raw) (EC) (Raw) (EC)

Acinetobacter baumannii 603321 669106 169100 4978 0.1312 0.1613 0.00049031 0.00001644
Actinomyces odontolyticus 105273 49946 50145 254 0.0229 0.0120 0.00014540 0.00000084
Bacillus cereus 40404 922 10642 39 0.0088 0.0002 0.00003086 0.00000013
Bacteroides vulgatus 464746 409685 138186 1629 0.1011 0.0988 0.00040067 0.00000538
Clostridium beijerinckii 195538 49529 47656 233 0.0425 0.0119 0.00013818 0.00000077
Deinococcus radiodurans 1641112 2076680 802391 68753 0.3569 0.5006 0.00232654 0.00022701
Enterococcus faecalis 64467 9536 17883 61 0.0140 0.0023 0.00005185 0.00000020
Escherichia coli K12 74713 6965 26375 65 0.0162 0.0017 0.00007647 0.00000021
Helicobacter pylori 137925 110753 37924 379 0.0300 0.0267 0.00010996 0.00000125
Lactobacillus gasseri 1419 63 398 13 0.0003 0.0000 0.00000115 0.00000004
Listeria monocytogenes 95721 24576 26173 84 0.0208 0.0059 0.00007589 0.00000028
Methanobrevibacter smithii 35121 3846 8912 15 0.0076 0.0009 0.00002584 0.00000005
Neisseria meningitidis 116171 68039 44164 1501 0.0253 0.0164 0.00012805 0.00000496
Propionibacterium acnes 186478 144171 80143 828 0.0406 0.0348 0.00023238 0.00000273
Pseudomonas aeruginosa 31009 492 15761 53 0.0067 0.0001 0.00004570 0.00000017
Rhodobacter sphaeroides 135655 44006 71492 330 0.0295 0.0106 0.00020729 0.00000109
Staphylococcus aureus 139129 78098 69307 22721 0.0303 0.0188 0.00020096 0.00007502
Staphylococcus epidermidis 258945 225277 64960 1518 0.0563 0.0543 0.00018835 0.00000501
Streptococcus agalactiae 4521 278 1175 21 0.0010 0.0001 0.00000341 0.00000007
Streptococcus mutans 88149 34929 23603 122 0.0192 0.0084 0.00006844 0.00000040
Streptococcus pneumoniae 178648 141723 49017 1021 0.0388 0.0342 0.00014213 0.00000337
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Table 4.4: Staggered HMP Mock Dataset: raw versus error corrected.

Genome # Reads # Reads Errors Errors % Reads % Reads % Errors % Errors
(Raw) (EC) (Raw) (EC) (Raw) (EC) (Raw) (EC)

Acinetobacter baumannii 19219 419 7219 11 0.0051 0.0001 0.00002573 0.00000003
Actinomyces odontolyticus 305 3 165 0 0.0001 0.0000 0.00000059 0.00000000
Bacillus cereus 13209 465 4771 58 0.0035 0.0001 0.00001700 0.00000017
Bacteroides vulgatus 1014 9 426 5 0.0003 0.0000 0.00000152 0.00000001
Clostridium beijerinckii 59670 3250 20078 68 0.0159 0.0007 0.00007155 0.00000019
Deinococcus radiodurans 8562 160 5722 6 0.0023 0.0000 0.00002039 0.00000002
Enterococcus faecalis 336 179 171 39 0.0001 0.0000 0.00000061 0.00000011
Escherichia coli K12 309905 306980 149326 2771 0.0828 0.0648 0.00053217 0.00000793
Helicobacter pylori 4186 8 1541 3 0.0011 0.0000 0.00000549 0.00000001
Lactobacillus gasseri 358 97 140 10 0.0001 0.0000 0.00000050 0.00000003
Listeria monocytogenes 3313 271 1320 46 0.0009 0.0001 0.00000470 0.00000013
Methanobrevibacter smithii 183680 204721 63333 627 0.0491 0.0432 0.00022571 0.00000179
Neisseria meningitidis 7495 3759 4208 1344 0.0020 0.0008 0.00001500 0.00000385
Propionibacterium acnes 8071 23 4846 4 0.0022 0.0000 0.00001727 0.00000001
Pseudomonas aeruginosa 75960 10827 52546 462 0.0203 0.0023 0.00018726 0.00000132
Rhodobacter sphaeroides 754540 1249509 542721 41796 0.2017 0.2636 0.00193414 0.00011964
Staphylococcus aureus 896931 1191682 511311 357082 0.2397 0.2514 0.00182221 0.00102213
Staphylococcus epidermidis 1019837 1306522 352521 22359 0.2726 0.2756 0.00125631 0.00006400
Streptococcus agalactiae 21450 1383 7779 53 0.0057 0.0003 0.00002772 0.00000015
Streptococcus mutans 352806 460061 129918 2779 0.0943 0.0970 0.00046300 0.00000795
Streptococcus pneumoniae 475 186 207 32 0.0001 0.0000 0.00000074 0.00000009



Unsurprisingly, the difference in mappable raw reads between the most highly abundant

is the greatest in the staggered dataset, but there was not a single most dominant species.

Three genomes, R. sphaeroides, S. aureus, and S. epidermidis, had between 20-30% of the

mappable raw reads while the rest had below 10%. Compared to the even dataset, more

genomes were low abundance and were discarded by the error correction algorithm. In

general, the trend appears to be that when the error correction algorithm is run, more reads

from high abundance organisms become mappable while fewer reads from lower abundance

organisms are. Despite this, as long as the abundance of the species is high enough, the

number of reads that are kept and mappable either increases or remains steady compared

to the raw dataset. Furthermore, the number of errors between the raw and error corrected

datasets is quite large even though the number of mappable reads in both datasets are quite

similar. Once again, since the percentage of mappable reads in the raw dataset is far lower

than the error corrected dataset, the number of errors is far greater in the raw dataset than

what the tables present.

4.5 Data

4.5.1 E. coli Dataset

The E. coli dataset originates from [9] but is a subset containing only five million reads. This

dataset can be obtained from https://s3.amazonaws.com/public.ged.msu.edu/ecoli_

ref-5m.fastq.gz and was used in the digital normalization paper[6].
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4.5.2 Human Gut Mock Dataset

The human gut mock dataset was obtained from the NCBI Short Read Archive with accession

numbers SRX055380 (6.6 million reads) and SRX055381 (7.9 million reads) where the former

corresponds to the even sample and the latter corresponds to the staggered. The genomes of

the microbes used in the mock dataset were obtained from ftp://ftp.hgsc.bcm.tmc.edu/

pub/misc/HMP/mock/mock.all.genome.fa.
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Chapter 5

Conclusions

We have established a framework for scaling metagenome sequence assembly. This dis-

sertation covers an overview of existing approaches and how they scale. Building on this

foundation, we described a probabilistic de Bruijn graph and described its properties. Fur-

thermore, we evaluated the utility of a partitioning algorithm that can be used as a precursor

to assembly to bring down memory requirements. In the next approach, we established a

metagenome error correction algorithm. In this chapter, we briefly summarize how these

approaches help to tackle the metagenome assembly problem and discuss possible avenues

for future work.

5.1 Summary

The overarching goal of the projects discussed in this dissertation is to better scale metagenome

sequence assembly. Scaling can be applied in a number of different ways, but we focus on

two. In the first, we improve the memory requirements for assembly by constant factor. In

the second, we reduce the number of errors on the assembly graph, which speeds up the

assembly process, improves accuracy, and further lowers the memory footprint. These ap-

proaches combined work to effectively scale metagenome assembly in terms of both memory

and running time.

By using a simple probabilistic data structure, a Bloom filter, we are able to store k-mers
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in a much more memory efficient manner compared to exact methods. However, this added

efficiency comes at the cost of false positives where k-mers that are not present in the dataset

are declared present when queried. When adding the false positive k-mers to a de Bruijn

graph constructed from a set of reads, we call the resulting graph a probabilistic de Bruijn

graph. We found that below a false positive rate of approximately 0.183, graph components

do not erroneously fuse together, which enables for a component-separation step prior to

assembly. Assuming extremely large components do not exist in the original graph, this

can lead to memory savings in later stages of an assembly pipeline. We successfully tested

this algorithm on a real soil metagenomic dataset, and compared the false positive k-mers

generated by the Bloom filter with error k-mers caused by sequencing technology.

By increasing the number of bits in a Bloom filter, we obtain a Counting Bloom Filter

that can be used to count the number of k-mers in a sequencing dataset. In addition to

the false positives where a k-mer that is not in the dataset is declared present, there is

an overestimation error. If each has at least one collision, there will be an overestimate.

Regardless, the generalization of the Bloom filter to larger bin sizes enables fairly accurate

k-mer counting, especially for metagenome datasets that have many low abundance k-mers.

Using a Counting Bloom filter, we can obtain the k-mer abundance distribution for a

DNA sequence dataset. For a simple genome, the distribution will be bimodal, with many

low frequency k-mers due to errors and then a second peak with the mode at the expected

k-mer coverage. This distribution does not generally occur from metagenomic datasets be-

cause of the variability in abundance levels among different microbial “species” in the sample.

However, by applying the digital normalization algorithm, one can normalize the abundance

level to even out the frequencies within the sample. With a new k-mer abundance distribu-

tion, we can appropriately discriminate between erroneous and correct k-mers by creating a
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mixture model. Then, we can align each read in a dataset to the post-digital normalization

graph to error correct the reads. By comparing the k-mer abundance distribution between

the E. coli dataset corrected with the genome and with digital normalization, we showed

that the error correction method produces a much improved k-mer spectra.

We used a human gut mock dataset to show that the error correction procedure fixes the

vast majority of reads while discarding those that would complicate assembly. By demon-

strating the accuracy of the method on such a metagenomic dataset, we are able to rely on

the reference genomes of the microbes that were sequenced. This allowed us to accurately

map reads back to the reference genomes and determine that the error correction algorithm

successfully discarded a large number of erroneous reads and greatly improve the accuracy

of the existing ones.

Altogether, these memory reduction and error correction methods can be combined to-

gether as part of a pre-assembly pipeline to improve the accuracy of a metagenomics dataset.

Highly diverse samples require deep sampling to discover the novelty in sufficient detail, so a

buildup of error k-mers is to be expected, especially for highly abundance species. The mem-

ory reduction filtering approaches effectively remove erroneous k-mers without thoroughly

examining them (though sufficient coverage of these regions are assured through the digital

normalization algorithm) while the error correction method examines the k-mer abundance

distribution to correct erroneous k-mers to trusted one. The elimination and correction of

erroneous k-mers is ultimately what makes these approaches successful.
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5.2 Future Work

Though the approaches detailed in this dissertation reduce the memory requirements for

metagenome sequence assembly as well as improve accuracy, there is still plenty of room for

improvement. Due to the speed at which new sequencing technologies are being developed

and improved upon, it is likely that all of the datasets used in these works are from chemistries

several generations old. It is important to develop algorithms that generalize well among

different sequencing platforms. While it is difficult to predict how sequencing will continue

to improve in the next 2-5 years, it is reasonable to expect that read lengths will continue

to be longer and error rates will continue to decrease. With these points in mind, there are

many areas worth exploring to continue to improve metagenome sequence assembly.

One area of improvement is to develop more sensitive metagenome sequence error cor-

rection algorithms. Though the approach elaborated in this work successfully improves the

quality of metagenome assemblies, it is not sensitive to rare variant detection. It is possible

to map the reads back to the metagenome assembly to detect these variants, but ideally they

would be detected and kept rather than potentially discarded as redundant sequence due to

the effects of the digital normalization algorithm.

The error correction algorithm implemented in this chapter could be greatly improved

by a new seeding strategy. Currently, the method requires that at least one k-mer in the

read is considered correct. However, for larger values of k, multiple sequencing errors can

result in large error regions that are difficult to align via the graph. Currently, the maximum

error region size heuristic drastically improves the performance at the expense of discard-

ing exceptionally error-prone reads. This heuristic is undesirable for longer reads and any

sequencing technologies with a higher error rate. To address this, any new seeding strategy
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would not require exact matching. One possibility is to employ the Hamming distance graph

in a similar manner to the Hammer read error corrector to find seeds along the read that can

then be bridged using the graph alignment strategy. On the other hand, with deep enough

sequencing, it may make sense to to willingly discard exceptionally error-prone reads.

Another way the two-pass error correction method could be improved is to use a one-pass,

online formulation. In order to do this, one would need to apply the digital normalization

algorithm while simultaneously error correcting reads. There would likely need to be a

“burn-in” period where many errors are discarded, but eventually there would be enough

information to correct reads based on the post-digital normalization k-mer abundance distri-

bution. Another issue that would arise with an online formulation is the use of Bloom filters.

The basic type of Bloom filter used in the partitioning and error correction approaches do

not remove k-mers over time. To be able to handle any size dataset, a Bloom filter variant

(or a streaming data structure) would need to be used that can remove k-mers over time. By

putting this framework together, it would be possible to error correct a dataset of arbitrary

size. However, even with this method it would be difficult to extract low abundance species

from a dataset if the data structure is not able to hold enough novelty. This implies that the

bottleneck would continue to be memory and that a memory-efficient approach is required.

Along similar lines, online metagenome sequence assembly is a worthy goal for Bioinfor-

maticians to pursue. Deep sampling of environmental samples is required to fully capture

the diversity within a microbial ecosystem, so longer reads and fewer errors will not help

to sequence the least abundance microbes. Thus, it will be necessary to develop algorithms

that treat a reads dataset as a stream where only one pass through is possible. This would

require incorporating memory efficiency and error correction into the assembly process. As

the more abundance sequences are assembled, these parts of the assembly graph must be
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removed over time and screened from being added again. This will help to keep memory

requirements low while allowing low abundance organisms to be sampled, which can be

functionally important.
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This appendix contains a glossary of commonly used terms within this dissertation.

Assembler: A computer program that takes multiple DNA sequence reads, finds overlaps

between them, and outputs an assembly.

Assembly: A collection of contigs generated by an assembler.

Contig: Short for contiguous sequence, a contig is a collection of zero or more overlaps from

one or more reads.

Coverage: The coverage at a particular location in a genome is the number of reads that

map to that location. This definition can be extended to assembly graphs where the k-mer

coverage is considered the number of reads that contain a given k-mer.

de Bruijn Graph: A type of graph that is used for DNA sequence assembly. A de Bruijn

graph can have an alphabet size of 2 or larger and a word size of 1 or more. In the case of

DNA, the alphabet size is 2 and the word size varies with the dataset. A vertex is a DNA

word of fixed size k, and its neighbors are any k-mers that share a k − 1-mer overlap.

Genome: The collection of DNA sequences that make up a cell, organism, or species. An

eukaryotic species like human does not possess a single genome, but rather one in each

cell. Each individual within a species also has unique genomes even though the genome for

a species may be collectively referred to as the genome for that species (e.g. the Human

Genome).

Indel: When comparing a two aligned sequences, an indel is an insertion of one or more

base pairs and a corresponding deletion in the other sequence.

K-mer: A k-mer is a DNA word of a fixed size k. If k = 4, an example of a 4-mer is CGAT.

Mapper: A mapper is a computer program that aligns a DNA sequence read to a reference

genome or sequence.
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Metagenome: A collection of genomes obtained from sequencing an environmental sample.

OTU: Short for Operational Taxonomic Unit. It is used to bin similar organisms together

based on similarity as a way to form an arbitrary definition of a species in a microbial context.

Overlap: Where a prefix of one read is the same as the suffix of another. Usually, a putative

overlap must be of a certain size to be considered a true overlap. Inexact overlaps, where

mismatches exist between reads, are also possible.

Paired-End Read: When two sides of a longer DNA sequence fragment is sequenced. The

middle part of the sequence is not known, but the length between the two sequenced reads

are known. This added information assists in generating and validating sequence assemblies.

Read: A single sequence obtained from a sequencer.

Reverse Complement: Given a DNA sequence, the reverse complement is the opposite

strand of the DNA sequence read in opposite order since a DNA strand is generally read in

only one direction. The reverse complement is a combination of a string reverse operation

and a DNA complement operation (substitute A for T, T for A, C for G, and C for G).

SNP: A single nucleotide polymorphism. This is a single substitution between two or more

aligned sequences.

Scaffold: The gap between two contigs. That is, the sequences between the contigs are not

known, but the direction and length between the contigs is.

Supercontig: A collection of contigs where their relative positions to on another are known

due to scaffolds.

Shotgun Sequencing: A method for sequencing where DNA sequencing reads are essen-

tially randomly sampled from a genome (or multiple genomes).

Transcriptome: The collection of mRNA transcripts from a cell or organism.
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