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ABSTRACT

DE HAAS-VAN ALPHEN STUDY OF THE AuGa2 ALLOY PHASE

BY

John J. Higgins

The de Haas-van Alphen frequency (F) of the third zone neck orbit

(C5), the Dingle temperature (TD), and the residual resistance ratio

(RRR) of the intermetallic compound AuGa2 were measured on samples cut

from the top, middle, and bottom of three single crystals to see if these

parameters vary over the range of composition in which the fluorite

structure exists. The three crystals, 4 to 6 cm long, were grown by the

Bridgman method from melts that deviated from stoichiometry by having

excess Au (.287 at.% from stoichiometry) and excess Ga (.203 and .549

at.%). F ranged from 3388 RC to 3384.2 kG to 3405.7 kG. Assumption

of the rigid band model implies for these samples a concentration range

about stoichiometry less than .06 at.% Ga. But analogy to the case of

Pd impurity associates a value between .22 and .43 at.% Ga with the

range of F. An independent analysis of uncertain reproducibility indi-

cates a concentration difference of .351510 at.% between two groups of

samples. Stoichiometry does not coincide exactly with the congruent

point. The deA phase constant was found to be .46 :_.09. RRR and TD

varied from 55 to 1800 and from 5.0 K to 1.1 K, respectively.
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CHAPTER I

MOTIVATION AND PURPOSE

1.1 Introduction
 

De Haas-van Alphen effect in studies of metals. The magnetization

of a nonferromagnetic substance arises from various physical phenomena.

The local atomic or ionic magnetic moments, the exchange interaction

between these moments and the electrons, and the preferential occupation

of the lower energy, spin-up electronic states (Pauli spin magnetism)

may contribute to the total paramagnetism. The diamagnetic component of

the susceptibility arises from the quantum mechanical response of

electrons in motion to an applied magnetic field. Under certain experi-

mental conditions this response of the conduction electrons in metals

adds two components to the magnetization, one of which is a steadily

increasing diamagnetism, while the other oscillates, becoming alternately

parallel and anti—parallel to the applied field. The last phenomenon,

the presence of oscillation in the magnetic susceptibility with increasing

magnetic field, is called the de Haas-van Alphen (deA) effect, after

W. J. de Haas and P. M. van Alphen,l who observed it in 1930 when

measuring the magnetic susceptibility of a single crystal of bismuth at

liquid hydrogen temperatures. At low temperatures and big fields it is

easily observed in most metals.

The deA effect has been used since the middle of the 1950's to

obtain much information about the shapes and sizes of Fermi surfaces.

In the past few years quantitative research into the effect of the

impurity concentration on the deA measurements has led to the investigation
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of the deA effect as a probe of scattering potentials of impurities,

their concentrations, and their effect on the Fermi surface of the host.

This development combined with speculations and questions that arose in

the course of a study of the galvanomagnetic properties of an homologous

series of intermetallic compounds to suggest the use of the deA effect

to investigate some phenomena that apparently occur during the growth,

by the Bridgman technique, of the single crystal AuGaz, one of the

compounds used .in the galvanomagnetic study. The next two subsections

tell how these questions arose and describe the hypotheses suggested by

them. The last section of this chapter outlines the program for the

investigation of the hypotheses.

A metallurgical question. AuGa2 is an example of an intermetallic
 

compound, also called an ordered alloy. Its crystal structure is that

of fluorite and is shown in Figure 4. It is grown by mixing gold and

gallium within several atomic percent of stoichiometry (one Au atom for

each two Ga atoms), melting this charge, and slowly cooling it, as

described in Chapter VIII. According to the equilibrium phase diagram

Figure 38, the precipitate, at least initially, will be of fixed compo-

sition AuGa2 independently of the prepared melt concentration, so long as

it lies within a rather broad range about stoichiometry. In particular,

the long range order should be the same. The long range order relates

to the tendency of the Au—sites of the lattice to be occupied preferen-

tially by Au atoms rather than by Ca atoms, impurities, or vacancies,

and the tendency of the Ga-sites to be occupied by Ca atoms.2 The

lattice of an ordered alloy is divided into two or more sublattices

extending throughout the whole crystal, and each preferentially occupied

by one species of atom.

The residual resistance ratio (RRR) is an experimental measure of
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long range order. Because the Au and Ca ions in the crystal have dif-

ferent scattering potentials, randomly intermixing them destroys

crystalline symmetry. The Bloch wave of the conduction electron thus

sees the site of a sublattice containing anything other than its correct

species as a scatterer. At low temperatures (normally in liquid He at

one atmosphere: 4.2 K) such scattering dominates the crystal's resistiv-

ity, which consequently varies with the amount of long range order. At

room temperature the phonons dominate the resistivity. Because at room

temperature the phonon spectrum is much less sensitive to small varia—

tions in the long range order the resistivity is, too. Thus the residual

resistance ratio,

RRR = = RRT/R4.2’ fixed geometry [1]
CRT/04.2

increases monotonically with long range order.

From the above discussion one would expect a single crystal of

AuGa2 to have a uniform RRR, and crystals grown from different melts,

all near stoichiometry, to have the same RRR. But it is not unusual for

3RRR.to vary widely in crystals grown from melts of nearly the same con—

<2entration and the same purities. Specifically, in 1968 J. Longo3 pre-

Pared AuGa and AuAl

2 2

Perties as AuGaz) from melts that were within 10.5 th Al or Ga of being

(with the same fluorite structure and similar pro—

SStoichiometric. He found (see Table l and Figure 1) for both alloys,

(1) Crystals grown from melts prepared rich in the Group III

element had much higher RRR than crystals grown from melts

prepared stoichiometric;

and for AuGaZ,

(2) a maximum in the RRR of the most pure samples taken from

different AuGa2 crystals plotted against the prepared melt
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concentration);

(3) within a given AuGa2 crystal, a big spread of RRR about the

average value. The average RRR versus melt concentration

also exhibits a clear maximum;

(4) traces of Ga on the surface of crystals grown from melts of

concentration > 0.5 th Ga.

Longo concluded that these data are consistent with a report by M. E.

Straumanis and K. S. ChopraA that AuAl2 has a homogeneity range from

78.18 to 78.94 th Au (32.92 to 33.92 at.% Au) in the temperature

range 300 to 400 °C, with the phase being fcc, fluorite structure.

Straumanis and Chopra also said that at stoichiometry there are 0.152

.Al-site vacancies per cell and 0.076 Au-site vacancies per cell,

giving a vacancy concentration of 1.9 at.% on each sublattice. They

further maintained that at the Al—rich end of the homogeneity range the

Al-sites are completely filled, resulting in a crystal grown from an

.Al-rich melt having a higher RRR.

However, Longo reported that his values for RRR seemed too high to

‘be consistent with Straumanis and Chopra's vacancy concentration. The

empirical relation

(RRR)(I)=1. [2]

Vflnere I = impurity (or vacancy) concentration in percent,

<iescribes many metals as well as the intermetallic compound AuSn.

Some binary alloys are more nearly described by

(RRR)(I)=lO. [3]

.Assuming either one of these relations holds for AuAl Longo calculated
2’

(Table 2) from his measured RRR a much lower impurity (including vacancy)

concentration in AuAl than that reported by Straumanis and Chopra. Longo

speculated that if such a concentration of vacancies exists the vacancies
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Table 1. RRR and Impurity Concentration of AuX2 Crystals.

(Adapted from Longo, Ref. 3)

RRR of AuX

AuAl2

Melt Prepared

exact Al-rich

1408 550

Crystals

AuGa2

Melt Prepared

exact Ga-rich

1. 250

2. 190b

904

950b

a. Longo (Ref. 3) cites JPSST (Ref. 10).

b. Taken from graph in Ref. 3.

Table 2. Comparison of Vacancy Concentrations

and RRR in AuAl2

Straumani54 (RRR)(I)=1 (RRR)(I)=10

and Chopra

Stoichiometry 1.9 at.% 0.0071 at.% 0.071 at.%

Al-rich end of

homogeneity range

(0.56 at.% excess

Al)

0.634 at.% 0.0018 at.% 0.018 at.%
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may coalesce to form small voids dispersed throughout a macroscopic region.

He states that the variation of RRR over one crystal supports this belief.3

Another possibility consistent with a high concentration of vacancies

and big RRR values is that the vacancies are ordered, as in A1 N12 and in

Fe0.8758. However,such crystals would exhibit x-ray superlattice lines,

which were not observed by Straumanis and Chopra.7

Impurities, dislocations, crystallites, and deviations

from stoichiometry could account for LongissRRR observations. His

description of the care taken in the growing of the crystals, the good

x-ray pictures, and the regular pattern of the RRR values suggest

deviations from stoichiometry may be more important than the other

mechanisms. Some binary alloys have equilibrium phases with a wide

variation in the range of homogeneities (in atomic percent of one of the

components). The range of concentration for Longfsssamples corresponding

to a range of RRR from 190 to 950, obtained from the relation (3), is

.10 to .053 at.% deviation from stoichiometry, a range difficult to

detect by mmethods of compositional analysis. Consequently, a phase

this narrow could be reported as nominally fixed composition.

The fact that AuGa2 crystals with the biggest RRR must be grown from

melts prqaared off stoichiometry is not unusual.8 This phenomenon may

atrise from other phases existing near the phase of interest, from the

(nongruent point (the maximum in the liquidus curve) lying slightly

off stoichiometry, and other conditions. An example of another condition

is Mgsz, which has a peritectic point that looks very much like a

congruent point.9 See Figure 39 and discussion there for a hypothetical

case of the congruent point lying off stoichiometry.
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1.2 Hypotheses and Objectives

The hypotheses of this thesis are suggesnxiby the above discussions

of the use of the deA effect in the study of metals and the RRR varia-

tions. They are:

(1) When a AuGa2 crystal is grown from a melt of given initial

composition by the Bridgman technique the crystal's composition

varies along the direction of solidifhation.

(2) The AuGa2 line of the equilibrium phase diagram is not

exactly vertical, but slanted, and crosses stoichiometry.

(3) The deA effect is capable of detecting the above range of

concentration. Furthermore, deA studies may yield information

on how Au, Ga, and vacancy impurities affect the Fermi surface

and scattering of electrons.

If these hypotheses are correct for AuGaZ, they may extend to other

intermetallic compounds which are of nominally fixed composition.

deA effect and concentration. AuGa2 yields moderately strong

deA signals, which have provided Fermi surface information since 1965.10

Our primary objective is to see if there is a correlation between the

«deA signal and RRR of samples all nominally AuGaZ, and thus extend the

study of Fermi surface dependence upon impurity concentration to an analo-

gous, but slightly different condition. Some method of characterizing

the samples is desirable, and much work.went toward a direct analysis of

the concentration. The results were only partially intelligible, so the

evaluation of the data relies mostly on indirect methods of characteri-

zation. These results are discussed in Chapters IX and X. Further

discussion of the deA effect is deferred until Chapter III.
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Phase diagrams and crystal growth. A secondary objective is eluci-
 

dation of the growth pattern of the AuGa crystal. The concentration of
2

an alloy may depend upon both the equilibrium phases and the kinetics of

growth. The data presented later indicate that the variations among the

samples are due to both effects.

Having considered the puzzle (the range of RRR values in AuGaz),

the suitability of this alloy for an extension of the study by means of

the deA effect of the dependence of the Fermi surface upon concentra—

tion, and the influence of the method of growing the crystal, it is

appropriate to outline the experimental program.

1.3 Proposed Program and Summary of Results
 

Grow single crystals of AuGa by the Bridgman method, each from a
2

melt with initial concentration slightly (less than one atomic percent)

off stoichiometry. Cut samples from along the axis of each crystal and

measure deA frequency, Dingle temperature, residual resistance ratio,

and concentration.

Chapter VII contains the deA and Dingle temperature data; Chapter

'VIII gives the melt concentrations for growing the crystals and the

.locations of the samples cut from the crystals; Chapter IX gives both

‘the data for the direct analysis for concentration in the crystals and

the residual resistance ratios for the samples. Chapter X discusses

these data and draws conclusions, an epitome of which follows:

(1) The samples exhibit a definite and non-random variation in

deA frequency (F), Dingle temperature (TD), and residual

resistance ratio (RRR).

(2) The variation in RRR correlates with that in T according to

simple models. That is, samples ordered by increasing RRR

are consequently ordered by decreasing T , both corresponding

to increasing long range crystalline order.
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(3)

(4)

10

The samples of lowest T and highest RRR came from regions of

the crystals which soliHified at a time when the average con-

centration of the remaining melt was gallium rich (compared to

stoichiometry).

Direct analysis of the concentration of the crystals was only

partially successful due to the differences in concentration

being of the same order as the resolution of the available

methods of analysis. Some trends were evident and are dis—

cussed in Chapter IX.
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CHAPTER II

FERMI SURFACE OF AuGaz

The Fermi surface is a mathematical construction related to the

dynamical properties of the conduction electrons of a crystal.11

Before mentioning some of the methods used to calculate the Fermi surface

it is useful to list some important, well-known terms from the physics

of crystals. Their enumeration here will highlight several distinctions

often ignored in general use but important in deA theory.

2.1 Preliminary Definitions
 

Discussion of the theory refers from time to time to the following

physical models of a real, crystalline solid:

Ideal crystal. A perfectly periodic and static repetition of an
 

atomic basis throughout all space. From the formal relation,

crystal structure = lattice + basis, [4]

it is seen that the cluster of ions and atoms forming each basis makes

tip the content of each primitive cell. A static repetition means there

Eire no phonons; each basis is rigidly fixed with respect to its lattice

point.

Perfect crystal. A perfectly periodic repetitionof an atomic basis
 

throughout a finite region of space. As with the ideal crystal there

are no impurities, vacancies, cracks, or other imperfections. The

presence of phonons gives this model different properties from those of

the ideal crystal.

11
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12

Static crystal. An imperfect, but approximately periodic and
 

static repetition of an atomic basis throughout a possibly finite region

of space. This is a model for calculations of the effects of alloying

or of imperfection on physical properties when phonons are ignored.

Real cgystal. The physically obtainable, approximately periodic
 

arrangement of atoms assumed by numerous elements and compounds. Both

phonons and imperfections are present to a degree that varies widely

and depends on the crystal's history and environment.

Free electron model. Non-interacting electrons confined to finite
 

region of space throughout which the potential energy is constant. This

crude model of a crystal includes the idea of the conduction electrons

being free to move throughout the crystal, but ignores the crystalline

structure, whose potentialvariesImufiodically. It is useful for rough

calculations of physical properties because it does lead to discrete

krstates when periodic boundary conditions are imposed and, in conjunction

with the Pauli exclusion principle, to the idea of a Fermi surface. The

energy surfaces in kfspace are given by

E = m [5]

where m0 is the free electron mass. Often this model is extended to

real materials with ellipsoidal Fermi surfaces by replacing mo with an

effective mass m* or with an effective mass tensor with elements m1, m2,

and m3. Important concepts of the deA theory for real metals were

first derived and are most easily understood using this model. Extension

is then made to more complicated cases. Such is the case for the

Harrison construction for the Fermi surface (see the description of the

empty lattice model in the next section) and the Landau levels (Chapter

III).
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Coordinate systems. Some conventions of notation for coordinate
 

systems need to be established for later use in presenting the theory.

Figure 2 illustrates these. The intermetallic compound AuGa2 studied in

this thesis has a cubic conventional cell and a face centered cubic

lattice. Hence the conventional basis is the orthogonal triad 31, §_,

33, also called the crystalline axes. The primitive basis 21’ 22, 23, is

oblique. The axes along 31,.§2,.§3 are also denoted by [100], [010],

[001], etc., concisely represented by <100>, called a form. The lattice

of the corresponding reciprocal space is body centered cubic, and its

primitive basis is Al, A2, A3. The bisector planes of the vectors

§_= nlél + ... yield the zone planes, which are parallel to the atomic

planes. The zone planes closest to the origin define the first

Brillouin zone in reciprocal space. Axes in reciprocal space are usually

labeled k k k3 in the literature, so reciprocal space is often
1’ 2’

referred to as krspace. For a given orientation of the g1 and hence the

.gi, the orientations of the kfaxes may be chosen for convenience. In

cubic systems a triad that coincides with the crystalline axes is used.

In zero field this is the most convenient choice for coordinates in

krspace because spatial directions in the crystal are defined by the

atomic planes and their intersections. Spatial axes x, y, and

z are chosen for convenience in representing the geometry of the eXperi-

mental apparatus, and convenience may require that their unit vectors

ii not be parallel to the 51’ as for a crystal at arbitrary orientation
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kz 1,

ix

-Q ky

(c) kx (d)

Figure 2. Coordinate systems in real and reciprocal spaces.

(a) Basis vectorsgi (conventional) and Bi (primitive) of the fcc

lattice.

(b) The primitive reciprocal basis vectors A: and their relation

to the Brillouin zone. The reciprocal lattice is body

centered cubic.

(c) The perpendicular axes in reciprocal space (also kfspace) and

their orientation with the Brillouin zone.

(d) External conditions (e.g. field direction) may be used to

define spatial axes x, y, and 2 not necessarily parallel to

the}Li axes.
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ABSTRACT

DE HAAS-VAN ALPHEN STUDY OF THE AuGa2 ALLOY PHASE

By

John J. Higgins

The de Haas-van Alphen frequency (F) of the third zone neck orbit

(C3), the Dingle temperature (TD), and the residual resistance ratio

(RRR) of the intermetallic compound AuGa2 were measured on samples cut

from the tap, middle, and bottom of three single crystals to see if these

parameters vary over the range of composition in which the fluorite

structure exists. The three crystals, 4 to 6 cm long, were grown by the

Bridgman method from melts that deviated from stoichiometry by having

excess Au (.287 at.% from stoichiometry) and excess Ga (.203 and .549

at.%). F ranged from 3388 kG to 3384.2 kG to 3405.7 kG. Assumption

of the rigid band model implies for these samples a concentration range

about stoichiometry less than .06 at.% Ga. But analogy to the case of

Pd impurity associates a value between .22 and .43 at.% Ga with the

range of F. An independent analysis of uncertain reproducibility indi-

cates a concentration difference of .35:.10 at.% between two groups of

samples. Stoichiometry does not coincide exactly with the congruent

point. The deA phase constant was found to be .46 i;.09. RRR and TD

varied from 55 to 1800 and from 5.0 K to 1.1 K, respectively.
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in a uniform field.

Magnetic field nomenclature. The vector B_is the magnetic induction,
 

also called the flux density. H_is the magnetic intensity and does not

include the magnetic contributions of the material medium. M_is the

intensity of the magnetization, or simply the magnetization. The term

"magnetic field" and its abbreviation, "field," are used variously to

mean H_or B, depending on the context, when distinction is not important.

Correct interpretation of deA data can require one to distinguish

H and B, even in nonmagnetic media, when magnetic interaction is

significant. (See section 3.9)

The orientation of the magnetic field with respect to the Fermi

surface is important because the topology of the Fermi surface enters the

expressions in the deA theory. Thus two coordinate systems in kfspace

are maintained: the former k1, k2, k3, which are parallel to the crystalline

axes for the cubic structure, and a new direction kH parallel to the

field, plus two axes normal to it (Figure 3). In this thesis the spatial

axes are always chosen so that §_is parallel to the z-axis. (Normally

H_is also considered parallel.) General crystal orientation will thus

render the crystalline axes noncongruent with the spatial axes, x, y,

and z. The orientation of the field with respect to the crystalline

axes and hence with respect to the Fermi surface is given by the polar

and azimuthal angles, a anddg and a gradient operator is defined:

a a . 1 a
v= _._+1 ._+ ———. 6
H 1ma 9 39 1¢ Hsine a¢ [ 1a

n
d

Figure 3 illustrates the relations among the kfaxes, kH, and the

angles of the field direction.
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Figure 3. The four axes in krspace: kx, ky, kz, and kg, and their

orientation with respect to the magnetic field.
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Sign of charge carriers. The charge of the electron is -e, where
 

e>0. Most equations are written for electrons and can be changed for

holes by changing the sign. (When e appears as a universal constant, as

in the flux quantum hc/e, no sign is implied.) When necessary for

distinction the positive electronic charge is written p or Iel. Sometimes

q is used for general charge, and may be implicitly positive or

negative.

2.2 Fermi Surface of an Ideal Crystal
 

The eigenfunctions of the conduction electrons in an ideal crystal

for the single-particle approximation are Bloch waves,wk, indexed by the

quantum numbers_k, called the wave—vector. The quasi-cdntinuous

distribution of eigenenergies Eb(k) in k-space gives rise to constant

energy surfaces in each Brillouin zone b of kfspace. Along given

directions in k—space the functions Eb(k) correspond to the energy bands.

The energy functions and the number n of electrons per unit volume of

the metal determine the maximum energy of occupied states at 0 K (the

Fermi energy EF). The continuum of states k_ belonging to EF form the

Fermi surface in k-space. The problem of calculating the Fermi surface is

thus primarily the evaluation of EF(k). Which of various methods available

is used depends on the properties of the metal (e.g., a transition

metal requires more sophisticated methods than does a simple metal)

and the accuracy required. Some methods of calculating the Fermi surfaces

are given below. Results of applying two of these to AuGa2 then follow.

Empty lattice model. This combines zone theory, which uses the
 

crystalline structure to derive the Brillouin zone, and the free

electron model. The spherical energy surfaces E = fi2k2/2mo are divided
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into sheets by the zone boundaries. The sheets of the Fermi surface

are examined in various ways, depending on the problem at hand. Thus one

may use the extended, reduced, or repeated zone schemes. The reduced

zone, empty lattice model is obtained most easily by the Harrison con-

12 which is extensively used to explain and predict grossstruction,

features of the Fermi surfaces of metals and properties related to it.

This model is also frequently referred to as l—OPW and free electron. The

Harrison construction of the Fermi surface of AuGa2 is discussed in

Section 2.4.

Limitations of the empty lattice model. Although the empty lattice
 

model usually gives reasonable accurate first order results (considering

the free electron sphere as the zeroth approximation), second order

corrections are almost always needed to obtain good qualitative‘ agreement

with experiment, and occasionally first order predictions have signifi—

cant error. This is because, although the model reflects the primitive

space lattice of the crystal, the influence of the atomic basis (the

ionic potentials) enters the model only through the effective valence.

The ionic potential usually causes changes in the :topology of the

empty lattice Fermi surface where it approaches zone boundaries, and these

changes can be significant with regard to some of the metal's properties.

The well known necks of the noble metals, absent in the empty lattice

model, are examples of this effect.

Further, if the atoms forming the metal have occupied d orbitals in-

the free state whose energies are close to those of the valence states

after crystallization, both the band structure and the effective valence

of the crystal may differ from those of this model.

Spin-orbit interactions, an important cause of the lifting of
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degeneracies in crystals of heavy atoms, are not included in this model.

In spite of these limitations, the empty lattice Fermi surface is

adequate for this study of AuGa But for completeness, and also because2.

a reference to a band structure calculation for‘AuGa2 will be given,

some of the standard methods of band structure calculations are briefly

mentioned below.

Methods to include the ionic_potentials and spin-orbit interactions.
 

In the nearly free electron (NFE) model Bloch waves are treated as an

expansion in plane waves. The expansion coefficients and the eigen-

energies for given k_are obtained from perturbation theory. At first

thought, the NFE method appears to have fundamental defects. J. M. Zimanl3

(this reference is hereafter referred to as Ziman) lists the following

points: (1) The deep potential well at each ion means the Fourier

components Vg of very short wavelength are important, so that the series

would be expected to converge slowly. (2) Rapid oscillation of wk near

the ions also requires short wavelengths and implies slow convergence.

(3) Simple perturbation theory effectively uses the Born approximation,

which is invalid for deep atomic potentials. These arguments led to the

neglect of this method as a practical scheme for band structure calculations.

But it now appears that it can be made formally valid by the introduction

of the pseudopotential (Ziman, p. 76). The NFE model is not used

directly for band structure calculation, but remains useful as a means of

illustrating the periodicity of E(k) and its gaps at zone boundaries.

The orthogonalized plane waves (OPW), or pseudopotential method is

due to Herring,14 and is important in the calculation of band structures.

It can be used when the ions lack spherical symmetry, a requirement for

the augmented plane waves method (see below). After the ionic potentials
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are replaced by pseudopotentials an iterative process approximates the

Bloch functions by summing orthogonalized plane waves (plane waves

made orthogonal to the core states). The first step yields the 1-OPW

functions, which are often quite sufficient to represent the electronic

wave functions over large regions of k-space; only 3 or 4 terms may be

needed even in the corners of the Brillouin zone (Ziman, p. 94). The

Fermi surfaces given by the free electron, the empty lattice, and the l-OPW

models are often equal or nearly equal, so that these names are used

somewhat interchangeably. OPW assumes a distinction between core and

conduction electrons.15 This condition may not be well satisfied for

transition metals and other elements with high level d orbitals, such

as Au.

The method of augmented plane waves (APW) was suggested by J. C.

Eflater.16 The space of the crystal is divided into spheres centered on

the ions and interstitial regions of constant potential. The ionic

potential is assumed spherical. Plane waves in the interstitial regions

are augmented by spherical harmonic waves in the cores, and the two waves

are matched at the surface of the sphere. Assuming a valence 1 for Au

leaves its outer subshell 5d10 filled and hence spherically symmetrical.

Similarly, assuming a valence 3 for Ca leaves outer subshell 3d10. These

valences are supported by experiment and theory, and allow the APW method

to be applied to AuGaz, with results to be given in Section 2.4.

2.3 Crystalline Structure of AuGa2

AuGa2 has the fluorite structure.10 The face centered cubic (fcc)

Bravais lattice has an atomic basis of one Au and two Ga atoms (Figure

4). The structure factor
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S(hk£) = E f1 exp(-2ni(hxi+kyi+izi)) [7]

is obtained by using the cubic conventional cell and summing over the

positions

a_ [81
r°= 13

+ a + z

—1 yi—Z

x,a

r—l

and form factors fi of the ions in the cell, expressed with respect to the

conventional cubic axes 31' This structure factor predicts constructive

interference of diffracted x-rays in the same directions as for a

monatomic fcc crystal, but with different intensities due to the unequal

scattering power of Au and Ca. Structure factors associated with the

direction (hki), that is, diffraction from planes (hki), are given in

Table 3.

Because the primitive Bravais lattice is fcc, the primitive reciprocal

lattice is body centered cubic (bcc), and the first (and each reduced)

Brillouin zone is the polyhedron of Figure 5.

2.4 Fermi Surface of AuGa2

 

Empty lattice Fermi surface. Jan, Pearson, Saito, Springford,and
 

Templeton10 determined the empty lattice Fermi surface of AuGa2 by

the method of Harrison12 in 1965, assuming a valence of seven electrons

(one for Au and three for each Ga). It is in fair agreement with most of

the deA data, reported first by them10 and confirmed and extended by

others.17"20 The first zone is full. The most notable failure of the

model is the prediction of a big octahedron of holes in the second zone,

whereas extensive experiments have not shown a signal that could belong

only to that zone. The conclusion that the second zone is full is

21,22
supported also by a band structure calculation. The third and
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TABLE 3. Structure Factors of AuGa

2

Character of Diffraction Structure Factor

Plane, (hkfi) S(hk£)

h, k, and l are all even 4f +8f (_1)(h+k+£)/2

Au Ga

h, k, and R are all odd 4f

Au

h, k, 2 mixed even and odd zero

fourth zone sheets have been generally verified by the deA, magneto-

23 24 Tiny pocketsresistance, and a few other types of measurements.

predicted in zones five and six by the model are expected to be

prevented by the effect of the crystal potential's rounding off corners

of the empty lattice Fermi surface. No experiments give definite

evidence of occupation of zone five.19 Zone six is certainly empty.19’22

The third zone sheet, the fourth zone sheet, and the extremal cross-

sectional areas for all sheets for directions <100> are shown in

Figures 5, 6, 7, and 8, all for the empty lattice model. (The figures

are from Ref. 10; its notation for cross sections is used in the litera—

ture. A, B, and C refer to directions <100>, <110>, and <111>.) The

deA data of this thesis all pertains to the necks of the third zone,

about the point L on the zone boundary, where the cross-sectional area is

a minimum and the charge carriers are holes. The measured cross—sectional

area here is .32 times that given by Figure 5, so that the necks are more

"pinched off" than the figure suggests.
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I/

Figure 4. Crystal structure of AuGa . Open circles are Au and filled

circles are Ga. (Ref. 10

 
Holes in the third zone of the empty lattice model of AuGaz

in the reduced zone scheme. The polyhedron is the

Brillouin zone. (Ref. 10)

Figure 5.
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Figure 6. Holes in the third zone of the empty lattice model of AuGaz

in the repeated zone scheme. Extremal cross sections are

shown at right. (Ref. 10)

 

  
Figure 7. Fourth zone sheet of the empty lattice Fermi surface of AuGa2

in the repeated zone scheme. It has both electron and hole

character. Extremal cross sections are shown at right. (Ref. 10)
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ORIENTATION OF MAGNETIC FIELD IN {no} PLANE

Figure 8. Some extremal cross-sections of the empty lattice Fermi

surface of AuGa when the magnetic field is scanned in a

{110} plane. Sections correSponding to the 5th and 6th

bands are shown by dotted lines. The top line framing

the graph (7.02) refers to a great circle of the Fermi

sphere. (Ref. 10)
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Band structure. Switendick21’22 calculated the nonrelativistic band
 

structure (Figure 9) by the method of augmented plane waves (APW). Fig-

ure 10 shows the path Q, between points L and W, intersecting the hexa-

gon formed by the third zone neck sheet (labeled '+' in Figure 10) and

the star formed by the fourth zone sheet (labeled '-').

2.5 Orbits on the Fermi Surface
 

Conduction electrons subjected to a magnetic field and the forces

generated by the crystalline potential move in real space on complicated

paths. Semi-classical theory relates this to the motion of kfstates on

the Fermi surface. The Lorentz force is

_ _ _l.
E-B-q(§t+cz><§t), [9]

wheregt andBt are the total electric and magnetic fields seen by signed

charge q of velocity 3 and canonical momentum p, Assume (9) holds for

the conduction electrons, and assume that replacement of p, E, and B by

crystal momentum hk, and applied fields Ea andBa respectively leaves a

valid dynamical equation,

' 1

F-‘hk —q(_Ea+C_vaa). [10]

Then it is easy to show that the application of a constant, uniform

magnetic field causes electrons to undergo a continuous change of state

while remaining at constant energy: the electron moves along the inter-

section of its energy surface and a plane normal to B, Such a path is

called an orbit, whether or not it is closed. For a given Fermi surface

and field direction there may be a continuum of orbits. The deA

effect is dominated by closed orbits having extremal cross-sectional
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Figure 9. Energy bands of AuGaz by a non-relativistic APW calculation.

(Ref. 22)
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Figure 10. Intersection of the path Q with the orbits C' (hexagon) and

C' (star). The empty lattice orbits have been modified to

reflect the gap shown in Figure 9. Plane {111} lies in the

paper.
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areas. Figure 11 illustrates such orbits on a hypothetical Fermi

surface at two different orientations with respect to the applied field

B_along the z-axis, and Figure56 and 7 show extremal orbits on the Fermi

surface of AuGa2 when the field is along symmetry directions.

The applied magnetic field does more than cause the electron states

to move along orbits. It turns out that closed orbits are quantized in

area, in accordance with the Bohr-Sommerfeld quantum condition, and this

is the origin of the deA effect. The theory is described in Section 3.4.
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B-field

 

 
Figure 11. Orbits on a hypothetical Fermi surface.

(a) All extremal orbits (M = maximal area, m = minimal area) and

one general orbit (G) for B_along a symmetry direction.

(b) The same types of orbits for the Fermi surface at an

arbitrary orientation with field.





CHAPTER III

BASIC THEORY OF THE DE HAAS-VAN ALPHEN EFFECT

The de Haas-van Alphen effect is the oscillatory magnetization

(or equivalently, susceptibility) of crystals with free charge carriers

manifested at low temperatures (usually below 20 K) and big fields

(usually above 1 kG). The oscillations are periodic in reciprocal

field l/B with a period that is directly related to the extremal cross-

sectional areas of the Fermi surface. Their amplitudes are dependent

upon the curvature of the Fermi surface, the cyclotron effective mass m*,

and scattering. The amplitudes yield density of states information and

a scattering parameter, called the Dingle temperature and denoted

either TD or x, related to crystal imperfections. The deA effect

arises as part of the response of band state electrons and holes to an

applied magnetic field. The theory requires a quantum mechanical

approach, as can be seen from calculations25 of zero diamagnetic suscepti-

bility for a classical gas of free electrons. Paraphrasing Dingle,35

in classical theory the electrons pursue any path consistent with Maxwell's

equations. Under such lax conditions the average electronic current at

any point vanishes. Quantum theory restricts the orbits; the current at

each point no longer averages out, and magnetic behavior becomes possible.

Fortunately the gross features of the deA effect are predicted by semi-

classical theory, and the important deviations can be expressed in phenom-

enological relations. Calculations using the full panoply of quantum

mechanics and many body theory justify these results and generally give

26
only small corrections, if any. The basic semiclassical theory will

30
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be given in this chapter, with mention when appropriate of features pre—

dicted solely by more complete methods.

The plan of this chapter is first to compare briefly two ways of

looking at the magnetization of the conduction electrons in a magnetic

field: the first involves the dynamics of electrons moving in a field,

and the second is a thermodynamic approach. These give equivalent results.

Then are presented a brief history of the deA effect, basic concepts, a

sketch of the standard semiclassical theory, and finally some of the

corrections to the semiclassical theory that are relevant to this study.

3.1 Two Aspects of Electronic Magnetization
 

26

Movinggcharges. This discussion follows Pippard. The effective
 

Lorentz force (10), with no applied electric field and with the magnetic

field along the z-axis, can be integrated to yield

3:30 = g x (1:10). [11]

where kc and £0 are constants of integration (which can be written as one

constant), and §Dis a scaling factor,

.2 .

§'- fic/e [12]

 

Thus closed orbits in kfspace are related to the path in real space as

follows: Project the real space path onto a plane normal to_§; it will

form a closed path. Rotate this path by a positive angle n/2 about B_and

multiply its area by the scaling factor 32. The result is congruent with

the kfspace orbit. (This is Onsager's theorem.)

Equation (10) is sometimes called the dynamical expression for charge

carriers in crystals. The velocity y_it contains is given by the

kinematical expression,



 
where
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_ 1
l - E Vk EYE) . [13]

d42
These lea to the following expression for the cyclotron frequency of a

charge carrier on a closed orbit on the Fermi surface:

B
(11* = fit-C- , [14]

where

2 3A
n k

* = 751? BE [15]

defines the effective mass for the orbit, and AR is the cross—sectional

area of the orbit in.kfspace.

The real space path corresponding to an orbit in kfspace is not nec-

essarily closed. But the field does render the path periodic along B,

with a pitch 2 in real space. An analysis of the electron's corresponding

26
motion in kfspace, as was done for (15), leads to

sZ = BAk/Bkz . [16]

For reasons that will become apparent in Section 3.4, the deA signal is

dominated by charge carriers on extremal orbits, that is, closed orbits

whose areas Ak in kfspace are extremal. For these the pitch is zero.

Pippard26 shows that the magnetization due to electrons on extremal orbits

is the same as for the equivalent current loop:

M_= ewA/Zn , [171

where Alis the vector area of the closed, real space path, with components

3A

Ax =.l§.__§ , [18a]

8 so

it

1 3Ak
A = _._, 18b

y 37an [ l
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1

Az =';§'Ak , [18c]

where 6y refers to rotation of B about the y-axis (coincident with ky),

6x to rotation about the x-axis, and equation (18c) follows from integra—

tion of equation (11) about the orbit. The derivatives are evaluated at

the extremal cross sections for the given field direction. Equation (18)

shows 5 and_§ are not generally parallel. However, from (18) one expects

g parallel to §_when along symmetry directions of the Fermi surface, and

this is usually the case.

Thermodynamic approach. The magnetization of a system is related to
 

the dependence of its Gibbs free energy G on the magnetic intensity H

through the thermodynamic relation

This can be demonstrated by considering the work and heat energy changes

of a magnetic system. It is analogous to V = —(3G/3P), where volume V

corresponds to magnetization.M, and pressure P corresponds to magnetic

intensity H.27 Frequently no distinction is made between the Gibbs and

Helmholtz free energies in a solid system, since the effects of volume

changes are negligible and reference is made simply to the free energy 9.

Special cases are considered separately. For example, magnetostriction

calculations require that the free energy explicitly include the dependence

on strain. The general expression for the free energy per unit volume of

an electron gas 1328

$2 = nEF + kBT Z 2n[1—£O(E)] , [20]

states

where n is the total number of conduction electrons per unit volume, fo is

the Fermi-Dirac function, and the summation is over all conduction states.



  
Equation (l9

sufficient Ty

this region Q

can make sev.

be carried

D
-
Q
)

with equal

OCCupied or

éi’u’En CrOSS

drn mics, I

an aEO’Jnt f

are relate;

A bri



34

Equation (19) then is rewritten as

1‘1 = -(vHo)T. [21]

Implications for the deA effect. When a region of the sample is
 

sufficiently extensive that it can contain the electronic motion and

sufficiently crystalline, pure, and cold that there is associated with

this region a well defined Fermi surface on which the electronic states

can make several orbits before scattering, then both approaches above can

be carried further to yield the deA effect. From the point of view of

moving charges and orbits on the Fermi surface, the orbits become quantized,

with equal increments of area Ak between orbits and some-finite number of

occupied orbits (i.e. the number of quantized orbits that fit within the

given cross section of Fermi surface). From the point of view of thermo-

dynamics, the conduction electrons contribute to the total free energy

an amount Qosc’ which oscillates with field. Of course, these two approaches

are related, as demonstrated at the end of Section 3.7.

A brief history of the deA effect is followed by definitions of

these basic concepts: Landau levels, quantization of orbits, periodicity

in inverse field, and deA frequency.

3.2 History of the de Haas-van Alphen Effect
 

The deA effect is named after W. J. de Haas and P. M. van Alphen,l

who observed it in 1930 in a single crystal of bismuth. Later that same

year another quantum oscillation effect, in magnetoresistance, was observed

by de Haas and Shubnikov.29

Independently of de Haas and van Alphen, but in the same year, 1930,

Landau30 considered the quantum mechanical problem of free electrons in a

steady magnetic field and remarked that the magnetization of a metal would



the ort

(
J

l
J
—
c

I
“

‘

1C 828

have c

was Pi

tan-1 3'

7

IESZT

'
1
1

7
(
1

L
4

(
)

(
J
-
l

'
N

m

:
2
.

r
—
4

‘
0

U



35

be expected to exhibit periodic variations because of the quantization of

the orbits of the conduction electrons. The energy levels of this system,

called Landau levels, enter directly into the calculation for the deA

effect. Although calculations from first principles are limited to quadrat-

ic energy surfaces, the concept is extended to real metals, most of which

have complicated Fermi surfaces not resembling ellipsoids. Thus Landau's

name is associated with the early development of the deA theory. But it

was Peierls31 who in 1933 first addressed the deA effect, by showing that

Landau's quantization extends to conduction electrons in systems with peri-

odic potentials. Between the years 1933 and 1939 Landau,30 Peierls,31

Blackman,32 and Shoenberg33 developed the theory of Landau levels, still

restricted to ellipsoidal energy surfaces. Not until the years 1952-56

6
7

35’3 and Lifshitz and Kosevich3 develop the theory
did Onsager,34 Dingle

for Fermi surfaces of general shape, usually referred to as the Lifshitz-

Kosevich (LK) semiclassical theory. As the name suggests, this was not a

calculation directly from the Schrodinger equation, but concepts from the

earlier theory were incorporated. This raised the question of whether all

the results of the LK semiclassical theory were generally applicable. In

recent years full quantum mechanical calculations have given this theory a

formal foundation and extended many of the important results to the general

case. (See Ref. 38, hereafter called Gold, for examples and references to

these calculations.)

The deA effect was thought to be a peculiarity of bismuth until ob-

served in zinc in 1947 and shortly afterwards in a number of other met-.

als.39’3{A Its importance as a tool to study the Fermi surface was perhaps

not fully appreciated until Onsager34 in 1952 showed that the frequencies

of the oscillations (with respect to inverse field) are directly proportional

to the extremal cross-sectional areas of the Fermi surface perpendicular to
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the field. It is now extensively used to study the Fermi surface of

crystals.

Within a few years of the discovery of the deA effect, experiments

were done on dilute alloys of bismuth.69 In fact, some feel that all the

early work was on samples that were effectively alloys, albeit poorly

characterized ones, when compared with the highly purified metals used to-

day. For a number of years the goal of deA studies on samples to which

impurities had been added was the study of the scattering and the testing

of theories predicting amplitude dependence. These studies have now become

much more quantitative and have increased their scope, as mentioned in

Chapter IV.

Meanwhile, experimentalists were looking for deA signals in other

types of crystals. In 1961 they were first observed in a semiconductor40

(PbTe) and an intermetallic compound41 (InBi). Intermetallic compounds

possess both long range order and a high density of charge carriers, so

their Fermi surfaces have been studied in nearly as much detail as those

of pure metals.

In recent years other investigations have profited by the direct

access the deA effect gives to the Fermi surface. One example is pressure

derivatives, the effect of pressure on the band structure.

The relation of the free energy to the deA effect (see Section 3.1)

and the fundamental importance of the electronic energy suggest that phenom-

ena other than magnetic susceptibility will exhibit oscillations as the

field is changed, and these are observed in abundance, in both equilibrium

properties (magnetic susceptibility, quasi-adiabatic temperature, heat

capacity, magnetostriction, and contact potential) and transport properties

(thermal conductivity, magnetoresistance, thermo-electric power and Hall

constant). The generic term for these phenomena is quantum oscillations.
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Because quantum oscillations involve orbits on the Fermi surface they yield

information about its topology and various parameters, such as extremal

orbit areas, energy levels, level widths (related to crystalline perfection),

and cyclotron effective masses. The deA oscillations are usually easier

to detect than the other oscillations, and have made the biggest contribu-

tion to the measurement of the cross-sectional areas of Fermi surfaces.

Measurements of the other quantum oscillations sometimes give more accurate

or precise values for the other parameters, depending on the substance and

conditions.

3.3 Landau Levels
 

Free electron model. Free, non—interacting electrons constrained to
 

y’ 22 satisfying periodic (Born-von Karmén)

boundary conditions have single particle energy levels given by Equation

a volume V of dimensions 1x, B

(5). Application of a magnetic induction

_B_ = 132 [22]

changes the quantization scheme: new wave functions replace the plane

waves, kx and ky are no longer good quantum indices, and two new quantum

numbers arise, one of which is n = O, l, 2, ... and appears in the new

energy,

2k2

z . [23] En(kz) = hwo(n + l/2) + h

Ino

where m0 is the free electron mass, the cyclotron frequency is

m = LB [24]

and 1/2 is a phase constant. These levels are called Landau levels, after

their first calculation by Landau,3O who started from the Schrodinger

equation for magnetic field,
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(ErEA)2 w

2mo

= Ev . [25a]

where the kinetic momentum operator is

V [25b]

He used the Landau (also, linear) gauge for the vector magnetic potential

A = B(O,x,0) [25c]

for flux density B parallel to the z-axis. (Frequently magnetic intensity

‘H is substituted for B in the literature.) Usually the Landau level is

given simply as

En = hwo(n + 1/2) , [26]

because one is usually interested in a fixed value of kz, so the variation

of energy with kz can be ignored.

The absence of the second new quantum number in (23) and (26) renders

the Landau levels of higher degeneracy than the energy levels of the

crystalline potential, a characteristic which is intimately related to the

existence of the deA effect. In view of this, a sketch of the derivation

of the Landau levels and their degeneracies is warranted.

Degeneracy. A standard derivation (see, for example, Ziman, pp. 269-
 

274) shows (25) is satisfied by

2 2

E = E' +h—E5 [27]
2mo

and

w(X.y,Z) = U(X) exP(i(By+kZZ)), [28]

where u(x) satisfies the one-dimensional Schrfidinger equation for a simple

harmonic oscillator,
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2 2 m

_ _E_.§_E£§l.+ —9-(w x4fi§)2u(x) = E'u(x) , [29]
2mo dx2 2 o m

of frequency mo and centered at the point

x =_1_f1§ [30]
0 mo mO

The eigenvalue problem (29) has eigenvalues

E' = hwo(n + 1/2) . [31]

Equations (27) and (31) give the final result (23). Single-valuedness of

w quantizes kz and B in units of 2w/Bz and 2n/RY respectively. The range

of k2 is unrestricted, as in zero field, but the range of B is restricted

by (30) if one considers only those states corresponding to electrons

whose orbits lie completely within volume V (which is practically all of

them for macroscopic V). Thus

0 é=xo é=lx , [32]

giving

mwSL

0_<__Ba——-—°fi°x=§:§-2x- [33]

 

 

 

m w

po = °h° exey , [34]

making each level (23) p-fold degenerate. Note that

= lezy = total flux [35]

p0 hc/e flux quantum ’

so that the degeneracy of each level equals the number of flux quanta

threading the specimen.

All these derivations are for a right parallelpiped and for Bllz,

but are directly extendible to a specimen of general shape and for general
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field orientation, kz becoming kH for the latter case.

Periodicity. Figure 12 showsthe relation between the Landau levels,
 

the field, and the Fermi level. Equation (26) shows the spacing between

the levels increases in proportion to the field so that the highest

occupied level no suddenly depopulates as its energy value rises above EF.

(E.g., no = 7 at B = B1 and no = 6 over Bl < B ;=B2.) Let Bl be the field

at which level En = EF for some specific quantum number n = no and let

B2 > Bl be the field at which level no-l equals EF. From (26) this gives

 

EF
W= B1(nol + 1/2) — B2(n0 - 1/2) $ [36]

yielding

1L. 1L.= 1 =‘he/moc
[37]

Bl B2 B1(no + 1/2) EF

which is independent of the quantum numbers at the Fermi level; depopula-

tion of the levels occurs at equally spaced intervals in inverse field,

l/B, with a period

1 = (he/mac)
l

P=__.—

Bn Bn-l EF

[38]
 

Each depopulation means a sudden change in the energy (23), En(kH), where

kH replaces kz to allow for a general orientation of the crystal in the

field, in line with the definitions in Section 2.1. This sudden energy

change implies, by Section 3.1, a consequent pulse in magnetization,

with pulses from different kH generally out of phase because En(kH) = EF

is satisfied at different fields B (through mo). Near extremal values of

En(kH), with respect to kH’ the pulses are in phase, and these dominate

the signal.
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Figure 12. The relation between the Landau levels and the Fermi level

EF. At any field B the Landau levels are equally spaced by

an amount that is proportional to B. As B increases the

highest occupied level n suddenly depopulates as its energy

value rises above EF.
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Real crystals. The existence of Landau levels and the periodic
 

depopulation occur in systems far more complicated than the simple free

electron model. All quantum oscillations arise from the sudden change

of state of a non-negligible fraction of the conduction electrons and

holes as the magnetic field causes successive Landau levels to exceed

the Fermi level EF' The quantitative theory can be extended to crystals

with quadratic energy surfaces by generalizing to the effective mass, mO

replaced by m* = (m1m2)1/2 in equation (23), where mi are the band struc-

ture masses (elements of the effective mass tensor). But even for com-

plicated Fermi surfaces in the presence of finite temperatures and crys-

talline imperfections the properties of the band states continue to ex-

hibit similar periodicities, governed by the slightly more general equa-

tion

En = fiw*(n + y) [39]

for the Landau levels, where w* is given by (14) and the phase constant y

is not necessarily 1/2. But full quantum theory and experiments give y

very near 1/2 for most metals (Gold, pp. 45 and 85).

3.4 Quantization of Orbits
 

Derivation. In 1952 Onsager34 was able to extend the theory of the
 

de Haas-van Alphen effect in crystals with Fermi surfaces of arbitrary

shape by considering the effect of the applied magnetic field on the elec-

tronic orbits, rather than the electronic energy levels. In a field the

electrons assume orbital motion, which is quantized according to the Bohr-

Sommerfeld quantum condition

§PC dq = h(n + y) , [40]

where q is the generalized coordinate, p is the canonical momentum

c
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_ .9
RC - TIE + CA 9 [41]

glis the vector potential, and y is a phase constant. This quantization

of the electron motion in real space leads, by the semiclassical Lorentz

force (10), to the quantization of orbits in kfspace, so that only those

orbits are allowed whose area is given by

An = 2ns(n + Y) , [42]

where n and Y are the same quantum number and phase constant as in the

Landau levels (39), s is the scaling factor (12), and B (in s) is assumed

to be uniform over the electron's orbit. For quadratic energy surfaces

Y =1/2-

Returning to (40), combine it with equations (11), (12), and (41)

to obtain

§f§£_x d£_- Séfdr = 2ns(n + y). [43]

From the definition of flux 0 through the area AH defined by projecting

the path onto a plane normal to B,

Bf§£_x d3 = 2® . [44]

By Stokes's theorem

§égd£_= fcurloéfda = ¢ . [45]

Substitution into (43) gives

21rs(n + y) = <I> = BA , [46]
H

showing that the flux in the projected real space area AH of the orbit

is quantized. Onsager's theorem transforms (46) directly into (42).

 

Cylinders of orbits. Figure 13 shows orbits at kH on a Fermi surface

of arbitrary shape. This is referred to as a slice of krspace. AF is the

cross-sectional area at the Fermi surface. Because kH is a good quantum

number the orbits are quasi-continuous along the field direction and form
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tubes of constant cross-sectional area with a common axis, not necessarily

parallel to_§, unless §_is parallel to a symmetry axis. The shape of a

tube is not necessarily constant along kH unless the energy surfaces are

quadratic,

f3

INK) = mk' 'k 9 [47]

in which case they are elliptic cylinders (Gold, p. 44). See Figure 14.

As the field increases and a given orbit passes beyond the Fermi sur—

face in Figure 13 the Fermi-Dirac distribution requires that it suddenly

depopulate. Each orbit (42) corresponds to a highly degenerate Landau

level (39), and the sudden change in the distribution of orbit states

causes a pulse in the magnetization, as expected from the point of view

of moving charges, Section 3.1. The way in which pulses from different

slices along kH contribute to the total deA signal is discussed in the

next subsection.

Periodicity and deA frequency. The period in inverse field l/B
 

between the pulses coming from a given slice can be found by an analysis

similar to that made for Landau levels. For a fixed field direction let

AF(kH) be the area of the intersection of the Fermi surface with the plane,

normal to B_at kH, that defines the slice of kfspace. (Note that the Fermi

surface contains an orbit only for discrete values of B.) As suggested by

the discussions of pulses in the magnetization, the conditions

En(kH) = EF [48]

and An = AF(kH) [49]

are equivalent. Comparison of equations (39) and (42) gives immediately

the period in inverse field for the orbits breaking through the Fermi surface:
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   Slice 1 to kH

Figure 13. A slice in kfspace showing quantized orbits superposed on a

Fermi surface of arbitrary shape, at some value of kH. This

is not necessarily an extremal cross—section. .B is parallel

to kH'

 

Figure 14. Changes in the quantization scheme as the principal axes of

an ellipsoidal Fermi surface vary their orientation in

§_= H. The number of cylinders (levels) increases as the

maximal cross-sectional area of the ellipsoid increases.

(From Gold, p. 44)
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It can be shown that magnetization from each slice versus l/B is a saw-

tooth wave (Figure l6(a)), with a period that varies with kH, so that sig-

nals tend to cancel except those from that part of the Fermi surface for

which AF(kH) is stationary with respect to kH: the extremal orbits.

Figures l6(c) and l6(d) show the net magnetization after summing over

slices in the vicinity of a maximum and minimum in cross-sectional area.

(One figure is for no spin, and the other for spin 1/2 electrons.)

The inverse of the grouping in (50) occurs often enough that it is

convenient to define the deA frequency

_ hc

F(O,¢) ‘ 2ne AF,ext ° [51]

 

where the deA frequency F depends on the field direction (O,¢) through

the extremal cross—sectional area AF ext of the Fermi surface, hereafter

9

denoted AF. The deA signals (Figures l6(c) and (d)) can be resolved into

harmonic components, each having a distinct period when plotted against l/B:

Mosc’r on sin[21rr(—§ — y) i %] , [52]

for the r—th deA harmonic, where the positive sign in the second phase

constant is for orbits of minimal cross-sectional area, and the negative

sign, for maximal. Figure l6(e) shows the fundamental harmonic for both

maxima and minima. There may be more than one value of AF for a given

field orientation; then there are terms like (52) for each deA frequency.

The total magnetization will also have a non-oscillatory term, due to

additional magnetism from the electrons and from the lattice.

Equation (52) shows the deA signal is directly related to the Fermi
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surface's extremal cross-section in each direction, information that

can give good clues about the shape and dimensions of the Fermi surface,

and in simple cases allows direct calculation.

As outlined above, the sum of pulses in magnetization from all

orbits passing through the Fermi surface generates the oscillations in

the net deA signal. Equivalently, the oscillations can be imagined as

occurring when each cylinder (Figure 13) or tube of orbits bursts the

Fermi surface, which can occur only at extremal cross-sections.

Degeneracy. As mentioned in the subsection on cylinders of orbits,
 

each orbit represents a degenerate energy level. It turns out that the

degeneracy is the same for each level and equals the numbercfifformer

firstates that lie between the orbits, a result known as sweeping out the

area between orbits. Although a rigorous proof of degeneracy is beyond

the‘sem'iclaa-ss'ical arguments presented so far in this section, we present

here a calculation Showing the validity of this heuristic concept for

the free°electron model.

In zero magnetic field the free electron model has discrete eigen—

energies E = h2k2/2mo. In magnetic fields the Schrodinger equation be-

comes H = E' , where H is given in (25a), with discrete eigenenergies

E' given by (23). The energy difference Un = E' - E is the change in

energy of the state 5 as it is transformed into one of the states of the

set (n,kH). By the correspondence principle, in the limit of big

quantum numbers we expect both systems to have the same energy, since

classical charge carriers do not gain energy in a steady magnetic field.

Assuming this carries over to each slice of kfspace, the question is,

in what region can an orbit "sweep out" the kfstates so that U = O

for any field? This is answered by summing over
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states within a slice of unit thickness over a trial region for the n-th

orbit (Figure 15). Consider

 

fi2k2

U = (E' -E) n =‘hw (n + 1/2)-+-——JB [53a]
n age 0 mo

2

= ;§_.[23(n + 1/2) - k2 ) [53b]

2m P
o

_ n2 _- 2nmo (An Ak) , [53c]

where

k% = 18% + k; [54]

and

AR = “kg . [55]

Using the density of states per unit volume of sample per unit area of

kfspace

l 2

Wk = __§_X
[56]

(27V)2

in

Ak,2

Uslice = I Un(Ak) wk dAk :
[57]

Ak,l

gives

A
k, 2 2x2n.2 2

Uslice = I [i) (An ' "kpi kp dkp - [58]

Ak, 1 4U2mo

The limits shown in Figure 15(a),

A = (An - AA/2)o.5 [59a]

k,1 n
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and

A + AA/2

Ak,2 = l—E---io°5 , [59b]

where

AA 2ns [59c]

is the center area associated with the phase constant 1/2, give

Uslice = 0 a [60]

a result consistent with the correspondence principle. The limits shown

in Figure 15(b),

 

0.5

Ak,l = Lia [613]

and

An+1 0-5

Ak,2 = ( 11 l . [61b]

give the result

ezlxlX 2

Uslice = - ( 2) B ’ [62]

4nmoC

which is not consistent with the correspondence principle. Thus the scheme

of Figure 15(a) is the one to use.

3.5 Temperature and Scattering Effects
 

The effect of bath temperature T and scattering on the Fermi surface,

the latter represented by the scattering parameter X, or equivalently,

Dingle temperature TD, is to reduce the amplitudes of the deA signal (52).

The higher harmonics of MOSC are reduced the most.

Nonzero temperature. The equations of Sections 3.3 and 3.4 assume
 

the sharp Fermi surface and Fermi energy obtaining at zero absolute
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temperature. At temperatures above zero both of these quantities are

"smeared out," the Fermi level EF by an amount kBT and the Fermi surface

by an equivalent amount in k§Space. Hence from the points of view of

either Landau levels passing through EF or orbits passing through the

Fermi surface, depopulation of states occurs over a broader field range,

with a consequent attenuation of magnetization.

The existence of quantum oscillations requires

rm .2... kBT , [63]

where hm* is the quantum of energy for the system with magnetic field. In

Gaussian units this is equivalent to

B(kG) ;_ 7.45 :1 T(K). [64]

0

Another consequence of finite temperature is in increased scattering

of the electrons by phonons. This increases the width of the energy

levels, with an effect on MOSC amplitude that goes approximately as

exp(-const. T/B).

Scatteringio Impurities and strains in the crystal also attenuate the
 

deA signal. A nonrigorous approach is to argue that the Landau levels

are given a finite width as the electron lifetimes in the orbital states

are reduced from infinity to finite values by scattering, and that this

finite width further decreases the rate of level depletion as the level

passes EF. Dingle36 first modified the deA theory for the effect of scat—

tering, expressing it in terms of an increase TD in the effective temper-

ature, which appears in an attenuation factor added to (40):

M or e‘mTD/B sin[21rr(% - y) 1‘ .2], [6S]
OSC

where



 

and k1

lifet:

these
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a = 2n2kBm*c/fie , [66]

and kB is Boltzmann's constant.

Dingle also investigated the relations among TD, the mean inverse

lifetime l/r on the orbit, and the level width P. The present forms for

these relations are

exp(—n/w*r) = exp(-2nT/hw*) = exp(-2n2kBTD/hm*) . [67]

These relations assume a Lorentzian line shape for the energy levels

(Gold, pp. 57-58).

Dingle assumed the free electron model, but the field dependence of

the amplitude of MOSC as given in (65) is observed to hold very well for

real metals, and a Green's function calculation by Brailsford44 only

slightly modified Dingle's results, with a factor 2 in lifetime, giving

(67). Others45 extended these expressions to general Fermi surfaces.

However, accurate numbers for TD must be found experimentally, and the

theory is not clear on just how disordered a crystal may be before the

deA effect can no longer exist. It used to be thoughtl‘é,47 that if

point and line defects approached a density of one per electron orbit in

real space that no deA oscillations would be observed, but recent work48

shows that even in this limit the signal is strong enough for measurement

and analysis, and the theory is still under development, as described in

Chapter IV.

Two important characteristics of TD are its independence of the mag-

nitude of magnetic field in nonmagnetic media,60 and its noticeable depen—

dence on field orientation. The latter effect arises because scatter on

the Fermi surface is generally anisotropic, and as the orientation of the

field is changed different regions of the Fermi surface make the dominant
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contribution to the deA signal.

3.6 Spin Splitting
 

Dingle35 first considered the effect on electronic magnetization of

the interaction of the electron's spin with the magnetic field. Lif-

shitz and Kosevich37 extended his result to arbitrary effective mass. The

effect of Zeeman splitting of each Landau level is to give, for any slice

through the Fermi surface, two sets of levels with the same spacing but

shifted in phase, giving rise to two signals of half the original amplitude

and shifted in phase. The field's interactions with the electron spin

S =‘il/2 perturbs the spinless Landau levels (39) by the amount SguBB,

transforming (39) into

[
'
1
1

ll hw*(n.+ y):_%guBB [68a]

hm*(n + y : gm*/4mo) [68b]

upon removing common factors. Thus the phase constants in the two deA

signals Mé;%,r analogous to (52) should be replaced by Y :_gm*/4mo, so that

the total signal is

_ (4')

Mosc,r ' Mosc,r osc,r [693]

= Ar Sin[21rr(F/B - 'y - gm*/41110) :l: n/4l

+ Ar sin[21rr(F/B - y + gm*/4m0) I n/4] [69b]

= Ar sin[2nr(F/B -y) ;:n/4] cos[r %.g 2E3, [69c]

m0

a trigonometric relation giving the Dingle cosine factor in (69c), which

shows that some values of gm* can give zero signal, called a spin-

splitting zero. By multiplying the phase shift gm*/4m0 by the deA period

it can also be expressed in terms of l/B, giving the total splitting
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between peaks (see Figure l6(d)):

6[l/B] = gm*/ZmOF. [69d]

In magnetic media the signals from the two spin systems generally

have different amplitudes, so this simple relation no longer holds because

the Agt) are not equal and the energy of perturbation is no longer direct—

ly proportional to field.60

3.7 Lifshitz-Kosevich Theory
 

In 1956 Lifshitz and Kosevich37 started with the expression (20) for

the free energy of a gas of nearly free electrons, assumed that the elec-

trons do not interact (i.e., §_= H9, and showed that summing over states

under the condition of the Onsager relation (42) yields an oscillatory

part for the free energy, from which the oscillatory magnetization and sus-

ceptibility are easily obtained by differentiation. In succeeding years

the important results of this semiclassical theory have been validated by

full quantum theory.

The free energy summation in (20) can be evaluated by expressing the .

density of states in terms of the coordinates (E, kH’ H), and using the

Poisson summation formula. The perfectly sharp Landau levels are then

assumed to be replaced in the real crystal by a series of Lorentzian

curves of half-width T to reflect the effects of crystal impurities. The

derivation also includes non-zero temperature in the Fermi-Dirac distri-

bution. After including the Zeeman splitting the result for the oscilla-

tory part of the free energy is (see Gold, pp. 55-67 for a derivation):

[70a]



 

where

where =

and

E‘Jaluat

Th

Cosine

field,

Where
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where

3/2 kBT exp(—raTD/H)

 

1 He

2' m*

9 -
_
_

r /§'(rhc) [Aextnlk sinh(raT/H) OS[2 r8 m0)

Tl

41, [7013}x cos[2nr(%~- y):¥

where a is from (66), H is the magnetic intensity, F is the deA frequency,

and

2

A .. ___ 3 AF
9

akHZ

ext [70c] 

evaluated at the kH corresponding to the extremal cross-sectional area.

The magnetization is given by (21), taking the derivative of only the

cosine term since the other factors are comparatively independent of

field. Using (6) gives

 

r=°° r=°°

M... = 2 new =2 we was , ma]
r=l r=l

where

vr = ZurI—L—MGH4’) - Y] 47% , [71b]

2 lg 8 3/2 kBT exp(-raTD/H) 1T m*(e’¢)

3:1,. = -l—-l 9. fig (303(7 r8 T")
"r 'fii sinh(raT/H) o

F e

x ——£—J%?:', [71c]

IAext 5

_ _ ~ 132 - ___1____§E .

9— ‘ 1H ‘e F as To F sine 23¢ ’ [71d]
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and

a = 2n2kBm*c/eh, (146.9 kG/K for m* = mo). [7le]

The term 7 is generally ignored or taken to be a constant in both direction

and magnitude of field; hence it is called the phase constant here. Mea-

surement of its angular variation requires a series of precision measure-

ments of phase, and apparently has not been made for any metals, although

the values of y at symmetry directions has been reported for the noble

metals.49 The total free energy (70) and the magnetization (71) are best

illustrated graphically by first taking the limit as T and TD (i.e. scat-

tering) go to zero (the ideal crystal condition) and then setting g = 0,

to give spinless states. The resulting waveforms are shown in Figure l6(b)

(free energy) and Figure l6(c) (the component of the magnetization along

iH). In Figure l6(c) the solid line is for a maximal cross-sectional area

(of either an electron or a hole sheet of the Fermi surface), and the

dotted line is for a minimum (again either electron or hole).

Now "turn on" spin. As discussed in Section 3.6 the signal arising

from each spin sheet will be identical in nonferromagnetic crystals except

for a phase shift downward in l/B for the spin-up electrons and an equal

shift upward for the spin-down electrons, giving a waveform like that in

Figure l6(d).

The above ideal crystal condition gives the maximum relative ampli-

tudes for the harmonics in gas and Mosc‘ As evident from (65) and 7l(c),
c

finite T and TD tend to wash out the oscillations in each harmonic, with

the higher harmonics being attenuated the most. Because of this rapid

attenuation of the harmonics, their detection beyond the third normally

requires very pure samples and very low temperatures, and for many experi-

ments only the fundamental harmonic, illustrated in Figure 16(e), is

observed. For such a case Zeeman Splitting of the levels attenuates the



Figure 16. Theoretical dependences of magnetization and free energy upon
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the inverse field, 1/B for T = TD = 0.

(Figures (a), (c), and (e) are from Gold, p. 48)

(a)

(b)

(C)

(d)

(e)

Magnetization of a single slice of the Fermi surface.

Oscillatory part of the free energy contributed by

spinless electrons near an extremal section of the

Fermi surface of an ideal crystal. All harmonics

are present.

 

Magnetization, summed over slices, conditions as in (b),

for a maximal cross—section (solid) and a minimal one

(dotted). All harmonics are present.

Magnetization from a Fermi surface maximum, conditions

as in (c) except electrons have spin % with consequent

level splitting.

Fundamental component of each of the two curves in (c).

Figure (e) could also represent the two fundamentals

of each of the two spin signals of (d), coming from a

single extremal orbit, in which case the amplitude of

the sum is reduced by the factor cos(ngm*/2mo).

(0)

lb)

(e)
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signal amplitude by the cosine factor in 7l(c), but does not change the

shape of the wave from a sinusoid.

Important properties of crystals can be inferred from measurements

of the fundamental (or from any one harmonic). These are l) the extremal

cross-sectional areas of the Fermi surface (given by deA F), 2) cyclotron

mass m* (obtained from the dependence of amplitude Mr(H) upon the tempera-

ture), 3) TD (from the dependence of Mr upon field), and 4) the effective

g-factor (from extrapolation to the infinite field phase). The g-factor

is more commonly measured directly from a quantum oscillation waveform rich

in harmonics, as shown in Figure l6(d).

3.8 Justification of Semiclassical Theory
 

Early theory rigorously developed applied only to single—particle

states of independent electrons, and most of the present theory easily com-

pared with experimental data is either semiclassical or has been extended

by analogy from its free electron origins to real crystals. The concept

most important to Fermiology, quantization of orbits, has two vulnerable

areas, as pointed out by its originator, L. Onsager,34 in 1952. These

are the ambiguity of the connection between E(k) and the Bohr—Sommerfeld

condition due to the fact that the components of the kinetic momentum do

not commute, and the implicit assumption of wave packets. Onsager specu-

lated that it was "reasonable to hope that neither previous theories of

diamagnetism nor the present generalization will be invalidated by the

error involved...or at least that the error in the computed susceptibility

will not vary rapidly with the field intensity.”34 So far his hope has

been upheld, with subsequent rigorous calculations tending to support

various elements of the theory. Let us consider the theoretical support
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for three important semi—classical features: firstly, the concept of wave

packets representing the orbiting electron; secondly, the relation between

width of the energy levels and electronic lifetime; and thirdly, the cone

cept of independent electrons. (See References 26 and 38 for more refer-

ences and details than are given below.)

Regarding wavepackets and the use of the dynamical relation (10) and

the kinematical relation (13), when the field can be considered a perturba—

tion of the total crystal potential one may write the wave function of an

orbiting electron as (Ziman, pp. 147—157)

¢(_r_,t) = E Z f(a,t) ting—g). [72]

n 2

The Wn(£_- g) are Wannier functions, obtained from a unitary transforma-

tion of the Bloch waves and so are a suitable set of basis function for a

representation of the electron wave functions. The f(£,t) is an envelope

function obtained by solving an equation with the equivalent Hamiltonian

and very similar to the Schrhdinger time dependent wave equation, and the

sum is over all energy bands n and sites £_in the sample. As time passes,

f(§,t) peaks at successive sites along the real space path of the orbiting

electron, picking up wave functions centered on the sites. The various

eigenfunctions that have been calculated this way suggest the idea of a

time-dependent mixing of states: the uniform, static perturbation asso-

ciated with the magnetic field generates a mixing of kfstates. As time

passes the kfstate that most nearly characterizes the oscillatory wave

function moves around the orbit. Increasing the field intensity draws

more kfstates into the mixing, corresponding to an increased increment of

area, AAk = 2ns. It is to be noted that as B increases so that orbit

radius decreases, AAk increases, so that k at any instant of time is less

well defined, illustrating the well known relationship between quantization
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and the uncertainty principle.

Regarding the width of the energy levels, considerations by Falicov

and Stachowiak5 present the wave packet as a superposition of many

orbital functions which spread in all directions, coming together periodi—

cally after one cyclotron period, thus forming a series of pulses. They

show that the density of states about the center of a level is a Fourier

transform of the total, time dependent wave packet, energy being conjugate

to time in quantum mechanics. So long as the pulses continue unchanged

indefinitely in time they add to give a sharp energy level. Scattering of

individual orbital functions attenuates the pulse more and more as time

passes, with a consequent increase in the width of the energy level. This

is the theoretical foundation of the relation (67) between level width F

and mean inverse lifetime III.

The problem of the electron-electron interaction has been approached

from many directions. This sketch follows Cracknell and Wong (pp. 416-420

of Ref. 15, hereafter called CW). It is assumed that the behavior of the

electrons lies between the two extremes of completely independent and

completely correlated (plasma wave) motion. To a first approximation the

interactions can be put into the crystal potential through a screening

parameter A:

V(£) = 2 Sign e‘AIETEJ . [73]

2 -—-
.

This still assumes the system can be described by single-particle states.

Landau's51 phenomenological theory of the Fermi liquid, originated for

liquid 3He, can apply to the conduction electrons as the interaction is

turned on, and the Coulomb repulsion between electrons becomes partially

balanced by the attractive force due to the exchange of virtual phonons,

thereby generating the eigenstates of the interacting system by a continuous
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transformation from the old eigenstates. The entities associated with the

new eigenstates are called quasi-particles. They are independent modes

that can replace the electrons, a replacement justified by perturbation

theory.52 A finite discontinuity in momentum space at zero temperature

remains, leaving the concept of the Fermi surface intact. Implications

of the theory for TD and deA F are not clear. Experiment shows that

deviations from predictions of the semiclassical theory are negligible,

if observable at all (Gold, pp. 96-97). The LK amplitude 7l(c) agrees

(within an experimental uncertainty of 5% to 20%) with the data on the

noble metals.53 Also, because the measured Fermi volume of copper lies

within 3% of that predicted by the single-particle LK theory,61 effects

due to electron-electron interaction should change deA F less than 2%

(Gold, p. 97).

3.9 Corrections to Semiclassical Theory
 

As stated above, full quantum calculations have supported most

results in the semiclassical theory, with minor adjustments of energy

levels or deA frequency usually smaller than the experimental resolu-

tions. But two intrinsic effects not predicted by semiclassical theory,

magnetic interaction and magnetic breakdown, are easily observed. A

third observed deviation is due to the demagnetization in a sample of

finite size.

Magnetic interaction (Manyébodyyeffects). Each electron sees the

flux density §_and not just the applied magnetic intensity H, which

Lifshitz and Kosevich assumed in their derivation. Replacement of H_by

B_in (70) and (71) was first suggested by Shoenberg,54 in order to explain

an abnormally rich harmonic content in certain samples giving a strong
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55’56 He referred todeA signal and subsequently justified by theory.

this as the B-H effect. The reason that the very small magnetization of

non-ferromagnetic samples can alter the deA signals is that the field

appears in the phase wr of Mr' This gives

r=m

Mose = 2 arts) sinwr(§) , [74a]

r=l

where

ur(p) = 2nr(§£%_¢l - y) 1% , [74b]

and H is retained in Mr because these functions are not measurably

changed by magnetic interaction. The flux density is given by

p = g + 41rM_ , [75a]

with the total magnetization M_of the electrons the sum of the oscilla-

tory part due to quantization of the orbits and a steady part,

E-= Ilisteady +L"lose ' [75b]

Because Mosc is the dominant part of M'at the fields and temperatures

used to study the deA effect, one normally approximates M_in 75(a) by

M . Equation (74) is thus an implicit equation for M . A calcula-

‘osc —osc

tion by Gold (pp. 69-78) shows that 74(a) has additional, nonharmonic

frequencies arising from extremal orbits labeled a and b, truncating 74(a)

to the fundamental term for both orbits and adding the two signals gives,

after solving the implicit equation to first order in the harmonics, the

following frequencies: Fa and F normally the strongest, 2Fa, 2Fb, Fa - Fb,

b

and Fa + F the next strongest, and additional frequencies of smaller ampli-
b

tudes.

The magnetic interaction effect is strongly field dependent. Thus

the character of the oscillations may rapidly change with field to a more

complex pattern, sometimes exhibiting beats.
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Demagnetization. When the deA amplitudes and the magnetic suscep-
 

tibility are big enough that magnetic interaction is observable, then

demagnetization produced by the shape of the sample may also be important,

entering the deA phase through

-§internal = £1applied +fldemag + Aflg ' [76]

This can increase the difficulty of calculating the relative amplitudes

of the harmonics in l/H. If

Mosc

H2/8n2F

I
I
V

1 , [77]

then the magnetic response for a sample of arbitrary shape will be exceed-

ingly complicated, and the only simple fact is that it will oscillate with

the same period as for the LK theory (Gold, p. 75).
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Magnetic breakdown. Cohen and Falicov were the first to point out
 

the possibility of an electron's jumping between adjacent semiclassical

orbits on the Fermi surface (an interband transition by the magnetic

potential). Under the influence of a moderate magnetic field states will

move along arc C to are D of the hypothetical orbits of Figure 17 to form

orbit A(2). A stronger field may cause a transition from one zone to the

other, so that the state moves from arc C to arc B. By Onsager's theorem,

such orbits correspond to real space orbits, with resultant quantization.

The sign of the area was ignored in the derivation of Onsager's rela-

tion (42), with no distinction between hole and electron orbits. Break?

down orbits require explicit consideration of the sign which arises in

step (43), where_£ x d£_may be negative on some arcs and positive on other

arcs. It is obvious that the integral of £_x d£_about an orbit that

intersects itself is equal to the algebraic sum of areas from each simple

loop of the orbit if one assigns negative
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value to hole orbits and positive value to electron orbits. Magnetic

breakdown thus generates new deA frequencies which are sums and differences

of the old ones, and proportional through (51) to such areas as A(3) and

A(4) of Figure 17.

58

Blount showed that the condition for significant probability of

magnetic breakdown is

(12:F fiw*);§ i E [78]
g 9

where Eg is the energy gap between bands at the point in kfspace where

breakdown occurs. The breakdown parameter BO gives the probability of a

, 59

Jump as

P = exp (-BO/B) , [793]

where

E2

B = ,

° ZfiZGsz

[79b]

where G is the reciprocal basis length, and K is the distance in kfspace

from the center of the orbit to the breakdown point.

These conditions are so strong that almost all experimentally ob-

served breakdown occurs across the small energy gaps due solely to the

spin-orbit interaction, which may lift degeneracies allowed by the crystal

field. Breakdown across the basal planes of the hexagonal close packed

structures is the most common example.

However, breakdown across energy gaps generated by the crystal field

does occur, although rarely, with the needles of Zn being the oft-quoted

example. So investigation of the possibility of breakdown an orbit C5 is

justified. Consider the only two zones containing sheets of the Fermi

surfaceanAuGaz, namely the third and fourth zones, and superpose them,

with B_Il(lll). All the extremal orbits labeled C shown in Figures 6 and
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Figure 17. Hypothetical orbits to illustrate magnetic breakdown.

Original orbits and new orbits created by magnetic

breakdown (arrows MB). The areas of electron and hole

orbits have different signs. §_into the paper.

.._ _/
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Figure 18. Cross—section of the empty lattice surfaces in the third

(clear) and fourth (black) zones at the kz values given for

p H <111>. Height of the unit cell is 2.0. (From Refs.

3 and 23)
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7 can exist on the Fermi surface. Orbits C' and CA have the same kH. A

3

3,23 .
(given here as Figure 18) clearly shows thlSconstruction by Longo

property (as well as the origin of some of the other extremal orbits that

lie in the {111} planes). The last diagram of Figure 18 is in the plane

of the hexagonal zone boundary of Figure 5. (Half the distance from a

corner to the center of a cube of edge 2 is .866). This is redrawn in

Figure l9(a) and (b), showing the two orbits concerned. Figures l9(c)

and (d) show hypothetical breakdown orbits, with therxints of breakdown

circled. Orbit (d) is self-intersecting. To calculate the magnetic

fields required for significant breakdown probability, take Eg = 0.54 eV

from Figure 9, and m* = .175 m0 from Ref. 10. Condition (78) requires

B 3 479 kG . [80]

This value is only an estimate because a bandstructure calculation is not

absolutely accurate. The parameter Bo can be calculated if one knows G

and K. The lattice constant10 a = 6.055 X at 4.2 K gives G, and an estimate

of K can be obtained from either the empty lattice diagram Figure 5 or

the band structure of Figure 9, by calculating ratios of distances on the

Brillouin zone. The empty lattice Fermi surface figure gives K = .llG and

the band structure graph gives K = .O6lG. These give Bo as 1.6 x 106 Gauss

and 2.8 x 106 Gauss, respectively, with corresponding transition probabil-

14 and 10-25. Evenities at the highest field used (5 x 104 Gauss) of 10'

assuming the true value of K is twice that of the empty lattice calcula—

tion (an unlikely event since the lattice potential tends to reduce small

cross sections near zones), P = 10- . The "significant" P associated with

the field (80) is between .2% (for K = .061) and 4% (for K = .11). These

models show magnetic breakdown should have negligible effect on the deA

oscillations of the C5 orbit of AuGaZ.
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A A (III) zone

VQV boundary lies

AVA in the paper.

(a)

Orbits in zones 3 and 4.

The crystal field smooths

the sharp corners of

(b) the free electron orbits.

/'\7
Zone 4 Zone 3

 

 

(c) (d)

 

 

Orbits possible by magnetic breakdown.

O= breakdown point.

Orbit (d) self - intersects.

Figure 19. Orbits centered on point L on the Brillouin zone.

(a) Intersection of <111> plane with Fermi spheres.

(b) Neighboring hole orbits: C5 (hexagon) and C4 (star).

(c) and (d) TWO examples of many possible hypothetical break-

down orbits. However, all have essentially zero probability.



CHAPTER IV

DE HAAS—VAN ALPHEN EFFECT AS A PROBE

OF CRYSTAL COMPOSITION

Within a few years of the discovery of the deA effect, experi—

ments were done on dilute alloys of Bi.33’69 For a number of years the

goal of deA studies on samples to which impurities had been added was

to study the scattering effect and test theories predicting amplitude

dependence. But quantitative measurements on even dilute alloys were

hindered by the strong dependence of the signal's amplitude on crys-

talline purity. Typically, the amplitude is attenuated by factors of

100 to 1000 per atomic percent of concentration of impurity. The de-

49,62—68 has
velopment of sensitive and precise measurement techniques

made possible recent and continuing use of the deA effect to study the

effect of composition on the tapology of the Fermi surface, the scatter—

ing of conduction electrons, and the contribution of the impurity atoms

to the density of conduction electrons. Such studies are still limited

to dilute alloys, however.

4.1 De Haas-van Alphen Frequency
 

The introduction of impurities changes the topology of the Fermi

surface of a metal. In the case of impurities having a valence differ—

ent from that of the host, the consequent change in the electron to

69
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atom ratio causes coarse changes in the Fermi surface. Finer changes

are caused by the alteration of the band structure, due to the differ-

ent atomic potential of the impurity. The biggest change in deA F

occur usually for big valence difference Z, small pockets of the Fermi

surface, and the highest concentrations of impurity allowing observable

deA signals. The maximum concentrations of impurity useable have been

about one atomic percent. The changes in deA F are typically less than

0.1%. Although early work on alloys, summarized by Heine,70 was valuable

in showing alloy experiments to be feasible, it did not allow significant

comparison with the theory. As referenced above, the development of

methods for precise measurements of deA F allowed more quantitative ex-

periments. One result was the determination of the average number of

conduction electrons contributed by each impurity atom in some alloys of

71,72
the noble metals. Various other alloy systems have yielded a range

of results, from no change in F (ZnGe in A173) to a modification in the

Fermi surface sufficient to produce new deA F (In in Pt74).

Derivation of a theory began in 1956 with Heine's7O interpretation

of much of the published data using the theory of primary solid solu-

tions and Friedel's75’76 rigid band structure model. This model assumes

that the band structure of the host does not change upon adding impu—

rities, the only effect being a change in EF. It was later extensively

developed by Stern.77 A theory to allow band structure and density of

states to change upon alloying was put forward in 1958 by Cohen and

Heine78 for monovalent metals. Coleridge79 has introduced partial wave

analysis into the theory.

Quantitative correlation of the data with the more complete theory

requires accurate knowledge of composition. Such knowledge is not ob—

tainable for our samples, as will be described in Chapter IX.
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Furthermore, it turns out that the compositional variations in our sam-

ples have only a slight effect on deA F. Thus only a general, qual-

itative description of the simpler theory, i.e. the rigid band model,

is pertinent.

Rigid band model. Following Stern77 and Coleridge and Templeton,71
 

the addition of impurities is assumed to have no effect on the electronic

band structure of the host, and the only basic change is in the density

of conduction electrons, i.e. the number per unit sample volume, if the

relative valence of impurity to host is not zero. Secondary changes

follow in the density of states at the Fermi level and in the topology

of the Fermi surface, specifically in cross sectional areas. The rigid

band (RB) model can be used for cubic systems even when alloying changes

the lattice parameter because the relative dimensions in reciprocal

space remain unchanged.

Let N be the density (number/volume) of atoms in the alloy, N the

1

density of impurity atoms, ai their fractional concentration,

Ni
3 = F,

[81]

and Z their valence difference relative to the valence of the host atoms.

Then the increase in the density of conduction electrons is

dn = ZaiN. [82]

For small ai the change in Fermi level is

Za N

 

[83]

where D(EF) is the density of states evaluated at the Fermi level. The

RB model then predicts a relative change in the deA F;



 
 

(
f
)
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_dF ='_l(dAF) dE = m*cNZ a

F A dE F fieF D(E ) 1'
F EF F

[84]

Thus changes in F are directly proportional to both impurity concentra-

71’72 observedtion and to valence difference. Coleridge and Templeton

this behavior for Cu alloys with [Z] §_2. But Si and Ge did not fit the

RB predictions. The behavior of the transition metal impurities varied.

For example Ni fit the model approximately,72 by others showed no simple

correlation with Z. Furthermore, the rate of change of F with ai did

not agree quantitatively with the rate measured for Cu necks. A para-

meter sometimes used to characterize the change in the Fermi surface is

 

_ dF/F
S — dn/n [85a]

_ dF/F

" NZ a /n [85b]

1

_ m*cn

_ heF D(EF)' [85°]

The empty lattice model gives S = 2/3. The measured71 values for Cu are

S = 0.69 for the belly orbit and S = 6.2 for the neck orbit.

RB theory has limitations when applied to metals with more compli-

cated Fermi surfaces and structures than those of the noble metals. For

example, RB depends on an unambiguous valence assignment, not possible

when d bands lie close to the Fermi level. Experiment also shows that

the alloy band structure is not really independent of the lattice para—

meter, even for a cubic lattice. For a discussion of RB failure, see

cw, pp. 499-501.

Relation to AuGa2. The observation by Coleridge and Templeton71

that RB fails for [Z] > 2 in noble metal hosts suggests that a reliable
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prediction for the response of the C5 (neck) orbit of AuGa2 to a varia-

tion in vacancy concentration requires either theoretical calculation

more sophisticated than RB or experimental evidence. (For Ga-site

vacancies, Z = 3.) The calculated S for this orbit is 27.33, and by

equation (85c) is independent of the relative valence Z and concentration

Both E = 9.19 eV and D(EF) = 2.06 x 1022 eV-1 were calculated from

31' F

the free electron equations. The lattice constant and the assumed

23

valences of Au and Ga give n = 1.26 x 10 cm—3. Two data points for

dF of C5 versus concentration of Pd, taken from work of Schirber,20 give

dF/F = 7.14 a1 [86]

(with large uncertainty) near a .005 atomic fraction of Pd). The Pd
1

substitutes for Au in Au dexGa Substitution of (86) and (82) into

1— 2'

(85a), using the lattice constant to get N = 5.41 x 1022, and assuming

the valence of Pd is zero (i.e., Z = —1) give S = 3.8, a much slower

change in F than the RB model predicts.

This discrepancy could arise three ways: (1) the use of a free

electron value for D(EF), (2) Z is not -1 for Pd, and (3) the RB model

fails, so that dF/F is not due entirely to changes in n. It is diffi-

cult even to estimate the effect of (1). As for (2), taking Pd valence

to be zero may be unreliable for quantitative work, but probably gives

a good idea of the direction of changes, and has been found acceptable

in the interpretation of deA data on some intermetallic compounds con-

taining Pd. Finally, part of the discrepancy is certainly due to (3),

the inappropriateness of applying pure RB theory to the C3 orbit, which

is clearly demonstrated by measurement of the pressure derivative:

d(ln F)/dP. Schirber and Switendick18 and Schirber20 measured
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d(ln F)/dP = (~13i4) x 10-4 kbar-l. (There was a rapid decrease in the

derivative above 6 kbar.) The pressures used correspond to volume

changes about 1%.20 The result of APW band structure calculations18

using a lattice parameter reduced 1% below that used previously (Refer-

ence 22 and Figure 9) agree with the sign of the pressure derivative.

These show that the second zone begins to empty and the third zone neck

region begins to £111.20 Both these investigations show RB fails to the

extent that band structure depends on the average lattice parameter a.

It is not clear how much change in a is caused by the Pd impurity,

but the direction of the discrepancy in S (i.e. the fact that measured

dF/F is smaller than that predicted) requires a decrease of a in view of

the reports of Schirber and Switendick. A decrease in a is suggested by

the smaller a of pure Pd (3.88 A versus 4.07 A in pure Au; Reference 42,

p. 29), while both elements have the fee structure. Also, the ionic

radius of Pd (.80 A) is smaller than for Au (1.37 A) (Reference 156, p.

F-ll7).

Vacancies would give a smaller a. They also have zero valence. If

the deviation of the composition of AuGa from stoichiometry is due to

2

vacant lattice sites, the opposing tendencies for increasing and decreas—

ing F could give a very small change.

4.2 Dingle Temperature
 

In contrast to deA frequency F, the Dingle temperature TD, also

called the scattering temperature, or scattering parameter, is unaf-

fected by ordered changes of composition. However, disorder strongly

increases TD, and the most important cause is lattice dislocations, due
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to the fact that small angle scatter (any angle greater than l/n, where

n is the deA phase) is sufficient to eliminate the contribution of the

48,80,8l,82
scattered electron. Dislocations have strain fields that

fall off very slowly (l/r) in comparison to those of impurities

(1/r3).80’81 The scattering of an electron through the strain field can

be treated equivalently as successive small angle scattering and as dis-

persion of a wave by a medium of variable refractive index.48

Impurities act almost as paint scatterers, and the strain field is

80,81,83,84
usually ignored. Most of the measurements of scattering

anisotropy, i.e. obtaining r by inverting T have been done for impu—

k D’

rity scattering.85’86’87’88 Such inversion requires thorough knowledge

of both the Fermi surface topology and the electron velocities.87 There

is appreciable anisotrOpy in the noble metals, depending upon the impu-

rity.87 See Section 9.3 and Table 18 for further comparison of the

types of scattering.

Scattering by vacancies has received little attention. Lengeler

and Uelhoff89 reported TD/ai for various orbits in Au, obtained by quench—

ing and extrapolating the vacancy concentration from its value (720 ppm)

at the melting temperature. The range of TD/ai was 35 to 51 K/at.%,

and 40 K/at.% on the neck orbit. For comparison, Lowndes g£_§1.87

found TD/ai = 9.1 K/at.% for Au(Ag). They also verified the linear

dependence on concentration.

The theory has been develOped by Soven90 and Coleridge g; 31.91

Using multiple scattering theory, Soven90 computed the oscillatory den-

sity of states when a dilute, random distribution of atomic scattering

potentials is put into a free electron gas in a uniform magnetic field.

The shifts in deA F can then be calculated. Coleridge g£_§l.9l based
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their theory on partial wave analysis, extracting from anisotropy

measurements the relative amount of interaction with s, p, and d waves.

4.3 Considerations for Precision
 

In their discussion of experimental technique, Coleridge_g£ogl.68

and Coleridge and Templeton49 emphasize the need for highly controlled

experimental conditions. Coleridge and Templeton49 used magnetic fields

with homogeneities of 10 ppm over the sample diameter (a few millimeters),

angular resolution of .03° (corresponding to a resolution in deA F of

5 in 107) by using the deA signal's symmetry to align the probe, and

deA signals with little noise, yielding a maximal resolution in phase

of .002 cycles and an assured resolution of .01 cycles. Their field was

measured with an uncertainty of less than one Gauss by the use of in

§i£p_NMR.

Our superconductive solenoid had a resolution of about .02% over 4

cm between 30 and 50 k6, or 5 ppm over 1 mm. Our NMR probe could

measure the field with 5 significant digits easily, but stability of the

oscillator was not quite good enough for 6 digits. Thus the resolution

was between 0.1 and l Gauss. Angular setting was achieved by a sample

holder copied after that of Coleridge and Templeton}.9 that would be

tilted with the probe in place and recording a deA signal.

The experimental apparatus being of suitable sensitivity, it re-

mained to choose one orbit to examine. Since our intent was to see the

relation between the deA effect and the composition of our samples,

rather than a general study of the Fermi surface, our experiments measure

the deA signal from only one extremal orbit, that of the third zone neck,

C5. The reasons for choosing this orbit are as follows. Previous
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3

on AuGa2 showed that the signal from C', the third zone

neck orbit, w is a strong one. It has even symmetry about <lll>, and

1

experiments

varies fast enough with angle to allow precise orientation of the probe.

As a small orbit, its greater sensitivity to impurities is suspected, an

assumption consistent with the more rapid increase (by a factor of two

to three) of T of Cu neck with respect to Cu belly orbits when dis-

48,82

D

locations are introduced. And equation (84) shows the relative

change may be greater for small F. The sensitivity of the neck region

of AuGa2 to structural changes was also implied by Schirber's20 work:

V

3

biggest. Some of the other orbits with comparable pressure derivatives

the magnitude of the pressure derivative of orbit C was among the

had weaker signals. In the <lll> direction and at 4.2 K, the easiest

3

This frequency is also isolated, of help in obtaining accurate phase

temperature to maintain, the signal from C was completely dominant.

measurements. On the other hand, after much of this thesis data was

collected, Templeton and Coleridge72 reported dF/ai to be three to six

times greater for Cu belly than for Cu neck when Ni and A1 are the

impurities. However, due to the plotting methods of obtaining pre-

cision F, it isn't clear whether greater precision is obtained from an

orbit with bigger absolute change in F, or bigger relative change.

Detecting the signal from a AuGa orbit of greater area would have

2

been difficult in the presence of the dominant neck signal.



CHAPTER V

EXPERIMENTAL TECHNIQUE FOR THE

DE HAAS-VAN ALPHEN EFFECT

5.1 Techniqpes Available
 

Measurement of the frequency and amplitude of the oscillatory magne-

tization (equation 71) of the deA effect yields extremal cross-sectional

areas, cyclotron masses, lifetimes of the charge carriers, effective

g-factors, and other properties of electrons on the Fermi surface. By

recording the magnetization as a function of the magnitude of the field

and of the temperature, with angle of orientation as a parameter, the

angular dependence of the quantities can be mapped, and also the shape of

the Fermi surface determined.

Three techniques are commonly employed to measure Mose. One measures

M, the total magnetization, directly by its torque in a uniform field, and

the other two measure differential magnetization through the voltage

induced in a coil by the response of M_to a time dependent field.

Torque. The original observations made by de Haas and van Alphenl

used Faraday's method of measuring magnetic susceptibility,92 which

requires a non—uniform field. Shoenberg69 devised a method specifically

for the deA effect: mechanical linkage to the torque couple of samples

suspended in a uniform magnetic field. The couple is a measure of the

differences of magnetic susceptibilities along the principal axes. A

uniform field increases resolution and simplifies analysis of the effect.

78
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A major advantage of the torque method over the induction methods is

that it is a more direct measure of the amplitudes of the deA harmonics

of 71(3), allowing comparison with LK theory. (See D. Shoenberg and

53 and references therein.) As will be seen, the inductionJ. Vanderkooy

methods further resolve each deA harmonic into time harmonics, with each

amplitude weighted by additional functions. Summing the time harmonics

to obtain the deA harmonic is uncertain because the gains and phase

shifts imposed by the apparatus vary with each harmonic and are usually

difficult to determine.

Two majcn: disadvantages of the torque method are that M_x B is zero

when B_is parallel to a symmetry axis of the sheet of the Fermi surface

being measured, since 3F/36 and 3F/8¢ in 7l(d) are then zero, and that the

apparatus requires more access room and less freedom ofcuientation. This

latter difficulty has been ameliorated by new designs, including measure-

ment of the torque by the counter torque provided by a small coil about

the sample.:53

A non-ferromagnetic sample may experience a torque because M_and B

are not parallel for a general direction in a metal with a non-spherical

Fermi surface. Whether the field is swept or rotated, the sample must not

be permitted to move in response to the torque Mox B_acting on it if

relatively uncomplicated signals are desired. Otherwise F(6,¢) will oscil-

late about its mean with a frequency F and amplitude proportional to M,

giving rise to sum and difference frequencies. (Sum and difference fre-

quencies also arise from magnetic interaction. The cause is the same:

oscillations in the phase (74b),.although in one case F oscillates and in

the other case B oscillates.) For this reason counter torques are applied

during the experiment. The induced voltage methods are also subject to

this distortion, although it is not as inherently as big a problem since
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with them the sample is rigidly mounted. The mounting of easily deformed

crystals for both low stress and low compliance presents some difficulties

at times, but these difficulties are small for AuGaz, which is a hard,

brittle alloy.

Pulsed fields. Banks of capacitors repeatedly drive big currents
 

through solenoids, each pulse enduring for times of the order of micro-

seconds. Fields to 300 kG may be generated easily. An oscilloscope

displays the voltage

v(t) = §2_m §§-+ 4n%%-. [87]

The second term is isolated and recorded by photography or digital storage.

The pulsed field technique was also originated by D. Shoenberg and

extensively used by him and his collaborators to first observe many of the

high deA frequencies.93 It remains the only method for observing the

deA signals of very low amplitude (usually those with m* > mo, although

recently the use of very strong solenoids permits the measurement of deA

signals corresponding to m* two or three times mo).

Limitations of the pulsed field technique include the limited resolu-

tion, noise, and eddy currents. The last both complicate the analysis of

the signal and create temperature instabilities. High speed collection and

analysis of the data by digital electronics has recently improved both

sensitivity and signal-to-noise ratio, but for most metals the field modula-

tion technique, to be discussed next, remains the best method.

Field modulation. The field modulation technique was frequently
 

called the Shoenberg-Stiles method, after its inventors, D. Shoenberg and

94

P. J. Stiles, but the basic idea has been so extensively modified by so

:many others 95-101 that it is now usually known by its acronym, FMT.
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The field modulation technique induces v(t) in. (87) by superposing

an alternating magnetic field h(t) on the steady field HO. The use of a

steady field gives better control of the field and more time for removal

of the noise in the deA signal. (Here, steady means the go is considered

fixed in time for the purposes of calculation. To analyze the deA signal

obtained during a field sweep, the sweep rate must be slow enough that the

time dependence of Ho affects the results by a negligible amount. This

condition is easily satisfied in practice.) The modulation field h(t) is

usually sinusoidal.

Shoenberg and Stiles used modulation frequencies in the megahertz

range, perhaps a carry-over from the microsecond electronics used in the

pulsed field work previously. Skin effect in normal metals and alloys is

significant at these frequencies. A. B. Pippard analyzed the extreme case

(anomalous skin effect), and much Fermi surface information was obtained

on various metals.93 However, the intermediate regime of strong, but not

anomalous, skin effect is exceedingly difficult to analyze, and even in

the anomalous regime the complications caused by the eddy currents prevent

the extraction of the full wealth and precision of information about the

Fermi surface contained in the deA signal.94’102

Shoenberg and Stiles also used small amplitude modulation, so their

version of FMT could be described as high frequency, small amplitude. The

low frequency, large amplitude version developed subsequently 95-101 is the

one most often used today. It offers numerous advantages: a more

straight—forward analysis of the data, higher resolution, more convenient

signal processing, less noise in the signals, and the availability of an

internal spectrometer action of the sample to discriminate against strongly

interfering deA signals and to enhance weak ones. The theory of FMT will

be further developed in the next section.



82

Other techniqyes. The three techniques described above are the most
 

useful ones. For special conditions other techniques may be better, or

they may be usable when none of the primary three is. One of these is a

vibrating sample method, which is useful for semi-metals and semiconduc-

tors, which have low conductivity and small cross-sections. It is rarely

used for studies of the high frequency oscillations one ordinarily finds

in metals and alloys. There are also methods which combine or modify the

primary three. Field modulation with two modulation frequencies, one high

and one low (the deA signal appearing as a pair of side bands of the

modulation frequency), field modulation in combination with torque, and

field modulation in combination with pulsed field (to utilize the maximum

in field, where the induced voltage would otherwise be zero) have all been

used. See Gold, pages 112-120, for references.

5.2 Field Modulation Techniqpe
 

The deA data of this thesis was obtained with the low frequency,

large amplitude FMT because it is the most convenient, an electromagnet

and solenoids to provide steady fields were readily available, and the

types of measurements desired were suitable for FMT. Because the deA

signal from the C5 orbit is strong and m* = .l75mo the main advantage of

the pulsed field, its ability to measure small signals, was not needed.

Rather, since high precision was sought, it is doubtful that the pulsed

field method could have been used; the development of high precision

measurements has been done using the low frequency, large amplitude FMT.

Furthermore, the torque method could not have been used because the field

was in the symmetry direction <111>.

The remainder of this chapter gives the theory of FMT and shows how

to determine the quantities of interest from the theoretical expressions
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describing the sample's interaction with the detection system. Chapter VI

examines our apparatus in detail. Chapter VII outlines the experimental

procedure, and comments on some problems to be aware of when applying this

theory to real measurements.

Magnetic field variable. The fundamental field quantity is flux den-
 

sity (or magnetic induction)_H, both in its microscopic (i.e., at points

within a crystalline cell) and macroscopic (i.e., averaged over a small

number of cells) forms. But as usual when dealing with macroscopic media,

the magnetic intensity, defined as H_= H_- 4nH, is more convenient to use

in measurement and calculation. In this chapter manipulations of the LK

equations (71) and (74) for H_use H because LK theory was first derived

assuming H'= H, the calculations in the literature use H, and it is easier

to compare fflflds measured with different devices, since H discounts varia-

tions due to different media. Clearly there is no difference between

using H and using H when magnetic interaction is negligible. LTh‘e data of

this thesis were taken under this condition. (Recordings in which magnetic

interaction is visible were not analyzed.)

Voltage. Let the steady field HO be modulated by a small, parallel,

zilternating field H(t) so that the total field magnitude is

H(t) = Ho + h(t) , [88a]

With modulation field

h(t) = h cos(wmt) , [88b]

W1"Hare

mm = 21rfm [88C]

313 the modulation frequency, and h is the amplitude of the modulation
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field. An oblique geometry (Ho not parallel toIQ can be used to enhance

different deA frequencies of the spectrum,98-101 but the data of this

thesis were taken using condition (88). The only significant changes in

the spectrum MOSC (71a) arising from the field modulation come through the

phase (71b), which now depends explicitly on time as well as on the steady

field H :

—o

 

1pr“) = 21Tr[HO + h cos(wmt) - Y) + [89]£
4
:

0

where F is F(6,¢) evaluated for the direction (6,¢) of HO (see Figure 3)

and is a constant in time due to.H H'flo° The skin effect is negligible

because

2

w < C 2 9 [90]

2nod

 

permitting H to uniformly penetrate the sample. For h << Ho an approximate

treatment97 obviates the work of Fourier analyzing M(Ho,t):

 

F ,3; h

H + h cos(w t) 7 H [1 H OS(wth [91]

o m o 0

30 that

_ E;._ Fh _ ‘21
sin wr(t) - sin[2nr[H -§cos(mmt y] + 4). [92]

o H

a

Let

l=m—F%. [93]

H

o

Trigouometric relations transform (92) into

sinwr(t) = sinrpr cos[lr cos(wmt)] + cost];r sin[Ar cos(mmt)], [94]



  

 

.\'.

fi

0u

is
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where wr is now (and for the rest of this chapter) the phase (71b) eval—

uated at the steady field Ho, and is to be distinguished from the time

dependent wr(t) of (89). The Fourier series for the time dependent func-

tion involves the Bessel functions of the first kind:

cos[Ar cos(wmt)] = 2 n2; (—l)n J2n(lr) cos(2nwmt), [95a]

(D

sintir cos(wmt)] = 2 néo (-1)n J2n+1(1r) cos[(2n+l)wmt], [95b]

where the first term of the primed sum has a factor %. Substitution of

(94) and (95) into (713) yields the following expression for the time de-

pendent magnetization. It has been generalized for the case of more than

one deA signal (i.e., more than one extremal orbit on the Fermi surface

for the given field orientation) by summing over orbit index i.

use“) % 2 l £1 £5.” <59

x {sinw:l) (%Jo(l:1)) + n20 (-1)n J2n(lil)) cos(2nwmt))

-cos (i) r m n (1)
tr {0 (-1) J2n+lor ) cos[(2n+l)wmt])}. [96]

n:

Note: that H6 has been substituted for the correct value H ianr. This

aPPIroximation introduces less error than the previous approximation (91),

0f the order of 0 to 13% compared with O to 4% of the amplitude for the

£181xi and temperature ranges we used. To particularize this equation to

our (Experiment, putHo H [111] so that only the first component of (71d)

19 That zero. The fundamental (r = 1) signal from orbit C5 completely

dominates, so only that term survives. The orbit area is a minimum, so

the phase constant is + 1. Finally, detection is at the second time
4

lnarnunnic, so only the J2 (n = 1) term, in the first Bessel series of (96)
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is recorded by the signal processing equipment. Thus

_Hosc(t) =-2iHM1(Ho) (sinwl) J2(l) cos(2wmt). [97]

This quantity is measured through the voltage induced in a small pick—up

coil surrounding the sample and in close flux linkage with it. From

(87), and (97) we get

v(t) = V2 cos(2wmt), [98]

where V2 is the amplitude

- 2 L- .1.
V2 - anli(Ho) J2(2th/HO) sin[21r(Ho y + 8)], [99]

where n > 0 includes various numerical constants and the amount of coupl-

ing between the pick—up coil and the sample. Voltage polarity is important

only for evaluating the phase constant y.

Figure 20 shows a typical recording of the r.m.s. value of v(t) =

V2//2 (versus field rather than inverse field). The envelope function is

M1(Ho). Note that it is essentially a single sinusoid, in accordance

with (99).

Equation (93) shows that the amplitudes in (96) depend upon the

ratio h/Hi in the argument of the Bessel functions. The optimum modula-

tion amplitude for the production of the second time harmonic when the

deA magnetization is dominated by its fundamental component is given by

Ztho t

i0 = ———2—L = 3.05, [100a]

H
O

for which

J2(Ao) = First Maximum = 0.486. [lOOb]
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Figure 20. Typical data for the C5 (Third zone neck) orbit of AuGaZ.

m* = .175mo, T = 4.2, TD ~ 1 to 2 K. Plot of r.m.s. second

time harmonic of v(t) induced by the sample versus field.
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The Bessel function also strongly affects the time harmonics of the

induced voltage v a: dM/dt. Figure 21 illustrates this graphically by

showing the theoretical result of modulating the steady field HQ with

h(t) in (88b). At a fixed HO the instantaneous magnetization M(Ho,t) may

be a complicated function of time, even though the field dependence of the

deA magnetization M(H) is sinusoidal, as shown in Figure 21. Further,

the form of M(Ho,t), and hence its harmonic content in time, varies with

HD and h, with h measured as a proportion of the hO corresponding to M0'

pt

Because the magnetization is shown over only a few oscillations, the

amplitude is taken as constant in Figure 21. Note the distinction in

this figure and in Figure 3 between the general variable H (a "dummy"

variable for the function Mose) and Ho’ the steady field to which the

modulation field is added.

Because it is easier to visualize changes with field rather than

inverse field, the concept of the field period is useful. Mosc,r is not

strictly periodic in field, but over four or five oscillations it is

nearly sinusoidal. Let the phase or differ by 2n radians at H and H' > H.

Then the field period is

2 H

HH' H avg
= '— =———=——éPH H H F F-H . F , [1013]

where the second and third steps follow directly from equations (50) and

(51), and the fourth step is an approximation, with Havg = %(H+H').

For AuGaZ,

50 k0

25 kG.

739 Gauss at H0

185 Gauss at H

PH(C3) = [lOlb]

0

Note that for C5 (F = 3385 kG) and when HO = 50.18 kG, equation (100a)
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Figure 21. The construction of M(Ho,t) from M(H) and h(t), with

H: Ho + h(t). M(H) is assumed sinusoidal.

H0 or h changes Jn(l) and hence the harmonic spectrum

of M(Ho,t). = 3385 kG.

Changing
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gives hopt = 361 Gauss, about half PH. Figure 21illustrates why this

maximizes the second time harmonic generated by the fundamental deA

harmonic: for the given conditions M(Ho,t) approximates cos 2uht.

Figure 22 illustrates, in a slightly different format, the theo-

retical magnetization M(Ho,t) generated under the conditions discussed

above. The field periods are given by (lOlb). The amplitude at H = 50

kG is l Gauss (close to a measured value), and it is adjusted for

Ho = 25 kG by (71c). Because the fundamental deA harmonic constitutes

Mosc(H) illustrated in Figure 22, M(Ho,t) is designated by M1(Ho,t),

abbreviated to Ml(t). Each graph shows a possible Ml(t) and the h(t)

and Ho which generate it. Together they show how the harmonic spectrum

of M1(t) depends on both parameters, h and H0. Thus curves like that of

Figure 20 are generated by the sample when Ho varies and one time harmonic

is detected.

Comparison of Figures 22(d) and (e) illustrates the fact (see equa-

tion (96)) that the relative Fourier amplitudes remain constant if h

changes with HD to keep A constant. Such diagrams are useful for estimat-

ing the harmonic content of M(t) and for establishing the relative phases

of h(t) and v(t) ac dM/dt.

Figures 21 and 22 assume no magnetic interaction.

Hpectral analysis. From (87) and (96) it is clear that (98) is one
 

of an infinite set of terms of the form

. (i)
. Slnw , 3 even

vii; = nitrous/1:1) (go) Jsuifl) E ) [102]

cosipri , 3 odd

for the amplitude of the s-th time harmonic of the voltage induced by the
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Modulation of the steady fieldHO by H_cos mmt causes each

harmonic component H&(H) of the oscillatory magnetization

-Eosc of equation (71) to induce an alternating voltage v(t)

a: dHr(Ho,t)/dt. Theoretical values of M1(Ho,t) are shown

in (b) through (e). Assume B. and that
—1nternal =flapplied

M = M
osc osc,1'

(a) MOSC 1(H) = M1(H) sin 2n(F/H + ¢) around 25 kG and

50 kG. F 3385 kG; ¢ = 0.3 is hypothetical.

(b) - (e). M1(Ho,t) = M1(t): solid line, scale -1 to +1

Gauss; h(t): dotted line, scale -360 to +360 Gauss.

And hopt is for J2(A).

(b) M1(t) at 50.00 kG, h = khopt = 179 Gauss. Fundamental

deA harmonic dominates.

(c) M1(t) at 50.18 kG, h = hOpt = 361 Gauss. Second deA

harmonic dominates.

(d) Ml(t) at 50.00 kG, h = hopt = 359 Gauss. Fundamental

and third deA harmonics dominate.

(e) M1(t) at 25.13 kG, h = hopt = 76.7 Gauss. First and

third deA harmonics dominate, as in (d). For both

(d) and (e) H0 is at the same relative phase of

M1(Ho), a downward zero crossing, and h = hopt'
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r-th deA harmonic of the i-th extremal orbit, and that in the general

case sophisticated spectral analysis is needed if the recorded signal

voltage is to be resolved. This is especially true in metals, which may

have up to a dozen frequencies in a given direction. The harmonic ampli-

tudes from a single orbit decrease rapidly with order, so that detection

of order four and above requires special effort, and usually only the

fundamental and first overtone are easily detected. The wide range of

frequency (usually 106 to 109 Gauss in metals 101) commonly present in

complicated Fermi surfaces aids in separating the frequencies. Ordinarily

. l

the separate M(l)osi r must be known to determine the values of the various

9

Fermi surface parameters contained in the deA effect. (But the g-factor

for a given orbit is usually evaluated from the total signal, Méié.)

Stark and Windmiller101 give a summary of techniques they and others have

develOped to exploit the spectrometer action of the crystal-coil system.

These are the adjustment of the relative orientations Of-flo’-h’ and the

(i)

OSC

axis of the pick—up coil to nullify the entire signal M from an orbit.

It is possible to nullify as many as four orbit signals. They also

analyze the choice of the magnititude of the modulation field to use the

(1)
dependence of V on Bessel functions to nullify separate deA harmonics

from additional orbits, a more practical technique, which is in common use.

External filtering is more extensively used than the orientations

mentioned above becasue of various technical difficulties when general

orientations are used. The most common method is an inverse—field-sweep;

i.e., l/H a: time, so Vr ac sin(rwmt), which can then be isolated by con—

ventional electronic filters. Fourier transformation is currently the

easiest method of spectral analysis when the data is recorded by digital

equipment. The Fourier transform of the data is then found by computation.
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If two signals to be resolved are close in frequency, neither ex-

ternal filtering nor Fourier transformation can separate them with much

precision. If the design of the apparatus holding the sample does not

allow nullifying the interfering signal by the relative orientation of

the fields and sample, then about the best that can be done is graphical

analysis: considering the shape of the recording in light of what other

information one may have about the signal's components. We used this

method. Although it was originally our intention to use l/H filtering,

we found the signals most troublesome to the precise measurement of F

of C5 lay very close to the signal of interest. Therefore, it was felt

that external filtering could not improve the precision and plans to

construct an l/H sweep were canceled. Digital recording equipment was

not readily available. The design of the sample holder precluded using

the orientation method. The validity of using V of (99) (corresponding

2

to the presence of only one deA component), the structure of the signal,

and the resolution of the measured deA frequencies are discussed in

section 7.2.

Data reduction. The procedure of typical deA experiments
 

is (l) to record the r.m.s. voltage versus field magnitude and direction

(1)
and temperature; (2) to resolve the voltage into its components Vr S;

9

(i)
r as functions of H,e,¢, andand (3) to evaluate the corresponding M

T, and from those functions to obtain F, m*, TD, etc. The previous two

subsections discussed (1) and (2). This subsection gives the basic

method of (3) for some parameters. The apparatus for voltage and field

measurements are described in Chapter VI and the details of the data

reduction for our conditions are given in Chapter VII.
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Let the expression (71c) for Mr show m* explicitly by writing

 111* 2 31": _ E kG_
as.a_ao (2n kBmOc/eh)[mo) - 146.9 mo Kelvin, [103]

analogous to (7le). When sinh(raT/H) is close to %exp(raT/H) for a

given orbit and deA harmonic, then

Mr r0to m*
RnCfif) = £n(2A) - ‘EI'ET'T , [104]

o

M

where A includes the other factors of (71c). Thus the lepe of £n(fi%)

versus T and at fixed field gives the cyclotron mass m* for the orbit,

with separate measurements for the deA harmonics being a check on the

measurements. Or having obtained m*, one has another test of whether

a detected signal is an overtone or from another orbit. An analysis

of the error introduced by the sinh-exp approximation gives

 _ .9: _ .93. _ .9: 1 -

Error — (mo)graph (mo)true - (mo)true(sinh(raT/H) l)’ [105]

which results in

rd m*

Error < %% for —fi2-E—-T < 2.1. [106]

0

Once m* is known, TD for the same orbit may be found by a similar

plot:

£n[Mr /fi sinh(raT/H)] = £n(A') - reTD[%) , [107]

where the slope of the left-hand side versus l/H is -raTD.

The deA frequency F may be obtained by counting cycles in the

measured MOSC r of (71a) and plotting the number of cycles versus l/H.

9
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Another method reduces statistical error and gives more information:

plot the phase wr of (71b) versus l/H; the slope is F and the intercept

gives the phase constant —2nry':

2
4
:



CHAPTER VI

DE HAAS-VAN ALPHEN APPARATUS

The work described in this thesis evolved from a preliminary at-

tempt to find de Haas-van Alphen (deA) signals in various materials.

The first probes were designed for a Harvey Wells iron core electro-

magnet with a maximum field of 22 kG. The first probe was designed

to have the pick-up coil, that detects the voltage induced by the sam-

ple's magnetization, rotate over a wide angle with respect to the sam-

ple. The necessarily weak flux linkage, low electron density of the

sample (PbSnTe) and low magnetic fields combined to give a null result.

The next step was to improve flux linkage by using a rigidly fixed,

solenoidal pick-up coil with a bore slightly bigger than the sample's

diameter. There was still no signal from a sample of such low carrier

density, so three metallic samples (Sn, Ausz, and AuGa) were used to

test the apparatus. Tin gave very big signals with excellent signal-to-

noise ratio in the fields available. The intermetallic compounds gave

very small signals. About this time the decision was made to attempt

to see if there was any relationship among the variation in RRR of AuGa2

samples, possible changes in the Fermi surface (as exhibited by the

deA effect), and possible very small changes in concentration. (These

hypotheses have been detailed in Chapter 1.) Therefore, a new probe was

designed for a 50 kG superconducting solenoid that was available for our

use.

97
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This chapter shows the basic design and operating features of the

probe used in the 50 k0 solenoid, and describes the circuit diagram for

the electrical connections, the electronic instruments, the supercon-

ducting solenoid and dewar, and two methods of measuring the magnetic

field: nuclear magnetic resonance (NMR) for precision, and measurement

of the current through the solenoid by the voltage across a standard

resistor.

6.1 Probe

Our objective of detecting very small changes in the Fermi surface

would likely require very precise measurements of dH A frequency F,

where F is proportional to an extremal cross—sectional area of the Fermi

surface. We wanted precise measurements of some part of the Fermi sur-

face of AuGa2 that gave big signals and might also be sensitive to small

changes in concentration. Thus precise orientation of the crystal in

the field is required. For this purpose a probe for measuring the deA

effect using the field modulation technique (FMT) was constructed

following the design of Templeton and Coleridge.49 See Figures 23, 24,

and 25. The basic construction is the usual one for cryostats used in

cryogenic experiments: a long stainless steel tube with electrical and

mechanical feedthroughs at the top, samples and detectors at the bottom,

and in between a flange capable of sealing the top of a dewar holding

the cryogenic fluid in which the bottom end of the tube is submerged.

In our case the dewar also held the superconducting solenoid. The

following are contained in a holder at the bottom end of the probe: the

deA sample, the coils for detecting the deA signal, an NMR sample for
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(a) Bottom assemblies.
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Figure 25.

assembly.

Exploded view of the probe's coil former and sample holder
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precise measurement of the magnetic field, and the associated coils, one

for modulating the field for NMR and a radiofrequency (RF) coil. The

holder is not attached rigidly to the tube, but is suspended from the

bottom of it and pulled upward by one or more springs, to be held firmly

against three pointed rods. Two of these are threaded and may be

rotated to adjust their lengths and thus tilt the holder to allow a well

controlled orientation of the sample inside.

Discussion of the probe falls naturally into a number of assemblies:

flange and housing tube; mobile base, to which the holder is attached

and which is able to tilt; control tubes and motor for tilting the mobile

base and hence orientating the deA sample; a sample holder assembly

consisting of the coil farmers with their coils, places for the samples

to be seated, and a spindle for attaching the holder to the mobile base;

and lastly, electrical lines and feedthroughs for both deA and NMR.

Letter codes in the following description correspond with those on the

figures.

Flange and support tube. The main housing tube (HT) is stainless
 

steel (3.8.), .020" wall, 1-3/8" OD, and 153 cm in length, with an over-

all length for the probe of 170 cm. A Quick-Seal (QS) soldered to a

brass flange (SF) permits both a seal for the dewar of the cryostat

sufficient for the bath vapor pressures we used and easy adjustment of

the vertical position of the probe. Such adjustment allowed a check by

NMR of the axial homogeneity of the solenoid, and a subsequent position-

ing of the sample in the flatest part of the field profile. The flange

is bolted to a capper tee of 2" bore that provides access to the dewar.

HT is sealed at the top by a lift ring (LR) and feedthrough box (FB).
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On top of FB four 3/16" Quick seals (Q8), of which the back two are

hidden behind the front two, permit entry for two control tubes (CT)

and the NMR RF coaxial line (RFL). The fourth seal was either blanked

off or used for a tension wire (not shown; see below). The RFL is

vacuum tight and terminates in a BNC connector on a copper elbow (E).

The feedthrough box has four parts with o-ring seals for hermetic,

electrical feedthroughs (EF), which have nine pins each. The sides of

two are shown in Figure 23.

Three threaded tripod posts (TP) hold the probe at the desired

height and also support the motor at the very top (not shown). The

housing tube also has a lower flange (LF) at the bottom, for guiding and

attaching the lower assemblies:

Mobile base. A brass disk (MB) has a small flange beneath for
 

attaching the holder assembly and three smaller stainless steel disks

(SS) seated on tap to provide hard contact points for the three threaded,

pointed, equidistant tripod legs (TL). One or more springs (SG)

attached to the lower flange by a cross bar on two threaded spring posts

(SP), hold the mobile base firmly against the tripod. A phosphor bronze

wire leads from each spring, running close by TL and through small

holes in LF and MB to beneath MB, where it is soldered to a small pivot

cone, applying nearly vertical tension for the range of tilting angles

used. One leg is a stud; the other two are rotated by means of control

tubes (CT) extending beyond the top of the housing tube to tilt the

mobile base and bolder assembly. Threads 4-48 provided fine control.

The arrangement of the springs changed from one central spring passing

through center holes in the lower flange and in the mobile base (as in



104

Ref. 49), to the addition of three helper springs located symmetrically

on the circumference of the lower flange, to two symmetrically posi-

tioned,-off—axis springs (SC in Figure 24) near and parallel to the

rotating tripod legs. This last provided greater and more uniform ten-

sion. Deterioration in the signal-to—noise (S/N) ratio when the axis

of the modulation coils (coaxial with the mobile base) was more than

about 2° from the direction of-H of the solenoid (vertical) prompted the

addition of a strong central wire (not shown) running from the center

of the mobile base through the feedthrough. After the crystal was

oriented much more tension could be applied through the wire than through

the springs. Although the tension wire returned S/N to almost the value

prevailing when the axes of the coils were parallel to H, it was mar-

ginally beneficial because the deA electrical signals obtained off-

axis were used only for orienting the sample, and did not have to be

especially clean. Clean signals were needed only from <lll> H.§, and

except for Sample 6 this put the coil axis within 2° of H, Springs were

of phosphor-bronze. Some were purchased from McMaster Supply; some

were wound in the machine shop from wire of .020". Springs of (un-

stretched) lengths ranging 2 cm to 4 cm and of two diameters, .18 cm

and .22 cm, were used. All had spring constants 2.65:.06 Nt/m.

Control tubes and motor. The control tubes (CT) are two 3/16" 3.5.
 

tubes, each soldered to a tripod leg at the bottom and to a shaft at the

top. Each shaft has two thick spur gears (G) spaced slightly apart, but

with teeth aligned, to enable continuous engagement with a spur gear

(MG) on the shaft of a synchronous motor as CT turns and moves vertically

over a range of about 2 cm. The motor is pivoted manually to engage one
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CT at a time. Because the deA signal depends upon the vector H, con-

tinuous change of the crystal's orientation in a static field gives a

deA rotation signal (a different signal from that obtained by a field

sweep, but also oscillatory). The smooth change of orientation given

by the synchronous motor (6 revolutions per minute) gives a signal much

easier to interpret than those obtained from a hand rotation. However,

unless S/N is very poor, the motor is a convenience, not a necessity.

It is desirable to know the relation between the number of turns

Ci of CTi and the polar angle and aximuthal angle of the mobile base.

(The Euler angles are not appropriate because the mobile base has only

two degrees of freedom, being unable independently to rotate about its

axis. For the sample to realize a third degree of freedom it would have

to be removed from the holder assembly and rotated about its long axis.)

Knowledge of this relation permits a calculation of the angular resolu-

tion for the crystal's orientation and from F(e,¢) calculation of the

resolution in F. It is also a check on how closely aligned are <lll>

and the axis of the cylindrical sample. Finally, the angular variation

can be converted to translation of the NMR sample to obtain information

about the radial homogeneity of the field. The equations are

 

C p /

tan 0 = [C—%—)2 + (gfi)2 (Cl — 2C2)2fli12 [108a]

(2C - C )3

tan e = 2:! c 1 [108b]

l

where Cl is the number of turns of the first control tube, CTl, attached

to tripod leg TLl; and similarly for C2. The polar angles (e,¢) are

with respect to the axes defined by the probe axis (z-axis) and the line

(x-axis) connecting the tips of TL fixed and TLl, where TLl is chosen so
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TL2 lies in quadrant I of the xy-plane. (Axis z is vertical and plane

xy is horizontal.) The TL form an equilateral triangle in or nearly

parallel to the xy-plane. The parameters are triangle side 5, height h,

and pitch p of the 4-48 threads: 3 = .9544", h = .8265", and p = .0283".

Figure 26 is a contour map of polar angle. The range of turns is

roughly :8 from the level, corresponding to maximal 6 of about 25°. The

resolution in setting 9 at a value near zero is O.4°, corresponding to a

resolution in deA frequency F of 28 ppm when orienting the sample by

' orbit of AuGa . (This value
3 2

was obtained from the equation of Ref. 10.) The orientation procedure

the symmetry of the deA signal of the C

is iterative: a theoretically infinite series of alternate adjustments

of CT. (See Chapter VII for details.) It was normally carried through

three steps (one step being an adjustment of each CT) to give an accuracy

of orientation corresponding to an error of less than 1 kG in F, which

is about the standard deviation of F for any one run.

Sample holder assembly. This consisted of the coil farmers with
 

their coils, the samples, and a spindle (SL) and cap (CP) that held the

assembly together and affixed it to the mobile base. There were two

types of coil formers, one (CF2) for the split NMR modulation coils

(NMR-M) another (CFl) for all three FMT coils, with numerous editions

of each. The three FMT coils are solenoids and may be grouped into a

long modulation (M) coil (which could be considered two coils in series)

and a signal (S) coil consisting of a pick-up (P) coil and a balance (B)

coil in series opposition. With the exception of one of the farmers for

NMR, all farmers and the spindle are plastic, laminated epoxy with paper

filler, EP-22 manufactured by the Synthane Corp. This was found to
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have excellent mechanical preperties both for machining and for use at

LHe temperatures. Plastic was used for lightness, to increase the force

of contact between the mobile base and tripod. It was also felt that

if the spindle (SL) passing through the center of the NMR sample and RF

coil were metal, it would attenuate the NMR signal. In order to make

an accurate measurement of field, the deA sample lies in the center of

the NMR sample. The cap has a center access hole through which the

leads exit. They are taped to the outside of the probe nearly its whole

length from the cap to just under the flange (SF), where they pass into

the interior of HT to the electrical feedthroughs (EF) in the feed—

through box (FB).

deA coils. Reference 49 used a coil similar to NMR—M but with
 

half the diameter, for both NMR and deA modulation, but our larger

ratio of magnetic moment to center modulation field h decreased our S/N

by a factor of 40 when NMR-M was used to modulate the field for detec-

tion of the deA signal. Bigger h and S/N were possible from winding

M directly over S.

The deA magnetization induces a voltage directly into the pick-up

coil (P). The balance coil (B) has two jobs: to reduce the noise volt-

age and to reduce the voltage induced in the P coil directly by the M

coil (transformer action). A large contribution to the noise in the

final signal could come from vibration of the P coil in the slightly

inhomogeneous magnetic field of the solenoid. (The vibration is due

to the alternating magnetic moments of the M coil and the sample.)

Cancelation of vibrational noise will occur if coils P and B have the

same flux linkage to the steady field. This is approximated by having

them physically close and with the same area-turns. The B coil sees
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roughly the same field variation with time, and so tends to cancel the

voltage induced in the S coil by this vibration. Although vibrational

noise is greatly attenuated, as shown by comparing v(t) with and with-

out the B coil at typical, fixed values of H and h, it remains the over-

whelming contribution to the total noise in the final signal, as is

shown by the fact that v(t) from a well balanced signal coil in high,

constant field with typical modulation current is much noiser than v(t)

recorded under the following test conditions (except for the indicated

change conditions are as for recording deA signals): (1) H = 0,

(2) h = 0, and (3) the input to the detector shunted by an impedance

similar to that of the S coil.

Weak flux linkage between the B coil and the sample is required to

prevent serious attenuation of the desired signal. The design of coils

N5 and N6 used in these experiments satisfies the above requirements:

P and B have the same dimensions, the same number of turns of wire, and

they are close together. An alternative design is to wind the B coil

over the P coil; this decreases their separation but also decreases the

net signal from the sample. The pr0per choice probably depends upon

the homogeneity of the field and the intensity of magnetization. The

first design was found to have significantly lower S/N for our experi-

mental conditions.

The second job of the B coil is to cancel the strong voltage in-

duced directly in the P coil by the M coil, a voltage which is typi-

cally 102 to 106 times greater than the deA voltages.101 When measuring

the fundamental time harmonic of M(t) it is essential to reduce this

overriding background signal, coming at the same frequency, to a level

that enables the electronic amplifiers to properly process the small
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oscillatory component. Even when detecting at overtones, which is

usually the case, filtering out such a strongly interfering signal

electronically is impractical and leads to deterioration of S/N. A much

improved signal results from reducing this interference at its source

by having the P and B coils see the same modulation field. This is

accomplished by the twin M coils shown. The balance ratio (the ratio

of voltages from the S and P coils) depends upon the characteristics of

the sample and coils; typical values101 can range from 10.2 to 10—3 and

the required effectiveness of balance depends upon the strength of the

deA and the harmonic of detection. Most detection equipment has filters

becasue the deA signal has strong time harmonics, so that reducing the

balance ratio below the value necessary to allow Optimal electronic fil-

tering does not improve S/N. Very low ratios of the order of 10.4 to

10'.5 cannot be maintained over wide field ranges because of magneto—

resistance and diamagnetism of the sample and wire.97

Coil winding and specifications. The dimensions of the formers
 

for coils NMR-M, M, P, and B are shown in Figure 27. Coil specifica—

tions are given in Table 4. The coil strength of the modulation coils

was calculated from

-1 -l
-—; -?;;:;ISE-{22 (sinh (r2/|22|)-sinh (rl/IZZI)

- zl [sinh—l(r2/|zl|)-sinh-1(rl/Izll)]} , [109]

where the units are mks, with the final answer for Sc in Gauss/Ampere-
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Former CR1 for deA coils N5 and N6. Each has windings P

(pick-up), B (balance) and M (dH A modulation). Dimensions

in mils (thousandths of an inch).

Former CF2 for coil NMRAM, for NMR modulation. Dimensions

in inches.
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TABLE 4. Specifications for de Haas-van Alphen Coils N5 and N6 and NMR

Modulation Coil NMR—M

WINDINGS

Wireb Number DC Resistance (0)

Size of 4.2 K

Coil Windinga (AWG) Turns RTC zero kG

N5 P 41 250 14 -

B 41 250 14 -

M 43 1326 152 2.6

N6 P 50 2300 .99 k 12

B 50 2300 (note d) 12

M 50 6936 3.88 k 48

NMReM 42 6240 2.66 k 33

COMPLETE COILS

e Input Impedancef Coil Strength S

Balance at 100 Hz, 4.2 K, (Gauss/milliAmp)

Coil VS/VP and zero kG Theoryg Experiment

-5 0
N5 10 148 Q at 1 1.25 1.28

(note i)

N6 0.5% 63 12 at 47° 6.42 5.8-7.0

(note d)

a
P stands for pickrup; B for balance; M for modulation.

bLeads were usually AWG 36.

cRoom temperature.

dAs wound, balance was 0.5% and B resistance was .99 k0. Later the balance

became 2.4% and resistance .96 k0, probably due to a few turns shorted

on one winding.

eV is voltage induced in the signal windings (P and B in series

opposition). VP is for pick-up winding alone. At 4.2 K in zero field.

fThe presence of the deA sample made no difference.

gFrom Equation (109).

hFrom fitting data to Bessel function of Equation (99).

1Additional data for room temperature and zero field: measured inductance

of 4.3 mH and Q of .18, both at 1 kHz.



113

turn equal to 10.48c in units of Tesla/Ampere—turn. L, r1, and r2 are

the solenoid's length and inner and outer radii (meters), uO/4fl =

10-7(mks), 21 and z are signed distances from the field point to the
2

left and right ends, respectively, of the solenoid (note the absolute

values in the arguments of the inverse hyperbolic sine functions), and

the field points lies on the long symmetry axis. Equation (109) comes

from integrating the Biot-Savart expression, and its accuracy is about

2%. This was determined for deA formers N5 and N6 from the Bessel

zeros of the deA signal and the roots of J2 in (99), and for NMR for-

mer M by direct measurement with a Hewlett—Packard field/current meter.

For coil strength at the center (109) reduces to

-7 D D

_ B = 4x10 . -1 2 _ . -1 1
Sc - NI -B;:BI—(31nh (L ) Slnh (L )), [110]

where D is diameter. It also reduces to the usual thin solenoid for—

mula

p

B__0
NI — 2L (cos a1 + cos a2), [111]

where 31 are the angles subtended at the axial field point by the basal

radii.

Estimates for the Optimal values of the size of wire and number of

turns were made as follows. Matching the impedance of the oscillator

(500) permits the maximal power and the maximal modulation field. The

desired maximum for second harmonic detection (see Figure 45) is one—

half (amplitude 367 G) the field period (735 G) at the maximal field

(50 RC). The available power of the oscillator is 0.5 W, which is lost

to Joule heat and flux leakage in both the coils and the impedance

matching transformer at the front end of the detector. Room temperature
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DC resistance of the M coil is 2 k0, and the RRR of fine (AWG 42 to 50)

Cu magnet wire is 95 to 100 (as measured). Assuming all power goes to

the Joule heat, the maximal current into the cold coil is 35 mArmS. The

maximal coil strength for fine wire on formers of the given dimensions

is around 7 G/mA (1.25 G/mA for coil NS and 6.42 G/mA for coil N6),

giving a maximum amplitude of 330 Gauss. This shows maximizing the

power into the M coil is important. Flux leakage, less than Optimal

matching, and magnetoresistance of the Cu reduced the maximal modula-

tion field so that equation (100a) could be satisfied only for H near

40 kG.

To wind the M coil to match impedance assume that the coil and in-

put transformer truly reflect the infinite input impedance of the

amplifier, ignore magnetoresistance, and wind the coil to have resis-

tance Rc = R8 of the source (oscillator) when the coil is at liquid

helium (LHe) temperature. For a constant voltage supply the useful para-

meter field per volt, and the equations are

SCNV

B = S , [112a]
2 2%.

((RS+RC) +X)

 

where VS and RS are the source voltage and resistance; Rc and X are the

coil's resistance and impedance at frequency w = Zflf:

X = wSCCN2 [112b]

2

where C is the cross-sectional area (m )

(r 2 + r 2). [112C]

TI

C ‘ 2 1 2

The packing densities of fine wires of diameter dw were both

calculated and measured. Using them and (112) the field B(N,dw) per
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volt VS was calculated for N windings of copper magnet wire of diameter

dw on one recess of former CF2 with our oscillator (R = 500, f = 100 Hz)

as the source. lfimrfield point is on the coil's axis and at the center

Ofthe single recess. (Note that the two recesses of NMR-M are a modified

Helmholtz pair.) Sketches of contours for B/VS are shown in Figure 28

for 20°C and in Figure 29 for 4.2 K. Because fringing effects reduce

the accuracy of (lle), the frequency was adjusted by a factor found

experimentally. Spot checks of these calculations against measured

values yielded 4% accuracy for frequencies near 100 Hz.

The contours of Figures 28 and 29 assume a length L and inner coil

diameter ID. The third constraint, outer diameter, determines another

boundary on the map: an OD line (dashed), the locus of the points

(dw’ Nd), where Nd is the maximal numbercflfturns of wire of diameter dw

that the former has room for. Maximal field per volt for the former

is given by the maximum within the accessible region defined by the two

axes and the OD line. In Figure 29 the OD line happens to pass close

by the absolute maximum. During collection of the data an unexpected

problem arose that later appeared to be temperature rise of the sample,

caused by the heating in the M coil of CFl. Thus choosing the best coil

specifications is not as simple as described above. The maximal modula-

tion field h that will be required, the combination of turns N and

modulation current Im necessary to establish it, the resulting coil

resistance Rc and Joule heat, the rate of heat dissipation in the coil

and holder, and the maximum temperature rise of the sample all are

interrelated parameters that must be adjusted for optimum detection.

The coils were all wound on a Meteor coil winding machine. The

wires had solderable insulation; it vaporized from the heat of soldering
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with ordinary PbSn solder. The tips of heavy leads (AWG 36) were

cleaned, tinned and anchored to the coil former by threading through

small (drill No. 72) holes on the shank, with 1 mm left protruding.

The former was put onto a mandrel with a drum on which the heavy leads

were secured. The fine wire was wrapped about the tip, soldered, wound

onto the former, cut, and that end soldered to the second heavy lead.

Each layer was glued with very thin DuCo cement.

Electrical lines; Heat Leaks. The heavy (AWG 36 or 38) leads from
 

CFl led through the hole in the cap (GP) to above LF, where each was

soldered to a separate probe lead (AWG 32) running to electrical feed—

throughs (EF) on FB. Likewise for CF2 leads. All leads were rigidly

taped, except for the last few inches at the tOp, either to the ex-

terior side of HT or to a narrow aluminum bridge (not shown) to

facilitate taping on the holder assembly. Coil leads were twisted

pairs; probe leads ran parallel. Experience showed several centimeters

of loosely dangling (but twisted) coil lead did not have noticeable

effect on S/N. Taping also protected against mechanical damage.

Three NMR RF lines were used, one at a time. RFLO is a 3/16" 3.3.

tube (the outer conductor) with a 1/32" 3.3. tube as the center con—

ductor, spaced by three or four Teflon triangles and tension at each

end. These sizes give an impedance close to that of the R058 cables

used (549). The impedance changed slightly with the level of LHe. The

major design consideration was low thermal leakage. An effort was made

to improve NMR S/N in RFLl by using as the center conductor a Cu magnet

wire, size AWG l8 chosen for current coaxial impedance matching, spaced

by Teflon triangles every 2 or 3 inches. S/N improvement was small but
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noticeable. Later RELZ was made vacuum tight by a hermeticlflfllcon-

nector on a COpper elbow because running procedure required frequent

removal and reinsertion of the probe. Water of condensation collected

inside the tube and absorbed the FR power, killing the signal. RFL2

is another 3/16" tube enclosing an RG58 cable with the insulation and

ground braid removed, leaving the AWGZO Cu center plus foam insulation.

S/N was about the same, perhaps lower. This RFL was used only when the

probe was left in LHe during the entire run, so it wasruflzvacuum tight.

RFLl was used most.

Because the sample and coils were in the LHe bath, thermal leaks

were a concern only in conserving LHe. Heat flux down the probe, with

the top at room temperature and the bottom in LHe to about 10" above

the sample was calculated from tables of integrated thermal conduc-

tivities.103 Results are given in Table 5. These are upper limits be-

cause the loss of heat to the rising cold He gas carries away much heat

before it reaches the bottom of the probe.

6.2 Electronics
 

The electronics were standard for the field modulation technique

(FMT). See References 95 through 101 for typical circuits. Lower case

v and i are time dependent variables, capital V and I are amplitudes or

phasors.

In Figure 30 oscillator number 1(OSCl) with voltage Vm generates a

sinusoidal current Im of frequency fm and distortion less than .02%.

Im generates the deA modulation field h. A digital volt meter (DVM)

measures Im but sometimes an oscilloscope (S) was used. The deA
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TABLE 5. Thermal leaks: Conductive heat flow from top of probe (room

T) to LHe level (10" above sample).

Path Heat Flow (Watts)

-3

1 wire, 32 AWG 2.88 x 10

All probe leads except RFL

(18 wires, 32 AWG each) .052

RFLO (s.s. center) .02

RFLl (18 AWG Cu center + air space) .073

Probe housing tube (HT) (3.3.) .166

Control tube (CT) (3.5.) (each) .025

Solenoid's (SCS) 3/8" suspension

tubes (all three) 0.44

Total (Probe with RFLl + SCS suspension;

exclude dewar conduction, radiation

leaks, gas thermal exchange) .39

a. Assumes no heat given up to rising cold He gas (no exchange).

 

voltage vS = VP + VB from the deA coils enters a lock-in amplifier

(LA) via a switch box (SB), where connections are shielded.

In addition to the B coil and electrical filters, a null control

is frequently employed. A phase coherent voltage, obtained from either

the B coil or from a third coil in the probe, and available for ex—

ternal phase and amplitude control, is added in series to null the

fundamental voltage from the S coil. During development of the appa-

ratus a phase shifter and a voltage attenuator modified vS before it

entered LIA. But data presented in this thesis was taken either with

VS going directly to LIA or with a commercial ratio transformer (RT)

improving the balance first. The inset at the top left of Figure 30
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Figure 30. Block diagram of deA and NMR electronics.
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shows the two cases. RT enables a variable, precise fraction of VB to

be added in Opposition to v but no phase change is possible. Coil
B,

N5 was balanced well enough that it needed no help; coil N6 had about

2%% imbalance which was reduced by RT (no phase shifting) enough that

the bandpass filter of the LIA could handle it. The switch box (SB)

had internal shields to prevent cross—over of the modulation and signal

voltages.

The LIA input was a transformer, found to give much improved S/N

compared to the other option, transistor input. The LIA output Vo was

recorded against steady field HO of the superconducting solenoid (SCS)

on a chart recorder (CR). Vo was proportional to the n-th harmonic

component (in time) of v The component has amplitude Vn and fre-S.

quency fn = (the detection frequency). Except for special measure-
fd

ments, n = 2 for the data. Thus the LIA effectively performed a

Fourier analysis to v , recording V cos(6 - ¢), where 6 is the phase

S 2

angle of V2 relative to V1 and 0 is the LIA phase.

The x—axis of CR was the steady magnetic field Ho. Field measure-

ment is described in Section 6.4.

6.3 Superconducting Solenoid and Dewar
 

A cryostat was built to suspend the SCS. The superconducting sole-

noid (SCS) was a NbTi, filaments in a Cu matrix, 50 kG at 60 A and 4.2K,

manufactured by Oxford Instruments, Cambridge. Hysteresis appeared to

be negligible. The NMR field measurements are unaffected by hysteresis;

when the calibrated resistors were used, field points HO for deA fre-

quency data were approached by one or two decreasing oscillations. Some

of the deA phase plots show a small hysteresis effect. See Table 6.
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TABLE 6. Superconducting Solenoid

Design

Hysteresis (from deA phase

separation between

up-field and down—field

sweeps)

Maximum error in deA

frequency F

phase

phase constant

Homogeneity (Specification)

(Axial)

(NMR)

(Leads to negligible

phase smearing)

Calibration (field measured

by NMR.versus voltage VW

across standard resistor

as measured by a 5 digit,

1 microvolt resolution DVM.

Average and Standard

Deviation of 22 points over

29 - 49 kG)

Maximum error in deA

frequency F

phase

phase constant

Oxford Instruments, 50 RC, NbTi,

850 Gauss/Amp (Spec.)

.0222 lag at 37 kc

.037 31

.11 21

(Normally avoided by cycling into

the field point.)

i 7.5 kG

j: .04 cycles at 31 kG

j: .17 cycles

.1% over a 1" diameter volume, which

gives an average of 40 ppm/mm.

However, the profile may be jagged.

Five or six points over 4 cm gave

jagged profiles. Either in field or

poor NMR precision in reading line

center.

Average Typical

Field over 4 cm Gradient Avg .

(RC) (1%) (imam/mm) 4cm

9.82 .1 92 25

26.76 .019 37 4.7

30.53 .029 28 7.4

35.42 .008 2.8 2.1

Across RW (water-cooled tube):

(141.433 :_.055) kG/V :_.001 kG

Q: .044 accuracy)

(as given by above and

RLanw):

(850.825 1 .331) kG/V i .001 kG

Across RLN

;: 3.4 RC

11.074 cycles at 20 kG

j; . 096 cycles
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6.4 Magnetic Field Measurement
 

The field was measured by NMR and a standard resistance Rw or

RLN in series with the solenoid's current. Later a precision calibra—

tion of these resistors by NMR while measuring SCS current I with a DVM

(not shown) enabled their use for field measurements sufficiently pre-

cise and reproducible for our deA measurements of F, given the complica-

tions presented by the crystal itself. Calibration is given in Table 6.

Nuclear magnetic resonance. Precise measurements of magnetic field

were made by NMR of 27A1. A marginal oscillator (MO) put RF power into

 

the sample through the electrical feedthrough (NMR-RF) on the probe. A

detector in MO demodulated the RF signal, whose amplitude decreased at

resonance, giving a dip in the demodulated voltage. This was seen on 8

after being cleaned by filters F. Filters were 60 Hz twin-T rejection

plus sometimes a bandpass set close to the modulation frequency, which

was 70 to several hundred Hz. For more precise field measurements, or

for weak signals, another LIA replaced S. Frequency was measured by a

Hewlett-Packard Frequency Counter (FC). The method of tuning was by

changing the lengths of RG58 coaxial cables, as described in Ref. 104,

which also gives the MO circuit diagram (ours was slightly modified).

The sample was made by mixing filings of shop grade A1 alloy with

epoxy. This paste was packed into a cylindrical shell into which the

RF coil has previously been inserted. After the epoxy had set a trans—

verse hole was drilled to allow insertion of the deA coil former and

sample holder.

The S/N for the NMR signal was only fair. Below 30 kG the decreas-

ing NMR signal amplitude and the difficulty in making the MO work at
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the required lower frequencies combined to make field measurements very

difficult. Various sizes of wire and numbers of turns were tried for

this type of 27A1 sample in order to improve S/N. Solid Al metal and

ruby were tried out of curiosity. Niobium in NbSn superconducting wire

was also tried. The best NMR sample was 27A1 with RF being about six

turns of wire in the Al-epoxy. The size of the sample was 1.5 cm x 1.0

cm diameter, with a hole of diameter 0.57 cm at the center. The wire

was AWGZO but size is apparently unimportant.

Calibrated resistors. Two low resistance, high current resistors
 

were used, one at a time, to provide both a voltage for the Ho scale

of the chart recorder and a precise measurement of field, the latter in

conjunction with a 5% digit DVM, with a sensitivity of l microvolt.

Both resistors were calibrated and checked occasionally with NMR. See

Table 6 for calibration data and Table 7 for characteristics. Tempera-

ture was monitored with a thermocouple meter. Note that RLN may be

more constant over 0 - 60A than RW' The calibration ratio that was

used was obtained by dividing that for RW by the RLN/RW ratio at 60

Amperes.



126

TABLE 7. Characteristics of the Standard Resistors for the Superconducting

Solenoid

Resistor Rw

 

Design Water-cooled 3/8" 8.8. tube.

Distance between potential leads = 5 cm.

Resistance (By RLN/RW) (6.017 r .002) x 10'.3 Ohms

Temperature coefficient 1.77 x 10.4 (0C)..1 at 11 OC

(AR/R/AT)

Joule heat: AT(I) AT = (.00145)Il°94 OC/A (at 20°C)

T rise: At 60 A (Amp) AT 2.70C (By thermocouple on outer

surgace. But AT of cooling water =

0.2 C +T gradient in 8.8. shell.)

I-Vw linearity over 60 A

(from T coef. & T rise) .07% if uniform T in shell

.035% if linear T grad in shell|
+

H
-

NError by above effect in .49 kG error in field measurement

extrapolating the NMR

calibration to 20 kG .021 cycle error in deA phase at

20 kG field. The error in deA F

and phase constant is variable.

That in F would show as a curve in

the phase plot.

Resistor RLN

 

Design 500 Ampere standard resistor by

Leeds-Northrup. Air—cooled.

Very big (about 40 pounds).

Resistance (specification) 1 x 10-3 i .04%

Temperature coefficient Given as very low

RLN/RW (by DVM) .16617 at 0 Amp

.16624 at 60 Amp (.04% increase)

B—VLN CALIBRATION (by RLN/Rw ratio)=(850.825 i .331) kG/V i .008 kG



- CHAPTER VII

EXPERIMENTAL PROCEDURE AND DE HAAS-VAN ALPHEN DATA

7.1 General Procedure
 

The general procedure was to cool the superconducting solenoid (SCS)

and probe, record the deA oscillations on a long field sweep to see

their general form, coax the marginal oscillator into working, and re-

cord the data.

The deA frequency F and phase constant y were Obtained by measur—

ing the deA phase as a function of a steady field H. The Dingle tem-

perature T is obtained from the measured variation of the signal

D

amplitude with field H. Theoretically, the amplitude is M1(H) of (71a).

The recorded voltage V is really the r.m.s. value of (98), uniformly

2

prOportional to its amplitude (99).

Phase data was obtained by recording V2 while sweeping down in

field, stOpping every 5 to 10 oscillations to note the phase and measure

the field with either NMR or by recording the voltage Vw across Rw’

the solenoid's standard resistor. (W stands for both the standard

resistors W and LN unless distinction is necessary.) In the first runs

NMR was used mostly, but as it became evident that the physics of the

crystal was complicating the signal so that the slightly lower preci—

sion of H measured by Vw across Rw was irrelevant, RW was used ex-

clusively to greatly speed up the collection of data.

127
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Dingle data was recorded separately for convenience. At spaced

field values the modulation current Im was adjusted for constant Bessel

factor, the amplitude of V was recorded, and H measured. Both Vw.and

2

the calibrated current dial of the SCS power supply were accurate and

precise enough for Dingle data.

7.2 Orientation
 

The crystal was oriented by turning the control tubes (CT) while

observing the symmetry in V2. The concept of surfaces of constant deA

phase101 is useful in this method of orientation. Let the direction of

.H be fixed in real space (xyz) while both the crystalline and kraxes

may undergo general angular displacement. Given a Fermi surface (FS)

with cross—sectional area A(0,¢) corresponding to F(0,¢), the field's

magnitude is varied to keep the deA phase of (71b) constant as the

crystal undergoes general displacement in real space and the direction

ofig undergoes a corresponding displacement in krspace (see Figure 3).

The constant phase surface is the locus of H_vectors, and the family of

surfaces is generated by varying the phase. A spherical FS gives a

spherical surface of constant phase; a prolate ellipsoidal FS gives

an oblate ellipsoid. Thus there are two types of deA signals: field

sweep and rotation. In the latter, H remains constant in.magnitude as

its direction in the crystal changes, giving oscillations as it crosses

the surfaces of constant phase.

Ref. 10 has shown that an hyperboloid of one sheet models the

third zone neck of AuGa2 very well, giving the extremal cross-sectional

area as a function of the poldr angle 0:
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A(0)

A(9) = 2 1,

[(l+b) cos 0 -b]’5

 

[113]

where b = mt/m£ = .16, the ratio of the transverse and longitudinal

masses. H a A gives bowl-shaped surfaces whose axis is parallel to

<111>. Figure 31(a) shows their intersection with a plane containing

<111>. The solid lines are quarter phase and the dashed lines are

three—quarter. The other two arcs are the paths in this plane of two

.H vectors as the crystal undergoes a small angular displacement about

<lll>. The arcs are distorted from being circular due to the unequal

scales of the figure. The corresponding rotation signals are shown in

Figure 31(b).

One peak does not correspond to quarter or three-quarter phase;

it is a turning point (TP), where the field and <lll> are exactly

parallel, and may be a positive or negative peak, as shown in Figure 31(b).

Typical rotation diagrams from our runs are shown in Figure 32. If the

phase wTP at which the turning point occurs is close to 01/4’3/4 (as is

most likely for arbitrary field), the two will be confused, and the

rotation graph will show no obvious TP. The fact that the envelope

function of the rotation graph can change greatly with angle and its

being generally different from the sweep envelope further confuse the

identification of TP. 80 frequently a rotation graph at fixed H does

not identify TP clearly and each peak must be examined to see if it is

due to wTP or 01/4’3/4. An example is shown in Figure 32(c). Figure 33

shows how to identify a positive rotation peak as a turning point, a

peak preceding TP, or a peak following TP. This allows one to check

only positive peaks (3 similar analysis applies to negative peaks) and

thus move over angle more rapidly. The method is as follows: the
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Figure 32.

(a)

(b)

(C)

(d)
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Horizontal segmentsTypical experimental rotation graphs.

denote the limits of rotation.

Positive turning point (TP).

Negative turning point (TP).

The same sample and angular range as in (a). A small

change in H obscures the turning point.

Another example of an obscured TP. Numbers are revolutions

of one control tube. TP identified by subsequent data.
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{—— Rotation  (c)

Figure 33. Identification of positive peaks in a deA rotation graph

by (1) rotation, (2) reset field, (3) rotation.

(a) Peak is a turning point.

(b) Peak precedes a turning point.

(c) Peak follows a turning point.
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first peak reached in a rotation is examined by reducing H to put V2

at a positive going zero crossing and rotating slightly about the new

position. The signal recorded is then compared against theoretical

diagrams like those of Figure 33. If the peak precedes a TP, continue

to rotate in the same direction; if it follows a TP rotate the other

direction. Continue in this manner until either TP is found or the

next peak examined is one that follows TP, in which case TP is the

previously recorded negative peak.

Resolution in orientation and resulting error in F and was

mentioned in Chapter VI.

7.3 Skin Effect
 

When the absolute value of the volumetric magnetic susceptibility

of the sample is less than 100 and the sample's conductivity and the

modulation frequency are such that the skin depth 6, where

5 = ___—cir’ [114]

(21mm)

is several times the sample's greatest axial diameter D, then the com-

bination of electrical filters and a moderately balanced S coil gives

good S/N. The condition

6
'1')- > 1 [115]

for most metal samples requires a modulation frequency less than 10 Hz

if the sample diameter is one or two millimeters, RRR is greater than

500, and magnetoresistance is less than 100. Atrade—off is made between

increasing frequency and field inhomogeneity. Increased frequency has
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the advantages of increased voltage (until the skin effect becomes

severe), improved electrical performance, and ease of adjusting the

filters and detectors, decreased time constant on the final DC filter

of the detector, and generally increased S/N and ease of operation.

Regarding improved performance of the filters, at very low

frequencies finding the resonant frequency is difficult and time

consuming. Voltage transients arise from turning the deA signal off

to make an NMR measurement and then on, and from other adjustments.

Each transient caused the filters to ring many minutes when a 10 Hz

modulation frequency was attempted. The modulation frequency of 100 Hz

we used permitted the slight eddy current arising from the skin effect

to induce a fundamental component of several milliVolts. A null control

(ratio transformer) divided this by more than 100 to give a level which

the filters could easily reject, leaving S/N as high as when no sample

was in the coil. The residual eddy current does not affect the results.

Figure 34 and 35 show the results of two tests to check that the deA

amplitudezis not seriously affected by any residual skin effect at

lOOHz. Figure 34 shows the amplitude is at least 96% of its zero

frequency limit for Sample 12, with RRR = 205. Figure 35 shows a test

for a sample of presumably lower RRR. Voltage has become independent

of frequency at 100 Hz. The dashed line shows the phase of VS' The

theoretical value for a uniform field is zero.

7.4 Data Reduction

The deA frequency F and phase constant Y were obtained by plotting

the number of recorded oscillations (starting with the highest field

OSCillation) against inverse field, a technique described in References 49
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and 68. In accordance with equations (71a) and (87), a positive-going

zero crossing of voltage with respect to decreasing field denoted the

start of another cycle. Let m+r denote the relative phase (m whole

cycles plus remainder r) as measured from the high field reference

phase N, chosen to be integral (i.e., a positive-going zero crossing).

Then

m+r = wlm) - N. [lle]

From (71), (87), and (lle), m+r clearly has slope F and intercept

INF=—Y+l/8-N+€ [115c]

where INF stands for the infinite field intercept (i.e., at 1/H = 0)

and E = 0 if the Dingle factor is negative and the number of coil-

detector polarity reversals is even, and E = :5 if either the Dingle

factor is positive or there is a polarity reversal. For our system

v a +dM/dt. N is determined from the known field and the value of F

from the slope. For evaluation of (llSc), see Section 10.2.

The trick is to isolate the fundamental component of the extremal

orbit desired. Ordinarily digital Fourier analysis, electronic filtering

of a sweep signal made with time t a l/H, and the sample's own signal

discrimination, all discussed in Chapter V, are used to separate fre-

quencies differing by a big factor. Very close frequencies that must

be precisely determined require graphical analysis and consideration of

the phasors involved. The latter approach was made for this data, in

which the C5 signal dominated. The error introduced by residual

oscillations in both the phase plots and Dingle plots is the same order

as the effect of uncertainty in measurements from the instruments, the
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temperature rise in the sample, magnetic interaction, and the occasional

presence of crystallites. Very small signals from crystallites could be

tolerated, but several samples were discarded because of too much inter-

ference.

Figure 36 shows typical data. Table 8 and Figure 37 summarize the

measurements of the deA frequencies and phase constants, Dingle

temperatures, and residual resistance ratios. These results are

discussed in Chapter X, after the presentation in the next two chapters

of some data and theory on the growth and analysis of the samples.



Figure 36. Selected data for AuGaz.

l. H H <lll>. Unfiltered deA signal. Modulation at lOO Hz.
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TABLE 8.

Melt Concentration

 

  

 

deA

Sample Freq.

AcSnOte a No. INFb (kG)

Melt C l 30 -.90 3388 i4

+.549 at.% 27

26

l

s\ .
Melt A. -‘\\\\

+.204 at.% F}‘\\ 16

15 -.82 f

~\\\\‘ _ 94 3384.2:0.6

5

LQSE/ 10 “'90 3385.2il.2f
—.75

f

-.83 3389.3i0.5

-.92 3396.4:0.3

Melt B f

-.288 at.% -.79 3391.8i1.4f

-.65 3402.4:0.4

-.75

_.88 3405.7i0.8

aDeviation of Ga concentration from stoichiometry:

Acs means Ga excess (deficit).

b

Sample Characteristics by Position and Parent Crystal's

Dingle

Temp.

(K) RRR

o :.5

.75

.88i.12

c 287C

.09d Zisooe

_>_;17ooe

.34 Zisooe

.47 31000e

.91 .3 500e

.02:.1o 205:20

.55:.15 157

.00i.l4 56

55

positive (negative)

INF = infinite field phase = -Y-3/8 cycles for orbit C' of AuGa , where

Y = phase constant of LK theory. (INF includes net -% voltage reversals.)

Average INF = -.83i.09, giving Y = .46i.09.

CAxis ||<111>.

dAxis 230 off <111>.

eLower bound.

{In situ NMR.measurements for field.



Figure 37. Summary of deA and RR data.
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CHAPTER VIII

GROWTH AND PREPARATION OF SAMPLES

This chapter considers enough of the theory of growing alloys to

give an idea of what to expect to find in an alloy grown from the

melt, although reliable quantitative answers are difficult to obtain

because of the scarcity of data and because making measurements on a

freezing metal is a full project in itself. Next are given some of

the details of growing, cutting, and x-raying our crystals, all of which

used standard techniques. These crystals presented no special diffi-

culties other than the usual uncertainties involved in growing single

crystals. Questions regarding some of the samples are discussed in

Chapter IX. The last section is an exposition of the melt concentra-

tions we chose and why.

In this and the following chapters the big crystal taken from the

crucible after growing is sometimes called a slug to distinguish it

from the small crystals cut from the slug and used as samples in the

deA and RRR experiments. Both are single crystals (unless something

went wrong).

8.1 Theory of Freezinggfor Solid Solutions
 

Phase equilibria. Figure 38(a) shows a simplified equilibrium
 

phase diagram for the Au-Ga system, omitting some details not
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Ref. 105)

(a) Full range of concentration.

(b) Sketch of the region near AuGa stoichiometry expanded,

illustrating reversible processes.
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pertinent to AuGaz. Figure 38(b) shows the phases near AuGa2

stoichiometry. The relevant phase boundaries are Ls=liquidus and the

AuGa, AuGa2 and Ca vertical boundaries. I=isothermal lines, and the

phase regions are L=liquid, S=solid, S+L=solid + liquid, and E=eutectic.

The concentration at the congruent point (the relative maximum in

melting temperature) is cm, a value near, but not necessarily exactly

at, stoichiometry. A.melt of concentration cl < cm and at temperature

T1 may cool in a reversible manner (i.e., the system remains close to

ithequilibrium states) until at T a phase mixture starts to form: a

2

nucleus of precipitate (solid AuGa2 crystal) in the bulk of liquid melt

remaining. After additional slow cooling the system, represented by

the three points (c1,T3), (c2,T3), and (AuGa2,T3), still has two

phases: liquid melt of concentration c constituting the molar fraction
2

b/(a+b) of the system (lever rule), and solid AuGa of concentration

2

66.7 at.% Ga and constituting molar fraction afl(a+b) of the system.-

The average concentration of the whole system is c1. Phase separation

continues with further cooling until the melt reaches ce at Te=451°C,

the eutectic point. The temperature remains at Te upon further slow

removal of heat, and the remaining melt freezes to form a eutectic

alloy, an intimate mixture of AuGa and AuGa2 in the proportion d/c.

The eutectic forms inclusions in the pure AuGaz. As another example,

if a melt of concentration c4 > c is cooled reversibly to T phase
m 4

separation into solid AuGa2 and liquid melt again commences, but now

the melt becomes richer in Ca as cooling continues, with the melt

concentration following the liquidus line to the right, passing through

c5, and the system finally reaching a different isothermal line 12,

corresponding to the solidification of pure Ga. Again, the average

concentration of the total system is constantly c4.
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Homogeneity range. In Figure 38(a) the phases Au, AuGa, AuGaz,

and Ca are represented by vertical lines, indicating that these phases

 

are of fixed composition, at least to the accuracy of measurement for

the diagram. The phases labeled 8 and Y have a non-zero range of

homogeneity, or width in concentration, even though they are single-

phase systems (unlike the extended eutectic region E) and have been

assigned specific formulas:105 Au3Ga for the 8 phase, of maximum width

2.7 at.%, and Au7Ga3 for the Y phase, of approximate width 1.0 at.%.

An ordered alloy of fixed composition can be described in accordance

with equation (4) by

alloy structure = § (sublatticer + basisr), [116]

where, except for the most complicated structures, the basis is monatomic.

A range of concentration for a fixed crystal structure implies some

disorder in the occupation of the sites of each sublattice: substitu—

tions, interstitials, or vacancies. In some crystal structures one

sublattice represents ordered vacancies. Two examples are6 A13Ni2 and

FeO.87SS° One way of characterizing the amount of order in an alloy

system with ordered phases is by order parameters, a simple set being

f1, the fraction of atoms of species A on the i-th sublattice.2

Thermal and x-ray measurements show the f1 change continuously with

the temperature and concentration of the samples, corresponding to

continuous transformations among states of relatively high order and

states of relatively low order (with respect to separation of the

atomic species onto their own sublattices). Furthermore, these

transformations (i.e., changes of crystal structure) usually extend

over non-zero ranges of concentration before arriving at the next
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well—defined phase, whether the transformations be homologous (a

continuous transformation from one single-phase system to another) or

heterogenous (passing through a two—phase stage). Both of these

observations lead one to expect that most of the distinct phase

boundaries of a phase diagram are in reality blurred, and that inter—

mediate phases of nominally unique concentration (i.e., intermettalic

compounds) will have some width.

Additionally, for intermetallic compounds having a congruent

melting point, there is no a_priori reason that it must lie at the

point of stoichiometry for the compound, as attested by numerous phase

diagrams for binary allows. Figure 39 shows a simple scheme, devised

to resemble the AuGa system of Figure 38(a), which could describe a
2

real alloy with a homogeneous range of concentration and with the

congruent point not at stoichiometry. Suppose that the solid is an

intermetallic compound. Consider this figure in light of the quasi-

static (reversible) process discussed earlier, so that the system is

always in equilibrium. As it is cooled from T1 to T2 it is a two

phase system: the melt (the saturated solution) and the solid (com-

pound, or precipitate). The concentration of the solid ranges from

11°Cc during cooling. Imposition of equilibrium conditions means
1 2

that at any TszfT the entire solid phase of the system is uniformly
l

at the corresponding concentration given by the solidus line, and at

T8 the solid is at the stoichiometric concentration of the intermetallic

compound. As before, average concentration of the system is constant,

since it is closed, permitting no change in the amount of each com-

ponent. A number of variations can be envisioned, such as solidus lines

of different shape and stoichiometry on the other side of the congruent

point.
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So far we have discussed the behavior of the alloy system in

equilibrium or in quasi-static processes. But in the Bridgman crystal

grower the system, which is the whole charge in the crucible, is

certainly not in equilibrium for three reasons:

(1) There is always a temperature gradient.

(2) The process for growing most metal crystals reduces the

temperature of any portion of the solid shortly after its

solidification to an extent that diffusion is too slow for

the solid to approach new equilibria in practical times.

(3) Some degree of mass flux, thermal fluctuations, and other

transient phenomena are normally present during crystal

growth.

What predictions can the equilibrium phase diagram make about the

concentrations of samples grown by the Bridgman method? That phase

diagrams have been very useful for many years of crystal growing is

convincing evidence that they do contain useful information, even for

this nonequlibrium system. For slow cooling rates the region in the

vicinity of the interface is near equilibrium. As the interface

velocity (rate of solidification) increases one would expect the

transient conditions to change the composition of the solid that

freezes. This is the regime of growth kinetics, which is discussed

next.

Growth kinetics. This is the study of the time dependent,

microscopic process of solidification at the interface of solid and

liquid.106 Not only are such considerations necessary for calculating

the behavior of systems not in equilibrium but they also give additional

information on what happens during solidification under quasi—static

conditions. Growth kinetics depend on such things as diffusion, con-

centration and thermal gradients at the interface, the amount of

stirring of the melt, the free energies of the components of the
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system, and the mass of the system. For example, the equilibrium

phase diagram shows simply that AuGa will precipitate; but the solid

2

can be dispersed as crystallites or concentrated in single crystals of

macroscopic size, depending upon conditions such as the presence of a

temperature gradient (reversible process assumes uniform temperature

throughout the system), the rate of cooling, and the shape of the

crucible.

Regarding deviation (3) in the subsection above, even an unstirred

melt has at least three fluxes:152 diffusion flux, arising from the

concentration gradient; a convection flux arising from the temperature

gradient; and a third flux due to the precipitation of atoms from the

melt at the interface. All of this is referred to as solute redistri-

bution. Calculations are complicated and depend on such details of the

system as various thermodynamic quantities (specific heats, heats of

fusion, distribution coefficients), kinetic properties (mass, velocity)

and atomic and ionic characteristics.

Figure 40 shows a concentration gradient typical of those calcu-

106’107 for the melt of‘a dilute, binary alloylated or measured

undergoing solidification in a closed system, such as a crucible sealed

in a pyrex tube, as is done in the Bridgman method. The gradient for

the solid is not shown because it varies with the equilibrium con-

centration (represented by the solidus line of the solid phase) and

with the ability of the solid to come to equilibrium under the given

conditions. For most intermetallic compounds it would be nearly a

horizontal line on the scale of Figure 40. Naturally the concentration

gradient in the melt tends to disappear under the effect of stirring.

Our Bridgman system may be considered partially stirred: no mechanical
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stirring, but the radiofrequency furnace we used induces convection

currents.

Most of the analysis in the literature is for small concentrations

of an alloying element (which can also be considered an impurity), but

the concepts may be appropriate for our system: stoichiometric AuAg2

is considered the host phase, and the excess Au or Ga is considered

the impurity. It is unlikely that the equations can be used directly,

because here the "impurity" has the same diffusion coefficient and free

energy considerations as one of the components of the host phase.

Hybrid approach. Experience shows that theoretical considerations
 

of the freezing of metals into crystals must include elements of both

the phase equilibria and growth kinetics. The composition of grown

crystals approaches what the equilibrium phase diagram shows, and the

conditions of slow growth are an attempt to obtain a quasi-static

process. But as discussed above, nonequilibrium conditions exist, and

may have a significant effect on the grown product. In fact, a true

quasi—static growing process would nullify hypothesis (1) of Chapter I

on the variation of concentration along the growth axis of the crystal,

and an explanation for the range in RRR could not invoke such a

variation.

The main question in the hybrid approach is to what extent each

side should be included. The inability of the solid phase to equilibrate

in the time over which the charge is solidified seems, from common

experience, to be one of the deviations from conditions of equilibrium

that will have as big an effect as any other deviation. Consider

Figure 38(b). If the precipitate is exactly AuGa as indicated by the
2

vertical line, then that phase is already in thermal equilibrium for
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all lower temperatures. But postulate for AuGa2 a solid phase of

variable concentration, near stoichiometry, and of finite width

(Figure 39). As the temperature is lowered from T1 to T2 the point

representing the solid phase of the system changes from c1 to c2.

The solid formed at T can be in equilibrium at T only by changing
l 2

its concentration. The required mass transport is a slow process in

a solid and is strongly temperature dependent. Attainment of thermal

equilibrium in a binary alloy is possible inthe times normally used to

grow crystals, but only for temperatures in the upper third of the

range from room temperature to melting point. Consequently, one suspects

the whole solid will have a concentration which varies between c1 and

c over the length of the solid.
2

Assuming a phase width such as Figure 39 for AuGa2 and assuming

that the preceding argument applies to its growth, how is the concentra-

tion range cl to c2 of the solid AuGa2 distributed over the physical

length of the crystal? Define cS to be the concentration of the solid

at the fractional distance z from the end of the solid that froze first.

Knowledge of cs(z) is of obvious importance for the cutting of samples

fronithe crystal in order to measure physical prOperties dependent on

cs. First a qualitative answer.

For slow cooling rates the region in the vicinity of the interface

is assumed to be near equilibrium because for it Tsz and the equilibrium

redistribution in that part of the solid can occur before the temperature

at the region changes much, and before distant changes in the whole

system can propagate to this "interface system." But this interface

system is not closed to mass transport, so that as solidification

proceeds in the presence of a temperature gradient, the concentration
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at the interface changes more slowly than it would were the system

closed. This effect is illustrated in Figure 41. The details depend

upon the temperature profile, how it changes in time, and diffusion

coefficients. But the general effect is that most of the freezing

occurs over a concentration range in the melt much smaller than would

be expected from the equilibrium phase diagram. For example, in

Figure 38(b) most of the charge solidifies while the concentration of

the melt goes from c4 to c5; only a small fraction of melt remains

beyond c5, and only a very thin layer remains by the time the isothermal

line, 12, is reached. This follows from the lever rule.

It should be repeated that this subsection has considered two

different phenomena causing a variation of concentration in the solid.

The first arises from a solid phase boundary that is slanted rather

than vertical, in conjunction with the inability of the solid's con-

centration to rapidly respond to temperature changes. The second

effect, discussed immediately above, arises from the melt concentration

at the interface changing during crystal growth in a manner different

from that predicted by the phase diagram. We continue to consider the

second effect. Some simplifying assumptions about the system are made

preparatory to making a calculation for AuGaz.

Calculations giving one of cs, 2, and T as functions of the other

two are made by assuming or deriving functional forms for the liquidus

and solidus phase boundaries, and are common in the literature.107’108

But they either assume phase boundaries or conditions inappropriate to

our case, or require the knowledge of thermodynamic or kinetic variables

unavailable for our system. Furthermore, the accuracy of such calcula-

tions is low, so one would not have confidence in even qualitative

results for the extremely narrow AuGa phase.
2
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The excess Ga atoms left in the melt rapidly diffuse into

the rest of the melt, lowering the concentration.



154

We therefore make a different calculation specifically for AuGaz,

abandoning hope of making even a rough calculation of cS(z) and looking

instead to c£(z), the concentration of the melt at the interface between

solid and liquid when the interface is located at a fraction 2 of the

length of the charge. This approach takes advantage of the fact that

the AuGa2 phase boundary (unlike those generally assumed in the calcula-

tions in the literature) is either a vertical line or close to being one.

Thus knowledge of c£(z), while not giving the details of cs(z), will at

least give a general idea of its behavior. For example, if c£(z)

changes slowly about some value of 2, then cs(z) will, too. For use

in the calculation a numerical function relating c1 and T for 2/3<c£<1

is obtained from the phase diagram of Figure 38(a), and the solid phase

is taken as a constant c = 2/3. The resulting imprecision is unimportant

beside the inaccuracies introduced by the assumptions given below,

assumptions necessary because of the lack of information about the

interface system and because of the complexities of calculation upon

introducing such details even if they were known. The assumptions are

(1) No concentration gradient in the melt (i.e., a perfectly

stirred melt);

(2) No diffusion in the solid (i.e., the solid makes no move

toward equilibrium);

(3) The concentrations cs and c2 follow the solidus and liquidus

of the phase diagram;

(4) The crucible and charge have a uniform cross section.

Assumptions (1) through (3) define normal freezing.108 The first two

assumptions are obviously not entirely true, so the calculation will

give only an idea of what to expect. These assumptions permit easy

calculation of c£(z) from the phase diagram of Figure 38(a). By

assumption (4) z is proportional to the molar fraction of the charge

solidified, so for AuGaz,
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cfi-co

z ='E;:§7§3 [117]

where co is the prepared concentration of the melt. The results are

given in Figure 42 for two values of co. These results, when applied

to Figure 39, suggest that cs(z) also increases slowly from c1, then

rapidly to c2 as the last of the charge solidifies. Define "measurable

range" as the range in concentration exhibited by single-crystal samples

which can be physically cut from the slug and are big enough to give

measurable signals. If the simple model above predicts the behavior of

the real alloy with only fair accuracy, measurement of the AuGa2 phase

width will be made even more difficult because of reduction of the

measurable range of concentration. This follows from.the confinement of

most of the phase width to a thin portion at the top of the sample

(near z=l), near the cap of the slug. The necessity of cutting away the

cap (a region of questionable crystalline perfection) may reduce the

Ga-rich end of the measurable range. The finite width of the deA

samples also reduces it by averaging in values lower than the maximum

concentration of the phase width.

The best one could hope to do by including ignored effects is to

increase the measurable range to equal the phase width itself, which is

already suspected to be small (less than one percent). There is a

bright side to this distortion: a crystal grown from a melt on the

Au-rich side of the congruent point should have its eutectic region

confined to the top. See Figure 38(a).

We thus conclude this section on theory with the feeling that,

assuming a non-zero phase width for AuGa the crystals grown by the

2

Bridgman technique should show a variation of concentration that
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reflects the shape of the solidus line (on one side of the phase or

the other) in a way that is characteristic of the method of growth, the

Bridgman method in this thesis. This is the growth pattern referred to

in the discussion of objectives in Chapter I.

Of course the question arises about the reproducibility of results

tied to growth kinetics. The effect of the open interface system of

this model should be reproducible. Growing conditions were reproduced

for each of the three crystals grown, to the extent possible with the

equipment. The purpose, besides providing reversible cooling conducive

to the growth of single crystals, was to prevent factors of growth

kinetics other than concentration differences from causing some variation

among the final samples. One change of condition that did occur is that

one sample is twice the length of the other two. (The diameters are the

same.) The effect of this is unknown, but is probably small, at least

for the lower bulk of the crystals, because the "interface system,"

open to mass transport, at first sees effectively infinite resources.

8.2 ‘Methods
 

Growing. All of the samples were cut from three single crystals of

nominal AuGaz. Each crystal was grown by Boyd Shumaker using the

vertical Bridgman method, from a melt prepared slightly off stoichio-

metry by a different amount (Table 9). The procedure each time was the

same. Pellets of 5 or 6 nines gold from Cominco were cleaned with aqua

regia, rinsed in distilled water, and weighed to the nearest .01 mg

in a Mettler balance. Gallium of 6 nines purity from Alcoa was cleaned

with dilute nitric acid, rinsed in distilled water, and added to make

a charge of desired concentration, referred to as the prepared melt
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concentration. The charge was mixed by melting several times in one

induction (radiofrequency- RF) furnace (Lepel 2% kW) and grown in

another (Stanelco, 30 kW, 380 kHz). To start, the charge was put into

a vitreous (pyrolytic) graphite crucible about 3" long, which acts as

susceptor in the induction furnace. The crucible with its charge was

then put into a combination vacuum chamber and RF coil and held in a

vertical position by a short vycor tube. The chamber was then evacuated

and filled with one-third of an atmosphere of a mixture of argon plus

hydrogen (10%). The furnace was turned on and the charge heated to

approximately 1100 to 1200°C, as measured by a pyrometer, and then held

about 30° above the melting temperature for about one-half hour. After

the water-cooled RF coils brought the chamber to room temperature (about

one-half hour after the furnace was shut off) the chamber was opened,

and the charge removed. It was then weighed as a check that no evapora-

tion of metal out of the crucible occurred to change the concentration.

After being washed with methanol, the charge was placed upside-down on

the vertical crucible: the end of the charge formerly up being now

downward, to increase the amount of mixing beyond the normal stirring

generated by the induction furnace. The chamber was once again evacuated,

and the whole procedure repeated, at least four times for each crystal,

following which the charge was once again weighed, washed, and reversed

in its crucible in preparation for the final sealing and the growing.

This was done by inserting the crucible and charge into a vycor tube

2% feet long by 19 mm o.d. and closed at one end. The tube was flushed

with argon, and then sealed closed by flame while maintaining one-third

of an atmosphere of the argon-hydrogen mixture in it. The closed tube

was placed vertically within the RF coil of the Stanelco induction

furnace.
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The axial length of the coil was only three or four times that of

the charge, and the temperature gradient was changed by slowly raising

the coils (see Table 9). Rough estimates for temperature gradients

are 100 to 200°C over the length of the crucible. The roughly equal

vapor pressures109 of Au (1 mm at 1867°C) and Ga (1 mm at 1349°C)

ensured that any mass loss during the heating cycles would be small, and

any difference in mass loss would be even smaller.

Cutting. The crystals were cut by spark erosion. A .002" molybdenum

wire cutter at about 300 volts was used to cut off sections of the right

thickness and face angle, preparatory to cutting cylindrical samples

.4 cm to .5 cm by .1 cm in diameter with a Servomet Spark cutter. This

used a small tube of the proper diameter as the cutting electrode.

After a (111) axis of the slug was identified sections about .5 cm

in thickness (and about the diameter of the slug) were cut by the wire.

These were glued face down to a brass mounting block on a goniometer and

oriented so that an x-ray beam paralleled a (111) direction. The crystal,

still on the goniometer, was transferred to the spark cutter, which was

aligned so that its axis was automatically in the (111) direction of the

crystal. The spark cutter then lowered onto the crystal to cut out the

sample. The plane had been previously cut so that it was close to being

perpendicular to (111); thus the samples were nearly right cylinders.

The accuracy of orientation of the crystal in the probe and cryostat

needed to be only within several degrees, because final orientation was

obtained from crystalline symmetry as observed in the deA signal.

Figure 43 sketches the locations of the deA samples. This figure also

shows from where were cut the samples used in the analysis of composition

by a microprobe (Chapter IX). The dimension of the deA samples are
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Figure 43. De Haas-van Alphen and RRR samples (circled numbers) and

samples for microprobe analysis (not circled). Cut from

the crystals of AuGa2 grown by the Bridgman method.

Sample 19 is for RRR only.
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TABLE 10. Dimensions of deA and RRR Samples

Sample Type of Length L Diametera D Ratio

No. Measurement (cm) (cm) L/D

5 deA and RRR .60 approx. .13 square (b)

6 deA only .38 approx. .218 . (c)

10 deA and RRR .518 .218 2.38

12 " " .483 .221 2.19

13 " " .163 .216 0.75

14 " " .259 .211 1.23

15 " " .231 .218 1.06

16 " " .203 .211 0.96

19 RRR only .902 .150 x .145 rect. 6.12

20 deA and RRR .602 .216 2.79

26 deA only .445 .218 2.05

27 " .287 .224 1.28

30 " .290 .224 1.29

aDiameters are maxima. Some of the "cylinders" were oblate at one end,

due to spark erosion in the tube cutter, with a minor axis as much as

15% smaller than the diameter of the bigger end (the one entered).

Some samples have different shapes, as noted.

bVariable cross-section. L/D roughly 3.3.

cVariable cross-section. L/D roughly 1.6.
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given in Table 10. All of the deA and RRR samples were numbered in

one series (circled in the figures) and all other pieces cut from a

slug were numbered in a separate series for each slug. Some samples cut

for deA runs were not used because they appeared not to be single

crystals. Some of them are shown in the figures by unlabeled, dotted

lines. Sample 19 was cut specifically for a RRR measurement. The (111)

axis is at an angle to the long axes of the slugs. Note that Sample 6

is not (111); it was used for a measurement of T only. Figure 43 also

D

shows the microprobe samples, discussed in Chapter IX.

X—Raying. Both orientation and checking for single crystals were

done on a Phillips x-ray machine, with a copper target, without filters,

by the Laue method (back-scattered x-rays). The cubic crystalline

structure made orientation relatively easy using the standard techniques:

Grenninger chart, measurement of angles between x—ray spots that were

the intersections of zones, and identification of symmetry. With the

crystalline surface 3.0 cm from the film plane it was possible to have

two of the <100>, <110>, and <lll> axes on the emulsion and the third

not far off, so that the arcs formed by spots from zone planes could

easily be extended to intersection. (The objective was always to put

the <lll> axis at film center.) In general, though, only one axis

might be in the picture. A good picture was usually required in order

to have enough spots to identify the correct zone arcs. Even with a

good picture, an arc passing through the (burned out) center of the

picture was difficult to identify.

The exposure with the copper target and Polaroid type 57 B&W film

was 3/4 to 1 hour at 30 kV and 22 to 24 mA.
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The side surface of the slug as taken from the crucible gave good

x—ray pictures without further preparation. Surfaces freshly (that day)

spark-eroded by the wire cutter generally gave good pictures; sometimes

a very light cleaning with acetone and a toothbrush was needed to remove

the carbon breakdown products of the kerosene. A soft toothbrush left

no surface damage. Two exceptions were encountered. Worn guide tips

for the wire permitted slight motion with resulting surface striations

when the cutting head was fixed to move vertically. Visible striations

frequently gave bad pictures, almost certainly from the striations and

not a crystalline defect because each time it happened spark planing

(using a spinning disk as the electrode or the Spark cutter) to just

barely remove the striations resulted in good pictures. It was dis—

covered that this nuisance could be obviated by setting the cutter to

draw the cutting head horizontally.

The other exception was a mysterious "aged cut" effect: a surface

resulting from a fresh cut by the wire would give very good pictures.

From it a cylindrical sample would be cut and the remaining crystal left

on the mounting block shut in a drawer. Sometimes nothing would be done

to a piece between the initial cut and x-ray and the storing of it.

A week or more later the piece would be removed and x-rayed again,

perhaps to check the orientation, and the picture would be very bad, or

unusable. Acetone did not improve it; only a light spark planing did.

Before cutting the smaller pieces and the samples, the pieces of

parent crystal were checked to see that they were single crystals.

Each sample was also checked for the same purpose, and those samples

which gave unusual de Haas-van Alphen signals received repeated scrutiny.

All of the final samples were determined by numerous checks to be

Single crystals within the limits prescribed by the resolution of
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angular measurement with a Grenninger chart Q:0.5 degrees), and by the

resolution in comparing spot patterns using tracings (£0.25 degrees).

However, despite the thoroughness of the x-ray check, there is always

the possibility of inclusions of other crystallites in the parent

crystal, which remain undetected in the sample.

Two types of single crystal checks were used. The first was a

series of x—rays over one face or side of a crystal, with transport

between pictures provided by a track and screw mounted on the x-ray

machine to keep the crystal's orientation in the beam as constant as

possible. No attempt was made to identify spots; the pictures were

simply compared to see that the spot patterns for each picture were a

single crystal pattern and that the patterns were the same on each

picture. This method was also used on the sides of the samples. But

the beam diameter was only a little smaller (between -05 and .10 cm)

than that of the samples, so that a good picture from a basal surface

was taken to indicate a single crystal, at least on that end.

The second method of checking for single crystals was used only for

the samples, and had a higher confidence level, because it involved

ascertaining that both ends had the same orientation. The probability

of another crystallite being included between the ends was low (but not

zero) because samples were smaller size than the parent pieces. A 180°

rotation about the vertidal axis, with the x-ray beam horizontal and

the film plane vertical, transforms a spot into its mirror image across

the horizontal axis of the film plane.

8.3 Melt Concentrations
 

Slug A (see Table 9) was grown from a melt prepared 0.20 at.%

Ga-rich, since Longo found that such a starting point gave crystals
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with (RRR) residual resistance ratios (a measure of crystalline per-

fection) among the highest of the crystals that he grew. Samples cut

from the bottom, middle, and top of this slug were judged from x-ray

pictures to be single crystals and were measured for deA frequency F,

Dingle temperature TD, and RRR. Only RRR showed a variation definitely

above uncertainty in measurement, and that increased monotonically from

the bottom to the top of the slug. It was apparent that unless the

measurable range of variation of AuGa was bigger than the range over
2

this slug, our deA measurements would not be able to distinguish the

samples. Furthermore, the monotonic increase in RRR suggested that all

portions of slug A lay to one side of stoichiometry. The growing of

another crystal, from a melt of different concentration, seemed in

order. Interested in seeing what would happen if the melt were slightly

Au-rich, we grew a second sample (B) from a melt prepared .29 at.% on

the Au-rich side of stoichiometry. (This is expressed in the tables

and figures as a deviation from stoichiometry of —.29 at.% in Ca con-

centration.) This time lower RRR were obtained, as well as a definite

variation in deA F and TD. However, there were no extrema, as one

would expect in going through stoichiometry. Upon reconsidering the

behavior of RRR in slug A we realized that moving more toward the Ga-

rich side would approach and perhaps pass through the concentrations

of high RRR (and presumably stoichiometry). The distortion of con-

centration versus distance discussed in the first section made it

purely a guess as to what the concentration of the tap samples of slug

A may have been, but taking a clue from Longo's data (Figure l), we

grew a final slug (C) from a melt +.55 at.% Ga-rich. The values for

TD passed through a definite minimum, signaling the passage of our
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samples through stoichiometry (assuming the stoichiometry corresponds

to the most order, the least scatter, the lowest Dingle temperature).

A possible minimum in deA F was observed. RRR has not yet been

measured on these samples.



CHAPTER IX

CHARACTERIZATION OF SAMPLES

A variation of the de Haas-van Alphen frequency of the C3 orbit

with the position of the sample in the Bridgman crystal could arise from

a number of mechanisms, some of which relate an increase of deA fre-

quency to an increasing proportion of Ga while others, to a decreasing

proportion. Therefore, an independent measure of composition would be

useful. This chapter reports the results for the following methods of

analysis performed on samples from the single crystals grown by the

Bridgman method. For brevity, the entire single crystal taken from the

crucible is termed a slug.

Slug A......Chemical, Microprobe, RRR

Slug B................Microprobe, RRR

Slug C......None

All of the samples were cut from regions that were either adjacent or

close to the corresponding deA samples.

9.1 Anticipated Difficulties
 

It was suspected that a method of high precision relative to that

of the x—ray, thermal, electrical, and microscopic methods commonly

employed to determine phase relationships would be needed to characterize

168
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the samples. Phase equilbria studies of the Au-Ga system report AuGa2

105

to be of apparently fixed composition. Furthermore, AuGa2 has been

grown and studied for years by many metals physicists, who have not

reported any prOperties which indicated to them the existence of a

phase width.

One way to achieve high resolution in the determination of composi-

tion (of the order of .01 wt.%) is by accurate prior weighing of the

components, followed by melting and annealing for a sufficient time at

the desired temperature. The structure of the resulting equilibrium

system is then analyzed, usually by x—ray methods. Obviously the

composition of our samples cannot be predetermined, since one of our

hypotheses is that the composition of a crystal grown by the Bridgman

technique from a melt of prepared composition varies along the direction

of solidification in a manner determined by the equilibrium phases and

the growth kinetics. Annealing would render the composition uniform;

samples from different positions along the slug would no longer show the

variation of composition resulting from the growth process. Of course,

one could study the phase equilibria about stoichiometry by annealing

crystals grown from melts with compositions in a small range about

stoichiometry, but the method chosen, i.e., measurements on samples

taken from the unannealed crystal as grown by the Bridgman technique,

permits both the investigation of the growth pattern and the possibility

of obtaining information on the existence of a solid, equilibrium phase

about stoichiometry for AuGaz.
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9.2 Direct Analysis
 

For the purpose of characterizing the samples, a direct measurement

of the composition is the most satisfactory. This was attempted by means

of wet chemical analysis and xeray analysis by electron microprobe.

No conclusion could be drawn from the chemical analysis because the

variation was less than the quoted error of the method. The method is

discussed briefly, for the data gives an upper limit on the range of

concentration. The differences in concentration were not much greater

than the uncertainties of measurement by the microprobe, either.

However, the data taken on four samples from Slug A were rather con-

sistent, with eight of nine partially or completely independent results

showing the top of the slug to have a lower concentration of Ga than the

bottom (see Table 15). Therefore, despite the relatively high uncertainty

in the data, some conclusions were drawn about the existence and direction

of a variation of concentration cs(z) of the solid with position in

Slug A. Four of six microprobe measurements on Slug B gave the same

result: Ga concentration decreases in the distance from the bottom of

the slug. The other two results would be quantitatively close to the

first four if one changed their signs; there may have been a mistake

in recording relative positions.

Chemical analysis. Wet chemical analysis was performed on samples
 

taken from the tap and bottom of Slug A. Figure 44 shows both the

samples for chemical analysis (numbered) and the de Haas—van Alphen

samples (numbered in a separate series and circled). The samples were

sent for analysis to laboratories in groups of two: one sample from

the top and one from the bottom of Slug A, except that one "group"
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Figure 44. Location of samples cut from Slug A. Numbers are order of

cutting, in two series: deA samples (circled) and samples

for chemical analysis (not circled). Not drawn to scale.
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had only one sample in it. Each group was sent to a different laboratory

or in a different week. The samples are identified by group number.

Gold content was measured two ways: by titration with hydroquinone

of a solution containing the dissolved sample and by gravimetry. Gallium

was measured by gravimetric precipitation of gallium-oximate from an

ammonical solution. This method could have a bias of l to 2% of Ga

concentration due to a failure to recover all of the precipitate. Much

effort was made to obtain the most precise commercially available methods,

and consultations with other analytical chemists suggested these errors

are as small as could be expected short of undertaking a special project.

The atomic (or molar) fractional Ga concentration is

a = nGa , [118a]

nGa + “ Au

 

where n is the atomic density (atoms cm-3). The atomic percent of Ga is

c = 100 a. [ll8b]

The absolute change Ac in concentration in going from the bottom of the

slug to the tap is the ultimate quantity sought. It is

Ac = ctop - cbottom' [119a]

A related variable is the percentage change

XAc = 100 (Ac/c ). [ll9b]
bottom

Frequently Ga concentration is reported with respect to stoichiometry:

— -.E
AcS - c 3 100. [120]
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The "unit" for c, Ac, and AcS is atomic percent Ga (at.% Ga). It will

not always be written out. This percentage is distinct from other

percentages in which the data is occasionally expressed, such as per-

centage changes.

Table 11 shows that the chemical analysis does not appear to

distinguish between the concentrations at the top and bottom of Slug A.

The absolute errors in the analysis for gold at the two laboratories were

0.5wt% (Schwarszpf) and 0.25 wt% (National). By taking the differential

of the formula for converting weight fraction w to atomic fraction a,

M

1 1 1
—= 1+fi—(r- 1), [121]

1 2 l

m

where Mi are the atomic masses, these errors become 0.46 at.% Ga and

0.23 at.% Ga, respectively. It is interesting to note that all five

values of wt% Au for the five samples in Groups I, II, and III lie within

0.11 wt% Au of their average; and if all four groups are averaged, the

reported values lie within 0.39 wt% of their average. Thus, either

Group IV was a blunder and the resolution of the chemical test for Au

is better than estimated, or Groups I, II, and III just happen to cluster

together, and a bigger sample would exhibit a more normal distribution.

It should be mentioned that Schwartzkopf said the basic error in the

test for Au is only 0.1 wt% Au, but that other considerations increase

it to 0.5 wt%.

The total assay for Group IV was 2% deficient, whereas the other

complete analysis for Au and Ca are less than 0.2 % deficient. But

even when Group IV is dropped from the average, the standard error in

Ac is as big as Ac itself. The distribution of the values of c for
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Groups I, II, and III suggests some separation, but the sample of five

is so small that no conclusion can be drawn.

Microprobe. Samples from Slugs A and B were analyzed on two
 

electronprobe microanalyzers. Slug A was analyzed on an Applied Research

Lab (ARL) model EMX-SM microprobe at MSU by the technician, V. Shull,

with the assistance of the author, and samples from both slugs were

analyzed at the University of Michigan under the direction of Prof. W. C.

Bigelow, of the Dept. of Materials and Metallurgical Engineering. The

most reliable measurements correspond to a difference of Ga concentration

of —.35 1;.10 (std.dev.) at.% Ga between the tap and bottom of Slug A.

The range in Slug B may be -.24 i .10 at.% Ga. Again, the differences

were not much greater than the resolution of the measuring technique.

The micrOprobe samples were cut from the top, middle, and bottom of

the slugs A and B, from regions adjacent to the deA samples, and mounted

in plastic (Figure 43). Samples from each slug were mounted and tested

separately. Mount A contains two pairs of samples from slug A: one pair

from each end. Within each pair one sample exhibits a face approximately

parallel to a {111} plane and the other sample, perpendicular to {111},

a precaution against the dependence of the mircoprobe response an

orientation. However, no such dependence was subsequently found.

Mount B contains samples from the top, middle, and bottom of Slug B,

and has a test for reproducibility of the microprobe data: samples 8 and

16 exhibit faces that were originally congruent. The data from them was

more nearly the same than was data from the other samples.

The exposed faces were polished ultimately with six micron alumina

after mounting. Early mounted samples were lightly etched with dilute

aqua regia and examined under a metallurgical microsc0pe. Occasionally
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regions of slightly different, homogeneous appearance were seen. They

appeared to be neither surface residues nor crystallites of different

orientation; they may have been different phases. But for the most part

the observed surfaces were without structure. The later samples, for

which data is presented, were not etched because the slight gold color

upon etching indicated the probability of removing a higher percentage

of gallium atoms from the surface, thus potentially biasing the data.

Possible inclusions were avoided by examining the samples when they were

in the microprobe, using both an optical microscope and the image current

of the microprobe (described below). A description of the operation of

the microprobe at MSU follows. The essential features were the same for

both machines (UM and MSU).

The sample mount was inserted into a vacuum chamber in the microprobe

and the chamber was evacuated. An electron beam, usually about one

nanoAmpere and with a diameter 1 or 2 microns, was directed onto the

target area on the polished face of the sample, and conducted out of the

sample by conducting paint previously applied. X-rays resulting from

the collision of the electron beam with the sample were analyzed by

three LiF x-ray photometers set to detect the Au M, the Ga L, and the

Ga k lines. The electron beam was swept over a small surface area,

usually 80 x 64 microns. Sometimes the beam was swept along a line on

the face of the sample while the intensities were recorded against

position by a chart recorder. Repeated sweeps over the same line

averaged out the noise. The latter mode was used to check for regions

of different composition. All quantitative comparisons of samples were

made with data taken by the first mode.

In addition to.the quantitative information obtained from the

intensities of the x-ray lines, the microprobe can give an image of the
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surface, showing its general quality: regions of different appearance,

pits, fissures. The electrons of the beam which penetrate the sample's

surface and are conducted out of the sample constitute the image current.

Electrons ejected from atoms in the x—ray process contribute to a lesser

extent. Surface conditions modulate the image current, which in turn

controls the intensity on a c.r.t. screen. This image helped in

selecting a homogeneous region for measurement of the composition.

The Ca K and Ga L photometers used electronic filters to prevent

interference from neighboring x-ray lines, but the Au line was suffi-

ciently isolated that no electronic filter was required. During the

first runs sporadic deflections of the beam indicated charge build-up

occurring in the sample and holder region for some unknown reason.

Coating the faces of the plastic holder and sample with about one micron

of carbon greatly reduced this tendency. The beam had to be swept over

a small area (80 x 64 microns) to obtain Ga x-ray intensities that did

not decrease with time. Presumably the higher energy flux preferentially

boiled off the Ga.

What is the relation of the x—ray count N to the desired information,

namely Ac or %Ac? To answer this question requires both a consideration

of the physical principles of the microprobe and statistical analysis.

The discussion below summarizes the relevant information on the operation

of the microprobe from References 110 through 112. Basic principles of

the statistical analysis are given in Young,113 with a more complete

discussion in Mandel.114 Reference 110 also contains a discussion of

statistical analysis tailored specifically for the microprobe.

Regarding the physical principles of operation, the LiF detectors

count only a small fraction (about .01), called here the x—ray count N,

of the total x-ray intensity generated by the electron beam. The total
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intensity is composed of both bremsstrahlung and characteristic

radiation. The detectors are set to detect a specific x-ray line of a

specific element, whose x-ray intensity I is roughly proportional to both

the mass concentration of that element and the beam current Ib. For our

thick samples I is independent of the absolute mass density of the

element,110 and depends nonlinearly on the voltage. Both I and N depend

on a multitude of other factors, most of which have either overwhelming

or significant effect on the precise results. Most of these factors

are common to all x-ray spectrographic techniques, but some are unique

to the microprobe. The most important ones are mentioned here. Sta—

tistical errors are discussed below. Machine parameters must be held

constant or changed in a controlled manner. Those to which the count N

is most sensitive are take-off angle (the angle between the sample surface

and the small element of solid angle subtended by the detector), focus

of the detector, and beam current I and voltage V. Sample preparation
b

is also important. Its most important factor is that the surface is

smooth and that each surface be presented at the same angle to the beam

(usually perpendicular). For example, a groove half a micron deep or

a 2 degree tilt can both give a possible 10% error for N when the beam

is focused to a spot.112 A swept beam is not so sensitive, resulting

in a .2% to 1% error.115 The samples should not be etched, and must be

thoroughly cleansed of the polishing slurry if it contains elements with

interfering lines. Obviously inhomogeneities in the sample could give

unexpected results. Finally, there are various inherent errors (in

addition to statistical variation) common to x-ray analysis, of which

the largest are absorption and enhancement (related to fluorescence).

Thus the first answer to the question above is that the x-ray

count N of a specific x-ray line is roughly proportional to the weight
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concentration of the corresponding element, but that many complicated

corrections are necessary for accuracy of the order of 1 to 5 absolute

wt.% determinations in the absence of standards.1ll’112 However, the

precision of measurements is an order of magnitude better. The ultimate

in reliability and reproducibility comes with the use of a standard.

One has two samples, one the standard, both being uniform and nearly

identical in composition, with smooth surfaces prepared in the same

manner. In this case the measurement of the relative weight fraction is

very precise and straightforward:llo’111

Nu

= '13—: [12.2]

S S

S
T
G
S

where u is the unknown, 3 is the standard (nearly identical in both

physical and chemical aspects with the unknown), and N is the x-ray

count when the instrument is set to detect the same characteristic

radiation from both samples. The weight fraction w is,

w = ————- [123]

where m1 is the mass, or mass density, of element 1 of a binary sample.

Our samples meet the rigid requirements above because they are

essentially the same composition (in fact, the question is will the

microprobe be able to detect any difference in composition), are

homogeneous, and are held in the same mount, where they are polished

simultaneously. The bottom samples are considered the standards when

comparisons between the top and bottom (or middle and bottom) of a slug

are made. Sometimes the distribution of counts from each sample is

considered separately.
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Regarding the statistical analysis, if one makes a number of trails

(or, replications) of the x-ray count on a sample under fixed conditions,

one obtains a sample of counts Nt’ t = l, 2, 3, ..., whose population is

governed by two distributions. One of these arises from the small

fluctuations in the parameters mentioned above, unavoidable even though

the conditions may be controlled well enough to prevent bias or major

error. This distribution is usually taken to be Gaussian, although for

any specific method of measurement this is always open to question.110

The other distribution is that of Poisson, and applies to any phenomena

for which the population is huge and the probability of an event from

any one member is infinitesimal,110,11
3

in 1917.110 The shape of the Poisson distribution is markedly different

as first considered by Einstein

from the normal curve only if a count of zero has a nonrnegligible

probability. As the average of the distribution increases so that a

zero result means only that the machine broke, the distribution becomes

a special Gaussian whose standard deviation is the square root of the

mean.llo’113

The fact that x—ray emission has Poisson's distribution provides a

check on the reliability of data from x-ray spectrography. This comes

from considering means and standard deviations as follows. The definition

of the sample variance SV is independent of the distribution function of

the population. In symbols appropriate to the x—ray count it is

one run

2 (Nt4fi)2, [124a]

trial t

l

SV = YT:I)

where T is the total number of trials in the run and N is the mean of

Nt over the run. The sample standard deviation SSD is
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;,

SSD = (3V) 2. [12415]

Suppose that the variation in N is entirely due to the x-ray mechanism,

t

with no error contributed by the measuring technique. Then the parent

distribution is that of Poission, and for a large sample, for which the

statistics approach the population statistics, the relation mentioned

above holds:

SSD = N%, [125a]

sv = N. [125b]

For all of the data of this chapter N is greater than 5000, large enough

that the x-ray distribution has the shape of the normal (i.e., the

Gaussian) curve. If the distribution of the errors introduced by the

machine and sample are also normal, then the total distribution is also

normal and the great body of statistical theory for such a distribution

may be used. Equation (125) is a theoretical minimum for SV and SSD in

(124), and a substantial increase in either signals a deterioration of

precision by random errors in the process of measurement. This analysis

contains no safeguard against bias or blunder. Also, because the sample

is finite (125) does not hold exactly, and when machine error is very

small, it may happen that SSD is slightly (1% to 2%) smaller than N%.

This occurs occasionally in the data presented in the tables and in

examples in References 110 and 112.

An 80% confidence interval,113 computed from N, SSD, and Student's

values, implies that there is an 80% chance that if the experiment were

repeated under the same conditions and for the same number of trials,

-' -

the new average N would lie within one confidence interval of N. The



182

relative 80% confidence interval RCI for a run is the confidence interval

CI divided by N:

 

, [126a]

where T is the number of trials in the run and t is the corresponding

Student's t for an 80% interval. An interval could have been computed

for any percentage of confidence, but the value 80% was chosen as perhaps

being sufficient to distinguish real effects without demanding resolution

not available from the method of Measurement.

Table 12 summarizes the microprobe data and Table 13 shows typical

run data used to compute Table 12. It turns out that although the un-

certainty can be reduced to the statistical minimum (125) for a count

taken with most of the microprobe controls left unchanged, the error in

the reproducibility is several times greater. Thus the data is grouped

and compared by run. A run (column 1) is all the data on samples in one

count and one setting of the machine, with only the precision controls

being varied. Each trial (column 6) holds all variables fixed while

counting for a precise time, usually 10 seconds, to get the number N,

proportional to the characteristic intensities detected (referred to

below as an x-ray line). Using N, the mean from all of the trials in a

run, improves the reliability of the results. Columns 7 through 9 of

Table 12 give a slight modification of the relative 80% confidence

interval: it is expressed as a percentage,

%CI = 100 RCI, [126b]

in order to more easily compare it with the results, which are very

small fractions. This percentage should not be confused with the



T
A
B
L
E

1
2
.

M
i
c
r
o
p
r
o
b
e

A
n
a
l
y
s
i
s

o
f

S
l
u
g
s

A
a

a
n
d

B
b

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

%
C
I
C

f
o
r

8
0
%

C
I

%
I
n
c
r
e
a
s
e
c

i
n

N
:

%
A
N

 
 

N
o
.

o
f

R
u
n

M
a
c
h
i
n
e

S
l
u
g

P
o
s
i
t
i
o
n

S
a
m
p
l
e

T
r
i
a
l
s

G
a
—
K

G
a
-
L

A
u
-
M
g

G
a
-
K

G
a
-
L

A
u
-
M
g

1
M
S
U

A
T
O
P

4
9

4
.
5
9

.
3
1

1
.
1
4

T
O
P

4
7

1
4

.
7
8

1
.
0
8

1
.
1
4

-
7
.
6
1

-
3
.
6
3

+
0
.
4
0

B
O
T
T
O
M

2
5

1
6

.
5
5

.
5
0

.
7
9

M
S
U

A
T
O
P

4
7

2
3

.
5
0
9

.
7
0
8

.
2
9
4

f

B
O
T
T
O
M

2
5

2
3

.
5
2
7

.
4
7
2

.
3
9
7

-
1
.
2
3

-
1
.
0
1

+
0
.
2
8

3
U
M

A
T
O
P

4
9

1
2
5

.
0
9
3

.
0
6
2

.
1
4
8

T
O
P

4
7

"
.
0
8
4

.
0
5
2

.
1
4
4

-
0
.
5
1

-
1
.
0
5

+
0
.
4
7

B
O
T
T
O
M

5
2

"
.
0
8
3

.
0
6
4

.
1
5
1

4
U
M

A
T
O
P

4
7

"
.
0
5
5

.
0
3
0

.
1
0
2

B
O
T
T
O
M

2
5

"
.
0
5
0

.
0
5
3

.
0
9
9

5
U
M

B
T
O
P

1
1

"
.
0
9
9

.
0
6
2

.
1
5
2

-
O
.
6
0

+
0
.
6
4

+
0
.
2
8

M
I
D
D
L
E

1
6

"
.
1
1
8

.
0
7
9

.
1
5
2

M
I
D
D
L
E

8
"

.
0
9
9

.
0
6
9

.
1
4
7

‘
0
'
3
8

”
’
0
'
2
9

”
'
2
8

B
O
T
T
O
M

1
8

"
.
0
9
7

.
0
6
8

.
1
6
1

-
0
.
7
4

-
1
.
0
6

-
1
.
7
9

a b c

G
r
o
w
n

f
r
o
m

a
m
e
l
t

p
r
e
p
a
r
e
d

.
2
0
4

a
t
.
%

G
a
-
r
i
c
h
.

G
r
o
w
n

f
r
o
m

a
m
e
l
t

p
r
e
p
a
r
e
d

A
u
—
r
i
c
h
,

e
q
u
i
v
a
l
e
n
t

t
o

-
.
2
8
8

a
t
.
%

G
a

f
r
o
m

s
t
o
i
c
h
i
o
m
e
t
r
y
.

P
e
r
c
e
n
t
a
g
e

i
n
c
r
e
a
s
e

i
n

t
h
e

a
v
e
r
a
g
e

x
—
r
a
y

c
o
u
n
t

i
n

g
o
i
n
g

f
r
o
m

t
h
e
b
o
t
t
o
m

t
o

t
h
e

t
a
p

o
f

t
h
e

s
l
u
g

i
s

g
i
v
e
n

b
y

(
%
A
N
)

1
(
%
C
I
)
V
2

a
t

8
0
%

c
o
n
f
i
d
e
n
c
e

l
e
v
e
l
.

F
l
u
c
t
u
a
t
i
o
n

i
n

I
b
,

V
,

a
n
d

f
i
l
t
e
r
s

p
r
o
b
a
b
l
y

c
o
n
t
r
i
b
u
t
e
s

t
h
e
m
o
s
t

t
o

t
h
e

s
t
a
t
i
s
t
i
c
a
l

s
t
a
n
d
a
r
d

e
r
r
o
r
w
i
t
h
i
n

a
r
u
n
,

r
e
l
a
t
e
d

t
o

%
C
I

g
i
v
e
n

i
n

c
o
l
u
m
n
s

7
,

8
,

a
n
d

9
.

T
h
e
s
e

v
a
r
i
a
b
l
e
s

w
e
r
e

b
e
t
t
e
r

c
o
n
t
r
o
l
l
e
d

i
n

R
u
n

2

e
(
s
e
e

n
o
t
e

e
)

a
n
d

i
n

R
u
n
s

3
t
h
r
o
u
g
h

5
.

O
p
e
r
a
t
i
n
g

v
o
l
t
a
g
e

1
4
.
9

k
V
,

c
u
r
r
e
n
t

I
b

=
1
5
.
2

i
.
1
n
a
n
o
A
m
p
e
r
e
s

(
i
0
.
6
%
,

w
h
i
c
h

h
a
s

a
d
d
e
d

a
b
o
u
t

0
.
2
%

t
o

%
C
I

f
o
f

c
o
l
u
m
n
s

7
,

8
,

a
n
d

9
.

T
r
i
a
l
s

8
,

9
,

a
n
d

1
1

r
e
j
e
c
t
e
d
.

g
X
-
r
a
y

l
i
n
e
s

K
,

L
,

a
n
d

M
,

a
l
l

a
l
p
h
a
.

d

183



TABLE 13.

Run 1

Machine MSU

Sample 47

No. of Trials 14

Run 2

Machine MSU

Sample 47

No. of Trials 23

Run 3

Machine UM

Sample 47

No. of Trials 125

184

Typical Statistics Used to Compute Table 12

2
|

ss_D1

2
|

359

N

359

N15

N15

 

Ga-K

20588

293

143

10224

171

101

8180

91

90

X-Ray Line

(all alpha)

Ga-L Au-M

58640 7553

1259 241

242 87

196003 5375

198a 58

140 73

20947 2748

144 53

144 53

8Trials 8, 9, and 11 rejected because of big fluctuation clearly

caused by a drift in the electronic filter on line L. See Figure 46.
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percentage in the concentrations. Columns 10 through 12 compare the

concentrations of samples from the different regions of the slugs, using

percentage changes rather than the ratios of (122). Define

[127]

where Nb and Nt are the average of N over samples in each group bottom

and top. (In Slug B the middle is also compared with the bottom.) The

percentage increase in the count is then

T
E
E

%AN = 100 . [128]

Z
I

O
I

Percentage difference is easier to use than relative difference because

the change is so small. Equations (122), (127), and (128) prove

%Aw = 100§E-= %AN. [129]

b

The procedure is to obtain %AN by measurement, assume wb is the

stoichiometric value to obtain wt or Wfi (top or middle) from (129), then

ab and at or am through (121), and finally Ac and %Ac through (118) and

(119). Combination of these equations yields

GAE) = 1.5

C Ga 1+m(——j%j:-l — 1)

l+AN/N W

- 1, [130]

where m is the ratio of the atomic mass of Ga to that of Au, and the

variables c, N, w are the standard's values for Ca, assumed stoichiometric.

It is important to distinguish between the absolute change Ac in the

percentage concentration c and the percentage change %Ac in the per-

centage concentration c.
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Because the final results, Ac in at.% Ga concentration, are about as

small as the uncertainties, consideration of the propagation of error is

important. First, the error in %AN is /2 that of N. Differentiation of

(130) shows that the propagation of error in each x-ray count gives the

following uncertainties to the final result

CI for 6G3 by Ca lines = .38d(%AN) = .54(%CI) [131a]

CI for CGa by Au line = .54d(%AN) = .76(%CI), [l3lb]

where N refers to the respective x-ray line. Note that the confidence

interval on the left is absolute, in units of at.% Ga, and that on the

right is relative, the value given in Table 12. For example, suppose

one has an exact formula for the conversion of N to cGa = c, and this

formula is used to compute c from N of the Ga-k line measured for

Sample 47 in Run 1. From (131a) and the second line of column 7 of

Table 12, the 80% confidence interval for c is then given by (.54)

(.78) = .42 at.% Ga, i.e., c (at.% Ga) is uncertain by .42 at %.

Before examining these tables in detail, consider the chronology

for this microprobe analysis project. Run 1 has been made, and the

results are as shown in Table 12 and the first section of Table 13.

Four points stand out. On the good side: 1) the x-ray count between

top and bottom differs by .4% to 7.6%, 2) these differences are three

8
to ten times 2 %CI. On the bad side: 3) the two Ga line intensities

change at a different rate, and 4) the sample variance is up to five

times the theoretical value. Points 3 and 4 raise the question of

whether the differences %AN are truly differences in sample concentra—

tion, despite the small RCI, or are only from the variability inherent

in the method of measurement.
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Because the homogeneity range of AuGa , or at least that part of it

2

covered by the samples, could have been wide (about 1%) or practically

non-existent (less than .001%) it was unknown before the run how much

machine precision would be required. The x-ray intensity depends upon

many physical and machine parameters. Although the microprobe is

designed for precision work in the sense of placing a very tiny beam

at a known point, other machine parameters that could affect our results

are not designed for precision. For example, the current Ib is set

using a meter with approximately 5% reading precision, and the current's

exact stability is unknown (but better than 1%). Therefore, some tests

were made to see if the above parameters are indeed sufficiently constant

and if the precision controls (beam focus, position and counting time)

can be reset, both to give the required reproducibility and resolution.

The tests were on standards of pure gold and pure gallium, which

were mounted in plastic and polished as were the AuGa2 samples. The

results are presented in Table 14.

First is the question of bremsstrahlung radiation contributing to

the count from each characteristic x-ray line. This background intensity

for all three lines was measured using pure Au and Ca samples; it was

found to lie between 2 and 3% of the intensity of the same line from

AuGa2 for the same operating conditions. The background was not sub-

tracted from the data of Table 12 because (1) only relative intensities

were needed, while background remains constant, and (2) it is not clear

that the bremsstrahlung spectrum will be the same in AuGa as in pure
2

Au or Ga. From the inherent variance test of Table 14, the SSD is

_1

closer to N’5 for these tests than for Run 1. The focus is critical,

having a SSD of 1.5%. This later improved. Putting the focus very
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slightly out made a 4% change in N. The null effect in test 6 is

fortuitous because the focus was reset between most of the trials.

These tests show that rather careful analysis will be required to

extract any information about differences of concentration in the

samples and even then it will probably be qualitative. Furthermore, all

must be operating well: no current or voltage drifts, grounding problems,

or the like. Finally, precise comparisons can be made only among

microprobe data taken during one run, during which those machine para-

meters which cannot be set precisely are assumed to remain sufficiently

constant not to affect the data. This last claim is further substantiated

by changes in N of one x-ray line from run to run (TablelfiD being much

greater than the variation in N across x-ray lines within one run.

The above seems to make the microprObe an unpromising tool for

detecting uncertainties of the order of 1% or less. However, the sta-

tistical samples for the tests and for Run 1 were small, there was some

drift in Ib, and we were not yet fully acquainted with the subtleties

of operation. More care in focusing and in selecting the target area

gave better statistics in Run 2. Also, a far more sophisticated sta-

tistical analysis of x-ray fluorescence, focus, position, and sample

effects were made on the UM machine by their operators. Their focus was

more reproducible, and their SSD were closer to the theoretical values.

See Tables 12 and 13.

After the preceding look at the results of the first run and at the

analysis of the resolution available for the microprobe, we return to

Table 12, columns 10-12, to consider the results from all the runs.

The test results (Table 14) suggest the focusing may not have been as

careful in Run 1, so its numerical results have less meaning than the

other runs, although the indicated direction of change may be reliable.
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Table 15 presents the values for the absolute change Ac in at.% Ga,

with respect to the bottom of each slug, as computed from the values of

%AN 1 %CI of Table 12, using (130) and (131). The following are noted:

(1) Eleven of twelve values for %AN are evidence that the con-

centration of Ga is lower at the t0p of the slug than at the

bottom, giving a value Ac = -.35 i .10(SSD) at.%Ga.

(2) The twelfth value for %AN, namely that for Au-M in Run 4, is

far different from that of the other three runs. In view of

%CI for N being about 0.1, %AN = —l.79% is difficult to explain

by other than some mistake during recording the data, or an

unidentified, occasional bias.

(3) For the data for Slug B, either a mistake was made, such as in

identifying one of the samples during the recording/transfer

of the data, or N for each run truly has an uncertainty of the

order of 1%. If the latter is true, then the finding of a

confidence interval of the order of .1% is inconsistent,

requiring that some basic assumptions, beginning with equation

(122), do not hold. The raw data of Run 5 were not available

for checking that the samples were correctly identified.

The above observations imply further analysis of the data is

desirable for deciding if it reflects real differences among the samples.

Were the contradictory results, especially for Slug B, blunders or true

statistical uncertainty? Do the bigger values of %AN from Run 1 arise

from inexperience in precision operation of the micrOprobe or from true

statistical uncertainty? And if the answer to these two questions is

that %AN has a statistical uncertainty of the order of 7%, then why are

SDD so small?

Three ways of examining the matter are presented: (1) a more careful

consideration of the accuracy of (122), including the inclusion of

background in the x—ray count N from each detector-counter, (2) a com-

plete display of the data of Run 2, (3) a comparison of some of the

variances of the data from the UM runs, and (4) a sketch of the distri-

butions (both theoretical and actual) of the data.
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TABLE 15. Tentative Conclusionsa for the Relative Change in the

Gallium Concentration with Respect to the

Bottom of Slug

 

(A—C .4: 80% cxb)
c
b

X-Ray Line

Sample

Slug RunC Position Ga-K Ga-L Au-M

A 2 TOP -.47 i .28 -.39 i .32 -.24 i .27

3 TOP -.19 i .05 -.40 i .03 —.41 i .11

4 TOP —.28 i .03 -.41 i .02 +1.50 i .08

Mean -.349 i .099 (note d)

B 5 TOP -.23 i .05 +.25 i .03 -.24 i .12

5 MID -.15 i .06 +.11 i .04 -.24 i .11

a .

See text for reservations.

b80% confidence interval determined from counts from each x-ray line

within each run.

cExperimental conditions made Run 1 unreliable.

dAu-M of Run 4 was dropped as a possible blunder. Standard deviation

rather than confidence interval is given for the mean.
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(1) In examining the accuracy of (122) consider first the back-

ground. Although it is not necessary to subtract background (bremsstrah-

110’111 it is desirablelung) radiation when using a suitable standard,

to examine the possible effects of background more closely, in view of

Ac being only about three times SSD. (The statistical sample here is

the eleven more or less independently measured values of Ac that are not

suspected of having a strong bias.) The following discussion drops the

average bar from the count, and assumes that statistical precision

obtains. Define

N = NC + N [132]
b,

where the counts are total, characteristic, and background. Assume

w = kNC is exact and substitute (132) into (122) to obtain

a o N' . 2
%Aw = %AN+-§—(r - r)(l/k - l)100 + 0(r ), [133]

where r = Nb/Nc’ r' = N'b/N'c, and the second term on the right is very

close to 100(r — r'). Consider this as an error in the measured value

of %AN which propagates to the final result Ac in Table 15. In order

that Ac be changed by less than .01 at.% Ga (which is 10% of SSD and

certainly could be neglected), Equation (l3lb) shows that (r - r')/r

must be less than 0.9%. This is a change of one count in the Au back-

ground and 5 counts in the Ga background for any one trial, and so would

be hidden in the fluctuation of the background count. Besides, the

continuous x-ray spectrum depends only on the energy of the electrons

incident on the sample, and not on the composition of the sample.116

Even if this is not strictly true for general compositions, any vari-

ation in the background among our very similar samples is almost certainly

less than .9%. Hence background can be safely ignored.
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It is also customary to assume that the x-ray intensity Ic =kw.llo’111

In view of the many factors influencing excitation and photon emission,

absorption, and fluorescence, deviations from strict proportionality are

almost certain, producing error in (122), although to what extent and

whether the effect on the final result Ac is significant are unknown.

However, what is important is measured x-ray count N, not the theoretical

intensity I, and measurements of N versus w for both dilute and major

components of numerous alloys show visible departures from linearity,

depending on take-off angle, voltage, and other factors. Graphs corre-

sponding to a 90° angle appear to be straight lines, and as the angle

decreases to 10° curvature becomes obvious. The take-off angle of both

the microprobes is 52.5°. The effect depends upon composition, so that

to truly evaluate its influence upon our results would require a measure

of N versus w for the Au—Ga system. Fortunately the similarity of

composition of all our samples makes the effect of even a pronounced

deviation from proportionality small. This is shown below. The pro-

cedure is to draw an estimate of the relation between N and w on a

normalized graph (i.e., w = N = 0 and w = N = 1), then to compute from

the graph the true proportionality constants which are tan0 and tane' in

Figure 45(a), as a function of Aw = w' - w. Assume that w is at AuGa2

stoichiometry (a few percent deviation produces negligible error in the

final result). Assume that over the range Aw the graph can be replaced

by its tangent. The construction is shown in Figure 45(b). Then

compute r = Aw/w for two cases: (1) using the calculated (and differ—

ent) portionality constants at each point w and w' in N = kw; (2) using

(122) as written, which assumes N versus w is the corner-to—corner



Figure 45.

(a)

(b)

(C)
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Error introduced into measurenents of concentration

differences by deviations from linearity in x-ray count.

Typical nonlinear graphs of x-ray count N versus concentra-

tion w in a binary sample. For normalized scales the

proportionality at w is tan 0 and at w' is tan 0'.

Construction for Equation (134).

Hypothetical relations for the Au-Ga system. Curves

:2 are highly unlikely.
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diagonal line of Figure 45. Finally compute the relative error (dr/r)

in using (122). This gives

tan 0 _

d£.= Rel. Error in %Aw = tan 0 ,

r

|134|

TABLE 16. Error in Concentration Differences

Ac Due to Hypothetical Deviations

from Linearity in the X—ray Count

versus Concentration

From Figure 45 d3_ Error in Ac

Curve r (at.% Ga)

0 0 0

1 -.3O +.11

—1 +.20 -.08

2 -.48 +.18

-2 +.67 -.26

where tan 0 is the pr0portionality N/w and tan ¢ is the slope of the

graph at w. (See Figure 45.) These angles are measured from the graphs

and dr/r is converted into the error in Ac by (131a) (here retaining a

sign change not shown in the equation). See Table 16.

Deviations of the Au-Ga system beyond curves 3 and 4 for 530 take-

off angle would be abnormal. Even that much curvature gives an error

less than SSD.

(2) Figures 46 through 48 diSplay in greater detail the data of

Run 2 of Table 13. The question is, does one observe characteristics of

the data that may be sample effects rather than from such effects as

machine drift, x-ray fluctuation, and focusing? Such a display can help

illuminate sample effects because one should see a pattern of differences

in the data. The procedure was as follows: trials of 10.000 seconds

of counting x-ray fluorescences were made alternately on each of two
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samples, one from the top of Slug A and one from the bottom, in the same

mount. Alternating between the 2 samples will help identify in the data

effects due to drifts in the machine and any tendency for systematic

operator error in setting the focus. Each trial measured simultaneously

three x-ray lines, and the time between trials was uniformly 10 to 20

seconds, except three or four times to make machine adjustments. To

eliminate surface effects the electron beam was returned each time to

the same position, using the micrometer transport, which could easily

reposition the beam (of cross-section 64 x 80 microns) over 95% of its

previous area. A small change (to new base positions beginning with

trial 4) had no effect on the data. Drift is noticeable in these

figures. The arrows show where the electronic filters on the x-ray

counters were seen to have drifted off and were readjusted. There was

no filter on the Au line, so the common dip and rise at the end of the

run indicates either machine drift or perhaps operator effect (systematic

error in focus). The possibility of a surface effect arising from

changing surface character due to electron bombardment is unlikely

because (1) the beam was swept (rather than stationary), (2) the beam

remained at one point only about ten seconds, and (3) such an effect

would be expected to show a monotonic change in the data. But it should

be mentioned that electron bombardment effects can be important. A

stationary beam of 30 kV and l nA will apparently boil off Ga. And a

beam (even when swept over areas the size we used) can cause oil (from

the vacuum pump) to carbonize on the surface under the beam, producing

a visible effect after ten to twenty minutes. No such effects were

observed corresponding to any of the data discussed in this chapter.

The conclusion from Figures 46 thru 48 is that when the data is

displayed two types of patterns are seen, one arising from differences
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between the samples and the other, from random and systematic error.

It is also evident that the slight sample difference visible in the

displayed data will be obscured by statistical averaging.

(3) The third way of examining the question of whether the sample's

differences are real is the comparison of variances. The variance due

to each effect adds arithmetically to the total variance. Table 17

lists the subtotals for the variances due to the cumulative effects of

x-ray fluctuations, focus error, going to a new position on the same

sample (whose surface is possibly not uniform), and going to another sample

(which ideally should constitute all the change in N). The fact that the

first three subtotals in variance increase only slightly shows that the

machine is adding (within a run) less than the same uncertainty inherent

in the x-ray process. The big jump in variance when the sample effect

is included shows that either (1) the sample effect is real, coming from

the samples, not the machine, or (2) somehow, in going from one sample

to the other something is changed in the machine, in a not very syste-

matic way, to produce a change in N. V. Shull, the operator of the MSU

microprobe, and W. C. Bigelow, Prof. of Materials and Metallurgical

Engineering, and in charge of the UM microprobe, both thought it highly

unlikely that any type of machine effect could differentially affect

samples in the same mount to such an extent. Table 17 supports the

conclusion that the differences in %AN are due to sample effects, with

the contradictions arising from mistakes in recording the data.

(4) In Figure 49 Gaussian curves illustrate the distribution of

the counts N for each x-ray line of each run. But the use of a smooth

Gaussian for the small number of samples in Run 2 is misleading.

Figure 50 is a histogram of the data used to construct that set of

Gaussian curves. The picture here is not so pleasant. However, there
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TABLE 17. Comparing Variances in Microprobe Data

   

Slug A Slug A Slug B

Run 3 Run 4 Run 5

X-Ray Line

Variancesa Ga-L Au-M Ga-K Au-M Ga—K Au—M

b
Inherent 1 1 1 1 1 1

Focus 1.08 0.99 1.22 0.79 1.39 1.36

Position 1.28 1.53 1.29 2.62 2.53 1.52

Sample 36.63 41.00 34.66 55.45 14.37 11.16

aVariances are for the cumulative effects of (and in this order)

miscellaneous and inherent variability in both the x-ray

fluctuations and in unidentified machine variables; focus;

position of the electron beam on the surface of a given sample;

and moving the beam among samples.

bAll the other variances are normalized to the inherent variance

for each x-ray line.
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Figure 49. Theoretical frequency distributions of x-ray count N.

Constructed from each run's mean count N and standard error

SE = T%, where T = number of trials. Slugs A and B:

bottom (solid line), middle (dots) and top (dash) samples.

All are same area, same scales. Tails are 2.SSE on each

side. Au line reversed in N.
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appears to be some separation. The UM runs, with 125 trials for each

sample, were recorded on automated equipment and unavailable for display

in histograms. This ends the additional analysis of the data.

With regard to Slug A, the final conclusion is that the Ga con—

centration at the top is lower than that at the bottom by -.35 :;.10

at.% Ga. This average was obtained after dropping results from the Au-

line of Run 4, clearly a deviant point. Even though the standard

deviation here is as big as that for the results of the wet chemical

analysis, this number is more reliable because of the bigger sample,

and because Figures 46 thru 48 give evidence of a real difference in

the sample.

With regard to Slug B, no definite conclusion is warranted because

the reversal in signs seems to contradict the statistical precision.

It is tempting to believe that the contradiction of four of the data by

the two from the Ga—L line is due to a mislabeling of the L line record.

For both slugs the presence of some contradictions in the data and

the big standard deviation force the retention of the possibility that

the differences in the means are dominated by effects other than sample

concentration.

A lower Ga concentration at the tap than at the bottom of Slugs A

and B could also account for the variation of residual resistance ratios

presented in the next section.

Other methods considered. This section ends with brief comments on

other methods of analysis. A very common one for precision analysis is

x—ray fluorescences (or spectrography), and it was considered at the

time that the microprobe studies began. We did not use it for three

reasons. Conversations with Prof. S. R. Crouch of the MSU Chemistry
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Dept. and with Mr. R. Mirti of National Spectrographic Lab, which offers

commercial spectrographic analysis, left the impression that the best

resolution to be reasonably expected was of the order 1%. At the time

the resolution of which the microprobe was capable was not known, so it

was decided to put all the effort into a thorough analysis on the

microprobe. X—ray fluorescence has many of the problems of sample

preparation and collection of x—rays that the microprobe has, and some

of its own. In a measurement pushing the limits of the method it is

better to have hands-on operation, and be able to vary the measurement

as seems profitable.

Secondly, x-ray fluorescence exposes big surface areas to the

x-ray beam, with the result that inhomogeneities will influence the

analysis. The microprobe, with its combination of small beam and image

current, allowed the careful selection of the target area. During

exploratory measurements it was found that an occasional region of the

surface gave anomalous counts, and it was possible to avoid these.

Thirdly, x-ray fluorescence requires, for precise analysis, incon-

veniently large surfaces, at least 1 cm2. Most of our samples had

surfaces about .1 cm2, and cutting samples with surfaces ten times

bigger would have soon used up the regions of the slug where we needed

to cut several analysis samples.

During the course of the thesis, Prof. J. Wilband of the MSU

Geology Dept. corroborated the earlier estimates of precision obtainable

from.x-ray fluorescence. It was his opinion that for our purposes the

precision offered by the microprobe was equal to or better than that

offered by x-ray fluorescence.

Neutron activation analysis was attempted, but it gave no usable

results. The technique is to irradiate the sample with aluunn1f1ux of
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thermal neutrons from a nuclear reactor, creating radioactive isotopes

of Au and Ga, and the intensity of one decay mode of one isotope is

isolated, measured, and related to the concentration of Ga. Problems

arose with both a strongly interferring radiation from an isotope of Au,

and limitations of the equipment available. Other methods, such as

flame analysis (photometry) were considered, but rejected because of

information that their resolutions were even less than chemical analysis.

9.3 Residual Resistance Ratio
 

This section describes the methods of measuring the residual

resistance ratio (RRR). The first subsection discusses the relevance of

RRR to these experiments. The experimental results were presented in

Chapter VII.

Relation to concentration and Dingle temperature. It is well known
 

that RRR, defined in equation (1), is a measure of the scattering of

conduction electrons by crystalline imperfections in the static crystal.

The assumption of an isotropic relaxation time TO in the Boltzmann

equation gives the electrical conductivity proportional to To times an

integral of velocity over the Fermi surface. In this simple model

RRR « l/p a Do a r [135]

D

where To is the relaxation time of the conduction electrons at low

temperature and in an applied electrical field. In general scattering

is anisotropic over the Fermi surface, so that it must be contained in

integral over the Fermi surface. If an electron is in the state ELits

probability of being scattered out of that state and into state kf

depends upon the scattering rate 1/Tkk,. The inverse of the relaxation
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time To is the average of the scattering rate over the Fermi surface.

For a free electron model the weighting function is (l—cose) and the

relation do a To is regained (Ziman, pp. 186-187).

Assume that at liquid He temperatures any increase of electrical

resistivity 04.2 of nonstoichiometric AuGa2 over the resistivity at

stoichiometry is due to the sublattices not containing solely Au or Ga

atoms, and that scattering due to other imperfections of the crystal

is constant. Simple theory gives resistivity due to point imperfections

proportional to their density. These two assumptions give

A04.2 = kiIAcSI, [1363]

where ki depends on the type of impurity. This can be related to a

change in RRR. Let the quantities pertaining to the crystal at exact

stoichiometry be indicated by superscript zero. From (1) and from the

fact that resistance at room temperature is independent of AcS,

R
m _ _ (o) = RRT _ RT

A94.2 AR4.2 ’ R4.2 R4.2 RRR RRR(o) [136b]

R4 2
= _ ———%—7ARRR’ [136C]

RRRO

where

ARRR = RRR - RRR(O). [1366]

Combining (136a) and (136b) gives

IAcsl = k; 955%3). [136e]

RRR

to first order, the relative increase in RRR is proportional to deviation

from stoichiometry.
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It is interesting to note that if Acs<0 arises from Ga-site

vacancies and Acs>0 from Au-site vacancies, Linde's rule (resistance

a 22, where Z is the valence difference between impurity and host)

predicts an asymmetrical variation of RRR about stoichiometry because

Z = —3 in the first case and Z = -l in the second. Asymmetry would also

result if one side of stoichiometry corresponds to substitutions (Au for

Ga or vice versa) and the other side to vacancies. If only substitutions

occurred, the relation between RRR and AcS would be symmetrical (Z =

-2 for either type of substitution).

However, considerations not taken into account above may be impor-

tant, so that symmetrical or asymmetrical RRR would perhaps not definitely

exclude any of the mechanisms for deviations from stoichiometry. For

example, the core potential is also important for scattering, and its

dependence on valence difference is much less obvious.

The relation of RRR to AcS and the calculation of To are difficult

undertakings. The scattering rate l/Tkk. is not known for most real

Fermi surfaces, nor is the weighting function. Our main motivation for

measuring RRR is a check on the measured deA frequency and Dingle

temperature variation. Do the samples also exhibit a variation in the

independently measured RRR, and does the same sample have both the

highest RRR and the lowest TD? If the samples have different concen-

trations about stoichiometry one would expect the answers to be "yes."

In summary, we shall take RRR as a qualitative measure of the approach

of concentration toward stoichiometry.

The lifetime T of an electron on an extremal orbit is related to

the Dingle temperature through (67), and l/T is an average over the

orbit of l/Tk, the rate at which electrons near state k_on the orbit

would scatter out of that state, assuming all other states were
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available for occupation. Hence To and T are different; their ratio

Tp/T may vary from 1 to 1000. The extent of disparity depends mostly

upon the scattering mechanisms, and to a lesser amount upon the orbit

to which T belongs and the amount of anisotropy of scattering over the
k

Fermi surface.

Published values of TD range from a low of .01 K in very pure samples

to around 5K for samples prepared with defects. The low is near the

limits imposed by the sensitivity of the measuring technique and theoreti-

cal level broadening caused by the crystal lattice. In recent years many

deA studies have been done on samples prepared with known concentrations

of a scatterer, especially in the noble metals. Measurements (see

Table 18) of both RRR and TD in Cu have shown that the ratio Tp/T

varies widely with the type of scatterer, with obtained from RRR by the

free electron model. The interpretation80 of Table 18 is that it

demonstrates the very small weighting given small angle scattering in

the average conduction relaxation time To. Large and small angle

scattering are two somewhat different regimes. Large angle scatter

occurs close to the scatteres in the table; small angle scatter is

effectively a diSpersion of the electron wave function caused by the

lattice strain fields surrounding the defects. The strain fields for

impurities and vacancies fall off as 1/r3; those for 100p dislocations

fall off as l/rz; and those for edge dislocations fall off as l/r. The

long range strain field of edge dislocations means that when they are

the predominant scatterer, the proportion of small angle scattering

events is very high, with consequent increase in Tp, but not in T.

For orbit C' of AuGaz, with a room temperature resistivity of lBuQ—cm

3

(from Ref. 10, which was roughly confirmed by a measurement of 9.3 uQ-cm
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TABLE 18. Scattering Rates from

deA and RRR in Cu

and Au (Ref. 166)

Scatterer Tp/T

Impurity 1

Vacancy (in Au) 1 - 2

Dislocation loop 3 - 7

Edge dislocation 103 - 104

on one of our samples), T
D = 1, RRR = 1500, m = mo’ and the free electron

relation between 0 and I give

Tp/T = 2.70 (AuGa , orbit C5). [137]
2

This results shows that the values of TD for our samples are probably

not dominated by edge dislocations, and that RRR"l may be roughly

proportional to T as concentration varies. The next sections show the
D

method of measuring RRR.

AC method. Because the small size of the samples makes the measure-

ment of reproducible, precise RRR values by the standard direct current

method very difficult, we used an AC method.117’118 By means of a

solenoid a magnetic field H0 is applied parallel to the axis of a sample

of uniform cross-section. The sudden removal of the field induces eddy

currents in the sample, whose decay time is related to the size, shape,

and resistivity of the sample. The eddy current induces a voltage in a

secondary coil. Gating the current in the primary solenoid allows

repeated display and measurement of the induced voltage on a c.r.t.

(see Figure 51(a).
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Figure 51. Apparatus for residual resistance ratio measurements.

(a) AC method. The sample sits inside pick-up coil.

(b) DC method sample holder. The standard electrical

circuit was used.
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A condensation of the theory follows Ref. 117. The voltage induced

in the secondary coil is found by integrating Faraday's equation. The

flux density is integrable analytically when the sample is a simple

geometrical shape. For an infinitely long cylinder the induced voltage

is117

m

v(t) = lONpHo z exp(-109An2pt/nunz), [138]

n=l

where v is in volts, N is the number of turns in the secondary coil, 9

is the sample's resistivity in Q—cm, H0 is the uniform, steady (before

cut-off), applied magnetic field in Gauss, An is the n-th root of the

zero order Bessel function of the first kind, u is the esu magnetic

susceptibility, and D is the diameter of the sample in cm. The method

is to wait until the longest lived (Al) term dominates the voltage

before recording it, so that

v a NpHo exp(—t/Tm), [139]

where the time constant for a cylinder of infinite length is

5.43 x 10’10 DZ/p. [140]H

II

if p is taken to be 1 and An 11. A plot of ln v versus t is then a

straight line whose slope is proportional to p. The resistivity can be

calculated directly, or the RRR may be found by taking the ratio of

slopes measured on the same sample at room temperature and in LHe.

If p is desired for a cylindrical sample, the measured time constant T

must be multiplied by a finite sample factor,118

T = Tm (1 - exp<—1.2><L/D)°'68>>, [141]

where L is the length of the sample.
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The electrical circuit for the AC RRR measurements (Figure 51(a))

was designed after those in References 117 and 118. The solenoids were

wound on plastic formers. The secondary coils slip into the primary

former. The primary solenoid was 1.05" long, .27" ID and .46"OD. It

had two layers of 50 turns each af AWG 36 magnet wire, each turn

separated from its neighbors, and with the layers separated by Teflon

tape to reduce distributed capacitance (so as to approach optimum values

as calculated from the equations of Ref. 118). The current was around

3/4 Amperes, giving a calculated 29.0 Gauss at the center. The maximum

sensitivity was needed to measure the samples with high RRR values. Then

the current was 1.2A, the maximum obtainable from the circuit, giving a

field of 46G. The potential across the primary with 3/4 Amperes was

about 3 Volts. The current was gated by the oscillator and transistor

switch. The secondary was composed of two coils, a pick—up surrounding

the sample and a balance coil in series, each consisting of 187 turns of

AWG 4O manganin resistance wire (about lZQ/ft). Each coil was about

0.2" long, so that the samples protruded from the ends of the pick-up

coil. The purpose of the balance coil was to reduce the initial voltage

pulse induced by the current in the primary. The induced voltage in the

secondary was displayed on a Hewlett Packard Scope with a maximum

sensitivity of 0.1 mV/cm, permitting a minimum reading of 0.2 mV using a

scale. This sensitivity was required when measuring the time constants

of the most conductive samples at LHe temperatures, because by the time

the interfering exponential terms decayed sufficiently the remaining

voltage was very small. This oscilloscope also recovered quickly

(3us) from the large (1 volt) pulse induced by cut-off of the primary's

current a
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A detailed circuit analysis118 shows that the primary, secondary,

and sample form a coupled circuit whose time constants (corresponding to

the resonant frequencies) become equal to the theoretical time constant

of the eddy current for the proper choice of the damping resistances.

(However, both damping resistances are large, so their absence does not

lead to serious error.) The circuit must also be designed to reduce

ringing resulting from the cut-off of the current. The inductance of the

coils is reduced by making their diameters as small as possible and using

as few turns as is consistent with the sensitivity required. In addition,

the secondary is wound with resistance wire to reduce its Q value and

decrease ringing.

A long piece of Ag, .15 x .15 cm in cross section, was used to test

the method. A piece of Ag 0.5 cm long was cut from one end, leaving the

remainder long enough (about 3 cm) to be reliably measured in the standard

way, using direct current. (See the next subsection for details of the

DC method.) Assuming homogeneity of composition of the original piece,

and taking the DC value as the standard, comparison of RRR obtained by

the two methods should be a check of accuracy of the AC method. The RRR

of the short Ag and AuGa2 (#9) samples were also measured by the DC method

and the RRR compared with the AC values. The results are shown in

Table 19. Sample 9 was not used for deA.

The ratio of the first and second terms of (138) at time to is a

measure of how straight the plot of ln v versus t>to will be. The ratio

is

9

r = exp(iO—Z—P—fuzz—lxzn, [142]
ND
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TABLE 19. Results of Comparing RRR from DC and AC Methods

  

DC Method AC Method

No. of No. of

Sample Trials RRR Trials RRR

Long Ag 2 635:30 - -

Short Ag 4 608:20 3 6031123

AuGa2 (#9) 6 209157 3 360150

3This measurement required the maximum sensibility of the meter.

 

AC values. The results are shown in Table 19. Sample 9 was not used

for deA.

The ratio of the first and second terms of (9-21) at time to is a

measure of how straight the plot of In v versus t > to will be. The ratio is

9

r = exp(r195%£(122-112)), I142|

showing that to, the waiting time before the plot forms a straight line,

increases as p decreases. But the induced voltage is steadily decreasing,

so that highly conductive samples may not be measurable with the available

instrument gain. A rough calculation of the highest RRR values measureable

with our circuit follows. The first two roots of the Bessel function are

11 = 2.405 and 12 = 5.520. Assume u = 1. Combining (138) and (142) gives

RRR = A max ,
max

vstart

|143|
 

where A is 1.118 for AuGa2 and .1376 for Ag, rmax is the maximum ratio that

can be tolerated, and v is the minimum voltage at which recording of

start

the voltage can start and still leave enough voltage sensitivity to record

points for a plot as voltage decreases further. The exponent is a constant.

The factor A assumes room temperature resistivities of 9.3 uQ-cm for AuGa2

(as measured for sample #9) by direct current and voltage; Ref. 10 gives

13 uQ—cm for its samples of AuGaz) and 1.6 for Ag.

One must wait until ringing stops (3us) and r is small. For AuGa2
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at room temperature the first limit applies (i.e., r was less than

.01 by the time 3 usec had passed), but at LHe temperature, the ringing

had long since died before the plot began to straighten itself. About

the minimum measurable voltage range was from 0.1 mV to 0.02 mV. The

maximum r that can be tolerated is not clear without making a plot and

computing the corresponding r. Assuming rmax = .05 and vstart = 10_4V

gives RRRmax 682 for Ag and 3900 for AuGaz. This appears to be about

right for Ag, because the short Ag (RRR = 603) was at the limit of the

sensitivity of the equipment. But the graphs of In v versus time for

AuGa2 samples having RRR greater than 500 did not become straight lines

before the voltage became to low to detect. However, because the

readings were made in the last sixth of the reticle on the most sensitive

range of the oscillosc0pe, it is possible that the curvature in the graph

was due to either persistent background transients or to distortions

introduced by the electronic amplifiers. Subtracting background was

attempted by measuring the induced voltage with no sample in the coil.

The resulting grap’hs appeared to be even more distorted. From the point

of view of coupled circuits one could not assume that the background

would be the same with a sample in place. Therefore the reported results

are as read directly from the oscilloscope. For AuGa2 samples with RRR

greater than 400 the AC RRR results are taken as lower limits. Graphs

for AuGa2 with RRR 200 or less were clearly straight lines.

DC Method. The holder shown in Figure 51(b) is designed to sub-

merge the small (0.5 cm x 0.2 cm dia.) samples directly into the storage

dewar. One copper and plate was heated and tinned, and the sample

pushed against the plate. The plate held enough heat to prevent a cold

joint. The other end plate was then heated, tinned, and pushed against
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the sample while the first plate was heat sunk. Two AWG 50 Cu magnet

wires, tinned with superconducting solder, were wrapped around the sample,

about 1/5 of the distance from each end, twisted, and the ends of each

soldered to the corresponding voltage terminals. These wires were the

potential contacts to the sample. They were secured by soldering. With

the end plates clamped into position the sample was reheated to just

below the melting temperature of the solder. A very small amount of flux

was applied to each potential wire and a small iron tip, lightly tinned

with a lower melting solder, was touched to the wires. Usually the blob

of solder spread out by less than the diameter of the wire. Mechanical

strength was checked by a little tension. The current entered the sample

through the end plates. The leads were connected and the end of the

probe holding the sample put into its temperature bath. For room temper-

ature this was a kerosene bath; for LHe, the storage dewar. Ten Amperes

from a Hewlett-Packard power supply went through the sample, and the

potential across the sample was measured by aKeithley 180 digital volt—

meter. Checks against heating of the sample by the current were made by

watching and by linearity of the graphs. The voltage plotted was the

average after a current reversal, to eliminate thermal potentials.



CHAPTER X

DISCUSSION OF THE RESULTS

Figure 37 shows that the samples of AuGa2 have a variation in deA

frequence F, Dingle temperature TD, and residual resistance ratio RRR.

The variation is correlated with the sample's original position in the

parent crystal, or slug. Each of the three slugs were grown under very

similar conditions to prevent wide variations in the conditions of

growth. This means that except for concentration the change in the

conditions of growth was greater between tap and bottom of a slug than

between correSponding positions in different slugs. Therefore, if

growth kinetics were the dominant factor in causing whatever structural

and compositional changes give rise to the variation in F, TD’ and RRR

exhibited in Figure 37, then such variations should approximately repeat

with each slug. This does not happen, rather the variations seem to go

smoothly between the slugs. we interpret this to mean that the dominant

factor in determining the composition of the AuGa2 crystals grown from

pure materials by the Bridgman method is the concentration of the melt

in the immediate region where crystallization is taking place. Such a

dependence suggests that the concentration of the resulting crystal

follows the equilibrium phase diagram; and conversely, information about

the concentration of the crystal and of the melt from which the crystal

formed give information about the equilibrium phase diagram. In short,

218
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the equilibrium phase boundaries, in conjunction with the prepared melt

concentration, appear to determine the concentration of the initial

precipitate, and both the equilibrium and kinetic properties control the

range and distribution of concentration thereafter.

10.1 Concentration
 

At the start of this research it was felt that we would find some

method of analyzing the concentration of the samples, but no suitable

method was found, and it appears that there is no readily available and

reliabile method for measuring such small differences of concentration

in bulk constituents. In the absence of firm information about the

concentration, the relative positions of the slugs pictured in Figure 37

were chosen to give a smooth variation in the most complete set of data,

T The choice shown is consistent with the assumption, based on theD.

prepared melt concentrations, that Slugs B and C lie in concentration

on either side of Slug A and fairly close to it. This arrangement is

not unique; others are discussed in Section 10.4

10.2 deA Phase Constant
 

As described in Section 7.4, the phase constant Y can be obtained

from a plot of the infinite field intercept INF of deA phase w versus

inverse magnetic field (see Table 8). The theoretical value for Y is

%; the measured value is Y = .46:.O9, assuming the Dingle factor

cos(flgm*/2m)>0, as would be the case for g near 2. The measured value

of Y will be in error by k if an odd number of polarities in the

detection system is unwittingly reversed. The magnetic field, coil,

and amplifier polarities were checked to see that the final calculated
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value for recorded voltage had the correct sign. Experimental values of

g in metals are between land 2 (but are much greater for the semi-metal

Bi). Coleridge and Templeton49 show that of possible Y given by their

INf, only Y = .51.1 is consistent with possible g-values (calculated by

others) for Cu, Ag, and Au. They also report some error reflecting the

difficulty of measurement in the presence of an interfering component

and sensitivity of INF to slight curvature in the experimental plots;

they say that such effects, which may be either instrumental or funda-

mental, may well be responsible for small discrepancies between the

calculated and observed figures for INF. Later work83 on several hundred

ppm In in Cu measures shifts of up to .3 cycle (for 255 ppm) in the neck

orbits. But the deA F is three times higher than that of AuGaz, and

consequently Y may be much more sensitive.

10.3 deA Frequengy
 

The parameter S defined in equation (85a) gives the sensitivity of

some region of the Fermi surface to an increase An (or dn) in the

electron density. The sensitivity is directly related to the deviation

of molar concentration AaS from stoichiometry through

An = A2
1'!— <——Z>Aas, |144|

where Az is the valence difference at the site of the point imperfection

and <z> is the average valence, <z> = 7/3. This assumes one type of

imperfection is present, and holds exactly for substitutions: either Ga

into Au-sites, or vice versa. It has negligible error when vacancies

are the cause of the deviation. Combining (85a), (118b), and (144) gives
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_ AF <z>

Acs ‘ 100 F A2 3 |14Sal

_ -5 AF
— 6.89 x 10 AZ 3 |145b|

As described in Chapter IV, for AuGa the rigid band equation (85c)
2

yields S = 27.3 irrespective of impurity, whereas S = 3.8 was measured55

for Pd impurity, indicating failure of the rigid band model, or at least

the presence of another influence on deA F.

We use (145b) to consider two questions: (1) What is the resolution

for seeing changes in Ca concentration? (2) Do the observed differences

in F correspond to Ac measured by the microprobe? Let AF be the

resolution in measuring F, which appears from Figure 37 to be about

10 kG (i.e., i5 kG). The corresponding resolution in Ac given by (145b)

ranges from .0084 at.% (A2 = 3, S = 27.3) to .18 at.% (A2 = 1, S = 3.8).

To answer (2), reverse the above procedure, taking the difference

in concentration Ac = .35% between top and bottom of Slug A as measured

by the micrOprobe to calculate whether our apparatus should be able to

distinguish the deA frequencies. Taking ATD proportional to Ac over

72, 87
small ranges and using the T values of Samples 10, 15, and 6

D

gives Ac = .24i.09 at.% between Samples 10 and 5. From this, and using

S = 3.8, euqation (145b) gives AF between 13.3:5 kG and 39.915 kG,

depending on the types of point defects. Our measurements should defi-

nitely be able to distinguish the bigger value. Some possible reasons

for not seeing any difference are that the micrOprobe's measurements of

Ac are up to 4 times too high, the value of S may vary greatly with the

type of point defect, or the rigid band model must be modified by more

than just a change in S. Equation (145b) shows a smaller AF would be
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consistent with S even smaller than 3.8, a possibility for vacancies

in view of the discussion in Section 4.1 on Opposing changes in F.

Examples of deviations from the RB model are changes in the density of

states and in the lattice parameter, both arising from structural

changes due to point defects.

Figure 37 shows that the difference in F between Samples 10 and

15 is much smaller than the apparent uncertainty in F. To compare

AcS between Samples 10 and 15 as computed from measured AF and Equation

(85) with measured AcS perhaps has little validity. The variation in

concentration across the whole range of samples lies between a minimum

of .219 at.% Ga and .426 at.% Ga, as calculated from (145b), using

S = 3.8 and all four substitution and vacancy mechanisms for deviations

from stoichiometry. (The correSponding free electron values are .0304

and .0592 at.%.) Thus the variation is in the order of magnitude of

the variation measured along half of Slug A. One could perhaps conclude

that the agreement between the deA experiment and the independent

analysis experiment is qualitative.

Equation (145) shows Ac proportional to AF when one type of point

defect is present. A mixture of defects of different A2, or perhaps

the same Az but different effects on the crystalline structure, may

give a changing proportion. This effect may in part account for the

large change of F over Slug B (Ac less than .24%) and the negligible

difference in F between Samples 5 and 10 of Slug A.(with Ac = .24%:.09%

as computed above), certainly not a prOportional change. The big

uncertainty in concentration differences may account for much of this

nonproportional variation.
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Lack of a method for quantitative analysis of the small changes in

concentration of our samples and lack of knowledge of the types of

point defects present preclude a quantitative comparison of our deA F

with the rigid band model.

10.4 Possible Phase Width
 

The discussion in this section is entirely qualitative. The

most certain results on these AuGa crystals are:

(l)

(2)

(3)

(4)

2

Grown from melts prepared with different known melt

concentrations.

F, TD’ and RRR vary over the samples.

A relative minimum in TD and the highest measured RRR occur

in the same sample, at the top of Slug A.

Magnetic interaction is strong enough to visibly distort the

deA signal at the lowest fields (about 40 kG) for Sample 15,

is less important in neighboring samples, and doesn't appear

through 50 kG in Samples 13, 14, 20 and 30. Magnetic inter-

action is strongest in samples of greatest long range order,

and hence biggest deA amplitude.

The following conclusion is not as definite, but seems probable, as

discussed in Sections 9.3 and 10.1:

(5)

(6)

The cause of the variations above is a changing concentration

of point defects: vacancies in the Au and Ga sublattices

or Au-Ga substitution.

The resulting deviations from stoichiometry correspond to a

nonzero range of concentration in the fluorite phase, and all

the samples lie in this phase.
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In order to make some predictions about the geometry of the phase

boundaries, we make the following assumption:

(7) F, T , and RRR are continuous functions of concentration

D

over the phase width.

In the absence of further information many hypothetical configura-

tions of phase boundary are possible. When beginning this work the

type of diagram that seemed most likely was that shown in Figure 52.

Figure 52(a) sketches the equilibrium diagram for the Au-Ga system.

The vertical line labeled sty. represents AuGa of nominally fixed
2

composition (i.e., exactly two Ga atoms for each Au atom). Figure 52(b)

shows the circled portion of the equilibrium diagram greatly magnified,

so that the line representing AuGa in Figure 52(a) how has considerable
2

width. Also sketched in Figure 52(b) are the three melt concentrations

used and estimated ranges of concentration existing in the melt during

crystallization of the bulk of each slug (purely a guess, based on the

variation of the measured variables). Figure 52(c) shows the variation

of the measured variables.

Figure 52(b) shows one of many configurations of solidus boundaries

applicable to real alloys. It turns out that other possibilities are

consistent with the six statements above. The following test, based on

the assumption that the ends of the slugs lie close to one another

(perhaps overlapping) with respect to concentration, was used to identify

them. All of the relative positions and orientations of the three slugs

that left TD continuous were found by rearranging Figure 37. (TD was

used because it is the most complete set of data.) Each possible phase

boundary was examined in light of the prepared melt concentrations to see
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if it would be possible to grow one of the allowed arrangements. The

slug starts growing at the bottom (pointed end), and as it grows the

remaining melt becomes richer in Au or Ga, depending on which side of

the congruent point the prepared melt concentration lay. It was

assumed that the bulk of the slug has crystallized before the concentra-

tion of the remaining melt has changed enough to cause much overlap,

as indicated on Figure 52(c), and in agreement with Figure 42.

Application of this test to all configurations of phase boundaries

that appear in real systems leaves those shown in Figure 53. The

first two hypothetical phase diagrams (counting from the t0p) are

consistent with the further assumption:

(8) The direction of change of concentration in Slug A is

correctly given by the microprobe data.

The third diagram has been expanded in Figure 52(b), and the first

diagram is expanded in like manner in Figure 54. The first guess for

the position of stoichiometry is that it coincides with maximal residual

resistance ratio RRR. Such a position is supported by the result (4)

for magnetic interaction. The boundaries for all diagrams but the

second permit this placement. For the second diagram, stoichiometry

must lie on the Ga-rich side of the congruent point.

The final conclusions are that the deA frequency F, Dingle

temperature TD, and RRR of AuGa2 vary as the melt from which the crystal

is grown varies in concentration about stoichiometry. As these

parameters depend upon the extent of order and the density of conduction

electrons their variation constitutes strong indirect evidence for such

a range of concentration of the AuGa2 phase. There also is some direct
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evidence for such a range. The range of concentration of the samples

appears to be less than 1%; the full extent of the phase is not known.

Stoichiometry does not coincide with the congruent point (liquidus

maximum).

Two experiments are suggested that may answer some of the questions

remaining. The first and simplest is RRR measurement on the samples

from Slug C. It is expected that RRR will decrease as concentration

becomes more Au-rich with respect to stoichiometry. This implies, by

all of the phase boundaries diagrammed in Figure 53, that RRR should

decrease from the bottom to t0p of Slug C.

A more time consuming experiment, and one probably with its own

set of unforeseen difficulties, is to anneal the entire slug over a time

and at a temperature sufficient to render the composition uniform.

This approach would obviate the need to find a reliable method of precise

analysis of bulk concentration, because the prepared melt concentrations

would apply. A series of crystals could be grown using prepared melt

concentrations near stoichiometry. The measured correspondence between

RRR and prepared melt concentration summarized in Figure 37 and Table 8

could be used as guides to the melt concentrations to use. Suitable

crystals could possibly be grown on the Bridgman grower by greatly

decreasing the lift Speed. More likely the grown crystals would require

annealing in a furnace providing better temperature control. Determining

the length of time required to obtain sufficient homogeneity, the

extended time possibly required, and preventing diffusion of impurities

into the crystal during that time are probably the most likely difficul-

ties. The accuracy of nominal concentration in such an experiment would

depend upon the degree of homogeneity achieved, the precision of weighing
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the components when preparing the charge, and the amount of differential

evaporation during mixing, growth and anneal. Regarding the weighing,

the balance we used read to .01 mg (by a vernier). For a 10 gm charge

(approximately the mass of our slugs), an error of 1 mg in measuring

Ga (the component contributing the smallest mass to the charge) gives

an error of .005 at.% Ga, a negligible error if the measured value of

.35 at.% Ga for the range of concentration in Slug A is even only

approximately correct. But if, as a result of the differences in the

Ga and Au vapor pressures more Ga than Au is lost during the mixing, by

an amount of 1% of the mass of the charge (making a differential loss

of 100 mg), the resulting change in Ga concentration is .5 at.%, enough

to seriously distort the results.

In conclusion, although the results are fairly qualitatively and

difficult to compare with theoretical predictions because of the inherent

complications in the system, it is felt that the variation of the

de Haas-van Alphen parameters will be of interest to those in the

presently active area of using the deA effect to study both scattering

and the rigid band model. The information on the AuGa phase width and
2

RRR could be of practical interest to those studying the physical

properties of highly ordered samples of AuGaz. And finally, the measure-

ment of the phase constant Y = .46i,09 adds to the small number of phase

constant values reported in the literature, and is more evidence, from

a slightly different direction, of the validity of the Lifshitz-

Kosevich theory.
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